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Preface

In this exciting era for medical ultrasound, recent developments in deep learning
(artificial intelligence) and medical robotics have started to show clinically measur-
able improvement in assistingultrasound examinations, ultrasound-guided interventions,
and surgery. ASMUS 2021: the 2nd International Workshop of Advances in Simplifying
Medical UltraSound provided a forum for research topics around ultrasound image com-
puting and computer-assisted interventions and robotic systems that utilize ultrasound
imaging. ASMUS is the official workshop of the MICCAI Special Interest Group on
Medical Ultrasound.

We were pleased to see the high quality of the submissions, evidenced by reviewer
feedback and the fact that we had to reject a number of papers with merit due to the
competitive nature of this workshop. The 22 accepted papers were selected based on
their scientific contribution, via a double-blind process involving written reviews from
at least two external reviewers in addition to amember of the ProgramCommittee. Partly
due to the focused interest and expertise, we received a set of exceptionally high-quality
reviews and consistent recommendations.

The published work includes reports across a wide range of methodology, research,
and clinical applications. The research topics cover advanced deep learning approaches
for anatomy segmentation, lesion detection, ultrasound registration, ultrasound probe
localization, robot-guided ultrasound, classification, image synthesis, quality assess-
ment, and uncertainty estimation, with applications to point-of-care ultrasound systems
and scenarios as well as computer-assisted interventions.

We would like to thank all reviewers, organizers, authors, and our keynote speakers,
Muyinatu A. Lediju Bell, Ali Kamen, and Prerna Dogra, for sharing their research and
expertise with our community, and we look forward to this workshop inspiring many
exciting developments in the future in this important area.

September 2021 J. Alison Noble
Stephen Aylward

Alexander Grimwood
Zhe Min

Su-Lin Lee
Yipeng Hu
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Automatic Ultrasound Vessel
Segmentation with Deep Spatiotemporal

Context Learning

Baichuan Jiang1,2, Alvin Chen1, Shyam Bharat1, and Mingxin Zheng1(B)

1 Philips Research North America, 222 Jacobs Street, Cambridge, MA 02141, USA
bcjiang@jhu.edu, {alvin.chen,shyam.bharat,mingxin.zheng}@philips.com

2 Department of Computer Science, Johns Hopkins University,
Baltimore, MD 21218, USA

Abstract. Accurate, real-time segmentation of vessel structures in
ultrasound image sequences can aid in the measurement of lumen diam-
eters and assessment of vascular diseases. This, however, remains a chal-
lenging task, particularly for extremely small vessels that are difficult
to visualize. We propose to leverage the rich spatiotemporal context
available in ultrasound to improve segmentation of small-scale lower-
extremity arterial vasculature. We describe efficient deep learning meth-
ods that incorporate temporal, spatial, and feature-aware contextual
embeddings at multiple resolution scales while jointly utilizing informa-
tion from B-mode and Color Doppler signals. Evaluating on femoral and
tibial artery scans performed on healthy subjects by an expert ultrasono-
grapher, and comparing to consensus expert ground-truth annotations
of inner lumen boundaries, we demonstrate real-time segmentation using
the context-aware models and show that they significantly outperform
comparable baseline approaches.

Keywords: Deep learning · Spatiotemporal attention · Vascular
ultrasound

1 Introduction

Over 120 million people worldwide are affected by peripheral vascular disease,
making it one of the leading causes of morbidity and mortality globally [1]. Vas-
cular ultrasound (US) based on B-mode and Color Doppler imaging is widely
used to evaluate luminal narrowing and flow in stenotic vessel segments. Accu-
rate delineation of vessel wall boundaries is crucial for diagnosis and disease
prognosis [2], but can be highly challenging due to complex vascular anatomy,
visual ambiguity, acoustic imaging artefacts, probe motion, and very small target

B. Jiang and A. Chen—Contributed equally.
Work done during internship at Philips Research.

c© Springer Nature Switzerland AG 2021
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4 B. Jiang et al.

structures hidden within the US image frame [3]. Automated, real-time segmen-
tation of relevant vessels can aid in clinical assessment while providing a means
to improve vascular US imaging workflows and reduce operator dependency.

Prior work on US vessel segmentation have utilized shape and motion mod-
els [4–7] typically requiring initialization with seed points in the first frame.
To provide additional context, the inclusion of flow information alongside the
B-mode image has been proposed [8–11]. In recent years, deep learning has
received increased focus [2,12], with the majority of work on vessel segmenta-
tion utilizing UNet/VNet-like models operating on individual frames [13,14].
Incorporating the time dimension, recurrent mechanisms have been combined
with convolutional networks as a way to encode temporal memory from image
sequences [15–20]. However, to date, most studies have focused on segmentation
of large carotid [13,14] or coronary [20] arteries using UNet/VNet, and accuracy
on small extremity vasculature has not been systematically investigated.

Fig. 1. B-mode and Color Doppler US images of lower-extremity arterial vasculature.
Expert ground-truth annotations of inner lumen vessel wall boundaries shown in green.
Left : femoral artery (∼5 mm diameter), Middle: anterior tibial artery (∼2 mm diame-
ter), Right : posterior tibial artery (∼3 mm diameter). (Color figure online)

Our Contributions. We demonstrate that a spatiotemporally-aware deep
learning model is capable of automatic, real-time segmentation of inner lumen
vessel boundaries from challenging freehand US sequences (Fig. 1). Improved
performance in difficult anatomy, namely small-scale lower-extremity peripheral
arterial vasculature, is made possible by leveraging the rich spatiotemporal infor-
mation available in US and utilizing dual-input B-mode and color flow signals.
Our approach aims to simulate the contextual inferencing processes of experi-
enced ultrasonographers, who are trained to recognize temporal signatures in
both modalities and attend to small structures of interest while ignoring back-
ground.

Specifically, we propose a fully convolutional encoder-decoder network that
feeds B-mode and Color Doppler inputs through a series of spatial, temporal,
and channel-wise contextual units embedded within each resolution layer. By
preserving multi-resolution features as they pass through each unit, the network
is able to propagate learned representations temporally across all scales.
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Additional Contributions of the Paper :

1. We systematically study the impact of the multi-scale spatial, temporal, and
channel-wise embeddings for segmentation of femoral (4–6 mm diameter) and
tibial (2–3 mm diameter) arteries in a series of network ablation experiments.

2. We investigate the utility of exploiting combined B-mode and Color Doppler
information compared to B-mode alone, and we evaluate the benefits of
domain-specific augmentation on the US small-structure segmentation task.

3. We compare segmentation results against consensus ground-truth annotations
from multiple clinical experts, and we demonstrate significant improvements
in accuracy using the proposed methods compared to baseline models.

2 Methodology

Model Overview. The proposed VESsel NETwork with Spatial, Channel and
Temporal context (VesNetSCT+) is illustrated in Fig. 2. The network architec-
ture and implementation details are described below.

Channel a�en�on unit

Element-wise sum

Feature tensors

5x5 Conv, BatchNorm, PReLU

5x5 Conv
BatchNorm, PReLU

2x2 Conv, Stride = (2,2), PReLU

Passing value, no opera�on
2x up-sampling, 3x3 Conv

(5x5 Conv)x2

1x1 Conv
Prior frame feature

ConvGRU unit

Spa�al a�en�on unit

32
0x

32
0

16
0x

16
0

42 4

8 8

16 16

32 32 32

1616

88

16
0x

16
0

4 4

32
0x

32
0

1

Fig. 2. Network architecture. The model feeds B-mode and Color Doppler inputs
through a multi-scale series of spatial, temporal, and feature-wise contextual units
embedded in each resolution layer of a fully convolutional encoder-decoder backbone.
The design enables efficient learning of multi-modal spatiotemporal context informa-
tion for challenging small-structure segmentation tasks.

Encoder-Decoder Backbone. Our model uses a UNet/VNet-like [21,22]
backbone with a two-channel input to support B-mode and Color Doppler
frames. The proposed spatial, temporal, and feature/channel-wise contextual
units are sequentially embedded along the residual skip connections [23] in each
resolution layer. This design allows the model to aggregate learned representa-
tions across multiple spatial scales and time points. We additionally posit that,
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unlike methods which explicitly modify the backbone network [15–18], embed-
ding into the skip connections minimizes disruption of gradients along the main
path.

Implementation Details: B-mode and Color channels are normalized between
(0, 1) and (−1, 1), respectively. We apply batch normalization and PReLU,
and we use resize-up-convolutions [24] in the decoder to minimize checkerboard
artifacts. We also reduce the total model size from 30M (original UNet) to 0.3M
by opting for a four-layer network backbone capable of real-time inference on
clinical US machines. Networks are trained via RMSProp with initial learning
rate of 0.0001.

Multi-scale Temporal Gating. To introduce temporal context, a hierarchical
series of convolutional gated recurrent units (ConvGRU) [25,26] are embedded
between the contracting and expanding paths (round orange blocks in Fig. 2).
By replacing dot product operations found in standard GRU with convolutional
operations, the learned temporal representations have the inherent spatial con-
nectivity of convolutional networks and are more parameter-efficient [26].

Implementation Details: The inputs into the ConvGRU are the feature maps xt

for the current frame t and the hidden states ht−1 from the prior time point:

zt = σ(Whz ∗ ht−1 + Wxz ∗ xt + bz) (1)
rt = σ(Whr ∗ ht−1 + Wxr ∗ xt + br) (2)

ĥt = tanh(Wh ∗ (rt � ht−1) + Wx ∗ xt + b) (3)

ht = (1 − zt) � ht−1 + z � ĥt (4)

where Whz,Wxz,Whr,Wxr, bz, br, b are learnable convolution kernels and biases.
zt and rt are internal update and reset gates. The output ht is computed as a
weighted sum of ht−1 and candidate activation ĥt. σ denotes sigmoid activation,
� denotes element-wise multiplication, and ∗ denotes convolution. All temporal
models are trained via truncated backpropagation-through-time (TBTT) with a
fixed sequence length of 50 frames. A time window of 1–4 frames is used in the
feedforward step and accumulated to compute back-propagation gradients [27].

Multi-scale Spatial Attention. We add soft self-attention gates to provide
higher-resolution layers with spatial support from coarse layers. This idea has
been shown to improve accuracy on small-structure segmentation tasks [28] and
is fully differentiable, unlike hard attention mechanisms based on iterative region
proposal and cropping [29]. The spatial self-attention units are introduced in a
multi-scale manner along the skip connections, immediately following the tem-
poral and channel operators. The arrangement provides the self-attention gates
with access to global spatiotemporal context when learning to suppress irrelevant
background and attend to regions of interest.
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Implementation Details: Within this unit, input feature maps x, and input gating
feature maps g from the previous coarse resolution level, are used to derive
attention multiplier maps α : [0, 1] → R

2. The self-attention maps are multiplied
element-wise into each channel of x to produce the output maps x̂:

α = σ(ψ(δ(Wx ∗ x + Wg ∗ g + bg)) + bψ) (5)
x̂c = xc � α (6)

where σ and δ denote sigmoid and ReLU activations, respectively. Wx,Wg, ψ are
weight parameters for the channel-wise 1×1×1 convolutions, bψ, bg are the bias
terms in the gating unit, and � denotes element-wise multiplication between the
multiplier and input feature maps at channel c.

Multi-scale Feature-Wise Channel Attention. Finally, feature/channel
self-attention is incorporated in the skip connections and along the decoder path.
Specifically, we employ convolutional block attention modules [30] immediately
before each spatial attention gate (round green blocks in Fig. 2). Particularly
for tasks involving multiple input modalities, self-attention along the channel
dimension offers a mechanism to explicitely model interdependencies between
modalities (in our case, the encoded B-mode and Color Doppler input signals).

Implementation Details: Given input feature maps xc with c channels, average-
and max-pooling are performed along the channel dimension to produce descrip-
tors xc

avg, xc
max ∈ R

1×1×C . These are passed through a shared multi-layer per-
ceptron (MLP) g and element-wise summed. The result, a vector mc ∈ R

1×1×C ,
is channel-wise multiplied (⊗) with the input xc:

x̂c = mc ⊗ xc (7)
= {σ(g(xc

avg) + g(xc
max))} ⊗ xc (8)

= {σ(W1(δ(W0(xc
avg))) + W1(δ(W0(xc

max))))} ⊗ xc (9)

where σ and δ denote sigmoid and ReLU, and W0,W1 are learnable MLP weights.

Domain-Specific Augmentation. Extensive data augmentation was applied
in training to improve generalizability and robustness to real-world freehand US
imaging conditions. Augmentations were defined on training sequences span-
ning 50 sequential frames, and included: (1) Spatial augmentation based on
random translation, rotation, scaling, cropping, and horizontal flipping; (2)
Gain/contrast augmentation based on random adjustment of histogram and
time gain compensation curves separately to the B-mode and Color channels;
(3) Color Doppler augmentation, where channel dropout is applied with fixed
probability on the Color inputs to simulate poor Doppler signal due to impaired
blood flow; and (4) Temporal augmentation by varying the start and end frames,
interval between frames, and order of frames (forward or reverse) for each set of
50-frame inputs.
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Vascular Ultrasound Data Acquisition. Freehand lower-extremity arterial
US exams were performed by an expert vascular sonographer on left and right
legs of 7 healthy subjects. Scans were acquired in transverse orientation follow-
ing standard imaging workflows for diagnostic Duplex ultrasonography [31]. The
scans were performed under simultaneous B-mode and Color Doppler modes and
spanned the length of the leg, from ankle to groin. In total, 22 exam sequences
were acquired, including 13 along the femoral arteries and 9 along the ante-
rior/posterior tibial arteries. All data were collected with a Philips Epiq 7 system
and 12 MHz linear transducer (pixel spacing ∼0.1 mm, frame rate ∼15 Hz).

Clinical Expert Ground-Truth Annotation. Expert ground-truth anno-
tations of inner lumen boundaries (Fig. 1) were provided by two experienced
vascular sonographers. Consensus ground-truth masks were computed via shape-
based averaging of the two sets of individual segmentations [32]. A total of 30,839
consensus-annotated frames were obtained from the 22 femoral and tibial artery
exams in this manner. The data were divided according to subject to allow for
independent training and testing, and to perform leave-one-out cross-validation.

3 Results

Validation and Network Ablation Studies

Temporal, Spatial, and Channel-Wise Context: On both femoral and tibial hold-
out test data, we saw significant improvements in Dice scores (Table 1) with
the addition of temporal, spatial, and feature/channel-wise contextual embed-
dings alongside bimodal B-mode+Color inputs. For the femoral dataset, the best-
performing context-aware model (VesNetSCT++, 0.927 ± 0.041 Dice) demon-
strated an improvement of 18 to 20% in comparison to two baseline UNet models
of varying sizes (Baseline, 0.775 ± 0.282 Dice; Baseline-L, 0.788 ± 0.301 Dice).
Meanwhile, in the tibial arteries, which represented <0.1% of pixels in each
frame, the baseline models failed entirely (Baseline, 0.133±0.227 Dice; Baseline-
L, 0.164 ± 0.254 Dice) compared to the context-aware model (VesNetSCT++,
0.679 ± 0.195 Dice).

Multi-scale Embeddings: The introduction of temporal/spatial/channel embed-
dings in a multi-scale manner (VesNetT+) resulted in improved performance
compared to equivalent models with the embeddings applied only to the inner-
most layer of the encoder-decoder backbone (VesNetT), as proposed in [15–18].

Temporal Window: We experimented with the time window for accumulat-
ing feed-forward and back-propagation updates when training temporal mod-
els using TBTT [27]. Improvements were seen by increasing the window size
(VesNetSCT++, time window = 4), at the cost of longer training times.
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Table 1. Summary of segmentation performance on femoral and tibial test sets.

Model name* # params Input channels Spatial/channel

attention

Temporal

gating

Time

window

Dice score

(mean ± std)

Femoral arteries (4–6 mm diameter)

Baseline 103k Bmode - - - 0.775 ± 0.282

Baseline-L 310k Bmode - - - 0.788 ± 0.301

VesNet 103k Bmode+Color - - - 0.870 ± 0.150

VesNetS 105k Bmode+Color S - - 0.881 ± 0.175

VesNetSC 106k Bmode+Color S+C - - 0.903 ± 0.101

VesNet-L 313k Bmode+Color - - - 0.887 ± 0.180

VesNetT 259k Bmode+Color - Single 1 0.908 ± 0.086

VesNetT+ 307k Bmode+Color - Multi-

scale

1 0.914 ± 0.065

VesNetST+ 309k Bmode+Color S Multi-

scale

1 0.919 ± 0.069

VesNetSCT+ 310k Bmode+Color S+C Multi-

scale

1 0.925 ± 0.051

VesNetSCT++ 310k Bmode+Color S+C Multi-

scale

4 0.927 ± 0.041

Tibial arteries (2–3 mm diameter)

Baseline 103k B-mode - - - 0.133 ± 0.227

Baseline-L 310k B-mode - - - 0.164 ± 0.254

VesNet 103k Bmode+Color - - - 0.527 ± 0.336

VesNetS 105k Bmode+Color S - - 0.564 ± 0.317

VesNetSC 106k Bmode+Color S+C - - 0.570 ± 0.282

VesNet-L 313k Bmode+Color - - - 0.534 ± 0.328

VesNetT 259k Bmode+Color - Single 1 0.564 ± 0.283

VesNetT+ 307k Bmode+Color - Multi-

scale

1 0.655 ± 0.211

VesNetST+ 309k Bmode+Color S Multi-

scale

1 0.664 ± 0.246

VesNetSCT+ 310k Bmode+Color S+C Multi-

scale

1 0.671 ± 0.240

VesNetSCT++ 310k Bmode+Color S+C Multi-

scale

4 0.679 ± 0.195

* Nomenclature. Baseline: UNet; VesNet: bimodal-input UNet; “-L”: larger network with more chan-

nels per layer; “S”: spatial attention; “C”: channel attention; “T”: temporal gating; “+”: multi-scale

embeddings; “++”: expanded TBTT window.

Domain-Specific Augmentation: Table 2 compares models trained with and with-
out channel dropout on the Color Doppler input. Table 3 compares results with
and without temporal augmentation. Overall, we saw that the augmentations
resulted in improved test accuracy, which suggests the model’s robustness to the
poor Doppler signal quality and varying freehand scanning motions.

Model Size and Baseline Comparisons: Comparing baseline UNet models modi-
fied to match the number of parameters as our final proposed models (Baseline-
L, 0.3M parameters), a three-fold increase in parameters gave no appreciable
improvement in performance (Table 1). This suggests that the improved accu-
racy of the context-aware models was not due simply to larger network size.
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Table 2. Impact of color augmentation.
See Table 1 nomenclature.

Model name Color doppler

dropout

Dice score

Femoral arteries (4–6 mm diameter)

VesNetSC 0.0 0.880 ± 0.145

VesNetSC 0.4 0.903 ± 0.101

VesNetSCT+ 0.0 0.911 ± 0.087

VesNetSCT+ 0.4 0.925 ± 0.051

Tibial arteries (2–3 mm diameter)

VesNetSC 0.0 0.579 ± 0.312

VesNetSC 0.4 0.570 ±0.282

VesNetSCT+ 0.0 0.676 ± 0.293

VesNetSCT+ 0.4 0.671 ± 0.240

Table 3. Impact of temporal augmenta-
tion. See Table 1 nomenclature.

Model name Temporal

augmentation

Dice score

Femoral arteries (4–6 mm)

VesNetSCT+ No 0.917 ± 0.117

VesNetSCT+ Yes 0.925 ± 0.051

Tibial arteries (2–3 mm)

VesNetSCT+ No 0.660 ± 0.245

VesNetSCT+ Yes 0.671 ± 0.240

Table 4. Cross-validation results with context-aware models (VesNetSCT+).

Data splits: 1 2 3 4 5 6 7 Mean ± Stdev

Femoral arteries 0.925 0.853 0.828 0.940 0.935 0.909 0.802 0.885 ± 0.162

Tibial arteries 0.671 0.782 0.565 0.511 0.646 - - 0.635 ± 0.215

Cross Validation: To assess generalization, leave-one-out cross validation was
carried out on both datasets using the contextually-aware models (Ves-
NetSCT+). In each split, sequences from one subject were held out for testing
(Table 4).

Inference Speed: VesNetSCT++ achieved inference speeds of 149.4 ± 4.6 ms (6.7
Hz) on a mobile CPU processor (Intel Core i7 2.6 GHz) and 8.9± 0.6 ms (112
Hz) on a mobile GPU (Nvidia RTX 2080). These speeds were significantly faster
than those of the Baseline-L UNet model and show that the proposed methods
are amenable to real-time processing on hardware used in clinical US machines.

Visualization of Results. Figure 3 shows examples of the effects of spatiotem-
poral context on hold-out sequences. In both cases, Dice scores fluctuate less
when the contextual mechanisms are introduced. The addition of temporal gat-
ing (left panel, comparing VesNet and VesNetT+ models) allows the model
to correctly learn pulsatile signatures and ignore confounding Doppler signals
from nearby veins. With spatial attention gating (right panel, comparing Ves-
NetT+ and VesNetST+), extremely small tibial arteries are more reliably local-
ized throughout.
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Fig. 3. Visualization of segmentations on hold-out test sequences. Left : Temporally-
aware model (VesNetT+) outperforms an equivalent model operating in individual
frames (VesNet). Right : Inclusion of spatial self-attention (VesNetST+) outperforms
the same model without spatial attention (VesNetT+).

4 Conclusion

This work presented an efficient deep learning architecture that incorporates
multiple strategies for embedding spatiotemporal context to improve segmenta-
tion of challenging 2D US image sequences. We applied the methods to small-
scale lower extremity arteries from freehand B-mode and Color Doppler scans,
and showed strong improvement over baseline models without the added contex-
tual awareness. Future work will investigate the generalizability of these methods
on other anatomies where flow and spatiotemporal information are available, and
where automatic quantification of vascular measurements is of clinical benefit.

Acknowledgment. The authors thank Elizabeth Brunelle, Barbara Bannister, and
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Abstract. Deep networks have been shown to achieve impressive accu-
racy for some medical image analysis tasks where large datasets and
annotations are available. However, tasks involving learning over new
sets of classes arriving over extended time is a different and difficult chal-
lenge due to the tendency of reduction in performance over old classes
while adapting to new ones. Controlling such a ‘forgetting’ is vital for
deployed algorithms to evolve with new arrivals of data incrementally.
Usually, incremental learning approaches rely on expert knowledge in the
form of manual annotations or active feedback. In this paper, we explore
the role that other forms of expert knowledge might play in making deep
networks in medical image analysis immune to forgetting over extended
time. We introduce a novel framework for mitigation of this forgetting
effect in deep networks considering the case of combining ultrasound
video with point-of-gaze tracked for expert sonographers during model
training. This is used along with a novel weighted distillation strategy
to reduce the propagation of effects due to class imbalance.

Keywords: Incremental learning · Eye tracking · Fetal ultrasound

1 Introduction

Deep networks often need large quantities of labeled data [16,21,22]. In med-
ical imaging, large datasets may not always be available but collected over
time [19,26]. Retention of past data over extended time is often difficult in
medical imaging compared to natural images and similar datasets due to privacy
concerns, statutory limitations on storage duration and memory constraints par-
ticular to clinical situations in different countries. Evolving diseases or diagnostic
regulations may require models to adapt to new data classes arriving over time.
This requires models to learn incrementally without declining in performance
on prior tasks trained for. Deep networks in medical imaging have often tried
to adapt to new tasks over time using transfer learning [2]. Recent work has
shown that transfer learning, despite leveraging past learning, doesn’t allow an
effective balance between past learnt representations and current task knowledge
c© Springer Nature Switzerland AG 2021
J. A. Noble et al. (Eds.): ASMUS 2021, LNCS 12967, pp. 14–24, 2021.
https://doi.org/10.1007/978-3-030-87583-1_2
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owing to catastrophic forgetting [7], wherein neural network based models are
seen to show a decreased performance on initially trained tasks when retrained
on new tasks without access to initial task data. This requires regularization
of the learning on current tasks using prior task knowledge. This has recently
been introduced as the continual learning paradigm in medical image analysis.
Human sonographers acquire knowledge over time without losing performance
on previously learnt modules. Can sonographers’ insights be used to improve
knowledge transfer across sonography plane-finding tasks? This is explored with
a novel multimodal incremental learning approach using class-weighted distilla-
tion. The question of multimodal information preservation in incremental adap-
tation remains unexplored in machine learning and medical imaging literature.

Recent work has attempted to reduce forgetting with replay on stored exam-
ples [14,25], expanding parameters [31], generative models [10,24] and weight
regularization [13]. Besides model compression, knowledge distillation [8] was
used in continual learning as the distillation loss is suitable for using a snapshot
of learnt knowledge in a model at a particular learning step towards regular-
izing future learning. Recent methods using distillation for continual learning
include Learning without Forgetting (LwF) [14], iCaRL [30] which incremen-
tally performs representation learning, progressive distillation and retrospection
(PDR) [9] and Learning without Memorizing (LwM) [4] where distillation is
used with class activation. In medical imaging, real-world cases of data arriving
over time has prompted research on continual pipelines such as MRI segmenta-
tion with pixel-level regularization [20], hierarchical learning in echocardiogra-
phy [27], progressive modelling of Alzheimer’s [32], consolidated distillation [11],
distillation and ensembling [15] and privacy preserved learning [29]. Compared
to these, our methods do not require retention of exemplars for past classes and
implement a performance driven weighting for distilled representations. Usage
of expert knowledge or other forms of multimodal input for incremental learn-
ing remains unexplored in medical imaging to our knowledge. Dedicated met-
rics for incremental learning [5] were proposed but [5] like most prior work, use
accuracy-derived metrics for assessment. Kim et al. [11] compute AUROC scores
to assess overall performances after all learning sessions but do not define forget-
ting by effects on 1-vs-all AUC in multiclass incremental settings. Sonographer
eye-tracking was used for biometry plane localization [1], representation learn-
ing [6] and model compression [23]. Different from [23], we learn representations
for incrementally learning new classes with the same trained model.

Contributions. We propose a framework that a) demonstrates the first usage
of multimodal data of ultrasound frames along with expert gaze in incremen-
tal learning b) a novel weighted distillation strategy to reduce the impact of
task-specific class imbalance over incremental learning c) proposes metrics for
assessment of incremental learning using both accuracy and AUC measures. We
achieve superior incremental learning performances in terms of mitigation of
forgetting without storing any of the past data. The AUC is computed as area
under precision-recall (PR) curves per class in a 1-vs-all setting. An alteration
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in the number of false positives, as possible due to catastrophic forgetting, may
still cause a small change to false positive rate (used in ROC estimation) [3]. In
PR curves, precision is obtained by comparing false positives to true positives,
capturing effects of large numbers of false positives on incremental performance.

2 Methods

Incremental Learning. Without losing generality, let the tth stage in an
M -stage incremental learning problem be a K-class classification task with a
class set Xt = {Xt,i}Kt

i=1, t ∈ [|1,M |], where each X represents one class and
training samples for stage t are drawn from the set: xt,train ∈ Xt. The objec-
tive is to recursively enable the classifier trained in stage t − 1, after complet-
ing the tth stage incremental learning pipeline, perform inference on examples
xtest ∈ ⋃t

j=1Xj without declining performance. This is non-trivial if training
data from previous stages are unavailable, making it impossible to jointly re-
train the classifier on the entire dataset. The challenge is to ensure specific inter-
ventions are adopted to reduce catastrophic forgetting [7]. Here, M = 2 and
K1 = K2 = 3. We consider a two-stage multitask incremental learning problem
with Stage 1 aiming to learn a classifier for fetal biometry planes (head, femur,
abdomen), while Stage 2 aims to expand the Stage 1 classifier for echocardiogr-
pahy tasks, i.e. identification of three fetal cardiac standard planes: frames of four
chamber (4CH), three vessel (3VV) and left ventricular outflow tract (LVOT).
We show that the final classifier doesn’t suffer from forgetting for Stage 1 tasks
without having to retrain using Stage 1 data. The output of the Stage 1 classifier
f1(·) can take the form p = softmax(z) ∈ R

K1 , where z = f1(x1,train) ∈ R
K1

is the raw output of the last layer, or logits. The logits output is retained as
old knowledge-based priors (similar to distillation [8]), and used in the 2nd-stage
training as regularization for a new task of classifying fetal echocardiography
standard planes.

Fig. 1. The initially trained model (on Stage 1 tasks) is later trained for an incremental
task at Stage t (here, t = 2), with cross-distillation using logits stored from initial stages.
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Gaze Acquisition. For including multimodal inputs in incremental learning,
we consider a paired input tuple (I,G) of images and corresponding gaze maps,
with their associated labels for the initial training. To mimic situations where a
gaze map G will not be available during future task training, subsequent stages
do not assume presence of the gaze map and can function with the gaze map
substituted with another modality or a redundant copy of the image. Similar
to the protocol in [23], the expert visual attention is captured by a gaze map
G per image I. The point-of-gaze of the expert is tracked when looking at I.
The initial task session involves a classification task using a tuple of I and G
as input. In subsequent incremental tasks, we allow for situations where models
may have access to only the image frames of the new classes in line with the
difficulty of acquiring gaze maps in deployment environments. Initial inclusion
of gaze maps in the learning process can improve the representation learning of
the base model. This improved representation better protect against forgetting
of the base tasks when adapting to novel tasks.

Weighted Distillation. The result of the first stage classifier using a cross-
entropy loss, as defined in the section before, is p = softmax (z) ∈ RK1 , where z
is the set of logits. The classification loss in the first training stage is defined as:

LC(y, p) = −
K1∑

i=1

yi · log(pi) (1)

Where pi is the predicted probability scores for each of the classes in the
new task, yi the corresponding ground truth in a one-hot encoding form. In
subsequent sessions, a knowledge distillation term is used in the objective, to
allow inclusion of past knowledge in the optimization process (ŷ are the final layer
class probability scores for the new task classes prior to the softmax operation):

LD(zold, ŷ) = −
N∑

i=1

softmax(
zold
T

) · log(softmax(
ŷi
T

)) (2)

The logits and predictions are softened in a distillation setting with a tem-
perature term T . Softening helps create a smoother transition between the prob-
ability scores in the logits set as after a cross-entropy based optimization. This is
addressed by spreading out the probability distribution scores with the temper-
ature term. Here, zold represents the logits from the past task, with class-specific
average logits computed to obtain a sum of class-weighted logits as:

zold =
K1∑

i=1

wizi (3)

The logits of individual classes zi, i ∈ [|1,K1|] are obtained by averaging pre-
softmax scores (with sigmoid activation) for exemplars from the K 1 classes. The
summation weights (w1, w2, . . . , wk1) are calculated as inverse of class-specific
AUC on validation data of Stage 1 classes. This boosts the importance of logits
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from a more difficult or underrepresented class (lower the class AUC, higher the
class weight) in its contribution to the overall representation to be retained for
Stage 1 learning. An initial imbalance of classes is propagated upon a distillation
based regularization for old classes, exacerbating the overall imbalance when not
retaining Stage 1 exemplars for mixing with Stage 2 data. Current methods to
mitigate the influence of imbalanced classes like augmentation, weighted cross-
entropy etc. are designed for cases when all classes to be learnt have data avail-
able unlike in distillation when samples from initial classes are not retained for
incremental training. Then the overall objective is (λ set at 0.5 by grid search):

L = λLC + (1 − λ)LD (4)

2.1 Training

The Stage 1 task uses data from [28]. Fetal ultrasound videos were acquired
with a simultaneous recording of sonographer eye-tracking data. Recording and
storage was in compliance with local data governance policies. This data com-
prised 23016 abdomen, 24508 head, 12839 femur frames. A Tobii Eye Tracker 4C
(Tobii, Sweden) recorded point-of-gaze as relative (x,y) coordinates with times-
tamps 90 Hz capturing 3 gaze points per frame. Gaze points that were less than
0.5◦ apart were combined to a single fixation point. A sonographer visual atten-
tion map was generated for each frame using a truncated Gaussian with width
equivalent to visual angle of 0.5◦ around the fixation point. In the incremental
session, the data comprised fetal cardiac viewing planes with 9386 frames from
the 4CH, 6780 frames of LVOT and 6210 of 3VV views. So we use two datasets
D1 and D2 in initial (Stage 1) and incremental session (Stage 2) respectively.

Model. We design the twin input base model to have parallel convolutional
processing strands through the course of residual blocks, to allow for independent
convolutional operations on the image and the associated gaze map. The strands
are derived from a ResNet-50 architecture (ablations with other backbones in
Fig. 2) and configured to accept grayscale inputs. After the final residual blocks,
flattened feature maps of both the strands are concatenated. The inclusion of
gaze maps follows the protocol in [23]. The fused layer feeds into a fully-connected
layer of 512 units, followed by a pre-softmax layer with a sigmoid activation to
obtain classwise probabilities. It is a departure from standard ResNet models
where an average pooling layer succeeds the final residual blocks and feeds to a
dense layer of dimensions equal to the number of classes. This allows to aggregate
features and consider the impact of gaze incorporation on performance.

Training. For both stages and their datasets, data augmentation was performed
with a 20◦ rotational augmentation and horizontal flips for the image and gaze
map frames [17]. Ultrasound frames and associated gaze maps were resized to
224 × 224. Models were trained with a subject-wise 80:20 split (71 subjects for
train and 18 for test) of the dataset. Stage 1 models were trained for 200 epochs
with learning rate of 0.001 and adaptive moment estimation (Adam) [12]. Stage
2 models were trained for 200 epochs over the (N, label, logit) set for all N frames
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passed to the trained model. The softening temperature was set at 3.0 after a
grid search in T ∈ [|1,5|]. The study is labeled as Gaze Dist (wt) when weighted
distillation is used. If distillation is used without weights determined by initial
task results, it is Gaze Dist else it is No Gaze Dist. Here, incremental task still
uses with weighted distillation. For transfer learning benchmarks, the case with
gaze maps available is labeled FT (gaze), and FT (no gaze) otherwise. The
incremental stage is designed to be able to accept both the image-level inputs
as frames alone to make it resilient to cases of unavailable or corrupt gaze data.
Our models use 48.7 million parameters, with average training time per epoch
of 149 s on a cluster of 2 24 GB Nvidia K80 GPUs. Gaze processing was done on
a desktop computer with a 3.1 GHz Intel Core i7 8th generation processor with
512 MB RAM. Models were implemented in Tensorflow 2.0 with eager execution.

3 Results and Discussion

Metrics. We report classwise and average accuracies for Stage 1 and 2 in Table 1,
and AUCs in Table 2 for initial classes. AUCs are reported per class as 1-vs-all
values and averaged for each stage. To track forgetting, differences in average 1-
vs-all AUC values over incremental stages are reported for old classes as AUCD-
iff, along with fall in accuracy (AccDiff ). Adaptation to new tasks is directly
noted by accuracy and AUC values on Stage 2 classes (Table 3), as this stage
builds on Stage 1 learning, with both forgetting and transfer effects. Forward
transfer effects are implicit in the new task accuracies and AUC metrics. The
relative decline in accuracy and AUC metrics for the initial task, across Stages
1 and 2, encodes combined forgetting and backward transfer effects.

Table 1. Stage 1 and Stage 2 class-specific accuracies for initial task classes, and
averages, AccDiff quantifies the average drop in accuracy for the old classes

Stage 1 Stage 2 AccDiff

AC HC FL Avg AC HC FL Avg Δ Avg

Gaze Dist (wt) 0.91 0.88 0.87 0.89 0.86 0.85 0.83 0.85 0.04

No Gaze Dist 0.73 0.76 0.74 0.74 0.65 0.63 0.62 0.63 0.11

Gaze Dist 0.91 0.88 0.87 0.89 0.83 0.80 0.79 0.81 0.08

FT (gaze) 0.91 0.88 0.87 0.89 0.63 0.54 0.56 0.58 0.31

FT (no gaze) 0.73 0.76 0.74 0.74 0.55 0.49 0.47 0.50 0.24

Lwf/ewc 0.74 0.76 0.74 0.75 0.60 0.61 0.59 0.60 0.15

LwM 0.73 0.76 0.75 0.75 0.64 0.62 0.61 0.62 0.12

PDR 0.73 0.76 0.75 0.75 0.61 0.58 0.57 0.59 0.16

DDE 0.73 0.76 0.75 0.75 0.66 0.63 0.65 0.65 0.10

Results. Classwise performance for the old task is reported for the initial and
the incremental sessions in terms of accuracy and 1-vs-all AUC. The change in
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performance is the difference in these values across sessions. Overall accuracies
and averaged AUC are reported for all classes seen until a given session to capture
overall model performance (Table 1). Effects of gaze in reducing forgetting are
evident as the difference in class-specific AUC is reduced compared to cases not
using gaze maps as additional input. We do not retain past exemplars in memory
for continual learning and incremental regularization is solely by saved logits
from Stage 1 when optimizing for Stage 2 classes. Unlike existing approaches
selectively retaining past data, we prioritize reduction in memory footprints while
attaining superior continual learning performance using expert insights.

Discussion. Inclusion of gaze implies additional parameters and an incremental
computational budget compared to off-the-shelf baselines. For fair comparison,
we modified baseline to keep the number of parameters in the same order of
magnitude as our proposed multimodal pipeline: 1) For baselines that do not use
gaze maps, a parallel set of convolutional layers accepts the image as a redundant
input, so the computational budget is comparable to a gaze based approach; 2)
For external baselines from literature, we modified baseline representation learn-
ing stages to have parallel strands of convolutional layers as before, and enabled
them to accept paired inputs, extending for comparison to cases of paired images
and gaze maps used as inputs. We choose baselines suitable for contextualiz-
ing both weighted distillation and human knowledge inclusion. Comparisons are
performed with adapted versions of these methods– LwF.EWC [11] proposed for
X-ray incremental learning, distillation and retrospection (PDR) [9], dual distil-
lation and ensembling (DDE) [15] and Learning without Memorizing (LwM) [4]
(LwM does not retain exemplars). Methods using distillation outperform trans-
fer learning baselines in terms of knowledge retention evident from higher Stage 2
accuracy and 1-vs-all AUC values. Gaze-based models perform better on Stage 2
metrics as well. Some methods like LwF.MC [14] and iCaRL [30] are equivalent to
studies without gaze maps (‘No Gaze Dist’ in Tables) and are not separately
benchmarked. Superior results for gaze-driven methods show that additional
modalities enable deep networks to learn better input representations. Softening
partly smoothens incorrect labels in input spaces for old tasks, reducing forward
propagation of inaccuracies. Gains for complex classes such as fetal head frames
are notable when using gaze. Unweighted distillation with gaze scales poorly
compared to weighted distillation, underlining the role of more complex classes
as forgetting is more prominent for a class with intraclass variations or difficult
examples due to artefacts like shadows, speckle etc. [18,27]. An weighting strat-
egy informed by initial performance metrics is seen to reduce forgetting here.
Specific to accuracies and AUCs for finetuning baselines, gaze inclusion seems
to cause slightly higher forgetting than otherwise. This is potentially due to
finetuning being carried out across the parameter space and multimodal data
causing stronger representation learning in old and new tasks, leading to greater
shifts in magnitudes of parameters if no efforts are made to reduce forgetting.
Ablations with different CNN backbones (Fig. 2) show that ResNet-50 based
models outperform other backbones.
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Table 2. Stage 1 and Stage 2 class-specific 1-vs-all AUC, and averages, AUCdiff quan-
tifies the average drop in 1-vs-all AUC for the old classes.

Stage 1 Stage 2 AUCdiff

AC HC FL Avg AC HC FL Avg ΔAvg

Gaze Dist (wt) 0.96 0.93 0.89 0.93 0.91 0.85 0.83 0.86 0.06

No Gaze Dist 0.75 0.77 0.72 0.75 0.63 0.62 0.61 0.62 0.13

Gaze Dist 0.9 0.89 0.86 0.88 0.81 0.78 0.79 0.79 0.09

FT (gaze) 0.9 0.89 0.86 0.88 0.65 0.6 0.58 0.61 0.27

FT (no gaze) 0.75 0.77 0.72 0.75 0.57 0.52 0.51 0.53 0.21

Lwf/ewc 0.75 0.79 0.73 0.76 0.61 0.63 0.60 0.61 0.15

LwM 0.75 0.79 0.73 0.76 0.64 0.61 0.61 0.62 0.14

PDR 0.75 0.79 0.73 0.76 0.63 0.65 0.62 0.63 0.13

DDE 0.75 0.79 0.73 0.76 0.68 0.67 0.64 0.66 0.10

Fig. 2. The variation of AccDiff and AUCdiff metrics when different backbones are
used for learning the fused representations. ResNet50 based pipelines show the least
AccDiff and AUCdiff consistently across studied approaches and adapted baselines.

Table 3. Stage 2 class-specific accuracies and 1-vs-all AUC for new task classes (the
avg accuracy and AUC are a proxy for adaptation to the new task)

Accuracy 1-vs-all AUC

4C 3V LVOT Avg 4C 3V LVOT Avg

Gaze Dist (wt) 0.89 0.8 0.82 0.84 0.92 0.81 0.76 0.83

No Gaze Dist 0.85 0.77 0.74 0.79 0.87 0.76 0.73 0.79

Gaze Dist 0.87 0.78 0.8 0.82 0.85 0.77 0.82 0.81

FT (gaze) 0.86 0.75 0.78 0.80 0.87 0.73 0.79 0.80

FT (no gaze) 0.83 0.72 0.73 0.76 0.82 0.75 0.71 0.76

Lwf/ewc 0.80 0.67 0.66 0.71 0.80 0.69 0.65 0.71

LwM 0.81 0.70 0.68 0.73 0.80 0.73 0.71 0.75

PDR 0.80 0.69 0.67 0.72 0.81 0.72 0.69 0.74

DDE 0.82 0.71 0.67 0.73 0.80 0.70 0.73 0.74
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4 Conclusion

We proposed a multimodal pipeline for incremental learning in ultrasound imag-
ing using sonographer eye-tracking data. The inclusion of gaze priors reduced
forgetting and enabled performance gains over state-of-the-art methods without
requiring retention of past tasks’ data. Further, we developed an weighted log-
its approach for regularization of future task learning, and conceptualized new
metrics to assess forgetting and new task adaptation.
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Abstract. When developing deep neural networks for segmenting intra-
operative ultrasound images, several practical issues are encountered fre-
quently, such as the presence of ultrasound frames that do not contain
regions of interest and the high variance in ground-truth labels. In this
study, we evaluate the utility of a pre-screening classification network
prior to the segmentation network. Experimental results demonstrate
that such a classifier, minimising frame classification errors, was able to
directly impact the number of false positive and false negative frames.
Importantly, the segmentation accuracy on the classifier-selected frames,
that would be segmented, remains comparable to or better than those
from standalone segmentation networks. Interestingly, the efficacy of the
pre-screening classifier was affected by the sampling methods for train-
ing labels from multiple observers, a seemingly independent problem.
We show experimentally that a previously proposed approach, combining
random sampling and consensus labels, may need to be adapted to per-
form well in our application. Furthermore, this work aims to share practi-
cal experience in developing a machine learning application that assists
highly variable interventional imaging for prostate cancer patients, to
present robust and reproducible open-source implementations, and to
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report a set of comprehensive results and analysis comparing these prac-
tical, yet important, options in a real-world clinical application.

1 Introduction

Many urological procedures for prostate cancer patients, such as ablation therapy
and needle biopsies, are guided by B-mode transrectal ultrasound images (TRUS)
to identify and then monitor the shape and location of prostate glands [2,11]. This
application is useful for a number of interventional tasks, such as estimating the
gland size, regions of pathological interest and surrounding healthy, but vulnera-
ble, tissues. However, due to variable acoustic coupling, inhomogeneous intensity
distribution, and the necessity of real-time monitoring, delineating the boundaries
of prostate glands is a challenging task, even for experienced urologists. Deep neu-
ral networks have been proposed to automate this process [1,5,7,8,14].

The performance of these networks relies on well-defined ground truth labels.
To date, there is no gold standard approach in many ultrasound imaging applica-
tions with high inter-and intra-rater variability in labelling and its use in training.
Existing approaches deal with multiple labels by using a pixel-level voting strat-
egy or random sampling, both estimating the expected labels. In [12], Sudre
et al. observed that combining random and voting strategies during training
improves stability and performance in the context of brain lesion detection. In
this paper, we consider labels from multiple independent raters and investigate
the effect of different sampling strategies during segmentation, and test these
proposed sampling methods in the context of interventional ultrasound imaging
for prostate cancer patients.

In addition to the label variability, ultrasound data itself is known to be of
high variance, due to its user dependency and flexible use protocols. For exam-
ple, it is common that some frames do not contain the region of interest (ROI),
particularly due to the small size of the prostate gland in our application. The
presence of negative frames presents a key challenge in segmentation, as wrong-
fully segmenting a frame that does not contain the ROI could potentially lead
to misdiagnosis or damage to healthy tissues. Using a widely-used segmentation
accuracy metric based on overlap, such as Dice, to quantify this error can be
problematic. The naive implementation of Dice is independent of the number of
false positive pixels and the cost of negative frames may not be easily quantified
with respect to the cost of negative pixels when designing a new loss function.
For example, in the case of a handheld setting, relative positions and distances
in the out-of-plane direction between ultrasound frames are in general variable
and unknown, which may lead to an unspecified misjudgement of where the ROI
boundary is, given a false positive frame. A separate frame classification may
provide more intuitive user guidance when using the segmentation algorithms.

Limited work has been proposed to address the problem of negative frames
within medical image segmentation. In [3], false positives in a video object seg-
mentation task were reduced through the introduction of a post-processing clas-
sifier. In [10], meta-classification was used to detect false positive samples in
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semantic segmentation. This has motivated a screening strategy in this work
that can detect negative frames before they are incorrectly segmented by the
segmentation network. Such a separately trained classification network can also
provide flexible control at test-time between false positive and false negative
rates on a frame-level, which is arguably more difficult to achieve by altering
threshold on pixel-level class probability in a segmentation network. Alternative
approaches and different loss functions to address this issue are also discussed
or compared in this paper.

2 Methods

2.1 Segmentation Network

U-Net [9], a fully convolutional neural network, is adapted from a well-established
reference implementation. Our network consists of 5 layers that starting with
initial 16 channels, with residual network blocks replacing the original individ-
ual convolutional layers to encourage fast convergence [4]. Images were nor-
malised to zero-mean and unit-variance. All the segmentation networks were
trained with a mini-batch size of 32, using the Adam optimiser [6] with an
exponential learning rate scheduler that minimises a soft Dice loss function:
LSoftDice = 2Σypred·ytrue

Σypred+Σytrue
, where Σ is the pixel-wise sum, ypred is the predicted

class probabilities and ytrue is the ground truth mask. The Dice value was also
used to monitor validation set performance. Random data augmentations are
applied during training with probability p = 0.3, including random affine defor-
mations (rotation |θr| ≤ 2.5 deg, maximum translation 0.05, scaling in range
0.95−1), and random flipping along the vertical axis. These augmentations were
empirically found robust for the TRUS data in this application.

2.2 Frame Classification Network

A reference-quality ResNeXt [15] classifier pre-trained on ImageNet was adapted
to predict whether a prostate is present based on the frame-level consensus.
The network was modified to accept single channel and resized to 224 × 224.
The weights are normalised with mean and standard deviation (0.449, 0.226),
representing the average of the three original RGB channels. This model was
trained with an initial learning rate of 0.0001, using the Adam optimiser and a
binary cross-entropy loss function.

2.3 Label Sampling

Six different label sampling methods were investigated and evaluation results
on the hold-out test data are reported. The methods are summarised in Table 1.
The combination label strategy randomly selects a certain percentage of the data
to perform the vote sampling method and applies the random sampling method
to the remainder data.
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Table 1. Summary of label sampling methods. Soft mean refers to the non-rounded
mean of labels, treated as a continuous probability map.

Label strategy Description

Vote Pixel-level majority voting from the 3 labels

Random Single label selected at random

Mean Soft mean of the 3 labels

Combination (25%) Combination of 25% vote and 75% random labels

Combination (50%) Combination of 50% vote and 50% random labels

Combination (75%) Combination of 75% vote and 25% random labels

2.4 Pre-screening Strategy

The classifier can be combined with the segmentation network to facilitate a
pre-screening strategy illustrated in Fig. 1d. The frame will pass to the segmen-
tation network only if the classifier-predicted probability is greater than a set
threshold in logits, whose values from 0 to 5 are tested based on observations
of resulting classification accuracy range on the validation set. Different ways
of combining the classification and segmentation networks is also possible and
remains interesting for future investigation.

2.5 Loss Functions for Segmentation

For a given label sampling method, we test different segmentation loss functions.
This allows us to ascertain whether the frame-level classification can also be
handled by the segmentation directly, as opposed to the above-described pre-
screening. Two alternatives are considered in addition to the Dice loss function,
a combo loss with an equal weighting between dice loss and binary cross entropy
loss (BCE), and a weighted binary cross entropy loss based on [13] (W-BCE).
The equation for the Dice-BCE loss is given by:

Dice-BCE = 0.5 × (1 − Dice) + 0.5 × BCE (1)

where the binary cross entropy loss is defined by:

BCE = −
N∑

xn log pn + (1 − xn) log (1 − pn) (2)

where N is the number of pixels, xn is target class per pixel and pn is the
predicted probability from the network. The BCE loss can be modified to assign
weights, wc to each class (c = 0, 1) such that:

W -BCE = −
N∑

w0xn log pn + w1(1 − xn) log (1 − pn) (3)

where in our case, w1 = 1∑N xn=1
and w0 = 1 − w1.
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2.6 Evaluation Experiments

The Dice coefficient is computed on positive frames excluding those that are
predicted to be negative by the segmentation network or by, when in use, the
pre-screening classifier, to ensure that we do not penalise the network for cor-
rectly identifying negative frames (a 0 Dice coefficient). In addition, we report
frame-level classification performance for both frame classifier and segmentation
network, when the latter is used without pre-screening. In this case, rates of
false positive frames and their false positive area are computed. All results are
reported on the independent hold-out test set. p-values from t-tests at signifi-
cance level of 0.05 are also reported when comparison is made.

The dataset used in this study contains 2D B-mode transrectal ultrasound
frames from 250 patients. For each subject, a range of 50–120 frames were
acquired at the start of the procedure, with a bi-plane transperineal ultrasound
probe (C41L47RP, HI-VISION Preirus, Hitachi Medical Systems Europe) and a
digital transperineal stepper (D&K Technologies GmbH, Barum, Germany) to
view and scan entire gland. For labelling, 6644 ultrasound images were sampled
with size 403 × 361 and were manually annotated by three independent raters.
A set of example frames are shown in Fig. 1a–1c with varying label agreement.

At the patient level, 5224 and 1346 frames were sampled for train-
ing/validation and hold-out test, an 80:20 split. The networks were trained using
a 3-fold cross-validation ensemble strategy, with 3484 and 1740 samples for train-
ing and validation in each fold, respectively. Predictions from each of the net-
works were averaged at test-time to generate a single probability map that is
converted into a mask during inference on the hold-out set. The code is made
publicly available at https://github.com/sophmrtn/RectAngle.

3 Results and Discussion

Label Sampling. The performance of the segmentation network for each sam-
pling method is shown via box plots in Fig. 2a. The mean label sampling strategy
was statistically different (all p−values < 0.05) from all other methods. All other
sampling methods obtained similar performance.

The pre-screening classifier achieved an accuracy of 97.1% on the validation
dataset during training. Table 2 summarises the Dice values with and without
the pre-screening for the six label sampling methods. The classifier is shown to
improve performance significantly for the mean label strategy (p = 0.001).

Classification Threshold. The threshold used by the classifier plays a role in
controlling the false positive frame rate seen by the segmentation network and
can therefore be tuned as a variable at test time. We therefore tested a range of
thresholds from 0 to 5 corresponding to probabilities of 0.5 to 1 and observe the
effect on the mean Dice for each label sampling method. This is shown in Fig. 2b.
From this plot the combination of consensus and random labels with a ratio of
25% and 75% respectively leads to the highest Dice score and this increases with
threshold in general for all label sampling methods.

https://github.com/sophmrtn/RectAngle
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Fig. 1. a–c) Example frames are shown with manual labels from three observers in
green, red and blue respectively. a) All labels are in close agreement. b) Two labellers
agree however one annotation is significantly larger. c) Only two labellers identify the
prostate presence, but with slightly different locations. d) Flowchart to describe the
pre-screening strategy. (Color figure online)

Table 2. The Dice coefficient values on the hold-out test data (mean ± std. dev.) with
and without pre-screening. The median values are reported for inspecting skewness.
Statistically significant improvement (p < 0.05) are in bold.

Sampling Mean dice Median dice

method w w/o p-val w w/o

Vote 0.866 ± 0.180 0.856 ± 0.197 0.220 0.927 0.926

Random 0.867 ± 0.184 0.857 ± 0.200 0.223 0.926 0.925

Mean 0.861± 0.184 0.831± 0.236 0.001 0.920 0.917

Combine (25%) 0.866 ± 0.182 0.857 ± 0.198 0.273 0.926 0.925

Combine (50%) 0.867 ± 0.180 0.859 ± 0.197 0.328 0.927 0.927

Combine (75%) 0.870 ± 0.174 0.861 ± 0.190 0.253 0.926 0.925

Pre-screening Classifier. The pre-screened segmentation model can be used
to examine the effect on the number of false positives/negatives on both frame
and pixel levels. We also use the modified loss functions to compare the
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Fig. 2. a) Dice coefficients for positive predictions on hold-out set of 1346 frames.
Dashed line shows mean Dice values for each strategy, with shading indicating the
standard deviation from the mean. b) The mean Dice score for positive frames is
reported for a range of classification thresholds for each label sampling method during
segmentation. The standard deviation is omitted in the figure for readability, where for
the combination strategy (25%) we obtain a standard deviation of 0.15 at a threshold
of 5.

performance of the segmentation network alone with a loss chosen to tackle both
tasks simultaneously. The FPR and FNR is computed for the different labelling
strategies in each case as shown in Fig. 3a. From these results we observe a slight
decrease in the number of false positive frames as the threshold increases. The
most noticeable effect of threshold is on the FNR for which a larger threshold
leads to a greater number of false negative frames. On the other hand, the loss
function is shown to be effective to some extent at addressing the frame-level
classification task. The losses seemed to lead to a lower false negatives than false
positive frames, although altering the weight to control the two type of frame-
level errors does not seem to be straightforward. This is consistent with what
can be observed from the areas of the false segmentations.

Further inspecting the labels from three observers overlaid with those frames,
on which the segmentation and classifier networks disagreed for the frame clas-
sification, as shown in the examples in Fig. 3b, c. Interestingly, relatively large
disagreement between observers can also be found on those network-disagreed
images. This may suggest a correlation between the label sampling methods and
the frame classifying strategy. This is also supported by the results in Table 2,
where, for example, highest median Dice values may come from different label
sampling methods, between models with and without the pre-screening strategy.

This paper reports experiment results with and without an independently-
trained pre-screening classifier. Future work may investigate a classifier trained
simultaneously with the segmentation network, such that the segmentation net-
work could be optimised on representative frames that need to be segmented.
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Fig. 3. a) False positive (FP) and false negative (FN) rates (frame-level) and areas
(pixel-level) are computed for each label sampling method using different screening
thresholds. We also show the rates achieved using different loss functions; Dice, Dice-
BCE and W-BCE, using the segmentation-only approach (Dotted black line used to
separate these cases, with classifier used in results left of line and segmentation-only
results to the right) (b–c) Example frames with manual labels, where the classifier and
segmentation network disagreed. b) Classifier predicted the presence of prostate, but
segmented mask is empty. c) Classifier predicted an empty frame, but the prostate was
segmented. In both cases, only two labellers were in agreement, but not over the size
and position of the prostate.

4 Conclusion

In this study, we investigated different strategies for handling multiple labels for
intraoperative prostate gland segmentation on TRUS images. We demonstrate
that disagreements between labellers affect the performance of a U-Net segmen-
tation network due to the difficulty when defining a ground truth. Whilst there
were no significant differences between the label sampling methods themselves
using the Dice loss, by introducing a pre-screening strategy with a separate
classifier, we show an improved segmentation accuracy by removing false posi-
tive frames. This was observed for the mean label strategy (p = 0.001 < 0.05)
between the mean Dice with, and without, pre-screening. Our results also agree
in general with existing findings that using a combination of random and consen-
sus labels (25%, 75% respectively) during training leads to better, and more sta-
ble performance with a mean Dice of 0.87 ± 0.17. Alternatively, the segmentation
network can be trained using loss functions that aim to address the frame-level
classification task in parallel with optimising the Dice score. For these models, we
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find a better ability to handle false negative frames than using a pre-screening
classifier. However, the classifier still provides better flexibility to control the
frame-level accuracy during test-time. This work illustrates the potential ben-
efit of pre-screening prior to classification during real-time ultrasound-guided
procedures where the reduction of a specific error type may be more desirable.
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Abstract. Transperineal volumetric ultrasound (TPUS) imaging has
become routine practice for diagnosing anorectal dysfunction, a life-
challenging pelvic floor dysfunction (PFD). To assess the integrity of the
whole length of the anal sphincter from three-dimensional (3D) ultra-
sound (US) data, sonographers first extract a tomographic US imag-
ing (TUI) sequence from the TPUS recording. TUI sequences consist of
eight equally spaced and properly oriented two-dimensional (2D) coronal-
view slices of the anal sphincter complex. TUI sequences are visually
assessed by a sonographer to diagnose anal sphincter injury. Obtain-
ing TUI sequences is performed manually in clinical practice, which is
labour-intensive and requires expert knowledge of pelvic floor anatomy.
To the best of our knowledge, this work is the first to report an auto-
matic method to aid this medical imaging acquisition task. We pro-
pose a novel, convolutional neural network (CNN) approach for the
automatic extraction of the TUI sequences from a TPUS. The method
utilises a CNN to segment the external anal sphincter (EAS), and the
desired TUI sequences are subsequently extracted after several auto-
matic post-processing steps. The proposed method is evaluated on 30
TPUS recordings and compared against manually acquired gold standard
TUI sequences. One expert evaluated the quality of the automatically
detected TUI sequences in terms of their clinical acceptability for diag-
nosis. The automatic method performs with an overall clinical acceptabil-
ity of 90.00%. The method reduces the time required to extract the anal
sphincter complex TUI sequence of a TPUS by 52.36 s and may reduce
the need for high-level expertise in anorectal dysfunction analysis.

1 Introduction

PFD includes pelvic organ prolapse, urinary incontinence and anorectal dys-
function, including anal incontinence and obstructive defecation. Obstetric anal
c© Springer Nature Switzerland AG 2021
J. A. Noble et al. (Eds.): ASMUS 2021, LNCS 12967, pp. 35–44, 2021.
https://doi.org/10.1007/978-3-030-87583-1_4
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sphincter injury is the most common finding in women with anal incontinence
in reproductive age. Anal sphincter integrity (or injury) can be assessed with
exo-anal (TPUS or introital) or with endo-anal US. Endo-anal is more intrusive,
and TPUS showed a substantial correlation with exo-anal with high sensitivity
for anal sphincter complex evaluation [6]. TPUS has shown to have similar image
quality to introital with lower inter-rater variability [2,6,10]. Therefore, TPUS
was used in this study, further details can be found in literature [2,3,6].

Within clinical assessment, sonographers use TUI sequences of the anal sphinc-
ter complex to visually assess the integrity of the entire anal sphincter [3,7]. TUI
sequences consist of eight equally spaced and properly oriented 2D coronal view
slices of the anal sphincter complex. Manual extraction of TUI sequences from
a TPUS recording is labour intensive and recognised as a highly skilled task, as
the sonographer must manually manipulate a TPUS recording to locate prede-
termined locations, based on the cranial termination of the EAS and the caudal
termination of the internal anal sphincter (IAS) [2,3,6], as shown in Fig. 1. The
quality of TUI extraction is heavily dependent on the sonographer’s skill, and sig-
nificant inter-observer variability may lead to, in extreme cases, misdiagnosis.

Therefore, we aim to automatically extract the TUI sequences from a TPUS
recording, to address the limitations above. In this work, the sonographer would
only need to acquire a TPUS recording following a standard acquisition, (i.e. the
transperineal probe is placed at the opening to the vagina and perpendicularly
to the anal canal) [6]. Our solution aims to speed up assessment for skilled
sonographers, and potentially allow non-experts to perform these assessments.

We briefly describe our work in the context of related literature that has pro-
posed automated image analysis of pelvic floor structures, such as the levator
hiatus [1,5,9] and the puborectalis muscle [11]. Automatic assessment of the leva-
tor hiatus [1,5] utilised CNNs and active shape models [9], and performed within
inter-observer variability. In other work, an automatic clinical solution was pre-
sented for the extraction of a plane of interest used in PFD assessment[12]. The

EAS

IAS

EAS

EAS

Fig. 1. TUI sequence of a normal anal sphincter. The top left image shows the mid-
sagittal plane with the EAS annotated; the eight other images represent coronal slices
through the anal canal. The locations of the slices are given by the vertical lines in the
midsagittal plane. Slice 1 is the non-dashed vertical line on the left; slice 8 is at the
right. The arrows show the location of the EAS and IAS within a coronal view plane.
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paper utilised CNN landmark regression, and performed within inter-observer
variability, while reducing the time required for assessment by 100 s.

We believe the work presented in this paper is of clinical impact, due to the
difficult nature of manipulating TPUS recordings of the anal sphincter, the lack
of current automation of TUI extraction, and the expertise required by sono-
graphers. In this paper, we describe to the authors’ knowledge the first auto-
matic anal sphincter TUI sequence extraction solution. The proposed solution
locates the EAS and extracts eight equidistant 2D images of the anal sphincter
in the coronal-view, comparable to manually acquired TUI sequences. This work
utilises the advances of CNN segmentation and is evaluated on 30 TPUS record-
ings. The clinical acceptability and time taken are recorded and compared to an
expert sonographer. We believe a fully automatic TUI extraction solution may
save clinicians time to allow more focus on patient care and treatment planning.

2 Materials and Methods

During urogynaecological US examination, sonographers aim to evaluate sphinc-
ter integrity based on the sonographic appearance of the EAS and IAS. The sono-
grapher acquires a TPUS recording at approximately 60 deg aperture and 70 deg
acquisition angle with a 3D convex transducer, when possible during pelvic
floor muscle contraction. The TUI sequences are identified in post-processing
steps. On the extracted TUI sequences, the sonographer assessed EAS and IAS
integrity, and if present measured the degree of tear in the EAS and in the
IAS which corresponds to the internationally accepted clinical classification [3].
Before describing the method in detail, we first describe the acquisition protocol.

2.1 Acquisition Protocol

All data was acquired with a Voluson E10 BT16 ultrasound system (GE Health-
care: Zipf, Austria) equipped with a 3D 4–8 MHz convex probe placed transper-
ineally with an average voxel resolution of 0.3 mm by 0.3 mm by 0.3 mm. For
testing, a total 30 3D TPUS recordings were acquired. Volumes covering the
entire length of the EAS were obtained and post-processed offline on a desktop
computer using 4D View Software (GE Healthcare; Austria GmbH & Co, Zipf,
Austria) according to the international practice parameter [8].

2.2 The Proposed Pipeline

The proposed method is shown in Fig. 2. Firstly, the EAS was segmented from a
TPUS recording, the centre of mass, Xcm, was determined and the corresponding
mid-sagittal plane extracted. Four parallel planes were extracted and an averaged
EAS segmentation was formed. The principal axes of rotation of the averaged
segmentation was identified and a rotation matrix was formed. The TPUS was
then rotated to ensure the anal sphincter was parallel to the coordinate axes,
and eight equidistant slices of the EAS in the coronal view were extracted.



38 H. Williams et al.

3D UNET

Training ultrasound volume and
corresponding training mask

CNN segmentation
 and centre of 

mass, Xcm

Transperineal
ultrasound volume 

for testing

Extract mid-sagittal plane 
that contains Xcm

Automatic extraction of TUI sequences from transperineal volume

Xcm

Extract four mid-sagittal
 planes that are parallel 

and equi-distant
to the slice that contains Xcm 

Overlapped 
average 

segmentation of 
the

5 mid-sagittal 
slices

Calculate principle 
axes

of rotation 

Identify the extremities
of the EAS and the 

TUI sequence
positions

TUI sequences extracted automatically

Rotate ultrasound and 
segmentation

 so EAS is horizontalised
 in the mid-sagittal

plane

Fig. 2. Proposed pipeline of the automatic TUI extraction algorithm

3D EAS Segmentation. Firstly the EAS was automatically segmented. This
was achieved by utilising a CNN, which accepted a TPUS as input and outputted
a 3D voxel-wise segmentation of the EAS. The architecture used was 3D U-Net
[14], and advanced data augmentation was used including an adaptation of the
original mix-up [13], where three images and their labels were linearly combined.

Rotation of the TPUS Recording. During manual acquisition the sono-
grapher may need to rotate the TPUS to horizontalise the anal canal in the
mid-sagittal plane. This ensures the axes of rotation of the sphincter lay along
the coordinate axes. Here, we describe how the rotation matrix, R, was formed
in order to automate this task. Firstly, Xcm of the 3D segmentation was identi-
fied, and the mid-sagittal plane of the segmentation which contained Xcm was
extracted. The mid-sagittal plane is given by the x and y directions of the vol-
ume data, and is dependent on a standard acquisition protocol used within clinic
(i.e. the probe placed at the entrance of the vagina perpendicular to the anal
canal). Several equidistant parallel planes to the mid-sagittal plane containing,
Xcm were extracted and multiplied together to produce an averaged 2D EAS seg-
mentation, based on the common overlap (i.e. common voxel values were equal
to 1 and uncommon voxel values were equal to 0). The mid-sagittal planes used
contained the coordinate Xcm, Xcm ± 1.5mm and Xcm ± 3mm.

Principle component analysis (PCA) was used to identify the eigenvectors,
�vav, describing the principle axes of rotation of the averaged 2D EAS segmen-
tation within the mid-sagittal view. PCA was only applied to the mid-sagittal
view rather than the total 3D segmentation, to follow aspects of the clinical pro-
cedure. PCA was applied to the averaged 2D EAS segmentation, rather than the
mid-sagittal plane containing Xcm to make the method more robust, and reduce
the risk of incorrect rotation due to poor segmentation of the EAS within one
mid-sagittal plane. To form the rotation matrix, R, the inverse of the averaged
eigenvector, �v−1

av was computed. The rotation matrix, R, was defined as:
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where �v−1
avxx

and �v−1
avxy

define the x and y component respectively of the eigen-
vector along the length of the anal canal, and �v−1

avyx
and �v−1

avyy
define the x and y

component respectively of the eigenvector along the width of the anal canal. The
TPUS and CNN segmentation were rotated in preparation for TUI extraction.

Unfortunately, occasionally the rotation angle determined as above may be
too severe, due to a non cylindrical EAS segmentation. Therefore, before TUI
extraction occurred an automated quality control process was performed. The
ratio between the largest and smallest eigenvector component was calculated,
and when the ratio was smaller than a pre-defined threshold, the rotation matrix
was set to identity, and the TPUS and segmentation were not rotated. The pre-
defined threshold was 2.11 and it was determined in preliminary studies, based
on the relationship between the eigenvector component ratio and the rotational
acceptability score. In detail, a sample of 10 incorrectly rotated TPUS record-
ings were used, the mean ratio and standard deviation were calculated, and the
threshold was set to the upper bound of the 95% confidence limit.

Identification of Extreme Points. To extract TUI sequences, the extreme
points as shown in Fig. 2 were identified. Xcm of the rotated CNN segmentation
was calculated and the rotated mid-sagittal plane containing Xcm was extracted.
After rotation the major axes of the EAS were parallel to the coordinate axes,
and the first and last coordinate along the y axis of the EAS segmentation
were extracted. The total length of the EAS was calculated and divided by 9 to
determine the slice separation (i.e. distance between 2D slices in coronal-view of
the anal sphincter complex), thus 8 slices were extracted excluding the first and
last coordinate position of the EAS. This reduced the risk of selecting a plane too
far from the optimal position due to poor segmentation. During examination the
spacing between TUI sequences should be larger than 2mm, thus a quality check
was performed prior to extraction, and when the slice separation was smaller
than 2mm the total length of the EAS was divided by 7 and the TUI sequences
included the extremities of the EAS segmentation. If the slice separation was still
smaller than 2mm the algorithm outputted the TUI sequences and a notification
that the length of the detected EAS may be insufficient or abnormal.

2.3 Data Collection

Analysis of anonymised, archived US images was retrospective, so ethics com-
mittee approval was not required by Belgian law. The TPUS recordings were
acquired at the pelvic floor clinic at UZ Leuven, Belgium between February and
November 2020. The data was separated into training and test sets such that
each patient was in one set only. In total 148 3D TPUS recordings were used;
94 for training, 24 for validation and 30 for testing. An expert sonographer with
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over four years’ of experience in US PFD assessment, manually extracted TUI
sequences of the anal sphincter for clinical diagnosis using 4D View software (GE
Healthcare, Zipf, Austria). The same expert manually segmented the EAS com-
plex with rotations of 30◦, using the volume analysis application VOCAL from
4D View Software (GE Healthcare, Zipf, Austria) from the 3D TPUS recordings,
these were used as ground truth labels for training.

2.4 Evaluation Methodology

The expert identified the TUI sequences in all TPUS recordings manually via
the clinical protocol using 4D View software (GE Healthcare; Zipf, Austria).
These TUI sequences are defined as gold standard and were visually compared
to the automatically detected TUI sequences. To assess the performance of the
proposed method, the expert was asked to rate the overall performance of the
automatically detected TUI sequences for each TPUS volume: visually “clinically
acceptable” or “unacceptable” for clinical diagnosis. They were also asked to
rate the rotation of the anal canal within the mid-sagittal plane and the quality
of each TUI slice as either “clinically acceptable” or “unacceptable”. The slice
rating was dependent on the automatic slice being visually similar to the gold
standard and of use for clinical diagnosis (i.e. showing the same pathology if
present). The time taken for the automatic pipeline to identify the TUI sequences
was compared to the time taken by the expert to manually extract the TUI
sequence on a new subset of 19 TPUS recordings acquired within clinic, via
the clinical protocol using 4D View software (GE Healthcare; Zipf, Austria). In
addition the slice separation of TUI sequences determined automatically and
manually were compared.

3 Experiments, Results and Discussion

3.1 Implementation Details

The proposed tool was implemented on a Windows desktop with a 24GB
NVIDIA Quadro P6000 (NV IDIA,California, UnitedStates). The CNN was
implemented using NiftyNet [4], training and inference were ran on the GPU.
The CNN architecture was 3D U-Net [14], an Adam optimiser, ReLU activation
function, weighted decay factor of 10−5, Dice loss function with a learning rate of
0.0001 and batch size of 2 were used. The data augmentation used were: elastic
deformation (deformation sigma = 5, number of control points = 4), random
scaling (−20%, +20%) and an implementation of mixup [13]. Validation of the
CNN training was performed every 200 epochs and it trained for 6000 epochs.
The model from epoch 3200 was used at inference, as the validation loss function
was lowest.
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Fig. 3. TUI extraction results, a) the best performing result, b) the average perform-
ing result and c) the worst performing result. The corresponding gold-standard TUI
sequence for each result are shown in the second row.

Table 1. Overall and rotational clinical acceptability, time taken and slice separation.

Method Overall clinical Rotation clinical Time s Slice separation

Acceptability, % Acceptability, % mm

Automatic method 90.00 93.33 8.64 ± 0.17 2.84 ± 0.50

Manual 100 100 61.00 ± 13.74 2.81 ± 0.37

3.2 Results

Qualitative results of the automatically extracted TUI sequences compared to
the gold standard are shown in Fig. 3. Figure 3c shows the worst performing
result (based on overall, slice and rotational acceptability), Fig. 3b the average
performing result, and Fig. 3a the best performing result. The overall clinical
acceptability, the rotation performance, the time taken, and the average slice
separation are shown in Table 1. Table 2 shows the clinical acceptability scores
of the automatic method for each TUI slice.

3.3 Discussion

The study presents to the-authors-knowledge the first automatic TUI sequence
extraction pipeline from a TPUS recording. Qualitatively in Fig. 3 there is min-
imal visual difference between the automatically and manually extracted TUI
sequences for the average and best performing result and they both show the

Table 2. Slice number and corresponding clinical acceptability.

Slice number 1 2 3 4 5 6 7 8

Clinical acceptability 70.00 86.67 90.00 93.33 96.67 96.67 96.67 90.00
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same clinical diagnosis. The worst-performing result was clinically unacceptable
for all slices, due to the incorrect rotation and location of the TUI sequence.
Incorrect rotation was due a non cylindrical EAS with a ratio of 3.45, which
was larger than the pre-defined threshold. Incorrect rotation meant the TUI
sequences did not intersect the anal canal perpendicularly, and incorrect location
of the first TUI sequence resulted in sequences that were not clinically suitable.
The average-performing result had a rotation that was clinically acceptable, how-
ever, the position of the final slice was not optimal as it contained part of the IAS
unlike the gold standard. This does not impact the overall clinical acceptability
as the same diagnosis was made. The best performing result, was rated as clini-
cally acceptable for all slices and for the rotation. The visual difference between
the automatic result and the gold standard is negligible and any differences are
due to the post-processing of 4D View (GE Healthcare; Zipf, Austria).

The proposed method was 52.36 s faster than the clinical expert, which was
significant (p < 0.001), and the variance of time taken decreased significantly
(p < 0.001). The average slice separation of the proposed method was not sta-
tistically higher than the manually acquired slice separation (p = 0.265). The
overall clinical acceptability of the proposed method was 90.00%, on average 7.16
TUI sequences out of 8 were marked as clinically acceptable and the rotation
scored a clinical acceptability of 93.33%. 11 TPUS volumes were not rotated as
the quality control process detected a ratio of eigenvector components smaller
than or equal to 2.11. Slice 1 and 8 describe the extremities of the EAS, and are
the most dependent on the segmentation. Table 2 shows slice 1 and 2 were the
least clinically accurate, the location of the first slice may improve with a larger
training dataset of EAS segmentations. The other slices performed similarly.

The strengths of this work are that it allows a non expert to extract the
TUI sequences for diagnosis, and it saves a significant amount of time for all
(expert and non-expert) sonographers. Automation may standardise the current
procedure and reduce inter-observer variability, this will be studied in future
work, on a larger dataset. The main limitation, is the formation of the rotation
matrix, as it is dependent on the EAS segmentation. Incorrect segmentation due
to artefacts, may lead to a non-cylindrical shape, and the volume may not be
rotated at all, or rotated too much. In some patients biologically the EAS may
not be cylindrical during contraction, regardless of CNN performance. Thus, in
the future, we aim to include segmentation information of the IAS. In addition,
to follow clinical guidelines more closely, we aim to ensure the anal canal is not
only horizontally aligned in the mid-sagittal plane, but also that it is vertically
aligned in the axial plane. This would improve results when the US is acquired
sub-optimally (i.e. asymmetric), allowing less-skilled sonographers to perform
TUI extraction. As the current method does not correct asymmetric US record-
ings in the axial plane, the TUI sequences may not intersect the anal canal per-
pendicularly, leading to sub-optimal TUI sequences. Previous work highlighted
that inter observer agreement for sphincteric measurements was fair to excel-
lent for transperineal acquisition [2], however, in future work the evaluation will
be expanded to several clinical observers to calculate intra and inter observer
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variability to reduce bias. Furthermore, the pipeline will be extended to classify
anal sphincter tears and disease if present.

4 Conclusion

To conclude, the proposed method achieved an overall clinical acceptability of
90.00%, despite the limitation of the rotation matrix and not rotating the axial
plane as performed in clinic to improve asymmetric acquisitions. Thus, we believe
with a more detailed pipeline which includes IAS segmentation, the results will
outperform this method, and may perform comparable to inter-observer vari-
ability. The proposed method was 52.36 s quicker than the clinical expert, which
was significant. The proposed method allows non-expert sonographers to per-
form TUI sequence extraction for anal sphincter tear diagnosis. In future work
we will conduct an inter and intra observer variability study, and expand the
evaluation dataset to 100 TPUS volumes.
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Abstract. Lung ultrasound imaging has been shown effective in detecting typical
patterns for interstitial pneumonia, as a point-of-care tool for both patients with
COVID-19 and other community-acquired pneumonia (CAP). In this work, we
focus on the hyperechoic B-line segmentation task. Using deep neural networks,
we automatically outline the regions that are indicative of pathology-sensitive
artifacts and their associated sonographic patterns. With a real-world data-scarce
scenario, we investigate approaches to utilize both COVID-19 and CAP lung
ultrasound data to train the networks; comparing fine-tuning and unsupervised
domain adaptation. Segmenting either type of lung condition at inference may
support a range of clinical applications during evolving epidemic stages, but also
demonstrates value in resource-constrained clinical scenarios. Adapting real clini-
cal data acquired fromCOVID-19patients to those fromCAPpatients significantly
improved Dice scores from 0.60 to 0.87 (p < 0.001) and from 0.43 to 0.71 (p <

0.001), on independent COVID-19 and CAP test cases, respectively. It is of prac-
tical value that the improvement was demonstrated with only a small amount of
data in both training and adaptation data sets, a common constraint for deploying
machine learning models in clinical practice. Interestingly, we also report that
the inverse adaptation, from labelled CAP data to unlabeled COVID-19 data, did
not demonstrate an improvement when tested on either condition. Furthermore,
we offer a possible explanation that correlates the segmentation performance to
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label consistency and data domain diversity in this point-of-care lung ultrasound
application.

Keywords: Deep-learning · Segmentation · Domain adaptation · Lung
ultrasound · COVID-19 · Pneumonia

1 Introduction

Over the past decade, the use of point of care ultrasound (POCUS) has increased along-
side the growing evidence relating its use to improved patient outcomes. The publication
of the BLUE protocol displayed the efficiency of POCUS in the diagnosis of the 5 most
common lung pathologies compared to chest auscultation and chest x-ray, achieving
an accuracy of 90.5% [1]. POCUS was shown to be useful in the triaging of patients
with suspected COVID-19 by following the BLUE protocol [2, 3]. Both COVID-19 and
CAP present multiple B-lines in the early stages and areas of consolidation appear as
infection progresses. Although computerized tomography (CT) scans have shown sen-
sitivity of up to 97% [4] for the diagnosis of COVID-19, it can be impractical for use
in ‘front-line’ settings, as it requires patients to be moved throughout the hospital, may
risk precautious patients desaturating in scanner, and is time-consuming. Conversely,
the BLUE protocol can be performed in a few minutes at the patient’s bedside, making
POCUS advantageous for use during a pandemic when resources are low and infection
risk is high.

Several studies have investigated the use of deep learning to assist in triage, diag-
nosis, grading and monitoring of COVID-19 patients [5–10]. Methods include classi-
fying and stratifying COVID-19 patients, or localizing pathological image features, all
based on lung ultrasound (LUS) data from healthy subjects or other respiratory diseases,
such as pulmonary edema and community-acquired pneumonia (CAP). To improve
the specificity of computer-assisted tools, aggregating approaches combining pixel-,
frame-, zone-, and patient-level severity scores have been proposed [11]. Localization,
and therefore, segmentation, of pathology-sensitive LUS features then, on the pixel level,
is fundamental. Moreover, the intuitive representation of segmentation, such as those of
B-lines used in this study, may provide a visually interpretable solution in the form of
a prediction for the clinician. Such segmentations may not only help the confidence the
clinician would place on the automated computer prediction by localizing it, but also
provides a feedback opportunity to further develop the assistive algorithm for improved
sensitivity and specificity.

Most existing research in machine learning, such as the work we present here,
requires retrospectively labelled data. However, deploying such algorithms in real-world
clinical use has direct challenges. Most prominently, efficiently obtaining high-quality
labelled data [12]. For example, at the beginning of an epidemic, or during its fast-
changing stage, representative imaging data from positive patients is usually scarce.
Furthermore, obtaining expert labels may be even more costly during the peak of an
outbreak. In scenarios such as these, the ability to use a pre-trained model, or an exist-
ing data set, perhaps from a relevant condition (CAP, in this work), could substantially
reduce the requirements for necessary data and labeling from the target application,
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using fine-tuning or unsupervised domain adaptation. A different type of scenario, also
investigated in thiswork,may be that data from a previous or ongoing epidemic (COVID-
19, in this work) are available for training the pre-trained models or being used as the
source domain data to be adapted to a different type of condition that has less, limited, or
unlabeled data. Examples include pneumonia caused by a new epidemic, an additional
variant to the existing one, or other types of pneumonia in an area that lacks access
to other data sources or labeling expertise. In this study, we test the transfer learning
and domain adaptation abilities to and from the COVID-19 patient data, with the CAP
patient data as an example of the other LUS data.

2 Methods

We consider two strategies for training convolutional neural networks to segment B-
lines from LUS images. The first strategy uses a supervised learning approach, requiring
manual labeling of all input data, to segment the B-lines in the LUS images. The second
strategy uses an unsupervised domain adaptation to adapt a segmentation network to an
unlabeled target domain, requiring labels for only the source segmentation domain in
training.

2.1 Supervised Segmentation with U-Net

A commonly used neural network for image segmentation, U-Net [13], was trained to
automatically segment B-lines in COVID-19 and CAP LUS images. At inference, the
network then predicts whether a given pixel in the image may be classified as part of
a B-line. The use of well-established network architectures, such as U-Net, allows this
work to focus primarily on investigating the feasibility of automatic segmentation of
these regions of pathological interest.

2.2 Unsupervised Segmentation via Image and Feature Alignment

Synergistic image and feature alignment (SIFA) [14] has been used for domain adapta-
tion tasks to guide the adversarial learning of an end-to-end framework for unsupervised
image segmentation. SIFA reduces domain shift by using a generative adversarial net-
work to synthetically translate images from a source domain to the target domain. The
network is composed of a generator, which learns to translate the source domain image
into a corresponding image of the target domain, an encoder that learns a shared feature-
space, a decoder that learns the reverse-translation from target to source, and a segmenter
that performs pixel-wise classification to identify different labels in the images. Addi-
tionally, three discriminator networks differentiate between the target and source inputs
to the encoder, and the outputs of the decoder and segmenter. SIFA is trained to auto-
matically segment B-lines in COVID-19 and CAP LUS images. However, in training,
labels for only the source domain are required to learn the segmentation of the target
domain.
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2.3 Implementation Details

All neural networks were implemented in TensorFlow [15] and Keras [16]. Reference-
quality open-source code was adopted where possible for reproducibility.

Our implementation of U-Net contained 4 layers of convolutional blocks, with an
increasing number of channels of 16, 32, 64, and 128. Each convolutional block used
BatchNormalization across the channel axis between convolutional layers and aDropout
of 0.5 following each Batch Normalization. We employed data augmentation using
rotation, shifting, and scaling to reduce over-fitting. All U-Net models were trained for
250 epochs with a mini-batch size of 16, using an equal-weight binary cross-entropy
and Dice loss and the Adam optimizer [17] with a learning rate of 0.005.

Our implementation of SIFA and hyperparameters described below are consistent
with the original default implementation and hyperparameters, as described in [14]. As
in the original implementation, we employed data augmentation using rotation, shifting,
and scaling to reduce over-fitting. All SIFA models were trained for 10,000 epochs,
with a mini-batch size of 12. The generator, encoder, and decoder were trained using a
weighted cycle-consistency and adversarial loss with the Adam optimizer at a learning
rate of 0.0002. The segmenter was trained using an equal-weight cross-entropy and Dice
loss with the Adam optimizer at a learning rate of 0.001.

2.4 Data

The US images were acquired from two hospitals by two clinicians, using a Butterfly
iQ US probe (Butterfly Inc., Guilford, CT, USA). Experiments were conducted using
images from six COVID-19 positive patients and seven patients with CAP. Due to the
low prevalence of B-lines within patient scans only images with B-lines were used for
training, to evaluate the segmentation algorithms. The resulting datasets contained 977
and 326 images for COVID-19 and CAP, respectively. All COVID-19 diagnoses were
confirmed by PCR tests.

Ground-truth B-line segmentations were manually labeled by a medical student
familiar with LUS. Segmentations were reviewed and verified by experienced US imag-
ing researchers with over five years of experience with clinical US imaging. Example
images and segmentations are provided in Fig. 1.

2.5 Experiments

Given the limited data availability, we adopt a two-way split for training and test sets,
without a validation set. This prevents fine-tuning of network parameters or other hyper-
parameters to optimize performance, to avoid information leakage and provide fair esti-
mates of model performances. As such, cross-validation was performed to assess the
performance of models for the segmentation of B-lines in patients with COVID-19
and CAP under different supervision conditions in training. The COVID-19 and CAP
datasets were split into three cross-validation sets, on a patient-level. Splitting the data
in this way ensures that no patient images are found amongst the different dataset splits.
Efforts were made to ensure that each of the three COVID-19 and CAP datasets were of
approximately the same size. The COVID-19 datasets each consisted of 2 patients, with
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Fig. 1. Multiple sample LUS images and their corresponding manual segmentations. COVID-19
images and segmentations are shown on the top row, CAP images and segmentations are shown
on the bottom row.

319, 319, and 339 images, respectively. The CAP datasets consisted of one, two, and
three patient(s), with 148, 111, and 67 images, respectively. In total, seven experiments
are presented to evaluate and assess the performance ofU-Net and SIFA for segmentation
of B-lines in patients with COVID-19 and CAP.

Four of these seven experiments are performed with U-Net. First, we train U-Net
with COVID-19 images. Second, we train U-Net with CAP images. Third, we train
U-Net with COVID-19 images and fine-tune with CAP images. Finally, we train U-Net
with CAP images and fine-tune with COVID-19 images. In both instances, fine-tuning
took place over 50 epochs at a learning rate of 0.0005. Corresponding COVID-19 and
CAP datasets are used in training and fine-tuning when applicable.

Three of these seven experiments are performed with SIFA. First, we train SIFAwith
a source domain of COVID-19 images and a target domain of CAP images. To assess if
the discrepancy in dataset sizes affects the training of SIFA, we then train SIFA with a
source domain of COVID-19 images, where we use only a reduced subset of the COVID-
19 images and a target domain of CAP images. Finally, we train SIFA with a source
domain of CAP images and a target domain of COVID-19 images. To evaluate each of
the previously described methods, segmentations were evaluated based on a binary Dice
score. We additionally report sensitivity, specificity and p-values from statistical t-tests
at a significance level of 0.05, when comparison was made.

3 Results

Table 1 summarizes the Dice scores from the cross-validation experiments across all
methods. Training with SIFA (COVID-19 Source/CAP Target) provided significantly
higher Dice scores on COVID-19 and CAP test data than all four U-Net methods (p
< 0.001) and with SIFA (CAP Source/COVID-19 Target) (p < 0.001). Training with
SIFA (CAP Source/COVID-19 Target) provided significantly lower Dice scores on the
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COVID-19 and CAP test data than U-Net (COVID-19) (p < 0.001), U-Net (CAP) (p <
0.001), and U-Net (COVID-19 Fine-Tune w/CAP), (p < 0.001). Additionally, training
with SIFA (CAP Source/COVID-19 Target) provided significantly lower Dice scores on
the COVID-19 test data than U-Net (CAP Fine-Tune w/COVID-19), (p< 0.001), but no
significant difference was found to U-Net (CAP Fine-Tune w/ COVID-19) when applied
to CAP test data (p= 0.23). Table 2 summarizes the sensitivity and specificity from the
cross-validation experiments and is consistent with the observation summarized above.

Table 1. Summary of segmentation cross-validation Dice scores. STD: Standard Deviation.
Values are presented as Mean ± STD.

Method COVID-19 CAP

Dice Dice

U-Net (COVID-19) 0.60 ± 0.26 0.36 ± 0.24

U-Net (CAP Fine-Tune w/COVID-19) 0.56 ± 0.25 0.35 ± 0.26

U-Net (CAP) 0.52 ± 0.17 0.43 ± 0.27

U-Net (COVID-19 Fine-Tune w/CAP) 0.55 ± 0.15 0.45 ± 0.24

SIFA (COVID-19 Source/CAP Target) 0.87 ± 0.13 0.71 ± 0.22

SIFA (Reduced COVID-19 Source/CAP Target) 0.83 ± 0.15 0.72 ± 0.21

SIFA (CAP Source/COVID-19 Target) 0.32 ± 0.21 0.33 ± 0.17

Table 2. Summary of segmentation cross-validation sensitivity (sens.) and specificity (spec.).

Method COVID-19 CAP

Sens Spec Sens Spec

U-Net (COVID-19) 0.55 0.93 0.38 0.92

U-Net (CAP Fine-Tune w/COVID-19) 0.47 0.97 0.44 0.95

U-Net (CAP) 0.50 0.90 0.50 0.93

U-Net (COVID-19 Fine-Tune w/CAP) 0.48 0.91 0.40 0.95

SIFA (COVID-19 Source/CAP Target) 0.86 0.98 0.78 0.96

SIFA (Reduced COVID-19 Source/CAP Target) 0.84 0.95 0.75 0.95

SIFA (CAP Source/COVID-19 Target) 0.30 0.95 0.31 0.94

Additionally, we present qualitative examples of segmentations from both methods,
trained with all the different aforementioned approaches, on COVID-19 images and
CAP images in Figs. 2 and 3, respectively. These visualizations demonstrate the ability
of these networks to delineate B-lines, suggesting that, in some instances, they may be
effectively used for assisting in the interpretation of LUS in clinical practice.

As a retrospective analysis,we aim to explain the observed difference in improvement
(or lack of it) between the two directions of adaptation when testing the resulting models
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Fig. 2. Three example LUS images, each illustrating segmentations from each of the different
methods on COVID-19 images. Each image shows the original LUS image and the segmentation
output corresponding to the ground truth, or the method used. Each column presents the image
and segmentation for the method listed above them.

Fig. 3. Three example LUS images, each illustrating segmentations from each of the different
methods on CAP images. Each image shows the original LUS image and the segmentation output
corresponding to the ground truth, or the method used. Each column presents the image and
segmentation for the method listed above them.
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on both data sets, as described above, in terms of the difference in the imaging data and
labels available to training and testing. Figure 1 provided examples images with their
ground-truth segmentations overlaid, from theCOVID-19 andCAPdata sets, in the upper
and lower rows, respectively. It is visibly evident that CAP data posses substantially
higher variability in location, size of the identified B-line patterns and their background
context. This is consistent with all the data used in our study. This is also consistent with
the annotators’ experience indicating that labelling on the CAP data set is considered a
more challenging task than that on the COVID-19 data set.

4 Discussion

Additionally, during initial experimentation, we evaluated the performance of a joint-
training strategy for supervised segmentation with U-Net in addition to the fine-tuning
methods. Here, instead of fine-tuning on a pre-trained model, we train the model on
both the COVID-19 and CAP datasets simultaneously. Notably, the performance over
all cross-validation folds resulted in comparable Dice scores to training only on COVID-
19 when tested on both COVID-19 and CAP test sets. For brevity, we did not include a
full validation of this training strategy in our above-presented experiments.

One of the interesting findings in this work is that the substantial difference between
the adaptation from two opposite directions, from CAP to COVID-19 and from COVID-
19 to CAP, with only the latter showing benefit of adaptation on both test datasets. It is
not unsurprising that the adapted models may outperform the models trained solely with
individual datasets in a supervised manner. This is compounded by the fact that with
this adaptation, there is additional data and data diversity. However, this is not consistent
with the performance observed when adapting from CAP to COVID-19. Intuitively,
we may associate this with the label uncertainty and variability observed within the
CAP images, as previously discussed in Sect. 3. It is important to note that, especially
constrained by small data sets, the efficacy of domain adaptation is highly dependent on
the data diversity and label uncertainty, one needs to be further understood and validated
before being deployed in clinical applications.

5 Conclusion

In this work, we have presented the development and validation experiments for seg-
menting real clinical LUS data, acquired from both CAP and COVID-19 patients, and
in particular the approaches for combining the two for training deep neural networks.
We report a set of interesting experimental results that demonstrated that, in a small
data set setting, domain adaptation can be effective in improving segmentation accu-
racy by incorporating additional unlabelled data. However, compared to the direction
of the desirable adapting, the availability of diverse data and high-quality, consistent
and representative labels were more strongly correlated with such improvement. The
experimental results provided preliminary evidence for the feasibility and practicality
of aggregating different types of data in this POCUS application.
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Abstract. Thyroid tumor is a common disease in clinic. Junior doctors could eas-
ily miss or get false detection due to the unclear boundary and similarity between
nodules and tissues during thyroid screening. In this paper, we propose an effi-
cient tracker for simultaneously detecting and tracking nodules to assist doctors in
examination and improve their work efficiency. An attention based fusion block
which adaptively combines the features of previous and current frames is intro-
duced to acquire better detection and tracking result. To increase the detection
accuracy, we propose an advanced post-processing strategy instead of using gen-
eral post-processing methods to train the network to obtain the best prediction.
Moreover, a minibatch self-supervised learning module is embedded to reduce
the false positive rate (FPR) by strengthening the ability of distinguishing nodules
from similar tissues. The proposed framework is validated on a dataset of 1555
thyroid ultrasound movies with 13314 frames. The result of 91% recall with 3.8%
FPR running at 30 fps demonstrates the effectiveness of our method.

Keywords: Detection · Tracking · Thyroid ultrasound image · Self-supervised
learning

1 Introduction

Thyroid nodules are very common in clinic with the incidence rising rapidly throughout
the world. In 2020, 586,202 patients suffered from thyroid cancer, accounting for 2.9%
of all cancers [1]. With the growth of health awareness and the widely use of advanced
ultrasound equipment, the spotting of thyroid nodules has increased, which brings a
great challenge for doctors. Moreover, reviewing large amounts of low-resolution videos
is time-consuming, radiologists could lose their concentration which may impact the
objectivity on diagnosis. Computer-aided diagnosis can alleviate theworkload of doctors
and improve the efficiency of their work [2]. Therefore, the development of an automatic
and accurate analysis method is necessary for thyroid ultrasound screening.

In recent years, with the development of deep learning, researchers have been inves-
tigating convolutional neural networks on thyroid ultrasound image analysis, such as
nodule classification and detection. For the task of thyroid image classification, Chi et al.
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[2] fine-tuned a GoogLeNet to extract features of ROIs and predicted the malignancy
using the Cost-Sensitive Random Forest algorithm. Ma et al. [3] used two pre-trained
convolutional neural networks to fuse low-level and high-level features for the classi-
fication of thyroid nodules. For the challenge of nodule detection, Abdolali et al. [4]
enhanced the reliability of detection on a small dataset by modifying Mask R-CNN
architecture and combining it with transfer learning. Li et al. [5] developed a detector
based on Faster R-CNN, and adopted strategies such as layer concatenation and spatial
constraint to reach a higher accuracy. Xie et al. [6] proposed an SSD based neural net-
work with redesigned loss function and post-processingmethod to improve the detection
recall rate. Wang et al. [7] presented an artificial intelligence diagnosis system based
on the YOLOv2 to locate and classify nodules simultaneously. Generally, typical tech-
niques widely used in thyroid nodule detection require post-processing method such as
non-maximum suppression (NMS) to obtain the optimal prediction in inference.

Althoughmany researches have been done in thyroid ultrasound, the following prob-
lems still remain. (i) The majority of methods only focuses on detection in images,
ignoring the relationship between previous and current frames in movies. (ii) The per-
formance of NMS used inmost framework is limited due to the fixed rules set in advance.
Nested predictions of thyroid nodules can still remain after NMS as shown in the first
row of Fig. 1, where the tissue inside or outside a nodule seems like another lesion. (iii)
Many normal tissues can be recognized as nodules due to the similarity between them
as shown in the second row of Fig. 1, but less attention is paid to differentiate them.

In view of above issues, we propose an efficient tracker for nodule detection and
tracking during thyroid ultrasound scanning. Firstly, we introduce an attention based
fusion block to adaptively combine the features of previous and current images to get
better detection and tracking result. Secondly, an advanced post-processing strategy that
trains the model rather than uses NMS method to find the optimal result is proposed
to improve detection accuracy. Finally, a minibatch self-supervised learning module is
embedded as a branch in training period to enhance the ability of discriminating nodules
from similar tissues, thus to reduce the false positive rate (FPR).

Fig. 1. Illustration of existing problems. Red: the ground truth. Yellow: nested prediction. Green:
normal tissues that are similar to nodules. (Color figure online)
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2 Methodology

2.1 Overall Architecture

The proposed network is primarily based on CenterTrack [8] which sets a new state of
the art on both MOT17 and KITTI datasets. Our method is illustrated in Fig. 2. The
network takes the current frame, the previous frame and the heatmap [8] generated from
objects in the prior frame as input, and outputs the predicted rectangles, the classification
probability of each prediction and the center offset of tracked boxes in adjacent frames.
The inputs are combined by a fusion module before being fed into the backbone network
which is an encoder-decoder structure, and we adopt ResDCN-18 [8] as the backbone in
thiswork. The outputs are divided into two parts, 1) the predicted boxes and classification
probabilities to generate the detection results, and 2) the tracking offsets to determine
whether the nodules on the prior and current frame are the same one.

Fig. 2. Illustration of our method. (A) The proposed framework. (B) The advanced post-
processing module. (C) The minibatch self-supervised learning module. ‘Cur_img’, ‘Pre_img’
and ‘Pre_hm’ are abbreviations of current image, previous image and heatmap. ‘Boxes’, ‘Scores’
and ‘Offsets’ represent the predicted boxes, the classification probability of each prediction and
the offset of the prediction on the current image from the previous frame.

2.2 Fusion Module

The fusion module includes convolution layers and max-pooling layers. It extracts the
feature of each input separately and generates three feature maps with size of 1/4 of the
input. CenterTrack fuses the feature maps by adding them together and makes each map
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contribute the same to the next stage.However,we argue that the prior image and heatmap
are auxiliary inputs for guiding the model to detect nodules in the current frame. The
goal of comprising them is to enhance the performance of detection and tracking. Hence,
the feature of current frame should be more important than the other two. Therefore,
we concatenate the three feature maps and utilize a squeeze-and-excitation (SE) block
to adjust the importance of each channel adaptively. The parameter of reduction in SE
block is set to 16 as [9].

2.3 Advanced Post-processing Module

In the detection and tracking task, the optimal prediction should not only consider the
classification possibility but also the intersection over union (IoU) and tracking off-
set with the ground-truth. Inspired by OneNet [10], we introduce an advanced post-
processing module to find the optimal result considering of all three aspects above
before calculating the loss, thus the model can be trained to acquire the best prediction
directly. Meanwhile, no NMSmethod is required in inference, and end-to-end strategy is
achieved. As shown in Fig. 2 (B), the advanced post-processingmodule takes predictions
from the backbone as input. Before calculating the loss, the selection function calculates
a score of each prediction, and only the one with smallest score is considered as the
correct prediction and the others are assumed as wrong predictions when computing the
loss. The selection function is defined as:

S = λcls ∗ Scls + λL1 ∗ SL1 + λgiou ∗ Sgiou + λtrack ∗ Strack (1)

where Scls is the focal loss [11] of predicted classifications and ground truth category
labels, SL1 and Sgiou are the L1 loss and the GIoU [12] loss between normalized pre-
dictions and ground truth boxes, respectively. Strack is the L1 loss between predicted
tracking offsets and the real displacement of tracked objects. λcls, λL1, λgiou, and λtrack
are coefficients of each component. Following [8, 10], λcls, λL1, λgiou and λtrack are set
to 2, 5, 2 and 2, separately.

When calculating detection and tracking loss, eachground truth boxonly corresponds
to one predicted result. The loss function is similar to the selection function, and defined
as:

Ldt = μcls ∗ Lcls + μL1 ∗ LL1 + μgiou ∗ Lgiou + μtrack ∗ Ltrack (2)

where Lcls, LL1, Lgiou, and Ltrack have the same definition as Scls, SL1, Sgiou and Strack ,
separately. And the coefficients μcls, μL1, μgiou and μtrack are equal to λcls, λL1, λgiou,
and λtrack , separately.

2.4 Minibatch Self-supervised Learning Module

To reduce false positive rate, we embed a minibatch self-supervised learning module as
a branch in the training period to differentiate nodules from similar tissues. As shown in
Fig. 2 (C), the features of the positive (nodules) and negative (normal tissues) samples
are obtained in the down-sampling stage. Inspired by [13], a batch-based similarity loss
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function is proposed to make the Euclidean distance of positive features closer to the
most dissimilar positive features and further away from themost similar negative features
in a batch. Besides, a constant is set as threshold to ignore tissues that are dissimilar to
nodules in nature. The batch-based similarity loss function is defined as:

Lbs = 1

2
‖f (pi), Sp(pi)‖2 + 1

2
[max(0,margin − ‖f (pi), Sn(pi)‖)]2 (3)

where f () denotes the global average pooling. f (pi) is the feature vector of the i
th nodule

in a batch. Sp(x) and Sn(x) obtains the most dissimilar positive and the most similar
negative feature vector to the f (x) in a batch, separately. To be specific, Sp(pi) is a
positive feature vector whose Euclidean distance is the farthest to f (pi) in the batch and
Sn(pi) is a negative feature vector that has the nearest Euclidean distance to f (pi) in the
batch. ‖‖ represents the Euclidean distance. Margin sets the distance threshold between
f (pi) and Sn(pi). The loss function will ignore the samples whose Euclidean distance of
f (pi) and Sn(pi) is larger than the margin as it indicates that the positive sample and the
selected negative sample are not similar. Following [13] margin is set to 10.

Furthermore, we randomly produce false samples on images instead of usingmanual
annotation. For a training batch, if the portion of a nodule on an image is less than α, a
negative sample that is not intersected with the nodule will be randomly generated, with
the size of β times of the nodule. We set α = 0.3 because the ratio of false positives is
small and less than 1/3 of an image in our dataset, and β ∈ [0.9, 1.1] to maintain the
balance between positive and negative samples.

The total loss is summarized as:

L = Ldt + γ ∗ Lbs (4)

whereLdt is the detection and tracking loss andLbs denotes theminibatch self-supervised
learning loss. γ is a factor and set to 0.2, following [8, 14].

3 Experiments

Dataset. We validated the proposed method on 1555 thyroid ultrasound movies from
1555 patients collected via Mindray Resona 7. There are totally 13,314 frames that
extracted from the movies at a fixed (3, 4 or 5) interval. All the images were annotated
by five doctors firstly and the final annotations were reviewed by an experienced doctor.
We calculated the size of nodules (varied from 462 pixels to 232,672 pixels, mean:
29,979 pixels) and classified the movies into 3 categories according to the tri-sectional
quantile of size: small (<1503 pixels), middle (from 1503 pixels to 6923 pixels), and
large (>6923 pixels).We randomly split themovies into 80%, 10%, and 10% for training
(1244 movies, 10597 images), validation (155 movies, 1363 images) and testing (156
movies, 1354 images) following the stratified sampling.

Implementation Details. We cropped all data and only the ultrasound image contents
were remained. All images were resized to 544 × 640 according to the mean image
size of our data. Data augmentations were applied including random horizontal flipping,
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shifting, scaling, and brightness and contract transformation. Adam optimizer with a
learning rate of 5e−5 was utilized for training. We trained the network for 300 epochs
with batch size of 32 and chose the model with highest AP50 on validation set to do
testing. All experiments were performed on a 12 GB NVIDIA TITAN V GPU.

Quantitative and Qualitative Analysis. Wemeasured the FPR (numbers of false posi-
tives divided by numbers of images), recall and precision (Prec) to evaluate the detection
performance, and recall in tracking (RCLL), mostly tracked (MT) and mostly lost (ML)
for tracking performance [15]. The IoU score is set to 0.3when calculating recall and pre-
cision. The novel CenterNet [16], Centertrack, and YoloSiam [17] were re-implemented
and evaluated on the same dataset for comparison. Results are shown in Table 1. Our
method outperforms all these algorithms not only in above metrics but also in inference
speed.

As shown in Fig. 3, ourmethodworkswell even if the nodule has an undefinedmargin
or is very tiny that less experienced doctors might neglect. Moreover, our method can
continuously track on the nodules appear through the whole films. Additionally, our
method also works well on multi-target.

Table 1. Performance comparison on the thyroid dataset (%).

Method FPR Recall Prec AP AP50 RCLL↑ MT↑ ML↓ Speed

CenterNet 16.1 79.5 83.7 45.2 74.8 NA NA NA 28 fps

YoloSiam 21.6 76.3 78.2 41.7 70.5 66.8 61.0 25.0 16 fps

CenterTrack 13.5 82.1 85.3 48.1 77.4 76.6 65.4 16.0 28 fps

Ours 3.8 91.2 95.8 56.8 88.2 86.4 76.9 5.8 30 fps

Ablation Study. An ablation study is conducted on pretrained ResDCN-18 to compare
our approach with a representative baseline method. The quantitative results are shown
in Table 2. The improvement of the fusion module (F) obtains a better FPR (12.9%) and
recall (83.3%) with the same backbone compare to baseline. After using the advanced
post-processing module (AP), the FPR is reduced to 8.4% and recall is 2.1% higher
than before. The further improvements of FPR from 8.4% to 3.8% and recall from
85.4% to 91.2% indicate the minibatch self-supervised learning module (MSL) has
strengthened the ability of distinguishing nodules from similar tissues. We experiment
on another backbone (DLA-34) to validate the effectiveness of the proposal. The results
also demonstrate the advantage of our method (Table 3).

We calculate the mean channel weight of each input given by the SE block in fusion
module. The current frame carries the highest weight of 0.52, the previous frame holds
the middle (0.49), and the previous heatmap scores the smallest one at 0.46, which
validates our hypothesis.Moreover, the first two columns in Fig. 4 illustrate the proposed
method can effectively solve the problem of nested predictions that common scheme
cannot handle. The last three columns in Fig. 4 present cases that the baseline detects



60 T. Liu et al.

Fig. 3. Detection and tracking results. The first column is an example frame, and the following
three columns refer to the second, the forth, and the sixth frame after it.

Table 2. Results of ablation studies based on pretrained ResDCN-18 (%).

Method FPR Recall Prec AP AP50 RCLL↑ MT↑ ML↓
Baseline 13.5 82.1 85.3 48.1 77.4 76.6 65.4 16.0

+F 12.9 83.3 85.8 48.3 78.2 78.2 67.9 14.7

+F+AP 8.4 85.4 90.5 51.0 82.5 80.9 71.2 10.3

+F+AP+MSL 3.8 91.2 95.8 56.8 88.2 86.4 76.9 5.8

Table 3. Results of ablation studies based on DLA-34 (%).

Method FPR Recall Prec AP AP50 RCLL↑ MT↑ ML↓
Baseline 14.1 81.3 85.1 46.6 75.7 76.1 63.5 17.9

+F 12.6 82.7 86.0 48.3 78.0 77.8 67.3 15.4

+F+AP 9.8 84.9 88.9 50.7 81.2 79.8 69.2 11.5

+F+AP+MSL 4.9 88.5 94.6 55.2 87.5 83.8 72.4 7.7

normal tissues as nodules but ours not, which demonstrates ourmethods can differentiate
nodules from the similar tissues better. Meanwhile, Fig. 5 compares the proportion of
false positives in testing set, which can show the improvement of our method in FPR
clearly.
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Fig. 4. Results comparison of baseline and ours.

Fig. 5. False positive comparison.

4 Conclusion

To conclude, we propose an efficient tracker to detect and track nodules simultaneously
during thyroid ultrasound screening. The attention based fusion block adaptively com-
bines features of the previous and current frames, thus better detection and tracking result
is acquired. Moreover, the advanced post-processing mechanism that trains the model
instead of using NMS method to select the optimal prediction successfully boosts the
detection accuracy. Additionally, the minibatch self-supervised learning module effec-
tively reduces the FPR by enhancing the ability of distinguishing nodules from similar
tissues. The result of fast speed, high accuracy, and low FPR obtained from experiments
on a challenging and representative dataset reveals a great potential of our system in
clinic.
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Abstract. Echocardiography is an essential diagnostic method to assess
cardiac functions. However, manually labelling the left ventricle region
on echocardiography images is time-consuming and subject to observer
bias. Therefore, it is vital to develop a high-performance and efficient
automatic assessment tool. Inspired by the success of the transformer
structure in vision tasks, we develop a lightweight model named ‘Trans-
Bridge’ for segmentation tasks. This hybrid framework combines a con-
volutional neural network (CNN) encoder-decoder structure and a trans-
former structure. The transformer layers bridge the CNN encoder and
decoder to fuse the multi-level features extracted by the CNN encoder, to
build global and inter-level dependencies. A new patch embedding layer
has been implemented using the dense patch division method and shuf-
fled group convolution to reduce the excessive parameter number in the
embedding layer and the size of the token sequence. The model is evalu-
ated on the EchoNet-Dynamic dataset for the left ventricle segmentation
task. The experimental results show that the total number of parame-
ters is reduced by 78.7% compared to CoTr [22] and the Dice coefficient
reaches 91.4%, proving the structure’s effectiveness.

Keywords: Echocardiography · Left ventricle segmentation ·
Lightweight transformer model · Parameter efficiency

1 Introduction

Cardiovascular disease has one of the highest mortality and morbidity rates
worldwide. Echocardiography imaging is essential for evaluating cardiac func-
tions in clinical practice, such as left ventricular ejection fraction [16]. The left
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ventricular ejection fraction assessment is usually performed by comparing the
left ventricular volume at end-systolic and end-diastolic frames. Manual anno-
tation of the left ventricular region is a time-consuming and human-dependent
step, resulting in high inter-observer variance and limited precision [8,11]. Hence,
it is vital to develop an automatic segmentation algorithm of the left ventricle
in echocardiographic images. Some machine learning methods have been pro-
posed, such as Structured Random Forest [9] and dynamic appearance model
[7]. However, they are either based on hand-crafted features or not sufficiently
robust. Recent research interest moves to the deep learning methods that will
avoid hand-crafted features and are robust enough. Several models using distinct
network structures have shown promising performance [10,12,17], while [12] pro-
vides a comprehensive review of the recent methods. One of the limitations of
these methods is the large model size that is not efficient to use.

Related Works. The development of deep learning methods and approaches
[2,3,14,15,19] has led to improvements in biomedical image segmentation tasks.
For example, U-Net [19] uses encoder-decoder architecture with the skip-
connection to extract features from multiple scales and recover them to the
original scale. It has been shown that the U-Net reaches good accuracy on left
ventricle segmentation [10]. The residual connection in ResNet [5] improves the
accuracy of the CNN by constructing a clean identity mapping path to ease
optimization [6], and ResUNet [21] employs this technique in the U-Net struc-
ture. DeepLabV3 [2] uses dilated convolutions to increase the receptive field so
that the model can catch dependency at a longer distance. It has been shown
that DeepLabV3 can reach a remarkable performance on the left ventricle seg-
mentation task [17]. In a recent study, the transformer model is introduced to
break through the limitation of locality from convolution operators to build the
global dependency. The Vision Transformer [4] is a pure Transformer model
in image recognition tasks with state-of-the-art performance. The transformer
model combined with CNN structure has also shown great potential in the image
segmentation task [1,22,24]. However, the drawback of introducing transformer
structures is the significant increase in the number of parameters. Therefore, it
is necessary to design a lightweight transformer model to utilize its high per-
formance on vision tasks. For example, works on reducing parameter number
in CNNs and transformers by applying shuffle algorithm have been proposed in
[13,23]. The Sandwich parameter sharing the transformer encoder structure has
also been discussed [18]. Therefore, building an efficient and training-friendly
model should also be a crucial criterion of the deep learning model.

Our Contributions. In our works, the patch embedding before the Trans-
former structures are re-designed using the shuffling layer and group convolu-
tions to reduce the excessive parameter number and token numbers. Sandwich
parameter sharing was used to minimize the transformer parameters [18]. We
propose the TransBridge, a lightweight hybrid model using the transformer and
the CNN structure for left ventricle segmentation in echocardiography.
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Fig. 1. TransBridge: Downsampling block in CNN Encoder and upsampling block in
CNN decoder. The transformer bridges the CNN encoder and decoder to model inter-
feature level dependency. The Sandwich parameter sharing mechanism allows param-
eters shared in all the middle layers except for the beginning and the end.

2 Methods

CNN Encoder. The CNN encoder is used to extract features efficiently to
obtain high abstract level features, saving time for the transformer encoder
to focus its attention on low-level features. The CNN encoder adopts the U-
Net encoder structure that cascades convolution layers and downsamples the
resulting features between each block [19], shown in Fig. 1. The downsampling
layer comprises a max-pooling operation to downsample the feature map size
and a residual double convolution block. The residual block contains two BN-
ReLU-Conv layers and a 1 × 1 Conv for identity mapping. In addition, the
Pre-activation residual block can result in easier training [6]. Assuming the
input image is of size of (H,W ), the extracted feature maps can be expressed
as {x}l ∈ R

(C×l)× H
l ×W

l , 1 ≤ l ≤ L. Considering the efficiency of the model, the
feature maps from the first CNN encoder layer are not used for the transformer
encoder layer but directly skip-connect to the CNN decoder layer at the same
level to retain the low-level features and reduce the cost of attention.

Patch Division. In the transformer-based vision task, such as ViT [4] and SeTr
[24], the input of the transformer encoder layers is embedded patch sequence.
In the embedding layer, shown in Fig. 2(a), the input image x ∈ R

C×H×W is
equally divided into patches. Every patch is flattened to a 1-dimensional vector
so that the patch sequence becomes p ∈ R

N×D0 , where the number of patches is
represented as N = H

P × W
P and the vector size is represented as D0 = C×P ×P .

In order to embed the multi-channel feature maps, channels are split into
several groups and treated independently. The patch is divided with a fixed
size of (P, P ), and D channels in each group are attributed to the patch, as
shown in Fig. 2(b). Therefore, the sequence of a patch of feature maps is in the
form of a sequence of dense patches p ∈ R

C
D ×H

P ×W
P ×D×P×P . After flattening



66 K. Deng et al.

×

3

... ×

(a) Patch division for RGB image
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(b) Patch division for multi-channel
feature maps

Fig. 2. Patch division: The division method in TransBridge is designed for multi-
channel feature maps as in Fig. 2(b). The total C channels are divided into several
D channel groups. Then, channels in each group are treated independently. Finally,
those D-channeled patches are flattened into vectors and concatenated.

the dense patches to vector, the feature map x ∈ R
C×H×W is transformed into

a dense flattened patch sequence of zd ∈ R
M×Dd , where the vector length is

Dd = D×P×P , and the total number is M = C
D × H

P × W
P . As feature maps from

the different levels have different channel sizes and spatial dimension, the number
of token M is different in each level. However, the input size of the patch Dd is
the same among all sequence so that the token sequence is {zd}l ∈ RMl×Ddand
the l denotes the level of features.

Length Shortening. The length of the token sequence is shortened before
patch embedding. The token length is crucial because the complexity of the
transformer encoder layer is sensitive to the sequence length. In this design, a
shuffling layer and 1 × 1 group convolution are applied to shorten the length.
First, in the shuffling layer, as shown in Fig. 3, all the four token sequences are
divided into G groups individually through the channel dimension and all divided
sequences from different feature levels are shuffled according to the group number
to rearrange the group division so that each new group contains an element from
each level. Next, sequences are concatenated through the channel dimension and
conduct a 1 × 1 convolution in a group of G to compress the channel number
to N to shorten the total sequence length.

Transformer Encoder. Before feeding into the transformer encoder, patch and
positional embedding are required to pre-process the patch sequence. A trainable
linear layer projects the token vector from its length Dd to the hidden size Dh

of the transformer encoder to obtain the patch embedding as shown in Eq.(1).
Next, a trainable positional embedding layer is added to the patch embedding to
retain the spatial information that the transformer encoder layer cannot model.

z0 =
[
z1hE; z2hE; . . . ; zNh E

]
+ Epos, E ∈ RDd×Dh , Epos ∈ RN×Dh (1)
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Conv

Cat

Fig. 3. Shuffling layer and group convolution: tokens from different feature channels
are firstly split into groups and shuffled; A group convolution is applied to the grouped
tokens to shorten the token sequence length from M1 +M2 +M3 to N . All the tokens
are concatenated together at the final stage. For the demonstration purpose, the level
of features L is set to 3 and the group number G is 4.

Every single layer of the transformer encoder consists of Multihead Self-
Attention (MSA) blocks and Multi-Layer Perceptron (MLP) blocks, shown in
Eq. (2) and (3). A residual connection bypasses each block to form an identity
mapping and a layer normalization operator is inserted in the front of each block.
In addition, to increase the parameter efficiency, the parameter is shared in the
Sandwich mode [18], which shares the parameters of all L − 2 middle layers,
except the beginning and the ending layer in this L layer transformer encoder.

z′
l = MSA (LN (zl−1)) + zl−1 (2)

zl = MLP
(
LN

(
z′
l−1

))
+ z′

l−1 (3)

The token sequence will be expanded and rearranged by reversing the length
compression and patch division back to feature maps with the original dimension.
During the rearranging, the shuffling process is not applied because the channel
dimension has already been mixed.

CNN Decoder. The CNN decoder absorbs feature maps from the transformer
encoder and recovers them to the original size. For example, in the upsampling
block, the feature maps from the previous decoder layer use 1 × 1 convolutions to
match the channel numbers to half of the desired input channel number. Then
its height and width are doubled by bilinear interpolation. Next, the resulted
planes are concatenated with the feature maps from the transformer encoders to
feed into a residual block to refine the feature maps. Finally, the output block
will fuse the resulted planes into a one-dimensional segmentation map to output
it as the final prediction.

3 Experiments

Dataset. EchoNet-Dynamic dataset is a large public dataset with apical four-
chamber two-dimensional echocardiographs [17]. For each video, an end-systole
and an end-diastole frame were selected for the analysis. Expert sonographers
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and cardiologists annotate the left ventricle region during the standard clinical
workflow. Among the 20,048 images, 14,920 images were used for training, 2,576
images for validating, and 2,552 images for testing. The end-systolic and end-
diastolic frame of the same subject were placed in the same group. All the images
were resized to 112 × 112 pixels and converted to grayscale. The training set
was shuffled in each epoch to avoid any specific class distribution in each batch.

Implementation Details. The proposed model was implemented with two
scales: Base (‘TransBridge-B’) and Large (‘TransBridge-L’). To better compare
with the TransBridge, the CoTr [22] was implemented with the original Vaswani
Transformer instead of the Deformable Transformer and built in the base scale.
The differences between the two scales of the TransBridge are CNN channel
number, transformer hidden size, and transformer MLP intermediate layer size,
shown in Table 1. The number of CNN feature levels fed to the Transformer, L, is
set to 4. The patch size was set to (7, 7), and the grouping factor G was set to 8
so that there were at least two groups in each feature level for the shuffling. The
transformer encoder layer has six layers and is split into four heads in the self-
attention layer. The parameter number of TransBridge-B has been reduced by
78.7% compared with the CoTr model. Meanwhile, the number of parameters
of the embedding layer has been reduced from 12.07M in CoTr to 0.17M in
TransBridge, which is 1.4% of the normal embedding layer. The UNet and the
ResUNet have also been implemented as references. The ResUNet has the CNN
structure but without the transformer encoder layer in TransBridge.

Table 1. The configurations of the evaluated models

Method Total Param Embedding Layer Param CNN Structure Transformer Structure

L1 Channel Number Hidden size MLP size

CoTr 16.39M 12.07M 16 256 256

TransBridge-B 3.49M 0.17M 16 256 256

TransBridge-L 11.3M 0.23M 32 392 512

UNet 7.25M - 32 - -

ResUNet 7.6M - 32 - -

The model was trained on an Nvidia Tesla P100 GPU with a batch size of
8. The running GPU memory of our model can be limited to approximately
2 GB. All the models were trained with an RMSprop optimizer with learning
rate of 1e−4, momentum of 0.9, and a weight decay of 1e−8 for 15 epochs.
Each epoch contains 20 steps, and each step has 93 iterations. The learning rate
dropped to 10% of its original value if there is no further improvement in 10
steps. Binary cross-entropy loss is used to train the model and the Dice loss is
used for validation.
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(a) Original image (b) CoTr (c) TransBridge-B (d) TransBridge-L

Fig. 4. Segmentation Results Visualization: The ground truth is labeled with a green
line, while the segmentation boundary from each model is in red. (Color figure online)

4 Results

Comparison Between Models. The performance of the TransBridge in two
scales is compared with other methods on the left ventricle segmentation task.
The segmentation are divided into two groups based on the heart contraction
stage, either end-systolic or end-diastolic. Dice coefficient and Hausdorff distance
are used to evaluate the segmentation quality.

Table 2. Comparing the segmentation results of: TransBridge-B (ours), TransBridge-L
(ours), CoTr [22] are trained on the dataset. In addition, the results of the UNet and
DeepLabV3 are cited from [10] and [17] respectively.

Method Hausdorff distance Dice (in %)

End-systolic End-diastolic Average End-systolic End-diastolic Average

Mean Std Mean Std Mean Std Mean Std

UNet [10] - - - - 7.3 - - - - 89.6

DeepLabV3 [17] - - - - - 90.3 - 92.7 - 91.5

UNet 6.506 5.977 6.017 4.405 6.262 82.50 0.078 87.63 0.054 85.07

ResUNet 4.175 5.403 3.725 5.403 3.950 91.17 0.048 93.51 0.034 92.34

CoTr 4.699 5.838 4.201 3.652 4.450 89.87 0.061 92.71 0.042 91.29

TransBridge-B 4.633 5.853 4.184 3.757 4.409 90.01 0.057 92.76 0.037 91.39

TransBridge-L 4.411 5.528 3.959 3.346 4.185 90.24 0.058 93.04 0.035 91.64

The testing results are shown in Table 2 and Fig. 4. Comparing the
TransBridge-B and TransBridge-L with CoTr, improvements are made on the
Dice coefficient (91.69% and 91.39% vs. 91.29%) and Hausdorff distance (4.185
and 4.409 vs. 4.450). In particular, TransBridge-B has only 21.3% parameters
of CoTr, so it is more lightweight and efficient. Meanwhile, UNet, ResUNet, and
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Table 3. Ablation test with each structure configuration

The first layer skip connection CNN-block Sandwich sharing Dice (in %)

No Conv No 90.7

No ResConv Yes 90.7

Yes Conv No 89.9

Yes ResConv No 90.2

Yes ResConv Yes 91.0

DeepLabV3 have also been compared with the TransBridge models. In previ-
ous work [10], the UNet is evaluated on a small dataset with 1000 images. When
training on this larger dataset, the large variance on features makes it difficult to
perform as well as in the smaller dataset, and the further increment on its width
cannot contribute to better accuracy. However, after introducing the Residual
block, the accuracy of ResUNet has improved compared to UNet, exceeding the
performance of DeepLabV3 and TransBridge. The reason for this might be that
for this specific dataset, the image size is relatively small and the LV geometry
is simple to segment, so there is no need for complicated models.

Ablation Test. In the ablation test, the model is trained until early converged,
and it takes no more than five epochs for the validation loss to converge with
tolerance less than 0.001. The results show that almost all the design changes
can improve the overall performance, shown in Table 3. Sandwich sharing can
make the most significant progress. Using the residual block instead of simple
convolutions cannot make sufficient progress but it can avoid gradient vanishing.
The skip connection of the first layer introduce low-level features, and its effect on
the overall performance might depend on the presence of the other two features.

5 Discussion

The proposed TransBridge shows excellent potential for the left ventricle seg-
mentation task. This lightweight design reduces the parameter by 78.7% while
achieving a Dice score of 91.4%. In addition, the group and shuffling embedding
can facilitate the information exchange in different feature levels and channels
with fewer parameters. However, compared to the pure CNN structure, the trans-
former is not easy to train and attain competitive performance. It is sensitive
to the dataset and hyperparameters, demanding extensive large-scale empiri-
cal trials to achieve the best performance [20]. Therefore, more sophisticated
hyper-parameter tuning could further enhance the performance of the model.

6 Conclusion

This paper has proposed TransBridge, an efficient lightweight model that com-
bines the CNN and transformer architecture for the LV segmentation task. The
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proposed shuffling layer and group convolution for patch embedding significantly
reduces the total number of parameters by 78.7% and efficiently utilizes the
transformer’s power to cooperate with CNN. The model has been evaluated on
the largest public echocardiography dataset, and the results confirm its effec-
tiveness. In the future, the proposed model can be used as a powerful tool to
support the management of cardiovascular diseases.
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Abstract. One of the most frequent tumors in the central nervous sys-
tem is glioma. The high-grade gliomas grow relatively fast and even-
tually lead to death. The tumor resection improves the survival rate.
However, an accurate image-guidance is necessary during the surgery.
The problem may be addressed by image registration. There are three
main challenges: (i) the registration must be performed in real-time, (ii)
the tumor resection results in missing data that strongly influence the
similarity measure, and (iii) the quality of ultrasonography images. In
this work, we propose a solution based on generative adversarial net-
works. The generator network calculates the affine transformation while
the discriminator network learns the similarity measure. The ground-
truth for the discriminator is defined by calculating the best possible
affine transformation between the anatomical landmarks. This approach
allows real-time registration during the inference and does not require
defining the similarity measure that takes into account the missing data.
The work is evaluated using the RESECT database. The dataset con-
sists of 17 US-US pairs acquired before, during, and after the surgery.
The target registration error is the main evaluation criteria. We show
that the proposed method achieves results comparable to the state-of-
the-art while registering the images in real-time. The proposed method
may be useful for the real-time intraoperative registration addressing the
brain shift correction.

Keywords: Image registration · Deep learning · GANs · RESECT ·
Ultrasonography · Glioma

1 Introduction

Glioma is one of the most frequently occurring tumors in the central nervous
system [1]. The high-grade gliomas grow relatively fast and eventually lead to
death. The tumor resection improves the survival rate [2–4]. An accurate image-
guidance is helpful during the surgery. The tissue deformations resulting from
the tumor removal, insertion of surgical instruments, or pressure changes need
to be addressed in real-time.
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A promising imaging technique for addressing tissue deformations is intra-
operative ultrasonography (US). Its flexibility, portability, and low cost make
it especially useful in clinical practice. Moreover, the tumors are easily distin-
guishable in the US images from other neighboring tissues. Therefore, it would
be beneficial to propose a real-time image registration method that aligns the
pre-operative US volumes to the intra- or post-operative ones.

Unfortunately, the problem is very challenging. There are two main diffi-
culties related to 3-D US-US registration: (i) the requirement of the real-time
registration, and (ii) the missing data due to the tumor resection, surgical instru-
ments insertion, varying position of the probe, and (iii) the quality of US images.
The registration should be ideally performed with a frequency equal to the frame
rate. This is usually impossible using the classical, iterative methods. The state-
of-the-art techniques with a GPU implementation achieve at most several Hz [5].
The missing data results in difficulties with defining the correct similarity mea-
sure. Even though similarity measures like correlation ratio or LC2 are quite
useful in aligning the US volumes [6,7], they fail when the region of interest is
being resected. The US images are strongly affected by the speckle noise, and the
contrast is significantly worse than in, e.g., magnetic resonance images or com-
puted tomography volumes. Therefore, the ideal image registration method for
intraoperative US volumes’ alignment should be fast, resistant to tissue resection
changes, and robust to the US’s properties.

There are numerous contributions to the registration of 3-D US-US vol-
umes [6]. Perhaps the most influential work is the affine registration based on
the block matching algorithm implemented on GPU [5]. The authors achieved
real-time processing. However, the method was evaluated using volumes with a
relatively similar field of view and without missing structures. The researchers
re-evaluated the method on the RESECT database replacing the original for-
mulation based on the affine transformation into the rigid transformation [8,9].
Another contribution proposed a feature-based algorithm [10]. The method con-
sists of automatic feature extraction and matching followed by a dense displace-
ment field interpolation. In [11] authors proposed a feature-based contribution
that involves the calculation of 3-D SIFT features followed by the dense displace-
ment field interpolation by thin-plate splines. Even though the affine registration
is perfectly justified, the following thin-plate splines interpolation is controver-
sial. Since the SIFT features are not extracted close to the tumor (there are
no mutual correspondences), the interpolation is undefined in these regions. It
may result in an incorrect registration from the medical point of view. Thus, an
additional evaluation is necessary for the nonrigid method. Another interesting
contribution is segmentation-based method [12]. The authors apply Euclidean
Distance Transform (EDT) to the segmented structures. Then, they match the
distance images using the normalized gradient fields as the similarity measure,
together with the curvature regularization. The method achieves the best results
on the RESECT database. However, it requires the segmentation mask that
needs to be defined before and during the surgery.
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The challenges related to the registration of US volumes may be addressed
by the novel deep learning (DL) algorithms, more specifically, the generative
adversarial networks (GANs) [13,14]. The DL-based image registration meth-
ods are usually much faster than the classical, iterative algorithms [15,16]. The
computational complexity is transferred to the training phase that is performed
on servers dedicated to parallel computations. Then, during the inference, the
registration may be performed in real-time. On the other hand, GANs enable
the possibility to make the similarity measure learnable. The discriminator is
being trained to distinguish between correctly aligned and misaligned images.
As a result, the proper training may lead to learning only the features with
correspondence in both the images and ignoring the missing regions.

Contribution: The work presents an image registration method dedicated to
the intraoperative, affine US-US registration. We propose a GAN-based solution.
The generator is responsible for calculating the affine transformation while the
discriminator implicitly learns the similarity measure used to guide the generator
during training. The presented method does not need the predefined similarity
measure neither the segmentation masks. Moreover, the time required for the net-
work inference is low, thus enabling real-time registration. The proposed method
solves the most significant challenges related to the registration of intraoperative
US volumes.

2 Methods

2.1 Affine Registration

The proposed method consists of a generator responsible for calculating the affine
transformation and a discriminator that guides the generator during training.
The generator outputs directly the affine transformation (as a 2 × 3 matrix).
The architectures, together with the method overview, are shown in Fig. 1. The
input images were downsampled to a lower resolution (2×) to decrease the GPU
memory consumption.

The training is performed by repeating the following steps:

1. Forward through the discriminator the correctly aligned source/target pair,
calculate the objective function (O(M(x), F (x)) = −log(D(M(x), F (x))))
and update the discriminator weights.

2. Forward through the generator the misaligned source/target pair, transform
the source, pass the transformed source/target pair to the discriminator,
calculate the objective function (O(M(x), F (x), u(x)) = −log(1 − D((M ◦
u)(x), F (x)))) and update the discriminator weights.

3. Forward through the generator the misaligned source/target pair, trans-
form the source, pass the transformed source/target pair to the discrimina-
tor, calculate the objective function (O(M(x), F (x), u(x)) = −log(D((M ◦
u)(x), F (x)))) and update the generator weights.
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Fig. 1. Visualization of the training scheme and the generator/discriminator networks.

The M(x), F (x) denote the moving and fixed image respectively, u(x) is
the sampling grid defined by the calculated affine transform, D(·, ·) denotes the
output from the discriminator, ◦ is the composition.

The positive cases are defined as image pairs aligned with the best possible
affine transformation (offline, prior to the network training). The transforma-
tions are calculated by minimizing the mean Euclidean distance between the
anatomical landmarks.

The training requires several tricks to improve the convergence. Without
them, the discriminator automatically overfits the training data, and the gen-
erator is unable to learn how to calculate correct transformations. They are as
follows:

1. Strongly augment the training data by random affine transformations. Both
the positive and negative pairs should be randomly augmented. Without the
augmentation, the discriminator instantly overfits.
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2. Apply the Gaussian filtering before the registration and warp the images
using the same trilinear interpolation. This prevents the discriminator from
learning the patterns in the speckle noise or the interpolation artifacts.

3. Pre-train the generator and discriminator using another, larger dataset. The
networks were pretrained using resampled and randomly transformed dataset
for the registration of abdominal organs [17,18].

4. Schedule the discriminator and generator epochs separately. In contrast to
the GANs used for the image synthesis, the GANs for the image registration
require a larger number of epochs for the generator than for the discriminator,
especially with a small training set.

5. The positive and negative loss should get similar values within a few initial
epochs. Otherwise, the discriminator is overfitted, and a fresh start is required.

2.2 Dataset and Experimental Setup

The dataset consists of 17 US-US cases from the RESECT database [8]. The
images were acquired: (i) before the surgery, (ii) during the surgery, and (iii)
after the surgery. Two experienced medical experts annotated the ground-truth
anatomical landmarks used for the evaluation. The mean difference between the
two annotators is equal to 0.27 mm. The pre- to post- resection pairs contain 10–
17 landmarks, while the pre- to during-resection pairs have 16–34 landmarks. The
initial TRE for each case is presented in Table 1 and the distribution is shown
in Fig. 2. The dataset is openly available. Its full description is available in the
RESECT article [8].

The dataset was divided into six-folds. In each fold, 2–3 pairs were con-
sidered the test cases and were not used during training. The remaining pairs
were considered as training pairs. One pair within the training set was used
as a validation pair to monitor discriminator convergence. We accumulated the
results from the six folds by calculating the transformation for the test cases. All
the experiments shared the same learning rate (0.0002). The number of epochs
was different for each fold since we performed training manually to ensure con-
vergence. The before-during pairs were trained separately from the before-after
pairs.

3 Results

The target registration error (TRE) is the main evaluation criteria. It is defined
as the Euclidean distance between the landmarks annotated in the moving image
and the transformed landmarks from the fixed image. The cumulative histograms
presenting the TRE before, after, and for the ideal affine registration are shown
in Fig. 2. Table 1 presents the quantitative results for each case. It also contains
the results reported by other methods. An exemplary visual assessment of the
registration is shown in Fig. 3. The average registration time, defined as the time
required to calculate the affine transformation during the inference, is equal to
42 ms (using RTX 2080 Ti).
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Table 1. Table presenting the TRE compared to other methods evaluated on the
RESECT dataset. The method based on block-matching algorithm [9] did not report
the ranges. The table presents the registration results for the registration of images
acquired before and after the surgery. The results for images acquired before and during
the surgery are omitted because other researchers do not report them. Please note
that the block-matching method [9] reports the results in different format than other
contributions. Ground-Truth defines the best possible affine transformation.

Case Initial Ground-Truth Proposed (GAN) Block-Matching [9]

1 5.80 (3.62–7.22) 0.97 (0.24–2.52) 1.22 (0.36–2.55) 1.34

2 3.65 (1.71–6.72) 1.30 (0.21–2.33) 1.71 (0.69–3.08) 4.63

3 2.91 (1.53–4.30) 0.68 (0.23–1.39) 0.95 (0.52–1.65) 1.34

4 2.22 (1.25–2.94) 0.56 (0.25–1.07) 1.18 (0.66–1.93) 0.91

6 2.12 (0.75–3.82) 1.31 (0.56–2.59) 1.48 (0.58–2.58) 3.07

7 3.62 (1.19–5.93) 1.45 (0.41–3.45) 2.31 (0.61–3.31) 2.61

12 3.97 (2.58–6.35) 1.06 (0.51–2.93) 1.69 (0.85–2.60) 1.65

14 0.63 (0.17–1.76) 0.44 (0.17–0.76) 1.34 (0.21–2.38) 0.60

15 1.63 (0.62–2.69) 0.71 (0.26–1.73) 1.37 (0.46–2.61) 0.90

16 3.13 (0.82–5.41) 1.07 (0.30–2.19) 1.43 (0.78–2.63) 3.12

17 5.71 (4.25–8.03) 0.95 (0.30–2.17) 2.18 (0.84–3.84) 1.83

18 5.29 (2.94–9.26) 1.18 (0.57–2.19) 1.60 (0.53–2.58) 2.29

19 2.05 (0.43–3.24) 0.88 (0.23–2.48) 1.82 (0.42–2.86) 1.81

21 3.35 (2.34–5.64) 0.82 (0.35–1.52) 1.10 (0.44–1.55) 1.87

24 2.61 (1.96–3.41) 0.65 (0.14–1.56) 0.91 (0.32–2.03) 1.06

25 7.61 (6.40–10.25) 0.88 (0.38–1.55) 2.56 (1.91–3.38) 2.84

27 3.98 (3.09–4.82) 0.46 (0.13–0.61) 1.07 (0.41–1.85) 0.71

Mean 3.55 (2.10–5.40) 0.91 (0.31–1.94) 1.51 (0.62–2.55) 1.92 ± 1.04

Case EDT [12] SIFT (Affine) [10] SIFT (Nonrigid) [10]

1 1.05 (0.28–2.48) 1.64 (0.14–3.71) 1.48 (0.17–3.51)

2 2.32 (0.42–4.16) 2.63 (0.85–5.14) 2.62 (0.62–4.89)

3 1.39 (0.55–2.24) 1.19 (0.64–2.50) 1.04 (0.62–1.52)

4 0.81 (0.25–1.80) 0.92 (0.22–1.50) 0.83 (0.27–1.53)

6 1.62 (0.39–4.65) 1.97 (0.51–3.73) 1.55 (0.67–2.88)

7 1.25 (0.25–3.15) 2.59 (0.84–5.11) 2.38 (0.45–4.33)

12 0.87 (0.20–1.82) 1.21 (0.24–3.78) 1.20 (0.44–3.09)

14 0.62 (0.32–1.10) 0.53 (0.08–1.21) 0.53 (0.18–1.18)

15 0.80 (0.27–1.81) 0.79 (0.26–2.42) 0.74 (0.29–2.31)

16 1.26 (0.22–3.91) 1.97 (0.48–4.25) 1.94 (0.20–3.84)

17 1.51 (0.47–5.59) 1.97 (0.94–4.72) 1.99 (0.21–4.51)

18 1.53 (0.30–3.61) 1.71 (0.71–3.36) 1.69 (0.58–3.03)

19 1.60 (0.39–3.45) 2.46 (0.67–5.19) 2.78 (0.65–5.04)

21 1.82 (0.25–5.12) 1.23 (0.49–3.57) 1.07 (0.56–3.20)

24 0.90 (0.24–2.33) 1.32 (0.44–2.63) 1.35 (0.35–2.24)

25 1.00 (0.30–2.44) 1.51 (0.35–3.87) 1.24 (0.21–3.57)

27 1.24 (0.35–2.74) 0.48 (0.05–0.96) 0.83 (0.20–0.93)

Mean 1.27 ± 0.44 1.54 (0.47–3.39) 1.49 (0.39–3.04)
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Fig. 2. The cumulative histogram presenting the TRE before and after the registration.
The histogram presents also the results for the best possible affine transformation
(denoted as “Ground-Truth”).

Fig. 3. An exemplary visualization of the images before (left) and after (right) the
affine registration (Case 27). The target image is shown in green, the source image is
presented in magenta. (Color figure online)

4 Discussion and Conclusion

The proposed method is robust and decreases the TRE for most cases within the
RESECT database. The results are comparable to the block-matching algorithm,
yet slightly worse compared to the nonrigid methods. This could be expected
since the method calculates just the affine transformation. Interestingly, the
method achieves better results in several cases than the nonrigid methods. On
the other hand, for one case, the TRE even increases. The generator’s inference
time is relatively low and enables real-time US-US registration, up to 24 Hz. The
average processing time is not directly discussed in the related works, yet the
state-of-the-art GPU implementations hardly achieve 8 Hz [5].
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The method has a few limitations. Perhaps the most important one is con-
nected with the stability and difficulty of training. The training of GANs is
inherently unstable and, with such a small dataset, requires much manual inter-
action. The networks cannot be trained fully automatically since the discrimina-
tor would easily overfit the training data. As a result, one needs to control the
training convergence and epoch scheduling. However, this approach is still more
promising compared to supervised approach that with so small dataset instantly
overfits. The training set must be prepared with care. The positive cases should
contain the same interpolation artifacts and speckle noise characteristics as the
negative cases. Otherwise, the discriminator learns features not related to the
alignment quality.

The further research will involve several topics: (i) improving the training
stability, (ii) enabling the use of GANs for the nonrigid US-US registration,
(iii) addressing the problem of domain adaptation to make the network useful
for other datasets. One could improve the training stability by enlarging the
dataset. However, this is a huge task for physicians beyond the scope of this
work. Another solution may be connected with decoupling the training of the
discriminator and the generator. Perhaps training the discriminator to minimize
the loss with respect to the TRE directly would be a good approach. However,
it also requires a substantially larger dataset. The nonrigid registration using
GANs is more challenging since it requires a perfectly aligned ground-truth that
is usually impossible to acquire. One could argue that the non-ideal ground-truth
could be created by, e.g., thin-plate splines interpolation using the annotated
landmarks. However, this approach has many disadvantages and requires another
evaluation scheme to confirm its medical credibility. Finally, domain adaptation
is essential to transfer the proposed method to medical practice. Otherwise,
introducing new acquisition equipment may result in an incorrect registration.
This is important since even the model trained on the volumes acquired during
the surgery cannot be applied to register the volumes acquired after the surgery.

We think that the segmentation-based methods are also interesting. We plan
to verify the possibilities for automatic segmentation of the corresponding struc-
tures to make the method semi-supervised. This approach could result in higher
generalizability and more stable training.

To conclude, we propose an algorithm dedicated to the registration of intra-
operative US-US volumes. The proposed method does not require the similar-
ity measure to be defined, is resistant to the resection process, and calculates
the transformation in real-time. It may be useful for real-time accurate image-
guidance during the surgery.
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Abstract. In brain tumor resection, soft tissue shift (called brain shift)
can displace the surgical target and render the surgical plan invalid.
Intra-operative ultrasound (iUS) with robust image registration algo-
rithms can effectively correct brain shift to ensure quality of resection
and patient safety. Herein, we proposed a novel technique to automati-
cally align iUS scans acquired before and after tumor resection, in order
to confirm removal of cancerous tissues while minimizing resection of
healthy tissue. More specifically, we employed a Siamese network to
locate matching anatomical landmarks within iUS scans. Selected land-
marks were used to search for the best affine transformation to align
iUS obtained at different surgical stages. The proposed method was val-
idated with the publicly available REtroSpective Evaluation of Cerebral
Tumors (RESECT) database. After image alignment, the mean target
registration error (mTRE) was effectively reduced from 3.55± 1.76 mm
to 1.26± 0.48 mm in before and after resection and from 3.49± 1.56 mm
to 1.16± 0.49 mm in before and during resection. In general, the results
are comparable to the state-of-the-art techniques, validated on the same
database, and our technique demonstrated excellent performance in iUS-
based brain shift correction for optimal therapeutic outcomes.

1 Introduction

In brain tumor surgery, soft tissue deformation, or brain shift, can result from
many factors, such as gravity and drug administration, and can greatly affect the
quality and safety of the procedure. Intra-operative imaging is often used to track
brain shift and the surgical progress. In contrast to the high cost and special
setups required by intra-operative magnetic resonance imaging (iMRI), intra-
operative ultrasound (iUS) is a cost-effective and portable imaging modality that
has gained popularity in the clinic [1]. However, to help account for brain shift
to update pre-surgical plans [2] in commonly used surgical navigation system,
c© Springer Nature Switzerland AG 2021
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robust and efficient image registration algorithms are crucial. While so far most
of the previous works [3–5] focus on the alignment of pre-operative MRI and
iUS obtained before dura-opening, very few have attempted to correct additional
tissue deformation during the procedure, which is also important to ensure clean
removal of any residual tumour and thus increase the patient survival rate [6].
In this scenario, iUS-iUS registration is required, and poses unique challenges
from the more commonly seen MRI-iUS alignment. For example, in addition to
continuous tissue deformation introduced from gravity and tissues removal, the
procedure can also significantly alter image features and reduce image quality
in iUS by introducing air bubbles, debris, and blood clots in the surgical site,
rendering registration of pre- and post-resection iUS images more challenging.

To tackle the discrepancies of iUS at different surgical stages, an attractive
solution is based on matching anatomical landmarks that are consistent between
scans [7]. To date, a number of medical image registration algorithms based on
automatic landmark detection have been proposed. Lu et al. [8] and Urschler
et al. [9] used segmentation and corner detection for finding the global shape
information. Local keypoint selection and feature matching were done using
scale-invariant feature transform (SIFT). They applied their method on 2D US
images of kidney and thoracic 3D CT images respectively in the application of
feature-based non-rigid registration. Machado et al. [10] presented an optimal
global feature mapping in 3D iUS images in neurosurgery using 3D SIFT-Rank,
which showed a large improvement in the alignment. However, the fully auto-
matic aspect of their work can potentially make it sensitive to selection of voxels
in and around the tumor, which usually do not match the post-resection scan.

Application of deep learning in medical image registration has rapidly
increased during the past few years. Canalini et al. [11] proposed segmentation-
based registration of 3D iUS images in neurosurgery. They segmented hyper-
echogenic regions of the brain that keep their correspondence after resection
and excluded the resection cavity. An attractive alternative to this approach
is to exploit Siamese networks, which require substantially less training data
and have shown promising results in tracking tasks in the computer vision field
[12–14]. Gomariz et al. [15] took advantage of this strength to develop a Siamese
network for tracking 2D US images of the liver. Since landmark locations are
not expected to change drastically between frames, they utilized a temporal
consistency model to weight the similarity map around the previous landmark
location.

In this article, we proposed a novel technique based on Siamese networks
for landmark tracking in the 3D iUS images. This network was chosen for two
main reasons. First, it is an end-to-end learning technique. Second, it works
on new domains not seen by the network in the training stage as the network
extracts general features from the inputs that are necessary for comparison [16].
To allow interactivity and flexibility, in our method, template landmarks are first
manually selected by clinicians in pre-resection images. Then, with the Siamese
network, matching landmarks can be quickly identified after resection starts to
continuously track brain shift. Our main contributions are listed below:
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1. Using a Siamese network in the application of landmark tracking for iUS-
based brain shift correction at different surgical stages (during and after
resection).

2. Demonstrating the adaptation of the Siamese network from natural images to
US volumes without re-training. This suggests its high adaptability to scans
from different machines, imaging settings, and anatomies.

3. Employing a 2.5D search scheme for efficient and robust 3D landmark
tracking.

4. Fast registration with an iterative re-weighted least squares (IRLS) algo-
rithms to ensure robustness, rendering the method an attractive choice in
neurosurgery.

2 Methods

To automatically match clinician-defined reference landmarks from pre-resection
iUS scans in those after resection starts, we are inspired by object tracking in
videos with Siamese neural networks [14], where high-dimensional image fea-
tures are represented robustly in more efficient form with convolutional neural
networks (CNNs). With the automatically identified matching landmark pairs,
an affine image alignment is then estimated. Here, we denote the pre-, during-
and post-resection US images as iUSpre, iUSduring and iUSpost, respectively.

2.1 Siamese Network

An overview of our fully convolutional Siamese network is shown in Fig. 1. In
essence, the network finds an embedding function Φ to extract a representative
feature map of the input image. The embedded images then would be passed
through a cross-correlation layer as a similarity function, to find the location
of the template image inside the search image. It has been shown that this
implementation is fully-convolutional based on the search image. That means
translation is commutative as shown below.

Φ (Lτx) = LτΦ(x) (1)

where L is the translation function with translation τ and x is the search image.
The fully-convolutional nature of the network enables us to use a large search
image. The search image is divided into sub-windows. These sub-windows are
passed through the network. Similarity of the embedded template image and
all the translated sub-windows of search image would be evaluated in the cross-
correlation layer at once. In our method, we used the positions of the pre-selected
landmarks in iUSpre to find their correspondences in iUSduring and iUSpost.
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2.2 Training

The network was trained on the ILSVRC17 dataset [18] for video object tracking
purposes [19], and no network fine-tuning was performed for our ultrasound
application. Stochastic gradient decent (SGD) with binary cross-entropy loss
was used, and the learning rate was set to 0.01 with a batch size of 8. The
template image size is 127 × 127 and the search image size is 255 × 255. For
optimization, a binary ground truth (match vs. not a match) was generated by
considering a radius of 4 pixels around the center of the similarity map. If the
maximum similarity occurs within the radius, it indicates a match. Otherwise,
it is not.

Fig. 1. Siamese network. The convolutional stage of AlexNet [17] was chosen for feature
embedding thanks to its memory efficiency and good performance, and cross-correlation
is used as the similarity function. Here, the x-y plane is used for demonstration.

2.3 Preprocessing

We used the RESECT database [20] to demonstrate our technique. Voxel sizes
in the dataset differ among patients and even scans. As such, all US images
were resampled to the smallest isotropic resolution in the database, i.e., 0.14 ×
0.14 × 0.14mm3. In iUSpre, pre-identified anatomical landmarks will be used as
references to find the corresponding ones in iUSduring or iUSpost. In the case of
iUSpre to iUSpost registration, iUSpre and iUSpost will serve as the template and
search images, respectively, and the images were cropped around the location of
the reference landmark according to the requirement of the network. Finally, all
image intensity ranges were normalized to [0, 1].
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2.4 The 2.5D Approach

The network we used in this paper obtains 2D images as inputs. However, our
goal is to find landmarks in 3D US images. Similar to the approach of Heinrich
et al. [21], we performed landmark matching in three orthogonal directions, or
2.5D. In each direction, a region of interest (ROI) around a reference landmark
in iUSpre and a larger one in iUSpost/iUSduring were selected as template and
search image respectively. To enable 3D search, the ROI in iUSpost/iUSduring

was swept forward and backward in that direction with a stride of 2, so the
search images have one slice overlap.

The location of the maximum correlation in the similarity map was consid-
ered as the desired result. Since we had three searching directions by using the
2.5D approach, at the end, we have 3 predictions for each landmark’s location
in iUSpost or iUSduring. A final decision was made base on them. If at least two
of these three predicted landmarks were located near each other (<2 mm), the
average of them would be considered as the result. Otherwise, the results were
treated as incorrect and were discarded.

2.5 Affine Transformation

Affine transformation has been utilized for tissue shift correction in brain tumour
resection thanks to its ability to robustly improve global misalignment. Further-
more, it is simpler and faster in comparison to more complex deformation models,
such as free-form B-splines [5]. To estimate a 12-parameter 3D affine transforma-
tion, at least 4 pairs of landmarks are required to solve a linear system. Our land-
mark selection method usually provides at least 5 landmarks (Tables 1 and 2),
resulting in an over-determined linear system that can be solved.

In order to obtain the optimal 3D affine transformation while overcoming the
potential influence of outlier landmarks, we employed the iterative re-weighted
least square (IRLS) method [22]. Here, the Cauchy function (Eq. 2) has been
chosen as the weighing function in the IRLS algorithm, where small weights were
assigned to the outliers in the linear equation [23] to mitigate their impacts. In
Eq. 2, ri is the residual after an iteration and R = 1 was selected manually.

w (ri) =
1

1 + (ri/R)2
(2)
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Table 1. mTREs of our method and two comparison methods [10,11] for iUSpre vs.
iUSpost registration. Initial mTRE before registration and minimum achievable mTRE
(with affine transformations) were calculated from the ground truth landmarks. Note
that nonlinear registration results can be lower than min achievable mTREs.

Patient

ID

No. total

landmarks

No. selected

landmarks

Initial mTRE

(mm)

After Siamese

based affine

(mm)

Canalini

et al. (mm)

Machado

et al. (mm)

Affine

Minimum

achievable

mTRE (mm)

1 13 10 5.80 (3.62–7.22) 1.32 (0.47–4.06) 1.03 1.48 0.97

2 10 5 3.65 (1.71–6.72) 2.47 (0.45–4.35) 3.90 2.62 1.57

3 11 6 2.91 (1.53–4.30) 1.05 (0.28–1.79) 1.15 1.04 0.67

4 12 9 2.22 (1.25–2.94) 0.81 (0.21–1.43) 0.61 0.83 0.55

6 11 6 2.12 (0.75–3.82) 1.66 (0.29–3.72) 1.41 1.55 1.20

7 18 15 3.62 (1.19–5.93) 1.73 (0.41–4.39) 2.03 2.38 1.50

12 11 9 3.97 (2.58–6.35) 1.36 (0.25–3.42) 0.79 1.20 0.98

14 17 17 0.63 (0.17–1.76) 0.53 (0.28–0.90) 0.46 0.53 0.45

15 15 15 1.63 (0.62–2.69) 0.72 (0.25–1.84) 0.58 0.74 0.70

16 17 13 3.13 (0.82–5.41) 1.19 (0.42–2.92) 0.92 1.94 1.08

17 11 9 5.71 (4.25–8.03) 1.40 (0.49–4.20) 1.10 1.99 0.96

18 13 6 5.29 (2.94–9.26) 1.29 (0.45–2.90) 1.13 1.69 1.14

19 13 11 2.05 (0.43–3.24) 1.23 (0.32–5.28) 1.10 2.78 0.86

21 9 7 3.35 (2.34–5.64) 1.77 (0.76–3.71) 1.80 1.07 0.76

24 14 11 2.61 (1.96–3.41) 1.02 (0.35–2.54) 0.87 1.35 0.62

25 12 11 7.61 (6.40–10.25) 1.20 (0.29–2.42) 1.21 1.24 0.91

27 12 11 3.98 (3.09–4.82) 0.63 (0.20–1.06) 0.53 0.83 0.47

Mean 13 10 3.55 1.26 1.21 1.49 0.90

Std 1.76 0.48 0.81 0.67 0.33

2.6 Experimental Setup

We validated our registration method using 17 clinical cases that have pre-,
during- and post-resection iUS images in the RESECT public database [20],
where matching ground truth landmark pairs have been provided by experts.
Quantitative evaluation for our algorithm was performed using mean target reg-
istration errors (mTREs) before and after registration using the ground truth
landmark pairs. The metric is shown in Eq. 3.

mTRE =
1
N

N∑

i=1

‖T (xi) − x′
i‖ , (3)

where xi and x′
i are the landmark pairs in the corresponding iUS scans, T is the

affine transformation estimated with the proposed method, and N is the total
number of landmarks. Here, we used the full set of landmark pairs from the
original database to compute mTRE. The accuracy of our method was compared
against two recent nonlinear techniques [10,11] that were validated on the same
database. Statistical tests were done to confirm the performance of our method.
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Fig. 2. Visual comparison between image pairs before and after registration with our
proposed method. Cyan color = iUSpost and iUSduring and orange color = iUSpre.
The arrows mark the sulci regions of improved alignment.

3 Results

Tables 1 and 2 show the quantitative evaluation of mTREs, with the num-
ber of landmarks selected by our method to obtain the affine transformations.
On average, the tested cases in the RESECT database have 13 and 21 land-
marks per patient in iUSpre − iUSpost and iUSpre − iUSduring cases, respec-
tively. With automatic landmark selection using the Siamese network, we can
obtain an average of 10 and 18 landmarks per patient, respectively. With our
registration method, the initial misalignment of 3.55± 1.76 mm was reduced to
1.26 ± 0.48 mm between before and after resection, and from 3.49 ± 1.56 mm to
1.16 ± 0.49 mm between before and during the resection. Furthermore, the com-
parison between our method and those by Machado et al. [10] and Canalini et al.
[11] are shown in Tables 1 and 2. Overall, our proposed approach showed very
similar performance to that of Canalini et al. [24] and on average outperformed
the method of Machado et al. [10] in iUSpre vs. iUSpost registration. In addi-
tion, our results are also better in iUSpre vs. iUSduring registration than Canalini
et al. [11] on average (Machado et al. [10] didn’t perform iUSpre vs. iUSduring

registration).
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Table 2. mTREs of our method and a comparison method [11] for iUSpre vs. iUSduring

registration. Initial mTRE before registration and minimum achievable mTRE (with
affine transformations) are calculated based on the ground truth landmarks provided.
Note that nonlinear registration results can be lower than min achievable mTREs.

Patient

ID

No. total

landmarks

No. selected

landmarks

Initial mTRE

(mm)

After Siamese

based affine

(mm)

Canalini

et al.

(mm)

Affine

Minimum

achievable

mTRE (mm)

1 34 33 2.32 (1.49–3.29) 0.88 (0.18–1.90) 0.64 0.83

2 16 11 3.10 (1.79–5.19) 1.43 (0.33–4.42) 1.50 1.21

3 17 17 1.93 (0.67–3.02) 0.79 (0.26–1.33) 0.77 0.70

4 19 17 4.00 (3.03–5.22) 0.89 (0.30–2.44) 0.80 0.74

6 21 17 5.19 (2.60–7.18) 1.77 (0.32–3.42) 5.17 1.47

7 22 19 4.69 (0.94–8.16) 2.46 (0.26–6.56) 1.98 1.82

12 24 23 3.39 (1.74–4.81) 1.12 (0.15–2.01) 0.84 1.04

14 22 22 0.71 (0.42–1.59) 0.50 (0.03–0.90) 0.41 0.47

15 21 21 2.04 (0.85–2.84) 0.68 (0.27–1.38) 0.60 0.58

16 19 10 3.19 (1.22–4.53) 1.51 (0.21–4.60) 1.26 1.10

17 17 11 6.32 (4.65–8.07) 1.54 (0.49–3.91) 1.49 0.97

18 23 16 5.06 (1.55–7.44) 1.33 (0.20–3.71) 1.18 1.10

19 21 20 2.06 (0.42–3.40) 1.03 (0.20–2.35) 0.96 0.90

21 18 14 5.10 (3.37–5.94) 1.25 (0.33–3.81) 1.11 0.97

24 21 19 1.76 (1.16–2.65) 0.78 (0.13–1.85) 0.67 0.64

25 20 19 3.60 (2.19–5.02) 0.72 (0.27–2.01) 0.55 0.65

27 16 16 4.93 (3.61–7.01) 0.96 (0.19–2.34) 0.87 0.57

Mean 20 18 3.49 1.16 1.22 0.93

Std 1.56 0.49 1.10 0.35

We performed Wilcoxon rank sum tests on the mTREs before and after reg-
istration with the proposed method, as well as on the same metric to compare
between our method and those two recent works [10,11]. The statistical tests
showed that the reduction in mTREs with our technique was statistically sig-
nificant (p < 0.001). In addition, in post-resection registration, our results are
comparable (p > 0.05) to those by Machado et al. and Canalini et al. [10,11] while
our average mTRE reduction is better than that of Machado et al. [10]. In during-
resection registration, our results were comparable to those of Cananili et al. [11]
(p = 0.19), with a better average mTRE. Furthermore, qualitative assessment
of our method is illustrated in Fig. 2, where pre-resection and during-/post-
resection images are overlaid in cases of before and after registration for two
patients. Note that anatomical features (e.g., sulci) are shown as hyperintense
edges in each image.

4 Discussion

In this paper, we used the 12-parameter affine transformation for brain shift
correction during tumour resection. Although nonlinear deformation models,
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such as B-splines, can more precisely adapt to local tissue deformation, the
computational complexity is much higher. In addition, robustness and reliability
in intra-operative registration algorithms can be more valuable in the clinic, and
thus affine transformation appears more advantageous, considering its mTRE
measures are comparable to the non-linear counterparts [10,11].

In the proposed algorithm, reference landmarks for tracking need to be iden-
tified first while in previous fiducial point-based registration methods, auto-
matic landmark selections were employed based on image feature detection (e.g.,
SIFT). The involvement of manual interaction with the image can help ensure
the distribution of salient anatomical landmarks for optimal registration qual-
ity [25], and improve the flexibility and robustness in real clinical applications.
The proposed method showed an excellent performance in reducing the initial
misalignment in terms of mTREs. On average, the results are comparable to or
better than the recent state-of-the-art techniques [10,11], which were validated
also on the RESECT database. For our method, the whole process of land-
mark matching and registration on NVIDIA GeForce GTX 1050 Ti GPU took
about 45 s in post-resection registration and 70 s in during-resection registration
(due to a greater number of landmarks). The segmentation-based registration
by Canalini et al. [11] takes 55 s on average and the SIFT-based registration by
Machado et al. [10] is the fastest with 30 s of average run time. Thus, the com-
putational time of our technique is highly promising in real clinical applications
and comparable to the state-of-the-art methods.

One limitation of our proposed method lies in the requirement of reference
landmark tagging, which can cost extra clinical time. However, as with affine
transformation, the number of landmarks doesn’t need to be large, and with
the rich experience of the clinicians, this can be performed robustly and quickly,
especially considering that a typical neurosurgery lasts a few hours. This also
offers more flexibility for manual interaction. Although we present the proposed
technique for iUS-iUS registration, we believe that it can be adapted to MR-iUS
registration, which will be investigated in the future.

5 Conclusion

We have proposed a robust and efficient iUS-iUS registration technique based
on anatomical landmark detection to account for tissue shift in brain tumor
surgery. The method demonstrated excellent performance compared to the recent
works, and can potentially improve the accuracy and safety of the procedure.
The Siamese network weights were trained on natural images without domain-
specific fine-tuning, rendering the method robust to scanner differences.
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Abstract. In this paper, we propose an ultrasound (US) probe pose
estimation method only from US image sequences using deep learning
for volume reconstruction. The proposed method employs the combina-
tion of convolutional neural network (CNN) and recurrent neural network
(RNN) to estimate the US probe pose in light of the long-term temporal
information of US image sequences. The features extracted by CNN are
input to RNN to estimate the relative and absolute pose of the US probe.
Through a set of experiments using US image sequence datasets with
ground-truth pose measured by an optical tracking system, we demon-
strate that the proposed method exhibits the efficient performance on
US probe pose estimation and volume reconstruction compared with the
conventional method.

Keywords: Ultrasound · Volume reconstruction · RNN · CNN ·
Probe pose estimation

1 Introduction

Medical volume data is a visualization of the three-dimensional (3D) structure
of the body, which is essential for detecting diseases and determining medical
treatment strategies. CT and MRI are commonly used as major medical volume
data, while 3D ultrasound (US) images reconstructed from US images have been
attracting much attention in recent years because of the advantages of US. US
imaging has the advantages of high spatial resolution, real-time imaging, and
non-invasiveness, and is less burdensome to the subjects than CT and MRI.
In addition, US systems have become smaller and less expensive, making them
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easier to acquire US images. If we can analyze blood vessels and muscles in 3D
using volume data reconstructed only from US images, we can analyze the inside
of the body without choosing a location since US images can be acquired using
only a 2D US probe. Therefore, 3D US images are extremely useful for point-of-
care testing and sports medicine. For this purpose, it is necessary to obtain the
probe pose with high accuracy.

Many methods have been proposed to measure the pose of the US probe
using an external device such as an electromagnetic device, an optical device,
and a camera [4,6–8,10,15,16,18,19]. These methods require an external device
to be attached to the 2D US probe, which sacrifices the smooth scanning that
is an advantage of US imaging and also increases the cost.

To address this problem, methods of estimating the probe pose using convo-
lutional neural network (CNN) only from US image sequences have been pro-
posed [5,11,12,14]. Prevost et al. [14] proposed CNN designed based on the
speckle decorrelation model [3] to estimate the relative pose between two con-
secutive frames. In this method, the relative pose between each frame pair is
estimated using only two US images, so the estimation error accumulates and
the estimation accuracy becomes low. Their latest work in [13] improves on this
method by using an inertial measurement unit (IMU), however IMU has to be
attached to the probe. Miura et al. [11,12] used two CNNs: one to estimate opti-
cal flow and the other to extract features from US image sequences, based on
the work of Prevost et al. [14] and proposed loss functions considering geometric
consistency. Guo et al. [5] used 3D CNN with multiple consecutive US images
as input instead of only two US images. The above methods only deal with the
short-term temporal information of US image sequences, and it is difficult to
consider the long-term temporal information.

In this paper, we propose a new 2D US probe pose estimation method only
from US image sequences using deep learning. The proposed method employs
recurrent neural network (RNN) in addition to CNN to estimate the probe pose
based on the long-term temporal information. Inspired by Xue et al.’s app-
roach [20] of combining CNN and RNN to estimate camera pose from stereo
image sequences, the proposed method introduces a new network architecture
which estimates the absolute pose in addition to the relative pose to reduce the
accumulated errors. In addition, a large-scale dataset of US image sequences with
the ground-truth probe position was created to evaluate the estimation accuracy
of the proposed method. This dataset contains 410 scans acquired from the sub-
ject’s forearm, a breast phantom, and a hypogastric phantom. The contributions
of this paper are summarized below:

1. Propose a new CNN architecture that can estimate both relative and absolute
pose by combining CNN and RNN,

2. Create a large-scale dataset of US image sequences with the ground-truth
probe position, and

3. Demonstrate the effectiveness of the proposed method in pose estimation of
US probe for 3D US volume reconstruction compared with the conventional
method through experiments.
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2 Methods

In this section, we describe the method proposed in this paper to estimate the
pose of the US probe. In the conventional methods [11–14], two frames of the US
image sequence are used as input to estimate the relative pose of the US probe.
Since the probe moves continuously and over a long period of time, its motion
should be estimated taking into account the long time information. Therefore,
the proposed method uses RNN, which can aggregate features in the temporal
direction, in addition to CNN, which extracts features from images between
two frames. Both the relative pose pi−1,i between the frames i − 1 and i and
the absolute pose pi of the frame i are estimated to reduce the accumulated
error. pi−1,i and pi consist of 6-parameter vectors: 3D rotation (θx, θy, θz) and
3D translation (tx, ty, tz). Figure 1 shows the overview of the proposed method.
First, the feature map between two consecutive frames is extracted using CNN.
Next, the relative pose is estimated from the feature map using RNN. Then, we
aggregate the feature map extracted by CNN, the hidden states of RNN that
estimates the relative pose, and the output of RNN that estimates the absolute
pose in the previous frame. Finally, the absolute pose of the current frame is
estimated from the aggregated feature map using RNN. The details of each part
are described below.
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Fig. 1. Overview of the proposed method.

2.1 Feature Extraction

Figure 2(a) shows the detail of feature extraction. Since optical flow is useful
in pose estimation demonstrated by the previous work [11–14], we also use an
optical flow as an additional input. The optical flow is estimated by FlowNetS [1]
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trained on Flying Chairs dataset1 and is concatenated with two US images along
the channel direction. We employ AlexNet [9] trained on ImageNet provided by
torchvision2 as CNN to extract a feature map. Note that the global average
pooling (GAP) layer and 3 fully-connected (FC) layers of AlexNet are not used.
The output of AlexNet is used as the feature map and Xi ∈ R

C×H×W is the
feature map between frames i − 1 and i, where C, H, and W represent the
channel, height and width of the feature map, respectively.
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Fig. 2. Flow of each process in the proposed method: (a) feature extraction, (b) relative
pose estimation, (c) feature aggregation, and (d) absolute pose estimation.

2.2 Relative Pose Estimation

Figure 2(b) shows the detail of relative pose estimation. The relative pose pi−1,i

between frames i − 1 and i is estimated from the feature Xi. Convolutional
LSTM (ConvLSTM) [17], which is a combination of convolution and LSTM, is
used to utilize the temporal information of US image sequences as RNN. LSTM
uses a 1D feature vector as input, while ConvLSTM uses a 2D feature map as
input and can also use the spatial information. ConvLSTM takes the feature

1 https://lmb.informatik.uni-freiburg.de/resources/datasets/.
2 https://pytorch.org/vision/stable/.

https://lmb.informatik.uni-freiburg.de/resources/datasets/
https://pytorch.org/vision/stable/
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map Xi and the hidden state at the previous frame Hi−1 as input and outputs
a feature map Yi ∈ R

C×H×W and a hidden state Hi ∈ R
C×H×W as follows:

Yi,Hi = U(Xi,Hi−1), (1)

where U represents ConvLSTM. Then, the relative pose is estimated from Yi

using two fully-connected layers. A set of hidden states {H1,H2, · · · ,Hn} are
aggregated into one feature map in the feature aggregation step described next.

2.3 Feature Aggregation

Figure 2(c) shows the detail of feature aggregation. First, a set of hidden states
{H1,H2, · · · ,Hn} and the feature map Y ′

i−1 from ConvLSTM are aggregated
by the spatial-temporal attention module (STAM) [20]. In STAM, each hidden
state and its channels are weighted to distinguish the information related to the
absolute pose estimation of frame i, and a new feature map H ′

i ∈ R
C×H×W is

obtained. Next, Xi and Y ′
i−1 are concatenated along the channel direction and

then pass through two convolution layers with kernel size of 3 × 3 to obtain a
feature map X ′

i ∈ R
C×H×W , whose size corresponds to that of H ′

i.

2.4 Absolute Pose Estimation

Figure 2(d) shows the detail of absolute pose estimation. ConvLSTM takes the
sum of the feature maps X ′

i and H ′
i and the hidden state at the previous frame

H ′′
i−1 as input and a feature map Y ′

i ∈ R
C×H×W and a hidden state H ′′

i ∈
R

C×H×W as follows:

Y ′
i ,H ′′

i = U(X ′
i + H ′

i,H
′′
i−1). (2)

Then, similar to relative pose estimation, the absolute pose is estimated from
Y ′
i using two fully-connected layers.

2.5 Loss Function

This section describes the loss functions used in training of the proposed method.
As for relative pose estimation, we employ three loss functions used in [12]:
Euclidean distance Le, forward consistency loss Lf , and backward consistency
loss Lb. For more details on these loss functions, see [12]. The combination of
the three loss functions is used in relative pose estimation as follows:

Lrelative = αLe + βLf + γLb, (3)

where α, β, and γ are the weights which balance each loss function. As for
absolute pose estimation, we employ the loss function used in [20] as follows:

Labsolute =
N∑

i=1

1
i
||pi − p̂i||2, (4)
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where pi is the ground-truth pose, p̂i is the estimated absolute pose, and N is
the number of input pairs. The overall loss function Lall for training the proposed
method is given by

Lall = Lrelative + Labsolute. (5)

3 Materials

An US system and an optical tracking system are used to create a large-scale
dataset of US image sequences with the scanning position of the US probe since
no public dataset is available. We use SONIMAGE HS1 (Konica Minolta, Inc.) as
the US system and OptiTrack V120: Trio (Acuity, Inc.) as the optical tracking
system. A L18-4 linear probe (center frequency: 10 MHz) and a C5-2 convex
probe (center frequency: 3.5 MHz) are used to acquire US images. 5 markers
are attached on the probe to track its scanning position. The recording time is
about 8 s at 30 fps, and the size of each US image is 442 × 526 pixels. The US
system and the optical tracking system are synchronized during data acquisition.
This dataset consists of 410 scans captured from the forearm of 6 subjects, a
breast phantom, and a hypogastric phantom. The number of scans is 230 for
the forearm, 140 for the breast phantom, and 40 for the hypogastric phantom,
respectively.

4 Experiments

This section describes the experiments of evaluating the proposed method.

4.1 Experimental Condition

The proposed method is trained in two ways as follows. First, we use 50 scans
acquired from the breast phantom with the probe moved in a straight line out
of 410 scans to evaluate the basic performance of the proposed method. The 50
scans are divided into 40 scans for training, 5 scans for validation, and 5 scans
for evaluation. Next, we use 410 scans acquired from the three types of scanning
targets with various movements of the probe. The 410 scans are divided into 300
scans for training, 30 scans for validation, and 80 scans for evaluation.

Sharpness-aware minimization (SAM) [2] is used as an optimizer and the
learning rate is set to 5e−5. Note that we use Adam as the base optimizer of
SAM and set the weight decay for preventing overfitting to 0.1. The batch size
is 16, the number of epochs is 50, the number of input pairs N is 10, and 25%
dropout is added after the fully-connected layers except the last one. US images
with 442 × 526 pixels are cropped at 442 × 442 pixels in the center and then are
resized to 128 × 128 pixels. The pixel value of each resized image is normalized
to have zero mean and the unit variance. The weights of the loss functions are
set to α = 10, β = 0.1, and γ = 0.1. All the methods are implemented using
Pytorch 1.7.1 on Intel(R) Xeon(R) W-2133 CPU 3.60 GHz with GeForce RTX
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2080 Ti. We evaluate the accuracy of the estimated parameters by the sum of
absolute errors of the relative pose parameters for each frame by

AE =
M∑

i=1

|pi−1,i − p̂i−1,i|, (6)

Table 1. Summary of experimental results using the breast phantom.

Method AE (degree/mm) Final drift (mm)

θx θy θz tx ty tz

Conventional method 19.25 29.34 23.73 24.27 13.06 59.24 44.41

Proposed w/o absolute 21.56 27.48 23.30 23.78 13.89 47.92 34.68

Proposed 19.52 26.38 22.04 23.97 14.02 45.87 27.71

Table 2. Summary of experimental results using three types of scanning targets.

Method AE (degree/mm) Final drift (mm)

θx θy θz tx ty tz

Conventional method 126.46 260.33 130.52 137.21 36.24 210.46 117.30

Proposed w/o absolute 127.31 258.01 120.81 134.29 38.39 184.48 90.78

Proposed 125.37 252.70 120.18 133.24 40.63 184.08 96.46

where pi−1,i and p̂i−1,i are the ground-truth and estimated relative pose between
the frame i−1 and i, and M is the number of frames. We also evaluate the final
drift, which is the distance between the ground-truth and estimated positions at
the last frame. We compare the accuracy of the conventional method proposed by
Prevost et al. [14]. Note that we implemented and trained this method according
to [14] since there is no public implementation. We also evaluate the accuracy
of the proposed method without absolute pose estimation to demonstrate the
effectiveness of introducing absolute pose estimation.

4.2 Experimental Results

Table 1 shows the summary of experimental results using the breast phan-
tom. The estimation accuracy is improved by RNN comparing the conven-
tional method and the proposed method. The proposed method exhibits the
best estimation accuracy in the methods as observed in the third and fourth row
of Table 1 and the effectiveness of absolute pose estimation can be confirmed.
Table 2 shows the summary of experimental results using three types of scan-
ning targets. As in Table 1, the estimation accuracy of the proposed method is
improved except for ty. The errors for each parameter in Table 2 are larger than
those in Table 1 since various movements of the probe include in the experiment
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Fig. 3. Temporal variation of tz estimated by each method.
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Fig. 4. Example of reconstructed US volume data: (a) ground truth, (b) conventional
method, (c) proposed method.

of Table 2. Figure 3 shows the temporal variation of tz estimated by each method.
The conventional method cannot estimate large motion, and therefore shows the
average temporal variation. The proposed method shows similar temporal vari-
ation to the ground truth, while it sometimes deviates significantly from it.
Especially, the proposed method can track the ground-truth probe motion in
the first half frame. Figure 4 shows the reconstructed US volume data using the
probe position of the ground truth, the conventional method, and the proposed
method. Each US volume data is reconstructed using StradView3. Since the
conventional method estimates the average value of each parameter, the recon-
structed US volume data is longer than the ground-truth US volume data. The
proposed method exhibits better performance than the conventional method
since the shape of the reconstructed volume data is similar to that of the ground
truth.

3 https://mi.eng.cam.ac.uk/Main/StradView.

https://mi.eng.cam.ac.uk/Main/StradView
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5 Conclusion

In this paper, we proposed a 2D US probe pose estimation method only from US
image sequences using deep learning. The proposed method employs the com-
bination of CNN and RNN to estimate the relative and absolute probe pose.
We also introduced the loss functions that take into account both relative and
absolute pose to improve the estimation accuracy. Through a set of experiments
using our dataset, we demonstrated that the proposed method exhibited bet-
ter accuracy than the conventional method. In future work, we will apply the
proposed method to US images of various parts and consider its application to
sports medicine and point-of-care testing.
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Abstract. The evolution of consumer-grade hardware components
(e.g., trackers, portable ultrasound probes) has opened the door for the
development of low cost systems. We evaluated different low-cost tracking
alternatives on the accuracy of 3D freehand ultrasound reconstruction in
the context of image-guided neurosurgery. Specifically, we compared two
low-cost tracking options, an Intel RealSense depth camera setup and the
OptiTrack camera to a standard commercial infrared optical tracking sys-
tem, the Atracsys FusionTrack 500. In addition to the tracking systems,
we investigated the impact of ultrasound imaging on 3D reconstruction.
We compared two ultrasound systems: a low-cost handheld ultrasound
system and a high-resolution ultrasound mobile station. Ten acquisitions
were made with each tracker and probe pair. Our results showed no sta-
tistically significant difference between the two probes and no difference
between high and low-end optical trackers. The findings suggest that
low cost hardware may offer a solution in the operating room or envi-
ronments where commercial hardware systems are not available without
compromising on the accuracy and usability of US image-guidance.

Keywords: Low cost · 3D freehand reconstruction · Ultrasound ·
Neurosurgery

1 Introduction

Image-guided neurosurgery (IGNS) systems have shown positive impacts on tai-
loring craniotomies, reducing interventional errors, increasing tumour resection
percentages and improving patient survival rates. However, these systems suffer
from accuracy degradation as a procedure progresses and the patient to image
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alignment computed at the beginning of surgery gets invalidated by the move-
ment and deformation of the brain, or brain shift. To reregister the patient
intraoperatively, updated images can be acquired, using either intraoperative
magnetic resonance images (iMRI) (e.g., Clatz et al. [4]), intraoperative com-
puted tomography (iCT) (e.g., Riva et al. [12]) or intraoperative ultrasound
(iUS) (e.g., Reinertsen et al. [11]). The latter is much less expensive, has a
smaller footprint in the OR, and has shown usefulness in neurosurgery, for intra-
operative image-based registration correction to account for brain shift [15].

Although more affordable than MRI and CT solutions, the price range of
US systems still varies significantly from a low-cost handheld system (∼2–8k
USD) to a high-resolution station (between 50–250k USD). In addition to the
intraoperative imaging modality, another hardware component used in IGNS to
perform 3D freehand ultrasound reconstruction is the tracking system. This com-
ponent, usually an optical tracking system, accounts for a substantial portion of
the hardware costs of open-source IGNS systems. In this work, we compared the
accuracy of ultrasound reconstruction obtained with different hardware setups
at a broad range of price points. For the ultrasound transducer, two options
were compared: a ∼250k USD mobile station and a ∼7k USD handheld system.
For tracking four options are compared: a ∼25k USD high-end optical tracker,
a ∼3k USD lower-end optical tracker, a sensor fusion hybrid tracking method
which uses a ∼200 USD depth camera and a ∼20 USD equivalent RGB camera.
Using these different setups we aimed to answer the following questions: Can
compromises be made on some of the components without sacrificing too much
on accuracy of the 3D freehand US reconstruction? If so which ones and how is
a given budget best invested between these components?

2 Previous Work

Cenni et al. [3] looked at the effect of using different hardware setups on 3D
freehand US reconstruction quality. They tested their method with two different
optical tracking systems (exact models not disclosed) and report having found
no noticeable difference in the reconstruction quality with the two systems. How-
ever, separate acquisitions were made independently with each tracker, making
the comparison less robust.

The low cost alternative tracking method tested in our study is similar to
that presented by Asselin et al. [1]. In their work, Asselin et al. developed a
sensor fusion tracking method that uses a depth camera and an RGB camera to
detect an ArUco marker in the RGB image to determine the x and y position
in space and the depth camera to determine its z position. They found that the
method worked very well, much better than when using an ArUco marker alone
and would be suitable for intraoperative tool tracking. The present study thus
extends their work in assessing if that low-cost hardware and method can be
used for 3D freehand reconstruction. The final tracking method tested is that
of using an ArUco marker alone. It serves as our baseline, similarly to Asselin
et al.’s study.
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A number of studies have investigated the reconstruction quality of differ-
ent 3D freehand reconstruction algorithms. The interested reader is referred to
Solberg et al. [14] and Rohling et al. [13] for a review in this area. A review of
US probe calibration in the context of 3D freehand US reconstruction is also
available in [9].

3 Methodology

We designed an experiment to simultaneously test the impact of hardware on
the accuracy of 3D US reconstructed volumes, with both dimensional distortion
as well as shape (angular) distortion in all three dimensions.

3.1 Hardware Setups

The acquisitions were made using two ultrasound probes in combination with
four tracking systems. The tested ultrasound probes are: (1) the MicrUs MC4-
2R20S-3 probe (TELEMED, Vilnius, Lithuania); and (2) the BK3500 14L3
probe (BK Medical, Peabody, MA, USA). The tracking systems that were tested
are: (1) ArUco markers [5] captured with the RealSense RGB camera; (2) the
RealSense D435 (Intel Corporation, Santa Clara, CA, USA); (3) the Optitrack
V120:Duo (NaturalPoint Inc., Corvallis, OR, USA); and (4) the Atracsys Fusion-
Track 500 (Atracsys LLC, Puidoux, Switzerland). All combinations of ultrasound
and tracker were used to capture ultrasound acquisitions.

3.2 Phantoms and Marker Construction

To enable the most precise and fair assessment possible, a phantom and mark-
ers were designed for the experiment. A wire phantom built from Lego™ with
eight wires pulled tautly through between Lego bricks was constructed (Fig. 1a).
The wires form a cuboidal shape of precisely known dimensions. All wires cross
perpendicularly, thus angles between line segments are precisely known. Lego
bricks themselves are accurate to within 0.04 mm [7] and the wires were care-
fully pulled between them, which translates to a very accurate phantom. The
cuboid measures 11.20 mm by 9.60 mm by 19.00 mm in x, y and z respectively.
The phantom was immersed in water for US acquisition.

A custom marker, similar to that of Asselin et al. [1], was designed to enable
all trackers (i.e., both RGB camera and optical) to capture the position of the
probe in the same coordinate frame (see Fig. 1b). The marker pivot (3D position)
for all tracking methods was defined to be a common point at the center of the
construction (the center of the ArUco marker, which corresponds to the centroid
of the reflective sphere positions). The marker was 3D printed on a Raise 3D
Pro2 printer (Raise 3D Technologies, Inc., Irvine, CA, USA) using a 0.1 mm
layer height. A rigid probe attachment bracket was also designed and printed
with the same printer settings. A similar marker was designed as a reference
and attached to the phantom. This custom design and precise alignment of the
tracked position for all trackers was done in order to reduce potential bias in the
comparison.



Evaluation of Low-Cost Hardware for 3DfUS 109

Fig. 1. Experimental setup: (a) Lego-wire phantom, (b) custom hybrid markers and
probe attachment and (c) tracker arrangement for data acquisition.

3.3 Experiments

Tracking was captured simultaneously with all tracking systems for each US
acquisition. Trackers were each placed at their optimal working distance from
the scene to mimic a real-world scenario. Trackers were also each placed at
as close as possible to the same viewing angle with respect to the scene, thus
minimizing measurement volume as a confounding factor. The trackers were all
aligned with the phantom so that the axes of the tracking volume would match
that of the phantom (see Fig. 1c). To simplify the setup the live camera feed used
for detecting the ArUco markers was that of the RealSense. This enabled us to
have only three physical devices in the test setup while allowing testing with
four tracking methods. The resolution of the RealSense RGB camera is 848 by
480 pixels, which is low for modern hardware. So, even though it was captured
on a more expensive device, it could be achieve just as well with a $20 webcam.

The ultrasound probes were calibrated, both temporally and spatially, using
fCal from PLUS (Public software Library for UltraSound imaging research)
toolkit [6] (version 2.8). fCal implements the 3 N-wires calibration procedure [2],
a method that was previously shown to be reliable and accurate [8]. This cali-
bration was computed for each ultrasound probe with the tracker corresponding
to the high-end of its price bracket (for the BK imaging system, the FusionTrack
500 tracker and for the Telemed imaging system, the V120:Duo tracker). The
reasoning behind this was that using similarly priced devices in a system might
be a more common use case.

Ten sweeps of the phantom were acquired with each ultrasound probe. For
each acquisition, the tracking data was recorded simultaneously with all tracker
systems. All sweeps were done in one linear motion done along the z axis. Inde-
pendent reconstructions were then computed from each sweep and hardware
combination, using the PLUS reconstruction [6]. Thus, from the 20 acquired
sweeps, a total of 80 volume reconstructions were computed.

On each of these reconstructed volumes, the eight lines corresponding to
all wires were manually segmented using 3D Slicer [10] version 4.11.20210226.
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The order in which segmentation was performed for each trial was random-
ized between conditions to reduce potential operator bias. All segmentations
were performed by the same operator. The intersection of the eight line pairs
corresponding to the corners of the reconstructed cuboid were computed in a
least-square sense. These eight constructed points were then used in all further
analysis. The distance between these points were used to compute the dimen-
sions of the cuboid, or the dimensional distortion (DD) along each axis and
angles between the line segments were used to compute angular distortion (AD)
around each axis. All metrics were averaged over each axis. This means that for
the dimensions, all four segments spawning from the connections of points along
that axis are averaged. As well, for angles, all eight angles corresponding to rota-
tion around that axis are averaged. Averaging is more robust and reduces the
effect of uncertainty associated with segmentation. Finally, the total cuboid vol-
ume was computed, which allows easier comparison with previous studies which
computed the error as a percentage of volume.

4 Results

The image to probe calibration reprojection error for the Telemed system was
0.87 mm and for the BK system 1.26 mm. The temporal calibration yielded a
38 ms latency for the Telemed and a 48 ms one for the BK.

4.1 Reconstruction Quality Results

For both DD and AD, the absolute value of the error is used in analysis as
both a negative or positive error would have similarly undesirable effects on
the usability of the resulting reconstruction. Table 1 shows the DD results for all
combinations of hardware. Table 2 shows the AD for all combination of hardware.
DD is reported as a percentage error of the supposed length value and AD
is reported as an angle difference from the supposed angle (90◦). Results in
both tables show the mean value for each setup with the standard deviation in
parentheses.

We found that the probe used had little impact on the overall accuracy
of the reconstruction. A two-way ANOVA revealed that the BK and Telemed
reconstructions were not statistically significantly different from one another on
neither dimensional nor angular error on almost any axis. They were only differ-
ent in the x dimension, where the BK was worse than the Telemed (p = 0.0275),
for all other metrics they were not statistically different. For that reason, data
for both probes was bundled in Fig. 3. Reconstructions done with the Atracsys
and Optitrack trackers were also not significantly different from one another on
any metric and any dimension. All differences that were statistically different
from the null hypothesis are labelled with stars in Fig. 3.
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Fig. 2. Boxplots of dimensional distortions compared per tracker. Relationships marked
with a star (�) are those where the difference between group means are statistically
significant to within p < 0.05. Devices are ordered in decreasing order of cost.

4.2 Qualitative Results

When visually inspecting the 3D ultrasound reconstructions a number of things
can be seen. First, the Telemed and BK are clearly different in terms of image
quality (Fig. 4). The wires appear more fuzzy in the images acquired with the
Telemed. Second, there was very noticeable visual differences in reconstruction
quality between volumes obtained with either the Atracsys or Optitrack and
those obtained with ArUco or RealSense. In those from the ArUco alone or
RealSense the wires are much less clearly defined (those of the ArUco alone
being slightly worse). This lower visual quality of the reconstruction translated

Table 1. Mean dimensional distortion per axis for each combination of hardware as
well as total volumetric error. Devices are ordered in decreasing order of cost.

Probe Tracker Dimensional distortion (%) Volume (%)

x-axis y-axis z-axis

BK Atracsys 1.37 ± 0.96 0.59 ± 0.33 1.77 ± 1.29 2.54 ± 2.16

Optitrack 1.40 ± 1.05 0.66 ± 0.38 2.13 ± 2.16 3.30 ± 2.77

RS 2.79 ± 2.32 0.82 ± 0.43 12.28 ± 6.53 12.75 ± 9.27

ArUco 5.06 ± 4.80 1.90 ± 2.16 19.02 ± 10.63 20.73 ± 14.94

Telemed Atracsys 0.78 ± 0.37 0.41 ± 0.39 1.28 ± 0.85 1.14 ± 0.89

Optitrack 1.08 ± 1.09 0.47 ± 0.28 2.70 ± 1.80 3.44 ± 2.71

RS 1.85 ± 1.22 1.36 ± 0.86 21.65 ± 13.72 22.53 ± 13.23

ArUco 2.64 ± 1.96 1.50 ± 1.20 13.74 ± 13.87 13.83 ± 14.66
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Fig. 3. Boxplots of angular distortions compared per tracker. Relationships marked
with a star (�) are those where the difference between group means are statistically
significant to within p < 0.05. Devices are ordered in decreasing order of cost.

very strongly when doing the manual segmentation. Wires in the ArUco and
RealSense acquired volumes were more difficult to segment. They are much nois-
ier and jagged, which made the segmentation process more error prone. Picking
the center of those wires was harder on those reconstructions than those obtained
with the other two systems.

5 Discussion

The fact that reconstructions made with the BK and the Telemed probe were
visually different is not very surprising, image resolution and probe frequency of
the BK are significantly higher, 728 × 892 and 12 MHz compared to 512 × 512
and 4 MHz for the Telemed. However, this difference did not translate into a
measurable difference in reconstruction volume quality, meaning that the wires
appeared more diffuse but their position corresponded. Even though images are
noisier with a low cost probe, the reconstructed volume is still accurate, which
leads us to believe it would perform reasonably well in brain-shift correction or
for visualizing tool trajectories (e.g., catheter, ventricular drain or needle) with
appropriate user training. At the same time the jaggedness of the reconstructed
edges on lower cost hardware might impact intraoperative registration given that
the noise introduces artificial gradients. This will be explored in future work.

The fact that cheap hardware (both probe and optical tracker) works sim-
ilarly to more expensive hardware hints that errors arising from other sources
(e.g., calibration, reconstruction, unevenness in the sweep acquisition movement)
are higher than that of the measurements for all devices, even lower cost ones.
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Table 2. Mean angular distortion per axis for each combination of hardware. Devices
are ordered in decreasing order of cost.

Probe Tracker Angular distortion (◦)

x-axis (pitch) y-axis (yaw) z-axis (roll)

BK Atracsys 2.79 ± 0.95 3.31 ± 0.56 1.36 ± 0.57

Optitrack 3.24 ± 1.16 3.36 ± 0.96 1.31 ± 0.48

RS 5.24 ± 1.38 7.75 ± 2.44 2.29 ± 0.94

ArUco 5.03 ± 2.12 9.65 ± 1.37 2.16 ± 0.65

Telemed Atracsys 3.12 ± 1.17 4.82 ± 0.70 1.19 ± 0.35

Optitrack 2.30 ± 1.31 5.00 ± 1.12 1.36 ± 0.44

RS 5.00 ± 2.98 6.30 ± 2.38 2.13 ± 0.90

ArUco 4.26 ± 1.87 6.53 ± 2.18 2.16 ± 1.09

Fig. 4. Side-by-side comparison of typical reconstruction results obtained with each
US acquisition systems. Both acquisitions depicted were acquired with the Atracsys
tracking system. Left: BK imaging system; Right: Telemed imaging system.

In our experiment and in general in 3D freehand US reconstruction, the time
difference between image timestamps and tracking timestamps is assumed to
be fixed. The temporal calibration done prior to acquisition enables computing
this time difference, which can then be compensated for in software upon data
streams arrivals. However, it was observed that the BK latency fluctuated over
time. For this reason, the BK was perhaps at a bit of a disadvantage. In our
particular setup this fluctuation could have arisen from many sources: US system
software, network card drivers, operating system or other receiving software.
Latency should be considered with great care in this application and efforts
should be made to ensure that the latency is not only as low as possible, but
also, and very importantly, that it remains as constant as possible throughout
an acquisition.

The difficulty described in the previous section in doing the manual seg-
mentation on the cheapest tracking hardware has consequences beyond just the
segmentation process itself. Not only is the process more time consuming for



114 É. Léger et al.

these acquisitions as the viewer takes longer to understand the US images but
more importantly this leads to less accurate segmentation. This less accurate
segmentation might be what causes both ArUco and RealSense to be indistin-
guishable statistically. Values are quite different for the z-axis, but the standard
deviation on both samples is also large. There is a possibility that a genuine
statistical difference between the two might be obfuscated by this segmentation
difficulty due to low quality of the reconstructed volumes.

We found that all systems, even higher end ones, performed significantly
worse in the z direction. This was expected, as all tracking methods tested, be
it the commercial optical trackers or the experimental sensor-fusion method, are
vision-based, meaning that they measure distances in images. They are therefore
more accurate in the image plane than perpendicular to it. Although, and while
all system suffer from this, the marker-based (ArUco and RealSense) were much
more affected.

Finally, it is worth noting an important limitation in the design of our exper-
iment. Manual wire segmentation, as performed in the experiment, allowed us
to compensate for discontinuous data, especially when the quality of the recon-
structed volume was low. Although this approach allows for capturing of the
overall dimensional and angular distortions, local artifacts such as deformations
and mis-reconstructions were attenuated. The effect of these artifacts on the
outcome of an IGNS application need to be investigated.

6 Conclusion and Future Work

In this study, a phantom and protocol to measure 3D freehand US reconstruction
distortion was presented. The wire and Lego phantom is easy and cheap to build
and the protocol is easy to replicate. This allows for a more standardized compar-
ison of reconstruction methods and tracking methods in the future. The protocol
was used in a study to gain insight into the impact of different hardware com-
ponents’ cost on reconstruction accuracy. Four tracking systems were compared,
whose cost were an order of magnitude apart from one another, as well as two
US imaging systems that were roughly two orders of magnitude apart in price.
We found that the cheapest US imaging system didn’t yield reconstructions that
were measurably worse than the high-end system. This thus suggests that for
this application a cheap US imaging system may be used to reduce overall system
cost. For tracking, the cheapest optical tracking system performed statistically
the same as the high-end optical tracker. This shows the feasibility of using low
cost hardware. However, the camera-based tracking methods performed signifi-
cantly worse. To improve on the sensor fusion method, the depth camera could be
used to track the shape of a marker in space, and this will be explored in future
work. In future work as well, a second series of experiments will be performed to
test more specifically how volume registration is impacted by the varying quality
of reconstructions obtained with different hardware components.



Evaluation of Low-Cost Hardware for 3DfUS 115

References

1. Asselin, M., Lasso, A., Ungi, T., Fichtinger, G.: Towards webcam-based tracking
for interventional navigation. In: Fei, B., Webster III, R.J. (eds.) Medical Imaging
2018: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10576,
pp. 534–543. International Society for Optics and Photonics, SPIE (2018). https://
doi.org/10.1117/12.2293904
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Abstract. CT-guided interventions are common practices in interven-
tional radiology to treat oncological conditions. During these inter-
ventions, radiologists are exposed to radiation and faced with a non-
ergonomic working environment. A robot-guided ultrasound (US) as a
complementing imaging method for the purpose of needle guidance could
help to overcome these challenges. A survey with 21 radiologists was
made to analyze the application potential of US during CT-guided inter-
ventions with regard to anatomical regions to be scanned as locations of
target lesions as well as specific situations during which US could comple-
ment CT imaging. The results indicate that the majority of respondents
already applied US during CT-guided interventions for reasons of real-
time imaging of the target lesion, organ, and needle movement as well as
for lesions that are difficult to visualize in CT. Potential situations of US
application were identified as out-of-plane needle insertion and punctur-
ing lesions within the liver and subcutaneous lymph nodes. Interaction
with a robot-guided US should be intuitive and include an improved
sterility concept.

Keywords: CT-guided interventions · Ultrasound-guided
interventions · Robot-guided ultrasound · Interventional radiology

1 Introduction

In the past, needle-based interventions under computed tomography (CT) imag-
ing have become common practices in interventional radiology, among them
drain placements, biopsies, and oncological therapeutic procedures like ablation
or brachytherapy. The main purpose of CT imaging during these interventions is
a reliable progress control, namely to safely guide the interventional instrument
to the target structure without injuring nearby risk structures. General chal-
lenges arise during these CT-guided interventions, first and foremost, the radi-
ation exposure for medical staff and patients [5,12]. Besides that, the complex
work environment in the intervention room (IR) causes physiological challenges
c© Springer Nature Switzerland AG 2021
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for the radiologist [2]. Due to the protective garments used to shield radiologists
from radiation and the awkward body positions resulting thereof, interventional
radiologists are faced with non-ergonomic working conditions which might lead
to repetitive stress injuries [4]. Other than the two direct methods of radiation
reduction - lowering the radiation output during a CT-guided interventions or
improving radiation protection [5] - it might be beneficial to substitute or comple-
ment CT imaging by implementing a non-ionizing imaging method. Ultrasound
(US) provides the advantages of good soft tissue contrast, image generation with-
out causing radiation as well as it being a non-invasive procedure. Due to that,
it could be a suitable imaging method. In addition, the ergonomic challenges
could be reduced by automating individual steps of the workflow, for instance
US screening of relevant body parts. Robotic US systems have been developed
for several cases [10], most of them focusing on hand held US in combination
with robotic needle insertion. However, little focus has been put on develop-
ing a US probe which is guided by a robotic arm during thoracic or abdominal
CT-guided interventions.

This work intends to identify specific situations that could potentially benefit
from robot-guided ultrasound which complements CT imaging during CT-guided
interventions with regard to anatomical regions to be imaged. A complementing
imaging method means that besides CT imaging, which is used during pre- and
postprocedural workflow steps, US imaging is additionally applied for needle
guidance. To answer this question, an online survey for radiologists was admin-
istered and analyzed.

Some research works have addressed the application of US to puncture var-
ious target lesions. Damm et al. [3] reported that in two third of cases in vivo,
initial puncturing of abdominal malignancies was possible under US guidance
and that half of the lesions showed a better visibility in US imaging compared
to CT fluoroscopy. Moreover, Wu et al. [15] were able to show that procedure
times of US-guided radiofrequency ablation for hepatocellular carcinomas were
significantly shorter compared to those under CT-guidance without major dif-
ference in complete ablation and recurrence rate of the two groups. Robotic
assistance in the form of a robot-guided US probe has been introduced by sev-
eral research groups. Many focused their development on application scenarios
in the field of vascular diagnosis such as the development of robotic systems that
are able to autonomously measure diameters of abdominal aortic aneurysms [14]
or screen for peripheral arterial diseases [6]. Other approaches focused on robotic
US-guidance assistance in liver diagnosis [9] and abdominal scanning in purpose
of radiation therapy [13]. Neither approach analyzed requirements of the use
cases in a deeper manner, but rather, focused on technical implementations.
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2 Methods

2.1 Survey Design

An online survey1 was created using the open source survey tool LimeSurvey [8].
The survey consisted of five sections:

S1: Personal professional information
S2: Current clinical practice of US application during CT-guided interventions
S3: Potential use cases of US application during CT-guided interventions
S4: Human-robot interaction in the IR
S5: Concluding questions

The number of questions in S2 differed depending on whether respondents
reported to have already used US during CT-guided interventions in current
clinical practice, or not. In total, the survey consisted of 15 questions for respon-
dents who reported to have already used US (of which five multiple choice, seven
text fields, three rating scale matrices with free text fields for explanations) and
11 questions for respondents who reported to have no experience using US during
CT-guided interventions (of which five multiple choice, four text fields, two rat-
ing scale matrices with free text fields for explanations). S1 contained questions
about personal professional experiences. Questions within section S2 investigated
reasons as to why respondents do not use US during CT-guided interventions
or why they do use it. In addition, the radiologists who use US screening were
questioned about the case anatomy, as well as challenges and suggestions they
could offer in respect to handling the device. Questions in section S3 dealt with
the potential of US application in regards to human anatomy and specific sit-
uations. Nine anatomical locations were included in the survey, located in the
abdomen or thorax. These anatomical locations were selected to be relevant due
to being potential locations of target lesions which are commonly punctured in
CT-guided interventions. In S4, an example scenario of a CT-guided interven-
tion was given including a robotic arm with an attached US probe which is
able to independently approach the body surface. It was further explained, that
US scanning of the surface is performed by controlling the robotic arm. Ques-
tions were asked about the applicability of different human-robot interaction
(HRI) methods to control the robot (see Fig. 1). These included direct interac-
tion (hand-guiding) (HRI-1), indirect interaction via joystick (telemanipulation)
(HRI-2), and indirect interaction via hand gesture control (HRI-3). The survey
was concluded with a free text field, to provide respondents with an opportunity
to give general remarks, as well as to provide consent for further contact.

1 https://limesurvey.ovgu.de/index.php/542932?lang=en.

https://limesurvey.ovgu.de/index.php/542932?lang=en
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Fig. 1. HRI methods to control the robotic arm with attached US probe which were
analyzed in the survey including hand-guiding (HRI-1) (a), telemanipulation via joy-
stick (HRI-2) (b), and hand gesture control (HRI-3) (c).

2.2 Recruitment

The study data were obtained by distributing the aforementioned online sur-
vey to radiologists who are or have been practicing in the field of diagnostic and
interventional radiology. This included radiologists from all departments of diag-
nostic and interventional radiology of university hospitals in Germany as well as
former collaborators with this profession of our research group. The target group
was further narrowed down by stating in the introductory text that persons who
answer the survey should perform or should have performed needle-based CT-
guided interventions on a regular basis. Participation in the online survey was
anonymous and voluntary.

2.3 Data Analysis

Quantitative data were analyzed using the open source environment for statis-
tical computing, R [11]. Qualitative data were analyzed by clustering answers
of respondents into categories. Each category was ranked according to the total
amount of answers within each category.
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3 Results

3.1 Personal Professional Information

A total of 50 online surveys were answered by radiologists, of which 21 surveys
were fully completed and analyzed. Incomplete surveys were excluded from the
analysis. The majority of participating radiologists were currently working in
the professional position of senior physicians (n = 14, 66.7%), followed by radi-
ologists practicing as chief physicians (n = 5, 23.8%). One person reported to
be a resident (n = 1, 4.8%), and another a fellow (n = 1, 4.8%). The majority
of respondents said to have over ten years of professional experience in perform-
ing CT-guided interventions (n = 12, 57.1%), followed by five respondents who
had five to ten years practical professional experience (n = 5, 23.8%) and two
radiologists who had been performing CT-guided interventions for two to five
years (n = 2, 9.5%). One respondent reported having less than one year of prac-
tical experience (n = 1, 4.8%) and one answer was not specified. Two thirds of
the respondents answered to have performed over 500 CT-guided interventions
throughout their professional career (n = 14, 66.7%), whereas four respondents
completed 200–500 (n = 4, 19%), and three radiologists less than 100 CT-guided
interventions (n = 3, 14.3%).

3.2 Current Clinical Practice

More than half of the respondents indicated to have experience applying US
during CT-guided interventions as complementing imaging (n = 12, 57.1%),
whereas the remaining radiologists (except one unspecified answer) had not used
US for this purpose (n = 8, 38.1%).

Reasons for Non-usage. Four out of eight radiologists stated that CT imaging
adequately fulfilled the purpose of visualizing the target lesion and the surround-
ing anatomy, and therefore never felt the need for a complementing or alternative
imaging method. One fourth of this respondent group explained that they do not
see advantages in the combined application of CT and US, and do not expect to
save time or reduce radiation exposure by using this method. Furthermore, one
radiologist supported his/her decision with expected inferior image quality and
another radiologist with sterility issues of the US device.

Reasons for Usage. Seven out of 12 respondents stated that they have been
applying US during CT-guided interventions for reasons of real-time imaging
of relevant objects like the target lesion and/or the interventional instrument,
followed by six radiologists who reported to be using US due to the superior
imaging of the target structure, in case of lesions difficult to image in CT, or
for the identification of risk structures. Further responses for usage were the
reduction in radiation exposure, out-of-plane needle insertion, and the benefit of
overall time reduction.
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Quantitative results regarding US application for certain anatomical struc-
tures during CT-guided interventions in current clinical practice can be seen in
Fig. 2a. Some of the respondents gave explanations for their ratings. These were
clustered into categories (see Table 1).

Respondents reported about general challenges of applying additional US
during CT-guided interventions. Eight respondents stated that the US device
complicates the IR setting because of the additional equipment needed, higher
space demand, and sterility issues. Additional challenges reported by the radiol-
ogists include handling the US device, and an increase in the time spent during
procedures. Suggestions for an improved handling include a better integration
of the US device in the IR (e.g. attachment of probe to CT housing, wireless
probe, multifunctional display), intuitive probe handling, automatic scanning of
the target region, as well as live image fusion of CT and US images.

3.3 Potential Use Cases

Respondents ranked the application potential of anatomical structures on a rat-
ing scale matrix (see Fig. 2b). Explanations about rankings were given by some
of the radiologists which were clustered for analysis (see Table 1).

Radiologists reported that US imaging could be useful for puncturing super-
ficial lesions, in case of out-of-plane needle insertion, targeting small, hard, and
rounder anatomical structures, targeting moving lesions and identifying risk
structures. Six respondents highlighted liver puncture with a high potential for
US-guidance, with two respondents specifically stating liver lesions located in
the hilus and with subphrenic position.

3.4 HRI in the IR

Respondents were asked to rate different interaction methods with a robot-
guided US probe (6-DOF robotic arm) after giving them a theoretical scenario of
a CT-guided intervention (see Fig. 2c). Supportive explanations of positive rat-
ings (realistic and very realistic) of HRI-1 and HRI-2 were the expected intuitive
and direct control of HRI-1 and the assumed intuitiveness of HRI-2. However,
answers indicated concern in terms of sterility, expected inaccurate control, and
cumbersome handling of HRI-1 as well as expected error-prone control of HRI-
2. HRI-3 was rated with the least expected applicability with five respondents
assuming the control to be inaccurate and one expecting the method to be unre-
alistic due to lack of feedback. Two radiologists stated that they could not give
explanation for their rating due to their limited practical experience with the
interaction methods.
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Fig. 2. Survey results regarding the application of US during CT-guided interventions
in current clinical practice (a), potential use cases (b) and potential HRI with a robot-
guided US probe (c).

4 Discussion

The majority of radiologists reported to have been using US alongside CT imag-
ing during CT-guided interventions with the main motivation being the advan-
tage of real-time imaging of moving target lesions (e.g. kidney due to breathing,
lymph nodes) as well as superior imaging quality of certain anatomical structures
difficult to outline under CT imaging. As both modalities share the characteristic
of real-time imaging, we assume that US is preferably used in cases of poor soft
tissue contrast in intraprocedural CT images. This assumption can be confirmed
by the fact, that the soft tissue contrast in US is superior, especially for identi-
fication of lesions within abdominal organs [1]. This seems to be especially the
case for target lesions which are located within the liver, kidney and lymph nodes
as these anatomical regions were rated with the highest potential to be scanned
with US during CT-guided interventions. Although some anatomies show bad
visibility in US images for reasons such as artifacts caused by air, high tissue
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density, or due to the organs location, radiologists highlighted that imaging the
anatomy of the trajectory with US for e.g. risk structure identification could be
useful. Another main motivation for radiologists to use US as a complementing
imaging method, is in case of out-of-plane needle insertion (angulated trajec-
tory). Those trajectories are not in an axial body plane, hence they are not in
plane with the CT image slice. In these cases, detection of the needle tip under
CT imaging is challenging [7]. For CT-guided interventions with angulated tra-
jectory, US is a potentially superior imaging method because it is not bound
to any body plane. Even though, research has confirmed that the outcomes of
US-guided interventions in some cases are comparable or better to those of CT-
guided interventions [3,15], a minority of the respondents had not yet applied
additional US during CT-guided interventions. We assume that this is rather
an issue of clinical routine, training, and poor integration of the US device into
the IR. This assumption can be confirmed by comments made by respondents,
stating that an improved integration of the US device into the IR could lead to
a higher potential of using US for the purpose of needle guidance.

The survey results might not be an accurate representation due to the small
sample size of respondents, and the recruitment being limited to a single geo-
graphical location. In addition, the strict allocation of target lesions to nine
anatomical regions does not give precise information about application potential
of US for individual cases. Therefore the dependency of lesion location within one
anatomical region has to be further investigated. Analyzing possible HRI meth-
ods contained a theoretical scenario of a CT-guided intervention. It is assumed,
that most respondents have little to no practical experience with the proposed
interaction methods. In the future, practical user studies should be conducted.

5 Conclusion

In this paper, we have investigated the application potential of robot-guided US
for CT-guided interventions. The findings of the survey with radiologists indi-
cate that US imaging has the highest potential of being applied for puncturing
lesions within the liver and subcutaneous lymph nodes. Furthermore, there is
a high application potential for out-of-plane needle insertions, and anatomical
regions which have inferior soft tissue contrast in intraprocedural CT images.
Radiologists emphasized the characteristic of US to enable real-time imaging of
the target lesion, organ, and needle movement without radiation exposure to
be highly beneficial. Criteria for a potential application of a robot-guided US
regarding the integration into the IR, are an intuitive interaction method, a
space saving integration and an improved sterility concept.

Acknowledgments. This work was funded by the Federal Ministry of Educa-
tion and Research within the Forschungscampus STIMULATE under grant number
13GW0473A.
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Abstract. We present a method for classifying tasks in fetal ultrasound
scans using the eye-tracking data of sonographers. The visual attention
of a sonographer captured by eye-tracking data over time is defined by
a scanpath. In routine fetal ultrasound, the captured standard imaging
planes are visually inconsistent due to fetal position, movements, and
sonographer scanning experience. To address this challenge, we propose
a scale and position invariant task classification method using normalised
visual scanpaths. We describe a normalisation method that uses bound-
ing boxes to provide the gaze with a reference to the position and scale
of the imaging plane and use the normalised scanpath sequences to train
machine learning models for discriminating between ultrasound tasks.
We compare the proposed method to existing work considering raw eye-
tracking data. The best performing model achieves the F1-score of 84%
and outperforms existing models.

Keywords: Eye-tracking · Fetal ultrasound · Time-series
classification · Visual scanpath

1 Introduction

During routine fetal ultrasound scans, sonographers are required to capture and
store standard imaging planes of fetal anatomy [15]. These imaging planes are
referred to as anatomy planes. Each anatomy plane is considered a separate
task, for example brain and heart. To distinguish between the tasks, we use
eye-tracking data of the sonographers recorded while they performed the scan.
The eye-tracking data contains gaze information that allows us to analyse the
sonographer’s visual attention and scanpath during different parts of the scan,
where a scanpath is the path taken by the observer when observing a scene.

Using eye-tracking data for fetal ultrasound task classification is challenging
for several reasons. The dynamic movement of a fetus means that there are
numerous ways to find and capture an anatomy plane. As sonographers gain more
c© Springer Nature Switzerland AG 2021
J. A. Noble et al. (Eds.): ASMUS 2021, LNCS 12967, pp. 129–138, 2021.
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experience, they typically capture anatomy planes more quickly and efficiently,
resulting in fast transitions between planes. The size of the anatomy on the screen
is also dependent on what scale the sonographer views the image at. Due to these
changes in scale and position (Fig. 1), the scanpaths associated with different
tasks are not easily separable using simple discriminatory methods. Knowing
that anatomy planes have unique anatomical landmarks [5], we are motivated to
understand whether we can distinguish between the visual scanpaths of different
scanning tasks. When considering skill assessment of full-length scans, being able
to classify different scanning tasks at a given time is important. The aim of our
work is to understand if eye-tracking data is sufficient for the identification of
the fetal ultrasound task being performed.

(a) Abdomen
positioned on the
right.

(b) Abdomen
positioned in the top
right hand corner.

Fig. 1. Example of difference in position and scale
of an abdomen plane scan, where the image in a
and b differ in both scale and position.

Related Work. Current works
using scanpaths to classify tasks
use static representations of eye-
tracking data, for example num-
ber of fixations and fixation
duration [9]. Other works either
analyse tasks which use a sin-
gle image such as reading [7]
or generate a static representa-
tion by superimposing the over-
all task-specific scanpath onto
an image. Studies using scan-
paths consider only a handful of
entry points to reach their tar-
get [1] or use saccadic information for classification [8]. Such works are less
suitable for our application because of the numerous ways a sonographer can
capture an anatomy plane image (Fig. 1), and the uncertainty in identifying sac-
cadic movement accurately. Other studies [2,4,18] which use scanpaths in videos
utilise images as a data source. However, it is expensive to train models on image
data, and our work only considers eye-tracking which is more computationally
efficient.

Contribution. Our main contributions are the following. We propose a feature
engineering method using eye-tracking data that is able to account for the change
in scale and position of anatomy during the scan. We compare different time-
series classification models and use the best-performing model based on Gated
Recurrent Units (GRU) to perform task classification using visual scanpaths for
fetal ultrasound tasks.

2 Method

We present our proposed method for normalising scanpath with respect to scale
and position, and our proposed time-series classification model for differentiating
scanpaths of sonographers when searching for different anatomical structures.
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Scanpath Normalisation for Scale and Position Invariance. Raw gaze
points recorded by the eye-tracker along the x and y axis with respect to the
screen dimensions of 1980 × 1080 pixels are defined as Gx, Gy. Raw gaze points
normalised by screen dimensions of 1980 × 1080 pixels are defined as Gxs, Gys,
calculated as Gxs = Gx

1980 , Gys = Gy

1080 .
To provide the model with information of gaze point position relative to

the image, we normalise the gaze points with respect to the circumference of the
anatomy. We manually draw bounding boxes using [14] around the circumference
of the anatomy plane on a cropped (1008 × 784 pixels) image (shown as the red
box Fig. 2). We exclude all text and clipboard images to view the circumference
clearly. Then, we normalise the gaze points with respect to the corner positions
of the bounding box along the x and y axis: XL, XR, YT , YB where L, R, T
and B represent left, right, top and bottom, and the X and Y offsets (shown as
Xoffset, Yoffset in Fig. 2) created by using the cropped image, 427 and 66 pixels,
respectively. An example of this normalisation process is shown in Fig. 2. Raw
gaze points normalised by co-ordinates of a hand drawn bounding box on the
image are given as GxBB , GyBB (Eq. 1). An example of drawn bounding boxes
for the abdomen, brain and heart anatomical structures using the cropped image
is shown in Fig. 3.

GxBB =
Gx −XL −Xoffset

XR −XL
and GyBB =

Gy − YB − Yoffset

YT − YB
(1)

Fig. 2. An example showing how a raw gaze point (green) with co-ordinates Gx, Gy is
normalised with respect to the hand drawn bounding box (yellow). The point of origin
of the bounding box is given as the bottom left corner. (Color figure online)
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We use the bounding box to capture the difference in scale when viewing the
image by calculating the ratio of the screen that the anatomy occupies; a ratio of 1
is where the anatomy image occupies the entire screen. The area of screen occupied
by the bounding box (yellow box, Fig. 2) divided by the area of the cropped image
(red box, Fig. 2) is given as A. Our generated features are: GxBB , GyBB , A.

(a) Abdomen (b) Brain (c) Heart

Fig. 3. Example of manually drawn bounding boxes (in yellow) using [14] for cropped
abdomen, brain and heart plane images. (Color figure online)

2.1 Time-Series Classification of Scanpaths

Time-series classification can be generalised into several categories. We focus
on generative model-based methods as a baseline based on [1], which considers
the joint distribution of data such as a hidden Markov model (HMM). We also
consider whole series comparisons as another baseline, where each time-series is
compared to another using a chosen distance metric, for example a k-nearest
neighbours time series classifier (k-NN TSC) [10]. We propose the use of a stan-
dardised deep learning GRU model [3], which is a subset of recurrent neural
networks (RNN) that retains time dependencies between sequences. Long short-
term memory (LSTM) models are also a subset of RNNs and are similar to
GRUs. However, GRUs have been shown to return comparable performance to
the LSTM while requiring less specified parameters [20].

Baseline Comparisons. We compare our method to [1], as they classify video
clips of surgical tasks using eye-tracking data. They use a k-means clustering
algorithm to convert raw eye-tracking data into a discrete sequence consisting
of cluster membership numbers. For each task, a HMM was trained, and each
test sequence is scored against task specific HMMs, where the predicted class is
selected as the model which returns the highest logarithmic likelihood. We refer
to this model as HMM.

We also compare a k-nearest neighbours time series classifier (k-NN
TSC) [10], to investigate whether raw gaze points are better for task classifica-
tion compared to the coarse representation used in HMM. k-NN TSC calculates
the distance between each time series and classifies the time-series based on the
class most common amongst its k neighbours.

Parameter Selection. For HMM, we use the elbow method [19] to determine
the optimal number of clusters for k-means, and a Gaussian HMM with a full
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covariance matrix. k = 5. For k-NN TSC, we use dynamic time warping as our
distance metric based on previous works [2]. k = 2. For our GRU model, we use
RayTune’s [12] asynchronous successive halving algorithm (ASHA) [11] to tune
our hyperparameters. The hyperparameters are: 32 hidden layers, 2 recurrent
layers, 250 epochs, batch size = 4, dropout = 0.55 using an Adam optimiser
with a learning rate of 0.003, and a cross entropy loss function.

3 Data

The dataset used are second-trimester manually labelled abdomen, brain, and
heart planes as described in detail in [6]. The labelled data set contains the last
100 frames just before the sonographer freezes the video to take measurements of
the captured anatomy plane [6]. A clip is defined as a single instance where the
anatomy plane was searched for during a scan. We use sonographer eye-tracking
gaze data (Tobii Eye Tracker 4C) sampled 90 Hz.

We choose the abdomen, brain, and heart plane scans because the sonogra-
phers spent the majority of their time viewing these planes [16,17], and abdomen
and brain planes are considered easier to search for compared to the heart due to
differences in anatomy size. Hence, we would expect the scanning characteristics
between these anatomies to be distinct from each other. In total, there are 84,
160, 122 abdomen, brain and heart plane clips respectively. Our dataset con-
sisted of 10 fully qualified sonographers carrying out the ultrasound scan, and
76 unique pregnant women as participants.

Clips which were shorter than 100 frames because the difference in time
between the previous frozen segment and the next was less than 100 frames were
zero padded creating equal length time-series of 100 gaze points. Any missing
gaze points due to sampling discrepancies or tracking errors were interpolated.

4 Results

To increase the size of our dataset, we augmented the images by flipping the
images about the horizontal, vertical, and horizontal and vertical axis. We also
randomly down sampled the data with respect to the minority class, to prevent
bias towards the majority classes. Our final dataset has 336 abdomen, brain and
heart plane clips each. For training and testing we performed a 3-fold stratified
cross validation. We used 80% for cross validation and 20% for tuning model
parameters.

We used different sets of features (shown in Table 1) to demonstrate our pro-
posed method of using bounding boxes for normalisation and proposed model
performs better than current baseline models. Our classification results are
shown in Table 1. For ease of reference, we used an affix ‘Affix’ column of Table 1
to refer to the corresponding features used; raw for raw gaze points, scr for
gaze points normalised by screen dimensions, bb for gaze points normalised by
bounding box.
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Table 1 shows that our proposed feature engineering method to normalise
raw eye-tracking data and model performs better than previous works [1] and
several baselines, returning a weighted F1 score of 0.84.

Table 1. Comparison of weighted F1 scores and accuracies calculated using HMM [1],
k-NN TSC, GRU to classify abdomen, heart and brain plane clips. Affix refers to the
abbreviation for features used.

Model Affix Features Weighted-F1 Accuracy

HMM raw Gx, Gy 0.38 ± 0.20 0.49 ± 0.19

scr Gxs, Gys 0.38 ± 0.07 0.45 ± 0.09

k-NN TSC raw Gx, Gy 0.57 ± 0.05 0.57 ± 0.06

scr Gxs, Gys 0.55 ± 0.04 0.55 ± 0.04

scr+A Gxs, Gys, A 0.52 ± 0.05 0.54 ± 0.04

bb+A GxBB , GyBB , A 0.63 ± 0.03 0.64 ± 0.02

GRU raw Gx, Gy 0.56 ± 0.05 0.57 ± 0.05

scr Gxs, Gys 0.68 ± 0.04 0.67 ± 0.04

scr+A Gxs, Gys, A 0.72 ± 0.05 0.72 ± 0.05

bb+A GxBB , GyBB , A (ours) 0.84 ± 0.01 0.83 ± 0.01

Table 1 shows [1] is unable to classify fetal ultrasound tasks, where
HMM(raw) and HMM(scr) returns score metrics between 38% and 49%. Instead,
using k-NN TSC and GRU models improves the task classifier’s performance by
at least 20% - HMM(raw) and HMM(scr) versus k-NN TSC(raw) and k-NN
TSC(scr), GRU(raw) and GRU(scr) respectively.

Fig. 4. Confusion matrix of our GRU
model normalised with respect to total
number of clips per anatomy plane in the
test set (106 clips).

Normalisation using the bound-
ing box shows an improvement of at
least 10% (Table 1 GRU(scr+A) ver-
sus GRU(bb+A), k-NN TSC(scr+A)
versus k-NN TSC(bb+A)), returning
a final F1 score of 84%. There is
a slight decrease (1%–3%) in per-
formance when including the size of
the anatomy relative to the screen
for models k-NN TSC, but a slight
increase (4%) for GRU using scr and
scr+A. GRU is better able to use
the anatomy size information com-
pared to k-NN TSC. Overall, normal-
ising gaze points with respect to the

anatomy circumference is more relevant of task type, compared to how much
space the anatomy occupies on the screen.



Task Classification of Fetal Ultrasound Scans using Eye-Tracking Data 135

The confusion matrix for our GRU(bb+A) model is shown in Fig. 4. Figure 4
shows that abdomen scanpaths are more likely to be confused with brain and
heart scanpaths, where 13% and 20% of abdomen scanpaths are misclassified as
heart and brain scanpaths. Brain scanpaths are also more likely to be confused
with abdomen scanpaths, where 12% are predicted as abdomen scanpaths. Heart
scanpaths are most distinct, where only 3% are misclassified.

Class Imbalance Models. Since our initial dataset was unbalanced, where
we had the most number of clips available for brain scanpaths and the least
for abdomen scanpaths, we ran the GRU(bb+A) model using the focal loss
[13] function which accounts for class imbalance when training the model. We
compared the results using our original cross entropy loss which did not. We also
compared the effect of augmenting our dataset.

Table 2. Weighted F1 scores and accuracies using our proposed GRU model compar-
ing the original, downsampled (DS) and augmented (Aug) datasets. (i) original, (ii)
original downsampled (iii) original, augmented and downsampled (our proposed model
in Table 1) and (iv) original, augmented datasets for classification of abdomen, brain
and heart planes.

Dataset Loss function Weighted-F1 Accuracy

(i) Original Focal loss 0.81 ± 0.01 0.81 ± 0.02

(ii) Original + DS Cross entropy 0.79 ± 0.04 0.78 ± 0.05

(iii) Original + Aug + DS (proposed) Cross entropy 0.84 ± 0.01 0.83 ± 0.01

(iv) Original + Aug Focal loss 0.83 ± 0.01 0.81 ± 0.02

Our results in Table 2 show that using an augmented dataset does not affect
the performance when comparing the balanced (iii) and imbalanced (iv) datasets.
The effect of using the downsampled dataset is seen when considering a smaller
dataset (ii) (drop of 2–3%). Using focal loss returns more consistent results than
that of using cross entropy, where the original dataset (i) returns a lower standard
deviation across folds compared to the downsampled dataset (ii). Overall, for
our application, using an augmented downsampled dataset did not affect the
performance of our model negatively (iii) and (iv), but increasing the size of our
dataset through augmentation improved performance by 4–5%.

5 Discussion

A qualitative investigation was performed to understand why brain and heart
scanpaths are more likely to be confused with abdomen scanpaths, and why
abdomen and brain scanpaths are more misclassified with each other compared
to the heart. We show the qualitative investigation plot for abdomen scanpaths
(Fig. 5) since they show the highest percentage of misclassification. Figure 5 shows



136 C. Teng et al.

a contour density plot (left) of training and correctly classified abdomen plane
gaze points GxBB , GxBB with cumulative density masses at 4 equally spaced lev-
els 0.2, 0.4, 0.6, 0.8 where 0.2 is the outer most contour and 0.8 is the inner most
contour. The bi-variate distribution was calculated by superimposing a Gaussian
kernel on each gaze point and returning a normalised cumulative sum. Figure 5
also shows abdomen scanpaths (right) which were incorrectly classified as a brain
(orange) or heart (blue) scanpath.

Fig. 5. Contour density plot of GxBB , GxBB (left), and abdomen scanpaths which
were incorrectly classified as brain (orange, i and ii) or heart (blue, iii and iv) scanpath
represented (right). (Color figure online)

Figure 5 shows that for abdomen planes, sonographer scanpaths are concen-
trated within the central area of the anatomy. However, for abdomen scanpaths
predicted as heart, the sonographer focused on a single area (Fig. 5, iii and iv)
similar to how sonographers visually search for the heart. For scanpaths pre-
dicted as brain, the sonographer moved the probe, causing their gaze to shift
accordingly with the image (ii), or had moved their gaze across the screen (i)
similar to how sonographers search for the brain.

For misclassified brain scanpaths, the image was small and occupied <50% of
the screen, and the sonographer did not focus along the midline horizontally but
diagonally across the plane. Misclassified heart scanpaths showed that the image
itself was moving, indicating that the probe was moving, causing the sonographer
to shift their gaze accordingly or the sonographer was looking around the walls
of the heart cavity.

6 Conclusion

In this paper, we have presented a method for normalising eye-tracking data with
respect to the circumference of the anatomy which is able to account for changes
in position and scale of the anatomy image during the scan. With our method,
we have improved task classification using eye-tracking data score metrics by
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at least 15% compared to other methods. We also present a GRU model which
performed better than other classification methods such as using k-means and
HMM [1], or k-NN TSC, showing an improvement of at least 20% in accuracy.

Acknowledgements. We acknowledge the ERC (Project PULSE: ERC-ADG-2015
694581) and the NIHR Oxford Biomedical Research Centre.
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Abstract. View classification is a key initial step for the analysis of
echocardiograms. Typical deep learning classifiers can make highly con-
fident errors unnoticed by human operators, consequential for down-
stream tasks. Instead of failing, it is important to create a method that
alarms “I don’t know” to inform clinicians of potential errors when faced
with difficult or novel inputs. This paper proposes Efficient-Evidential
Network (Efficient-EvidNet), a lightweight framework designed to clas-
sify echocardiogram views and simultaneously provide a sampling-free
uncertainty prediction. Evidential uncertainty is used to filter faulty
results and flag out the outliers, hence, improving the overall perfor-
mance. Efficient-EvidNet classifies among 13 standard echo views with
91.9% test accuracy, competitive with other state-of-the-art lightweight
networks. Notably, it achieves a 97.6% test accuracy when only reporting
on data with low evidential uncertainty. Further, we propose improved
techniques for outlier detection, reaching a 0.97 area under the ROC
curve for differentiating between cardiac and lung ultrasound, for which
the latter is unseen throughout the training. Efficient-EvidNet does not
require costly sampling steps for uncertainty estimation and uses a low
parameter neural network, providing two key features that are essential
for real-time deployment in clinical scenarios.

Keywords: Uncertainty estimation · Evidential deep learning · View
classification · Echocardiography

1 Introduction

Trans-thoracic echocardiography (echo) is a commonly used imaging modal-
ity to examine cardiac function and a key to many diagnostic procedures. The
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emergence of new low-cost portable transducers allows ultrasound in point-of-
care (POCUS) settings, markedly improving the accessibility of care. However,
the training required to use POCUS effectively is a barrier to broader adop-
tion. Thus, there is a significant demand for automating echo image acquisition
and analysis. Deep learning (DL) methods can automate important examination
components, such as segmentation, diagnosis of common cardiovascular diseases,
and ejection fraction estimation [3,5,8,10].

Designing such automated systems is challenging since clinical labels can
be uncertain: echo image acquisition is highly operator dependent, commonly
resulting in out-of-distribution (OOD) data points. While experienced clinicians
can assess the confidence of their decisions and choose not to diagnose when input
is ambiguous, most existing DL solutions for automatic echo analysis lack such
capability. Additionally, high prediction confidence does not necessarily imply
correctness [13], which can cause critical errors to go unnoticed during patient
care. Uncertainty estimation techniques allow algorithms to say “I don’t know”
in ambiguous contexts. It is specifically crucial for the POCUS environment
which presents more ambiguous and/or OOD inputs due to echo acquisition by
more novice operators and varied scanning settings.

2 Related Works and Limitations

Echo View Classification: Echo can be acquired from several standard views.
View classification is typically a pre-processing step prior to further diagnosis in
works such as Stanford’s seminal EchoNet [5]. This study focuses on the 13 most
widely captured standard echo views illustrated in Fig. 1. Echo view classifica-
tion algorithms often focus on using Convolutional Neural Networks (CNNs),
CNN+LSTM, 3D convolutions, and optical flow [4,7,14,20]. While accurate,
these approaches use large models and have long inference times. Recently,
lightweight networks for view classification are presented for reducing the infer-
ence time and storage requirements [17,24]. The goal of these works is to enable
real-time deployment of computer-assisted echo analysis. However, to the best of
our knowledge, all the previous works focus on classification, ignoring the task’s
inherent uncertainties.

Uncertainty Estimation in Deep Learning: Uncertainty estimation tech-
niques fall under sampling-based and sampling-free categories. Sampling-based
methods consider uncertainty as caused by both inherent randomness in data
(aleatoric) and the unavailability of data during training (epistemic). They
infer with an ensemble of networks [12] or simulate such by using test-time
dropout [11,16], then estimate uncertainty through disagreement of the ensem-
ble. As a result, the inference is lengthy. Sampling-free methods capture uncer-
tainty by estimating data distribution density and exploiting the inherently prob-
abilistic nature of predictions. These include radial basis function networks [23],
orthonormal certificates [21], Dirichlet prior networks [15], and evidential neu-
ral networks [1,19]. Not requiring multiple runs of the algorithm to obtain
uncertainty improves runtime with the tradeoff typically being the inability to
separate aleatoric from epistemic uncertainty.
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Fig. 1. The standard echo views included in this study.

Our Contributions: Current state-of-the-art (SotA) uncertainty estimation
uses sampling with large neural networks. These are costly in time and compu-
tational resources, and unsuitable for POCUS deployment. We propose Efficient-
EvidNet, building on evidential neural networks (ENN) for echo view classifica-
tion and sampling-free uncertainty quantification, to drastically reduce the num-
ber of highly confident yet erroneous predictions. The contributions of this work
are as follows: 1) design of Efficient-EvidNet, a lightweight evidential classifier
with sampling-free uncertainty; 2) performance evaluation of Efficient-EvidNet;
3) demonstration of robust OOD detection for nonstandard cardiac views and
lung ultrasound images; and 4) ablation study of the method to compare against
SotA softmax methods for echo view classification.

3 Proposed Method: Efficient-EvidNet

3.1 Background: Evidential Deep Learning

Evidential neural networks for classification predict a Dirichlet distribution over
the space of p [19]. The Dirichlet distribution is parameterized by length-K
vector α, and is given by:

D(p|α) =

{
1

B(α)

∏K
k=1 pαk−1

k , if p ∈ SK

0, otherwise
, (1)
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where SK denotes the K-dimensional probability simplex, and B(α) is the multi-
nomial beta function. The typical softmax approach directly estimates p. Using
D(p|α) as a second-order distribution instead of direct estimation offers a greater
space to model uncertainty. The Dirichlet distribution is an analogue to sub-
jective logic theory where a fundamental notion of uncertainty exists [9]. The
parameters α are linked to the evidence ek of a data point belonging to a cer-
tain class. The ENN finds evidence of the data point belonging to each class and
updates α. Unlike classical probability, the sum of belief masses bk for each class
is not necessarily one, which allows the uncertainty u to be quantified. α, belief,
and uncertainty can be computed from evidence as follows:

αk = ek + 1, S =
K∑

k=1

αk, bk =
ek

S
, u =

K

S
= 1 −

K∑
k=1

bk. (2)

The output prediction p̂k is simply the expected probabilities: p̂k = E[pk] =
αk

S . For example, D(p|α = [1, 1, 1]) represents every configuration of p ∈ SK

being equally probable due to zero evidence, with b = 0, p̂k = 1
3 and u = 1.

A distribution with concentrated evidence like D(p|α = [10, 1, 1]) predicts the
first class with high probability, and D(p|α = [10, 1, 10]) leads to a conflicting
prediction between class 1 and 3.

To train the ENN, we minimize the sum-of-squares loss function between the
ground truth y and predicted p (Eq. 3). Intuitively, this translates to simultane-
ously minimizing the prediction error and Dirichlet variance.

Li(yi,pi|Θ) =
∫

‖yi − pi‖22
1

B(α)

K∏
j=1

p
αij−1
ij dpi

=
K∑

j=1

(y2
ij − 2yijE[pij ] + E[p2ij ]) =

K∑
j=1

(yij − E[pij ])2 + V ar[pij ].(3)

3.2 Methodology

Network Architecture: Our approach combines EfficientNet [22], a high per-
formance, low-parameter CNN with the evidential output to produce D(p|α);
the proposed methodology is called Efficient-EvidNet (Fig. 2). From D(p|α), it
is easy to extract p̂k and uncertainty. The network is trained on echo images
from 13 standard views and some nonstandard views. The uncertainty from
Efficient-EvidNet can be used to inform clinicians of the network’s confidence,
or reject results when the confidence is too low to encourage clinicians to acquire
a higher-quality image. The methodology’s lightweight and sampling-free nature
enables faster feedback to clinicians for prediction and reporting uncertainty.

Training: We present two findings that were helpful in training ENNs. First,
class balance in ENNs should be addressed by oversampling classes with less data
such that each class appears equally frequently. A loss function weighting app-
roach for class imbalance works for softmax but fails for evidential. Secondly, to
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Fig. 2. Block diagram of the proposed approach.

Table 1. Parameter count for lightweight networks used in experiments. MobileNetV1
and Knowledge Distillation are included for comparison with [17,24].

Model DenseNet-121 EfficientNet-B0 MobileNetV2 MobileNetV1 Knw. Distill.

# of params 7.9M 5.3M 3.4M 4.2M 0.4M

improve OOD detection capability we use an approach inspired by Outlier Expo-
sure (OE) [6], where nonstandard view images are used as exemplar outliers. The
network is trained to produce D(p|[1, .., 1]) for OOD examples, a natural outcome
stemming from lack of evidence for any given class. Setting the second-order dis-
tribution to be uniform is more intuitive compared to the original OE approach,
which demands p̂k = 1

K ∀ k when there is no evidence of the outlier for any
class. Equation (4) denotes total loss with D and DOE being the in-distribution
and outlier exposure data, respectively, and DKL denoting Kullback-Leibler diver-
gence. Regularization λr is added to reduce excess evidence predictions; the term
α̃i = yi+(1−yi)�αi denotes the Dirichlet after evidence relating to the majority
class is removed. We use λr = 0.1 as done in [19], and λOE = 1 but with weighted
sampling such that |DOE | = 1

13 |D| to be in proportion with other classes:

L(Θ) =
N∑

i=1,i∈D
Li(yi,pi|Θ) + λrDKL[D(pi|α̃i)||D(pi|[1, .., 1])]

+λOE

M∑
j=1,j∈DOE

DKL[D(pj |αj)||D(pj |[1, .., 1])]. (4)

4 Experiment

We compare performance of Efficient-EvidNet with three SotA lightweight net-
work structures (DenseNet-121, EfficientNet-B0, and MobileNetV2), and inves-
tigate the effect of using the evidential function and outlier exposure technique.
The number of parameters can be found in Table 1.
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Table 2. Number of data points for each echo view class.

View # of cines View # of cines View # of cines View # of cines

A2C 1928 PLAX 2747 PSA 2126 SUPRA 76

A3C 2095 RVIF 373 PSM 2265 Outlier 238

A4C 2166 SUB4C 759 PSPM 823

A5C 541 SIVC 718 PSAP 106

4.1 Dataset and Implementation Details

Dataset: Echo data used in this paper are agglomerated from several studies at
Vancouver General Hospital with approval from the Information Privacy Office
and Clinical Medical Research Ethics Board. The data are extracted randomly
from the hospital picture archiving system and contain 16612 cines (videos) aver-
aging 48 frames in length each from 3151 unique patients diagnosed with various
heart diseases. The dataset contains cines acquired by six devices: GE Vivid 7,
Vivid i, Vivid E9, Philips iE33, Sonosite and Sequoia. An experienced cardi-
ologist examined and labelled the echo view of acquired cines belonging to the
13 different views (Fig. 1). The view distribution is shown in Table 2. The data
are split into training/validation/test sets with ratio of 70%/20%/10%, based
on mutually exclusive patients. We pose the view classification task as predict-
ing the view of single frames from the cines. This is more challenging compared
to other approaches that classify videos. However, here we need to constrain
the problem to image-level to resemble real-time deployment in POCUS with
limited hardware resources. To test OOD detection, we use a public lung ultra-
sound (US) image dataset as OOD data. The lung US dataset is compiled by
Born et al. [2] for the purpose of COVID-19 detection; it contains lung images
from varying angles of anonymous patients with either COVID-19, pneumonia,
or no symptoms.

Implementation Details: We use the Adam optimizer with β = (0.9, 0.999)
and lr = 2.5e−4. We train networks for 30 epochs and exponential lr decay =
0.95, initializing from pre-trained ImageNet weights. For training data augmen-
tation, the images are resized to 256× 256 and rotated randomly by ±5◦. Then,
a 224 × 224 region is cropped randomly to match the network input dimension.
For validation and testing, the image is simply resized to 224 × 224 pixels.

Metrics: For each experiment we measure the classifier accuracy and the OOD
detection performance of the uncertainty metric, a scalar in [0, 1]. For the soft-
max approach, the metric is confidence p̂k of the chosen class, for evidential
the metric is u from Eq. (2). OOD AUC is the area under the receiver operat-
ing characteristic curve (AUROC) of classifying standard cardiac views versus
nonstandard views and lung ultrasound using the uncertainty as a threshold.
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Table 3. Results for ablation experiments and comparison to previous works featuring
lightweight networks. Best results for each category are in bold.

Experiment Accuracy OOD AUC Experiment Accuracy OOD AUC

MobileNet+SM 90.8 90.4 DenseNet+SM 90.4 93.7

Mobile+SM+OE 89.7 95.7 DenseNet+SM+OE 89.8 96.6

MobileNet+Evid 89.1 87.0 DenseNet+Evid 87.6 82.2

Mobile+Evid+OE 85.5 96.9 DenseNet+Evid+OE 87.9 96.9

Knw. Distill 89.0 – EffNet+SM 91.4 90.1

MobileNetV1 88.1 – EffNet+SM+OE 89.3 97.0

EffNet+Evid (Proposed) 91.9 91.1

EffNet+Evid+OE 89.4 97.0

4.2 Results and Discussion

Functionality of the Evidential Output. For most cases, the accuracy of
softmax (denoted SM in Table 3) is competitive with evidential without reject-
ing uncertain samples (Table 3). The rejection-based accuracy diverges as more
data points are filtered (Fig. 3). Evidential uncertainty is more expressive at
the top-end since the asymptotic relationship between u and evidence saturates
slower compared to the exponential relationship between softmax confidence pk

and logits. The increased expressiveness of evidential uncertainty leads to more
complete characterization of the error/rejection rate curve compared to softmax,
where a majority of predictions for test data exceed the 0.98 confidence mark.

Choosing the Uncertainty Rejection Threshold. In practice, we need to
define a point on the rejection/accuracy curve for the model to operate. For the
softmax approach, the rejection point is where confidence is lower than 0.98. For
evidential the rejection point is chosen by selecting the optimum threshold on
the validation set using knee point detection [18] (Fig. 3). For most ablations, the
evidential elbow point is located at a higher rejection rate than softmax. Figure 5
shows performance for each class before and after accounting for rejection.

When is the Model Uncertain? Many parasternal window images report
higher uncertainties. This could be due to a higher degree of geometric similar-
ity between the mid-level parasternal views (PSM/PSPM/PSAP). Images with
lower visual resolution where anatomical features are shown less prominently, or
images with ambiguous visual geometry (such as A4C displayed in Fig. 4) have
higher uncertainty. Most of the lung ultrasound images are correctly flagged
as outliers based on uncertainty. For both softmax and evidential, adding out-
lier exposure slightly decreases the baseline test accuracy, but greatly boosts
the OOD detection capability. Overall, Efficient-EvidNet is proposed for its high
accuracy at baseline and with rejection. Efficient-EvidNet+OE is suggested when
stronger OOD detection is required.
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Fig. 3. Validation/test accuracy plotted for
100 uncertainty thresholds evenly spaced
between [0, 0.99]. Dots indicate the thresh-
old selected on the validation set, then
applied on the test set.

Fig. 4. Visual samples of low uncer-
tainty (left column) vs high uncer-
tainty (right column) images.

Fig. 5. View classification confusion matrix at the baseline accuracy (left) and rejection
point accuracy (right).

5 Conclusion

Evidential deep learning can be a powerful alternative to softmax, providing
sampling-free uncertainty quantification and outlier detection, both of which are
very helpful in real-life data acquisition scenarios. We adopt the principles of
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evidential learning to several SotA architectures and propose Efficient-EvidNet,
using EfficientNet-B0 as a backbone with outlier exposure-augmented training.
Efficient-EvidNet reaches 97.6% accuracy in echo view detection by automati-
cally detecting and rejecting 19.5% of data with the highest evidential uncer-
tainty. Future work includes extension of the proposed methodology to down-
stream tasks such as segmentation and automated cardiac diagnosis.
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Abstract. Analysis of cardiac ultrasound images is commonly per-
formed in routine clinical practice for quantification of cardiac function.
Its increasing automation frequently employs deep learning networks
that are trained to predict disease or detect image features. However,
such models are extremely data-hungry and training requires labelling
of many thousands of images by experienced clinicians. Here we pro-
pose the use of contrastive learning to mitigate the labelling bottleneck.
We train view classification models for imbalanced cardiac ultrasound
datasets and show improved performance for views/classes for which
minimal labelled data is available. Compared to a näıve baseline model,
we achieve an improvement in F1 score of up to 26% in those views while
maintaining state-of-the-art performance for the views with sufficiently
many labelled training observations.

Keywords: Contrastive learning · Classification · Echocardiography

1 Introduction

Echocardiography is widely and routinely used for assessing heart function and
for the diagnosis of several conditions, such as heart failure and coronary artery
disease [13]. In a routine echocardiographic study, multiple views of the heart are
obtained to show different parts of the heart’s internal structure, i.e. the ventri-
cles, atria and valves—see Fig. 1. However, not all views are used in subsequent
analysis of the echocardiograms depending on the cardiac function being assessed
or the type of disease being investigated [13]. Therefore, an important initial step
in any automated analysis pipeline is the accurate detection of standardised car-
diac views shown on each echocardiogram. Frequently, further analysis—usually
performed with proprietary analysis software—focuses on left ventricular func-
tion [17]. Often only the three apical views of the heart are assessed, which show
c© Springer Nature Switzerland AG 2021
J. A. Noble et al. (Eds.): ASMUS 2021, LNCS 12967, pp. 149–158, 2021.
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Fig. 1. Examples of different echocardiography views used including the 2/3/4/5 cham-
ber apical, parasternal long-axis (PLAX), short-axis (SAX) at papillary muscle, right
ventricular (RV) and suprasternal notch (SSN) views. The top row shows images
obtained after injection of a microbubble contrast agent, causing a near inversion in
image contrast, whereas the lower two rows show non-contrast images.

slices through the left ventricle. However, it is still important for a view classifier
to be aware of the entire cardiac anatomy so that it does not misclassify views
it has not been trained on. This is challenging because it requires large training
datasets with appropriate labels. Furthermore, when assessing certain cardiac
conditions, the injection of a microbubble contrast agent is used to better high-
light the boundaries of the left ventricular wall [20]. This changes the image
appearance completely and effectively inverts the image contrast. Hence, these
views cannot be classified without contrast enhanced data also being labelled
for model training. The ability to correctly classify contrast images thus requires
double the labelling effort.

View classification on echocardiographic data has previously been achieved
using convolutional networks [8,18,22] that take as input an image and predict
one of the possible views that were present in the training label set for that
network. For the commonly acquired echocardiographic views, such as the api-
cal four-chamber view, labelled data for model training is available even in some
public datasets [14,19]. However, for less commonly acquired views, with or with-
out contrast enhancement, it is time-consuming and expensive to acquire labels
and thus, datasets are often highly imbalanced. To tackle data imbalance, train-
ing classifiers may require under-sampling the majority classes and specialised
cost functions [10] or augmentations with synthetically generated data [1].
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In this paper, we investigate the problem of view classification in cardiac
ultrasound images and attempt to improve the classification accuracy of convo-
lutional neural networks, especially on under-represented classes, with the use of
contrastive learning. Contrastive learning is a pre-training methodology, which
improves learning of features useful for classification tasks through a contrastive
loss. The contrastive loss clusters similar images together (positive pairs) and
pushes different images away (negative pairs). This can be entirely based on self
supervision for example when positive pairs consist of different augmented ver-
sion of an image (SimCLR [6]) or, when in addition to augmentations, positive
pairs also use supervision to include images of the same label (SupCon [11]).
This has proven successful in computer vision tasks for instance for ImageNet
sample classification [6].

Furthermore, although cardiac ultrasound data consist of videos, view clas-
sification is typically performed per-frame as a 2D classification problem. For
videos, unsupervised contrastive learning, such as SimCLR, is not directly appli-
cable as also discussed in [7]: if multiple frames of the same video end up in the
same batch, then the negative pairs of a frame will include other frames of the
same video. This would hinder the ability of the contrastive loss to only cluster
similar images together, since different video frames would generate a higher loss
value. We therefore adopt the supervised contrastive loss [11], which does not
suffer from this limitation. Our contributions are the following: (a) we apply con-
trastive classification neural networks to cardiac ultrasound, and (b) we evaluate
in a dataset of contrast and non-contrast enhanced echocardiographic images col-
lated from public and proprietary sources and show improved results when using
the proposed contrastive framework for views which have fewer labelled training
observations.

2 Related Work

Standard plane/view detection has been previously studied in fetal ultrasound
with supervised deep learning models, such as SonoNet [2], multi-scale DenseNet
[12], and convolutional networks finetuned with transfer learning [5] or trained
with additional tasks to predict attention maps and adversarial training [3].
In echocardiography, inception [18] and VGG [22] networks have been used
to predict several views or subclasses of views, although not applied on con-
trast echo data. Typically, contrast-enhanced images are used in isolation, for
example to extract myocardial segmententations [15,16]. Most recently, high
view classification accuracy was reported by a convolutional network applied
on mixed microbubble contrast-enhanced and non-contrast data from a multi-
vendor site [8].

Given sufficiently large datasets, supervised training of convolutional net-
works is successful in accurate view detection. However, network initialisa-
tion is important to facilitate convergence, and therefore pre-training methods
using self-supervision with different augmented views of the same image [6] or
labels [11] are investigated to improve computer vision classification tasks, such
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Fig. 2. Schematic of the baseline and contrastive models. (a) The baseline model archi-
tecture consists of a fully convolutional encoder and a fully connected classifier, and is
trained with full supervision. (b) The contrastive model pre-trains the encoder using a
projection network and a contrastive loss. The contrastive loss considers positive pairs
if these are different augmentations of the same image or belong to the same class, and
negative pairs otherwise.

as on the ImageNet dataset. Contrastive learning has also been used in the medi-
cal domain, for instance to improve segmentation performance on MRI images [4]
or to learn joint representations of ultrasound videos and speech [9].

3 Methodology

Given an image x of view yk, where k ∈ [1, 13], corresponding to 13 classes of
commonly acquired views with or without contrast, we consider a 2D baseline
classification neural network c(x) to detect per-frame view labels. This network
maps input images through five convolutional blocks, each containing two convo-
lutional layers followed by batch normalisation and a ReLU activation function,
and a max pooling layer, to a vector representation, which is then processed
by two fully connected layers to generate a view label prediction. This model
architecture, which was used in an eight-class form in [8], is designed so that it is
sufficiently small and effective on standard view classification and can be seen in
Fig. 2a. Training is performed with the categorical cross entropy loss described
as follows:

Lview = −
13∑

k=1

yklog(c(x)).
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A contrastive learning framework is then implemented as per the SupCon [11]
methodology as follows: we split the baseline model into a fully convolutional and
a fully connected sub-model, which are used as an encoder f(.) and classification
network h(.), respectively so that c = h ◦ f . We add a projection network g(.),
which projects the encoded features z = f(x) into a representation x̂ = g(z).
The projection x̂ is used as an input to the contrastive loss that pre-trains the
encoder. Finally, the classification network h(.) learns a mapping of the encoded
features to their corresponding labels and is trained on a second stage following
the encoder pre-training, whilst keeping the encoder weights fixed. A schematic
of the framework is shown in Fig. 2.

The contrastive learning process is more formally described as: given N
randomly augmented images {xi}N

i=1, we first obtain a batch of 2N images
B = {1 . . . 2N} by applying a second augmentation. For every image xi in the
batch, and its projection x̂i = g(f(xi)), there are also Mi other images of the
same label in the set Pi = {xj}Mi

j=1. According to [11] the supervised contrastive
loss is defined as:

Lsupcon =
∑

i∈B

−log

⎧
⎨

⎩
1

Mi

∑

j∈Pi

exp(x̂ix̂j/τ)∑
α∈B\i exp(x̂ix̂α/τ)

⎫
⎬

⎭ ,

where τ controls the temperature scaling of the softmax. We set τ = 1000 as
per [11] and use brightness and contrast augmentations, as well as rotations to
30◦ and spatial translations at up to 10% of the image dimensions.

3.1 Data

The dataset used in this work comprised of anonymised 2D echocardiograms from
multiple sites. The dataset is composed of data from EVAREST [21], a multi-
site, multi-vendor UK trial, some data from the EchoNet public dataset [19],

Table 1. Description of the training and test dataset.

Contrast View Training set Test set

Subjects Echocardiograms Images Subjects Echocardiograms Images

✓ 2 ch. 711 1401 41603 139 276 5784

✓ 3 ch. 699 1377 41432 139 276 5763

✓ 4 ch. 704 1375 41214 138 274 5684

✓ plax 85 85 4547 9 9 560

✓ sax 607 1179 34387 138 275 5649

✗ 5 ch. 165 165 14714 18 18 1832

✗ plax 383 383 33969 42 42 3542

✗ rv 52 52 6521 5 5 703

✗ ssn 55 55 3483 6 6 336

✗ 2 ch. 314 544 26613 126 217 7061

✗ 3 ch. 364 605 32263 135 226 8662

✗ 4 ch. 332 556 28569 130 205 7938

✗ sax 229 437 17704 98 187 4234



154 A. Chartsias et al.

and some proprietary data from other imaging sites. The final dataset is split
into a training and a test set of echocardiograms corresponding to 1,538 and 359
subjects, respectively. The total number of image frames contained in these data
is 327,019 for the training set and 57,648 for the test set. Each echocardiographic
video was labelled into one of 13 classes, which cover a set of standard cardiac
views with or without microbubble contrast. The classes are shown in the first
and second columns of Table 1 along with the number of subjects, echocardio-
grams and images present for each view.

Images were extracted from DICOM or AVI files and were pre-processed to
remove all text information and annotations outside the ultrasound sector, so
that the dataset contains only the images within the ultrasound sector.

As part of the EVAREST trial data, the dataset contains echocardiograms
obtained with the patient at rest and with patients subjected to exercise or
pharmacological stress. Heart rates vary from 45 to 150 and the number of
heartbeats per scan are between one and three. The inclusion of stress echo
data ensures that a range of image qualities is present in the dataset as stress
echocardiograms tend to include images of poor image quality.

4 Experiments and Discussion

4.1 Experimental Setup

Prior to being fed into the network, image frames are resized to 192 × 192 pixel
size, z-score normalised, and rescaled to [0, 1] range. The model and pipeline was
developed in Python 3.7.7 with Tensorflow 2.2 and training was performed on
four Nvidia GeForce RTX 2080 Ti GPUs with 11 GB VRAM each.

The baseline and contrastive learning methods were trained using Adam with
batch size 641 and learning rate equal to 0.0001 on a 8-fold cross-validation with
the validation set containing 10% of the training dataset’s echocardiograms.
Training stopped using an early stopping criterion based on the validation set.

We train models using all 13 view classes in two scenarios: one using all data,
and then one with reduced data of around 50 echocardiograms per class, chosen
at random. We report the mean F1 score, precision and recall across the different
validation splits and a held out test set that is common across the different splits.

4.2 Classification Performance

Table 2 shows the mean and standard deviation of F1 score, precision and recall
for the experiments on the full and reduced datasets. Both methods perform
equally well on the dataset of 50 echocardiograms per class, which is balanced.
We observe an improvement in test F1 score on the full dataset, which increases
from 0.874 to 0.892, and smaller standard deviations in precision and recall.

Table 3 reports the per-class test F1 score for the two datasets. When assess-
ing the per-class classifier performance, it can be seen that the contrastive
1 The effective batch size is 128, since every image is augmented twice in a batch.
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Table 2. Classification results (mean and standard deviation) of baseline and con-
trastive models on validation (taken from 10% of the training set) and test sets using
two datasets containing all data and 50 echocardiograms per class, respectively.

Dataset Method Validation set Test set

F1 Score Precision Recall F1 Score Precision Recall

50 echocardiograms Baseline 0.794.02 0.780.02 0.837.01 0.765.02 0.756.03 0.820.02

per class SupCon 0.800.01 0.787.02 0.833.01 0.775.01 0.770.02 0.825.01

Baseline 0.911.02 0.924.03 0.902.02 0.874.01 0.896.02 0.880.02
All data

SupCon 0.915.02 0.928.01 0.908.02 0.892.01 0.907.01 0.896.01

Table 3. Classification results (mean and standard deviation) per class. The first
column indicates whether the images have contrast or not. Results show the F1 score
on the test set for two experiments using different training set sizes, with the number
of studies for each view shown. Highest differences are marked in bold.

Cont View Size Baseline SupCon %Diff Size Baseline SupCon %Diff

✓ 2 ch. 50 0.693.03 0.702.02 1.24 677 0.866.01 0.870.01 0.42

✓ 3 ch. 50 0.811.02 0.811.03 0.02 664 0.966.00 0.968.00 0.22

✓ 4 ch. 50 0.758.07 0.737.06 −2.73 672 0.888.00 0.896.01 0.99

✓ plax 50 0.608.16 0.733.05 20.61 68 0.570.08 0.719.09 26.08

✓ sax 50 0.926.04 0.946.01 2.22 570 0.985.00 0.986.00 0.12

✗ 5 ch. 50 0.546.05 0.542.04 −0.76 132 0.660.05 0.706.05 6.98

✗ plax 50 0.952.03 0.959.02 0.83 306 0.972.01 0.974.01 0.15

✗ rv 42 0.358.06 0.363.06 1.45 42 0.632.12 0.697.09 10.26

✗ ssn 44 0.700.06 0.679.04 −3.03 44 0.990.03 0.952.04 −3.88

✗ 2 ch. 50 0.857.01 0.856.01 −0.04 269 0.939.00 0.934.01 −0.54

✗ 3 ch. 50 0.912.01 0.910.01 −0.24 319 0.967.01 0.969.00 0.22

✗ 4 ch. 50 0.879.01 0.877.01 −0.23 287 0.937.01 0.936.01 −0.06

✗ sax 50 0.951.01 0.963.01 1.27 213 0.988.00 0.989.00 0.10

training has minimal effect for the model trained on 50 echocardiograms per
class. When training on the full dataset, classes which have a larger number of
training data show similar or marginal improvement in performance in the test
set. However, classes with substantially less training data, such as the contrast
PLAX view, non-contrast 5-chamber view, and the non-contrast right ventricular
(RV) view show greater improvement when using contrastive learning. The non-
contrast suprasternal notch (SSN) view shows a 4% reduction but both baseline
and contrastive model accuracies are very high.

4.3 Ablation Studies and Failure Cases

We perform two ablation experiments on the model parameters. Firstly, we eval-
uate the effect of batch size by testing values equal to 32 and 16. The obtained
results are the same as the ones achieved with batch size 64. Although it has
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Fig. 3. Selection of failure cases. The baseline model fails on all these, but SupCon
correctly classifies the examples in the top row.

been reported that large batch sizes benefit contrastive learning [6], since more
positive and negative examples occur in a batch, at this value range the effect is
minimal. GPU memory limitations prevented experiments with higher values.

We also experiment with different sets of augmentations. The experiments in
Sect. 4.2 use random rotations, translations, as well as changes in brightness and
contrast. Random crops resulting in images of 140×140 pixel size have also been
tested. However, training with such crop augmentations decreased the validation
F1 score of the contrastive model by approximately 15%. This can be attributed
to the fact that in view classification, cropped ultrasound images might generate
images which appear similar to other views.

Finally, Fig. 3 shows a selection of cases for which the baseline model fails,
but for some the contrastive model is able to predict correctly. In all cases, the
incorrect view is visually similar to the true view (for example, the apical 4 and
5 chamber views are very similar) so it is evident why the models would struggle.
The contrastive model is likely more successful with these challenging views as
it creates a better decision boundary between classes.

5 Conclusion

We have shown that the use of contrastive learning applied to echocardiographic
view classification can improve accuracy and reduce standard deviation of the
classifier for views for which far less training data is available, with no reduction
in overall performance. This indicates that contrastive learning could be a pow-
erful tool in developing models for analysing medical images without requiring
such intensive collection and labelling of very large datasets.
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We leave as future work testing the effect of different contrastive losses on
diverse datasets potentially including unlabelled data, as well as studying the
effect of design biases introduced by different encoder architectures on the quality
of the learnt latent representations.

Acknowledgements. We thank the echocardiographers involved in this study for
their thorough annotation of images from the EVAREST dataset.
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Abstract. The use of lung ultrasound imaging has recently emerged as
a quick, cost-effective, and safe method for diagnosis of patients with
COVID-19. Challenges with training deep networks to identify COVID-
19 signatures in lung ultrasound data are that large datasets do not
yet exist; disease signatures are sparse, but are spatially and temporally
correlated; and signatures may appear sporadically in ultrasound video
sequences. We propose an attention-based video model that is specifically
designed to detect these disease signatures, and leverage a knowledge
transfer approach to overcome existing limitations in data availability.
In our design, a convolutional neural network extracts spatially encoded
features, which are fed to a transformer encoder to capture temporal
information across the frames and focus on the most important frames.
We guide the network to learn clinically relevant features by training it on
a pulmonary biomarker detection task, and then transferring the model’s
knowledge learned from this problem to achieve 80% precision and 87%
recall for COVID-19. Our results outperform the state-of-the-art model
on a public lung ultrasound dataset. We perform ablation studies to
highlight the efficacy of our design over previous state-of-the-art frame-
based approaches. To demonstrate that our approach learns clinically
relevant imaging biomarkers, we introduce a novel method for gener-
ating attention-based video classification explanations called Biomarker
Attention-scaled Class Activation Mapping (Bio-AttCAM). Our analysis
of the activation map shows high correlation with the key frames selected
by clinicians.

Keywords: COVID-19 lung ultrasound · Attention-based video
classification · Knowledge transfer · Imaging biomarkers ·
Explainability
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1 Introduction

The Sars-Cov-2 pandemic has caused over 4 million deaths and has infected over
200 million people worldwide [7]. Fast, early, and accurate diagnosis of COVID-19
infection is crucial for disease management. The standard genetic test (RT-PCR)
has a high sensitivity, but suffers from a long 24 h processing time [6]. Serology
tests detect the presence antibodies produced in the body, so they are unable to
detect the infection in the early stages.

Point-of-Care Ultrasound (POCUS), however, has gained attention in this
area, as it avoids many of these challenges. It is cost effective and portable,
which allows it to be used in under-resourced settings [5]. It is also very fast
to set up and sanitize the device between patients, and does not use ionizing
radiation, which makes it ideal for wide-scale use in assisting the diagnosis and
management of pulmonary diseases [1]. However, a significant limitation of ultra-
sound imaging is the amount of expertise required to interpret the images [5].
Deep learning-based ultrasound image analysis could play a vital role in expand-
ing the ultrasound’s value by allowing healthcare providers with information
to make clinical decisions, even without extensive experience interpreting these
images [5].

Related Works: Recently, J. Born et al. [4] have open-sourced the POCUS
dataset, which is the largest publicly available lung ultrasound dataset for
COVID-19, and have leveraged a frame-based deep learning classifier to iden-
tify COVID-19 infection. Roy et al. [12] have developed a segmentation model
to localize pathological artifacts in lung ultrasound images, and a video-based
disease-severity predictor that scores individual frames, and then aggregates
them with a soft approximation of the max function. Existing deep learning
methods for detecting COVID-19 in lung ultrasound videos use a frame-based
approach that loses valuable contextual and temporal information, which leaves
significant room for improvement. Attention-based neural architectures have
emerged as state-of-the-art models for video classification and captioning [9,10].
These video models typically need a lot of data to train, but large datasets of
lung ultrasound videos for COVID-19 specifically do not yet exist. There is a
need for a new approach that can incorporate knowledge across lung ultrasound
datasets to achieve high performance on the COVID-19 classification task. While
it is very important for clinicians to understand how deep learning models make
their predictions, prior work in explainability for deep learning video-based mod-
els is limited. Existing methods for video model explainability are adapted from
image model explainability methods, such as Grad-CAM [13] and Layer-Wise
Relevance Propagation [3], which means that valuable information about the
temporal features and motion are not captured in the explanations [8]. Model
explainability is essential for the clinical application of deep learning methods,
as it allows healthcare professionals to verify that the model is using sensible
clinical factors to the make its prediction [2].
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Fig. 1. Proposed framework: We propose an attention-based video model that is first
trained on a pulmonary biomarker detection task, and an approach to transfer this
knowledge to the COVID-19 prediction task. We also propose a novel method for
generating attention-based video classification explanations called Bio-AttCAM to help
clinicians understand which parts of the video the model is focusing on.

Contributions: In this paper, we propose an attention-based video classifier
that leverages pulmonary biomarker knowledge transfer to achieve 80% preci-
sion and 87% recall on COVID-19, which outperforms the state-of-the-art model
in COVID-19 diagnosis in lung ultrasound videos. Our pulmonary biomarker
knowledge transfer approach guides the network to learn features that are highly
relevant for COVID-19 diagnosis. Furthermore, our video model uses a trans-
former encoder to capture temporal information in the lung ultrasound videos.
To our knowledge, this is the best achieved performance on this dataset. We
also propose a novel method for generating video classification explanations
called Biomarker Attention-scaled Class Activation Mapping (Bio-AttCAM). We
demonstrate that our approach can assist clinicians with explanation maps that
highlight key video features associated with the presence of COVID-19.

2 Materials and Methods

In this section, we will describe our lung ultrasound dataset and our proposed
framework for the COVID-19 detection task. An overview of our proposed frame-
work is shown in Fig. 1.

Dataset: In this work, we make use of two datasets. The first dataset is a
private collection of 344 B-mode lung ultrasound cines from 69 patients across
British Columbia, Canada, with ethics approval from the Institutional Medical
Research Ethics Board. The cines were labelled by physicians for biomarkers
that are commonly used for diagnosis of pulmonary disease, including COVID-
19 pneumonia [6,11]. All cines were recorded with Clarius’s convex ultrasound
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Fig. 2. B-lines, specified by the images in the first row, are bright vertical artifacts that
start from the pleural line and go downwards without fading. B-lines are indicative of
COVID-19 infection, and the number of B-lines increases as the disease progresses [6].
These artifacts are often sparse and difficult to detect in single frames, but can be easily
identified in a video given their movement. A-lines, specified by the images in the second
row, are horizontal lines caused by the reverberation effect, where ultrasound waves
travel back and forth between the transducer and the pleura. These are indicative of a
healthy lung, as they are typically formed when the lung is not fluid-filled.

Table 1. Label distribution of the full-length cines in the private dataset and the
public POCUS dataset.

Private Dataset

A-lines 90

No A-lines 254

Total 344

Private Dataset

B-lines 99

No B-lines 245

Total 344

Public POCUS Dataset

COVID-19 68

Pneumonia 49

Regular 65

Total 182

transducers, as convex transducers are optimal to see deeply into the lungs of
patients suspected of COVID-19 [6]. The data was collected using Clarius’s HD
transducers, including the C3HD, PA2HD, Vscan Extend, and CX50, which
captured 165, 156, 22, and 1 cines respectively. These biomarkers include pres-
ence of A-lines, B-lines, lobar consolidations, and pleural irregularities. Our work
focuses on A-lines and B-lines, as the present and absent cases of both artifacts
appear in sufficient quantity in the dataset. Details about these artifacts can
be viewed in Fig. 2. The second dataset is a publicly available dataset called
POCUS consisting of B-mode lung ultrasound videos labelled as COVID-19,
bacterial pneumonia, or regular [4]. The distribution of labels in both datasets
can be viewed in Table 1. While A-lines correlate with healthy lungs and B-
lines correlate with unhealthy lungs, COVID-19 diagnosis cannot be made solely
based on the presence of these biomarkers.

Knowledge Transfer: In the process of pulmonary disease diagnosis, clinicians
make their decisions based on the presence and severity of imaging biomark-
ers [6]. In previous works, COVID-19 detection was framed as a simple super-
vised classification problem. In that setting, where the amount of labeled data
for COVID-19 is very limited, machine learning models are prone to overfitting,
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and often learn shortcuts instead of learning the real signatures of the disease.
To overcome this problem, we leverage a different ultrasound dataset to guide
the model to learn relevant features. This is done by first training the model
to classify the presence of pulmonary imaging biomarkers from our private lung
ultrasound dataset. Then, keeping these trained weights that incorporate pul-
monary biomarker knowledge, the model’s final layers are modified to match the
output shape of the disease prediction problem. Lastly, all of the model’s weights
are fine-tuned on the POCUS dataset to detect COVID-19.

Attention-Based Video Model: We hypothesize that many individual lung
ultrasound images are challenging for deep networks to label because of the
sparsity of relevant imaging biomarkers in the videos, as well as the lack of
motion information. Therefore, we propose an attention-based video model that
uses a 2D convolutional neural network to capture per-frame spatial features,
and then uses a transformer encoder to capture temporal information between
frames. Next, we use a 1D convolutional layer over the temporal axis to capture
additional temporal dependencies between neighboring features, followed by a
1D global average pooling layer to aggregate the sequence’s features. Lastly, we
add a fully connected layer before the softmax prediction heads. The attention
mechanism allows the network to focus on the most relevant frames, which is
particularly helpful for pulmonary disease diagnosis, as the sparsity of relevant
imaging biomarkers in the video makes many frames unnecessary to focus on.
The model architecture diagram can be found in Fig. 1.

Bio-AttCAM: Bio-AttCAM is a technique used to produce explanations of
both the spatial and temporal factors that contributed to a model’s decision. This
is done by extracting the video model’s transformer encoder attention weights to
find the frames that the model pays more attention to. The temporal attention
weights are used to scale each frame’s Grad-CAM heatmap to show the relative
importance of that frame. Lastly, we need to highlight the differences in atten-
tion and rescale the heatmap to be in the range [0, 255]. To do this, we divide
by the maximum value in the heatmap, squash the values with a shifted sigmoid
parametrized by the attention sparsity factor K, and then multiply by 255. The
attention sparsity factor, K, modifies the explanation to accentuate important
frames more, while suppressing the less important ones. Details about the algo-
rithm can be found in Algorithm 1. Rather than simply looking at the model’s
activations to each frame’s spatial features, our approach highlights the specific
parts of the video with spatio-temporal features that most strongly contribute to
the model’s prediction. We believe that this approach works particularly well for
lung disease diagnosis, as the imaging biomarkers for this task are often sparse
and only show up on a few frames of the video. Due to the structure of the
attention mechanism, the video model will be able to find these sparse frames,
and Bio-AttCAM will visually highlight these features in the sparse behavior as
desired.
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Algorithm 1: Generate Bio-AttCAM heatmaps φ to visualize attention-based
video model explanations.

Input: x, a video clip; fθ, a CNN Transformer classification model with input video length
T and h attention heads; K, the attention sparsity factor

1 φ ← empty list;
2 gθ ← first layers of fθ up to the first transformer encoder layer output, returns transformer’s

multi-headed attention weights;
3 H ← gθ(x) list of h attention weight matrices of shape (T, T );
4 H ←global avg pool 2d(H) across the h heads and the T attention weight matrix columns;
5 for t = 1:T do
6 G ← Grad-CAM(xt, fθ) visual explanation heatmap using spatial features;
7 A ← HtG Grad-CAM heatmap scaled by temporal attention weight;
8 Add A to list φ;

9 end
10 φ ← φ / max(φ) rescale explanation heatmaps;
11 φ ← 255σ(K(φ − 0.5)) apply sigmoid with sparsity factor to ensure that the explanation

accentuates important frames more, while suppressing the less important ones;
Output: φ

Table 2. Experiment implementation details.

Video Length Frame Rate Spatial Encoder # Epochs Batch Size LR Optimizer K

5 9 VGG-16 40 8 1e-5 Adam 8

TF Version Frame Size # Transformer Blocks GPU Loss

2.3.0 128x128 2 NVIDIA TITAN V Weighted Categorical CE

3 Experiments

Implementation Details: The experiment implementation details are sum-
marized in Table 2. We evaluate our models using aggregated results from 5-fold
cross validation and we compare our results to POCOVID-Net [4] as a baseline.
We use their model architecture, but do not use the results from their paper, as
their experimental results introduce optimization bias from their use of reduce
learning rate and early stopping applied on their test sets. In contrast, we do
not introduce optimization bias in this way.

Lung Biomarker Prediction Task: The first step of our proposed framework
was to train a multi-headed network that would solve both the A-line and B-
line prediction tasks. These tasks are both binary classification problems, with
the goal of classifying the biomarker as present or absent. This model could
then be transferred to the COVID-19 prediction task. We trained and compared
two different deep network architectures for this task. The first architecture is
our baseline model called POCOVID-Net, a frame-based averaging classifica-
tion model that was proposed by [4]. We use the same POCOVID-Net model
architecture, but change the last two layers to get the desired output shape for
this multi-headed classification task. The second architecture is our proposed
attention-based video classification model that uses the same spatial encoder as
POCOVID-Net, but uses a transformer encoder to capture temporal informa-
tion across frames, rather than simply averaging the predictions of all frames.
The results for this experiment can be viewed in Table 3, where our proposed
multi-headed CNN transformer model shows the best performance.
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Table 3. Comparison of POCOVID-Net and CNN Transformer for the imaging
biomarker detection multi-task problem. The precision, recall, and F1-score values
are macro averages between the present class (presence of imaging biomarker) and the
absent class (absence of imaging biomarker). The CNN transformer achieves better
performance than POCOVID-Net for both tasks, as it is able to leverage temporal
information and focus on specific frames of interest.

Task Precision Recall F1-score

POCOVID-Net [4] A-lines 85% 83% 84%

B-lines 71% 76% 73%

CNN Transformer (ours) A-lines 86% 84% 85%

B-lines 78% 80% 79%

Knowledge Transfer to COVID-19 Prediction: The next step of our exper-
iment is to transfer the imaging biomarker knowledge from the models in the
previous section to the COVID-19 prediction task. We start with the same model
architecture and weights from the previous section to guide the network to find
the spatio-temporal features relevant for COVID-19. Next, we change the last
two layers to allow the model to find the combination of these features that are
indicative of COVID-19 infection and then fine-tune all of the weights on the
POCUS dataset. We perform an ablation study to demonstrate the effect of the
attention-based video model and the biomarker knowledge transfer to COVID-19
diagnosis on the POCUS dataset. We first evaluate the baseline POCOVID-Net
model and our proposed CNN transformer model without knowledge transfer.
Then, we use the models from the previous section to evaluate POCOVID-Net
and the CNN transformer with knowledge transfer. The results for this exper-
iment can be viewed in Table 4, where our proposed CNN transformer model
with knowledge transfer outperform the other models, and the improvement
was statistically significant.

Bio-AttCAM Qualitative: We perform a qualitative analysis comparing Bio-
AttCAM with Grad-CAM. Comparing the heatmaps shown in Fig. 3, we demon-
strate that Bio-AttCAM can generate heatmaps that highlight the key frames
of a video and suppress frames that the model does not find important. This
is particularly relevant for lung ultrasound videos, as they are typically lower
quality and noisier than other imaging modalities. This would allow clinicians
to more quickly understand and evaluate if the model was focusing on clinically
meaningful factors. Using Grad-CAM, each frame’s heatmap is treated equally,
so it fails to highlight the key frames more than the others.
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Table 4. Ablation study demonstrating the effect of the CNN transformer and the
imaging biomarker knowledge transfer over the baseline POCOVID-Net model. Both
contributions show an improvement to the performance, but the CNN transformer
addition makes a larger improvement.

Class Precision Recall F1-score

POCOVID-Net [4] COVID-19 67% 76% 71%

Pneumonia 49% 83% 61%

Regular 92% 65% 76%

CNN transformer COVID-19 86% 82% 84%

Pneumonia 62% 95% 75%

Regular 95% 82% 88%

POCOVID-Net w/ knowledge COVID-19 74% 78% 76%

Pneumonia 58% 78% 67%

Regular 95% 81% 88%

CNN transformer w/ knowledge (ours) COVID-19 80% 87% 83%

Pneumonia 86% 93% 90%

Regular 93% 85% 89%

Fig. 3. Four frames of a lung ultrasound video containing sparse A-lines that are most
prominent at t = 2, and the explanation heatmaps generated by Grad-CAM and Bio-
AttCAM. The temporal attention values refers to the relative attention to put on
each frame. Bio-AttCAM successfully highlights the key frame at t = 2, as this frame
has the largest temporal attention value, which is consistent with independent key
frame selections from two clinicians. Grad-CAM treats all frames equally, so it fails to
highlight the key frame more than the others.

Bio-AttCAM Quantitative: Two clinicians were asked to select the top three
most important and least important frames for their labeling across 16 videos.
We compare the temporal attention weights from Bio-AttCAM to their frame
selections. Our temporal explanations were able to capture at least one of the
key frames in 13

16 videos and not capture any of the uninformative frames in 15
16 ,
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which demonstrates the efficacy of this method to highlight the key frames and
suppress the uninformative frames in videos.

4 Discussion and Conclusion

In this paper, we outperformed the state-of-the-art model for COVID-19 lung
ultrasound diagnosis through imaging biomarker knowledge transfer with a CNN
transformer model, and proposed a novel method for video explainability called
Bio-AttCAM. Our model achieves 80% precision and 87% recall for COVID-19
(13% and 11% improvement to the state-of-the-art respectively). From our abla-
tion study, we found that the individual additions of transformer encoders and
biomarker pretraining result in an average increase of 13% and 7.67% increase to
F1-score across classes, respectively (all individual F1-scores improved). These
results suggest that the transformer encoders allow the model to capture addi-
tional temporal features to better detect COVID-19, and that biomarker pre-
training improves the model’s performance by guiding it to learn clinically rel-
evant features. We believe biomarker pretraining is helpful for small datasets,
where the model is prone to finding shortcuts and learning irrelevant features.
The attention mechanism allows the model to focus on the key frames that
are important for diagnosis and then generate explanation heatmaps with Bio-
AttCAM, which is useful for videos whose important features are sparse between
frames. Future work will be focused on extending the number of biomarkers
incorporated for the knowledge transfer with the availability of more data.
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Abstract. Endoscopic ultrasound (EUS) is a challenging procedure that requires
skill, both in endoscopy and ultrasound image interpretation. Classification of key
anatomical landmarks visible on EUS images can assist the gastroenterologist
during navigation. Current applications of deep learning have shown the ability
to automatically classify ultrasound images with high accuracy. However, these
techniques require a large amount of labelled data which is time consuming to
obtain, and in the case of EUS, is also a difficult task to perform retrospectively
due to the lack of 3D context. In this paper, we propose the use of an image-to-
image translation method to create synthetic EUS (sEUS) images from CT data,
that can be used as a data augmentation strategy when EUS data is scarce. We
train a cycle-consistent adversarial network with unpaired EUS images and CT
slices extracted in amanner such that theymimic plausible EUS views, to generate
sEUS images from the pancreas, aorta and liver. We quantitatively evaluate the
use of sEUS images in a classification sub-task and assess the Fréchet Inception
Distance. We show that synthetic data, obtained from CT data, imposes only a
minor classification accuracy penalty and may help generalization to new unseen
patients. The code and a dataset containing generated sEUS images are available
at: https://ebonmati.github.io.

Keywords: Endoscopic ultrasound · Synthesis · Classification

1 Introduction

Endoscopic Ultrasound (EUS) is a minimally-invasive procedure to assess the gastroin-
testinal tract including pancreatobiliary disorders such as pancreatic cancer. It is a com-
plex procedure that combines ultrasound and endoscopy, requiring advanced cognitive
and technical skills, such as ultrasound image interpretation [1].

Recent advances in machine learning have made it feasible to automatically clas-
sify images and identify standard planes, which can improve ultrasound (US) image
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interpretation and assist clinicians during navigation with the aim to make the diag-
nosis more accurate. However, the success of deep-learning based applications relies
on the acquisition of a large, well-curated dataset with enough quality to be represen-
tative and useful. This is a big challenge in US applications as often training data is
limited and models tend to have overfitting problems [2]. Data acquisition during EUS
procedures is especially difficult and demanding due to the disruption caused and time
required by real-time labelling, as well as the inaccuracies associated with retrospective
labelling, because it is difficult to confidently identify landmarks without the 3D spatial
and temporal context.

Medical image synthesis using convolutional neural networks (CNN)has been shown
to be able to successfully translate Magnetic Resonance Imaging (MRI) to Computed
Tomography (CT) [3] and to translate US to MRI [4]. In this work, we evaluate the use
of a cycle-consistent adversarial network (CycleGAN) [5] to perform CT-to-EUS image
translation to generate synthetic EUS (sEUS) images for the purpose of data augmenta-
tion. As an example, CycleGANs have been used before to improve the realism in US
simulation from CT in a ray-casting approach, or to generate labelled US images from
musculoskeletal US as a data augmentation strategy [6, 7]. The CycleGAN approach
is of particular interest for our clinical application as no commercially available endo-
scopes exist capable of acquiring paired US/CT data, making endoscopy training and
patient navigation difficult. The aim of our study is: 1) to assess the similarity between
real (EUS) and synthetic (sEUS) images, and 2) to evaluate the use of sEUS images as
a data augmentation strategy in a clinically relevant EUS classification task.

2 Methods

2.1 Data

CT Data. CT data from five patients was obtained, four were from the MICCAI 2015
workshop and challenge: Multi-Altas Labelling Beyond the Cranial Vault [8]. CT slice
dimensions were 512× 512with pixel sizes from 0.59mm to 0.73mm. Slice thicknesses
were 3mm,with volume depths from 393mm to 444mm.We also included a CT volume
of size 512× 512× 229with pixel dimensions of 0.55× 0.55mmand a slice thickness of
1 mm. Segmentations of the following structures were available for this study: stomach,
pancreas, liver and aorta.

EUS Data. EUS images were obtained from five patients who underwent an EUS-
guided examination at University College Hospital London. Data were acquired from
a Hitachi Preirus EUS console and a Pentax EG-3270UK or EG-3870UTK US lin-
ear video endoscopes with a 7.5 MHz probe. EUS images were collected from video
frames of each examination recorded with a resolution of 720 × 480 pixels at imaging
depths from 4 mm to 6 mm and cropped to 522 × 200 pixels, removing identifiable
text and depth-attenuated regions. Anatomical landmarks were identified by an expert
and recorded during the procedure. EUS images containing the three clinically relevant
anatomical landmarks: pancreas, liver and aorta, were manually identified and collected.
Assorted images outside of these labels were also collected for a background class used
in the classification subtask. Images from four patients were used for CycleGAN and
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classifier training. Data from the remaining patient were used to evaluate classification
performance. Table 1 shows a summary of the number of images and available labels
from each patient.

Table 1. Summary of EUS images collected for training the CycleGAN and classifier, and for
evaluation of the classifier.

Patient Task Images Labels

Aorta Liver Pancreas Background

EUS1 train 3299 0 0 1694 1605

EUS2 train 4758 767 0 3991 0

EUS3 eval 4451 1301 729 2421 0

EUS4 train 4996 1126 1485 2385 0

EUS5 test 1933 141 503 1289 0

2.2 EUS/CT Image-To-Image Translation

Synthetic EUS images were generated using CycleGANs trained to translate 2D CT
image planes into sEUS images (Fig. 1). The CT plane locations, orientations and
bounding dimensions approximated real EUS views. Candidate sEUS locations were
automatically identified in CT volumes using the associated CT segmentation labels.
Points were randomly sampled along the outer surface of the CT stomach segmentation.
Realistic sEUS probe orientations were identified at each point by randomly generating
poses within a 30° cone normal to the stomach and retaining only poses where the view
intersected an anatomical label of interest (i.e., aorta, liver or pancreas) as shown in
Fig. 2. These poses were recorded as transformation matrices and saved to file.

During CycleGAN training, 2D CT images were sliced from CT volumes on the fly
using a previously reported simulation pipeline [9]. The framework extracted a sEUS
field of view, defined by a transformation matrix, in the CT volume. The CT planes were
then passed to the CycleGAN with randomly selected EUS images as an unpaired input
dataset.

The CycleGAN was based upon a previously described implementation comprising
a generator and adversarial discriminator for each imaging modality [5]. Paired EUS
and CT plane images were passed to their respective generators, which were trained
to map their input modality into synthetic images (i.e., CT to sEUS and EUS to sCT).
These synthetic images were subsequently passed to the relevant generator for mapping
back to their original modalities. Training was governed by adversarial losses calculated
at each discriminator and by cycle consistency losses comparing input images to those
mapped to a synthetic modality and then remapped back to their original.

A small pre-trained Gaussian denoising network was added before each discrimi-
nator to prevent the generator from embedding information capable of facilitating loss
minimization without improving image-to-image translation [10, 11].
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2.3 Implementation Details

Three CycleGANs were trained, one for each of the three labels: aorta, liver, and pan-
creas. A batch size of 1 was used for 200 epochs, where the number of iterations per
epoch was limited by the relevant EUS dataset size. Other hyperparameters were set
to the defaults used in the original implementation [5]. Adam optimization was used
on discrimination and generation networks with a learning rate of 0.0002 that decayed
linearly after 100 epochs [12]. Image intensity values were normalized between –1 and
1. Data augmentation was applied to all images, incorporating random horizontal flips
and random cropping within a 40 pixel margin. The CT plane slicer and CycleGAN
frameworks were run simultaneously on a single 16 GB NVIDIA Quadro P5000 GPU.
CT slices were selectively generated so that EUS images were paired only with CT slices
containing >1000 labelled pixels and<50 pixels with high Hounsfield Units, indicative
of bone. For each epoch, a 90/10 training/validation split was randomly applied to the
dataset. Losses were plotted against epoch and inspected to ensure convergence was
achieved. All models were implemented in TensorFlow 2.2 and CUDA Toolkit 10.1
[13]. Synthetic data for the classifier evaluation sub-task was created using the trained
CT-sEUS generator network from each CycleGAN. Open-source code was used where
possible and is available at: https://ebonmati.github.io.

2.4 Evaluation

EvaluatingGANs remains an open challenge, as there is no concrete way to quantify how
realistic and diverse the synthetic images are, and no ground truth exists. Often, models
are evaluated in a subjective and quantitative manner by asking several observers to rate
the images [14]. In this work, we used the Fréchet Inception Distance and a classification
sub-task to evaluate our model, as described below.

Fréchet Inception Distance. To quantitatively evaluate the quality of the synthetic
images, we calculated the Fréchet Inception Distance (FID) [15]. FID is a widely used
metric for evaluating the similarity between the generated images (synthetic) and the real
images. FID uses the activation distributions of the Inception-v3 model [16] to calculate
the distance between real and synthetic images. We used the pre-trained Inception-v3
model available in Keras [16] to obtain the activation distributions for our real and
synthetic images, where the FID score was then calculated as follows:

FID = ‖μX − μY ‖2 + Tr
(
�X + �Y − 2

√
�X�Y

)
, (1)

where μX and μY are the mean of the feature vectors for the real and synthetic images,
respectively; �X and �Y are the covariance matrix for the real and synthetic images,
respectively; ‖μX − μY ‖2 refers to the sum squared difference between the two mean
vectors, and Tr is the trace. A lower FID indicates better-quality synthetic images;
conversely, a higher score indicates a lower-quality image. An FID of 0 demonstrates
that the activation distribution of the synthetic images is identical to that of the real
images. FID is also capable of detecting intra-class mode dropping (i.e., a model that
generates only one type of image for each landmark or class), noise, blurring, and other
systematic distortions.

https://ebonmati.github.io
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Classification Sub-task. We evaluate the use of the synthetic EUS images in a clas-
sification sub-task. The aim here is to: 1) evaluate the use of synthetic EUS images to
classify real EUS images, and 2) to use the synthetic EUS images as a data augmentation
strategy.As summarized inTable 2, the number of real training images for each classwas:
3,194 aorta, 2,214 liver and 10,491 pancreas. A fourth background class was added in
training only, incorporating 1,605 EUS images from a mix of indiscernible anatomy and
poor quality images. To achieve this, we implemented a simple VGG-16 classification
model to classify EUS into the following classes: aorta, liver and pancreas. We used the
pre-trained weights from ImageNet, a batch size of 64, a learning rate of 1e−7 and 100
epochs. As loss function, we used a weighted categorical cross entropy with the weights
of 4.23, 4.40, 4.48, and 2.78 for aorta, background, liver and pancreas, respectively. We
trained the model using 5 different ratios of synthetic/real images: 0% synthetic+100%
real, 25% synthetic +75% real, 50% synthetic +50% real, 75% synthetic and 25% real.
For each synthetic ratio, we report the accuracy, precision, recall and F1-measure. Pairs
of classifier models were compared using McNemar tests to assess whether differences
in accuracy were significant.

Qualitative Evaluation. We are also interested in the visual explanation and spatial
localization of important regions in the EUS and sEUS images that were used to pre-
dict the corresponding class. We used the Gradient-weighted Class Activation Mapping
(Grad-CAM) to generate the class activation maps for each sample [17]. These maps
provide an insight into the model interpretation by backpropagating the gradients from
the last convolutional layer.

3 Results and Discussion

Figure 1 shows a comparison between a real EUS image and a sEUS image for each
of the anatomical landmarks selected (aorta, liver, pancreas). Visually inspecting the
generated sEUS images, we observed that the sEUS images obtained with CycleGAN
look realistic as the main features of the anatomical landmarks are preserved.

In Table 2 we report the classifier performance when trained on varying ratios of
sEUS to real EUS images, with the number of sEUS increasing with the ratio. From
this table we can observe that classification accuracy is maintained for sEUS ratios up to
75%.We attribute this to the fact sEUS imagesmay provide a consistent representation of
patient variation on the selected anatomical landmarks, making it feasible to generalize
to new patients. Liver F-measures were consistently low, indicating poor classification
performance and degrading overall accuracy scores. Due to the liver’s size and position,
liver-labelled images can often contain additional anatomical features belonging to the
other classes. We speculate this may be a contributing factor to the consistently low
F-measures.

Single-sidedMcNemar tests comparing classifier pairs indicated the small reduction
in accuracy, from 0.63 to 0.61 with increasing sEUS ratio, was statistically significant
(p < 0.05).

The FID scores are shown in Table 3. Although the FID measure is widely used to
evaluate the realism of synthetic images, a significant limitation arises from its reliance



174 A. Grimwood et al.

on a pre-trained model (ImageNet) that does not comprehensively represent US-specific
features. This lack of accurate representation is compounded by the small dataset used
in this study (and in medical imaging generally) compared to the originally intended
application of FID. As such, we cannot expect the predicted activation distributions to
provide authoritative results on our specific clinical application. An indication of the
ideal FID is given by the differences between random subsets within the EUS data (as
shown in the EUS vs EUS results). To have a better quantification of a bad FID value, we
compared all the EUS images to all the EUS images with added noise using a Gaussian
distribution with 0 mean and a standard deviation of 0.1. Our synthetic images achieved
lower scores in comparison to that from noisy US images which yielded a FID > 300.

Finally, Fig. 3 shows the Grad-CAM activations for two image examples (one EUS
and one sEUS) of the pancreas. Note the model has focused on the area representing the
pancreas to make a correct prediction.

Other studies have used GAN-based methods to simulate and augment ultrasound
image data: Bargsten and Schlaefer developed SpeckleGAN, which generates intra-
venous ultrasound speckle simulations from segmentation maps, achieving FID scores
<115 [18]. Peng, et al. generated synthetic ultrasound fromMRI images and qualitatively
demonstrated their equivalence to numerical simulations [19]. A broader examination
of GAN-based approaches in medical imaging was presented by Yi et al. [20].

In future, this study could be extended to aid EUS navigation by establishing a real-
time image labelling and automated landmark recognition framework, for example, by
using the Grad-CAMmaps to localise salient features in EUS video, as demonstrated in
this work. Further potential enhancements include developing a single CycleGANmodel
capable of generating all three landmark types to enable multi-class object generation
and detection.

Real EUS

Aorta

Liver

Pancreas

Synthe�c EUS Sliced CT

A A A

V
V V

PD
PD PD

Fig. 1. Comparison between a real EUS image, a synthetic EUS image and the sliced CT from
which itwas generated for each anatomical landmark (aorta, liver andpancreas). Indicative anatom-
ical features are shown in red: A – aorta, V – liver vasculature, PD – pancreatic duct. (Color figure
online)
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Fig. 2. Subset of candidate EUS probe positions and orientations at the stomach surface for liver
views within a CT volume.

Fig. 3. Normalized class activationmaps for real EUS images and a synthetic EUS images (sEUS)
representing the aorta, liver and pancreas. The red areas represent increased regions of activation
used by the model to make a correct prediction. (Color figure online)

Table 2. Classifier performance when trained on varying ratios of synthetic to real EUS images.
The number of sEUS images increases with synthetic ratio.

Synthetic ratio (%) Precision Recall F1-measure Accuracy

Aorta Liver Pancreas

0 0.46 0.51 0.38 0.07 0.77 0.63

25 0.45 0.54 0.38 0.05 0.78 0.62

50 0.44 0.54 0.38 0.05 0.78 0.62

75 0.43 0.53 0.36 0.06 0.77 0.61
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Table 3. Fréchet inception distance scores when comparing random subsets of real EUS images
within the same class, and when comparing real EUS to synthetic EUS (sEUS) images.

Control (n images) Compared to (n images) FID

EUS pancreas (5250) EUS pancreas (5241) 2.00

EUS aorta (1599) EUS aorta (1595) 6.96

EUS liver (1110) EUS liver (1104) 11.03

EUS all images (7959) EUS all images (7940) 1.83

EUS all images (7959) EUS all images + noise (7940) 312.56

EUS pancreas (10491) sEUS pancreas (11763) 79.88

EUS aorta (3194) sEUS aorta (2774) 71.30

EUS liver (2214) sEUS liver (4365) 71.68

EUS all images (15899) sEUS all images (18902) 55.31

4 Conclusions

The results of this work demonstrate that the generation of synthetic EUS images, from
CT data, can support training of a simple classification model when data is scarce as it
may better represent the population. It allows generation of a large dataset from specific
anatomical landmarks that are relevant for the clinical application of interest, which
would not be possible otherwise (as demonstrated by the poor accuracy obtained when
using the only real EUS data available). The proposed method is easy to use compared
to manual data acquisition and labelling, which is a task that is time consuming and
requires the input of a clinical expert.
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Abstract. With the success of deep learning-based methods applied
in medical image analysis, convolutional neural networks (CNNs) have
been investigated for classifying liver disease from ultrasound (US) data.
However, the scarcity of available large-scale labeled US data has hin-
dered the success of CNNs for classifying liver disease from US data.
In this work, we propose a novel generative adversarial network (GAN)
architecture for realistic diseased and healthy liver US image synthesis.
We adopt the concept of stacking to synthesize realistic liver US data.
Quantitative and qualitative evaluation is performed on 550 in-vivo B-
mode liver US images collected from 55 subjects. We also show that the
synthesized images, together with real in vivo data, can be used to sig-
nificantly improve the performance of traditional CNN architectures for
Nonalcoholic fatty liver disease (NAFLD) classification.

Keywords: Nonalcoholic fatty liver disease · Ultrasound ·
Classification · Stacked generative adversarial network · Deep learning

1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is being recognized as one of the most
common liver diseases worldwide, affecting up to 30% of the adult population
in the Western countries [25]. It is defined as a condition with increased fat
deposition in the hepatic cells due to obesity and diabetes in the absence of
alcohol consumption [4]. Patients with NAFLD are at an increased risk for the
development of cirrhosis and hepatocellular carcinoma (HCC) which is one of
the fastest-growing causes of death in the United States and poses a significant
economic burden on healthcare [19]. Therefore, early diagnosis of NAFLD is
important for improved management and prevention of HCC. Liver biopsy is
considered the gold standard for diagnosing NAFLD [8]. However, biopsy is an
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invasive and expensive procedure associated with serious complications making
it impractical as a diagnostic tool [24]. Incorrect staging in 20% of the patients
has also been reported due to sampling error and/or inter-observer variability
[24]. Diagnostic imaging, based on Ultrasound (US), Magnetic resonance imaging
(MRI), and Computed Tomography (CT), has been utilized as a safe alternative.
Due to being cost-effective, safe, and able to provide real-time bedside imaging
US has been preferred over MRI and CT [14]. Nonetheless, studies have shown
that the specificity and sensitivity of US to detect the presence of steatosis is very
poor [12]. Furthermore, the appearance of the tissue can be very easily affected
by machine acquisition settings and the experience of the clinicians [1,22].

To overcome the drawbacks of US imaging and improve clinical management
of liver disease, Computer-Aided Diagnostic (CAD) systems have been devel-
oped. With the success of deep learning methods in the analysis of medical
images, recent focus has been on the incorporation of convolutional neural net-
works (CNNs) into CAD systems to improve the sensitivity and specificity of
US in diagnosing liver disease [5–7,15,16,21]. Although successful results were
reported, one of the biggest obstacles hindering the improved adaptation of deep
learning-based CAD systems in clinical practice is the unavailability of large-
scale annotated datasets. The collection of large-scale annotated medical data
is a very expensive and long process. Albeit there are many publicly available
datasets and world challenges, the data available is still limited and the focus
has been on certain clinical applications based on MRI, CT, and X-ray imaging.
One of the most commonly used practices to overcome the scarce data problem
is data augmentation based on image geometric transformation techniques such
as rotation, translation, and intensity transformations [2,7,17]. However, these
transformations result in images with similar feature distributions and do not
increase the diversity of the dataset required to improve the performance of any
CNN model. A new type of data augmentation is image synthesis using gen-
erative adversarial networks (GANs). GAN-based medical image synthesis has
become popular for improving the dataset size and has been extensively inves-
tigated for improving classification and segmentation tasks [11,27]. However, to
the best of our knowledge GAN-based image synthesis in the context of liver
disease classification from US data has not been investigated previously.

In this work, a novel GAN-based deep learning method is proposed to synthe-
size B-mode liver US data. Our contributions include: 1- We propose a stacked
GAN architecture for realistic liver US image synthesis. 2- Using ablation stud-
ies we show how the performance of state-of-the-art GAN architectures can be
improved using the proposed stacked GAN architecture. Qualitative and quanti-
tative evaluations are performed on 550 B-mode in-vivo liver US images collected
from 55 subjects. Extensive experiments demonstrate our method improves tra-
ditional single-stage GANs to generate B-mode liver US data. We also show that
by using a larger balanced NAFLD dataset, including real and synthesized data,
the performance of the liver disease classification task can be improved by 4.34%.
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2 Materials and Methods

The architecture of our proposed network is shown in Fig. 1. Specifically we
design a stacked GAN model (StackGAN) to generate high-resolution liver US
images in two stages. A common GAN layout is utilized in Stage-I to synthesize
a mid-resolution image. Stage-II GAN, the main contribution of this work, aims
to output an image with improved tissue details by integrating features from
the mid-resolution image during the generative process. The two stage approach
overcomes the training instability of single stage GANs and results in improved
and realistic representation of the synthesized liver US data. The overall network
produces high-resolution images using random noise as input, not relying on any
prior information from the original data.

Fig. 1. Overview of the proposed GAN-based network architecture. Stage-I GAN
produces mid-resolution images and Stage-II GAN outputs high-resolution images
with realistic tissue details. Dashed vertical lines represent skip-connection. Bottom:
encoder-decoder architecture to integrate features.

2.1 Stage-I GAN

GAN [9], as an unsupervised generative model to learn the data distribution,
is made of two distinct models: a generator G to generate samples as realistic
as possible and a discriminator D to discriminate the belonging of the given
sample. G aims to transform a latent space vector z ∼ p(z) sampled from a
prior distribution into a real-like image, while D learns to distinguish between
the real image x and the fake image G(z). GAN is trained by minimizing the
following adversarial loss in an alternating manner [28], which falls in a state of
the confrontational game:

LD = −Ex∼pdata(x)[logD(x)] − Ez∼pz(z)[log(1 − D(G(Z)))],
LG = −Ez∼pz(z)[logD(G(Z))]

(1)



182 H. Che et al.

In this work, for Stage-I GAN we adopt several popular GAN-based archi-
tectures to synthesize NAFLD US images: DCGAN [20], DCGAN with spectral
normalization (SN) [28], and DCGAN with SN [18] and self-attention module
(SA) [28].

DCGAN: DCGAN [20] introduces CNN into the generative model to acquire
the powerful feature extraction capability. Compared to the traditional GAN
design, both the discriminator and the generator in DCGAN discard pooling
layers and choose to use convolutional and convolutional-transpose layers respec-
tively. The LeakyReLU activation is utilized in all layers of the discriminator to
prevent gradient sparseness and the output of the last convolutional layer is
processed by the Sigmoid function neither fully connected layer to give a dis-
criminative result. In the generator, the output layer uses the activation function
of Tanh and the remaining layers use ReLU activations. Batch normalization
in networks (not include the output layer of the generator and the input layer
of the discriminator) helps prevent training issues caused by poor initializa-
tion. For uncoditional image synthesis, DCGAN has been widely adopted in the
medical imaging community [27] and has therefore been chosen as our baseline
GAN architecture. However, in the following sections we also introduce further
improvements to DCGAN.

Spectral Normalization (SN) Module: The main idea of SN is to restrict
the output of each layer through the Lipschitz constant without complicated
parameter adjustments [18]. Doing so can constrain the update of the discrim-
inator triggered by generator update to a lesser extent. The normalization is
applied in the generator and discriminator simultaneously. Most recently SN
was incorporated into GAN for improving low dose chest X-ray image resolution
[26] and multi-modal neuroimage synthesis [13].

Self-Attention (SA) Module: SA module calculates the attention value
between local pixel regions and helps to model global correlation in a wider
range. The generator with the SA module learns specific structure and geometric
features [28]. In addition, the discriminator can now perform complex geometric
constraints more accurately on the global structure. This module was recently
incorporated into a GAN architecture for synthesizing bone US data [3].

2.2 Stage-II GAN

Directly generating high-resolution images usually meets problems of detail and
poor diversity. Instead, we turn to generate a mid-resolution image with high
quality in Stage-I and obtain its feature maps in different depth, which are
fused into corresponding layers of the generator for information supplement.
The generated mid-resolution images have relatively diverse feature distributions
but lack vivid tissue representations. The latter generator is supported by rich
structure information from synthetic images with the size of 256 × 256 and fills
feature details at the same time.

The generated image in Stage-I GAN is fed into the Stage-II GAN genera-
tor. The Stage-II GAN generator is constructed using an encoder and decoder
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network architecture (Fig. 1). The encoder receives Stage-I images and outputs
feature maps in various sizes. The basic block in the encoder is comprised of
a convolutional layer and a maxpooling layer. The downsampling enlarges the
receptive field area and concentrates on feature extraction. Captured features are
integrated into the generator by skip-connection. We also concatenate the ran-
dom noise vector z in the encoder output and input this combined feature vector
to the decoder. Conditioned on the low-resolution result, obtained Stage-I, and
the noise vector the discriminator and generator of Stage-II GAN are trained by
maximizing LD and minimizing LG showed in Eq. 1. The proposed method avoids
the prior knowledge from real data as input and guarantees the diversity of gen-
erated images. Our discriminator, denoted as D, during this stage uses the same
architecture of discriminator in DCGAN to perform differentiation of real or
synthetic. Using information from generated mid-resolution images rather than
real images prevents the model from memorizing patterns from real images. Fur-
thermore, Stage-II GAN corrects imaging artifacts in the low-resolution image,
obtained in Stage-I, synthesizing high-resolution realistic liver US data.

3 Experiments and Results

3.1 Dataset

Experiments are performed on the dataset provided by [6]. The NAFLD dataset
includes 550 B-mode US scans and biopsy results from 55 subjects. 10 US images
were collected for each subject. Using biopsy, 38 subjects were diagnosed as
NAFLD patients and the rest 17 were viewed as normal/healthy individuals.
The data was collected using the GE Vivid E9 Ultrasound System (GE Health-
care INC, Horten, Norway) equipped with a sector US transducer operating
at 2.5 MHz [6]. All images were cropped to remove irrelevant regions (mostly
related to text involving image acquisition settings) and then resized to a size of
256 × 256. During the cropping, the original image resolution of 0.373 mm was
kept constant.

Training and Test Data: To validate the performance of our proposed method,
we randomly split 70 normal and 70 diseased images as a testing set, remain-
ing images (100 healthy and 310 diseased) are grouped as a training set to train
GAN-based networks. The classification network was trained using real and syn-
thesized data totaling to 1000 healthy and diseased US images. The split obeys
the rule that the same patient scans are not used for both training and test-
ing. The random split operation was repeated five time and average results are
reported.

We conduct experiments using the PyTorch framework with an Intel Core
CPU at 3.70 GHz and an Nvidia GeForce GTX 1080Ti GPU. GAN-based net-
works are trained using the cross-entropy loss and ADAM optimization method
with batch size of 16 and a learning rate of 0.0002. Exponential decay rate for
the first and second moment estimates are set to 0.5 and 0.999. The performance
of our proposed generative method is compared with those popular GAN-based
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architectures mentioned in Sect. 2.1 to generate liver US images directly. Exam-
ples for each class are generated individually, not incorporating class conditions.

3.2 GAN-Based Network Evaluation

Fig. 2. Qualitative results of the images generated by DCGAN in combination with the
different modules, along with the proposed module. SA - Self-attention module and SN -
Spectral normalization module. Blue arrows point to qualitative improvements achieved
over prior state of the art. In all the presented results ours denotes the integration of
Stage-II GAN module.

Qualitative Results: Qualitative results for the investigated models are given
in Fig. 2. The first row in the figure demonstrates examples of real images fol-
lowed by the synthesized images generated by different methods, for both classes
diseased and healthy. The different state of the art methods that are used to
synthesize the images and compare them are, DCGAN [20], DCGAN combined
with the proposed (Stage-II GAN) module, DCGAN [20] with SN [18] module,
DCGAN [20] with SN [18] module combined with the proposed (Stage-II GAN)
module, DCGAN [20] with SN [18] and SA [28] modules, and a combination of
DCGAN [20] with all modules (SN [18], SA [28] and proposed Stage-II GAN)).
Investigating the results in Fig. 2 it can be seen that when the proposed module
(Stage-II GAN) is used in combination with state of art DCGAN modules, qual-
itative improvements can be obtained. Blue arrows in Fig. 2 point to anatomy
missed using the prior GANs investigated. However, we can see that by incor-
porating our proposed module liver tissue characterization in the synthesized
images improves.
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Quantitative Results: The Inception Score (IS) and Frechet Inception Dis-
tance (FID) score are used to quantitatively evaluate the generated image qual-
ity and diversity. The Inception Score (IS) helps to estimate the quality of the
generated images based on the classification performance of Inception V3 classi-
fier on the synthesized images [10]. Higher IS value means the synthesized images
are diverse and similar to the real data [11,27]. Although IS is a very good metric
to assess the quality of the synthesized images, it does not compare the synthetic
images with the original images. Frechet Inception Distance (FID) is based on
the statistics of the generated images compared with that of the original images
[10]. Similar to IS, FID is also calculated using the Inception V3 model, the
activations of the last pooling layer are summarized as a multi-variate Gaussian,
the distance between the two Gaussians are calculated as FID [10]. A low FID
shows that the images synthesized by this GAN architecture have high diversity
in them and are at par with the real images [11,27].

The IS and FID metrics are calculated on 400 synthesized images for each
category. From Table 1, it is noted that our Stage-II GAN module significantly
improved the IS and FID results for all the investigated prior GAN modules
(paired t-test p < 0.05). The highest IS score is obtained when DCGAN is
combined with the SN and our proposed Stage-II GAN module. The lowest FID
score is achieved when DCGAN is combined with the proposed model, that is
without the SA and SN modules.

Table 1. IS and FID of the proposed DCGAN, DCGAN+SN, DCGAN+SN+SA to
synthesize liver US images directly and incorporating our Stage-II GAN. Bold text
shows the best results obtained. SA- Self attention module, SN- Spectral Normalization
module. In all the presented results ours denotes the integration of Stage-II GAN
module.

IS↑ abnormal/normal FID ↓ abnormal/normal

DCGAN [20] 1.32± 0.02/1.28± 0.01 113.87/161.76

DCGAN [20] + ours 1.55± 0.08/1.48± 0.05 100.05/99.53

DCGAN [20] + SN [18] 1.09± 0.01/1.34± 0.06 170.68/247.76

DCGAN [20] + SN [18] + ours 1.67 ± 0.08/1.50± 0.05 156.55/110.17

DCGAN [20] + SN [18] + SA [28] 1.42± 0.03/1.38± 0.03 160.19/259.19

DCGAN [20] + SN [18] + SA [28] + ours 1.51± 0.07/1.51 ± 0.06 108.39/103.07

3.3 Classification Evaluation

To evaluate the quality of the synthesized images, EfficientNet [23] is employed to
perform binary classification on the original dataset and expanded class-balanced
dataset. The training dataset is expanded from 410 images to 1000 images using
590 generated images (Diseased class: 310 real + 190 synthetic; Healthy class:
100 real + 400 synthetic). As explained previously, test data was 140 real US
images (70 health 70 diseased) which were not part of the image synthesis pro-
cess. The classification performance is measured by accuracy, precision, recall
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and F1score. The quantitative results are shown in Table 2. From the table, it
can be noted that the classification algorithm obtains the best accuracy when
the synthesized images are obtained using DCGAN in combination with the pro-
posed Stage-II GAN module (paired t-test p < 0.05). Similar to GAN evaluation
results, from Table 2 we can observe that our proposed Stage-II GAN module
significantly improves classification performance metrics for all the investigated
prior GAN modules (paired t-test p < 0.05).

Table 2. Quantitative classification results for all the investigated methods. Bold text
shows the best results obtained. In all the presented results ours denotes the integration
of Stage-II GAN module.

Accuracy Precision Recall F1score

The original dataset 82.14% 82.47% 82.14% 82.10%

DCGAN [20] 84.29% 84.31% 84.29% 84.29%

DCGAN [20] + ours 85.71% 87.68% 85.71% 85.53%

DCGAN [20] + SN [18] 74.29% 76.00% 74.29% 73.85%

DCGAN [20] + SN [18] + ours 78.57% 79.17% 78.57% 78.46%

DCGAN [20] + SN [18] + SA [18] 80.71% 80.77% 80.71% 80.71%

DCGAN [20] + SN [18] + SA [18] + ours 82.86% 82.88% 82.86% 82.85%

4 Conclusion

In this work, a novel GAN architecture for realistic B-mode liver US image
generation was proposed. Qualitative and quantitative results show significant
improvements in image synthesis can be achieved using the proposed two-stage
architecture. We also show that the classification performance of well-known
CNN architectures can be significantly improved using the synthesized images.
Our study is the first attempt to synthesize diseased and healthy liver US images
based on a novel GAN module that can be incorporated into popular GAN-based
models for improving their performance. One major drawback of our work is the
limited dataset size. We only had access to 550 B-mode US data. Increasing the
dataset size could also result in the performance improvements of the classifi-
cation method investigated in this work. Furthermore, we have only evaluated
the performance of DCGAN as Stage-I GAN architecture. Investigation of var-
ious other GAN architectures, used for medical image synthesis [11,27], should
also be performed to understand the full potential of our Stage-II GAN model.
Finally, a comparison study against traditional augmentation methods should
also be performed. Future work will include the collection of large-scale liver US
data and improvements of the shortcomings of our work.
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Abstract. The performance of many medical image analysis tasks are
strongly associated with image data quality. When developing modern
deep learning algorithms, rather than relying on subjective (human-
based) image quality assessment (IQA), task amenability potentially pro-
vides an objective measure of task-specific image quality. To predict task
amenability, an IQA agent is trained using reinforcement learning (RL)
with a simultaneously optimised task predictor, such as a classification or
segmentation neural network. In this work, we develop transfer learning
or adaptation strategies to increase the adaptability of both the IQA
agent and the task predictor so that they are less dependent on high-
quality, expert-labelled training data. The proposed transfer learning
strategy re-formulates the original RL problem for task amenability in a
meta-reinforcement learning (meta-RL) framework. The resulting algo-
rithm facilitates efficient adaptation of the agent to different definitions
of image quality, each with its own Markov decision process environ-
ment including different images, labels and an adaptable task predictor.
Our work demonstrates that the IQA agents pre-trained on non-expert
task labels can be adapted to predict task amenability as defined by
expert task labels, using only a small set of expert labels. Using 6644
clinical ultrasound images from 249 prostate cancer patients, our results
for image classification and segmentation tasks show that the proposed
IQA method can be adapted using data with as few as respective 19.7%
and 29.6% expert-reviewed consensus labels and still achieve compara-
ble IQA and task performance, which would otherwise require a training
dataset with 100% expert labels.
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1 Introduction

Medical image quality can influence the downstream clinical tasks intended for
medical images [1]. Automated algorithms have been proposed for image quality
assessment (IQA), based on human scoring of image quality [2–6], prior clinical
knowledge [7,8] or a set of hand-engineered criteria [9–11]. Task-specific image
quality, which measures how well a clinical task can be completed using the
image being assessed, may be preferred, but previous methods still rely on human
interpretation [2,3]. When the downstream clinical tasks are completed by auto-
mated machine learning algorithms, task-specific IQA may become more rele-
vant, however, human perceived task-specific IQA may not accurately reflect the
performance of the machine optimised task predictors. Recent works introduce
task amenability; defined as the task-specific image quality to directly measure
target task performance [12,13], which also takes into account the dependency
between training an automated IQA and the training of a task predictor.

For predicting task amenability for IQA, Saeed et al. [12] proposed to train a
controller; here, a reinforcement learning (RL) agent, together with the task pre-
dictor. Classification and segmentation neural networks were tested as the task
predictors. The trained controller predicts significantly different task amenabil-
ity scores to those determined by humans, with or without requiring human
labels of task amenability during training.

By definition, this IQA approach is inevitably dependent on the task pre-
dictor and the labelled data used to train such a task predictor, in the case of
supervised learning. In clinical practice, the feasibility and cost associated with
obtaining quality labelled data sets for various target tasks can not be overlooked.
Therefore, we propose a transfer learning strategy to train the IQA agent based
on meta-reinforcement learning (meta-RL) across multiple environments. These
RL environments can then be designed to reflect different Markov decision pro-
cesses (MDPs) with differently labelled data. At the same time, a shared task
predictor1 is trained between these MDPs, such that it may be adapted together
with the meta-trained controller. Equipping adaptation ability to both the con-
troller and the task predictor has several potential applications for the efficient
use of labelled data. In this work, we demonstrate the resulting adaptation abil-
ity from relatively low-quality non-expert task labels annotated by individual
observers to high-quality expert labels carefully curated by reviewed consensus.

The contributions of the work are summarised as follows: 1) we propose
a transfer learning or adaptation strategy to train an adaptable IQA system;
2) we design a meta-RL algorithm for training the task-amenability-predicting
controller together with a target task predictor, which is shared amongst mul-
tiple environments, such that training to convergence is not required on every
1 Tasks refer to the target classification or segmentation tasks, while MDPs or envi-

ronments are preferred over meta-tasks found in meta-learning literature for clarity.
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time-step and where adaptability is equipped to both the inner and outer loops
simultaneously; 3) we demonstrate the efficacy of the proposed transfer learning
strategy with experiments using a large set of clinical ultrasound images from
prostate cancer patients, labelled by four different observers with varying expe-
rience and expertise; 4) the experiments show that using 20–30% of the expert
labels is sufficient to fine-tune both the RL controller and the task predictor to
achieve comparable performances to when they are trained using the full set of
expert labels.

2 Methods

2.1 Image Quality Assessment by Task Amenable Data Selection

In this work, we follow the IQA formulation proposed by Saeed et al. [12]. There
are two parametric functions, a task predictor f(·;w) : X → Y and a controller
h(·; θ) : X → [0, 1], with parameters w and θ, respectively. X and Y are the
respective image and label domains with PXY being the joint image-label dis-
tribution, with a density function p(x, y).

The task predictor f is optimised to predict labels, by minimising the loss
function Lf : Y × Y → R≥0 using sampled data:

min
w

E(x,y)∼Ph
XY

[Lf (f(x;w), y)], (1)

where Ph
XY is the controller-selected joint image-label distribution, with density

function ph(x, y) ∝ p(x, y)h(x; θ).
The controller h is optimised to measure image quality (task amenability),

by minimising the metric function Lh : Y × Y → R≥0:

min
θ

E(x,y)∼Ph
XY

[Lh(f(x;w), y)] (2)

where Lh is in general a non-differentiable metric computed on the validation
set, and different to Lf .

The optimisation is performed using reinforcement learning, where the envi-
ronment consists of the training set from PXY and the task predictor f(·;w); the
agent is the controller h(·; θ) whose action is sample selection at = {ai,t}B

i=1 ∈
{0, 1}B , based on the predicted quality scores {h(xi; θ)}B

i=1, from a mini-batch of
training samples Bt = {(xi, yi)}B

i=1; and the reward is the task predictor perfor-
mance on a validation set from the same distribution PXY , which is computed
after training, for a fixed number of steps, using the selected samples. In this work
we use the reward formulation, from [12], which does not require human task
amenability labels, and weights the validation set using controller predictions.
Rt is thus the reward which is a weighted sum of validation set performance.
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Fig. 1. An overview of the proposed meta-RL framework for training the task predictor
and the RNN-embedded controller (the IQA agent).

2.2 Meta-Reinforcement Learning with Different Labels

In this section, we consider multiple label distributions {Pk
Y |X}K

k=1, such that
each sample x has multiple labels {yk}K

k=1. The joint distributions are thereby
Pk

XY = PXPk
Y |X for k = 1, . . . ,K. Each distribution Pk

XY forms an RL environ-
ment with an MDP Mk. These MDPs are assumed to be sampled from the same
MDP distribution PM , i.e. Mk ∼ PM . The task predictors f(·;w) and controller
h(·; θ) are both shared across different environments.

We adopt the meta-RL formulation [14,15] for reinforcement learning across
multiple environments. Given a set of MDPs {Mk}K

k=1, a trial is defined as
multiple episodes with a sampled MDP Mk. The meta-RL agent learns across
multiple trials by sampling Mk ∼ PM . Different from the RL with one single
fixed environment, at time t + 1, the meta-RL agent h takes the action at, raw
reward rt, and termination flag dt at the previous time step in addition to the
observed current state st+1. Note that for per-sample operation rt = Rt at the
episode end, and zero otherwise, similar to sparse reward formulations in [14,15].
Denote the input tuple as τt+1 = (st+1, at, rt, dt), thereby h(·; θ) is now defined
with a space of X × [0, 1] × R × {0, 1}.

In this work, the meta-RL agent adopts a recurrent neural network (RNN)
with internal memory shared across episodes in the same trial. Importantly, the
internal memory is reset when a trial finishes, i.e. before another environment is
sampled. This mechanism allows test-time adaptability, even with fixed weights
[16–20], and thereby transfers knowledge between environments [14,15,21]. This
is due to the RNN making the controller a function of the history leading up to a
sample such that changing history can influence the action for that sample. The
full algorithm is described in Algorithm 1, with details for configuring episodic
mini-batches and meta-loop trials. An overview is also presented in Fig. 1. In our
implementation, proximal policy optimisation (PPO) [22] was used to train the
controller. The task predictor employs the Reptile scheme [23] to allow potential
data efficiency benefit for adapting to different observer labels. The predictor
is updated in two steps: 1) update starting weights wt+1 of predictor f(·;wt+1)
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to wt+1,new, using gradient descent based on Bt,selected; 2) update weights using
wt+1 ← wt+1+ε(wt+1,new−wt+1) where ε is 1.0 initially and is linearly annealed
to 0.0 as trial iterates. It is worth noting that the IQA algorithm from [12] can
be considered a special case of our proposed method with only one environment.

After training using the scheme described in Algorithm 1, the adaptation
stage, for both the controller and task-predictor, can be performed on a single
MDP of interest Ma ∼ PM , where Ma is the environment which we would like
to adapt to. If multiple iterations of the outer loop are required, the internal
state of the controller is only reset on the first iteration. The controller weights
remain fixed; adaptability is a result of updating internal state.

Algorithm 1: Adaptable image quality assessment by task amenability
Data: Multiple MDPs Mk ∼ PM .
Result: Task predictor f(·; w) and controller h(·; θ).
while not converged do

Sample an MDP Mk ∼ PM ;
Reset the internal state of controller h;
for Each episode in all episodes do

for t ← 1 to T do
Sample a training mini-batch Bt = {(xi,t, yi,t)}B

i=1;

Compute selection probabilities {hi,t}B
i=1 = {h(τi,t; θt)}B

i=1;

Sample actions at = {ai,t}B
i=1 w.r.t. ai,t ∼ Bernoulli(hi,t);

Select samples Bt,selected from Bt;
Update predictor f(·; wt) with Bt,selected using Reptile;
Compute reward Rt;

end

Collect one episode {Bt, at, Rt}T
t=1;

Update controller h(·; θ) using the RL algorithm PPO;

end

end

3 Experiments

In this work we use 6644 2D ultrasound images from 249 prostate cancer
patients. During the early stages of ultrasound-guided biopsy procedures, images
were acquired using a transperineal ultrasound probe (C41L47RP, HI-VISION
Preirus, Hitachi Medical Systems Europe) as part of SmartTarget: THER-
APY and SmartTarget: BIOPSY clinical trials (clinicaltrials.gov identifiers
NCT02290561 and NCT02341677 respectively). Images from each subject ini-
tially consisted of 50–120 frames. For feasibility of manual labelling, frames were
sampled at four-degree intervals where relative rotation angles were tracked using
a digital transperineal stepper (D&K Technologies GmbH, Barum, Germany).
The resulting 6644 2D ultrasound images were randomly split, at the patient
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level, into training, validation and holdout sets, with 4429, 1092 and 1123 images
from 174, 37 and 38 subjects, respectively.

Three sets of task label {Li}3i=1 were collected from three trained biomedi-
cal engineering researchers. These individually-labelled are referred to as “non-
expert” label sets for brevity. In addition, the fourth set of “expert” labels L∗
was curated by a urologist, first carefully reviewing a reference set of consen-
sus labels and then editing them as deemed necessary. For all label sets, each
image has both a binary label indicating prostate presence for classification and
a binary mask of the prostate gland for segmentation.

The task predictor algorithms used for the two tested applications are the
same as [12]. For classification, AlexNet [24] was used with a cross-entropy loss
and a reward based on classification accuracy. For segmentation, U-Net [25] was
used with a pixel-wise cross-entropy loss and a reward based on mean binary Dice
score. The controller had a three-layer convolutional encoder, before feeding the
encoded features to an RNN with a stacked-LSTM architecture, as described in
[15]. Experimental results are reported for empirically configured networks and
default hyper-parameter values remain unchanged unless specified.

The following three different IQA models were trained and compared.

– Baseline: Trained with all training and validation data using only the high-
quality expert labels L∗. That is, only one “expert-labelled” environment in
training, establishing a reference for achievable IQA system performance.

– Meta-RL: The proposed model that was first trained with training and valida-
tion data using the non-expert labels {Li}3i=1 as three different environments.
Both the task predictor and the controller were subsequently adapted with
k × 100% training and validation data using the expert labels L∗.

– Meta-RL Variant : For comparison, a basic implementation of transfer learn-
ing. The model was first trained with all training and validation data using
the shuffled non-expert labels {Li}3i=1 as one single environment, i.e. without
considering different environment-specific trials, and the Reptile update for
optimising the task predictor reduced to standard gradient descent. Adapta-
tion was done with k × 100% training and validation data using the expert
labels L∗. The internal state of RNN was not reset before fine-tuning.

We evaluate the IQA models jointly with the task predictors using task per-
formance, which serves as both a direct evaluation of the task-predictor and
an indirect evaluation of the IQA agent by its task amenability definition. We
report mean accuracy (Acc.) and mean binary Dice score (Dice) on the holdout
set using expert labels for classification and segmentation, respectively. These
measures are averaged over all 2D slices in the holdout set. Where controller
selection is used, the metric is computed over the selected samples only. Samples
are selected by rejecting the subset with the lowest controller predicted values,
with the specified rejection ratios. Standard deviation (St.D) is reported to mea-
sure inter-patient variance, with which, paired t-test results with a significance
level of 5% are reported when any comparison is made. We evaluate the models
for varying k-values, where k is the ratio of expert-labelled samples used for
adaptation (k × 100% samples used).
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4 Results

Table 1. Comparison of holdout set results with a rejection ratio set to 5%

Tasks Prostate classification (Acc.) Prostate segmentation (Dice)

IQA Methods k Mean ± St.D. Mean ± St.D.

Baseline N/A 0.932 ± 0.011 0.894 ± 0.016

Meta-RL 0.5 0.936 ± 0.012 0.892 ± 0.018

0.4 0.929 ± 0.016 0.886 ± 0.014

0.3 0.926 ± 0.010 0.888 ± 0.020

0.2 0.925 ± 0.017 0.873 ± 0.017

0.1 0.911 ± 0.012 0.863 ± 0.020

0.0 0.908 ± 0.010 0.857 ± 0.018

Meta-RL Variant 0.5 0.931 ± 0.015 0.884 ± 0.016

0.4 0.920 ± 0.010 0.882 ± 0.021

0.3 0.919 ± 0.013 0.882 ± 0.015

0.2 0.916 ± 0.014 0.860 ± 0.014

0.1 0.905 ± 0.014 0.858 ± 0.021

0.0 0.896 ± 0.016 0.849 ± 0.017

The proposed meta-training took, on average, approximately 48 h and the meta-
testing (model fine-tuning) took 1–2 h on a single Nvidia Quadro P5000 GPU.
This result reflects the design of the proposed adaptation strategy for data effi-
ciency and, arguably, also for computational efficiency.

Performance of the IQA models, in terms of Acc. and Dice, are summarised in
Table 1 and plotted in Fig. 2 against varying k values. In the prostate presence
classification task, no statistical significance was found between the baseline
and meta-RL for k values from 0.5 to 0.2 (p-values ranged from 0.10 to 0.23).
However, meta-RL performance for low k values, k = 0.1 or 0.0, was significantly
lower than that of the baseline (p < 0.01 for both). In the prostate segmentation
task, no statistical significance was found between the two, for k-values from 0.5
to 0.3 (p-values ranged from 0.07 to 0.17), but a significantly lower performance
was found for meta-RL for low k values from 0.2 to 0.0 (p < 0.01 for all).

For the ablation study comparing meta-RL to the meta-RL variant, the pro-
posed meta-RL framework generally outperformed the meta-RL variant for the
same k values, for both tested target tasks, as detailed in Table 1. For classifica-
tion, we report a statistically significant difference between the two, for the same
k values from 0.0 to 0.4 (p< 0.01 for all), while no significance was found when
the k increased to 0.5 (p = 0.06). For segmentation, superior performance from
the proposed meta-RL was statistically significant for all k values (p < 0.03 for
all). From an ablation study, with and without the Reptile scheme for updating
task predictors, the Reptile-omitted meta-RL classification and segmentation
tasks achieved Acc. = 0.901±0.013 and Dice = 0.851±0.013, respectively, when
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k = 0. The improvement, when using the Reptile scheme, was statistically sig-
nificant with p < 0.01 for both, but no significant difference was found for other
k values.

Figure 3 provides visual examples of selection decisions by the adapted IQA
agent. With 5% rejection ratio, all these rejected examples seem visually chal-
lenging for respective classification and segmentation tasks, and rejecting these
examples improved performances of the simultaneously learned task predictors.

Fig. 2. Task performance (in respective Acc. and Dice metrics) against the k values
with rejection ratio set to 5%.

Fig. 3. Examples of controller selected and rejected images (rejection ratio = 5%) for
both tasks. Blue: rejected samples; Red: selected samples; Yellow: rejected samples
despite no apparent artefacts or severe noise; Green: selected samples despite present
artefacts or low contrast. Orange arrows: visible artefacts; Cyan arrows: regions
where gland boundary delineation may be challenging. (Color figure online)
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5 Discussion and Conclusion

Based on results reported in Sect. 4, for the tested ultrasound guidance appli-
cation, the proposed adaptation strategy allows for the IQA agent and task
predictor to be adapted using as few as 1087 and 1634 expert-labelled images
from 42 and 63 subjects (training and validation sets), for classification and seg-
mentation, respectively. Compared with a total of 5521 expert-labelled images
from 211 subjects that were required to train the baseline, this is a substantial
reduction, to 20–30%, in the required quantity of high-quality and often expen-
sive expert-labelled data. The proposed model also used non-expert labels for
training but these may be used for different IQA definitions, further economic
analysis is beyond the scope of this work. An adaptable IQA algorithm has been
presented, which can be efficiently adapted with new labelled data. The pro-
posed algorithm may have general applicability to alleviate demand for large
quantities of training data, for example, for other imaging protocols or target
tasks.
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Abstract. Aortic valve stenosis (AS) is the narrowing of the heart’s
aortic valve opening, which restricts blood flow from the left ventricle to
the aorta. Accurate diagnosis and timely intervention of AS are crucial
since the mortality rate of this condition rapidly increases as symptoms
begin to develop. Automated AS estimation in echocardiography faces
several challenges, including generalization from diverse medical data,
access to high-quality Doppler imaging, and noisy training labels. In this
paper, we propose a method for automatic Aortic Stenosis assessment in
echocardiography, which is, to the best of our knowledge, the first deep
learning pipeline to automate the identification and grading of AS using
cardiac ultrasound. Trained and evaluated on a large dataset of 9,117
echocardiograms obtained from 2,247 patients, our method achieves a
mean F1 score of 96.5% for the identification of AS and a mean F1

score of 73% for grading AS. We use a multi-task training scheme to
predict AS severity and key parameters used in clinical AS assessment
along with their aleatoric uncertainties. Compared to a baseline that only
predicts AS severity, our results show that our multi-task uncertainty-
aware inference method achieves comparable classification performance
while improving the ability to detect out-of-distribution examples. This is
crucial for the clinical deployment of our method in point-of-care settings,
where ultrasound operators have less experience in acquiring high-quality
echocardiograms.
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1 Introduction

1.1 Clinical Background: Aortic Stenosis

Aortic stenosis (AS) is the most prevalent and deadly valvular heart disease, and
is of epidemic proportion in developed countries [3]. The increased prevalence
of AS with age poses considerable public health problems for aging popula-
tions. A recent study demonstrated that the number of hospitalizations related
to AS increased by 43% between 2004 and 2013, particularly among patients
aged above 85 years [8]. Although AS is initially characterised by a prolonged
asymptomatic period, the mortality rate associated with this disorder rapidly
increases as symptoms begin to develop. Moreover, while most patients who
undergo aortic valve intervention demonstrate long-term survival similar to the
general population [2], only one third of untreated patients remain alive after 5
years [19]. Hence, early diagnosis and timely intervention are crucial for clinical
AS management.

The clinical standard for AS assessment involves two-dimensional echocar-
diographic (echo) imaging of the aortic valve, as well as Doppler imaging for the
derivation of key hemodynamic parameters. The parasternal long-axis (PLAX)
and parasternal short-axis at the aortic valve level (PSAX-Ao) are the most fre-
quently used two-dimensional echo imaging windows for the subjective assess-
ment of AS severity because the opening and closing of the aortic valve can be
visualized in real time. AS severity is typically characterized by three param-
eters: the calculated aortic valve area (AVA), peak aortic velocity, and mean
transaortic pressure gradient. The AVA is calculated based on the fluid con-
tinuity equation, which involves the measured diameter of the left ventricular
outflow tract (LVOT), the time-velocity integral (TVI) of the LVOT by pulsed-
wave Doppler, and the aortic valve TVI by continuous-wave Doppler. Erroneous
measurement of these parameters will introduce inaccuracies into the estimation
of AVA, and the AS assessment itself. Previous studies have demonstrated that
discordant grading of aortic stenosis (Table 1) can be observed in up to 30% of
patients whose calculated AVA does not match the AS severity suggested by
the mean transaortic gradient [6]. Strategies for the grading AS severity with-
out relying on additional parameters provided by Doppler imaging may help
improve the accuracy and precision of grading of AS severity in specialized echo
laboratories.

1.2 Our Contributions

In this paper, we propose the application of state-of-the-art deep learning tech-
niques with a large-scale dataset to predict aortic stenosis from echo, without the
need for specialized Doppler imaging for inference. We attempt to leverage task-
specific aleatoric uncertainties in a multi-task paradigm to address the pitfalls
of standard clinical grading. In summary, our key contributions are:

1. To the best of our knowledge, the first deep learning implementation for
automatic grading of aortic stenosis in echocardiography;
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2. A multi-task, uncertainty-aware training scheme well suited for medical data
with potentially absent auxiliary labels;

3. An evaluation of the strengths and limitations of our method to guide further
research in automated AS classification in the point-of-care setting.

1.3 Related Work

Video Classification: It is natural to apply established deep learning archi-
tectures for video directly to echo data, since echo is conventionally captured
as a sequence of images. A simple but effective method for video classifica-
tion is to replace conventional 2D convolutions in CNN architectures with 3D
spatio-temporal or notably superior 2D spatial followed by 1D temporal (2+1D)
convolutions [20]. The most recent architectures achieving state-of-the-art per-
formance on benchmarks, such as the Kinetics 400 action recognition dataset,
include non-local neural networks [22] and spatio-temporal self-attention [1].
Several recent works have applied video architectures for automatic assessment
and measurement in echo data. Most notable is Echo-Net Dynamic [17], which
shows the effectiveness of an 18 layer 2+1D convolutional residual network for
the estimation of left ventricular ejection fraction (LVEF)—a common indicator
of cardiac function. Additional works include segmentation of cardiac chambers
[5], synchronization of views [9], detection of landmarks [13], and image view
and quality estimation [15].

Multi-task Learning and Uncertainty Assessment: Multi-task learning
is an approach that aims to improve generalization by using the information,
or shared representations, derived from learning related objectives as inductive
biases [4]. This is usually conducted via hard parameter sharing (a subset of
parameters are shared between all tasks while others are task specific), but
can also be accomplished with soft parameter sharing (all parameters are task
specific but are jointly constrained by priors) [18]. Multi-task learning has proven
successful across many domains, including computer vision [24], and offers several
advantages including data efficiency, reduced over-fitting and faster learning [7].

Automatic and robust uncertainty estimation on model predictions has
become ubiquitous in modern machine learning, especially within medical appli-
cations. Aleatoric uncertainty (uncertainty in the data) is conventionally mod-
elled by placing a Gaussian prior over a model’s outputs and training with a
maximum likelihood objective [14]. Additional work has explored estimating
aleatoric uncertainty using test-time augmentations [21]. Epistemic uncertainty
(uncertainty in the model parameters) can be estimated using deep ensembles
[11], Monte Carlo dropout [12] or Bayesian Neural Networks which place prior
distributions directly over a model’s weights [16].
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2 Materials and Method

2.1 AS Dataset

The data used for the experiments was collected from the Picture Archiving and
Communication System at Vancouver General Hospital (VGH), Canada, follow-
ing approval from the Medical Research Ethics Board in coordination with the
privacy office. Our dataset contains 9,117 echos gathered from 2,247 patients
between 2009 and 2015. Labels for this dataset include the three Doppler mea-
surements described in Table 1 as well as supplementary details on the presence
of aortic valve defects, cardiac rhythm, study date, video frame-rate, average
heart-rate and the machine type used for acquisition. A subset balanced between
all severity classes is selected for training and evaluation containing 4,548 PLAX
and 3,576 PSAX-Ao echos obtained from 2,092 patients which includes all nor-
mal studies (noted by the clinician as having an unrestricted tricuspid aortic
valve) and those with concordant AS labels as defined by Table 1. To allevi-
ate negative biases during training and evaluation all studies with discordant
AS labels are excluded from our dataset. The remaining subset containing 993
echos with known aortic valve abnormalities is used as a test set for evaluating
model robustness, which we describe further in Subsect. 3.1.

Table 1. The Aortic Valve Area (AVA), Peak Aortic Velocity (PV), and Mean
Transaortic Pressure Gradient (MG) are the three primary measurements used for
grading AS. A grading is considered concordant if the AVA and one of the PV or MG
fall into the same severity level. Discordant grading, which often results from measure-
ment error, is a significant problem in the conventional assessment of AS.

Severity AVA (cm2) PV (m/s) MG (mmHg)

Mild >1.5 ≤3 ≤20

Moderate 1–1.5 3–4 20–40

Severe ≤1 >4 >40

2.2 Modelling Prediction Uncertainty with Gaussian Priors

A common technique for enhancing model interpretability is to incorporate
uncertainty in predictions. This is usually accomplished by predicting a dis-
tribution over the output space. For regression tasks, this is accomplished by
maximum likelihood estimation using a Gaussian likelihood function [14], lead-
ing to the negative log-likelihood (NLL) loss function:

LNLL(μ̂, σ̂, y) = − log(L(μ̂, σ̂ | y)) =
1

2σ̂2
(y − μ̂)2 +

1
2

log(2πσ̂2). (1)

Here, μ̂, σ̂ are the model outputs defining the mean and standard deviation of
the Gaussian likelihood function L.
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For the task of AS classification, we cannot make use of this regression loss
directly. However, the ordered nature of our classes leads us to desire a loss that
preserves their natural distance relative to each other. Hence, we turn to the
method of a cumulative Gaussian (CDF) loss [15], which aims to maximize the
probability mass of the predicted normal distribution over a target region [y1, y2]
of the output space:

LCDF (μ̂, σ̂, y1, y2) = − log
(
P(y1 ≤ ŷ ≤ y2)ŷ∼N (μ̂,σ̂)

)

= − log
(

1
2
erf

(
μ̂ − y1√

2σ̂

)
− 1

2
erf

(
μ̂ − y2√

2σ̂

))
.

(2)

Here, we create a contiguous set of regions (illustrated on the left in Fig. 1), each
corresponding to a prediction class.

Fig. 1. Comparison of cumulative Gaussian prediction (left) with Gaussian maximum
likelihood (right). Note that the model output spaces are identical. In the cumulative
case, the probability mass in each region corresponds to the predicted class probability.

2.3 Implementation

Neural Network Architecture: The backbone of our model is an 18 layer
deep residual network (ResNet18) with spatio-temporal convolutions. This archi-
tecture has been validated by previous work as the gold-standard for video
classification and regression tasks with echo [10,17]. In the multi-task setting,
this backbone comprises the shared parameters of the network. The features
extracted from the backbone are passed to individual fully connected layers
which predict outputs for each auxiliary training task.

Training: We follow standard multi-task learning (MTL) methods and train
using stochastic gradient-based optimization methods over the unweighted sum
of losses for all task predictions to jointly learn both the shared and task-specific
parameters (hard parameter sharing) [23]. While newer MTL training methods
have been proposed [25], the focus of this paper is to use MTL in a novel appli-
cation for automated ultrasound analysis and interpretation. The input to our
model is approximately one cardiac cycle from an echo that is then resampled
using trilinear interpolation to 16 frames and a spatial dimension of 224 × 224.
We use Adam optimization with a base learning rate of 10−4 and a learning rate
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decay factor of 0.1 every 15 epochs. Using a batch size of 8 on a single Nvidia
TITAN RTX GPU, we train, validate and test our model on 78%, 12%, and
10% random splits of our dataset, respectively. We train for a maximum of 60
epochs, validating at the end of each epoch. We perform random square cropping
and horizontal flipping with a probability of 0.3. The best model is selected by
validation performance. Echo data is preprocessed by zero masking the region
outside of the ultrasound beam area. During training, our model dynamically
handles missing auxiliary labels by zeroing the loss of the relevant tasks, which
is necessary for incompletely-labelled medical data.

3 Experiments and Results

We begin with several ablation studies, aiming to validate the efficacy of a)
AS identification and grading, b) modelling aleatoric uncertainty with Gaussian
predictions for AS echo data, and c) multi-task learning for this application.
We summarize our main results in Table 2. By selecting the most commonly
predicted class for echos belonging to the same patient study (a strategy known
as majority voting, or MV), we demonstrate improved inference ability. This
performance boost overcomes the slight performance decrease we observe when
training on both PLAX and PSAX data (bottom two rows). Figure 2 illustrates
the multi-task model class predictions for both AS grading and identification.
For the task of AS identification, where we group mild, moderate and severe AS
into a single class, we achieve a mean F1 score of 96.3% on our multi-task model
trained using Gaussian objectives (see Subsect. 2.2). For the task of severe AS
identification, where we group normal, mild AS and moderate AS into a single
class, we achieve a mean F1 score of 84.6% on the same model. Our results also
confirm prior research [14] that claims improved training robustness on noisy
data and performance increases associated with uncertainty predictions. While
we observe little negative transfer of learning in the multi-task setting, predicting
clinically relevant auxiliary labels can support clinical decision making, such as
confirming the AVA falls within an expected range (see Fig. 3).

Table 2. Evaluation benchmarks on aortic stenosis (AS) grading. We demonstrate
improved performance using Gaussian objectives and show that using majority voting
(MV) on predictions pertaining to the same patient study improves inference perfor-
mance, especially when trained on both PLAX and PSAX data (bottom two rows).

Learning task(s) Loss Recall (%) F1 (%) Recall (%) MV F1 (%) MV F1 (%) AS IDa

PLAX PSAX PLAX PSAX

AS (PLAX) Cross-Entropy 61.5 − 61.3 − 61.8 61.9 90.4

AS (PLAX) Gaussian 67.9 − 67.9 − 69.6 69.7 97.5

AS Gaussian 66.5 68.3 66.8 68.8 73.0 73.2 96.8

AS+AVA Gaussian 66.9 66.9 67.0 67.2 71.0 71.1 96.3
aHere we compute the F1 score for binary AS identification with majority voting.
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Fig. 2. Confusion matrices for the majority voting inference strategy applied to our
multi-task model trained on PSAX/PLAX with Gaussian loss functions. The evaluation
is performed on 220 studies corresponding to 10% of our total dataset. We note that
the confusion of our model between mild and moderate AS presents similarly to real
clinical practice.

Fig. 3. Aortic stenosis (AS) classification performance vs. prediction uncertainty
threshold for two strategies. Each plot shows the average recall on AS classification
for predictions where the task uncertainty falls below a given threshold. In the back-
ground of each plot is a histogram showing the fraction of total predictions kept for a
particular threshold. Note thresholding based on the aleatoric uncertainty for the aortic
valve area (AVA) task improves performance at a faster rate compared to thresholding
based on AS uncertainty.

3.1 Out-of-Distribution Detection

Recognizing the inherent challenge in generalizing from diverse echo data (which
is reflected in our results), we feel it is necessary to highlight some of the
unique features of our data and showcase our performance in identifying out-of-
distribution samples. Most notably, Aortic valves may possess a varying number
of leaflets, which leads to fundamental differences in their shape and structure,
and demands specialized AS assessment. Training solely on cases with tricuspid
(regular) aortic valves, we demonstrate considerable out-of-distribution detection
when predicting aleatoric uncertainties on bicuspid cases, which we visualize in
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Fig. 4. We find similar results analyzing the uncertainty predictions of the AVA
regression task.

Fig. 4. Aortic stenosis evaluation predictions for tricuspid (top row) and bicuspid (bot-
tom row) cases. The target prediction region for each class is displayed as a light green
band enclosed between dashed lines. Vertical interval markers show the model predic-
tion and uncertainty for each study. Bicuspid aortic valves are uncommon and represent
one type of out-of-distribution example. Significantly higher uncertainty is predicted
for the bicuspid cases. (Color figure online)

4 Conclusion

Timely and accurate AS assessment and intervention are becoming increasingly
vital to healthcare systems in the developed world. Our findings showcase the
efficacy of modern deep learning methods for automatic AS identification and
grading using only cardiac ultrasound. Moreover we demonstrate a multi-task,
uncertainty-aware inference methodology that provides clinically relevant pre-
dictions by identifying and excluding out-of-distribution examples. Our method
also presents an initial step towards democratizing AS assessment, as it does
not rely on specialized echocardiography at inference time, supports multiple
echo views, and has the potential to be deployed to portable ultrasound devices.
While we evaluate our methodology only on AS data, our proposed strategy is
generic and applicable to other medical imaging domains where multiple data
labels are often present and potentially missing.
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Abstract. Beamforming is an essential step in ultrasound image recon-
struction that can alter both image quality and framerate. Adaptive
methods estimate a set of data-dependent apodization weights among
which Minimum Variance Beamforming (MVB) is one of the most power-
ful approaches performing well regardless of the imaging settings. MVB,
however, is not applicable online as it is computationally expensive.
Recently, in order to speed up MVB, we took advantages of state-of-
the-art methods in deep learning and adapted the MobileNetV2 struc-
ture to train and test a model that mimics MVB. In terms of image
quality, our method was ranked first in the Challenge on Ultrasound
Beamforming with Deep Learning (CUBDL). However, considering both
image quality and network size, our method was jointly ranked first with
another submission which had a smaller number of parameters. The num-
ber of parameters and processing time are important especially for the
point-of-care ultrasound machines, which have limited size and compu-
tational power. Herein, we propose an approach to prune the trained
MobileNetV2 to reduce the number of parameters and computational
complexity to further speed-up beamforming. Results confirm that there
is no discernible reduction in the network performance, in terms of either
visual or quantitative comparison after pruning. In terms of the mem-
ory footprint, the post-pruned networks contain 0.3 million parameters
as compared to the 2.3 million pre-pruned networks, a reduction by a
factor of 7.67. The run-times of MVB, pre- and post-pruned models are
4.05, 0.67 and 0.29 min, respectively.

Keywords: Neural network pruning · Adaptive beamforming ·
Ultrasound imaging · Minimum variance · Deep learning

1 Introduction

Medical ultrasound image formation pipeline is designed to reconstruct a high-
quality spatial map of the target echogenicity. Receive beamforming is one of
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the essential steps which refers to the process of combining the outputs of dif-
ferent crystal elements of the probe. The goal is to estimate the pixel intensities
corresponding to averaged tissue reflectivity functions over the range of medium
under consideration. Delay and Sum (DAS) is the most common approach in
which, first, the propagation delays corresponding to each signal recorded by
piezoelectric elements are compensated. Afterward, a set of element weights,
referred to as an apodization, are used for information fusion among different
crystal elements through weighted summation.

In contrast to DAS, in which predetermined apodization weights are used,
adaptive approaches directly estimate the weights from channel data in order to
improve the resolution and contrast. Minimum Variance Beamforming (MVB)
is one of the well-known adaptive methods which provides excellent image qual-
ity regardless of the imaging settings. MVB estimates the apodization weights
minimizing the output variance while preserving the unity gain in the steering
direction [15]. Nevertheless, MVB is not applicable online as it requires estima-
tion of the covariance matrix of data which is very time-consuming. Therefore, a
growing body of research has addressed speeding-up MVB to make it applicable
real-time [1,4,6,16].

During the past few years, deep learning has been utilized for the low-
level task of ultrasound image reconstruction [5,9,10]. Recently, the Challenge
on Ultrasound Beamforming with Deep Learning (CUBDL) was held in con-
junction with the 2020 IEEE International Ultrasonics Symposium (IUS) [2,8].
We successfully participated in this challenge and proposed a general app-
roach for ultrasound beamforming using deep learning [6]. More specifically,
the MobileNetV2 [14] structure was adapted to train a model that mimics Min-
imum Variance Beamforming (MVB). In terms of image quality, our method
was ranked first. Overall, considering both image quality and network size, our
method was jointly ranked first with another submission [12].

Unfortunately, deep models require a large memory and are computation-
ally expensive, which not only increase the hardware costs, but also precludes
them from practical application on resource-constrained environments such as
the point-of-care ultrasound machines. Neural network pruning is a common
approach for solving these issues. Pruning involves the systematic removing of
network parameters to produce a smaller model with similar performance [3].
Herein, we propose an approach to prune the trained MobileNetV2 to reduce the
number of parameters and computational complexity to speed-up beamforming.

In this study, the L1 norm is used to score the importance of each parameter
for pruning. The rationale behind this selection is that kernels with a smaller
norm have relatively lower impact on the network’s output. Starting from the
last layer (i.e., the layer closest to the network output), the pruning processes
backwards towards the first layer. More specifically, pruning starts with remov-
ing a specific fraction (α) of the kernels with the lowest L1 norms in the last
layer. The same procedure is then successively applied to the earlier layers until
the first layer is reached. While pruning each layer, we start with a small value of
α and gradually increase it until a reduction in the output’s quality is observed.
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We upper bound α to the maximum value of 0.7. Experimental results confirm
that there is no discernible reduction in the network performance, in terms of
either visual or quantitative comparison, after pruning. In terms of the mem-
ory footprint, the pre- and post-pruned networks contain 2.3 and 0.3 million
parameters (7.67 times smaller with pruning). The run-times of MVB, pre- and
post-pruned models are 4.05, 0.67 and 0.29 min, respectively. The contributions
of this paper are summarized below:

1. To the best of our knowledge, we exploit pruning for the first time in ultra-
sound beamforming, and more generally in ultrasound imaging.

2. We propose to utilize the L1 norm to prune our network by first pruning from
deep layers and then gradually increasing the pruning factor α.

3. We propose the first MVB-based deep beamformer that is approximately 14
times faster than MVB, paving the way for wider use of adaptive beamforming
in real-time ultrasound applications.

The rest of the paper is organized as follows. First, the beamforming model
based on MobileNetV2 is explained in Sect. 2. The proposed pruning algorithm
is introduced in Sect. 3. Results are presented and discussed in Sect. 4. Finally,
the paper is concluded in Sect. 5.

2 Beamforming Using MobileNetV2

Let us assume an ultrasound array that transmits a pulse into the medium
with a sound speed of c. Without loss of generality, consider n elements record
the backscattered signals denoted by hi(t). The transmission distance between
the origin of the transmitted pulse to an arbitrary pixel (x, z) in the region-of-
interest (ROI) is denoted by dt. Likewise, dr is defined as the receiving distance
from (x, z) to the location of element i. The radio-frequency (RF) data cor-
responding to (x, z) in hi(t) can be determined using the propagation delay as
follows (hereafter, capital and bold font variables represent matrices and vectors,
respectively):

τ(x, z) =
dt + dr

c
=⇒ Si(x, z) = hi(t) |t=τ(x,z), (1)

where matrix Si contains the RF data recorded by crystal element i correspond-
ing to ROI pixels. The final RF image is obtained using a weighted summation
of all receiving elements as follows:

S(x, z) =
n−1∑

i=0

wi(x, z)Si(x, z), (2)

where w refers to the apodization window of length n. In practice, the number
of active crystal elements considered for the reconstruction of each depth is
determined using F-number. Moreover, S is subject to envelope detection and
log compression for obtaining the final B-Mode ultrasound image.
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Fig. 1. Diagram of beamforming using MobileNetV2 [6].

In Capon’s MVB, w is adaptively estimated such that the output variance
is minimized while the unity gain is preserved in the steering direction [15]. The
final solution of MVB is as follows [15]:

wMV =
R−1a

aHR−1a
(3)

where R is the spatial covariance matrix. For delayed signals, the steering vector
a = 1. The robustness in estimating R is increased with temporal averaging
over 2k + 1 samples followed by another averaging over subarrays of length l as
follows [15]:

R̃(x, z) =

∑k
j=−k

∑n−l
i=0 ri(x, z − j)rH

i (x, z − j)
(2k + 1)(n − l + 1)

(4)

where:
ri(x, z) =

[
Si(x, z), Si+1(x, z), ..., Si+l−1(x, z)

]T (5)

A diagonal loading factor is added to the covariance matrix for numerical sta-
bility by R̂(x, z) = R̃(x, z) + εI, where I is the identity matrix and:

ε =
Δ

l
trace(R̃(x, z)) (6)

The result of subarray averaging is a vector of length l. Finally, each pixel (x, z)
of S, using MVB, can be computed as follows:

SMV (x, z) =
1

n − l + 1

n−l∑

i=0

wH
MV ri, (7)

Our deep learning framework for ultrasound beamforming [6] based on
MobileNetV2 structure is summarized in Fig. 1. Similar to MVB, each pixel
of the image is reconstructed separately. More specifically, first, the input data
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Fig. 2. Overview of the beamforming model based on the MobileNetv2 architecture.
GAP refers to Global Average Pooling [6].

is scaled to be within the
[−1, 1

]
range. The second step is the IQ demodulation

of RF channel data because MVB works on complex signals to estimate complex
weights allowing for beampatterns that are asymmetrical around the center of
the beam. In the third step, time delay compensation is performed to simplify the
mapping for the network. Then, to have a uniform image quality for all depths,
F-number is fixed. The network’s input is a 2 × m × n tensor in which n and m
are the number of channels and the window length used for temporal averaging
to preserve the speckle statistics, respectively. The two channels contain the real
and imaginary parts of IQ data. The network is trained to estimate wMV and
apply Eq. (7) to obtain the beamformed IQ data. More details regarding this
approach can be found in [6].

3 The Proposed Pruning Method

Herein, a Convolutional Neural Network (CNN) architecture is defined as a func-
tion family f , and the trained model is defined as a particular parametrization
of f , i.e., f(x, θ) for specific parameters θ. CNN pruning is the process of taking
as input a model f(x, θ) and generating a smaller model f(x, θ̂) in which θ̂ is a
subset of θ.

There are numerous methods of pruning among which the method proposed
by Han et al. [7] is the most popular one. In this general framework, after training
a model, each network’s parameter is issued a score, and the pruning is completed
based on these scores. As pruning reduces the model performance, the resulting
model might be subject to further fine-tuning. The explained pruning and fine-
tuning process is often iterated to gradually reduce the network size.

In this study, the network parameters, which are kernel weights of convolu-
tional layers, are scored based on their L1 norm. We believe that the impact of
a kernel on the network’s output is proportional to its norm. It is also observed,
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in our experiments, that reducing the size of convolutional layers closer to the
network output causes relatively smaller changes as compared to making the
same reduction in initial layers. Therefore, the proposed pruning approach starts
from the convolutional layer closest to the network output and works backwards
towards the first layer. Our algorithm is implemented iteratively. More specifi-
cally, a specific fraction (α) of the kernels with the lowest L1 norm is pruned in
each iteration. We start with a small value of α and gradually increase it until
a reduction in the model’s performance is observed. The value of α is upper
bounded to a maximum value of 0.7. The same procedure is then successively
applied to the earlier layers until the first layer is reached.

As mentioned in Sect. 1, the goal is to speed-up the previously published
beamforming approach. An overview of the beamforming model [6], which is
based on the MobileNetv2 architecture [13], is shown in Fig. 2. To stop the
iterative pruning process in each layer, specialized ultrasound assessment indexes
including Full Width at Half Maximum (FWHM) for resolution measurement
and generalized Contrast to Noise Ratio (gCNR) as well as Contrast Ratio (CR)
for contrast are calculated.

4 Results and Discussions

In order to evaluate the performance of the proposed pruning method, results on
the simulation and experimental phantom datasets which are publicly available
through UltraSound ToolBox (USTB) [11] are presented. More specifically, both
datasets contain one image of point targets for measuring the spatial resolution,
and one image of anechoic cysts for measuring the contrast. Figure 3 provides
a visual comparison of the original and pruned beamforming networks. As this
figure illustrates, there is no discernible reduction in the network performance
after pruning, and both pre- and post-pruned models are able to reconstruct
images with the same perceivable quality to that of MVB. The quantitative

Table 1. Quantitative results on simulation and experimental phantom datasets in
terms of resolution and contrast indexes. SR and SC refer to simulation resolution
and contrast datasets, respectively. ER and EC refer to experimental phantom resolu-
tion and contrast datasets, respectively. Subscripts .A and .L refer to axial and lateral
directions, respectively.

Dataset SR SC ER EC

Index FWHMA FWHML CR gCNR FWHMA FWHML CR gCNR

DAS 0.4 0.82 −15.15 0.74 0.57 0.88 −13.79 0.57

CPWC 0.39 0.56 −31.44 0.97 0.56 0.56 −25.29 0.87

MV 0.41 0.1 −21.15 0.82 0.59 0.43 −16.74 0.69

MobileNetV2 0.42 0.273 −17.15 0.661 0533 0.773 −15.53 0.55

Pruned
network

0.42 0.274 −16.86 0.659 0.531 0.767 −14.59 0.52
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Fig. 3. Beamforming results on the single 0◦ plane-wave. Columns indicate different
image datasets while rows correspond to the beamforming approaches. SR and SC
refer to simulation resolution and contrast datasets, respectively. ER and EC refer to
experimental phantom resolution and contrast datasets, respectively.

comparison, provided in Table 1, also confirms that there are negligible differ-
ences in the values of the calculated indexes in terms of both resolution and
contrast between two deep models. In terms of memory footprint, the pre- and
post-pruned networks contain 2.3 and 0.3 million parameters, respectively (7.67
times smaller with pruning). For the reconstruction of a single image, the run-
times of MVB, pre- and post-pruned models, are 4.05, 0.67 and 0.29 min, respec-
tively. It should be noted that the deep reconstruction is GPU accelerated. A
small memory footprint is of critical importance for commercial success of deep
learning beamforming given the very high frame-rate and limited computational
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resources, especially in mobile ultrasound devices. As mentioned before, simi-
lar to MVB, our method reconstructs each pixel of the image separately which
makes it quite slow and not close to real time. Therefore, one avenue for future
work is to reconstruct the whole image simultaneously to further speed-up the
method for real-time implementations.

5 Conclusions

Reduction of network parameters helps speeding up the deep models for beam-
forming. Herein, the proposed pruning approach reduces the network size by a
factor of 7.67 that makes the model 2.3 times faster. As shown in the results,
the iterative removal of network weights has been adapted to prevent any loss
in performance. The experiments confirm that the pruned network reconstructs
images with a similar quality in terms of resolution and contrast as compared
to the original beamforming model.
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Abstract. Automatic Gestational Age (GA) estimation based on the
Crown Rump Length (CRL) measurement is the preferred solution to
overcome the challenges while using the last menstrual period (LMP)
to date pregnancies. However, GA estimation based on CRL requires
accurate placement of calipers on the fetal crown and rump which is not
always a straightforward task, especially for an inexperienced sonogra-
pher. This paper proposes an accurate GA estimation method from fetal
CRL images during the first trimester scan. The method addresses this
problem by segmenting the fetus using a binary and multi-class U-Net.
The fetal segmentation is used to compute the CRL. This is then fol-
lowed by an estimation of GA from the automatic CRL measurement
based of clinical information. The results from the multi-class segmenta-
tion achieves a more accurate precision, recall, Dice, and Jaccard. This
has also led to a more accurate CRL measurement and hence more robust
GA estimation.

Keywords: Fetal ultrasound · Deep learning · Crown-rump length ·
Gestational age estimation · Fetal growth

1 Introduction

All perinatal deaths have been reported with a higher ratio in low-and middle-
income countries worldwide [1]. Early detection of gestational development prob-
lems might provide indicators of perinatal mortality and morbidity [2,3]. Accu-
rate calculation of fetal gestational age (GA) is important to date the pregnancy,
monitor fetal anatomy and growth, and determine the delivery schedule. This is
key to detect some possible growth disorders, and preterm birth [4,5].

There are mainly two ways to estimate GA. The first method uses the first
day of the woman’s last menstrual cycle to date the pregnancy. Due date is
estimated after 40 weeks of the last menstrual period (LMP) date. In many
cases, LMP is not recorded, or irregular periods make the estimation of GA
inaccurate. The second method utilizes ultrasound scanning-based calculation of
crown-rump length (CRL) and in some cases measurements on other fetal organs
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such as the head, femur, and abdomen. Estimation of GA in the first trimester
can be done based on the CRL measurement performed on fetuses between
9 and 13 weeks of gestation. Accurate measurement of CRL is paramount for a
precise estimation of GA. Although the CRL measurement is in theory relatively
straightforward, it is not always accurate especially if performed by a newly
qualified sonographer. In addition, the variability in the quality of the acquired
ultrasound images makes it challenging to decide the positions for the crown and
rump where the calipers need to be placed [6]. Due to the challenges in the LMP
estimation method [7], GA estimation based on the CRL measurement between
9–13 weeks is considered a reliable and more accurate option. An accurate GA
estimation helps monitor fetal anatomy and growth during the first trimester
of pregnancy and it can be used to report the expected date of delivery more
precisely. The robustness of GA estimation relies on the accuracy of the CRL
measurement. Therefore, reproducible and reliable CRL measurement at early
gestation has a good clinical value and may improve patient care.

With the advancements in deep learning methods for medical image assess-
ment, automated computer-based approaches are an increasing trend among
researchers. Recently, AI-based calculation of fetal GA was performed using
image characteristics and a regression neural network [8]. Another study investi-
gated the identification of fetal imaging planes on prenatal ultrasound, through-
out different GAs [9]. Authors in [10] have reported that their machine learning
solution may be used to predict preterm birth. The method they proposed seg-
ments cervical length (CL) and anterior cervical angle (ACA) and uses these
estimations to perform classification for preterm deliveries. A follow-up work,
[11] improved the prediction of preterm birth by segmenting and highlighting
the cervix using a multi-tasking U-Net network. Another AI-based study was
conducted to perform automated brain maturation estimation from 3D ultra-
sound images by using convolutional regression networks [12].

The main aim of this project is to develop an automatic fetal gestational
age estimation method using deep learning. Our method relies on segmenting
the fetal head and body accurately to allow for an accurate measurement of
the CRL which is then used to estimate fetal GA. Due to the scarcity of public
data in this domain, we show extensive evaluation of the developed method and
compare the CRL and GA with routine clinical measurements.

2 Materials and Methods

2.1 Dataset

1242 fetal ultrasound images from the first trimester scanning were retrospectively
extracted from a hospital archive. All images were from normal pregnancies and
anonymized in the hospital before being transferred for further processing. 697
were manually segmented into 2 classes (head and body) by an expert using a
drawing annotation tool. Another expert reviewed the manual segmentation and
an additional manual review was performed on some images if needed. We call this
dataset A, it was used to train the segmentation model and evaluate segmentation
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accuracy. The remaining 545 images have only CRL measurements performed by
a clinician. We call this dataset B and it was used as an independent dataset to
assess the accuracy of the CRL measurement and the estimated GA.

2.2 Fetal Head and Body Segmentation

U-Net [13] has proven to work well to segment objects in images in multiple
applications. We have investigated multiple U-Net configurations such as image
size and network depth. In addition, with cross validation, we investigated dif-
ferent hyper-parameters such as number of epochs, learning rate. The number
of epochs, learning rate were 100, 0.00001, respectively. The method was imple-
mented in Python with the TensorFlow library.

The network has a fully convolutional encoder-decoder structure with 4
blocks. Each block is decomposed of multiple convolutional and Relu layers fol-
lowed by a max pooling layer. We have investigated a binary segmentation U-
Net and 3-class (multi-class) segmentation U-Net. In the binary segmentation, a
background and a whole fetus classes were used. In the 3-class segmentation U-
Net, a background, head, and body classes were used. The U-net was trained by
minimizing the sum of the binary cross-entropy loss function and the categorical
cross-entropy loss function for binary and multi-class segmentation, respectively.

2.3 Data Augmentation

Due to the small dataset, we performed several augmentation methods during
training to ensure more accurate and robust segmentation. We randomly applied
horizontal flip, rotation (degrees [−10, 10]), and random brightness contrast (α
is 20%). Data augmentation was only performed during the training stage. No
augmentation was performed during the validation stage.

2.4 Evaluation Metrics

Segmentation Metric. During the training of the segmentation models, 5
fold cross-validation on images from Dataset A was performed. Jaccard, dice,
precision, and recall were computed to assess the segmentation performance.
Scores were computed for each class background, fetus, head, and body. When
reporting the mean accuracy, the background class was not included.

CRL Measurement. A new segmentation model is trained on all images from
Dataset A. This model was then applied to images from Dataset B to generate
segmentation masks. From the segmentation mask, we calculate the CRL mea-
surement as the longest distance between contour points. First, the contour of
the segmentation is computed as the difference between the mask image and a
dilated mask with a kernel of size 3 × 3. Figure 1 shows an example ultrasound
image (A), automatic mask with the dilated contour (purple color) (B), and the
contour from the automatic and dilated masks (C).
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Fig. 1. An example of (A) original ultrasound image (B) automatic mask with the
dilated contour (purple color) (B), and the contour from the automatic and dilated
masks (C). (Color figure online)

Second, to reduce the computation when finding the longest distance between
all contour points, we only consider the contour points in the left and right parts
of the fetus. This is based on the assumption that fetuses are typically positioned
on their back and hence the CRL is more likely to be a horizontal line. However,
this is not always true. In some cases, fetal position is slightly oblique which
means that we cannot rely on the furthest two points horizontally. Therefore, we
compute the distance between all contour points from the left 20% of the fetus to
all contour points from the right 20% of the fetus. Selecting 20% of the contour
points on the right and left of the fetus was experimentally chosen, which reduced
the computation time by 60%. To optimize this further, some adjacent points
could be skipped when finding the distances. The distance between two points
is computed as the EUCLIDEAN distance. The maximum euclidean distance
is used to measure the CRL in the pixel space. We multiply this distance by
the pixel spacing to compute the distance in millimeter. CRL is computed on
the segmentation mask in the binary segmentation. However, in the multi-class
segmentation, the head and body segmentations are merged to one class which
we call “multi-class fetal only” before measuring the CRL.

Gestational Age Estimation. In clinical research, there are multiple pub-
lished methods which demonstrate how to compute GA from the CRL measure-
ment. We reviewed some of these methods and found that the method developed
by [7] was well validated clinically and hence is used in our work. The GA is
estimated using Eq. 1,

GA = 40.9041 + (3.21585 × Δ
0.5

CRL) + (0.348956 × ΔCRL) (1)

where ΔCRL is the maximum distance between head and rump in mm.

3 Results

We have investigated many U-Net configurations including different hyper-
parameter settings. We show that the multi-class segmentation has a better
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Table 1. Mean and standard deviation Dice, Jaccard, precision, recall scores of binary
and multi-class segmentation.

Dice Jaccard Precision Recall

Binary classification 93.7 ± 5.6 88.6 ± 8.6 90.5 ± 8.5 97.7 ± 3.8

Multi-class (fetal only) 94.8 ± 6.1 90.7 ± 8.5 96.2 ± 4.6 94.1 ± 8.2

Multi class head 92.3 ± 10.8 87.0 ± 12.9 93 ± 0.09 92.9 ± 12.7

Multi class body 91.5 ± 10.6 85.5 ± 12.6 94 ± 0.08 90.3 ± 12.3

segmentation performance on all metrics compared to binary class segmenta-
tion (Table 1). The results show the mean and standard deviation from the 5
fold cross validation on all images in Dataset A. The accuracy of the CRL mea-
surement and estimated GA is reported in Table 2. We show that multi-class
segmentation has a lower mean absolute difference between manual and auto-
matic CRL measurement compared to binary segmentation (1.721 ± 4.34 and
3.866 ± 6.79, respectively) in Dataset B (Table 2).

Figure 2 shows visual segmentation results of good (left column), fair (middle
column), and failed (right column) segmentation cases of the images, respec-
tively. Ultrasound images and true CRL values provided by the clinicians are
shown in Fig. 2(A, D, and G). Binary segmentation masks fused onto ultrasound
images and their calculated CRL values are shown in Fig. 2(B, E, H). Multi-class
segmentation masks fused onto ultrasound images and calculated CRL values 1
are shown in Fig. 2(C, F, and I).

On average, training time for 100 epochs was done in 20 min on an NVIDIA
Quadro RTX 6000 in Ubuntu 18.04.5 LTS. Segmentation time is performed in
about 0.5 s.

Figure 3 shows the correlation between the true GA and the estimated GA
based on binary (orange color) and multi-class (blue color) methods. The R2

are 0.71 and 0.86 for binary and multi class methods respectively which shows a
better correlation between the manual GA and the multi class-based estimated
GA compared to the binary class one.

Table 2. Mean ± standard deviation of absolute difference of the manual and auto-
matic CRL and GA for the binary and multi-class segmentation.

CRL Diff. in mm GA Diff. days

Binary classification 3.87 ± 6.79 1.72 ± 4.34

Multi class (fetal only) 2.15 ± 3.73 0.96 ± 2.36
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Fig. 2. Examples of good (left column), fair (middle column), and failed (right column)
cases of the binary (second row) and multi class (third row) segmentation masks fused
onto ultrasound images (first row).

Fig. 3. True GA versus estimated GAs based on binary and multi class segmentation.
(Color figure online)
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4 Discussion and Conclusion

In this work, we proposed a deep learning segmentation method to segment the
fetus in the first trimester scan. We used the segmentation mask to calculate
the CRL measurement and subsequently estimate the fetal GA estimation. We
showed that segmentation accuracy improves when using multi class instead of
binary class U-Net, which also improves the accuracy of the CRL measurement
and GA estimation. We believe that the reason behind the better performance of
the multi-class segmentation method over binary class is due to the further con-
straint it imposes during the training stage. In reality, a sonographer performing
this task does not only rely on where the fetus is. The sonographer learns what
a head and body look like which allow him/her to perform a task like this more
accurately. The multi class model we develop follows such an analogy.

Our experiments on Dataset B confirm that the multi-class method performs
better than the binary class method for measuring the CRL and estimating GA.
Figure 2 shows that the CRL in the multi-class method is close to the human
measurement (shown in the first and second columns). Segmenting head and
body separately (F) improved the accuracy of measuring the CRL and estimating
GA compared to only relying on segmenting the whole fetus (E); this is shown
in the second fetal example in Fig. 2 (middle column). On the other hand, for a
few cases, both methods failed (right column) to perform well. Imaging features
within the head belonging to these few images are in a different position than
the normal position, which might have caused both methods to fail. We believe
this may be due to the small training set we have.

Figure 3 clearly shows that there are fewer scattered points (outliers) for
the multi-class estimation compared to the binary class. In addition, a better
correlation with the true GA is shown in Fig. 3 for the multi-class GA estimation
(R2 = 0.86) compared to binary class (R2 = 0.71).

One of the limitations of this study is the small dataset size. This may mean
that the results we show are not necessarily guaranteed if the method is applied
to other datasets. Further evaluation will be needed in the future. In addition,
due to the fact that all images we use are from one ultrasound machine type (GE
Voluson E8), GA estimation from images acquired on other ultrasound machines
requires further assessment.

Although finding the correct imaging plane is clinically important to measure
the CRL, this study aimed to only measure the CRL. Future work might be
needed to investigate this problem and ensure the correctness of the imaging
plane before measuring the CRL.
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