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Abstract We give sufficient conditions for compactness of localization operators
on modulation spaces M,’f;f (R?) of w-tempered distributions whose short-time
Fourier transform is in the weighted mixed space L}, for m; (x) = e**®.

In this paper we study some properties of localization operators, which are pseudo-
differential operators of time-frequency analysis suitable for applications to the
reconstruction of signals, because they allow to recover a filtered version of
the original signal. To introduce the problem, let us recall the translation and
modulation operators

Tof) =fy—x), Msf()=e"5f(), x,yeR’

and, for a window function ¢ € L?(R%), the short-time Fourier transform (briefly
STFT) of a function f € L*(R%)

Vi f@) = {f. MeToyp) = /R SO =0T dy, 2= (x,8) e RY

With respect to the inversion formula for the STFT (see [13, Cor. 3.2.3])

f Vy f(x, )Me Ty dxdg,

1
ey, ¥) /R
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which gives a reconstruction of the signal f, the localization operator, as defined in
(0.2), modifies Vy f (x, &) by multiplying it by a suitable a(x, &) before reconstruct-
ing the signal, so that a filtered version of the original signal f is recovered.

Another important operator in time-frequency analysis that we shall need in the
following is the cross-Wigner transform defined, for f, g € L*>(R?), by

Wig(f, )(x, &) = / P+ elr= et ar  xg e,
R4 2 2
The Wigner transform of f is then defined by Wig f := Wig(f, f).

The above Fourier integral operators, with standard generalizations to more
general spaces of functions or distributions, have been largely investigated in time-
frequency analysis. In particular, results about boundedness or compactness related
to the subject of this paper can be found, for instance, in [1, 7, 10-12, 16, 17].

Inspired by Cordero and Grochenig [7] and Ferndndez and Galbis [10], our aim
in this paper is to study boundedness of localization operators on modulation spaces
in the setting of w-tempered distributions, for a weight functions w defined as below:

Definition 0.1 A non-quasianalytic subadditive weight function is a continuous
increasing function w : [0, +-00) — [0, 4-00) satisfying the following properties:

(@) ol +n) <o)+ o), Vi, = 0;
B[0P dt < +oc;

(y) JAeR,B>0stw(t) > A+ Blog(l+1), vt > 0;
8) @) := w(e") is convex.

We then consider w(£) := w(|£]) for & € C4.

Definition 0.2 The space S, (R?) is defined as the set of all u € L'(R?) such that
u, i € C°(R?) and

(i) YA>0,aeNd:sup,cpe P [ DY (x)| < +00,
(i) VA > 0,0 € N: supecpe " ®[D¥0(§)| < +o0,

where Ny := N U {0}.

Note that for w(z) = log(l + t) we obtain the classical Schwartz class S (RY),
while in general S,,(R?) € S(R?). For more details about the spaces S, (RY) we
refer to [3-6]. In particular, we can define on S,,(R?) different equivalent systems
of seminorms that make S,,(R¢) a Fréchet nuclear space. It is also an algebra under
multiplication and convolution.

The corresponding strong dual space is denoted by S/, (R9) and its elements are
called w-tempered distributions. Moreover, S’ (RY) C S/ (R?) and the Fourier trans-
form, the short-time Fourier transform and the Wigner transform are continuous
from S,,(RY) to S,,(R?) and from S.,(RY) to S, (RY).
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The “right” function spaces in time-frequency analysis to work with the STFT
are the so-called modulation spaces, introduced by H. Feichtinger in [9]. In this
context, we consider the weight m; (z) := ¢**@, for A € R, and define L}, (R>/)
as the space of measurable functions f on R¢ such that

1
11l = |G, 1Py (x, £)P dx) 7 d )" < +oo,
my ]Rd Rd

for 1 < p, g < 400, with standard changes if p (or g) is +00. We define then, for
1 < p,q < +o0, the modulation space

Mﬁ’)\q(Rd) = {f (S SC/U(]Rd) : V(pf c Lrl:l’;hq(]RZd)},

which is independent of the window function ¢ € S, (R%) \ {0} and is a Banach
space with norm ”f”M/rff = ”wa”L,”nf (see [4]). Moreover, for 1 < p, g < 400,
the space S, (R?) is a dense subspace of M,’;,’f by Boiti et al. [4, Prop. 3.9]. We shall
denote M, (RY) = M}, (R?) and MP+4 (RY) = M}, (RY).

Asin [13, Thm. 12.2.2]if p1 < p2, q1 < q2, and A < u then M,,’;L’ql - M,‘Zi’qz
with continuous inclusion (see [8, Lemma 2.3.16]). Set

my,1(x) :==m(x,0), my208) :=my(0,§),

v(2) = @y 1) = 0 (x, 0), v 2(E) == (0, ),

and prove the following generalization of [7, Prop. 2.4]:
Proposition 0.3 Let 1 < p,q,r, 1,1 < 400 such that ,1, +; —1=land + ) =
1. Then, forall A, u € Rand 1 < s < +00,

M2 (RY) « M ®Y) — M (®RY)

). 1&®my, 2 U, 1®Up 2M -y 2

and I 8l < 1 g Mgy . 0.1)
s Ly

Vp,1®Vy 2Mm_yy 2

Proof For the Gaussian function go(x) = e ™K ’ e S,(R?) consider on M,
the modulation norm with respect to the window function g(x) := go * go(x) =

2742730 € S, (RY). Since m; (x, &) < my.(x, 0)v,(0, &) and go(—x) = go(x),
by Grochenig [13, Lemma 3.1.1], Young and Holder inequalities:

s

1f il = Ve (S W)l = (/R (/R |Vg<f*h>|’m;<x,é>dx)’ds)
1

= (/Rd </]Rd [(f * Mggo) * (h x Mggo)(x)| my(x, 0)" dx)rvi(o,g)dg)s
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K

1(f * Mggo) * (h * Mggo)IIsL;M 1 v3.(0,6) dé)

1

(L

(/ ILf * Megoll, p  Ilh* Megoll', g vi(O,E)d$>
R4 my U1

(L

IA

1

IIVgofllngu lm;i(O, E)IIVgohllngA lm‘iM(O, &)v; (0, é)dé)

<yt WAl g
f M”‘A,l®mu,2 Mz;fl@“x.zmw,z

O

Given two window functions ¥/, y € S,(R%) \ {0} and a symbol a € S, (R24),
the corresponding localization operator Lfm, is defined, for f € S, (R?), by

Lfm,f = V;‘(a Wy f) = /dea(x,E)wa(x,é)Mngy dxd§, 0.2)

where V; is the adjoint of V,. As in [2, Lemma 2.4] we have that LI“/,’ y is a Weyl
operator L" with symbol a¥ = a % Wig(y, ¥):

w 1 ;
a . AW —i&-u
LY f = (2 /RM av &, ue T_yMe f dudé. 0.3)

Moreover, if f, g € S,(R?) then by definition of adjoint operator we can write

< (:p’yff g) = (a . Vlﬁfs Vyé’) = (as lefvyg),
and, similarly as in [13, Thm. 14.5.2] (see also [8, Teo. 2.3.21]), we have, for a® €
My (R2) with 14 > 0,

a% _ a w
L™ flivgs = 1Ly fllvge < lla ”Mi'f,;l I e 0.4)

forall f € Mf{;’ and A € R.

Theorem 0.4 Let y,y € S, (RY) \ {0} and a € M2 (R*?) for some A > 0. Then
pr’y is bounded from Mﬁ,’;’ (R?) 1o Mf{f (Rd),for 1<p,qg <+o0, and

1L llop < Nlalivgge 119 lnay 17 lnag, -
Proof By definition Vy, : ML ! — L5 (R??) and, by Boiti et al. [4, Prop. 3.7],

Vi L R — My (RY). Let f € Mp!(RY). To prove that LY, f = Vyi(a -
Vy f) € Mb it is then enough to show thata- Vy, f € Lh;? (R2?). By the inversion
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formula [4, Prop. 3.7], given two window functions ®, ¥ € S, (RM) with (®, W) #
0, we have, for z = (21, 22) € R x de,

1

q
</Rd </]Rd |a(X,§)|P|wa(x,3):)|Pep)»w(x,§)dx)p dg),,
1 1
< (27’[)‘1 [{D, W)| (/Rd (/Rd (/]R‘id |V\Pa(Z)|p|Mzszl<D(x,éj)|1’dz>

1

Vg f (. s>|"e“‘”<*f>dx)”ds)q

1 1
= o (@, w) (/R (/R (/R (IVea()le*” )" Mz, T, @ (x, 5)|”dz>

q 1
IV f(x, E)I”el’“’()‘f)dx> pdé) '

< CllVyallrg - IVy flippa = Cllalimge - | fllyza,s
A my my my,

for some C > 0. Therefore a - Vy, f € L7 (R*?) and Ly fe M54 (RY).

a

To prove that Ly, is bounded, consider g € S,,(R?) and set ¥ = Wig(g, g) €

S,(R¥). For& = (£, &) € R, weset & = (&, —&)). By Cordero and Grochenig
[7, Lemma 2.2]

IWigQy, ¥llygse = I1Ve Wigly, ¥Ill 1o

1,
M,

= (fu (L

By the change of variables z + % = 7 and [4, formula (3.12)] we obtain (cf. also
[7, Prop. 2.5]):

Vew(z + i)ng(Z - i)‘ dz)pmf,z(é)dg);.

Y )
iwietr. Wi, = ([, ([, Wev@vir @ - Biaz) m? e )"
1

= (/deuvgmzn * |Vg7/(—2)|)p(§)mf’2(§)d§>p

= Webrlly 1Verliey =1Vl 1Vimg, - (0.5)
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Therefore Wig(y, ¥) € M! (RM) and hence, from Proposition 0.3 (with p

my.2

t=r=+400,g=s=t'=1,A=0and u = —)\),wehavethatM;'fiu*M}”” C
M1 5o that a¥ = a % Wig(y, ) € M>! and by (0.4) with u = 0
1LY, llop < lla™ llygeo.r-
From (0.1) and (0.5) we finally have
1LY, llop < llax Wig(y, ¥) Iyt < lalivge , , Il Wig(y, Ilf)llM,lm
< llalage 1y, 17 llngg, -
O

A boundedness result analogous to that of Theorem 0.4 is proved, with different
techniques, in [16] under further restrictions on the symbol a(x, &) and without
estimates on the norm of LI“/,’ v

Set now

M) RY) = {f e My 'R = lim [V f(x, )l ™™ =0}
|x|—o00 my

and prove the following compactness result (cf. also [1, Prop. 2.3] and [12, Thm.
3.22]):

Theorem 0.5 Ifa¥ € M(n)”1 (R24) for some 1 > 0, then L®" is a compact mapping
ofo,[f (RY) into itself, for 1 < p,q < +o0.

Proof The operator L maps M}, 7 (R?) into itself by (0.4). To prove that L% is
compact we first assume a¥ € S, (R24). From (0.3)

w 1 ~ —i&-u i&-(y+u
L0 = g [ 8 €TI0 ) dud

1

— oyt o 87X =) ) dr e

= / k(x,y)f(x)dx, 0.6)
]Rd
with kernel k(x, y) = (2;)d Jra @V (€, x — y)e's¥dg. Note that k(x, y) € S,,(R*)

because it is the inverse Fourier transform (with respect to the first variable) of the
translation (with respect to the second variable) of a¥ € S, (R24),
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Now, let ¢ € S, (R?) and &g, By > 0 such that {1} ; jeze = {MpyiTug;$} 1ez0
is a tight Gabor frame for L?(R%) (see [13, Def. 5.1.1] for the definition). Then
{Pjimn}j1mnezd = Dj1(X)Pmn(V)}j 1 mneza 1s a tight Gabor frame for L2 (R?).
Since k € S, (R??) we have that (k, ® jiun) = Vak(aoj, aom, Bol, Bon) € €' and
(see [4, Lemma 3.15])

k=) (ks ®jimn)Pjimn-

j.l.m,nezd

Therefore from (0.6)

LYf = > (ke @ jimn) (bt f)Pmn.

j.l.m,nezd

with (k, @ jimn) € £, (¢j1) jlezd equicontinuous in Mj 9 = (M7 7)* and
(Pmn)m neza bounded in |J,cn{f € Mp? 2 || fliype < 1}, so that L9 is a
: b

nuclear operator from M,’;,’f to M,’;,’f (see [15, §17.3]). From [15, §17.3, Cor. 4] we
thus have that L¢" is compact.

Let us finally consider the general case a € M,(,);Al (R?). By Boiti et al. [4, Prop.
3.9] there exist a, € S, (R%9) converging to a in M;'%l and hence, by (0.4)

a” a?’
127" = L% gz < lla = aalyer = 0.

Since the set of compact operators is closed we have that L¢" is compact on
M1 (RY). O
We have the following generalization of [10, Lemma 3.4] and [11, Prop. 5.2]:

Lemma 0.6 Let gy € S,(R?) and a € MY (RY), with A > 0, such that

lim  sup |Vga(x, &)™) =0, VR > 0. 0.7)
l¥l—>+o00 g <R

Thena x H € MY, (RY) for any H € S,,(RY).

Proof The case . = 0 has been proved in [10, Lemma 3.4]. Let . > 0. Since
20 € So(RY) and H € S, (R?), by Gréchenig and Zimmermann [14, Thm. 2.7]
we have that Vo 0 H € S, (RM) and hence, for a fixed £ > 0 (to be chosen later
depending on 1), there exists c; > 0 such that

|Vg0H()C, %—)l < C)\efﬂ)\a)(x)ef%)\w(.ﬁ), V)C, f c Rd.
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Now, as in the proof of Proposition 0.3, for g = go * go, we have that |V, (a *
H)(-, &) = |Vgoa(-, &) x Voo H(-, &)]. Since w is increasing and subadditive we
have

Ve(a s H)(x. £)]| < /Rd Ve — v, )11V H(y, £)ldy

< e 300® /R Vggate =y, £)le My

= cxe—w"’@)/wlvgoa(x = ¥, )T oy Tie gy

< qe—%m(s)e—xwm/d|Vg0a(x . E) |G,
R

Since a € M7 (R?) we have that

W20y (g % H)(x, £)|

< CAe*“‘”(S)/I Vealx — y, £)]eM 8 =GE-D00) gy ©0.8)
Rl
< c;\e_“")(g)ﬂa||MyonoA /de_(%_l))"‘)(y)dy < 400, (0.9)
R

if £ > ; + 3%, where B is the constant of condition (y) in Definition 0.1. Since
limjg| 100 @ (§) = +00, from (0.9) we have that for all ¢ > 0 there exists Ry > 0
such that

HOOR00E Y (4 % HY(x,E)| <&, Vx, £ eRY, > Ry. 0.10
[Ve( )(x, 8)] 3 &1 = Ry (0.10)

We now choose § > 0 small enough so that

a<1 + cx/ e(“l)m(y))dy <e. 0.11)
Rd

From the hypothesis (0.7) we can choose Ry > 0 sufficiently large so that

sup |Vgga(x, £)[e**@5) <8, |x| > Ry, (0.12)
[EI<R;

8
~Bt=Drw(y)
e dy < ) IE] < Ry. (0.13)
/|y|>R2 cre~to® lalvz
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Therefore for |x| > 2R, |y| < Ry (so that |[x — y| > Rp) and |§| < Ry, by (0.8),
(0.9), (0.13), (0.12) and (0.11):

OTRICEONY, (@ % H) (x, §)]

< e 0O allye / e~ B0y
[yI>R2

ey e t0® / Ve (x — v, £)[F@ 036 g=BE=Dr00gy
[yI<R2
< 4 —|—q¢3/ e_(M_l)“"(y)dy <e.
]Rd
The above estimate, together with (0.10), gives
e)»a)(x)/ |Vg(a % H)(‘x,é)le)\w(s)dé < 8/ e*(2[71))\w(§)dé’ |x| > 2R2
R R

Choosing now ¢ > ; + z;,lu > é + 3§A so that e~ ¢~ @) ¢ [ 1(RY), we finally
obtain

lim "W Vy(a* H)(x, )1 =0.
mp

|x]—00
O

Theorem 0.7 Let v,y € Sp(RY), go € Sp(R*) and a € M2 (R*) satisfying
(0.7), for some A > 0. Then pr’y : Mﬁ,’;’ (R?) — Mf{f (RY) is compact, for 1 <
pP,q < +o0.

Proof Set H := W(y,¥) € S,(R*). Since a € M (R*), by Lemma 0.6

we have that a¥ = ax H € M,?;j (R??) and hence pr’y = L is compact by
Theorem 0.5. m|
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