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Abstract We study relations between stochastic differential equations with inho-
mogeneities reflecting continuous and discontinuous random perturbations and
equations for probabilistic characteristics of processes specified by these stochastic
equations. The application of two approaches: based on the Ito formula and on limit
relations for process increments, allowed to obtain direct and backward integro-
differential equations for various probabilistic characteristics and justify them in
distribution spaces.
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1 Introduction

A wide class of processes arising in various fields of natural science, economics
and social phenomena, mathematically can be described using differential equations
with random perturbations, stochastic differential equations (SDEs). The best-
studied class of SDEs is one with random perturbations in the form of Wiener
processes. Solutions of such equations (normal diffusion processes), due to con-
tinuity of Wiener process trajectories also have continuous trajectories. In addition,
normal diffusion processes have the following characteristic property: the variance
of the process deviation over time �t is proportional to �t . Therefore, modeling
within the framework of diffusion-type equations is not suitable for describing
processes with jumps and ones with variance proportional to �tμ,μ �= 1. The
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behavioral features unusual for normal diffusion processes, can be modeled using
Levy processes and more general Levy type processes.

Both in applications and in fundamental science, researchers are often interested
not in processes themselves but their characteristics; therefore, the relationship
between SDEs and equations of probabilistic characteristics of processes described
by SDEs is one of the main directions of stochastic analysis. Most investigated
remains the connection for diffusion processes and corresponding partial differential
equations for their probabilistic characteristics.

In the paper, we study Levy type stochastic equations and obtain equations
for probabilistic characteristics, which in the case are integro-differential (pseudo-
differential), in contrast to partial differential equations of parabolic type corre-
sponding to diffusion processes. For this purpose we distinguish two approaches:

– the approach based on the general Ito formula (see, e.g. [1, 2]) allowing to obtain
functions of studied processes, which are averaged, and as a result we get the
integro-differential equations for probabilistic characteristics.

– the approach allowing to obtain equations for probabilistic characteristics based
on the existence of three limits for the random process under study: the limits
of the quotient of dividing the local first and second moments by �t → 0
(conditions (3.1)–(3.2)) and the limit (3.3) characterizing the absence of the
continuity property of Levy type processes (see, e.g. [3]).

There are deep, not always obvious connections between these approaches, and
not all of them, despite many works devoted to the indicated issues, worked out
in the desired completeness. In the paper we can see that in the both approaches
twice differentiable functions appear in equations for probabilistic characteristics
and we show that these functions can be used as test functions.We pay the important
attention to substantiation of the resulting direct and backward integro-differential
equations, in the general case not having classical solutions, in distribution (gener-
alized functions) spaces.

2 Direct and Backward Equations for Probabilistic
Characteristics Based on the Ito Formula

Let a probability space (�,F , (Ft )t≥0, P ) be given. We consider a random process
X = {X(t), t ≥ 0}, arising under the influence of continuous and discontinuous
random disturbances. In general, this is a Levy type process defined by the stochastic
equation

X(t) − x =
ˆ t

0
a(X(s−))ds +

ˆ t

0
b(X(s−))dW(s)

+
ˆ t

0

ˆ
|q|≥1

K(X(s−), q)N(ds, dq)

+
ˆ t

0

ˆ
|q|<1

F(X(s−), q)˜N(ds, dq), t ∈ [0; T ]. (2.1)
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Here W = {W(t), t ≥ 0} is a standard Wiener process, N(t,A) for any bounded
from below set A is a Poisson random measure on (R+ × (R \ {0}),B(R+) ⊗
B(R\ {0})), and ˜N(t,A) := N(t,A)− tν(A) is a martingale-valued (compensated)
Poisson random measure on this space. By the definition, the random variable
N(t, ·)(ω) for ω ∈ � and t ≥ 0 is a counting measure on B(R \ {0}), and N =
{N(t,A), t ≥ 0} is a Poisson process with intensity λ = ν(A) := E[N(1, A)]. We
suppose the following conditions on coefficients supplying existence of a solution
to (2.1): functions a(·), b(·), F (·, q) satisfy the Lipschitz and sub-linear growth
conditions and K(·, q) is continuous.

Let f ∈ C1,2(R+,R) and {X(t), t ≥ 0} be a Levy type process defined by (2.1)
with a(·) = a(X(·)),b(·),F(·, q) square integrable a.s. Then with probability 1 the
following equality, the Ito formula for Levy type processes, holds (see, e.g. [2, c.
278]):

f (t,X(t)) − f (0,X(0)) =
ˆ t

0
f ′

s (s,X(s−))ds +
ˆ t

0
a(s)f ′

x(s,X(s−))ds

+
ˆ t

0
b(s)f ′

x(s,X(s−))dW(s) + 1

2

ˆ t

0
b2(s)f ′′

xx(s,X(s−))ds

+
ˆ t

0

ˆ
|q|≥1

[f (s,X(s−) + K(s, q)) − f (s,X(s−))]N(ds, dq) (2.2)

+
ˆ t

0

ˆ
|q|<1

[f (s,X(s−) + F(s, q)) − f (s,X(s−))]˜N(ds, dq)

+
ˆ t

0

ˆ
|q|<1

[f (s,X(s−)+F(s, q))−f (s,X(s−))−F(s, q)f ′
x (s,X(s−))]ν(dq)ds.

We start by deriving a direct (forward) equation for transition probability
P(τ, y; t, A), the probability of transition from y at time τ to values on A at time t .
To this end, using (2.2) first we obtain the equation for the process {f (X(t)), t ≥ 0},
where X is a solution to (2.1) and f ∈ C2(R), then we apply the expectation. Using
that integrals over W and over compensated Poisson process ˜N are martingales,
hence its expectations are zero, and changing the order of integration in other terms,
we obtain

E[f (X(t))] − f (x) =
ˆ t

0
E[a(X(s−))f ′(X(s−)) + 1

2
b2(X(s−))f ′′(X(s−))]ds

+
ˆ t

0

ˆ
|q|≥1

E[f (X(s−) + K(X(s−), q)) − f (X(s−))]ν(dq)ds
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+
ˆ t

0

ˆ
|q|<1

E[f (X(s−) + F(X(s−), q)) − f (X(s−))

−F(X(s−), q)f ′(X(s−))]ν(dq)ds.

Further, since Levy type processes possess the property P(X(s−) = X(s)) = 1 for
any s > 0, we obtain the equality

ˆ
R

f (y)P (0, x; t, dy)−f (x) =
ˆ t

0

ˆ
R

[a(z)f ′(z)+ 1

2
b2(z)f ′′(z)]P(0, x; s, dz)ds

+
ˆ t

0

ˆ
|q|≥1

ˆ
R

[f (z + K(z, q)) − f (z)]P(0, x; s, dz)ν(dq)ds

+
ˆ t

0

ˆ
|q|<1

ˆ
R

[f (z + F(z, q)) − f (z) − F(z, q)f ′(z)]P(0, x; s, dz)ν(dq)ds.

The right-hand side of the resulting equality are integrals with a variable upper limit,
then after differentiating both sides of this equality with respect to parameter t we
obtain the direct equation for transition probability:

∂

∂t

ˆ
R

f (y)P (0, x; t, dy) =
ˆ
R

[a(y)f ′(y) + 1

2
b2(y)f ′′(y)]P(0, x; t, dy)

+
ˆ

|q|≥1

ˆ
R

[f (y + K(y, q)) − f (y)]P(0, x; t, dy)ν(dq) (2.3)

+
ˆ

|q|<1

ˆ
R

[f (y + F(y, q)) − f (y) − F(y, q)f ′(y)]P(0, x; t, dy)ν(dq).

We show that (2.3) is correct in a space of distributions, where functions f

will play the role of test functions for functionals determined by the transition
probability. To do this, we consider 	 = C2

c (R), the linear space of compactly
supported twice continuously differentiable functions f : R → R and 	′, the space
of linear continuous functionals on 	. Since integral

´
R

f (y)P (0, x; t, dy) exists
for any f ∈ Cc(R) functional p(0, x; t, ·) is well defined as follows:

ˆ
R

f (y)P (0, x; t, dy) =: 〈f (y), p(0, x; t, y)〉, f ∈ Cc(R). (2.4)

In particular for f ∈ 	, we call p(0, x; t, ·) the generalized transition probability
density of X. If the transition probability has a classical density, then p(0, x; t, ·) is
a regular generalized function and (2.4) turns into the equality for integrals.
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Having defined the functional p(0, x; t, ·) on 	, we pass to the formalization of
Eq. (2.3) in 	′ and begin with “differential” terms of the equation. Since there exists
∂
∂t

´
R

f (y)P (0, x; t, dy), for p(0, x; t, ·) exists a derivative with respect to t:

∂

∂t

ˆ
R

f (y)P (0, x; t, dy) = ∂

∂t
〈f (y), p(0, x; t, y)〉 = 〈f (y),

∂

∂t
p(0, x; t, y)〉.

Next, we consider integral
´
R
[a(y)f ′(y) + 1

2b
2(y)f ′′(y)]P(0, x; t, dy). By virtue

of conditions on coefficients of (2.1) supplying existence of its solution, functions
a, b satisfy the Lipschitz condition. It follows that products af ′ and b2f ′′ define
continuous functions with compact supports. Then the integral exists and is equal to

〈f (y),− ∂

∂y
(a(y)p(0, x; t, y)) + 1

2

∂2

∂y2

(

b2(y)p(0, x; t, y)
)

〉.

Next, we go on to formalize “integral” terms, integrals with respect to q

included in the direct equation. Consider integral
´
|q|≥1

´
R
[f (y + K(y, q)) −

f (y)]P(0, x; t, dy)ν(dq). Since, by conditions on coefficients, K(·, q), |q| ≥ 1, is
continuous, then f (· + K(·, q)) ∈ Cc(R) and the integral is equal to

〈f (y),

ˆ
|q|≥1

(p(0, x; t, y − K(y, q)) − p(0, x; t, y)) ν(dq)〉.

Finally, consider the last term in the right-hand side of (2.3). By virtue of the
conditions imposed on F we obtain f (·+F(·, q)) and F(·, q)f ′(·) belong toCc(R).
Then the term is equal to:

〈f (y),

ˆ
|q|<1

(

p(0, x; t, y − F(y, q)) − p(0, x; t, y)

+ ∂

∂y
(F (y, q)p(0, x; t, y))

)

ν(dq)〉.

Thus, it is shown that if coefficient a, b,K,F of (2.1) satisfy conditions
supplying existence of its solution, then the direct equation for the generalized
transition probability density of X is correct on functions f ∈ 	:

〈f (y),
∂

∂t
p(0, x; t, y)〉 = 〈f (y),− ∂

∂y
(a(y)p(0, x; t, y))

+1

2

∂2

∂y2

(

b2(y)p(0, x; t, y)
)

〉

+ 〈f (y),

ˆ
|q|≥1

(p(0, x; t, y − K(y, q)) − p(0, x; t, y)) ν(dq)〉 (2.5)
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+〈f (y),

ˆ
|q|<1

(

p(0, x; t, y − F(y, q)) − p(0, x; t, y)

+ ∂

∂y
(F (y, q)p(0, x; t, y))

)

ν(dq)〉.

By (2.4), the correctness of the direct equation for the generalized density on 	

leads to the correctness of (2.3) for the transition probability.
Now, briefly, due to the size restriction of the paper, we show that for the

important in applications probabilistic characteristic

g(t, x) := Et,x [h(X(T ))] =
ˆ
R

h(y)P (t, x; T , dy), t ∈ [0; T ], h ∈ Cb(R)

(2.6)

the backward equation is correct on 	 under some additional conditions on
coefficients of (2.1).

At the first stage, we assume the existence of continuous partial derivatives
g′

t , g′
x, g′′

xx and write the equation for {g(t,X(t)), t ∈ [0; T ]} using the Ito formula.
By the Markov property of X, we have

E[g(t,X(t))] = E[Et,X(t)[h(X(T ))]]

=
ˆ
R

ˆ
R

h(y)P (t, x; T , dy)P (0, ξ ; t, dx) =
ˆ
R

h(y)P (0, ξ ; T , dy) = E[g(0,X(0))].

Therefore, the expectation of the right-hand side of the equation written for
{g(t,X(t))} on the basis of formula (2.2) is zero. Using the Fubini stochastic
theorem we can move the expectation under the integral sign, then using the
martingale property of W and ˜N we obtain expectation of integrals over W and
˜N are equal to zero.

If the evolution of X started at the moment t ∈ [0; T ] from the point X(t) = x ∈
R, then the resulting equality leads to the backward equation for g:

−g′
t (t, x) = a(x)g′

x(t, x) + 1

2
b2(x)g′′

xx(t, x) +
ˆ
|q|≥1

[

g
(

t, x + K(x, q)
)

− g(t, x)
]

ν(dq)

+
ˆ

|q|<1

[

g
(

t, x + F(x, q)
)

− g(t, x) − F(x, q)g′
x(t, x)

]

ν(dq), t ∈ [0; T ].
(2.7)

Now we pass to the second stage, the study of the correctness of (2.7) in
spaces of generalized functions. On the previous stage (2.7) was obtained under the
assumption that there exist continuous partial derivatives g′

t , g′
x, g′′

xx . The existence
of derivatives g′

x, g′′
xx and corresponding derivatives p′

x(t, x; T , ·), p′′
xx(t, x; T , ·),
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as we can see from formulas (3.1)–(3.2) in the next section, is closely related to
existence of derivatives of coefficients. In the general case, even provided that the
coefficients of (2.7) are twice continuously differentiable, g′

t , g′
x, g′′

xx may not exist.
More accurately: the following conditions guarantee the existence of the derivatives
of g: coefficients a(x), b(x), F(x, q), |q| < 1, K(x, q), |q| ≥ 1 are twice
continuously differentiable with respect to x and their derivatives satisfy Lipschitz
and sub-linear growth conditions, function h is twice continuously differentiable
and its derivatives are bounded [4, 5]. Thus, we formalize the backward equation
for g with h ∈ Cb(R) on the space of test functions 	 under the conditions on
a(·), b(·), F(·, q), K(·, q) to be twice continuously differentiable on R. Indeed, for
f ∈ 	 and such a, b, K, F the following equalities are correct:

〈f (x), a(x)g′
x(t, x)〉 = −〈(a(x)f (x))′ , g(t, x)〉,

〈f (x), b2(x)g′′
xx(t, x)〉 = 〈(b2(x)f (x))′′, g(t, x)〉,

〈f (x), F (x, q)g′
x(t, x)〉 = −〈(F (x, q)f (x))′, g(t, x)〉,

〈f (x), g(t, x + F(x, q))〉 = 〈f (x − F(x, q)), g(t, x)〉, |q| < 1,

〈f (x), g(t, x + K(x, q))〉 = 〈f (x − K(x, q)), g(t, x)〉, |q| ≥ 1, t ∈ [0; T ].

Under the indicated conditions on coefficients, these equalities justify the correct-
ness of (2.7) on f ∈ 	. It is not difficult to show that under these conditions a
backward equation for the transition density can be obtained on 	 as well.

Remark It is important to note that although we justified the direct and backward
equations in distribution spaces, the Cauchy problems for them: the problem with
an initial condition for the direct equation and with final condition g(T , x) = h(T )

for the backward one, are well-posed from the point of view of the theory of ill-
posed problems. This is the fundamental difference between the considered finite-
dimensional problems and the infinite-dimensional ones, where ill-posedness can
arise due to generators that do not generate semigroups of class C0 [6].

3 The Approach via Limit Relations

This approach goes back to the ideas of A.N. Kolmogorov (see, e.g. [7]) for diffusion
processes and is based on three limit values (3.1)–(3.3).

Let p(t, x; T , y) be the transition probability density of a process X and let for
any ε > 0 there exist finite limits

lim
�t→0

1

�t

ˆ
|z−x|<ε

(z − x)p(t, x; t + �t, z)dz = a(t, x) + O(ε), (3.1)
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lim
�t→0

1

�t

ˆ
|z−x|<ε

(z − x)2p(t, x; t + �t, z)dz = b(t, x) + O(ε), (3.2)

lim
�t→0

p(t, x; t + �t, z)

�t
= G(t, x; z), |z − x| > ε, (3.3)

uniform with respect to x, z and t , and with respect to x and t in (3.2). Then for any
f ∈ C2(R), transition density p(t, x; T , y), 0 ≤ t ≤ T < ∞, satisfies the direct
equation [3, pp. 51, 56]:

∂

∂T

ˆ
R

f (y)p(t, x; T , y)dy =
ˆ
R

[

a(t, y)
∂f (y)

∂y
p(t, x; T , y)

+1

2
b(t, y)

∂2

∂y2p(t, x; T , y)

]

dy

+
ˆ
R

f (y)dy

ˆ
R\0

dz [G(T , z; y)p(t, z; T , y) − G(T , y; z)p(t, x; T , y)]

and, under the assumption that there exist p′
t , p′

x, p′′
xx , the backward equation:

−p′
t (t, x; T , y) = a(t, x)p′

x(t, x; T , y) + 1

2
b(t, x)p′′

xx(t, x; T , y)

+
ˆ
R\0

(p(t, z; T , y) − p(t, x; T , y))G(t, x; z)dz.

Note that in the case of diffusion processes, the third limit is zero, in general case
this limit describes the discontinuity of X.

As an example of using the approach, we obtain direct and backward equations
for the transition density of X = {X(t) = at + bW(t) + cN(t)}, where W =
{W(t), t ≥ 0} is the standard Wiener process, N = {N(t), t ≥ 0} is the Poisson
process with intensity λ, and a, b, c are constants. We assume that W and N are set
independently of each other. Since the density of W is determined by the equality

pW(t, x; T , y) = 1√
2π(T − t)

e
− (y−x)2

2(T−t) ,

density of process {at + bW(t)} has the form:

pa,b,W(t, x; T , y) = 1

b
√
2π(T − t)

e
− (y−x−a(T−t))2

2b2(T −t) .



Solutions to Equations for Probabilistic Characteristics 399

Knowing the law of distribution of a Poisson process, we write out the density of
process cN

pcN (t, x; T , y) =
[ y−x

c
]

∑

k=0

(λ(T − t)))k

k! δ(y − x − ck)e−λ(T−t ).

As a result, we obtain the transition density of X as the convolution of densities of
three independent processes:

p(t, x; T , y) = e−λ(T −t )

b
√
2π(T − t)

∞
∑

k=0

(λ(T − t)))k

k! e
− (y−x−ck−a(T−t))2

2b2(T −t) .

Now we calculate limits (3.1)–(3.2):

lim
�t→0

1

�t

ˆ
|z−x|<ε

(z − x)p(t, x; t + �t, z)dz =
[

a, ε ≤ c,

a + cλ, ε > c

lim
�t→0

1

�t

ˆ
|z−x|<ε

(z − x)2p(t, x; t + �t, z)dz =
[

b2, ε ≤ c

b2 + c2λ, ε > c

and function G(t, x; z):

G(t, x; z) = lim
�t→0

p(t, x; t + �t, z)

�t
=

[

λδ(z − x − c), ε ≤ c,

0, ε > c.

The found limit values allow us to write the direct and backward equations for the
density of X on 	:

〈f (y), p′
T (t, x; T , y)〉 = 〈f (y),−ap′

y(t, x; T , y) + b2

2
p′′

yy(t, x; T , y)

+λ(p(t, x; T , y − c) − p(t, x; T , y))〉.

〈f (x),−p′
t (t, x; T , y)〉 = 〈f (x), ap′

x(t, x; T , y) + b2

2
p′′

xx(t, x; T , y)

+λ(p(t, x + c; T , y) − p(t, x; T , y))〉.

In the considered example, since a and b are constants, we need not additional
conditions on coefficients in the backward equation.
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