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Abstract We give sufficient conditions for compactness of localization operators
on modulation spaces Mp,q

mλ
(Rd) of ω-tempered distributions whose short-time

Fourier transform is in the weighted mixed space L
p,q
mλ

for mλ(x) = eλω(x).

In this paper we study some properties of localization operators, which are pseudo-
differential operators of time-frequency analysis suitable for applications to the
reconstruction of signals, because they allow to recover a filtered version of
the original signal. To introduce the problem, let us recall the translation and
modulation operators

Txf (y) = f (y − x), Mξf (y) = eiy·ξf (y), x, y ∈ R
d ,

and, for a window function ψ ∈ L2(Rd ), the short-time Fourier transform (briefly
STFT) of a function f ∈ L2(Rd)

Vψf (z) = 〈f,MξTxψ〉 =
ˆ
Rd

f (y)ψ(y − x)e−iy·ξ dy, z = (x, ξ) ∈ R
2d .

With respect to the inversion formula for the STFT (see [13, Cor. 3.2.3])

f = 1

(2π)d〈γ,ψ〉
ˆ
R2d

Vψf (x, ξ)MξTxγ dxdξ,
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which gives a reconstruction of the signal f , the localization operator, as defined in
(0.2), modifies Vψf (x, ξ) by multiplying it by a suitable a(x, ξ) before reconstruct-
ing the signal, so that a filtered version of the original signal f is recovered.

Another important operator in time-frequency analysis that we shall need in the
following is the cross-Wigner transform defined, for f, g ∈ L2(Rd ), by

Wig(f, g)(x, ξ) =
ˆ
Rd

f
(
x + t

2

)
g
(
x − t

2

)
e−iξ ·t dt x, ξ ∈ R

d .

TheWigner transform of f is then defined by Wig f := Wig(f, f ).
The above Fourier integral operators, with standard generalizations to more

general spaces of functions or distributions, have been largely investigated in time-
frequency analysis. In particular, results about boundedness or compactness related
to the subject of this paper can be found, for instance, in [1, 7, 10–12, 16, 17].

Inspired by Cordero and Gröchenig [7] and Fernández and Galbis [10], our aim
in this paper is to study boundedness of localization operators on modulation spaces
in the setting of ω-tempered distributions, for a weight functionsω defined as below:

Definition 0.1 A non-quasianalytic subadditive weight function is a continuous
increasing function ω : [0,+∞) → [0,+∞) satisfying the following properties:

(α) ω(t1 + t2) ≤ ω(t1) + ω(t2), ∀t1, t2 ≥ 0;
(β)

´ +∞
1

ω(t)

t2
dt < +∞;

(γ ) ∃A ∈ R, B > 0 s.t ω(t) ≥ A + B log(1 + t), ∀t ≥ 0;
(δ) ϕω(t) := ω(et ) is convex.

We then consider ω(ξ) := ω(|ξ |) for ξ ∈ C
d .

Definition 0.2 The space Sω(Rd) is defined as the set of all u ∈ L1(Rd) such that
u, û ∈ C∞(Rd) and

(i) ∀λ > 0, α ∈ N
d
0 : supx∈Rd eλω(x)|Dαu(x)| < +∞,

(ii) ∀λ > 0, α ∈ N
d
0 : supξ∈Rd eλω(ξ)|Dαû(ξ)| < +∞,

where N0 := N ∪ {0}.
Note that for ω(t) = log(1 + t) we obtain the classical Schwartz class S(Rd ),

while in general Sω(Rd ) ⊆ S(Rd). For more details about the spaces Sω(Rd) we
refer to [3–6]. In particular, we can define on Sω(Rd) different equivalent systems
of seminorms that make Sω(Rd) a Fréchet nuclear space. It is also an algebra under
multiplication and convolution.

The corresponding strong dual space is denoted by S ′
ω(Rd) and its elements are

calledω-tempered distributions. Moreover,S ′(Rd) ⊆ S ′
ω(Rd ) and the Fourier trans-

form, the short-time Fourier transform and the Wigner transform are continuous
from Sω(Rd) to Sω(Rd ) and from S ′

ω(Rd ) to S ′
ω(Rd).
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The “right” function spaces in time-frequency analysis to work with the STFT
are the so-called modulation spaces, introduced by H. Feichtinger in [9]. In this
context, we consider the weight mλ(z) := eλω(z), for λ ∈ R, and define L

p,q
mλ

(R2d)

as the space of measurable functions f on R2d such that

‖f ‖L
p,q
mλ

:=
ˆ
Rd

( ˆ
Rd

|f (x, ξ)|pmλ(x, ξ)p dx
) q

p dξ

) 1
q

< +∞,

for 1 ≤ p, q < +∞, with standard changes if p (or q) is +∞. We define then, for
1 ≤ p, q ≤ +∞, the modulation space

Mp,q
mλ

(Rd) := {f ∈ S ′
ω(Rd) : Vϕf ∈ L

p,q
mλ

(R2d)},

which is independent of the window function ϕ ∈ Sω(Rd ) \ {0} and is a Banach
space with norm ‖f ‖Mp,q

mλ
:= ‖Vϕf ‖L

p,q
mλ

(see [4]). Moreover, for 1 ≤ p, q < +∞,

the space Sω(Rd) is a dense subspace ofMp,q
mλ

by Boiti et al. [4, Prop. 3.9]. We shall
denoteMp

mλ
(Rd) = Mp,p

mλ
(Rd ) andMp,q(Rd) = Mp,q

m0 (Rd ).
As in [13, Thm. 12.2.2] if p1 ≤ p2, q1 ≤ q2, and λ ≤ μ then Mp1,q1

mμ ⊆ Mp2,q2
mλ

with continuous inclusion (see [8, Lemma 2.3.16]). Set

mλ,1(x) := mλ(x, 0), mλ,2(ξ) := mλ(0, ξ),

vλ(z) = e|λ|ω(z), vλ,1(x) := vλ(x, 0), vλ,2(ξ) := vλ(0, ξ),

and prove the following generalization of [7, Prop. 2.4]:

Proposition 0.3 Let 1 ≤ p, q, r, t, t ′ ≤ +∞ such that 1
p

+ 1
q

−1 = 1
r
and 1

t
+ 1

t ′ =
1. Then, for all λ,μ ∈ R and 1 ≤ s ≤ +∞,

Mp,st
mλ,1⊗mμ,2

(Rd) ∗ M q,st ′
vλ,1⊗vλ,2m−μ,2

(Rd) ↪→ M r,s
mλ

(Rd)

and ‖f ∗ g‖Mr,s
mλ

≤ ‖f ‖Mp,st
mλ,1⊗mμ,2

‖g‖
M q,st ′

vλ,1⊗vλ,2m−μ,2

. (0.1)

Proof For the Gaussian function g0(x) = e−π |x|2 ∈ Sω(Rd) consider on Mr,s
mλ

the modulation norm with respect to the window function g(x) := g0 ∗ g0(x) =
2−d/2e− π

2 |x|2 ∈ Sω(Rd). Since mλ(x, ξ) ≤ mλ(x, 0)vλ(0, ξ) and g0(−x) = g0(x),
by Gröchenig [13, Lemma 3.1.1], Young and Hölder inequalities:

‖f ∗ h‖Mr,s
mλ

= ‖Vg(f ∗ h)‖L
r,s
mλ

=
( ˆ

Rd

(ˆ
Rd

|Vg(f ∗ h)|rmr
λ(x, ξ) dx

) s
r

dξ

) 1
s

≤
( ˆ

Rd

( ˆ
Rd

|(f ∗ Mξg0) ∗ (h ∗ Mξg0)(x)|rmλ(x, 0)r dx

) s
r

vs
λ(0, ξ) dξ

) 1
s
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=
( ˆ

Rd

‖(f ∗ Mξg0) ∗ (h ∗ Mξg0)‖s
Lr

mλ,1
vs
λ(0, ξ) dξ

) 1
s

≤
( ˆ

Rd

‖f ∗ Mξg0‖s

L
p
mλ,1

‖h ∗ Mξg0‖s

L
q
vλ,1

vs
λ(0, ξ) dξ

) 1
s

=
( ˆ

Rd

‖Vg0f ‖s

L
p
mλ,1

ms
μ(0, ξ)‖Vg0h‖s

L
q
vλ,1

ms−μ(0, ξ)vs
λ(0, ξ) dξ

) 1
s

≤ ‖f ‖Mp,st
mλ,1⊗mμ,2

‖h‖
Mq,st ′

vλ,1⊗vλ,2m−μ,2

.

��
Given two window functions ψ, γ ∈ Sω(Rd ) \ {0} and a symbol a ∈ S ′

ω(R2d),
the corresponding localization operator La

ψ,γ is defined, for f ∈ Sω(Rd ), by

La
ψ,γ f = V ∗

γ (a · Vψf ) =
ˆ
R2d

a(x, ξ)Vψf (x, ξ)MξTxγ dxdξ, (0.2)

where V ∗
γ is the adjoint of Vγ . As in [2, Lemma 2.4] we have that La

ψ,γ is a Weyl

operator Law
with symbol aw = a ∗ Wig(γ,ψ):

Law

f := 1

(2π)d

ˆ
R2d

âw(ξ, u)e−iξ ·uT−uMξf dudξ. (0.3)

Moreover, if f, g ∈ Sω(Rd) then by definition of adjoint operator we can write

〈La
ψ,γ f, g〉 = 〈a · Vψf, Vγ g〉 = 〈a, Vψf Vγ g〉,

and, similarly as in [13, Thm. 14.5.2] (see also [8, Teo. 2.3.21]), we have, for aw ∈
M∞,1

mμ
(R2d) with μ ≥ 0,

‖Law

f ‖Mp,q
mλ

= ‖La
ψ,γ f ‖Mp,q

mλ
≤ ‖aw‖M∞,1

mμ
‖f ‖Mp,q

mλ
, (0.4)

for all f ∈ Mp,q
mλ

and λ ∈ R.

Theorem 0.4 Let ψ, γ ∈ Sω(Rd ) \ {0} and a ∈ M∞
mλ

(R2d) for some λ ≥ 0. Then
La

ψ,γ is bounded from Mp,q
mλ

(Rd) to Mp,q
mλ

(Rd), for 1 ≤ p, q < +∞, and

‖La
ψ,γ ‖op ≤ ‖a‖M∞

m−λ,2
‖ψ‖M1

vλ
‖γ ‖Mp

mλ
.

Proof By definition Vψ : Mp,q
mλ

→ L
p,q
mλ

(R2d) and, by Boiti et al. [4, Prop. 3.7],
V ∗

γ : L
p,q
mλ

(R2d) → Mp,q
mλ

(Rd). Let f ∈ Mp,q
mλ

(Rd). To prove that La
ψ,γ f = V ∗

γ (a ·
Vψf ) ∈ Mp,q

mλ
, it is then enough to show that a ·Vψf ∈ L

p,q
mλ

(R2d). By the inversion
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formula [4, Prop. 3.7], given two window functions,� ∈ Sω(R2d)with 〈,�〉 �=
0, we have, for z = (z1, z2) ∈ R

2d × R
2d ,

( ˆ
Rd

(ˆ
Rd

|a(x, ξ)|p|Vψf (x, ξ)|pepλω(x,ξ) dx

) q
p

dξ

) 1
q

≤ 1

(2π)d

1

|〈,�〉|
( ˆ

Rd

( ˆ
Rd

( ˆ
R4d

|V�a(z)|p|Mz2Tz1(x, ξ)|pdz

)

·|Vψf (x, ξ)|pepλω(x,ξ)dx

) q
p

dξ

) 1
q

≤ 1

(2π)d

1

|〈,�〉|
( ˆ

Rd

(ˆ
Rd

(ˆ
R4d

(|V�a(z)|eλω(z)
)p|Mz2Tz1(x, ξ)|pdz

)

·|Vψf (x, ξ)|pepλω(x,ξ)dx

) q
p

dξ

) 1
q

≤ C‖V�a‖L∞
mλ

· ‖Vψf ‖L
p,q
mλ

= C‖a‖M∞
mλ

· ‖f ‖Mp,q
mλ

,

for some C > 0. Therefore a · Vψf ∈ L
p,q
mλ

(R2d) and La
ψ,γ f ∈ Mp,q

mλ
(Rd).

To prove that La
ψ.γ is bounded, consider g ∈ Sω(Rd) and set � = Wig(g, g) ∈

Sω(R2d). For ξ = (ξ1, ξ2) ∈ R
2d , we set ξ̃ = (ξ2,−ξ1). By Cordero and Gröchenig

[7, Lemma 2.2]

‖Wig(γ,ψ)‖
M1,p

mλ,2
= ‖V� Wig(γ,ψ)‖

L
1,p
mλ,2

=
(ˆ

R2d

(ˆ
R2d

∣∣
∣Vgψ

(
z + ξ̃

2

)
Vgγ

(
z − ξ̃

2

)∣∣
∣ dz

)p

m
p
λ,2(ξ) dξ

) 1
p
.

By the change of variables z + ξ̃
2 = z̃ and [4, formula (3.12)] we obtain (cf. also

[7, Prop. 2.5]):

‖Wig(γ,ψ)‖
M1,p

mλ,2
=

( ˆ
R2d

(ˆ
R2d

|Vgψ(z̃)||Vgγ (z̃ − ξ̃ )| dz̃

)p

m
p

λ,2(ξ) dξ

) 1
p

.

=
( ˆ

R2d
(|Vgψ(z̃)| ∗ |Vgγ (−z̃)|)p(ξ̃ ) m

p

λ,2(ξ̃ ) dξ̃

) 1
p

≤ ‖Vgψ‖L1
vλ

‖Vgγ ‖L
p
mλ

= ‖ψ‖M1
vλ

‖γ ‖Mp
mλ

. (0.5)
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Therefore Wig(γ,ψ) ∈ M1
mλ,2

(R2d) and hence, from Proposition 0.3 (with p =
t = r = +∞, q = s = t ′ = 1, λ = 0 and μ = −λ), we have thatM∞

m−λ,2
∗M1

mλ,2
⊆

M∞,1, so that aw = a ∗ Wig(γ,ψ) ∈ M∞,1 and by (0.4) with μ = 0

‖La
ψ,γ ‖op ≤ ‖aw‖M∞,1 .

From (0.1) and (0.5) we finally have

‖La
ψ,γ ‖op ≤ ‖a ∗ Wig(γ,ψ)‖M∞,1 ≤ ‖a‖M∞

m−λ,2
‖Wig(γ,ψ)‖M1

mλ,2

≤ ‖a‖M∞
m−λ,2

‖ψ‖M1
vλ

‖γ ‖Mp
mλ

.

��
A boundedness result analogous to that of Theorem 0.4 is proved, with different

techniques, in [16] under further restrictions on the symbol a(x, ξ) and without
estimates on the norm of La

ψ,γ .
Set now

M0,1
mλ

(Rd ) = {f ∈ M∞,1
mλ

(Rd ) : lim|x|→∞ ‖Vgf (x, .)‖L1
mλ

eλω(x) = 0}

and prove the following compactness result (cf. also [1, Prop. 2.3] and [12, Thm.
3.22]):

Theorem 0.5 If aw ∈ M0,1
mλ

(R2d) for some λ ≥ 0, then Law
is a compact mapping

ofMp,q
mλ

(Rd ) into itself, for 1 ≤ p, q < +∞.

Proof The operator Law
maps Mp,q

mλ
(Rd ) into itself by (0.4). To prove that Law

is
compact we first assume aw ∈ Sω(R2d). From (0.3)

Law

f (y) = 1

(2π)d

ˆ
R2d

âw(ξ, u)e−iξ ·ueiξ ·(y+u)f (y + u) du dξ

= 1

(2π)d

ˆ
R2d

âw(ξ, x − y)eiξ ·yf (x) dx dξ

=
ˆ
Rd

k(x, y)f (x) dx, (0.6)

with kernel k(x, y) = 1
(2π)d

´
Rd âw(ξ, x − y)eiξ ·ydξ . Note that k(x, y) ∈ Sω(R2d)

because it is the inverse Fourier transform (with respect to the first variable) of the
translation (with respect to the second variable) of âw ∈ Sω(R2d).
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Now, let φ ∈ Sω(Rd) and α0, β0 > 0 such that {φjl}j,l∈Zd = {Mβ0lTα0jφ}j,l∈Zd

is a tight Gabor frame for L2(Rd) (see [13, Def. 5.1.1] for the definition). Then
{jlmn}j,l,m,n∈Zd = {φjl(x)φmn(y)}j,l,m,n∈Zd is a tight Gabor frame for L2(R2d).
Since k ∈ Sω(R2d) we have that 〈k,jlmn〉 = Vφk(α0j, α0m,β0l, β0n) ∈ �1 and
(see [4, Lemma 3.15])

k =
∑

j,l,m,n∈Zd

〈k,jlmn〉jlmn.

Therefore from (0.6)

Law

f =
∑

j,l,m,n∈Zd

〈k,jlmn〉〈φjl , f 〉φmn,

with 〈k,jlmn〉 ∈ �1, (φjl)j,l∈Zd equicontinuous in Mp′,q ′
m−λ

= (Mp,q
mλ

)∗ and

(φmn)m,n∈Zd bounded in
⋃

n∈N n{f ∈ Mp,q
mλ

: ‖f ‖Mp,q
mλ

< 1}, so that Law
is a

nuclear operator fromMp,q
mλ

to Mp,q
mλ

(see [15, §17.3]). From [15, §17.3, Cor. 4] we
thus have that Law

is compact.
Let us finally consider the general case a ∈ M0,1

mλ
(R2d). By Boiti et al. [4, Prop.

3.9] there exist an ∈ Sω(R2d) converging to a inM∞,1
mλ

and hence, by (0.4)

‖Law − Law
n ‖Mp,q

mλ
→Mp,q

mλ
≤ ‖a − an‖M∞,1

mλ

→ 0.

Since the set of compact operators is closed we have that Law
is compact on

Mp,q
mλ

(Rd ). ��
We have the following generalization of [10, Lemma 3.4] and [11, Prop. 5.2]:

Lemma 0.6 Let g0 ∈ Sω(Rd ) and a ∈ M∞
mλ

(Rd ), with λ ≥ 0, such that

lim|x|→+∞ sup
|ξ |≤R

|Vg0a(x, ξ)|eλω(x,ξ) = 0, ∀R > 0. (0.7)

Then a ∗ H ∈ M0,1
mλ

(Rd ) for any H ∈ Sω(Rd ).

Proof The case λ = 0 has been proved in [10, Lemma 3.4]. Let λ > 0. Since
g0 ∈ Sω(Rd ) and H ∈ Sω(Rd), by Gröchenig and Zimmermann [14, Thm. 2.7]
we have that Vg0H ∈ Sω(R2d) and hence, for a fixed � > 0 (to be chosen later
depending on λ), there exists cλ > 0 such that

|Vg0H(x, ξ)| ≤ cλe
−3�λω(x)e−3�λω(ξ), ∀x, ξ ∈ R

d .
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Now, as in the proof of Proposition 0.3, for g = g0 ∗ g0, we have that |Vg(a ∗
H)(·, ξ)| = |Vg0a(·, ξ) ∗ Vg0H(·, ξ)|. Since ω is increasing and subadditive we
have

|Vg(a ∗ H)(x, ξ)| ≤
ˆ
Rd

|Vg0a(x − y, ξ)||Vg0H(y, ξ)|dy

≤ cλe
−3�λω(ξ)

ˆ
Rd

|Vg0a(x − y, ξ)|e−3�λω(y)dy

= cλe
−3�λω(ξ)

ˆ
Rd

|Vg0a(x − y, ξ)|e−3�λω(y) eλω(x−y,ξ)e−λω(x−y,ξ)dy

≤ cλe
−3�λω(ξ)e−λω(x)

ˆ
Rd

|Vg0a(x − y, ξ)|eλω(x−y,ξ)e−(3�−1)λω(y)dy.

Since a ∈ M∞
mλ

(Rd) we have that

eλω(x)+2�λω(ξ)|Vg(a ∗ H)(x, ξ)|

≤ cλe
−�λω(ξ)

ˆ
Rd

|Vga(x − y, ξ)|eλω(x−y,ξ)e−(3�−1)λω(y)dy (0.8)

≤ cλe
−�λω(ξ)‖a‖M∞

mλ

ˆ
Rd

e−(3�−1)λω(y)dy < +∞, (0.9)

if � > 1
3 + d

3Bλ
, where B is the constant of condition (γ ) in Definition 0.1. Since

lim|ξ |→+∞ ω(ξ) = +∞, from (0.9) we have that for all ε > 0 there exists R1 > 0
such that

eλω(x)+2�λω(ξ)|Vg(a ∗ H)(x, ξ)| < ε, ∀x, ξ ∈ R
d, |ξ | ≥ R1. (0.10)

We now choose δ > 0 small enough so that

δ

(
1 + cλ

ˆ
Rd

e−(3�−1)λω(y)

)
dy ≤ ε. (0.11)

From the hypothesis (0.7) we can choose R2 > 0 sufficiently large so that

sup
|ξ |≤R1

|Vg0a(x, ξ)|eλω(x,ξ) < δ, |x| ≥ R2, (0.12)

ˆ
|y|>R2

e−(3�−1)λω(y) dy <
δ

cλe−�λω(ξ)‖a‖M∞
mλ

, |ξ | ≤ R1. (0.13)
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Therefore for |x| ≥ 2R2, |y| ≤ R2 (so that |x − y| ≥ R2) and |ξ | ≤ R1, by (0.8),
(0.9), (0.13), (0.12) and (0.11):

eλω(x)+2�λω(ξ)|Vg(a ∗ H)(x, ξ)|

≤ cλe
−�λω(ξ)‖a‖M∞

mλ

ˆ
|y|>R2

e−(3�−1)λω(y)dy

+cλe
−�λω(ξ)

ˆ
|y|≤R2

|Vg0a(x − y, ξ)|eλω(x−y,ξ)e−(3�−1)λω(y)dy

< δ + cλδ

ˆ
Rd

e−(3�−1)λω(y)dy ≤ ε.

The above estimate, together with (0.10), gives

eλω(x)

ˆ
Rd

|Vg(a ∗ H)(x, ξ)|eλω(ξ)dξ ≤ ε

ˆ
Rd

e−(2�−1)λω(ξ)dξ, |x| ≥ 2R2.

Choosing now � > 1
2 + d

2Bλ
> 1

3 + d
3Bλ

so that e−(2�−1)λω(ξ) ∈ L1(Rd), we finally
obtain

lim|x|→∞ eλω(x)‖Vg(a ∗ H)(x, .)‖L1
mλ

= 0.

��
Theorem 0.7 Let ψ, γ ∈ Sω(Rd), g0 ∈ Sω(R2d) and a ∈ M∞

mλ
(R2d) satisfying

(0.7), for some λ ≥ 0. Then La
ψ,γ : Mp,q

mλ
(Rd) → Mp,q

mλ
(Rd) is compact, for 1 ≤

p, q < +∞.

Proof Set H := W(γ,ψ) ∈ Sω(R2d). Since a ∈ M∞
mλ

(R2d), by Lemma 0.6

we have that aw = a ∗ H ∈ M0,1
mλ

(R2d) and hence La
ψ,γ = Law

is compact by
Theorem 0.5. ��
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