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Abstract. Analysis of cardiac ultrasound images is commonly per-
formed in routine clinical practice for quantification of cardiac function.
Its increasing automation frequently employs deep learning networks
that are trained to predict disease or detect image features. However,
such models are extremely data-hungry and training requires labelling
of many thousands of images by experienced clinicians. Here we pro-
pose the use of contrastive learning to mitigate the labelling bottleneck.
We train view classification models for imbalanced cardiac ultrasound
datasets and show improved performance for views/classes for which
minimal labelled data is available. Compared to a näıve baseline model,
we achieve an improvement in F1 score of up to 26% in those views while
maintaining state-of-the-art performance for the views with sufficiently
many labelled training observations.
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1 Introduction

Echocardiography is widely and routinely used for assessing heart function and
for the diagnosis of several conditions, such as heart failure and coronary artery
disease [13]. In a routine echocardiographic study, multiple views of the heart are
obtained to show different parts of the heart’s internal structure, i.e. the ventri-
cles, atria and valves—see Fig. 1. However, not all views are used in subsequent
analysis of the echocardiograms depending on the cardiac function being assessed
or the type of disease being investigated [13]. Therefore, an important initial step
in any automated analysis pipeline is the accurate detection of standardised car-
diac views shown on each echocardiogram. Frequently, further analysis—usually
performed with proprietary analysis software—focuses on left ventricular func-
tion [17]. Often only the three apical views of the heart are assessed, which show
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Fig. 1. Examples of different echocardiography views used including the 2/3/4/5 cham-
ber apical, parasternal long-axis (PLAX), short-axis (SAX) at papillary muscle, right
ventricular (RV) and suprasternal notch (SSN) views. The top row shows images
obtained after injection of a microbubble contrast agent, causing a near inversion in
image contrast, whereas the lower two rows show non-contrast images.

slices through the left ventricle. However, it is still important for a view classifier
to be aware of the entire cardiac anatomy so that it does not misclassify views
it has not been trained on. This is challenging because it requires large training
datasets with appropriate labels. Furthermore, when assessing certain cardiac
conditions, the injection of a microbubble contrast agent is used to better high-
light the boundaries of the left ventricular wall [20]. This changes the image
appearance completely and effectively inverts the image contrast. Hence, these
views cannot be classified without contrast enhanced data also being labelled
for model training. The ability to correctly classify contrast images thus requires
double the labelling effort.

View classification on echocardiographic data has previously been achieved
using convolutional networks [8,18,22] that take as input an image and predict
one of the possible views that were present in the training label set for that
network. For the commonly acquired echocardiographic views, such as the api-
cal four-chamber view, labelled data for model training is available even in some
public datasets [14,19]. However, for less commonly acquired views, with or with-
out contrast enhancement, it is time-consuming and expensive to acquire labels
and thus, datasets are often highly imbalanced. To tackle data imbalance, train-
ing classifiers may require under-sampling the majority classes and specialised
cost functions [10] or augmentations with synthetically generated data [1].
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In this paper, we investigate the problem of view classification in cardiac
ultrasound images and attempt to improve the classification accuracy of convo-
lutional neural networks, especially on under-represented classes, with the use of
contrastive learning. Contrastive learning is a pre-training methodology, which
improves learning of features useful for classification tasks through a contrastive
loss. The contrastive loss clusters similar images together (positive pairs) and
pushes different images away (negative pairs). This can be entirely based on self
supervision for example when positive pairs consist of different augmented ver-
sion of an image (SimCLR [6]) or, when in addition to augmentations, positive
pairs also use supervision to include images of the same label (SupCon [11]).
This has proven successful in computer vision tasks for instance for ImageNet
sample classification [6].

Furthermore, although cardiac ultrasound data consist of videos, view clas-
sification is typically performed per-frame as a 2D classification problem. For
videos, unsupervised contrastive learning, such as SimCLR, is not directly appli-
cable as also discussed in [7]: if multiple frames of the same video end up in the
same batch, then the negative pairs of a frame will include other frames of the
same video. This would hinder the ability of the contrastive loss to only cluster
similar images together, since different video frames would generate a higher loss
value. We therefore adopt the supervised contrastive loss [11], which does not
suffer from this limitation. Our contributions are the following: (a) we apply con-
trastive classification neural networks to cardiac ultrasound, and (b) we evaluate
in a dataset of contrast and non-contrast enhanced echocardiographic images col-
lated from public and proprietary sources and show improved results when using
the proposed contrastive framework for views which have fewer labelled training
observations.

2 Related Work

Standard plane/view detection has been previously studied in fetal ultrasound
with supervised deep learning models, such as SonoNet [2], multi-scale DenseNet
[12], and convolutional networks finetuned with transfer learning [5] or trained
with additional tasks to predict attention maps and adversarial training [3].
In echocardiography, inception [18] and VGG [22] networks have been used
to predict several views or subclasses of views, although not applied on con-
trast echo data. Typically, contrast-enhanced images are used in isolation, for
example to extract myocardial segmententations [15,16]. Most recently, high
view classification accuracy was reported by a convolutional network applied
on mixed microbubble contrast-enhanced and non-contrast data from a multi-
vendor site [8].

Given sufficiently large datasets, supervised training of convolutional net-
works is successful in accurate view detection. However, network initialisa-
tion is important to facilitate convergence, and therefore pre-training methods
using self-supervision with different augmented views of the same image [6] or
labels [11] are investigated to improve computer vision classification tasks, such
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Fig. 2. Schematic of the baseline and contrastive models. (a) The baseline model archi-
tecture consists of a fully convolutional encoder and a fully connected classifier, and is
trained with full supervision. (b) The contrastive model pre-trains the encoder using a
projection network and a contrastive loss. The contrastive loss considers positive pairs
if these are different augmentations of the same image or belong to the same class, and
negative pairs otherwise.

as on the ImageNet dataset. Contrastive learning has also been used in the medi-
cal domain, for instance to improve segmentation performance on MRI images [4]
or to learn joint representations of ultrasound videos and speech [9].

3 Methodology

Given an image x of view yk, where k ∈ [1, 13], corresponding to 13 classes of
commonly acquired views with or without contrast, we consider a 2D baseline
classification neural network c(x) to detect per-frame view labels. This network
maps input images through five convolutional blocks, each containing two convo-
lutional layers followed by batch normalisation and a ReLU activation function,
and a max pooling layer, to a vector representation, which is then processed
by two fully connected layers to generate a view label prediction. This model
architecture, which was used in an eight-class form in [8], is designed so that it is
sufficiently small and effective on standard view classification and can be seen in
Fig. 2a. Training is performed with the categorical cross entropy loss described
as follows:

Lview = −
13∑

k=1

yklog(c(x)).
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A contrastive learning framework is then implemented as per the SupCon [11]
methodology as follows: we split the baseline model into a fully convolutional and
a fully connected sub-model, which are used as an encoder f(.) and classification
network h(.), respectively so that c = h ◦ f . We add a projection network g(.),
which projects the encoded features z = f(x) into a representation x̂ = g(z).
The projection x̂ is used as an input to the contrastive loss that pre-trains the
encoder. Finally, the classification network h(.) learns a mapping of the encoded
features to their corresponding labels and is trained on a second stage following
the encoder pre-training, whilst keeping the encoder weights fixed. A schematic
of the framework is shown in Fig. 2.

The contrastive learning process is more formally described as: given N
randomly augmented images {xi}N

i=1, we first obtain a batch of 2N images
B = {1 . . . 2N} by applying a second augmentation. For every image xi in the
batch, and its projection x̂i = g(f(xi)), there are also Mi other images of the
same label in the set Pi = {xj}Mi

j=1. According to [11] the supervised contrastive
loss is defined as:

Lsupcon =
∑

i∈B

−log

⎧
⎨

⎩
1

Mi

∑

j∈Pi

exp(x̂ix̂j/τ)∑
α∈B\i exp(x̂ix̂α/τ)

⎫
⎬

⎭ ,

where τ controls the temperature scaling of the softmax. We set τ = 1000 as
per [11] and use brightness and contrast augmentations, as well as rotations to
30◦ and spatial translations at up to 10% of the image dimensions.

3.1 Data

The dataset used in this work comprised of anonymised 2D echocardiograms from
multiple sites. The dataset is composed of data from EVAREST [21], a multi-
site, multi-vendor UK trial, some data from the EchoNet public dataset [19],

Table 1. Description of the training and test dataset.

Contrast View Training set Test set

Subjects Echocardiograms Images Subjects Echocardiograms Images

✓ 2 ch. 711 1401 41603 139 276 5784

✓ 3 ch. 699 1377 41432 139 276 5763

✓ 4 ch. 704 1375 41214 138 274 5684

✓ plax 85 85 4547 9 9 560

✓ sax 607 1179 34387 138 275 5649

✗ 5 ch. 165 165 14714 18 18 1832

✗ plax 383 383 33969 42 42 3542

✗ rv 52 52 6521 5 5 703

✗ ssn 55 55 3483 6 6 336

✗ 2 ch. 314 544 26613 126 217 7061

✗ 3 ch. 364 605 32263 135 226 8662

✗ 4 ch. 332 556 28569 130 205 7938

✗ sax 229 437 17704 98 187 4234
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and some proprietary data from other imaging sites. The final dataset is split
into a training and a test set of echocardiograms corresponding to 1,538 and 359
subjects, respectively. The total number of image frames contained in these data
is 327,019 for the training set and 57,648 for the test set. Each echocardiographic
video was labelled into one of 13 classes, which cover a set of standard cardiac
views with or without microbubble contrast. The classes are shown in the first
and second columns of Table 1 along with the number of subjects, echocardio-
grams and images present for each view.

Images were extracted from DICOM or AVI files and were pre-processed to
remove all text information and annotations outside the ultrasound sector, so
that the dataset contains only the images within the ultrasound sector.

As part of the EVAREST trial data, the dataset contains echocardiograms
obtained with the patient at rest and with patients subjected to exercise or
pharmacological stress. Heart rates vary from 45 to 150 and the number of
heartbeats per scan are between one and three. The inclusion of stress echo
data ensures that a range of image qualities is present in the dataset as stress
echocardiograms tend to include images of poor image quality.

4 Experiments and Discussion

4.1 Experimental Setup

Prior to being fed into the network, image frames are resized to 192 × 192 pixel
size, z-score normalised, and rescaled to [0, 1] range. The model and pipeline was
developed in Python 3.7.7 with Tensorflow 2.2 and training was performed on
four Nvidia GeForce RTX 2080 Ti GPUs with 11 GB VRAM each.

The baseline and contrastive learning methods were trained using Adam with
batch size 641 and learning rate equal to 0.0001 on a 8-fold cross-validation with
the validation set containing 10% of the training dataset’s echocardiograms.
Training stopped using an early stopping criterion based on the validation set.

We train models using all 13 view classes in two scenarios: one using all data,
and then one with reduced data of around 50 echocardiograms per class, chosen
at random. We report the mean F1 score, precision and recall across the different
validation splits and a held out test set that is common across the different splits.

4.2 Classification Performance

Table 2 shows the mean and standard deviation of F1 score, precision and recall
for the experiments on the full and reduced datasets. Both methods perform
equally well on the dataset of 50 echocardiograms per class, which is balanced.
We observe an improvement in test F1 score on the full dataset, which increases
from 0.874 to 0.892, and smaller standard deviations in precision and recall.

Table 3 reports the per-class test F1 score for the two datasets. When assess-
ing the per-class classifier performance, it can be seen that the contrastive
1 The effective batch size is 128, since every image is augmented twice in a batch.
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Table 2. Classification results (mean and standard deviation) of baseline and con-
trastive models on validation (taken from 10% of the training set) and test sets using
two datasets containing all data and 50 echocardiograms per class, respectively.

Dataset Method Validation set Test set

F1 Score Precision Recall F1 Score Precision Recall

50 echocardiograms Baseline 0.794.02 0.780.02 0.837.01 0.765.02 0.756.03 0.820.02

per class SupCon 0.800.01 0.787.02 0.833.01 0.775.01 0.770.02 0.825.01

Baseline 0.911.02 0.924.03 0.902.02 0.874.01 0.896.02 0.880.02
All data

SupCon 0.915.02 0.928.01 0.908.02 0.892.01 0.907.01 0.896.01

Table 3. Classification results (mean and standard deviation) per class. The first
column indicates whether the images have contrast or not. Results show the F1 score
on the test set for two experiments using different training set sizes, with the number
of studies for each view shown. Highest differences are marked in bold.

Cont View Size Baseline SupCon %Diff Size Baseline SupCon %Diff

✓ 2 ch. 50 0.693.03 0.702.02 1.24 677 0.866.01 0.870.01 0.42

✓ 3 ch. 50 0.811.02 0.811.03 0.02 664 0.966.00 0.968.00 0.22

✓ 4 ch. 50 0.758.07 0.737.06 −2.73 672 0.888.00 0.896.01 0.99

✓ plax 50 0.608.16 0.733.05 20.61 68 0.570.08 0.719.09 26.08

✓ sax 50 0.926.04 0.946.01 2.22 570 0.985.00 0.986.00 0.12

✗ 5 ch. 50 0.546.05 0.542.04 −0.76 132 0.660.05 0.706.05 6.98

✗ plax 50 0.952.03 0.959.02 0.83 306 0.972.01 0.974.01 0.15

✗ rv 42 0.358.06 0.363.06 1.45 42 0.632.12 0.697.09 10.26

✗ ssn 44 0.700.06 0.679.04 −3.03 44 0.990.03 0.952.04 −3.88

✗ 2 ch. 50 0.857.01 0.856.01 −0.04 269 0.939.00 0.934.01 −0.54

✗ 3 ch. 50 0.912.01 0.910.01 −0.24 319 0.967.01 0.969.00 0.22

✗ 4 ch. 50 0.879.01 0.877.01 −0.23 287 0.937.01 0.936.01 −0.06

✗ sax 50 0.951.01 0.963.01 1.27 213 0.988.00 0.989.00 0.10

training has minimal effect for the model trained on 50 echocardiograms per
class. When training on the full dataset, classes which have a larger number of
training data show similar or marginal improvement in performance in the test
set. However, classes with substantially less training data, such as the contrast
PLAX view, non-contrast 5-chamber view, and the non-contrast right ventricular
(RV) view show greater improvement when using contrastive learning. The non-
contrast suprasternal notch (SSN) view shows a 4% reduction but both baseline
and contrastive model accuracies are very high.

4.3 Ablation Studies and Failure Cases

We perform two ablation experiments on the model parameters. Firstly, we eval-
uate the effect of batch size by testing values equal to 32 and 16. The obtained
results are the same as the ones achieved with batch size 64. Although it has
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Fig. 3. Selection of failure cases. The baseline model fails on all these, but SupCon
correctly classifies the examples in the top row.

been reported that large batch sizes benefit contrastive learning [6], since more
positive and negative examples occur in a batch, at this value range the effect is
minimal. GPU memory limitations prevented experiments with higher values.

We also experiment with different sets of augmentations. The experiments in
Sect. 4.2 use random rotations, translations, as well as changes in brightness and
contrast. Random crops resulting in images of 140×140 pixel size have also been
tested. However, training with such crop augmentations decreased the validation
F1 score of the contrastive model by approximately 15%. This can be attributed
to the fact that in view classification, cropped ultrasound images might generate
images which appear similar to other views.

Finally, Fig. 3 shows a selection of cases for which the baseline model fails,
but for some the contrastive model is able to predict correctly. In all cases, the
incorrect view is visually similar to the true view (for example, the apical 4 and
5 chamber views are very similar) so it is evident why the models would struggle.
The contrastive model is likely more successful with these challenging views as
it creates a better decision boundary between classes.

5 Conclusion

We have shown that the use of contrastive learning applied to echocardiographic
view classification can improve accuracy and reduce standard deviation of the
classifier for views for which far less training data is available, with no reduction
in overall performance. This indicates that contrastive learning could be a pow-
erful tool in developing models for analysing medical images without requiring
such intensive collection and labelling of very large datasets.
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We leave as future work testing the effect of different contrastive losses on
diverse datasets potentially including unlabelled data, as well as studying the
effect of design biases introduced by different encoder architectures on the quality
of the learnt latent representations.
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