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Abstract This paper briefly surveys age- and size- structured linear and nonlinear
population models and reveals their practical meaning. It focuses on optimal
control problems with two types of harvesting and their impact on the sustainable
harvesting.
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1 Introduction

Various mathematical models have been suggested to capture population dynamics.
PDE models are commonly used when age or size of individuals is relevant. They
have been constantly extended to address practical needs, restrictions, and quotas.
Sustainable harvesting is an important task in agriculture, aquaculture, forestry,
fishery, and other applications. The paper aims to show relations between age- and
size- structured models (Sect. 2).
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Harvesting in populations often depends on age or size of individuals. Such
harvesting models have been offered and analyzed since 1980s, see surveys
in [1, 13, 19], and references therein. Two types of harvesting control, harvesting
rate and effort, and their practical relevance are analyzed in Sect. 3.

Finding effective harvesting regime in age- or size-structured population involves
the optimal control of PDEs with two-dimensional controls and state constraints [1–
3, 5, 9–17, 20, 23]. Analyzing optimal harvesting in linear and nonlinear population
models, we explore the bang-bang form of the optimal harvesting and present
applied interpretation of model assumptions and outcomes in Sect. 4.

2 Age- and Size-Dependent Population Models

The mathematical description of age- and size-structured populations has a long
history, though the choice of the best model is still not always clear. Moreover, the
relation between age and size in most biological populations is rather weak.

Let us briefly discuss connections and differences between two well-known
linear PDE models.

The Lotka-McKendrick model describes the dynamics of an age-structured
population under abundant resources [2, 10, 11, 13, 18, 19]

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(t, a)x(t, a), (2.1)

x(t, 0) = p(t), x(0, a) = x0(a), a ∈ [0, A), t ∈ [0,∞). (2.2)

The function x(t, a) represents the population density of individuals of age a at
time t in the sense that the population size is given by N(t) = ´ A

0 x(t, a)da at

time t , where A is the population maximum age. Then
∂x(t, a)

∂a
is an “aging” term,

x0(a) represents the population density at the initial moment, and μ(t, a) is the age-
specific mortality rate. The influx of new individuals is determined by a fertility
equation if the natural reproduction is allowed or by the density p(t) of introduced
new species in a fully managed population, in which all young individuals (trees,
fish, etc.) are introduced from outside.

The related size-structured population model [7, 15] can be represented by

∂x(t, l)

∂t
+ ∂(g(t, l)x(t, l))

∂l
= −μ(t, l)x(t, l), (2.3)

g(t, l0)x(t, l0) = p(t), x(0, l) = x0(l), l ∈ [l0, lmax], t ∈ [0,∞), (2.4)

where x(t, l), μ(t, l), p(t), and x0(l) have the same meaning as in the model (2.1)–
(2.2) but with respect to the size l that can be viewed as an individual’s length,
diameter, weight, volume, or other physiological quantity. The total population size
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at any time t in (2.3)–(2.4) is N(t) = ´ lmax

l0
x(t, l)dl and

∂(g(t, l)x(t, l))

∂l
is a

“growth” term. The growth rate g(t, l) can be interpreted by
´ l2
l1

1
g(t,l)

dl as the time
during which an individual grows from size l1 to l2, with l0 ≤ l1 ≤ l2 ≤ lmax.

Equations (2.1)–(2.2) and (2.3)–(2.4) differ only by the presence of the growth
rate g(t, l). To justify g in the initial condition (2.4), let us consider a relation among
the functions x(t, l), p(t), and g(t, l) in a neighborhood of the initial time 0. The
size of new individuals changes as �l ≈ g(t, l)�t during a small time period �t,

while the age changes as �a = �t. Then, �x ≈ x(t, l0)�l ≈ x(t, l0)g(t, l0)�t .
Furthermore, new individuals of size l0 brought into the population during �t

change their density by �x ≈ p(t)�t during �t. Equating the last two statements
we obtain (2.4). Similar reasoning explains the appearance of g in the second term
of (2.3).

We consider examples of optimal control in age- and size-structured population
models with relevant applied interpretation in the following sections.

3 Harvesting Control

Rational harvesting in populations is one of the most common applied problems in
forestry, fishery, and agriculture [1–7, 9, 13, 16, 17, 19–22]. Depending on practical
needs, harvesting objectives vary significantly and may include recommending the
maximum sustainable yield or profit, minimizing environmental damage, preventing
population extinction, and other requirements. Dependence of a harvesting control
h on time, age, or size, or other factors greatly affects the investigation techniques.
Let us consider two types of a two-dimensional harvesting control h(t, a), the
harvesting effort and rate.

Harvesting in fishery is often directly proportional to the density or abundance
of a fish population. It can be measured by the overall effort of catching fish and the
size of a stock.

Then the harvesting control h(t, a) = u(t, a)x(t, a), where u(t, a) is the
harvesting effort that measures the expense made at time t to harvest fish of age
a from all the available fish, and (2.1) can be extended to

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(a)x(t, a) − u(t, a)x(t, a). (3.1)

The model (3.1), (2.2) reflects the catch-per-unit-effort hypothesis and assumes the
cost of harvesting to be proportional to the effort. In the case of a sole owner of a fish
resource or in forestry, a certain portion of a population is harvested at a constant
cost. Then the harvesting control h(t, a) = u(t, a), where u(t, a) is the harvesting
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rate or intensity at age a and time t , and the evolution equation (2.1) of a stock
becomes

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(a)x(t, a) − u(t, a). (3.2)

The choice of a harvesting control is determined by the nature and objectives of a
practical problem. The harvesting rate is commonly used in economics [11, 16],
farming (agriculture, aquaculture), while the harvesting effort is preferred in
modeling of wild populations, mostly forestry [6, 13, 16, 17, 23] and fishing. The
Gordon-Schaefer, Beverton-Holt, and other bioeconomic models of open-access
commercial fishing use the effort as an endogenous control.

4 Optimization in Age-, Size-Structured Models

Harvesting problems have been intensively investigated in [1–3, 8–17], and others.
The corresponding optimal control problems (OCPs) are constructed to find the
most effective harvesting policy. Formulation of a detailed objective function with
meaningful applied interpretation often poses more challenges than the choice of
a model. Investigation steps in OCPs usually include extremum conditions, the
existence and uniqueness of solutions, qualitative and quantitative analyses of
optimal trajectories, bang-bang solutions, and sustainable development of a system.
Their outcomes are important in development of rational harvesting strategy. We
will focus on OCPs with two-dimensional controls implemented in the Lotka-
McKendrick model and its nonlinear modifications and analyze different bang-bang
solutions depending on what harvesting control, rate or effort, has been chosen.

4.1 Optimization in Age-Structured Models

Let us consider the OCP of maximizing the harvesting profit in (3.1), (2.2).

max
u,p,x

I = max
u,p,x

ˆ T

0
e−rt

[ˆ A

0
c(t, a)u(t, a)x(t, a)da − b(t)p(t)

]
dt, (4.1)

0 ≤ u(t, a) ≤ umax, 0 ≤ p(t) ≤ pmax, x(t, a) ≥ 0, (4.2)

where, u ∈ L∞([0, T ) × [0, A)), p ∈ L∞[0, T ), and x0 ∈ L∞[0, A), x ∈
C([0, T ), L∞[0, A)). In this OCP c(t, a) is the unit price of the harvesting output,
b(t) is the price of introduced individuals, and e−rt is the discounting factor.
The functional (4.1) describes the present value of the profit as the difference of
harvesting revenue and operating costs to bring new individuals.
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An important feature of harvesting optimization models is the occurrence of
bang-bang solutions. A bang-bang optimal control is a solution u that switches
between the boundaries 0 and umax of the constraint-inequality 0 ≤ u ≤ umax.

The strong bang-bang principle defines conditions under which the optimal control
takes only boundary values, while the weak bang-bang principle allows u to take
interior values.

The strong bang-bang principle [10] for the OCP (4.1), (3.1), (4.2), (2.2), shows
that the optimal harvesting effort u(t, a) is of the form

u�(t, a) =
{ 0, 0 ≤ a < a�(t),

umax, a�(t) ≤ a ≤ A,

(4.3)

if

∂c

∂a
> 0. (4.4)

The strong bang-bang principle also occurs in the OCP (4.2), (4.1), (2.2) in the
following nonlinear Gurtin-McCamy model

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(E(t), a)x(t, a) − u(t, a)x(t, a), (4.5)

where E(t) reflects the environmental impact and intensity of the intra-specific
competition. In this model the key assumptions are

∂c

∂a
> 0,

∂μ

∂E
≥ 0,

∂μ

∂a
≥ 0. (4.6)

The dependence of the mortality rate μ(E, a) on E(t) reflects the intra-species
competition. This is a common example of the non-local nonlinearity that represents
non-local effects in the population. Although conditions (4.6) are stronger than
condition (4.4), they are still realistic and reflect the increase of profit with
individual’s age and increase of the mortality caused by both, age and intra-species
competition.

The age-structured population models with controlled harvesting rate are more
natural in real applications, especially in forestry, though they lead to additional
mathematical challenges caused by the active state constraint x ≥ 0. The optimal
control in the Lotka-McKendrik model (3.2) and (2.2) with two-dimensional
optimal harvesting rate u(t, a) and the objective

max
u,p,x

I = max
u,p,x

ˆ T

0
e−rt

[ˆ A

0
c(t, a)u(t, a)da − b(t)p(t)

]
dt (4.7)
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takes the bang-bang form

u�(t, a) =
⎧⎨
⎩
0, 0 ≤ a < a�(t),

umax, a�(t) ≤ a ≤ ae, (t),

0, ae(t) < a ≤ A,

(4.8)

under restrictions

umax >> 1 and
ˆ A

0
c(t, a)e− ´ a

0 μ(t,ξ)dξda > b(t), t ∈ [0,∞), (4.9)

where 0 ≤ a�(t) < ae(t) < A, and the endogenous age ae(t) is determined from
the condition x(t, ae(t)) = 0 for each t .

The bang-bang (4.8) in the model with harvesting intensity is qualitatively
different from the corresponding one (4.3) in the models with controlled effort. It
states that the optimal strategy is to harvest individuals older than a�(t) but younger
than ae(t), that is, before they reach the maximum age A. This policy is more
realistic than (4.3). For instance, in forestry, old trees, that do not have any market
value, provide nutrition for younger trees when they die.

4.2 Optimization in Size-Structured Models

The existence of bang-bang solutions has been proven for some OCPs in size-
structured models. Let us consider the following OCP in a Gurtin-McCamy model
of forest management with a two-dimensional harvesting effort u(t, l) that aims to
find the functions x(t, l), u(t, l), E(t), p(t) for t ∈ [0,∞), l ∈ [l0, lm], that
maximize

max
u,p,x,E

J =
ˆ ∞

0
e−rt

{ˆ lm

l0

c(t, l)u(t, l)x(t, l)dl − k(t)p(t)

}
dt, (4.10)

subject to the following constraints:

∂x(t, l)

∂t
+ ∂(g(E(t), l)x(t, l))

∂l
= −μ(E(t), l)x(t, l)) − u(t, l)x(t, l), (4.11)

E(t) = χ

ˆ lm

l0

l2x(t, l)dl, g(E(t), l0), x(t, l0) = p(t), (4.12)

0 ≤ u(t, l) ≤ umax, x(0, l) = x0(l), l ∈ [l0, lm], t ∈ [0,∞). (4.13)

A forest is a renewable resource, which provides timber, offers recreation facili-
ties, mitigates climate change, and improves air quality. Human intervention, natural
disturbances, and climate change may cause irreversible and unfavorable changes
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in the forest dynamics. Therefore, modeling in forestry is vital to understand the
dynamics of its development and predict negative consequences of climate change
and human interaction.

The size of trees better suits biological and economic needs than their age. In
applications to forestry, parameters and state variables of the model (4.10)–(4.13)
are taken as follows: l is the tree diameter at breast height, x(t, l) is the density of
size-structured trees at time t, E(t) reflects the environmental impact and intra-
specific competition, p(t) is the flux of young trees planted, and χ is a parameter
related to a specific type of tree. The objective is to maximize the profit from
logging. The OCP (4.10)–(4.13) introduced in [14] is a simplified version of a larger
problem that maximizes profit from timber production and carbon sequestration
studied in [9, 15–17]. The problem is of great importance in countries where forestry
farms are compensated for keeping trees that sequester carbon from the atmosphere
and store it in their trunks. Calibration of obtained theoretical outcomes from data on
a Pinus Sylvestris forest in Catalonia, Spain, show good applicability of the model.
It is shown in [9] and references therein that effects of climate change on a Pinus
forest development can be captured by the growth rate

g(E, l) = (lm − l)ĝ(E), ĝ(E) = (β0 − β1)E, β0 > 0, (4.14)

where β0 and β1 are parameters related to different climate change scenarios.
Assuming the growth rate (4.14) and

∂c(t, l)

∂l
> 0,

∂μ(E, l)

∂E
≥ 0,

∂μ(E, l)

∂l
≥ 0, (4.15)

the optimal control u�(t, l) in OCP (4.10)–(4.13) has the following form

u�(t, l) =
{
0, l0 ≤ l < l�(t),

umax, l�(t) ≤ l ≤ lm,
(4.16)

with, at most, one switching size l�(t), l0 ≤ l�(t) ≤ lm, t ∈ [0,∞).

Conditions (4.15) are similar to conditions (4.6) and have a similar applied inter-
pretation. The bang-bang solution (4.16) is similar to (4.3) and justifies advantages
of selective harvesting over clear cutting for sustainable forest development, which
is in agreement with reality. Even countries that have a mandatory clear-cutting
regime in forestry tend to change the law.

The optimal control for the linear size-structured model with controlled harvest-
ing rate and natural reproduction was proven to be bang-bang in [11]. The nonlinear
case remains an open question.
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