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Abstract. Graph Convolutional Networks (GCNs) have attracted increasing
attention on network representation learning because they can generate node
embeddings by aggregating and transforming information within node neighbor-
hoods. However, the classification effect of GCNs is far from optimal on complex
relationship graphs. The main reason is that classification rules on relationship
graphs rely on node features rather than structure. most of the existing GCNs do
not preserve the feature similarity of the node pair, which may lead to the loss of
critical information. To address these issues, this paper proposes a node classi-
fication network based on semi-supervised learning: Mif-GCN. Specifically, we
propose a mixed graph convolution module to adaptively integrate the adjacency
matrices of the initial graph and the feature graph in order to explore their hid-
den information. In addition, we use an attention mechanism to adaptively extract
embeddings from the initial graph, feature graph, and mixed graph. The ultimate
goal of the model is to extract relevant information for improving classification
accuracy. We validate the effectiveness of Mif-GCN on multiple datasets, includ-
ing paper citation networks and relational networks. The experimental results
outperform the existing methods, which further explore the classification rules.

Keywords: Graph convolutional networks · Semi-supervised classification ·
Deep learning

1 Introduction

Graphs are common data structure that interpret the interrelationship of objects, and real-
world data is increasingly represented as graph data. The purpose of graph analysis is to
extract a large amount of hidden information from data, thus deriving many important
tasks. The purpose of semi-supervised node classification task is to use a small number
of labeled nodes to predict the labels of a large number of unlabeled nodes.

In recent years, graph neural networks have shown remarkable results in node repre-
sentation learning, and GCN [9] being one of the most popular models. Existing GCNs
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models often follow the message-passing manner to obtain the embedding of all nodes
by aggregating the node features within the node neighborhood. However, recent stud-
ies have provided some new insights into the mechanisms of GCNs. Li et al. [5] prove
that the convolution operation of GCNs is actually a kind of Laplacian smoothing, and
explores the multi-layer structure. Wu et al. [6] show that graph structure as low-pass-
type filter on node features. Zheng et al. [12] utilize the Louvain-variant algorithm and
jump connection to obtain different granularity of node features and graph structure
information for adequate feature propagation.

Most of the current GCNs rely on the structural information of graph, which can
seriously affect the model performance when the structure of graph is not optimal. The
reason may be that most of the current GCNs rely on the structural information of
the graph to classify. In this work, we retain graph structure information and feature
similarity, consider the influence of the mixed information of the two on the results, and
introduce the attention mechanism for classification.

2 Related Work

The first representative work of applying deep learning models to graph structure data
is network embedding, which learns fixed-length representations for each node by con-
straining the proximity of nodes, such as DeepWalk [1], Node2Vec [2]. After that, the
research defines graph convolution in the spectral space based on convolution theo-
rem. ChebNet [3] parameterize the convolution kernel in the spectral approach, which
avoids the characteristic decomposition of the Laplace matrix and greatly reduces the
complexity. Kipf [9] simplifie the ChebNet parameters and proposes a first-order graph
convolution neural network. SGC [4] put the first-order graph convolution neural intro-
duces the first-order approximation of Chebyshev polynomials, which further simplifies
the mechanism. With the increasing importance of attention mechanism, it has a consid-
erable impact in various fields. GAT [7] leverage the attention mechanism to learn the
relative weights between two connected nodes. GNNA [14] improve the embeddedness
of users and projects by introducing attention mechanisms and high-level connectivity.

Some experiments show that the graph neural network is inefficient when the graph
structure is noisy and incomplete. kNN-GCN [8] take the k-nearest neighbor graph cre-
ated from the node features as input. DEMO-Net [13] formulate the feature aggregation
into amulti-task learning problem according to nodes’ degree values. AM-GCN [10] use
consistency constraints and disparity constraints to obtain information and improves the
ability to fuse network topology and node features. SimP-GCN [11] make use of self-
supervised methods for node classification and explore the different effects of GCNs on
assortative and disassortative graphs. Hence, it motivates us to develop a new approach
that combines graph structure and feature similarity on the node classification task.

3 The Proposed Model

The key point is that Mif-GCN license node features to propagate in both structure
space and feature space, because we consider that the classification rules of datasets
depend on graph structure or feature similarity. We propose a mixed graph convolution
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module to adaptively balance themixed information from initial graph and feature graph,
whichmay contain hidden information. Thismodule is designed to explore depth-related
information.

3.1 Multi-Channel Convolution Module

Feature Graph Construction. We first calculate the cosine similarity between the fea-
tures of each node pair and construct the similarity matrix S ∈ R

n×n. Then, we select
predetermined number of nodes to establish the connection relationship, in order to
obtain a k-nearest neighbor (kNN) graph Gf = (

Af ,X
)
.

The cosine similarity can be calculated from the cosine of the angle between two
vectors:

Sjk = xj · xk∣∣xj
∣∣ |xk | (1)

Where Xj and Xk are the feature vectors of nodes j and k Fig. 1.

Fig. 1. The framework of the proposed Mif-GCN model.

Initial Graph Convolution Module and Feature Graph Convolution Module. In
this module, node features are propagated in structure space and feature space sepa-
rately so that we can distinguish correlations. Both modules use the typical GCN to get
the node representation.
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Then with the initial graph Gi = (Ai,X), the l - th layer output Z(l)
i can be

represented as:

Z(l)
i =ReLU

(
D̃

− 1
2

i ÃiD̃
− 1

2
i Z(l−1)

i W(l)
i

)
(2)

WhereW(l)
i is theweightmatrix of the l - th layer, Ãi is the adjacencymatrix of the initial

graph of the added self-loop and D̃i is the diagonal matrix of Ãi. We have Ãi= Ai+I,Ai

is the adjacency matrix of the initial graph, I is the identity matrix. ReLU is the ReLU
activation function and Z(0)

i = X.

Then with the feature graph Gf = (
Af ,X

)
, the l - th layer output Z(l)

f can be
represented as:

Z(l)
f =ReLU

(
D̃

− 1
2

f Ãf D̃
− 1

2
f Z(l−1)

f W(l)
f

)
(3)

Where Af is the adjacency matrix of the feature graph, Z(0)
f = X, other parameters are

the same as Eq. (2).

Mixed Graph Convolution Module. Thismodule canmix information from the initial
and feature graphs. We define a goal vector to balance the degree of contribution from
the two graphs. Then, this module gets the node embedding.

Then with the initial graph and the feature graph, the l - th layer output of the mixed
propagation matrix P(l) can be represented as:

P(l) = g(l) ∗ D̃
− 1

2
i ÃiD̃

− 1
2

i +
(
1 − g(l)

)
∗ D̃

− 1
2

f Ãf D̃
− 1

2
f (4)

Where g(l) ∈ R
n is the goal vector that balances the information from the initial and

feature graphs, ′∗′ denotes the operation of multiplying the j - th element of a vector
with the j - th row of a matrix. g(l) can combine information from two graphs to different
degrees.

Then the l - th layer output of goal vector g(l) can be represented as:

g(l)=σ
(
Z(l−1)
i W(l)

g +b(l)
g

)
(5)

Where Z(l−1)
i ∈ R

n×d (l−1)
is the input hidden representation of the previous layer, and

Z(0)
i = X. W(l)

g ∈ R
d (l−1)×1 and b(l)

g are parameters in order to calculate g(l). σ denotes
the sigmoid activation function.

Then with the mixed propagation matrix P(l), the l - th layer output Z(l)
m can be

represented as:

Z(l)
m = σ

(
P(l)Z(l−1)

m W(l)
m

)
(6)

Where P(l) denotes the mixed propagation matrix and Z(0)
m = X,W(l)

m is the parameter,
here σ denotes the sigmoid activation function.
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3.2 Attention Mechanism

Weuse the attentionmechanism to combine to get the final node embedding. The ultimate
goal is to explore the most relevant information in the three embeddings. ZI ,ZF ,ZM

contain the embedding of n nodes,αi,αf ,αm represent the respective attention values.

For node j,zjF ∈ R
1×h denotes the embedding of node j in ZF . Then use a weight

vector −→a ∈ R
h′×1 to obtain the attention values ω

j
F :

ω
j
F = �aT · tanh

(
W · zjF

)
(7)

WhereW ∈ R
h′×h are parameters. Similarly, we get the attention values ω

j
I and ω

j
M for

node j in ZI and ZM .
Then we use the softmax activation function to obtain α

j
F :

α
j
F = softmax

(
ω
j
F

)
= exp(ωj

F )

exp(ωj
I ) + exp(ωj

F ) + exp(ωj
M )

(8)

Where α
j
F is the percentage of embedding. Similarly, we can get α

j
I and α

j
M . For all

n nodes, there are αI = diag
(
α1
I ,α

2
I , · · ·,αn

I

)
,αF = diag

(
α1
F ,α2

F , · · ·,αn
F

)
and αM =

diag
(
α1
M ,α2

M , · · ·,αn
M

)
.

Finally, we combine the three embeddings to obtain Z:

Z = (αI · ZI + αF · ZF + αM · ZM ) (9)

3.3 Objective Function

Our model has shown good results without adding other loss functions. We use the
cross-entropy error as our overall objective function.

Then with the final embedding Z, We can get the class predictions for n nodes as Ŷ:

Ŷ = softmax(W · Z + b) (10)

Where softmax is a commonly used activation function for classification.
If the training set is L, for each l ∈ L, Yl denotes the real label and Ŷl denotes the

predicted label. Then, our classification loss can be expressed as:

Lclass = −
∑

l∈L
∑C

j=1
Ylj ln Ŷlj (11)

4 Experiments

4.1 Experimental Settings

Datasets. We selecte a representative dataset and four complex relational datasets for
our experiments, which include paper citation networks (Citeseer and ACM) and social
networks (UAI2010, BlogCatalog and Flickr). The statistics of these datasets are shown
in Table 1.
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Table 1. Dataset statistics.

Datesets Nodes Edges Classes Features Training Test

Citeseer 3327 4732 6 3703 120 1000

ACM 3025 13128 3 1870 60 1000

UAI2010 3067 28311 19 4973 380 1000

BlogCatalog 5196 171743 6 8189 120 1000

Flickr 7575 239738 9 12047 180 1000

Parameters Setting. To validate our experiments, we choose 20 nodes per class as the
training set and 1000 nodes as the test set. We set hidden layer units nhid1 ∈ {512, 768}
and nhid2 ∈ {32, 128, 256}. We set learning rate 0.0002 ∼ 0.0005, dropout rate is 0.5,
weight decay ∈ {5e − 3, 5e − 4} and k ∈ {2 . . . 8}. For other baseline methods, we refer
to the default parameter settings in the authors’ implementation. For all experiments, we
run 10 times and recorded the average results. And we use accuracy (ACC) and macro
F1 score (F1) to evaluate the performance of the model.

4.2 Node Classification

In this subsection,wediscuss the classification effects of eachmodel ondifferent datasets.
The experimental results are shown in Table 2.

Table 2. Node classification accuracy (%). The best performance is highlighted in bold.

Datesets Metrics GCN kNN-GCN GAT DEMO-Net AM-GCN If-GCN Mif-GCN

Citeseer ACC 70.50 61.40 72.40 69.40 73.10 71.48 72.96

F1 67.62 58.96 68.34 67.42 68.42 67.16 68.64

ACM ACC 87.95 78.53 87.25 83.29 90.40 90.28 90.70

F1 87.87 78.14 87.38 83.17 90.43 90.20 90.64

UAI2010 ACC 50.12 66.09 58.64 25.41 70.10 69.24 70.98

F1 32.90 50.45 41.48 19.82 55.61 55.30 56.13

BlogCatalog ACC 69.48 76.54 64.32 61.09 81.98 81.82 83.00

F1 68.53 75.59 63.43 58.79 81.36 81.20 82.38

Flickr ACC 42.20 71.28 38.54 55.26 75.26 74.98 76.94

F1 39.98 71.49 37.10 54.13 74.63 74.32 76.56

In the paper citationnetworks, the existingmethods have achieved relatively excellent
results, which shows the consistency of our method. In the social relationship networks,
our method, kNN-GCN and AM-GCN have all achieved good results. This phenomenon
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may be that they retain the feature similarity between nodes. Other models showed
varying degrees of fluctuation and even failure. The reason may be that they depend on
graph structure for classification. The importance of node similarity for GCN is further
confirmed.

The experimental results show that our model Mif-GCN outperforms other compar-
ison baselines. Our model removes the mixed graph convolution module as If-GCN.
Comparing If-GCN and Mif-GCN, the results show the effectiveness of our model. We
visualize the attention trend graph. Among the three types of social networks, the feature
graph convolution module and the mixed graph convolution module are more valued.
They make the classification results biased toward the favorable side.

5 Conclusion

We propose Mif-GCN, a framework that simultaneously preserves graph structure and
features similarity.We consider classification rules on different datasets including simple
and complex graphs, our method is more generally applicable to networks with complex
node relationships.
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