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Abstract In this note we shall give theorems on deficiencies of holomorphic curves
f : X → M , where X is a finite sheeted analytic covering space over C and M

is a projective manifold. We first give an inequality of second main theorem type
and a defect relation for f that generalizes the results in Aihara (Tohoku Math
J 58:287–315, 2012). By making use of this defect relation, we give theorems on
the structure of the set of deficient divisors of f . We also discuss methods for
constructing holomorphic curves with deficient divisors.
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1 Introduction

The aim of this note is twofold. The first is to give generalizaition of the structure
theorem for the set of deficient divisors in [1]. Let M be a projective algebraic
manifold and L → M an ample line bundle. We denote by |L| the complete linear
system ofL and let� ⊆ |L| be a linear system. In the previous paper [1], we studied
properties of the deficiencies of a holomorphic curve f : C → M as functions on
linear systems and gave the structure theorem for the set

Df = {D ∈ � ; δf (D) > δf (B�)}

of deficient divisors. For definitions, see Sect. 2. In the proof of the structure theorem
for Df , we used an inequality of the second main theorem type and a defect relation
for f and �. In this note, we will generalize these to the case where holomorphic
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curves defined on finite sheeted analytic covering spaces over C. The second is to
give methods for constructing holomorphic curves with deficient divisors. Details
will be published elsewhere.

2 Preliminaries

We recall some known facts on Nevanlinna theory for holomorphic curves. For
details, see [5] and [6].

Let � : X → C be a finite analytic (ramified) covering space over C and let
s0 be its sheet number, that is, X is a one dimensional complex analytic space and
� : X → C is a proper surjective holomorphic mapping with discrete fibers. Let
z be the natural coordinate in C, and set

X(r) = �−1 ({z ∈ C; |z| < r}) and C(r) = �−1 ({z ∈ C; |z| = r}) .

For a (1,1)-current ϕ of order zero on X we set

N(r, ϕ) = 1

s0

ˆ r

1
〈ϕ, χX(t)〉 dt

t
,

where χX(r) denotes the characteristic function of X(r).
Let M be a compact complex manifold and let L → M be a line bundle over

M . We denote by �(M, L) the space of all holomorphic sections of L → M

and by |L| = P(�(M, L)) the complete linear system of L. Denote by || · || a
hermitian fiber metric in L and by ω its Chern form. Let f : X → M be a
holomorphic curve. We set

Tf (r, L) = N(r, f ∗ω)

and call it the characteristic function of f with respect to L. If

lim inf
r→+∞

Tf (r, L)

log r
= +∞,

then f is said to be transcendental. We define the order ρf of f : X → M by

ρf = lim sup
r→+∞

log Tf (r, L)

log r
.
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We notice that the definition of ρf is independent of a choice of positive line
bundles L → M . Let D = (σ ) ∈ |L| with ||σ || ≤ 1 on M . Assume that
f (X) is not contained in Supp D. We define the proximity function of D by

mf (r, D) = 1

s0

ˆ
C(r)

log

(
1

||σ(f (z))||
)

dθ

2π
.

Then we have the following first main theorem for holomorphic curves X → M .

Theorem 2.1 (First Main Theorem) Let L → M be a line bundle over M and
f : X → M a non-constant holomorphic curve. Then

Tf (r, L) = N(r, f ∗D) + mf (r, D) + O(1)

for D ∈ |L| with f (X) 
⊆ Supp D, where O(1) stands for a bounded term as
r → +∞.

Let f and D be as above. We define Nevanlinna’s deficiency δf (D) by

δf (D) = lim inf
r→+∞

mf (r, D)

Tf (r, L)
.

It is clear that 0 ≤ δf (D) ≤ 1. Then we have a defect function δf defined on |L|.
If δf (D) > 0, then D is called a deficient divisor in the sense of Nevanlinna.

Next, we recall some basic facts in value distribution theory for coherent ideal
sheaves (cf. [6, Chapter 2]). Let f : X → M be a holomorphic curve and I a
coherent ideal sheaf of the structure sheaf OM of M . Let U = {Uj } be a finite
open covering of M with a partition of unity {ηj } subordinate to U . We can
assume that there exist finitely many sections σjk ∈ �(Uj , I) such that every stalk
Ip over p ∈ Uj is generated by germs (σj1)p, . . . , (σjlj )p. Set

dI(p) =
⎛
⎝∑

j

ηj (p)

lj∑
k=1

∣∣σjk(p)
∣∣2

⎞
⎠

1/2

.

We may assume that dI(p) ≤ 1 for all p ∈ M. Set

φI(p) = − log dI(p)

and call it the proximity potential for I. It is easy to verify that φI is well-
defined up to addition by a bounded continuous function on M . We now define the
proximity function mf (r, I) of f for I, or equivalently, for the complex analytic
subspace (may be non-reduced)

Y = (Supp (OM/I), OM/I)
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by

mf (r, I) = 1

s0

ˆ
C(r)

φI(f (z))
dθ

2π
,

provided that f (X) is not contained in SuppY . For z0 ∈ f −1(Supp Y ), we can
choose an open neighborhood U of z0 and a positive integer ν such that

f ∗I = ((z − z0)
ν) on U.

Then we see

log dI(f (z)) = ν log |z − z0| + hU(z) for z ∈ U,

where hU is a C∞-function on U . Thus we have the counting function N(r, f ∗I)

as above. Moreover, we set

ωI,f = −ddchU on U,

where dc = (
√−1/4π)(∂ − ∂). We obtain a well-defined smooth (1, 1)-form

ωI,f on X. Define the characteristic function Tf (r, I) of f for I by

Tf (r, I) = 1

s0

ˆ r

1

dt

t

ˆ
X(t)

ωI,f .

We have the first main theorem in value distribution theory for coherent ideal
sheaves:

Theorem 2.2 (First Main Theorem) Let f : X → M and I be as above. Then

Tf (r, I) = N(r, f ∗I) + mf (r, I) + O(1).

Let L → M be an ample line bundle and W ⊆ �(M, L) a subspace with
dimW ≥ 2. Set � = P(W). The base locus Bs� of � is defined by

Bs� =
⋂
D∈�

SuppD.

We define a coherent ideal sheaf I0 in the following way. For each p ∈ M , the
stalk I0,p is generated by all germs (σ )p for σ ∈ W . Then I0 defines the base
locus of � as a complex analytic subspace B�, that is,

B� = (Supp (OM/I0), OM/I0).
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Hence Bs� = Supp (OM/I0). We define the deficiency of B� for f by

δf (B�) = lim inf
r→+∞

mf (r, I0)
Tf (r, L)

.

Set

Df = {D ∈ �; δf (D) > δf (B�)}.

We call Df the set of deficient divisors in �.
By making use of the generalized Crofton’s formula due to R. Kobayashi ([6,

Theorem 2.4.12]), we have the following proposition ([1, Proposition 4.1]).

Proposition 2.3 The set Df is a null set in the sense of the Lebesgue measure on
�. In particular δf (D) = δf (B�) for almost all D ∈ �.

This proposition plays an important role in what follows.

3 Inequality of the Second Main Theorem Type

We will give an inequality of the second main theorem type for a holomorphic curve
f : X → M that generalizes Theorem 3.1 in [1]. For simplicity, we assume that f is
of finite type. Let W ⊆ �(M, L) be a linear subspace with dimW = l0+1 ≥ 2 and
set � = P(W). We call � a linear system included in |L|. Let D1, . . . ,Dq be
divisors in � such that Dj = (σj ) for σj ∈ W . We first give a definition of
subgeneral position. Set Q = {1, . . . , q} and take a basis {ψ0, . . . , ψl0} of W .
We write

σj =
l0∑

k=0

cjkψk (cjk ∈ C)

for each j ∈ Q. For a subset R ⊆ Q, we define a matrix AR by AR =
(cjk)j∈R,0≤k≤l0.

Definition 3.1 Let N ≥ l0 and q ≥ N + 1. We say that D1, . . . ,Dq are in
N-subgeneral position in � if

rank AR = l0 + 1 for every subset R ⊆ Q with �R = N + 1.

If they are in l0-subgeneral position, we simply say that they are in general position.
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Note that the above definition is different than the usual one (cf. [6, p. 114])
Let �� : M → P(W∗) be a natural meromorphic mapping, where W∗ is the

dual of W . Then we have the linearly non-degenerate holomorphic curve

F� = �� ◦ f : X → P(W∗).

We let W(F�) denote the Wronskian of F�.

Definition 3.2 If ρf < +∞, then f is said to be of finite type.

Set

κ(X,�; N) = 2N − l0 + 1 + (s0 − 1)l0(2N − l0 + 1).

By making use of the methods in [1] and [4], we have an inequality of the second
main theorem type as follows.

Theorem 3.3 Let f : X → M be a transcendental holomorphic curve that is non-
degenerate with respect to �. Let D1, . . . ,Dq ∈ � be divisors in N-subgeneral
position with q > κ(X,�; N). Assume that f is of finite type. Then

(q − κ(X,�; N)) (Tf (r, L) − mf (r, I0)) ≤
q∑

j=1

N(r, f ∗Dj ) + Ef (r)

as r → +∞, where

Ef (r) = −κ(X,�; N)N(r, f ∗I0) −
(

N

l0

)
N(r, W(F�)0) + o(Tf (r, L)).

In order to get a defect relation from Theorem 3.3, we define a constant
ηf (B�) by

ηf (B�) = lim inf
r→+∞

Ef (r)

Tf (r, L)
.

It is clear that ηf (B�) ≤ 0. Now, by Theorem 3.3, we have a defect relation.

Theorem 3.4 Let �, f and D1, . . . ,Dq be as in Theorem 3. Then

q∑
j=1

(δf (Dj ) − δf (B�)) ≤ (1 − δf (B�))κ(X,�) + ηf (B�).
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4 Structure Theorems for the Set of Deficient Divisors

In this section we give theorems on the structure of the set of deficient divisors. Let
L → M be an ample line bundle and f : C → M a transcendental holomorphic
curve of finite type. Let � ⊆ |L| be a linear system. Let

Df = {D ∈ � ; δf (D) > δf (B�)}.

By making use of the above defect relation, we have the structure theorem for the
set Df (see [1, §5]).

Theorem 4.1 The set Df of deficient divisors is a union of at most countably
many linear systems included in �. The set of values of deficiency of f is at
most a countable subset {ei} of [0, 1]. For each ei , there exist linear systems
�1(ei), . . . ,�s(ei) included in � such that ei = δf (B�j (ei)) for j = 1, . . . , s.

By Theorem 5, there exists a family {�j } of at most countably many linear
systems in � such that Df = ⋃

j �j . Define Lf = {�j } ∪ {�}. We call Lf the
fundamental family of linear systems for f . Then we have the following.

Proposition 4.2 If δf (D) > δf (B�) for a divisor D in �, then there exists a
linear system �(D) ∈ Lf such that

δf (D) = δf (B�(D)).

5 Methods for Constructing Holomorphic Curves
with Deficiencies

In this section we consider the case where M = Pn(C) and L = OPn(d). The
existence of f : X → Pn(C) with D 
= ∅ is a delicate matter. In fact, S. Mori [3]
showed that a family

{f ∈ Hol(C,Pn(C); δf (H) = 0 for all H ∈ |OPn(1)|}

of holomprphic curves is dense in Hol(C,Pn(C)) with respect to a certain kind
of topology. However, for any � ⊆ |OPn(d)|, there exists an algebraically non-
degenerate holomorphic curve f : C → Pn(C) with Df 
= ∅. In fact, we have the
following theorem [2, Theorem 3.2].

Theorem 5.1 Let D ∈ |OPn(d)|. There exists a constant λ(D) with 0 < λ(D) ≤ d

depending only on D that satisfies the following property: Let α be a positive real
constant such that

0 < α ≤ λ(D)

d
.
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Then there exists an algebraically non-degenerate holomorphic curve f : C →
Pn(C) such that

δf (D) = α.

We will generalize the above theorem for holomorphic curves defined on X.

Theorem 5.2 Let D ∈ � ⊆ |OPn(d)|. Then there exists a finite sheeted analytic
covering space � : X → C and an algebraically non-degenerate transcendental
holomorphic curve f : X → C with ρf = 0 such that Df 
= ∅. Furthermore, there
exists a family {�j } of finitely many linear systems such that

Df =
⋃
j

�j .

The set of values of δf is a finite set {ej } with

δf (B�j ) ≤ ej ≤ μ(�j )

d
.

Here μ(�j ) are constants depending only on �j with 0 < μ(�j) ≤ d .

Remark 5.3 In the case where X is an affine algebraic variety, there always exists
an algebraically non-degenerate transcendental holomorphic curve that satisfies the
above propeties.

The proofs of the above theorems are based on Valiron’s theorem on algebroid
functions of order zero (see [7]). Hence the resulting holomorphic curves are of
order zero.

In the case where d = 1 and X = C, we can construct holomorphic curves with
Df 
= ∅ by another way (cf. [1, §6]). By using exponential curves

f (z) = (exp a0z, . . . , exp anz) (a0, . . . , an ∈ C),

we can construct holomorphic curves C → Pn(C) with Df 
= ∅. We denote by
Cf the circumference of the convex polygon spanned by the set {a0, . . . , an}. If the
convex polygon reduces to the segment with the end points with aj and ak, then
we see Cf = 2|aj − ak|. Let H be a hyperplane in Pn(C) defined by

H : L(z) =
n∑

j=0

αjζj = 0 (α0, . . . , αn ∈ C),

where ζ = (ζ0 : . . . : ζn) is a homogeneous coordinate system in Pn(C). We define
the set JH of index by JH = {j ; αj 
= 0}. Let Cf (H) be the circumference of
the convex polygon spanned by the set {aj ; j ∈ JH }. Then we have the following
lemma.
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Lemma 5.4 Let f and H be as above. Then

Tf (r,OPn(1)) = Cf

2π
r + O(1).

and the deficiency of f for H is given by

δf (H) = 1 − Cf (H)

Cf

.

Furthermore, the constant Cf (H) depends only on f and JH .

By making use of this lemma, we have the following theorem.

Theorem 5.5 Let � ⊆ |OPn(1)|. Then there is a transcendental holomorphic
curve f : C → Pn(C) non-degenerate with respect to � such that the set of
values of δf is a finite set {ej } with 0 < ej < 1. Furthermore, there are finitely
many linear systems {�j } included in � such that

δf (H) = ej for all H ∈ �j \ (
⋃
k

�jk ),

where {�jk } are linear systems included in �j .
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