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Abstract. In medical domain, huge amounts of data are generated at all times.
These data are usually difficult to access, with poor data quality and many data
islands. Besides, with a wide range of sources and complex structure, these data
contain essential information and are difficult to manage. However, few existing
data management frameworks based on Data Lake excel in solving the persistence
and the analysis efficiency for medical multi-source heterogeneous data. In this
paper, we propose an efficient Multi-source Heterogeneous Data Lake Platform
(MHDP) to realize the efficient medical data management. Firstly, we propose
an efficient and unified method based on Data Lake to store data of different
types and different sources persistently. Secondly, based on the unified data store,
an efficient multi-source heterogeneous data fusion is implemented to effectively
manage data. Finally, an efficient data query strategy is carried out to assist doctors
in medical decision-making. In-depth analysis on applications shows that MHDP
delivers better performance for data management in medical domain.

Keywords: Data Lake · Medical multi-source heterogeneous data · Efficient ·
Persistence of data storage

1 Introduction

With the advancement of information technology, most hospitals and other medical
institutions have realized large-scale informationization. However, the architecture of
hospital information system (HIS) is complex. Furthermore, without uniform standard,
the information systems used by different medical institutions are distinctive, resulting
in different types and structures of medical data. These data include structured data in
MySQL, Oracle, SQL Server and other related databases, semi-structured data in the
format of CSV, JSON, XML, and unstructured data, such as EMRs, ECGs, CTs, MRIs,
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etc. In front of massive multi-source heterogeneous data in medical domain, how to
acquire, store, and provide methods for unified management is the primary key problem
[1, 2].

The works of medical data management in the early stage adopted Database [3, 4].
Database technology can cater to the needs of rapid Insert, Delete and Query in the case
of relatively few medical data to deal with online transaction affairs in medical domain.
However, Database technology cannot well deal with the analysis tasks which are char-
acterized by reading a large amount of data. To address this issue, Data Warehouse
technology is applied to medical data management [5, 6]. The medical data manage-
ment frameworks based on Data Warehouse provide unified data support for medical
workers’ data management analysis and treatment decision-making. More recently, due
to the demand for data flow keeps growing, Data Warehouse technology cannot cope
with the remarkable challenge of data management.

Confronted by the challenges brought by Database and Data Warehouse in medical
data management, researchers began to pay attention to Data Lake technology. Data
Lake can integrate complex data by multiple means, and there are related researches in
medical data management [7, 8]. However, the current data management frameworks in
medical domain based on Data Lake technology show three challenges as follows:

1. Framework extendibility. In the real scene, the data generated in medical domain
is multi-source, multi-structured and massive. Without broader data source range,
existing works obtain these original data by a single approach, which demonstrates
less extendibility.

2. Data persistence.When data is stored, it is sometimes lost. Though some data storage
methods have been well studied, most of them ignore the data persistence over a
longer time.

3. Efficiency.Usually,medicalworkers frequently need to obtain real-time resultswhen
analyzing and querying data based on their illness. However, most frameworks leave
efficiency optimization to be desired, affecting the real-time analysis of illness for
medical workers.

Contributions. The main contributions are summarized as follows:

1. An efficient multi-source heterogeneous data storage persistence method is pro-
posed. With the support of distributed computing, medical multi-source heteroge-
neous data is converted into one unified data model to store data efficiently and
permanently. Meanwhile, it considers recording the data sources and changes to
ensure the traceability of the data sources.

2. An efficient multi-source heterogeneous data fusion method is presented. The data
fragmentation triggered by the discrete distribution of medical data after storage
cannot depict the patient’s condition completely, which may lead doctors to make
wrong decisions on the condition of patients. The proposed method can effectively
tackle this problem and concentrate the data efficiently.
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3. An efficient multi-source heterogeneous data query method is put forward. Different
from the traditional query method, the proposed method takes into account the dis-
tributed computing power aswell as space and time required for query, thus achieving
high efficiency to underpin doctors’ rapid medical decision-making.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 gives the platform architecture. Section 4 presents persistence of data storage.
Section 5 describes data fusion. Section 6 implements data query. Section 7 summarizes
the paper and points out future research direction.

2 Related Work

The concept of Data Lake was first put forward by Dixon to deal with the challenges
brought byDataWarehouse. [9]. In practical applications,DataLake technologyhas been
employed in academia and industry. The companies that have deployed the Data Lake in
the industrial community include AWS, Huawei, Alibaba, Azure, etc. The achievements
of the deployment in academia include CLAMS [7], CM4DL [8] etc. Inspired by these
Data Lake frameworks, the research work of Data Lake management framework in med-
ical domain began to emerge constantly. Due to the flexibility of Data Lake technology
and the diversity of diseases, the existing researches work on Data Lake management
framework in medical domain can be divided into two categories, namely, Data Lake
technology research and disease analysis research.

With regard to Data Lake technology research, Mesterhazy et al. [10] aimed at the
medical image data such as X-Ray, MRI, CT, etc., and adopted cloud-based distributed
computing technology to carry out rapid turnover of medical imaging, thus generating
a medical image Data Lake processing framework. Hai et al. [11] designed a Web Data
Lake framework called Constance, providing users with unified query and data explo-
ration by applying an embedded query rewrite engine. They have been applied in the
open source medical engineering project miMappa, which demonstrates the practicabil-
ity of the framework in medical data management. Walker et al. [12] regarded metadata
management as the core part of theData Lake system, and proposed a personal Data Lake
framework for personal customization, which could be used to store, analyze and query
personal medical data as well as generate personal medical reports conveniently and
quickly. Bozena et al. [13] integrated fuzzy technology and declarative U-SQL language
into data analysis, and developed a fuzzy search scheme for big Data Lake, which could
analyze a large amount of medical data in a distributed way. This scheme is equipped
with good scalability, which is a successful step to realize the large-scale medical data
declaration.

In terms of disease diversity research,Alhroob et al. [14] designed a datamanagement
framework based on Data Lake technology for semi-structured data of cardiovascular
and cerebrovascular diseases by using k-means clusteringwith categorical and numerical
data with big data characteristics. Maini et al. [15] proposed a solution to optimize
data storage and analysis, applied it to the prediction of cardiovascular diseases, and
constructed a prediction framework for cardiovascular diseases based on Data Lake.
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Kachaoui et al. [16] came up with a Data Lake framework combining semantic web
services (SWS) and big data features in order to predict the case of COVID-19 in real
time. This framework extracts crucial information frommultiple data sources to generate
real-time statistics and reports.

3 The MHDP Architecture

This section introduces the platform architecture from two aspects: software architecture
and deployment architecture.

3.1 Software Architecture

As shown in Fig. 1, the software architecture of MHDP is bottom-up, with a total of
5 layers, namely data storage layer, calculation layer, function layer, API layer and
application layer.

Fig. 1. MHDP software architecture

Data Storage Layer: The bottom layer of MHDP is the data storage layer with storage
function provided by HDFS. HDFS is a very popular distributed file system, which
provides high fault tolerance and high throughput storage capacity.

Calculation Layer: The calculation layer above theHDFS is supported by Sparkwhich
is a fast and general computing engine designed for large-scale data processing, and has
formed an ecosystem with rapid development and wide application. Delta Lake is an
open source storage layer provided by the Databricks, which brings reliability to the
Data Lake. Delta Lake provides ACID transaction, extensible metadata processing, and
unifies streaming and batch data processing. Delta Lake is fully compatible with Spark
API.

Function Layer: Based onDelta Lake and SparkAPI, wemodify and encapsulate them
with code, and form various functional methods, such as multimodal data fusion, data
query and other functions. These methods are the core components of MHDP.
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API Layer: This layer encapsulates the functions of MHDP into Restful API. Nginx
forwards the received requests to the master nodes of different clusters according to their
types, and then uses cluster computing power to complete the corresponding tasks.

Application Layer: The top layer is the data exploration and analysis layer, which will
package Restful APIs into a visualization module providing various services, interacting
with users directly, and assisting users to complete various scientific research tasks of
data analysis and data exploration.

3.2 Deployment Architecture

Figure 2 shows the deployment architecture of MHDP. First, a large number of servers
are used as DataNode in Hadoop. Meanwhile, the servers are divided into two groups of
Worker to provide computing power support for the two groups of Spark clusters. Then,
several servers assume the identity of NameNode and Master with Zookeeper, building
HA (Highly available) cluster. Once the NameNode and Master are down, the platform
will automatically convert the server state from ready to activation.

There are several servers in the Restful Server, which split the services of MHDP.
Each server will assume different responsibilities and provide different services. The
requests sent by the client will be forwarded by the Nginx cluster to perform reverse
proxy according to the category, so as to improve the reliability of the platform by
improving the concurrency.

Fig. 2. MHDP deployment architecture

4 Data Persistence

Facing massive multi-source heterogeneous data in medical domain, the primary key
problem is how to acquire, store, and provide methods for unified management. In this
section, we introduce how to solve the problem mentioned above.
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4.1 Data Acquisition Mode

In MHDP, these data sources are integrated through transportation mode and pipeline
mode.

Transportation Mode. The interface is used to upload the data files to the reserved
space of the Data Lake with SFTP protocol. Meanwhile, during the upload process, the
interface will collect the meta information of the data files, such as data source, data
structure, data type, data address, etc., and store them in a meta information database.
In the future, when the data is traced due to medical safety problems, this information
will provide support.

Pipeline Mode. In the pipeline mode, the data will not be store in MHDP. This mode
will establish a session for the target data address. When we need to use the data, we
will directly put it into the memory of the server cluster by network transmission, not in
the disk. When we read the data of a certain pipeline type for the first time, there is also
a method to obtain the meta information of the data and save it to the meta information
database. The biggest difference between this mode and the Transportation Mode is that
we will not save it in the Data Lake. We do not provide storage services for this type of
data, and we do not need to be responsible for the security problems such as the leakage
of this type of data.

4.2 Efficient Data Persistence

For data from different sources, the persistence methods are different. The data file is
uploaded to the HDFS of the Data Lake for persistence with the Transportation Mode,
whereas they will be directly loaded into the memory of the Data Lake by the Pipeline
Mode when needed. According to different types of data, there are also differences about
persistencemethods. For structured data and semi-structured data, no additional changes
are needed. But for unstructured data, it is difficult to directly obtain valuable information
from itself, and we need to further process it. Therefore, in terms of persistence strategy,
the original data are first stored. In addition, different embedding models are used to
generate different feature vectors according to the requirements, and the information
such as the address and size of the original data are stored structurally.

MHDP employs two kinds of models, Dataframe and DeltaTable, as the data models
in the data processing stage. These data models can provide unified data models for
efficient management of data with different structures and different sources. These data
models and methods will transform the computing process of data into the distributed
computing task of Spark, and fully mobilize the cluster computing power. DataFrame
is a regulation data model in the platform, and DeltaTable is similar to DataFrame. It
is the data structure that will be employed when Delta Lake is used. There are mutual
transformation methods between DataFrame and DeltaTable. The DataFrame will be
discussed as the main body in the following. The Fig. 3 shows an example of using
DataFrame as data model for data in the format of CSV, JSON and image data. Whether
it is semi-structured data in the format of CSV, JSON, or unstructured data like images,
the platformprovides an appropriateway to convert them intoDataFrame. Structured and
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semi-structured data are supported by Spark and Delta Lake. For unstructured data, we
will convert the feature vectors of these data and the path information for data traceability,
as well as data size, data classification and other information into DataFrame for storage.

Fig. 3. The conversion from various types of data to DataFrame

5 Data Fusion

The data fragmentation cannot depict the patient’s condition completely, whichmay lead
doctors to make wrong decisions on the condition of patients. Aiming at this situation,
data fusion is one of the key problems that MHDP solves.

5.1 Integration Method

In general, we can treat data as a set, and every piece of information in the data is an
element in the set. This information can be represented by a tree structure, so every
piece of data can be regarded as a set of trees. As shown in Fig. 4, it is an ordinary
two-dimensional table, and the set of transformed trees is on the right side. The root
node of the tree is generally assumed by the primary index.

Fig. 4. The transformation between 2D table and tree

We use two cases to illustrate the merging process.
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Case I. The first case is tree merging. If the Merged Key is the root node of the normal
tree, then the merging process is the same as the special tree. If the Merged Key is the
leaf node of the second layer in the normal tree, because the root node is adjacent to the
second layer node, simply convert the position between the Merged Key and the root
node of normal tree. Taking the fusion of patient information and treatment information
as an example as shown in Fig. 5, the two datasets are associated with each other by the
PatientId, which is used as the Merged Key. When the PatientID nodes in the treatment
information dataset are located in the second layer, they should be converted to root node
and be special tree, then the two trees are merged to get the merged result according to
the root node.

Fig. 5. Tree merging case I

Case II. The case that normal tree with the Merged Key below the second layer, occur-
ring when the Merged Key is nested within a certain data value. The value is often an
object or a list, or even a complex structure that both exist. As shown in Fig. 6, taking
the merging of treatment information and examination information as an example, the
two datasets need to use the examination number ExamNo as the Merged Key. There
are three steps:

Step 1: Extracting these nested data. In view of this nesting situation, we design a
special method depending on two basic processes. One is to split the Object existing in
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the nested data to expand the nodes. The other is to split the Array in the nested data
to expand the elements. We can always turn the splitting process of a data into a finite
combination of these two processes. These two processes can be used to process the data
until the Merged Key appears at the root node or the leaf node on the second layer.

Step 2: Like the Case I above, changing the position between Merged Key and root
node after getting the split tree, a special tree can be constructed.

Step 3: Merging the node to get the final result.

Fig. 6. Tree merging case II

5.2 Implementation Mechanism

In MHDP, we use DataFrame as the collection of trees, that is, the loading container of
data. Each row of records in DataFrame corresponds to a tree.

Using DataFrame, we can call computing power of the clusters to speed up the
process of data fusion. According to our method, we can solve the problem of merging
N sets. No matter whether the merging node is nested or non-nested, we can always
merge several data sets into a new data set, and use computing power of the clusters
to speed up the process. When the merge node ExamNo in the treatment information
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is nested in Examination, we use two splitting methods to transform the DataFrame to
get the following DataFrame. It can be seen that the ExamNo has been exposed to the
outside. Next, only merging with the ExamNo in the examination data can get the final
result. In the final result, it can be clearly understood what tests each patient has done
and the relationship between these tests in time.

We encapsulate the function of data fusion into a Restful API to support the imple-
mentation of various functions of the platform. The API will return different values
according to the running situation of the code. When the code runs as expected, it will
return the execution situation: true and the corresponding data. Once the code is wrong,
it will return the corresponding error information according to the error situation, so as
to help medical workers understand the current situation.

6 Data Query

Thedatamanagement framework inmedical domain not only needs to store andmanage a
large number ofmulti-source heterogeneous data, but also has the query function to assist
doctors to make in-time medical decisions. This section introduces how to efficiently
implement data query in MHDP based on above mentioned.

6.1 Query on Medical Data Lake

In the traditional situation, joint query is the most time-consuming whether by Data
Warehouse or data container, which will consume a lot of space and time. Most of the
inefficient query were due to too many Joins. Our query mechanism is to do single table
query based on data fusion. When query conditions exist in both set A and set B, we
fuse set A and set B into set C. We only execute single table query for table C. Due to
using Spark SQL and RDD mechanism, parallel computing can be used to accelerate
the queries, so our query mechanism is very efficient in MHDP.

Generally, the data sets have certain columns. For the data sets with uncertain
columns, we design a method. This method obtains the maximum structure of data
first, and then uses it as the basis of data query. For the data sets with deep nesting, we
also provide the function of data splitting in data fusion, releasing the data to be queried,
as shown in Fig. 7.

Fig. 7. The splitting of nested data
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6.2 Query API

MHDP encapsulates the query method of data, and packages it into a Restful API to
provide services for the exploration and analysis of medical data. This API requires two
parameters, one is the address of the data file, the other is the SQL statement. When the
code runs as expected, it will return the execution status: true, and the corresponding
data. Once there is an error in the code, it will return the corresponding error information
according to the error situation, so as to help users understand the current situation.

Taking the query of treatment information and examination information as an exam-
ple, MHDP will fuse the two first, and then only need to query the results after fusion.
When enter SQL standard query codes: ‘SELECT ExamUnit, count (ExamUnit) as
times from d6 group by ExamUnit order by times’, the number of times that the current
patient’s examination unit appears will be displayed.

6.3 Application

MHDP has been deployed to XXXhospital to support data analysis in knee osteoarthritis
domain.These kneeosteoarthritis data, spanning from2008 topresent, involving128,000
people and a total of 230,000 visits, include structured EMRs and unstructured medical
images and texts.

Comparedwith the traditionalDataAnalysis System (DAS) ofXXXhospital,MHDP
queries data of different types uniformly and has higher query efficiency. We compare
the performance of the Oracle-based DAS andMHDP by comparing the time consumed
to execute the same query on the same dataset. The experiment dataset is 200 GB of
structured data extracted from EMRs. The query task is to count the effective rate of
patients with different genders and ages after PRP treatment. The experiment results
show that MHDP-based queries outperform the Oracle-based queries by 3×.

7 Conclusion and Future Work

This paper proposes an efficient and medical-oriented Data Lake platform to manage
massive medical data. Different from the traditional medical data management frame-
work, MHDP adopts two unified data models, DataFrame and DeltaTable, to provide
scalable and persistent storage capacity for medical multi-source heterogeneous data,
coping with the increasing amount of data and the analysis needs of medical related data.
During the construction of the platform, Spark and Nginx are used to store, transform
and query medical data to provide fast computing capabilities, making the analysis of
medical data more efficient. In the future, we will focus on optimizing the traceability
of data. Not only do we record when the data is loaded into the Data Lake, but also track
the changes of data during data fusion, so as to ensure that each piece of data has a clear
provenance.
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