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Preface

This volume contains the contributions of the participants of the 12th ISAAC
Congress which was held at the University of Aveiro, Portugal, from 29 July to
3August 2019. Although the International Society for Analysis, its Applications and
Computation (ISAAC) supports several conferences, workshops, and other events of
scientific nature, the ISAAC Congress is the principal bi-annual event of the society.
The 12th ISAAC Congress continues this successful series of meetings initiated in
Delaware, USA (1997), which have been held regularly every 2 years since, while
rotating among different countries in Europe, America, and Asia.

With a long tradition in joining researchers form different areas of analysis and
its applications, the 12th edition had 543 registered participants from 64 different
countries who attended 433 talks spanned by 23 sessions, including sessions of the
special interest groups of the society. As a novelty and to encourage collaboration
between different special interest groups, additional joint sessions were organised
around topics of common interest. Last but not least, there were also nine plenary
talks given by

• Afonso Bandeira—Courant Institute, NYU, USA;
• Alexander Grigoryan—Universität Bielefeld, Bielefeld, Germany;
• Karlheinz Groechenig—Universität Wien, Wien, Austria;
• Håkan Hedenmalm—The Royal Institute of Technology, Sweden;
• André Neves—University of Chicago, USA;
• Roman Novikov—Centre de Mathématiques Appliquées, École Polytechnique,

France;
• Tohru Ozawa—Waseda University, Tokyo, Japan;
• Samuli Siltanen—University of Helsinki, Finland;
• Durvudkhan Suragan—Nazarbayev University, Kazakhstan;

which gave a broad overview on recent developments in their respective areas. This
greatly contributed to the high scientific level of the congress, combined with the
warm and relaxed atmosphere which prevailed during those 5 days. It is noteworthy
to notice that many young mathematicians used the opportunity to join ISAAC
during this time.

v



vi Preface

As per tradition, an award was given to young scientists for their particular
achievements in analysis, its applications and computation. For this edition, there
was a particularly strong group of outstanding candidates. In consequence, two
ISAAC Awards for young scientists were given to:

Afonso Bandeira (Courant Institute, NYU, USA). Although young, his contri-
butions range from classic analysis to applications in inverse problems, random
matrices, optimisation, and statistical physics. Among his major contributions are
applications of methods from analysis to the theory of data science. He has publi-
cations in top journals in both applied and pure mathematics, statistics, information
theory, and data science (e.g. Communications on Pure and Applied Mathematics,
Applied and Computational Harmonic Analysis, and Annals of Probability). He
was awarded a Sloan Fellowship in 2018 and is currently a full professor in the
Department of Mathematics at ETH Zurich.

Fábio Pusateri (University of Toronto, Ontario, Canada), for his contributions to
the study of dispersive and wave equations, fluid dynamics, and harmonic analysis.
He made major contributions to the study of the water wave problem. In particular,
he proved the existence of global smooth, nontrivial solutions of gravity water waves
systems in 2D, and the existence of global solutions to initial value problems for
water waves in 3D and the long-time regularity for the gravity-capillary water-
wave model in 3D. He has published in first-class journals such as Inventiones
Mathematicae, Advances in Mathematics, Memoirs of American Mathematical
Society, Acta Mathematica, and Annales de l’ Institute Henri Poincaré.

While the plenary lectures given at the Congress will appear in the independent
volume: P. Cerejeiras, M. Reissig (Eds.) Mathematical Analysis and Applications -
Plenary Lectures, ISAAC 2019, Aveiro, Portugal, Springer Proceedings in Mathe-
matics and Statistics, Springer, the present volume contains selected contributions
of talks delivered at the Congress. As in previous editions, some of the sessions or
interest groups decided to publish their own volumes of proceedings, independently,
and, therefore, these contributions do not appear in the present collection.

The following sessions contributed to the present volume:

• S1. Applications of Dynamical Systems Theory in Biology, organized by Torsten
Lindström

• S2. Complex Analysis and Partial Differential Equations, organised by Okay
Celebi, Sergei Rogosin

• S3. Complex Geometry, organised by Alexander Schmitt
• S4. Complex Variables and Potential Theory, organised by Tahir Aliyev Aze-

roglu, Massimo Lanza de Cristoforis, Anatoly Golberg, Sergiy Plaksa
• S5. Constructive Methods in the Theory of Composite and Porous Media,

organised by Vladimir Mityushev
• S7. Function Spaces and Applications, organised by Alexandre Almeida,

António Caetano, Stefan Samko
• S9. Generalized Functions and Applications, organised by Michael Kunzinger,

Michael Oberguggenberger, Stevan Pilipović



Preface vii

• S10. Geometric & Regularity Properties of Solutions to Elliptic and Parabolic
PDEs, organised by Pierre Bousquet, Lorenzo Brasco, Rolando Magnanini

• S11. Geometries Defined by Differential Forms, organised by Mahir Bilen Can,
Sergey Grigorian, Sema Salur

• S14. Partial Differential Equations on Curved Spacetimes, organised by Anahit
Galstyan, Makoto Nakamura, Karen Yagdjian

• S15. Partial Differential Equations with Nonstandard Growth, organised by
Hermenegildo Borges de Oliveira, Sergey Shmarev

• S17. Quaternionic and Clifford Analysis, organised by Swanhild Bernstein, Uwe
Kähler, Irene Sabadini, Franciscus Sommen

• S18. Recent Progress in Evolution Equations, organised by Marcello D’Abbicco,
Marcelo Rempel Ebert

• S22. Wavelet theory and its Related Topics, organised by Keiko Fujita, Akira
Morimoto

Finally, we wish to thank all organisers of all sessions of the Congress for their
work. Their efforts—such as inviting and selecting speakers, arranging their ses-
sions, and providing chairpersons—greatly contributed to the relaxed, friendly, and
scientific atmosphere which prevailed during the Congress. The session organisers
were also responsible for collecting and organising the refereeing process of the
contributions of their session to this volume.

University of Aveiro Paula Cerejeiras
Aveiro, Portugal
TU Bergakademie Freiberg Michael Reissig
Freiberg, Germany
Politecnico di Milano Irene Sabadini
Milano, Italy
Linnaeus University Joachim Toft
Växjö, Sweden
July 2021
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Systems Theory in Biology



Bifurcation Analysis of the Topp Model

Valery A. Gaiko, Alef E. Sterk, and Henk W. Broer

Abstract In this paper, we study the 3-dimensional Topp model for the dynamics
of diabetes. We show that for suitable parameter values an equilibrium of this model
bifurcates through a Hopf-saddle-node bifurcation. Numerical analysis suggests that
near this point Shilnikov homoclinic orbits exist. In addition, chaotic attractors arise
through period doubling cascades of limit cycles.

Keywords Dynamics of diabetes · Topp model · Reduced planar quartic Topp
system · Singular point · Limit cycle · Hopf-saddle-node bifurcation · Period
doubling bifurcation · Shilnikov homoclinic orbit · Chaos

Mathematics Subject Classification (2010) Primary 34C23, 37G15, 37G35;
Secondary 34C05, 34C07

1 Introduction

In this paper, we study a Topp model for the dynamics of diabetes:

Ġ = a − (b + cI)G,
İ = βG2

1+G2 − αI,
β̇ = (−l +mG− nG2)β,

(1)

V. A. Gaiko (�)
National Academy of Sciences of Belarus, United Institute of Informatics Problems, Minsk,
Belarus

A. E. Sterk · H. W. Broer
University of Groningen, Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, Groningen, The Netherlands
e-mail: a.e.sterk@rug.nl; h.w.broer@rug.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Cerejeiras et al. (eds.), Current Trends in Analysis, its Applications
and Computation, Research Perspectives,
https://doi.org/10.1007/978-3-030-87502-2_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87502-2_1&domain=pdf
mailto:a.e.sterk@rug.nl
mailto:h.w.broer@rug.nl
https://doi.org/10.1007/978-3-030-87502-2_1
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where G, I and β are glucose, insulin and β-cells variables; a, b, c, l, m, n and α
are parameters [25].

On the short timescale, β is approximately constant and, relabelling the variables,
the fast dynamics can be described by a planar system

ẋ = a − (b + c y)x,

ẏ = βx2

1+ x2
− α y.

(2)

By rescaling time, this can be written in the form of a quartic system:

ẋ = (1+ x2)(a − (b + c y)x) ≡ P,
ẏ = βx2 − α y(1+ x2) ≡ Q.

(3)

Together with (3), we also consider an auxiliary system (see [1, 10])

ẋ = P − γQ, ẏ = Q+ γP, (4)

applying to these systems new bifurcation methods and geometric approaches
developed in [3, 5, 7, 10–20] and carrying out the qualitative analysis of (3).

In particular, using system (4) and applying results of [23], we have proved the
following theorem [19].

Theorem 1 The reduced Topp system (3) can have at most two limit cycles.

In Sect. 2, we perform a numerical study of the Topp model (1).

2 Analysis of the 3-Dimensional Topp Model

In this section, we study numerically the dynamics of the 3-dimensional Topp
model (1). Our particular interest is to identify the bifurcations leading to chaotic
dynamics. We fix the following parameter values:

b = 1, c = 1, m = 2, n = 1.

The remaining parameters α, a, and l will be used for bifurcation analysis.
We start by studying equilibrium solutions and their stability. The Topp sys-

tem (1) has at most three equilibria which are given by

E1 = (a, 0, 0),

E2,± =
(
ξ±,

a − ξ±
ξ±

,
α(a − ξ±)(1+ ξ2±)

ξ3±

)
,
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where ξ± = 1 ± √
1− l. Note that E2,− and E2,+ coalesce in a saddle-node

bifurcation which occurs for l = 1.
Now assume that l = 1. In this case it follows that

E2,+ = E2,− = (1, a − 1, 2α(a − 1)).

A straightforward calculation shows that the characteristic polynomial of the
Jacobian matrix of (1) evaluated at E2,± is given by p(λ) = −λ(λ2 − T λ + D),
where T = α + a and D = α(2a − 1). Note that λ = 0 is a zero of p(λ); indeed,
this is the eigenvalue associated with the saddle-node bifurcation. For 0 < a < 1

2
and α = −a it follows that T = 0 and D > 0, which implies that p(λ) also has
two imaginary zeros λ = ± i

√−a(2a − 1). In conclusion, in the 3-dimensional
(α, a, l)-parameter space there is a plane of saddle-node bifurcations given by l = 1
and a line segment of Hopf-saddle-node bifurcations given by (−α, α, 1) where
− 1

2 < α < 0.
The possible unfoldings of the Hopf-saddle-node (HSN) bifurcation are pre-

sented in [22]. The HSN bifurcation is a codimension-2 bifurcation which forms
an organizing centre in the 2-dimensional (a, l)-parameter plane. From the HSN
point typically other bifurcation curves emanate, such as Hopf-Neı̆mark-Sacker
bifurcations which lead to quasi-periodic attractors. In addition, Shilnikov homo-
clinic bifurcations can occur subordinate to a HSN bifurcation [4]. In certain cases,
Shilnikov homoclinic are associated with the existence of chaotic dynamics and
strange attractors. The HSN bifurcation and related Shilnikov bifurcations occur in
many atmospheric models [4, 6, 9, 24, 26].

We take cross sections in the parameter space by fixing α and study bifurcations
and routes to chaos in the (a, l)-plane. The Lyapunov diagram in Fig. 1 shows a
classification of the dynamical behaviour of the Topp model in different regions of
the (a, l)-parameter plane where α = −0.2 is kept fixed. The diagram suggests that
periodic attractors and chaotic attractors with a positive Lyapunov exponent occur

Fig. 1 Lyapunov diagram of
attractors for the Topp model
as a function of the
parameters a and l, where
α = −0.2 is kept fixed. See
Table 1 for the color coding.
The Hopf-saddle-node
bifurcation is located at the
point (a, l) = (0.2, 1)
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Table 1 Color coding for the
Lyapunov diagram presented
in Fig. 1

Color Lyapunov exponents Attractor type

Red 0 > λ1 ≥ λ2 ≥ λ3 Stable equilibrium

Green 0 = λ1 > λ2 > λ3 Periodic attractor (node)

Blue 0 = λ1 > λ2 = λ3 Periodic attractor (focus)

Grey 0 = λ1 = λ2 > λ3 2-torus attractor

Black λ1 > 0 > λ2 ≥ λ3 Chaotic attractor

White No attractor detected

for regions in the parameter plane with positive Lebesgue measure. For other values
of − 1

2 < α < 0 the Lyapunov diagrams look qualitatively similar (not shown)
(Table 1).

Now we fix the parameters α = −0.2 and a = 0.33 and perform a more detailed
bifurcation analysis by varying the parameter l. For l = 0.9999 the equilibriumE2,−
is stable. Continuation with decreasing l shows thatE2,− becomes unstable through
a supercritical Hopf bifurcation which occurs for l ≈ 0.99852. Next, we continue
the periodic orbit born at the Hopf bifurcation. For l ≈ 0.995641 the periodic orbit
becomes unstable through a period doubling bifurcation. Presumably this is the first
period doubling of an infinite cascade.

Continuation of the periodic orbit beyond the first period doubling bifurcation
reveals the following phenomenon. The unstable periodic orbit bifurcates further
through a rapid succession of saddle-node bifurcations. Presumably, infinitely
many saddle-node bifurcations occur. The newly born periodic orbits themselves
may bifurcate through period doubling bifurcations. Figure 2 shows a bifurcation
diagram in which the period of the orbit is plotted as a function of the continuation
parameter l. Clearly, the diagram suggests that the periods of the periodic orbits
born through the saddle-node bifurcations tend to infinity.

Fig. 2 Bifurcation diagram
of a stable periodic orbit born
at a supercritical Hopf
bifurcation. The periodic orbit
becomes unstable through a
period doubling bifurcation
and then bifurcates further
through a rapid succession of
saddle-node bifurcations. The
periods of the newly born
(unstable) periodic orbits tend
to infinity as l → l∞ ≈ 0.978
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Fig. 3 A periodic orbit of
large period which is close to
a Shilnikov homoclinic orbit
formed by the intersection of
1-dimensional unstable
manifold and the
2-dimensional stable
manifold of the equilibrium
E2,+

The phenomenon depicted in Fig. 2 can be explained as follows. During the
continuation the periodic orbits born through the saddle-node bifurcations become
arbitrarily close to an equilibrium. Hence, this bifurcation sequence leads to a
homoclinic orbit. Figure 3 shows a periodic orbit which has a striking resemblance
to a Shilnikov homoclinic orbit which is formed by an intersection of the 1-
dimensional unstable manifold and the 2-dimensional stable manifold of the
equilibrium E2,+. Indeed, it is expected that these Shilnikov homoclinic orbits
occur along a curve in the (a, l)-plane which emanates from the HSN bifurcation
point [22]. Likewise, there may also be curve emanating from the HNS point along
which there are Shilnikov homoclinic orbits which are formed by the 1-dimensional
stable manifold and 2-dimensional unstable manifold of the equilibrium E2,−. The
numerical computation of these curves and performing a more detailed bifurcation
analysis will be pursued in forthcoming work by the authors.

Finally, we explore the chaotic regime for 0.994775 < l < 0.993466. From
the flow of the Topp model we numerically compute a Poincaré map by computing
the intersections of the integral curves with the plane G = 0.9. Figure 4 shows
a bifurcation diagram of the Poincaré map. The period doubling bifurcations of
periodic attractors are clearly visible. After what is presumably an infinite cascade
of period doublings we find chaotic attractors. Figure 5 shows a chaotic attractor for
the parameter values (α, a, l) = (−0.2, 0.35, 0.994).

The attractor in Fig. 5 seems to have the geometric structure of a “fattened curve”.
In fact, we conjecture that the attractor is Hénon-like, which means that the attractor
is the closure of the 1-dimensional unstable manifold of a fixed point. For the
classical Hénon map the existence of such attractors has been proven by [2]. Hénon-
like attractors appear in many applications which range from climate models [6, 8]
to control systems [21]. Their occurrence in the Topp model will be investigated in
more detail by the authors in forthcoming work.
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Fig. 4 Bifurcation diagram
of attractors for the Poincaré
map derived from the Topp
model

Fig. 5 Chaotic attractor of
the Poincaré map of the Topp
model for the parameters
(α, a, l) =
(−0.2, 0.35, 0.994). The inset
shows a magnification of the
attractor enclosed by the box
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Abstract This paper briefly surveys age- and size- structured linear and nonlinear
population models and reveals their practical meaning. It focuses on optimal
control problems with two types of harvesting and their impact on the sustainable
harvesting.
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1 Introduction

Various mathematical models have been suggested to capture population dynamics.
PDE models are commonly used when age or size of individuals is relevant. They
have been constantly extended to address practical needs, restrictions, and quotas.
Sustainable harvesting is an important task in agriculture, aquaculture, forestry,
fishery, and other applications. The paper aims to show relations between age- and
size- structured models (Sect. 2).

N. Hritonenko (�)
Prairie View A&M University, Prairie View, TX, USA
e-mail: nahritonenko@pvamu.edu

M. C. A. Leite
University of South Florida St. Petersburg, St. Petersburg, FL, USA

Y. Yatsenko
Houston Baptist University, Houston, TX, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Cerejeiras et al. (eds.), Current Trends in Analysis, its Applications
and Computation, Research Perspectives,
https://doi.org/10.1007/978-3-030-87502-2_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87502-2_2&domain=pdf
mailto:nahritonenko@pvamu.edu
https://doi.org/10.1007/978-3-030-87502-2_2


12 N. Hritonenko et al.

Harvesting in populations often depends on age or size of individuals. Such
harvesting models have been offered and analyzed since 1980s, see surveys
in [1, 13, 19], and references therein. Two types of harvesting control, harvesting
rate and effort, and their practical relevance are analyzed in Sect. 3.

Finding effective harvesting regime in age- or size-structured population involves
the optimal control of PDEs with two-dimensional controls and state constraints [1–
3, 5, 9–17, 20, 23]. Analyzing optimal harvesting in linear and nonlinear population
models, we explore the bang-bang form of the optimal harvesting and present
applied interpretation of model assumptions and outcomes in Sect. 4.

2 Age- and Size-Dependent Population Models

The mathematical description of age- and size-structured populations has a long
history, though the choice of the best model is still not always clear. Moreover, the
relation between age and size in most biological populations is rather weak.

Let us briefly discuss connections and differences between two well-known
linear PDE models.

The Lotka-McKendrick model describes the dynamics of an age-structured
population under abundant resources [2, 10, 11, 13, 18, 19]

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(t, a)x(t, a), (2.1)

x(t, 0) = p(t), x(0, a) = x0(a), a ∈ [0, A), t ∈ [0,∞). (2.2)

The function x(t, a) represents the population density of individuals of age a at
time t in the sense that the population size is given by N(t) = ´ A

0 x(t, a)da at

time t , where A is the population maximum age. Then
∂x(t, a)

∂a
is an “aging” term,

x0(a) represents the population density at the initial moment, and μ(t, a) is the age-
specific mortality rate. The influx of new individuals is determined by a fertility
equation if the natural reproduction is allowed or by the density p(t) of introduced
new species in a fully managed population, in which all young individuals (trees,
fish, etc.) are introduced from outside.

The related size-structured population model [7, 15] can be represented by

∂x(t, l)

∂t
+ ∂(g(t, l)x(t, l))

∂l
= −μ(t, l)x(t, l), (2.3)

g(t, l0)x(t, l0) = p(t), x(0, l) = x0(l), l ∈ [l0, lmax], t ∈ [0,∞), (2.4)

where x(t, l), μ(t, l), p(t), and x0(l) have the same meaning as in the model (2.1)–
(2.2) but with respect to the size l that can be viewed as an individual’s length,
diameter, weight, volume, or other physiological quantity. The total population size
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at any time t in (2.3)–(2.4) is N(t) = ´ lmax
l0

x(t, l)dl and
∂(g(t, l)x(t, l))

∂l
is a

“growth” term. The growth rate g(t, l) can be interpreted by
´ l2
l1

1
g(t,l)

dl as the time
during which an individual grows from size l1 to l2, with l0 ≤ l1 ≤ l2 ≤ lmax.

Equations (2.1)–(2.2) and (2.3)–(2.4) differ only by the presence of the growth
rate g(t, l). To justify g in the initial condition (2.4), let us consider a relation among
the functions x(t, l), p(t), and g(t, l) in a neighborhood of the initial time 0. The
size of new individuals changes as 	l ≈ g(t, l)	t during a small time period 	t,
while the age changes as 	a = 	t. Then, 	x ≈ x(t, l0)	l ≈ x(t, l0)g(t, l0)	t .
Furthermore, new individuals of size l0 brought into the population during 	t
change their density by 	x ≈ p(t)	t during 	t. Equating the last two statements
we obtain (2.4). Similar reasoning explains the appearance of g in the second term
of (2.3).

We consider examples of optimal control in age- and size-structured population
models with relevant applied interpretation in the following sections.

3 Harvesting Control

Rational harvesting in populations is one of the most common applied problems in
forestry, fishery, and agriculture [1–7, 9, 13, 16, 17, 19–22]. Depending on practical
needs, harvesting objectives vary significantly and may include recommending the
maximum sustainable yield or profit, minimizing environmental damage, preventing
population extinction, and other requirements. Dependence of a harvesting control
h on time, age, or size, or other factors greatly affects the investigation techniques.
Let us consider two types of a two-dimensional harvesting control h(t, a), the
harvesting effort and rate.

Harvesting in fishery is often directly proportional to the density or abundance
of a fish population. It can be measured by the overall effort of catching fish and the
size of a stock.

Then the harvesting control h(t, a) = u(t, a)x(t, a), where u(t, a) is the
harvesting effort that measures the expense made at time t to harvest fish of age
a from all the available fish, and (2.1) can be extended to

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(a)x(t, a)− u(t, a)x(t, a). (3.1)

The model (3.1), (2.2) reflects the catch-per-unit-effort hypothesis and assumes the
cost of harvesting to be proportional to the effort. In the case of a sole owner of a fish
resource or in forestry, a certain portion of a population is harvested at a constant
cost. Then the harvesting control h(t, a) = u(t, a), where u(t, a) is the harvesting
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rate or intensity at age a and time t , and the evolution equation (2.1) of a stock
becomes

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(a)x(t, a)− u(t, a). (3.2)

The choice of a harvesting control is determined by the nature and objectives of a
practical problem. The harvesting rate is commonly used in economics [11, 16],
farming (agriculture, aquaculture), while the harvesting effort is preferred in
modeling of wild populations, mostly forestry [6, 13, 16, 17, 23] and fishing. The
Gordon-Schaefer, Beverton-Holt, and other bioeconomic models of open-access
commercial fishing use the effort as an endogenous control.

4 Optimization in Age-, Size-Structured Models

Harvesting problems have been intensively investigated in [1–3, 8–17], and others.
The corresponding optimal control problems (OCPs) are constructed to find the
most effective harvesting policy. Formulation of a detailed objective function with
meaningful applied interpretation often poses more challenges than the choice of
a model. Investigation steps in OCPs usually include extremum conditions, the
existence and uniqueness of solutions, qualitative and quantitative analyses of
optimal trajectories, bang-bang solutions, and sustainable development of a system.
Their outcomes are important in development of rational harvesting strategy. We
will focus on OCPs with two-dimensional controls implemented in the Lotka-
McKendrick model and its nonlinear modifications and analyze different bang-bang
solutions depending on what harvesting control, rate or effort, has been chosen.

4.1 Optimization in Age-Structured Models

Let us consider the OCP of maximizing the harvesting profit in (3.1), (2.2).

max
u,p,x

I = max
u,p,x

ˆ T

0
e−rt

[ˆ A

0
c(t, a)u(t, a)x(t, a)da− b(t)p(t)

]
dt, (4.1)

0 ≤ u(t, a) ≤ umax, 0 ≤ p(t) ≤ pmax, x(t, a) ≥ 0, (4.2)

where, u ∈ L∞([0, T ) × [0, A)), p ∈ L∞[0, T ), and x0 ∈ L∞[0, A), x ∈
C([0, T ), L∞[0, A)). In this OCP c(t, a) is the unit price of the harvesting output,
b(t) is the price of introduced individuals, and e−rt is the discounting factor.
The functional (4.1) describes the present value of the profit as the difference of
harvesting revenue and operating costs to bring new individuals.
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An important feature of harvesting optimization models is the occurrence of
bang-bang solutions. A bang-bang optimal control is a solution u that switches
between the boundaries 0 and umax of the constraint-inequality 0 ≤ u ≤ umax.

The strong bang-bang principle defines conditions under which the optimal control
takes only boundary values, while the weak bang-bang principle allows u to take
interior values.

The strong bang-bang principle [10] for the OCP (4.1), (3.1), (4.2), (2.2), shows
that the optimal harvesting effort u(t, a) is of the form

u
(t, a) =
{ 0, 0 ≤ a < a
(t),

umax, a
(t) ≤ a ≤ A,
(4.3)

if

∂c

∂a
> 0. (4.4)

The strong bang-bang principle also occurs in the OCP (4.2), (4.1), (2.2) in the
following nonlinear Gurtin-McCamy model

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −μ(E(t), a)x(t, a)− u(t, a)x(t, a), (4.5)

where E(t) reflects the environmental impact and intensity of the intra-specific
competition. In this model the key assumptions are

∂c

∂a
> 0,

∂μ

∂E
≥ 0,

∂μ

∂a
≥ 0. (4.6)

The dependence of the mortality rate μ(E, a) on E(t) reflects the intra-species
competition. This is a common example of the non-local nonlinearity that represents
non-local effects in the population. Although conditions (4.6) are stronger than
condition (4.4), they are still realistic and reflect the increase of profit with
individual’s age and increase of the mortality caused by both, age and intra-species
competition.

The age-structured population models with controlled harvesting rate are more
natural in real applications, especially in forestry, though they lead to additional
mathematical challenges caused by the active state constraint x ≥ 0. The optimal
control in the Lotka-McKendrik model (3.2) and (2.2) with two-dimensional
optimal harvesting rate u(t, a) and the objective

max
u,p,x

I = max
u,p,x

ˆ T

0
e−rt

[ˆ A

0
c(t, a)u(t, a)da − b(t)p(t)

]
dt (4.7)



16 N. Hritonenko et al.

takes the bang-bang form

u
(t, a) =
⎧⎨
⎩

0, 0 ≤ a < a
(t),
umax, a
(t) ≤ a ≤ ae, (t),
0, ae(t) < a ≤ A,

(4.8)

under restrictions

umax >> 1 and
ˆ A

0
c(t, a)e−

´ a
0 μ(t,ξ)dξda > b(t), t ∈ [0,∞), (4.9)

where 0 ≤ a
(t) < ae(t) < A, and the endogenous age ae(t) is determined from
the condition x(t, ae(t)) = 0 for each t .

The bang-bang (4.8) in the model with harvesting intensity is qualitatively
different from the corresponding one (4.3) in the models with controlled effort. It
states that the optimal strategy is to harvest individuals older than a
(t) but younger
than ae(t), that is, before they reach the maximum age A. This policy is more
realistic than (4.3). For instance, in forestry, old trees, that do not have any market
value, provide nutrition for younger trees when they die.

4.2 Optimization in Size-Structured Models

The existence of bang-bang solutions has been proven for some OCPs in size-
structured models. Let us consider the following OCP in a Gurtin-McCamy model
of forest management with a two-dimensional harvesting effort u(t, l) that aims to
find the functions x(t, l), u(t, l), E(t), p(t) for t ∈ [0,∞), l ∈ [l0, lm], that
maximize

max
u,p,x,E

J =
ˆ ∞

0
e−rt

{ˆ lm

l0

c(t, l)u(t, l)x(t, l)dl − k(t)p(t)
}
dt, (4.10)

subject to the following constraints:

∂x(t, l)

∂t
+ ∂(g(E(t), l)x(t, l))

∂l
= −μ(E(t), l)x(t, l))− u(t, l)x(t, l), (4.11)

E(t) = χ
ˆ lm

l0

l2x(t, l)dl, g(E(t), l0), x(t, l0) = p(t), (4.12)

0 ≤ u(t, l) ≤ umax, x(0, l) = x0(l), l ∈ [l0, lm], t ∈ [0,∞). (4.13)

A forest is a renewable resource, which provides timber, offers recreation facili-
ties, mitigates climate change, and improves air quality. Human intervention, natural
disturbances, and climate change may cause irreversible and unfavorable changes
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in the forest dynamics. Therefore, modeling in forestry is vital to understand the
dynamics of its development and predict negative consequences of climate change
and human interaction.

The size of trees better suits biological and economic needs than their age. In
applications to forestry, parameters and state variables of the model (4.10)–(4.13)
are taken as follows: l is the tree diameter at breast height, x(t, l) is the density of
size-structured trees at time t, E(t) reflects the environmental impact and intra-
specific competition, p(t) is the flux of young trees planted, and χ is a parameter
related to a specific type of tree. The objective is to maximize the profit from
logging. The OCP (4.10)–(4.13) introduced in [14] is a simplified version of a larger
problem that maximizes profit from timber production and carbon sequestration
studied in [9, 15–17]. The problem is of great importance in countries where forestry
farms are compensated for keeping trees that sequester carbon from the atmosphere
and store it in their trunks. Calibration of obtained theoretical outcomes from data on
a Pinus Sylvestris forest in Catalonia, Spain, show good applicability of the model.
It is shown in [9] and references therein that effects of climate change on a Pinus
forest development can be captured by the growth rate

g(E, l) = (lm − l)ĝ(E), ĝ(E) = (β0 − β1)E, β0 > 0, (4.14)

where β0 and β1 are parameters related to different climate change scenarios.
Assuming the growth rate (4.14) and

∂c(t, l)

∂l
> 0,

∂μ(E, l)

∂E
≥ 0,

∂μ(E, l)

∂l
≥ 0, (4.15)

the optimal control u
(t, l) in OCP (4.10)–(4.13) has the following form

u
(t, l) =
{

0, l0 ≤ l < l
(t),
umax, l
(t) ≤ l ≤ lm, (4.16)

with, at most, one switching size l
(t), l0 ≤ l
(t) ≤ lm, t ∈ [0,∞).
Conditions (4.15) are similar to conditions (4.6) and have a similar applied inter-

pretation. The bang-bang solution (4.16) is similar to (4.3) and justifies advantages
of selective harvesting over clear cutting for sustainable forest development, which
is in agreement with reality. Even countries that have a mandatory clear-cutting
regime in forestry tend to change the law.

The optimal control for the linear size-structured model with controlled harvest-
ing rate and natural reproduction was proven to be bang-bang in [11]. The nonlinear
case remains an open question.
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2. S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics (Springer, Berlin,
2000)

3. V. Barbu, M. Iannelli, Optimal control of population dynamics. J. Optim. Theory Appl. 102(1),
1–14 (1999)

4. G.B. Bonan, Forests and climate change: forcings, feedbacks, and the climate benefits of
forests. Science 320(5882), 1444–1449 (2008)

5. M. Brokate, Pontryagin’s principle for control problems in age-dependent population
dynamics. J. Math. Biol. 23(1), 75–101 (1985)

6. A.M. de Roos, Numerical methods for structured population models: the escalator boxcar train.
Numer. Meth. Part. D. E. 4(3), 173–195 (1988)

7. B. Ebenman, L. Persson (eds.), Size-Structured Populations (Springer, Berlin, 1988)
8. R.U. Goetz, N. Hritonenko, Y. Yatsenko, The optimal economic lifetime of vintage capital in

the presence of operating costs, technological progress, and learning. J. Econ. Dyn. Control
32(9), 3032–3053 (2008)

9. R.U. Goetz, N. Hritonenko, R. Mur, A. Xabadia, Y. Yatsenko, Forest management for timber
and carbon sequestration in the presence of climate change: the case of Pinus Sylvestris.
Ecolog. Econ. 88, 86–96 (2013)

10. N. Hritonenko, Y. Yatsenko, The structure of optimal time- and age-dependent harvesting in
the Lotka–McKendrik population model. Math. Biosci. 208(1), 48–62 (2007)

11. N. Hritonenko, Y. Yatsenko, Maintenance of age-structured populations: optimal control, state
constraints and bang–bang regime. J. Biol. Syst. 17(04), 793–816 (2009)

12. N. Hritonenko, Y. Yatsenko, Bang-bang, impulse, and sustainable harvesting in age-structured
populations. J. Biolog. Syst. 20(02), 133–153 (2012)

13. N. Hritonenko, Y. Yatsenko, Mathematical Modeling in Economics, Ecology and the
Environment (Springer, Berlin, 2013)

14. N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia, Maximum principle for a size-structured
model of forest and carbon sequestration management. Appl. Math. Lett. 21(10), 1090–1094
(2008)

15. N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia, A bang–bang regime in optimal
harvesting of size-structured populations. Nonlinear Analys. Theory, Methods Appl. 71(12),
e2331–e2336 (2009)

16. N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia, Sustainable dynamics of size-structured
forest under climate change. Appl. Math. Lett. 25(10), 1439–1443 (2012)

17. N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia, Optimal harvesting in forestry: steady-
state analysis and climate change impact. J. Biol. Dyn. 7(1), 41–58 (2013)

18. N. Hritonenko, N. Kato, Y. Yatsenko, Optimal control of investments in old and new capital
under improving technology. J. Optim. Theory Appl. 172(1), 247–266 (2017)

19. M. Iannelli, F.A. Milner, The Basic Approach to Age-Structured Population Dynamics: Models,
Methods and Numerics (Springer, Berlin, 2017). OCLC: 1005114704

20. N. Kato, Optimal harvesting for nonlinear size-structured population dynamics. J. Math. Analy.
Appll. 342(2), 1388–1398 (2008)

21. G.R. Munro, The optimal management of transboundary renewable resources. Canadian J.
Econ. 12(3), 355 (1979)

22. J.H.M. Thornley, M.G.R. Cannell, Managing forests for wood yield and carbon storage: a
theoretical study. Tree Physiol. 20(7), 477–484 (2000)

23. G.F. Webb, Population models structured by age, size, and spatial position, in Structured
Population Models in Biology and Epidemiology, ed. by J.M. Morel, F. Takens, B. Teissier, P.
Magal, S. Ruan, vol. 1936 (Springer, Berlin, 2008), pp. 1–49



Part II
Complex Analysis and Partial

Differential Equations



Dirichlet Problem for Inhomogeneous
Biharmonic Equation in Clifford Analysis

Ümit Aksoy and A. Okay Çelebi

Abstract An integral representation formula in terms of the bi-Laplacian operator
is obtained and Dirichlet problem for the bi-Poisson equation is solved in Clifford
analysis.

Keywords Dirichlet problem · Clifford analysis · Integral representations

Mathematics Subject Classification (2010) Primary 31B10; Secondary 30G35

1 Introduction

Many problems in science and engineering are modeled via boundary value
problems for partial differential equations. Methods of complex function theory,
Cauchy-Pompeiu type integral representation formulas in particular, serve as an
efficient tool in solving such problems in the plane. Clifford analysis is developed
as a generalization of complex function theory to the higher dimensions and many
properties of the complex function theory are maintained, see [2–4, 6–11, 13, 15–
18].

In this article, we study the integral representation formulas related to Laplacian
and bi-Laplacian operators to investigate the solution of the Dirichlet problems
for inhomogeneous harmonic and biharmonic equations which are connected to
the elasticity and shell theory models. In [3, 4], some representations in terms
of powers of Dirac operator and Laplacian are introduced with integral operators
providing particular solutions of higher-order Poisson and Dirac equations. The
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Dirichlet problem for the Poisson equation was studied and higher order boundary
value problems were investigated for Clifford-valued functions in [12, 14]. In [1], a
complex Clifford algebra form of an integral representation in terms of the Laplacian
for universal Clifford algebra valued functions studied in [20], is presented and
Dirichlet problem for Poisson equation is solved. Our first aim is to rewrite that
formula to apply the iteration procedure in a natural way leading to a higher order
kernel function and higher order Cauchy-Pompeiu type integral representation. In
[1], a second-order Green type function is introduced with some of its properties and
Dirichlet problem is solved for biharmonic equation. Another aim of the current
paper is to present a representation formula with regard to the inhomogeneous
Dirichlet problem for the bi-Poisson equation and to find the unique solution of
the corresponding Dirichlet problem.

The preliminary results on basic concepts and integral representations in Clifford
analysis are given in the next section. In Sect. 3, Dirichlet problems for inhomoge-
neous harmonic and biharmonic equations are studied.

2 Integral Representations in Complex Clifford Algebra Cm

In this section, firstly some preliminary concepts and results on functions in
Clifford analysis are given. Then, Green-Gauss theorem, Cauchy-Pompeiu type
representation and integral representation related to Laplace operator are presented.
For a detailed information on Clifford algebra and Clifford analysis, see [9, 11, 13].

Any x = (x1, . . . , xm) ∈ R
m is represented as x = ∑m

k=1 xkek with {ek : 1 ≤
k ≤ m} being an orthonormal basis for m ≥ 2. The multiplication

ej ek + ekej = −2δjk 1 ≤ j, k ≤ m (2.1)

and the unit element e0 = 1 lead to a 2m-dimensional real linear, associative and
non-commutative (universal) Clifford algebra R0,m.

For aA ∈ R, any a ∈ R0,m may be written as a =∑
A aAeA where

eA = e0 = 1 if A = ∅

eA = eα1eα2 . . . eαk if A = {α1, α2, . . . αk} ⊆ {1, 2, . . . ,m}

with 1 ≤ α1 < α2 < · · · < αk ≤ m. Any x = (x0, x1, . . . , xm) ∈ R
m+1 is written

as

x = x0e0 +
m∑
k=1

xkek.
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If aA ∈ C, the corresponding algebra is denoted as Cm and called as complex
Clifford algebra. The complex conjugate of a = ∑

A aAeA, aA ∈ C is given by
ā =∑

A aAeA where

e0 = e0 = 1, ek = −ek, 1 ≤ k ≤ m,

eA = eαk eαk−1 . . . eα1 and eAeB = eBeA. |a| := (∑
A |aA|2

)1/2
is a norm for a =∑

A aAeA ∈ Cm with |a|0 = 2m/2|a| is an algebra norm.
For a complex valued function fA(z) defined in a domain D of Rm+1, a Cm-

valued function f has the form f (z) =∑
A fA(z)eA.

The Dirac operator ∂ , its complex conjugate operator ∂ and the Laplace operator
	 are given by

∂ :=
m∑
k=1

ek∂xk , ∂ :=
m∑
k=1

ek∂xk = ∂x1 −
m∑
k=2

ek∂xk ,	 = ∂∂ = ∂∂ =
m∑
k=1

∂2

∂x2
k

.

For f =∑
A fAeA,

∂f =
m∑
k=1

∑
A

ekeA
∂fA

∂xk
, f ∂ =

m∑
k=1

∑
A

eAek
∂fA

∂xk
,

∂f =
m∑
k=1

∑
A

ekeA
∂fA

∂xk
, f ∂ =

m∑
k=1

∑
A

eAek
∂fA

∂xk

hold. It can be seen that

∂z = z∂ = 2−m , ∂z̄ = z̄∂ = m,

∂|z|α = |z|α∂ = α|z|α−2z , ∂|z|α = |z|α∂ = α|z|α−2z̄,

∂(z̄k + zk) = (z̄k + zk)∂ = 2kz̄k−1,

∂

(
z̄

|z|m
)
= z̄

|z|m ∂ = 0

hold, see [3, 9, 11] for other properties.
The following Clifford algebra version of the Gauss theorem is the basis of the

representation formulas for Cm-valued functions, see [3, 4, 6].
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Theorem 2.1 (Gauss Theorem) Let f, g ∈ C1(D;Cm) ∩ C(D;Cm). Then

ˆ

D

((f ∂)g + f (∂g))dv =
ˆ

∂D

f d σg

ˆ

D

((f ∂)g + f (∂g))dv =
ˆ

∂D

f d ̄σg

where dv denotes the volume element of D, dσ the area element of ∂D, n =
(n1, n2, . . . , nm) the outward directed normal vector on ∂D, n = ∑m

μ=1 nμeμ the
corresponding element in Cm, d σ = dσ n the directed area element on ∂D and
d ̄σ = dσ ̄n its complex conjugate.

In the following subsection, we present the integral representation formula including
the Dirac operator.

2.1 Dirac Equation

The Gauss theorem directly implies the Cauchy-Pompeiu representation formulae
which are related to the Dirac operator, see [5, 9].

Theorem 2.2 (Cauchy-Pompeiu Type Representations) Any w ∈ C1(D;Cm) ∩
C(D;Cm) can be represented as

w(z) = 1

ωm

ˆ

∂D

ζ − z
|ζ − z|m d σ(ζ )w(ζ )−

1

ωm

ˆ

D

ζ − z
|ζ − z|m ∂w(ζ )dv(ζ ) (2.2)

or

w(z) = 1

ωm

ˆ

∂D

ζ − z
|ζ − z|m d σ(ζ )w(ζ )−

1

ωm

ˆ

D

ζ − z
|ζ − z|m ∂w(ζ )dv(ζ ). (2.3)

Here ωm denotes the area of the unit sphere in R
m.

The volume integral appearing in the formula (2.2) provides a particular solution
to the inhomogeneous Dirac equation ∂w = f in D which leads to the Teodorescu
transform overD

Tf (z) = − 1

ωm

ˆ

D

ζ − z
|ζ − z|mf (ζ )dv(ζ ). (2.4)
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Complex plane analogue of this operator is the well-known Pompeiu operator which
was extensively investigated by Vekua [19] in the theory of generalized analytic
functions.

In the next subsections, we give the representation formulae in terms of Laplacian
and bi-Laplacian operators.

2.2 Poisson Equation

A representation formula related to the Laplacian 	 is obtained by iterating the
formulas (2.2) and (2.3) properly, see [2].

Theorem 2.3 Let D be a bounded and smooth domain and w ∈ C2(D;Cm) ∩
C1(D;Cm). Then for z ∈ D,

w(z) = 1

ωm

ˆ

∂D

ζ − z
|ζ − z|m d σ(ζ )w(ζ )−

1

ωm

ˆ

∂D

|ζ − z|2−m
2−m d σ(ζ )∂w(ζ )

+ 1

ωm

ˆ

D

|ζ − z|2−m
2−m 	w(ζ )dv(ζ ) . (2.5)

A higher-order representation formula involving kth powers of Laplacian 	k in
various dimension cases is given in [3, 5] via iterating the formula (2.5) inductively.
With regard to the Dirichlet problem for the Poisson equation, the representation
formula (2.5) is not suitable. A variant of the formula (2.5) is needed.

In the unit ball Bm of Rm for m ≥ 3, an integral representation formula in terms
of Laplacian is given by Zhang [20] for functions with values in universal Clifford
algebra using a Green-type kernel function. A complex Clifford algebra analogue
of a Green-type function and a representation formula in terms of the Laplacian for
Cm-valued functions in Bm studied in [1] are revisited below.

Definition 2.4 The function

G1(z, ζ ) = 1

|ζ − z|m−2 −
1∣∣∣z|ζ | − ζ
|ζ |
∣∣∣m−2 , z, ζ ∈ Bm, z �= ζ (2.6)

is called the Green-type function for the unit ball Bm.

Remark 2.5 By direct calculation, it can be observed thatG1(z, ζ ) is a fundamental
solution to the Laplace operator satisfying the following properties:

• 	G1(z, ζ ) = 0, z ∈ Bm\{ζ },
• G1(z, ζ ) = G1(ζ, z) for z �= ζ , z, ζ ∈ Bm,
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• G1(z, ζ ) = 0 for ζ ∈ ∂Bm, z ∈ Bm,
• ∂G1 = G1∂ and ∂G1 = G1∂,

where ∂Bm is the unit sphere.

The following theorem is the revised version of the one given in [1].

Theorem 2.6 Any w ∈ C2(Bm;Cm)∩C1(Bm;Cm), z ∈ Bm can be represented as

w(z) = 1

2ωm

ˆ

∂Bm

∂νG1(z, ζ )w(ζ )dσ(ζ )+ 1

(2−m)ωm
ˆ

Bm

G1(z, ζ )	w(ζ )dv(ζ )

(2.7)

where ∂νG1 = (∂G1)ζ̄ + (∂G1)ζ = 2
1− |z|2
|ζ − z|m for |z| < 1, ζ ∈ ∂Bm.

For the proof see [1].

2.3 Second-Order Poisson Equation

In [1], a second order Green function is defined by

G2(z, ζ ) =
ˆ

Bm

G1(z, ζ̃ )G1(ζ̃ , ζ )dv(ζ̃ ) .

G2(z, ζ ) has the following properties:

• 	2G2(z, ζ ) = 0 in Bm\{ζ } for any ζ ∈ Bm,
• G2(z, ζ ) = G2(ζ, z),
• G2(z, ζ ) = 0 and	G2(z, ζ ) = 0 for ζ ∈ ∂Bm, z ∈ Bm,
• ∂G2 = G2∂ and ∂G2 = G2∂ ,

whereG1 is given by (2.6).
An integral representation formula in terms of bi-Laplacian 	2 can be obtained

by iteration the formula (2.7) in a proper way:

Theorem 2.7 Any w ∈ C4(Bm;Cm)∩C2(Bm;Cm), z ∈ Bm can be represented as

w(z) = 1

2(2−m)ωm
ˆ

∂Bm

[(2−m)∂νG1(z, ζ )w(ζ )+ ∂νG2(z, ζ )	w(ζ )]dσ(ζ )

+ 1

(2−m)ωm
ˆ

Bm

G2(z, ζ )	
2w(ζ )dv(ζ ). (2.8)
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Proof Observe that

ˆ

Bm

G2(z, ζ )	
2w(ζ )dv(ζ )

= 1

2

ˆ

Bm

[(G2∂)∂∂
2
w(ζ )+G2	

2w(ζ )+ (G2∂)∂
2∂w(ζ )]dv(ζ )

+1

2

ˆ

Bm

[G2	
2w(ζ )− (∂G2∂)	w(ζ )− ∂G2(∂	w(ζ ))]dv(ζ )

−1

2

ˆ

Bm

[(∂G2∂)	w(ζ )+ ∂G2(∂	w(ζ ))− 2	G2	w(ζ )]dv(ζ ).

Gauss theorem implies

ˆ

Bm

G2(z, ζ )	
2w(ζ )dv(ζ ) = 1

2

⎛
⎜⎝
ˆ

∂Bm

G2d σ∂∂2
w(ζ )+

ˆ

∂Bm

G2d σ∂2∂w(ζ )

⎞
⎟⎠

−1

2

⎛
⎜⎝
ˆ

∂Bm

∂G2d σ	w(ζ )−
ˆ

∂Bm

∂G2d σ	w(ζ )
⎞
⎟⎠+

ˆ

Bm

G1(z, ζ )	w(ζ )dv(ζ )

= 1

2

ˆ

∂Bm

∂νG2(z, ζ )	w(ζ )dσ(ζ )+
ˆ

Bm

G1(z, ζ )	w(ζ )dv(ζ ).

Using Theorem 2.6 gives the required result. ��

3 Dirichlet Problem

In this section, firstly we present the solution of the Dirichlet problem for Poisson
equation given in [1] and then introduce the solution of the Dirichlet problem for
inhomogeneous biharmonic equation. For the solution of the bi-Poisson equation
under homogeneous Dirichlet conditions, we refer the reader to [1].

The representation (2.7) is used to solve the following Dirichlet boundary value
problem for the Poisson equation [1]. This problem is solved for functions in
universal Clifford algebra in [20].



28 Ü. Aksoy and A. O. Çelebi

Theorem 3.1 Dirichlet problem for the Poisson equation

	w = f in Bm w = g on ∂Bm

for f ∈ L1(Bm;Cm) and g ∈ C(∂Bm;Cm) is uniquely solvable. The solution is
given by

w(z) = 1

2ωm

ˆ

∂Bm

∂νG1(z, ζ )g(ζ )dσ(ζ )+ 1

(2−m)ωm
ˆ

Bm

G1(z, ζ )f (ζ )dv(ζ ).

(3.1)

In the case of inhomogeneous biharmonic equation, Dirichlet problem is solved by
employing the representation (2.8).

Theorem 3.2 Dirichlet problem for the bi-Poisson equation

	2w = f in Bm w = g1(z), 	w = g2(z) on ∂Bm

for f ∈ L1(Bm;Cm), g1, g2 ∈ C(∂Bm;Cm), is uniquely solvable. The solution is
given by

w(z) = 1

2ωm

ˆ

∂Bm

∂νG1(z, ζ )g1(ζ )dσ(ζ + 1

2(2−m)ωm
ˆ

∂Bm

∂νG2(z, ζ )g2(ζ )dσ(ζ )

+ 1

(2−m)ωm
ˆ

Bm

G2(z, ζ )f (ζ )dv(ζ ) . (3.2)

Proof Trivially, w(z) is a solution of 	2w = f . It can be observed that

lim
z→z0

1

ωm

ˆ

∂Bm

∂νG1(z, ζ )g(ζ )dσ(ζ ) = g(z0)

holds for z0 ∈ ∂Bm, g ∈ C(∂Bm;Cm). Since

	w(z) = 1

ωm

ˆ

∂Bm

∂νG1(z, ζ )g2(ζ )dσ(ζ )+ 1

(2−m)ωm
ˆ

Bm

G1(z, ζ )f (ζ )dv(ζ )

we have

lim
z→z0

w(z) = g1(z0), lim
z→z0

	w(z) = g2(z0)

for z0 ∈ ∂Bm. Thus the proof is completed. ��



Dirichlet Problem for Inhomogeneous Biharmonic . . . 29

References

1. Ü. Aksoy, Dirichlet Problem for Poisson and Bi-Poisson Equations in Clifford Analysis, in
Analysis as a Life, Birkhäuser (2019), pp. 19–37

2. H. Begehr, Iterations of Pompeiu operators. Mem. Differ. Equ. Math. Phys. 12, 3–21 (1997)
3. H. Begehr, Iterated integral operators in Clifford analysis. J. Analy. Appl. 18, 361–377 (1999)
4. H. Begehr, Representation formulas in Clifford analysis, in Acoustics, Mechanics, and the

Related Topics of Mathematical Analysis, ed. by A. Wirgin (World Scientific, Singapore, 2002),
pp. 8–13

5. H. Begehr, Integral representation in complex, hypercomplex and Clifford analysis. Integr.
Transf. Special Funct. 13, 223–241 (2002)

6. H. Begehr, Ju. Dubinskii, Orthogonal decompositions of Sobolev spaces in Clifford analysis.
Ann. Mat. Pura Appl. 181, 55–71 (2002)

7. H. Begehr, Z.X. Zhang, J. Du, On Cauchy-Pompeiu formula for functions with values in a
universal Clifford algebra. Acta Math. Sci. 23, 95–103 (2003)

8. H. Begehr, H. Otto, Z.X. Zhang, Differential operators, their fundamental solutions and related
integral representations in Clifford analysis. Complex Variables Elliptic Equ. 51, 407–427
(2006)

9. F. Bracks, R. Delanghe, F. Sommen, Clifford analysis (Pitman, London, 1982)
10. J.E. Gilbert, M.A.M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis

(Cambridge University Press, Cambridge, 1991)
11. S. Huang, Y.Y. Qiao, G. Wen, Real and Complex Clifford Analysis. Advances in Complex

Analysis and Its Applications, vol. 5 (Springer, Berlin, 2006)
12. K. Gürlebeck, U. Kähler, On a boundary value problem of the biharmonic equation. Math.

Meth. Appl. Sci. 20, 867–883 (1997)
13. K. Gürlebeck, W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems

(Birkhäuser Verlag, Basel, 1990)
14. K. Gürlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists

(Wiley, Chichester, 1997)
15. E. Obolashvili, Partial Differential Equations in Clifford Analysis (Addison Wesley Longman,

Harlow, 1998)
16. H. Otto, Cauchy-Pompeiusche Integraldarstellungen in der Clifford Analysis. Ph.D. Thesis,

FU Berlin, 2006
17. J. Ryan, Cauchy-Green type formulae in Clifford analysis. Tran. Amer. Math. Soc. 347, 1331–

1341 (1995)
18. J. Ryan, Basic Clifford analysis. Cubo Math. Educ. 2, 226–256 (2000)
19. I.N. Vekua, Generalized Analytic Functions (Pergamon Press, Oxford, 1962)
20. Z.X. Zhang, Integral representations and its applications in Clifford analysis. General Math.

13, 81–98 (2005)



A Note on the Schwarz Problem
in a Ring Domain

A. Okay Çelebi and Pelin Ayşe Gökgöz

Abstract In this presentation we discuss the Schwarz problem in a ring domain.
After the preliminaries we have taken the inhomogeneous Cauchy–Riemann equa-
tion with revised boundary conditions. In the next section we give the unique
solution of the Schwarz problem for generalized Beltrami equation in a ring domain
using Fredholm alternative.

Keywords Schwarz problem · Ring domain · Integral representations

Mathematics Subject Classification (2010) Primary 32A26, 32W50; Secondary
30E25

1 Introduction

Many researchers have been attracted by the boundary value problems in C in
various types of domains, see for example [1–5] and the references in them. In this
note we revisit the Schwarz problem in a ring domain which was studied previously,
[7].

In the next section we collect the relevant information for this subject. Section 3
is reserved for a Schwarz problem for inhomogeneous Cauchy–Riemann equation in
a ring domain having slightly different boundary conditions than [7] has. In the final
section the Schwarz problem for generalized Beltrami equations are investigated.
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2 Preliminaries

One of the main tools to derive the solutions of boundary value problems is to
construct a suitable integral representation for a function w ∈ C(D). Starting with
Gauss Theorem

ˆ

D

wz(z)dxdy = 1

2i

ˆ

∂D

w(z)dz

where w ∈ C1(D;C) ∩ C(D;C) in a regular domain D, we obtain the Cauchy–
Pompeiu representation

w(z) = 1

2πi

ˆ

∂D

w(ζ )
dζ

ζ − z −
1

π

ˆ

D

wζ (ζ )
dξdη

ζ − z , z ∈ D (2.1)

which may be used to solve Dirichlet type boundary value problems.
From Eq. (2.1) we may derive

w(z) = 1

2πi

ˆ

∂D

Rew(ζ )
ζ + z
ζ − z

dζ

ζ
+ iImw(0)

− 1

2π

ˆ

D

[wζ (ζ )
ζ

ζ + z
ζ − z +

wζ (ζ )

ζ

1+ zζ
1− zζ

]
dξdη (2.2)

for the unit disc D ⊂ C. Equation (2.2) is called as Cauchy–Schwarz - Pompeiu
formula which may be employed to derive the solution of Schwarz problem stated
as:

“Find the function w(z) satisfying

wz̄ = f (z) in D, Rew(z) = γ (z) on ∂D and
1

2πi

ˆ

|z|=1

Imw(ζ )
dζ

ζ
= c

where f ∈ Lp(D), p ≥ 1, γ ∈ C(∂D;R) and c is a given arbitrary number.”
Besides the boundary value problem defined above, a variety of related boundary

value problems are investigated in various types of domains. Several people have
treated the problem in a ring domain R = {z : r < |z| < 1}, see for example
Vaitekhovich [7, 8].
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Our aim in this paper is to discuss the Schwarz problem in R which have slightly
revised conditions compared with Vaitekhovich [7].

3 Schwarz Problem for Inhomogeneous Cauchy–Riemann
Equations

We start with the Schwarz problem for homogeneous Cauchy–Riemann equations
in a ring domain, which was defined as

“Find an analytic function w in R satisfying

Rew(z) = γ (z) on ∂R,
1

2πi

ˆ

|ζ |=ρ
Im w(ζ)

dζ

ζ
= c

for γ ∈ C(∂R;R), c ∈ R given and for arbitrary ρ, R = {z : r < ρ < 1}”
by Vaitekhovich [7]. The unique solution is

w(z) = 1

2πi

ˆ

∂R

γ (ζ )

[
ζ + z
ζ − z + 2

∞∑
n=1

(
r2nζ

r2nζ − z +
r2nz

ζ − r2nz

)]
dζ

ζ

− 1

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ
+ ic

if and only if the solvability condition

1

2πi

ˆ

∂R

γ (ζ )
dζ

ζ
= 0

holds [7]. Later, the substitution ϕ = w − Tf is used to determine the solution of
the inhomogeneous Cauchy–Riemann equation.

In this presentation, we define the Schwarz problem in a ring domain as
“Find the solution of wz = f (z) in R satisfying

Rew(z) = γ (z) on ∂R,
1

2πi

ˆ

|ζ |=r
Imw(ζ )

dζ

ζ
= c

for γ (ζ ) ∈ C(∂R;R), c ∈ R given.”
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Using similar computations employed in [7], we get the integral representation

w(z) = 1

2πi

ˆ

∂R

Rew(ζ )

[
ζ + z
ζ − z +K1(z, ζ )

]
dζ

ζ
− 1

2πi

ˆ

|ζ |=r
Rew(ζ )

dζ

ζ

+ 1

2π

ˆ

|ζ |=r
Imw(ζ )

dζ

ζ
− 1

2π

ˆ

R

wζ (ζ )

ζ

[
ζ + z
ζ − z + 1+K1(z, ζ )

]
dξdη

− 1

2π

ˆ

R

wζ (ζ )

ζ

[
1+ zζ
1− zζ + 3+K2(z, ζ )

]
dξdη

where

K1(z, ζ ) = 2
∞∑
n=1

(
r2nζ

r2nζ − z +
r2nz

ζ − r2nz

)
,

K2(z, ζ ) = 2
∞∑
n=1

(
r2n

r2n − zζ +
r2nzζ

1− r2nzζ

)
.

The existence and uniqueness theorem for Schwarz problem in R = {z : r < |z| <
1} is

Theorem 3.1 The Schwarz problem defined in R has the unique solution

w(z) = 1

2πi

ˆ

∂R

γ (ζ )

[
ζ + z
ζ − z +K1(z, ζ )

]
dζ

ζ
− 1

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ

+ 1

2π

ˆ

|ζ |=r
Imw(ζ )

dζ

ζ
− 1

2π

ˆ

R

f (ζ )

ζ

[
ζ + z
ζ − z + 1+K1(z, ζ )

]
dξdη

− 1

2π

ˆ

R

f (ζ )

ζ

[
1+ zζ
1− zζ + 3+K2(z, ζ )

]
dξdη (3.1)

subject to the solvability condition

1

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ
= − 3

2π

ˆ

R

[
f (ζ )

ζ
+ f (ζ )

ζ

]
dξdη.
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Proof It is trivial that Eq. (3.1) satisfies the inhomogeneous Cauchy–Riemann
equation. Thus we need to check the boundary conditions only. Hence we restrict

2Rew(z) = 1

2πi

ˆ

∂R

γ (ζ )

[
ζ + z
ζ − z +

ζ + z
ζ − z +K1(z, ζ )+K1(z, ζ )

]
dζ

ζ

− 1

2π

ˆ

R

f (ζ )

ζ

[
ζ + z
ζ − z +

1+ zζ
1− zζ + 4+K1(z, ζ )+K2(z, ζ )

]
dξdη

− 1

2π

ˆ

R

f (ζ )

ζ

[
ζ + z
ζ − z +

1+ zζ
1− zζ + 4+K1(z, ζ )+K2(z, ζ )

]
dξdη

− 2

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ
(3.2)

So Eq. (3.2) can be written as

2Rew(z)

∣∣∣∣
∂R

=
{

1

2πi

ˆ

∂R

γ (ζ )

[
2ζ

ζ − z +
2ζ

ζ − z − 2+K1(z, ζ )+K1(z, ζ )

]
dζ

ζ

− 1

2π

ˆ

R

f (ζ )

ζ

[
ζ + z
ζ − z +

z + |z|2ζ
z − |z|2ζ + 4

+K1(z, ζ )+K2(z, ζ )
]
dξdη

− 1

2π

ˆ

R

f (ζ )

ζ

[
ζ z+ |z|2
ζ z− |z|2 +

1+ ζz
1− ζz + 4

+K1(z, ζ )+K2(z, ζ )
]
dξdη

}∣∣∣∣
∂R

− 2

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ
(3.3)

Recalling the argument given by Vaitekhovich [7] we get

2Rew(z)

∣∣∣∣
∂R

= 2γ − 2

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ
− 3

π

ˆ

R

(
f (ζ )

ζ
+ f (ζ )

ζ

)
dξdη.
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Hence the boundary condition Rew(z) = γ (z) on ∂R holds if

1

2πi

ˆ

|ζ |=r
γ (ζ )

dζ

ζ
= − 3

2π

ˆ

R

(
f (ζ )

ζ
+ f (ζ )

ζ

)
dξdη.

in which the boundary integral is in the clock-wise direction. ��

4 Schwarz Problem for Generalized Beltrami Equations
in a Ring Domain

In this section we derive the solution of the Schwarz problem for Beltrami equation

wz + A1(z)wz + A2(z)wz + B1(z)w + B2(z)w = f (z) (4.1)

having homogeneous boundary conditions. Following the usual approach, we need
to convert Eq. (4.1) into an integral equation. Now we point out two integral
operators and their properties.

4.1 The Operators TR and �R

Firstly we define the operator

TRf (z) := − 1

2π

ˆ

R

{
f (ζ )

ζ

[
ζ + z
ζ − z + 1+K1(z, ζ )

]

+ f (ζ )

ζ

[
1+ zζ
1− zζ + 3+K2(z, ζ )

]}
dξdη

This operator satisfies the properties [2]

∂zTRf (z) = f (z),
ReTRf (z) = 0, z ∈ ∂R,

The operator TRf (z) may be decomposed as

TRf (z) := T1Rf (z)+ T2Rf (z)
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where

T1Rf (z) = − 1

2π

ˆ

R

(
f (ζ )

ζ

ζ + z
ζ − z +

f (ζ )

ζ

1+ zζ
1− zζ

)
dξdη

and

T2Rf (z) = − 1

2π

ˆ

R

(
f (ζ )

ζ
(1+K1(z, ζ ))+ f (ζ )

ζ
(3+K2(z, ζ ))

)
dξdη.

We know that T1R is a compact operator [2]. Since K1(z, ζ ) and K2(z, ζ ) are
analytic in R, T2R is also compact. Thus TR is a compact operator.

Secondly we define

�Rf (z) := ∂zTRf (z)

which may be written as

�Rf (z) := �1Rf (z)+�2Rf (z)

where

�1Rf (z) := ∂zT1Rf (z),

�2Rf (z) := ∂zT2Rf (z).

Hence these operators are given by

�1Rf (z) = − 1

π

ˆ

R

(
f (ζ )

(ζ − z)2 +
f (ζ )(

1− zζ )2

)
dξdη

and

�2Rf (z) = − 1

2π

ˆ

R

[
f (ζ )

ζ
∂zK1(z, ζ )+ f (ζ )

ζ
∂zK2(z, ζ )

]
dξdη

�1R is a strongly singular operator of Calderon - Zygmund type. It is known that [9],
�1R is a bounded operator. On the other hand, K1(z, ζ ) and K2(z, ζ ) are bounded
analytic functions in R by Montel theorem [[6], Thm. 9.12]. Hence the operarator
�2R is also bounded. Hence�R is a bounded operator.



38 A. O. Çelebi and P. A. Gökgöz

4.2 Solution of a Generalized Beltrami Equation

Now we may prove the existence and uniqueness theorem for the solutions of
Schwarz problem.

Theorem 4.1 There exits a unique solution w ∈ Wp,1(R) of the Schwarz problem
for Eq. (4.1) subject to the homogeneous boundary conditions

Rew(z) = 0 on ∂R,
1

2πi

ˆ

|ζ |=r
Imw(ζ )

dζ

ζ
= 0

where A1(z) , A2(z) are bounded measurable functions with

|A1(z)| + |A2(z)| ≤ q0 < 1;

satisfying

q0‖�̂R‖Lp(R) < 1

and B1, B2, f ∈ Lp(R), p > 2.

Proof Assume thatw= TRg, g ∈ Lp(R) is a solution of Eq. (4.1). Then we observe
that g should be the solution of

(I + �̂R + K̂R)g(z) = f (z) (4.2)

where

�̂Rg = A1(z)�1Rg + A2(z)�2Rg

K̂Rg = B1(z)T1Rg + B2(z)T2Rg

Thus we have converted Eq. (4.1) into an integral equation. As in [2] K̂R is a
compact operator by Arzela–Ascoli theorem. �̂R is a bounded strongly singular
operator of Calderon–Zygmund type. Let us note that I + �̂R is invertible if there
exists q0 such that

q0‖�̂R‖Lp(R) < 1 for p > 2.

So I + �̂R + K̂R is a Fredholm operator with index zero. Hence Eq. (4.1) has a
unique solution of the form w = TRg where g ∈ Lp(R), p > 2 is a solution of
Eq. (4.2). ��
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On Hierarchical Models of Elastic
Shallow Shells with Voids

Bakur Gulua

Abstract In the report the three-dimensional system of equations of equilibrium
for solids with voids is considered. From this system of equations, using a reduction
method of I. Vekua, we receive the equilibrium equations for the shallow shells.
Further we consider the case of plates with constant thickness in more detail.
Namely, the systems of equations corresponding to approximations N = 0 is
written down in a complex form and we express the general solutions of these
systems through analytic functions of complex variable and solutions of the
Helmholtz equation. The received general representations give the opportunity to
solve analytically boundary value problems.

Keywords Hierarchical models · Materials with voids · Shells

Mathematics Subject Classification (2010) 74K25, 74F05

1 Introduction

I. Vekua constructed hierarchical models for isotropic prismatic and standard shells
in [1] and [2], respectively. All his results in this direction are summarized in
[3, 4]. Vashakmadze [5] deals with hierarchical models for elastic anisotropic plates.
In [6, 7] the results of I. Vekua are extended to the case of geometrically and
physically nonlinear non-shallow elastic shells. To cusped prismatic shells (see [1],
Chapter 2, Section 13; [2], Chapter 2, Section 2; [3], Section 1.9), in particular
plates, are devoted [8, 9]. Jaiani [10] is devoted to hierarchical models of piezoelastic
Kelvin-Voight cusped prismatic shells with voids, in particular these models contain

B. Gulua (�)
Sokhumi State University, Tbilisi, Georgia

I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi,
Georgia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Cerejeiras et al. (eds.), Current Trends in Analysis, its Applications
and Computation, Research Perspectives,
https://doi.org/10.1007/978-3-030-87502-2_5

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87502-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-87502-2_5


42 B. Gulua

hierarchical models for elastic anisotropic and isotropic prismatic shells with voids.
In Section 7 of [10] for N=0 approximation porous isotropic prismatic shells in
particular plates are studied, included cusped ones and plates of constant thickness.
In [11] vibration problem of a cusped elastic prismatic shell in case of the third
model of Vekua’s hierarchical model is studied. In [12], authors construction
Vekua’s hierarchical model for the shallow shells having double porosity. Relation
of Vekua’s hierarchical models to the corresponding 3D boundary value problems
and their accuracy are studied in [13–16].

The physic-mathematical foundations of the linear theory of elastic materials
with voids or empty pores and applications of this theory to some technological
problems were originally proposed in the work Cowin and Nunziato [17]. Such
materials include, in particular, rocks and soils, granulated and some other manu-
factured porous materials.

This theory differs essentially from the classical theory of elasticity in that the
volume fraction corresponding to the void volume is considered as an independent
variable. Voids have no mechanical or energetic meaning. In recent years, problems
of elasticity for materials with voids were investigated by many authors [18–21].

The aim of the paper is to construct Hierarchical models for shallow standard
shells with voids, applying I. Vekuas dimension reduction method. In particular,
when the curvature k = 0, we get hierarchical models for plates with voids. In the
N = 0 approximation of the plates of the constant thickness with voids we construct
the complex representations of the general solution governing elliptic systems of
equations.

2 Basic Three-Dimensional Relations

Let an elastic body with voids occupy the domain � ∈ R3 Denote by x1, x2, x3

a point of the domain � in the arbitrary curvilinear system of coordinates. Let the
domain � be filled with an elastic isotropic homogenous medium with voids. The
considered solid body is characterized by the displacement vector u = (

u1, u2, u3
)

and also by the function φ which is the change in volume fraction from the reference
volume fraction.

Then a system of static equilibrium equations is written in the form [17, 18]

◦∇iσ ij +�j = 0, (2.1)

◦∇ihi + g + F = 0, (2.2)

where
◦∇i are covariant derivatives with respect to the space coordinates xi , σ ij

are contravariant components of stress tensor, �j are contravariant components of
volume forces �, hi are is the component of the equilibrated stress vector, g and F
are the intrinsic and extrinsic equilibrated volume forces.
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Below we use the summation rule with respect to the dummy index, assuming
that the Latin indices run through the values 1, 2, 3. It is also agreed that if the
indices are denoted by Greek letters, they run through the values 1, 2.

Formulas that interrelate the stress components, the displacement vector compo-
nents and the function φ have the form

σ ij = λekkgij + 2μeij + βφgij , (2.3)

hi = α ◦∇
i

φ, (2.4)

g = −ξφ − βekk, (2.5)

where λ and μ are the Lamé constants, α, β, ξ are the constants characterizing the
body porosity, gij are the contravariant components of spatial metric tensor, eij are
contravariant components of deformation tensor

eij = 1

2

( ◦∇
i

uj + ◦∇
j

ui
)
,

◦∇
i

= gij
◦∇j , the contravariant and covariant components of a vector of displace-

ment are connected by a relation ui = gij uj .

3 Construction of Hierarchical Models for Elastic Shallow
Shells with Voids

In 1955 Ilia Vekua published his models of elastic prismatic shells. In 1965 he
offered analogous models for standard shells [1, 2].

Let � represent a shell with constant thickness 2h, symmetric concerning the
middle surface ω. ω are smooth bilateral surface. We will denote set of side surfaces
of a shell through �. Surfaces of ω and � in each point are crossed at right angle.
We assume that thickness 2h is much less in comparison with other sizes of a shell.

We will consider the coordinate system which is normal connected with a middle
of surface. In this system the radius vector R of any point M of domain � is
expressed by means of a formula (see Fig. 1)

R(x1, x2, x3) = r(x1, x2)+ x3n(x1, x2),

where x1, x2 are Gaussian parameters of surface ω; r and n are radius vector and
normal of the point

(
x1, x2

) ∈ ω. x3 is the relative length from point M to the
surface ω.
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R r

O

ω−

ω

ω+
n

X
3

Fig. 1 Special coordinate system for shells

We apply I. Vekua’s method to a reduction of the equations (2.1-2.5). We accept
the following assumptions of geometrical character

1− kαx3 ∼= 1, −h ≤ x3 ≤ h. (3.1)

These requirements mean that or main curvature k1 and k2 of a surface are small
(shallow shell), or thickness of shell is small (thin shell). If ω is the plane then k1 =
k2 = 0 and conditions (3.1) are exactly satisfied. From assumptions (3.1) follows
that spatial covariant Rα and contravariant Rα basis vectors are approximately
equal to the corresponding basis vectors of a middle surface rα , rα . Therefore, also
corresponding covariant and contravariant components and discriminants of metric
tensors of space and a middle surface are approximately equal

Rα ∼= rα, Rα ∼= rα, R3 = r3 = n,

gαβ ∼= aαβ, gαβ ∼= aαβ, g ∼= a, ∂3
√
g ∼= −2H

√
a,

where aα,β = rαrβ , aα,β = rαrβ , a is the discriminant of quadratic form of surface

ω,H = 1
2 (k1+k2) are middle curvatures of the midsurface ω, bαβ , bβα are covariant

and mixed components of the tensor of curvature of the midsurface ω.
Further we carry out a reduction of system of the equations (2.1-2.5) using

method of Vekua. At the same time we almost repeat verbatim reasonings in the
monograph. Therefore we will present the reduced two-dimensional equations at
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once without details of derivation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇α
(k)

σαβ − bβα
(k)

σα3 − 2k + 1

h

(
(k−1)

σ 3β +
(k−3)

σ 3β + · · ·
)
+
(k)

Qβ = 0,

∇α
(k)

σα3 + bβαβ
(k)

σαβ − 2k + 1

h

(
(k−1)

σ 33 +
(k−3)

σ 33 + · · ·
)
+
(k)

Q3 = 0,

∇α
(k)

hα − 2k + 1

h

(
(k−1)

h3 +
(k−3)

h3 + · · ·
)
+ (k)
g +

(k)

Q = 0,

(3.2)

where k = 0, 1, . . ., ∇α and ∇α are symbols of a covariant and contravariant
derivatives on the midsurface ω and

(k)

σ ij = 2k + 1

h

hˆ

−h
σ ij (x1, x2, x3)Pk

(
x3

h

)
dx3,

(
(k)

hi ,
(k)
g

)
= 2k + 1

h

hˆ

−h

(
hi(x1, x2, x3), g(x1, x2, x3)

)
Pk

(
x3

h

)
dx3,

(k)

Qj = 2k + 1

h

(
σ 3j (x1, x2, h)− (−1)kσ 3j (x1, x2,−h)

)
+
(k)

�j ,

(k)

Q = 2k + 1

h

(
h3(x1, x2, h)− (−1)kh3(x1, x2,−h)

)
+ (k)

F ,(
(k)

�i,
(k)

F

)
= 2k + 1

h

hˆ

−h

(
�i(x1, x2, x3), F (x1, x2, x3)

)
Pk

(
x3

h

)
dx3.

σ 3j (x1, x2,±h) are components of the stress vectors acting on the upper and lower
face surfaces and h3(x1, x2,±h) are components of the equilibrated stress vectors

on the upper and lower face surfaces. Here Pk

(
x3

h

)
is the Legandre polynomials

of order k. Then

(k)

σ αβ = λ
(
∇γ
(k)

uγ − 2H
(k)

u3 +
(k)

u
′3
)
aαβ

+μ
(
∇β
(k)

uα +∇α
(k)

uβ − 2bαβ
(k)

u3

)
+ β(k)φ aαβ,

(k)

σα3 = μ
(
∇α
(k)

u3 + bαγ
(k)

uγ +
(k)

u
′α
)
,



46 B. Gulua

(k)

σ 33 = λ
(
∇γ
(k)

uγ − 2H
(k)

u3 +
(k)

u
′3
)
+ 2μ

(k)

u
′3 + β

(k)

φ ,

(k)

hα = α∇α
(k)

φ ,

(k)

h3 = α

h

(k)

φ′,

(k)
g = −ξ

(k)

φ − β
(
∇γ
(k)

uγ − 2H
(k)

u3 +
(k)

u
′3
)
,

(3.3)

where

(
(k)

ui ,
(k)

φ

)
= 2k + 1

h

hˆ

−h

(
ui(x1, x2, x3), φ(x1, x2, x3)

)
Pk

(
x3

h

)
dx3,

(k)

u
′ = (2k + 1)

(
(k+1)
u + (k+3)

u + · · ·
)
.

If we substitute relations (3.3) into equations (3.2) we arrive at an infinite system of

second-order equations with respect to components of vector
(k)
u and

(k)

φ . As a result
of simple computations the derived system of equations has the form

∇α∇α
(k)

uβ + (λ+ μ)∇β∇α
(k)

uα + ∇β
(k)

φ +
(k)

Mβ +
(k)

Qβ = 0,

∇α∇α
(k)

u3 + 2H
(k)

φ +
(k)

M3 +
(k)

Q3 = 0,

∇α∇α
(k)

φ − ξ (k)φ + (k)

M +(k)Q = 0,

(3.4)

where
(k)

Mi ,
(k)

M are linear operators which contain unknown functions
(k)

ui ,
(k)

φ . and their
first-order derivatives.

An infinite system of equations (3.4) has the advantage that it contains two
independent variables—Gaussian coordinates x1, x2 of the midsurface. But the
decrease in the number of independent variables is achieved by increasing the num-
ber of equations to infinity, which, naturally, has an obvious practical inconvenience.
Therefore it is necessary to make the next step for a further simplification of the
problem.

In order to obtain the finite system of equations we accept the assumption

(
u
(
x1, x2, x3

)
, φ

(
x1, x2, x3

)) = N∑
k=0

(
(k)
u (x1, x2),

(k)

φ (x1, x2)

)
Pk

(
x3

h

)
.

Thus, in all expressions (3.4) received above we will consider that
(k)
u = 0 and

(k)

φ =
0 when k > N . In addition, we obtain the N th order approximation (hierarchical
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model) governing system consisting of 4N + 4 equations with respect to 4N + 4
unknown functions.

4 The N = 0 Approximation for the Plate

If we substitute k = 0 and assume all the mathematical moments of order greater
than zero to be equal to zero, from (3.4) we obtain the basic relations of the N = 0
approximation of elastic isotropic plates with voids

	
(0)
u1 + (λ+ μ)∂1

(0)
θ + β∂1

(0)
φ = 0,

	
(0)
u2 + (λ+ μ)∂2

(0)
θ + β∂2

(0)
φ = 0,

	
(0)
u3 = 0,

(α	− ξ)	
(0)
φ − β(0)θ = 0,

(4.1)

where
(0)
θ = ∂1

(0)
u1 + ∂1

(0)
u1,	 ≡ ∂11 + ∂22 is the Laplace operator in two dimensions.

Assume:
(0)
u1 ≡ u1,

(0)
u2 ≡ u2,

(0)
φ ≡ φ.

On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 =
reiϑ , (i2 = −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2),
z̄ = x1 − ix2, and	 = 4∂z∂z̄.

To write system (4.1) in the complex form, the second equation of this system is
multiplied by and summed up with the first equation

2μ∂z̄∂zu+ + (λ+ μ)∂z̄θ + β∂z̄φ = 0,
4μ∂z̄∂zu3 = 0,
(α	− ξ)φ − βθ = 0,

(4.2)

where u+ = u1 + iu2, θ = ∂zu+ + ∂z̄ū+.

Theorem 4.1 The general solution of the system of equations (4.2) is represented
as follows:

2μu+ = κϕ(z)− zϕ′(z)− ψ(z)− 4αβμ

ξ(λ+ 2μ)− β2
∂z̄χ(z, z̄),

2μu3 = f ′(z)+ f ′(z),
φ = χ(z, z̄)− β

ξ(λ+ μ)− β2
(ϕ′(z)+ ϕ′(z)),
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where κ = ξ(λ+3μ)−β2

ξ(λ+μ)−β2 , ϕ(z) and ψ(z) and f (z) are arbitrary analytic functions

of a complex variable z in the domain V , χ(z, z̄) is an arbitrary solution of the
Helmholtz equation

	χ(z, z̄)− ξ(λ+ 2μ)− β2

α(λ + 2μ)
χ(z, z̄) = 0.

The received general representations give the opportunity to solve analytically
boundary value problems.
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Well-Posedness and Numerical Results
to 3D Periodic Burgers’ Equation
in Lebesgue-Gevrey Class

Ridha Selmi and Abdelkerim Chaabani

Abstract We prove that a unique global in time solution to the three dimensional
periodic Burger’s equation exists, in the Lebesgue-Gevrey class. Also, we establish
that the long time to this solution is determined by a finite number of Fourier
modes; this is useful as a numerical result. Energy methods, compactness methods,
maximum principle and Fourier analysis are the main tools.

Keywords Burgers equation · Well-posedness · Determining modes

Mathematics Subject Classification (2010) Primary 35A01, 35A02; Secondary
35B05, 35B10

1 Introduction

The three dimensional diffusive Burgers’ equation is given by

∂tu− ν	u+ (u · ∇)u = 0, (t, x) ∈ R+ × T
3 (1.1)

u|t=0 = u0(x), x ∈ T
3, (1.2)
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where ν is the kinematic viscosity and u0 is the initial data. Burgers’ equation is one
among the reliable nonlinear models describing diffusive waves in fluid dynamics.
As stated in [4], “Burgers [2] first developed this equation primarily to shed light
on the study of turbulence described by the interaction of the two opposite effects
of convection and diffusion”. Three-dimensional Burgers equation is used as an
adhesive model for the large scale structures formation in the universe. Motivated
by the structure of (1.1)–(1.2), one may try to perform a mathematical study parallel
to the L2-Navier-Stokes theory [6]. However, as explained in [8], the lack of the
divergence free condition prevents to do so. Authors in [8] overcome this difficulty
and proved global well-posedness, in the critical Sobolev spaceH 1/2(T3); they used
a bootstrap argument and a technical lemma to control the lack of the equivalence
between homogeneous and nonhomogeneous Sobolev norms. In [10], we proved
the global well-posedness, in the critical Sobolev-Gevrey space H 1/2

a,σ (T
3), without

such bootstrap argument. In this article, we are improving our earlier result. Firstly,
we will establish well-posedness in the Lebesgue-Gevrey space. Secondly, we will
give estimates of the contribution from higher order Fourier modes in terms of lower
order modes, that is modes of order above and below a critical value depending only
and only on ‖u0‖L2

a,σ
.

The following three inequalities will be useful throughout this paper

‖f ‖L∞ ≤ c1‖f ‖Hr , for all r > 3/2, (1.3)

where c1 is a positive constant that depends only on r (see [9]),

‖f ‖Hr ≤ c2‖f ‖L2
a,σ
, for all f ∈ L2

a,σ , (1.4)

where r ≥ 0 and c2 is a positive constant that depends only on σ , a and r (see [7]),

‖∇f ‖L∞ ≤ c3‖f ‖Ḣ r , for all r > 5/2, (1.5)

where c3 is a positive constant that depends only on r (see [9]). Also, we recall that
Lebesgue-Gevrey space is defined by

L2
a,σ = {f ∈ L2(T3); ea�1/σ

f ∈ L2(T3)},

and endowed by the norm

‖f ‖L2
a,σ
= ‖ea�1/σ

f ‖L2 =
( ∑
k∈Z3

e2a|k|1/σ |f̂k |2
)1/2

.

For the sake of completeness, the non-homogeneous Sobolev-Gevrey space is
defined, for all σ ≥ 1, r ∈ R and the radius of Gevrey class regularity a ∈ (0, 1),
by

Hr
a,σ = {f ∈ L2(T3); ea�1/σ

f ∈ Hr(T3)},
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where by � is the operator
√−	. Naturally, the homogeneous one is given by

Ḣ r
a,σ = {f ∈ L2(T3); ea�1/σ

f ∈ Ḣ r(T3)}

and endowed by the norm

‖f ‖Ḣ ra,σ = ‖�rea�1/σ
f ‖L2 =

( ∑
k∈Z3

|k|2re2a|k|1/σ |f̂k|2
)1/2

,

where f̂k is the kth-Fourier coefficient of f . Similar notations and definitions can
be found in [1, 3, 7, 11].

Our first result is the following theorem.

Theorem 1.1 Given u0 inL2
a,σ (T

3), where σ ≥ 1 and a ∈ (0, 1), then there exists a
unique global in time solution u ∈ C0([0,∞);L2

a,σ (T
3))∩L2(0,∞;H 1

a,σ (T
3)), to

the Burgers’ equation (1.1)–(1.2). Moreover, if ‖u0‖L2
a,σ
≤ ν/c1c2, then the solution

u is uniformly bounded with respect to time and for all t ≥ 0

‖u(t)‖2
L2
a,σ
+ (ν − c1c2‖u0‖L2

a,σ
)

ˆ t

0
‖u(t)‖2

Ḣ 1
a,σ
≤ ‖u0‖2

L2
a,σ
, (1.6)

where c1 and c2 are given by inequalities (1.3)–(1.4).

It is worthwhile to note that the regularity provided by Gevrey class analyticity is
stronger even than that provided by C∞ regularity [7]. This fact allows to control
the nonlinear part. Here, we prove a theorem similar to our Theorem 1.1 in [10], but
this time without using lemma 1.1 from [8]. In fact, the control of L2

a,σ -norm of the
solution allows to control its mean value. We make use of the maximum principle
to establish that the solution is global in time.

Our second result is the following theorem.

Theorem 1.2 Let u ∈ C0([0,∞);L2
a,σ (T

3)) ∩ L2(0,∞;H 1
a,σ (T

3)) be a global

solution to (1.1)–(1.2). There exists m ∼
‖u0‖3/4

L2
a,σ

(νλ2
1)

3/4 such that the solution’s

L∞T (L2
a,σ (T

3)) and L2
T (Ḣ

1
a,σ (T

3)) norms are uniformly bounded with respect
to time. Moreover,

‖Qmu(t)‖2
L2
a,σ
+ (ν − c1c2‖Qmu0‖L2

a,σ
)

ˆ t

0
‖Qmu(t)‖2

Ḣ 1
a,σ
≤ ‖Qmu0‖2

L2
a,σ
,

where Qmu(t) represents the part of the velocity field with modes higher than m,
and so on forQmu0.
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To prove this theorem, we show that the Galerkin approximation of the solution
converges strongly to u in L∞T (L2

a,σ (T
3)) ∩L2

T (H
1
a,σ (T

3)), i.e. the spaces to which
the solution belongs. Then, we use such strong convergence to identify Qmu (the
part of the solution u with modes higher than m) with the unique solution w
associated with the high frequencies part of the initial data u0. The low modes
associated with the Galerkin operator Pm of u inherit the properties of the solution.
Finally, by proving these strong convergence, we deduce that the problem can be
fairly split into a dissipative higher frequencies system and low frequencies system
which inherit the properties of the original system (1.1)–(1.2).

The remainder of the paper is divided into two sections; the first is assigned to
prove Theorem 1.1 and the second is devoted to prove Theorem 1.2.

2 Well-Posedness Result

We will use the Galerkin approximation. For n ∈ N, let Pn the projection onto the
Fourier modes of order up to n, that is Pn(

∑
k∈Z3 ûke

ixk) = ∑
|k|≤n ûkeixk. Let

un = Pnu be the solution to

∂tun + Pn[(un · ∇)un] − ν	un = 0 (2.1)

un(0) = Pnu0. (2.2)

For some Tn, there exists a solution un ∈ C∞([0, Tn)×T
3) to this finite-dimensional

locally-Lipschitz system (2.1)–(2.2). Taking the L2
a,σ inner product of (2.1) against

un yields

1
2
d
dt
‖ea�1/σ

un‖2
L2 + ν‖ea�1/σ

un‖2
Ḣ 1 ≤ |∑k∈Z3 F(u · ∇u)(k) · ω̂k |,

where ω = F−1(e2a|k|1/σF(un)(k)). Using Parseval’s identity, Hölder’s and
Young’s inequalities, it follows that

1

2

d

dt
‖un(t)‖2

L2
a,σ
+ ν‖un(t)‖2

Ḣ 1
a,σ
≤ c‖un(t)‖2

L∞(T3)
‖un(t)‖2

L2
a,σ
+ ν/2‖un(t)‖2

Ḣ 1
a,σ
.

Here and throughout the paper, we will use c to denote a generic positive constant
which may depend on a, σ and the Sobolev index r ≥ 0. Combining the Sobolev
embeddingHr(T3) ⊂ L∞(T3), for r > 3/2 and (1.4), it turns out that

d

dt
‖un(t)‖2

L2
a,σ
+ ν‖un(t)‖2

Ḣ 1
a,σ
≤ c‖un(t)‖4

L2
a,σ
. (2.3)
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Comparing ‖un‖2
L2
a,σ

with the solution of the problem dX
dt

= cX2, X(0) =
‖u0‖2

L2
a,σ
, we deduce, for all t such that 0 ≤ ct‖u0‖2

L2
a,σ
< 1, that

‖un‖2
L2
a,σ
≤

‖u0‖2
L2
a,σ

1− ct‖u0‖2
L2
a,σ

.

Let T = 1
2c‖u0‖2

L2
a,σ

. Thus, for all t ∈ [0, T ], we have the uniform upper bound

sup
t∈[0,T ]

‖un(t)‖2
L2
a,σ

≤ X(T ) = 2‖u0‖2
L2
a,σ
. (2.4)

Integrating (2.3) over (0, T ) and dropping ‖un‖2
L2
a,σ

from the left-hand side, we

obtain

ν

ˆ T

0
‖un(t)‖2

Ḣ 1
a,σ
dt ≤ 3‖u0‖2

L2
a,σ
. (2.5)

These are uniform bounds on the approximate solution un in L∞(0, T ;L2
a,σ )

and L2(0, T ;H 1
a,σ ). Aubin-Lions lemma allows to extract a strongly convergent

subsequence and to construct a local in time solution.

Theorem 2.1 If u is a classical solution of Burgers’ equations (1.1)–(1.2) on a time
interval [ε,E] then

sup
t∈[ε,E]

‖u(t)‖L∞ ≤ ‖u(ε)‖L∞ . (2.6)

Proof (See [8]). ��
Theorem 2.1 immediately yields

‖u(t)‖L∞ ≤ ‖u0‖L∞ . (2.7)

Using the same technicalities already used to prove local existence, namely, we
apply the function’s transformation ϑ = F−1(e2a|k|1/σF(u)(k)), then Hölder’s and
finally Young’s inequalities and (2.7) to obtain

1

2

d

dt
‖u(t)‖2

L2
a,σ
+ ν‖u(t)‖2

Ḣ 1
a,σ

≤ |〈(u · ∇u), ϑ〉L2(T3)|

≤ c‖u0‖2
L∞(T3)

‖u(t)‖2
L2
a,σ
+ ν/2‖u(t)‖2

Ḣ 1
a,σ
.
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Thus, inequalities (1.3)–(1.4) and the Gronwall’s lemma yield

sup
t∈[0,T ]

‖u(t)‖L2
a,σ
≤ ‖u0‖L2

a,σ
exp

(
ct‖u0‖2

L2
a,σ

)
. (2.8)

In particular, if ‖u0‖L2
a,σ
≤ ν/c1c2, then the L2

a,σ -norm of the solution is decreasing
with respect to time t as it holds that

1

2

d

dt
‖u(t)‖2

L2
a,σ
+ ν‖u(t)‖2

Ḣ 1
a,σ

≤ c1c2‖u0‖L2
a,σ
‖u(t)‖2

Ḣ
1/2
a,σ

≤ c1c2‖u0‖L2
a,σ
‖u(t)‖2

Ḣ 1
a,σ
,

since ‖u(t)‖
Ḣ

1/2
a,σ

≤ ‖u(t)‖Ḣ 1
a,σ

. By integrating over (0,∞), inequality (1.6) follows.

Thanks to the energy inequality (1.6), the upper bound on the L∞
R+(L

2
a,σ ) and

L2
R+(Ḣ

1
a,σ ) norms of u are independent of time t unlike the one in (2.8). This

finishes the proof of Theorem 1.1.

3 Numerical Result

In the higher modes and far away from k = (0, 0, 0), we identify the operator
−	 with the Stokes operator A in the space-periodic case with vanishing space-
average (see e.g. [5]). We recall that the Stokes operator A is self-adjoint, and its

eigenvalues are of the form
(

2π
L

)2 |k|2, where k ∈ Z
3. We denote these eigenvalues

by 0 < λ1 = (2π/L)2 ≤ λ2 ≤ λ3 ≤ ... arranged in increasing order and counted
according to their multiplicities. In dimension three, the asymptotic behavior of the
eigenvalues is given by λm ∼ λ1m

2/3, (see [5]).
Let v0

n be the projection onto the Fourier modes up to the order n of an initial
data u0. Consequently, v0

n converges in L2
a,σ to u0. It is possible to prove that

u0 ∈ B(v0
n, ε) (the ball centered at v0

n of radius ε) for sufficiently large n (under
the assumption that u0 indeed gives rise to a solution u of (1.1)–(1.2) in the class of
functional spaces stated in theorem 1.1). Thus, w0

n = u0 − v0
n gives rise to a global

solution w of

∂tw − ν	w + (w · ∇)w = 0, w|t=0 = u0 − v0
n = w0

n.

It is worth mentioning that the solution w to the system above does not agree with
the higher frequencies modes of the solutionQnu = u− Pnu in general. However,
by proving a convergence result in L∞T (L2

a,σ (T
3)) ∩ L2

T (Ḣ
1
a,σ (T

3)) of Pnu to u
as n → ∞, we can determine a wavenumber m for which Qmu can be identified
with w.
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Let u be the solution of the Burgers’ equations (1.1)–(1.2) on [0, T ] and un be
the sequence of Galerkin approximations of u. We want to show that the L2

a,σ -norm
of the differencewn = u− un tends uniformly to zero, on time interval [0, T ], as n
tends to infinity. Since u is a solution, on the time interval [0, T ], we have

〈ea�1/σ
∂t u, e

a�1/σ
wn〉−ν〈ea�1/σ

	u, ea�
1/σ
wn〉L2 +〈ea�1/σ

(u ·∇)u, ea�1/σ
wn〉L2 = 0.

We introduceQn by Id = Pn +Qn. We take the inner product of (2.1) against wn,
we subtract the equation satisfied by un from the one satisfied by u. Then, we use
the identity 〈ea�1/σ

Pnf, e
a�1/σ

g〉L2 = 〈ea�1/σ
f, ea�

1/σ
Png〉L2 to obtain

1
2
d
dt
‖wn(t)‖L2

a,σ
+ ν‖wn(t)‖Ḣ 1

a,σ
≤ |〈ea�1/σ

(u · ∇)wn, ea�1/σ
Pnwn︸ ︷︷ ︸

0

〉L2 |

+ |〈ea�1/σ
(wn · ∇)u, ea�1/σ

Pnwn︸ ︷︷ ︸
0

〉L2

+ |〈ea�1/σ
(wn · ∇)wn, ea�1/σ

Pnwn︸ ︷︷ ︸
0

〉L2 |

+ |〈ea�1/σ
Qn[(u · ∇)u], ea�1/σ

wn〉L2 |.

In fact, Pnwn = 0 is due to Pnwn = Pn(Qn(∑k∈Z3 ûke
ikx)) = Pn(∑|k|>n ûkeikx)= 0. Consequently, by integrating over [0, T ], we deduce that

1
2‖wn(T )‖2

L2
a,σ
+ ν

ˆ T

0
‖wn(t)‖2

Ḣ 1
a,σ
dt ≤ 1

2
‖w0

n‖2
L2
a,σ

+
ˆ T

0
|〈ea�1/σ

Qn[(u · ∇)u], ea�1/σ
wn〉L2 |︸ ︷︷ ︸

fn(t)

dt.

According to the above, strong uniform convergence of the ‖wn‖L2
a,σ

to zero follows

provided that lim
n→∞

(
‖w0

n‖2
L2
,σ
+ ´ T

0 fn(τ )dτ
)
= 0. Clearly, lim

n→∞‖w
0
n‖2
L2
a,σ
= 0. To

prove that lim
n→∞

´ T
0 fn(τ )dτ , we use dominated convergence theorem. We have

fn(t) = |〈ea�1/σ
(u · ∇)u− Pn[(u · ∇)u], ea�1/σ

wn〉L2 |
≤ 2

∑
k∈Z3

F(ϑ1 · ϑ2)(k)F(ϑ3)(k),

where ϑ1 = F−1(|ûk|), ϑ2 = F−1(|k| · |ûk|) and ϑ3 = F−1(e2a|k|1/σ |ûk|). So,

fn(t) ≤ 2‖ϑ1‖L∞|〈ϑ2, ϑ3〉L2 |
≤ 2c1c2‖u(t)‖L2

a,σ
‖u(t)‖2

Ḣ 1
a,σ
,
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where we used Hölder’s inequality and (1.3) and (1.4). Now, since u belongs to
L∞T (L2

a,σ ) ∩ L2
T (Ḣ

1
a,σ ) then fn(t) ∈ L1([0, T ]). It turns out that there exists m for

which

‖Qmu(t)‖2
L2
a,σ
+ 2ν

ˆ t

0
‖Qmu(τ)‖2

Ḣ 1
a,σ
dτ <

ν2

4(c1c2)2
, for all 0 ≤ t <∞,

where Qm is the projection onto the modes higher than m. Moreover, it holds that
‖Qmu(t)‖L2

a,σ
−→
t→∞ 0 under the assumption ‖Pmu(t)‖L2

a,σ
−→
t→∞ 0. This implies

that the first m modes associated with Pm are in fact the determining modes.
Consequently, there exists a critical m such that by splitting the initial data u0 into
Pmu0 andQmu0, the latter gives rise to the system

∂twm − ν	wm + (wm · ∇)wm = 0, (t, x) ∈ R+ × T
3 (3.1)

wm|t=0 = Qmu0, x ∈ T
3, (3.2)

wherewm can be identified withQmu, i.e. the projection of u onto the modes higher
than m. It is assumed that ‖Qmu0‖L2

a,σ
< ν

2c1c2
. Thus, ‖wm(t)‖L2

a,σ
≤ ‖Qmu0‖L2

a,σ

for all t ≥ 0, according to (1.6).
It remains to prove that ‖wm(t)‖L2

a,σ
→ 0 as t → ∞, as well as to obtain an

upper bound for the number of determining modes m. We take the inner product
of (3.1) against wm to obtain

1
2
d
dt
‖ea�1/σ

wm(t)‖2
L2 + ν‖ea�1/σ

wm(t)‖2
Ḣ 1 ≤ |〈(wm · ∇)wm, 〉L2(T3)|,

where  = F−1(e2a|k|1/σ ŵk). By using inequalities (1.5) and (1.4), it turns out

1
2
d
dt
‖wm(t)‖2

L2
a,σ
+ ν‖wm(t)‖2

Ḣ 1
a,σ

≤ c3c2‖Qmu0‖L2
a,σ
‖wm(t)‖2

L2
a,σ
.

We use the inequality λm+1‖wm‖L2
a,σ
≤ ‖wm‖Ḣ 1

a,σ
(see e.g. [5]) to obtain

d
dτ
‖wm(τ)‖2

L2
a,σ
+ (νλ2

m+1 − c3c2‖Qmu0‖L2
a,σ
)‖wm(τ)‖2

L2
a,σ
≤ 0.

Multiplying by exp(τ (νλ2
m+1 − c3c2‖Qmu0‖L2

a,σ
)) and integrating over [0, t), we

obtain

‖wm(t)‖2
L2
a,σ
≤ ‖Qmu0‖2

L2
a,σ
e
t (c3c2‖Qmu0‖L2

a,σ
−νλ2

m+1). (3.3)

So, we deduce that λm+1 (the (m+ 1)th eigenvalue of A) must be as large as

λ2
m+1 > c3c2‖Qmu0‖L2

a,σ
/ν. (3.4)
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Therefore, inequality (3.3) immediately implies that lim sup
t→∞

‖wm(t)‖L2
a,σ

= 0.

Moreover, since λm ∼ λ1m
2/3, we deduce that inequality (3.4) is satisfied provided

m is such that m ≥ c‖u0‖3/4
L2
a,σ
/(νλ2

1)
3/4. This gives the wavenumber m beyond

which the L∞
R+(L

2
a,σ ) and L2

R+(Ḣ
1
a,σ ) norms of the solution’s high frequency modes

are uniformly bounded with respect to time.
This result is useful as it solves the problem: how many modes should be retained

if we want to be certain that the truncated system will have the same behavior for t
large as the original one.
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BVP for the First Order Elliptic
Systems in the Plane

Nino Manjavidze and Giorgi Akhalaia

Abstract In this paper the Riemann-Hilbert type boundary value problem for gen-
eralized analytic vectors in plane domains bounded by smooth curves is considered.
In some cases Noethericity conditions of the problem are given.

Keywords Boundary value problem · Riemann-Hilbert type problem ·
Generalized analytic vector · Noethericity conditions

Mathematics Subject Classification (2010) Primary 30E25; Secondary 35E05

The linear system of partial differential equations

∂u

∂x
= a(x, y)∂u

∂y
+ b(x, y)u(x, y)+ f (x, y),

where u = (u1, u2, . . . , u2n) is the desired real vector with 2n components, a, b
are given 2n× 2n real matrices depending on two real variables (x, y), f is a given
vector with 2n components is called elliptic in some domainD if the matrix a has no
real characteristic numbers in this domain.It is well-known that in one dimensional
case this system can be reduced to one complex equation:

∂z̄w(z)+ A(z)w(z)+ B(z)w(z) = F(z), z ∈ D, (1)

where A, B, F are complex functions expressed by a, b, f (see [1–3]).
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In one dimensional case the system of such kind is called the Carleman-
Vekua equation. They were investigated by Picard E., Beltrami E., Teodorescu N.,
Carleman T. and others. In the works of Polozhy G. N., Shabat B. several classes
of this equations were studied. Using generalizations of the concepts of complex
differentiation and integration Bers L. constructed the so-called theory of pseudo-
analytic functions which are the solutions of the Eq. (1). Another theory of the
solutions of the Eq. (1), the theory of generalized analytic functions was constructed
by Vekua I. Further development of this theory by Vekua and his disciples and
followers [3] is summarized in his fundamental monograph [4].

As a model problem of the boundary value problems of the theory of generalized
analytic vectors we consider the following Riemann-Hilbert problem:

Re [G(t)w(t)] = g(t), t ∈ �, (2)

for the Eq. (1). A, B are bounded measurable matrices, D is a bounded domain in
the complex plane with the smooth boundary �.

We investigate the existence of the solutions of the problem (1) and (2). In
particular, we prove the following proposition.

Proposition 1 There exists a solution of the problem (1) and (2) in the form
w(z) = w0(z)+w1(z), wherew1(z) = R(F(z)),R is some linear bounded operator
mapping the space Ls(D) in the space of Hölder-continuous vectors, w0(z) is the
solution of the homogeneous equation (1) in the class Ep(D,A,B, !), p > 1.

In order to introduce the class from Proposition 1 we need some terms and
notations [5] (see also [1]).

Let the matrix V (t, z) be the generalized Cauchy kernel for the homogeneous
equation (1). The equation

∂z̄" − A′(z)" − B ′(z)" = 0 (3)

is called conjugate to the system (1). Using holomorphic vectors, generalized
analytic vectors w(z) can be represented as

w(z) = φ(z)+
ˆ

D

�1(Z, t)φ(t)dσt +
ˆ

D

�2(Z, t)φ(t)dσt +
N∑
k=1

ckWk(z), (4)

where φ(z) is a holomorphic vector andWk(z) (k = 1, . . . , N) is a complete system
of linearly independent solutions of the Fredholm equation

Kw ≡ w(z)− 1

π

ˆ

D

V (t, z)
[
A(t)w(t)+ B(t)w(t)

]
dσt = 0,
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Wk(z) turn out to be continuous vectors in the whole plane, vanishing at infinity and
ck—are arbitrary real constants; the kernels �1(z, t) and �2(z, t) satisfy the system
of the integral equations

�1(z, t)+ 1

π
V (t, z)A(t)+ 1

π

ˆ

D

V (t, z)
[
A(t)�1(τ, t)+ B(t)�2(τ, t)

]
dσt

= −1

2

N∑
k=1

{vk(z), v̄k(t)},

�2(z, t)+ 1

π
V (t, z)A(t)+ 1

π

ˆ

D

V (t, z)
[
A(t)�1(τ, t)+ B(t)�2(τ, t)

]
dσt

= −1

2

N∑
k=1

{vk(z), v̄k(t)},

where vk(z) ∈ Lp(D̄), (k = 1, . . . , N) form a system of linearly independent
solutions of the Fredholm integral equation

v(z)+ A′(z)
π

ˆ

D

V ′(z, t)v(t)dσt + B ′(z)
π

ˆ

D

V ′(z, t)v̄(t)dσt = 0

and v,w is the diagonal product of the vectors v and w. Notice that in formula (4)
φ(z) is not an arbitrary holomorphic vector, it has to satisfy the following conditions

Re
ˆ

D

φ(z)vk(z)dσt = 0, k = 1, . . . , N. (5)

In general, the Liouville theorem is not true for the solutions of (1). This is why
the constants ck appear in (4) and the conditions (5) have to be satisfied.

Denote by Ep(D,A,B, !) the class of the solutions of the homogeneous
equation of (1), representable by the generalized Cauchy type integrals

w(z) = 1

2πi

ˆ

�

[
�1(z, t)ϕ(t)dt −�2(z, t)ϕ(t)dt

]
+

N∑
k=1

ckWk(z),

where ϕ(t) ∈ Lp(�, !) satisfies the condition

Im
ˆ

�

(
ϕ(t),"j (t)

)
dt = 0, (j = 1, . . . , N),
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where "j form a similar system for the conjugate equation (3). The kernels �1 and
�2 are representable by the resolvents �1 and �2 according to the formulas

�1(z, t) = V (t, z)+
ˆ

D

�1(z, τ )V (t, τ )dστ ,

�2(z, t) =
ˆ

D

�2(z, τ )V (t, τ )dστ .

Let us also introduce the class

Eq

(
D,−A′,−B ′, !1−q) , q = p

p − 1

of the solutions of the conjugate equation, representable in the form

"(z) = 1

2πi

ˆ

�

[
�′1(t, z)h(t)dt −�′2(t, z)h(t)dt

]
+

N∑
k=1

ck"k(z),

where the density h(t) ∈ Lq(�, !1−q) satisfies the condition

Im
ˆ

�

(
h(t),Wj (t)

)
dt = 0, (j = 1, . . . , N).

Therefore, for w(z) satisfying (1), we get the following boundary condition

Re [G(t)w0(t)] = H 1(t), (6)

whereH 1(t) = f (t)− Re [G(t)w1(t)]. From (6) it follows

w0(t) = G−1(t)
[
H 1(t)+ iξ(t)

]
,

where ξ(t) is a desired real vector of the class Lp(�, !). For ξ(t) we obtain the real
system of singular integral equations

ξ(t0) =
ˆ

�

[
G(t0)G

−1(t)+ t0

t
G(t0)G−1(t)

]
ξ(t)

t0 − t +
ˆ

�

K(t0, t)ξ(t)ds

= H 2(t0)− 4π
N∑
k=1

ckRe [G(t0)Wk(t0)]

(7)
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and the additional conditions

Im
ˆ

�

G−1(t)
(
H 1(t)+ iξ(t)

)
"k(t)dt = 0, (k = 1, . . . , N),

whereK(t0, t) is a real kernel with the weak singularity,H 2(t) is a real vector which
can be linearly expressed by means of H 1(t).

From (7) we get

ξ(t0) =
(
KH 3

)
(t0)+

l∑
k=1

lkξk(t0),

where

H 3(t0) = H 2(t0)− 4π
N∑
k=1

Re [G(t0)Wk(t0)]

and
l∑
k=1

lkξk is a general solution of the homogeneous equation of (7), K is a linear

bounded operator on the space Lp(�, !).
We should take into the consideration the solvability condition of the Eq. (7)

ˆ

�

(
H 3(τ ), gk(τ )

)
dτ = 0, k = 1, . . . , l∗,

where gk(t), k = 1, . . . , l∗ is a complete system of linearly independent solutions
of the conjugate homogeneous equation of (7) in the class Lq(�, !1−q), q = p

p−1 .
If the Eq. (7) is Noetherian then the Riemann-Hilbert boundary value problem (7)
is Noetherian in Ep(D,A,B, !) and the necessary and sufficient solvability
conditions are the following

Im
ˆ

�

(
H 1(τ ),G′−1(τ )ηk(τ )

)
dτ = 0, k = 1, . . . , l′,

where ηk is a complete system of linearly independent solutions of the Riemann-
Hilbert problem

Re
[
G′−1(τ )η(τ )

]
= 0,

in the class Eq(D,−A′,−B ′, !1−q), q = p
p−1 .
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Due to [5] the Eq. (7) is Noetherian in Lp(�, !) if

1+ !k
p

�= ωkj , k = 1, . . . , r, j = 1, . . . , n, (8)

where ωkj = 1
2π argλkj , 0 ≤ argλkj < 2π , λkj are the roots of the equation

det
[
G−1(tk + 0)G(tk − 0)− λI

]
= 0.

If G(t) is continuous on � then the condition (8) is not required.
Finally we remark that differential boundary value problem for the system of

second order differential equations of elliptic type in plane domains bounded by
smooth curves can be reduced to the problem for generalized analytic vectors
considered above.
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Applications of Zalcman’s Lemma in CN

P. V. Dovbush

Abstract The aim of this paper is to give some applications of Marty’s Criterion
and Zalcman’s Rescalling Lemma.

Keywords Marty’s Criterion · Zalcman’s lemma · Zalcman-Pang’s lemma ·
Normal families · Holomorphic functions of several complex variables
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1 Introduction

Lemma 1.1 A family F of functions meromorphic [analytic] on the unit disc 	 is
not normal if and only if there exist (a) a number 0 < r < 1 (b) points zn, |zn| < r
(c) functions fn ∈ F (d) numbers ρn → 0+ such that

fn(zn + ρnξ)
ραn

(0 ≤ α < 1 arbitrary ).

spherically uniformly [uniformly] on compact subsets of C, where g is a noncon-
stant meromorphic [entire] function on C.

This is famous Pang’s Lemma [6, Lemma 2, p. 787]. The case α = 0 is due to
Zalcman [13, p. 814] and is known as Zalcman’s Rescalling Lemma. Zalcman’s
Lemma has numerous applications in the theory of entire and meromorphic
functions, normality criteria, ordinary differential equations, complex dynamics,
value distribution theory, quasiregular mappings in space, and minimal surfaces,
for the list of some of these application see, for example, the papers [11, 12] and
the book [9]. Zalcman’s Lemma was generalised by Pang [6, 7], using in a way
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which makes it more flexible, and, in particular, applicable to algebraic differential
equations.

Much attention has been given to find an appropriate generalization of Zalcman’s
Lemma to several complex variables, and more generally to complex manifolds (see,
for example, [1–4, 10]).

Using the ideas of Zalcman and Pang we can prove the most of the theorems in
this paper, but Montel’s Criterion was used in all proofs!

2 Marty’s Criterion

A family F of holomorphic functions on a domain � ⊂ Cn is normal in � if every
sequence of functions {fj } ⊆ F contains either a subsequence which converges to
a limit function f �≡ ∞ uniformly on each compact subset of �, or a subsequence
which converges uniformly to ∞ on each compact subset.

A family F is said to be normal at a point z0 ∈ � if it is normal in some
neighborhood of z0. A family of holomorphic functions F is normal in a domain�
if and only if F is normal at each point of �.

For every function ϕ of class C2(�) we define at each point z ∈ � an Hermitian
form

Lz(ϕ, v) :=
n∑

k,l=1

∂2ϕ

∂zk∂zl
(z)vkvl,

(where z1, . . . , zn is the natural coordinate system in Cn) and call it the Levi form
of the function ϕ at z.

For a holomorphic function f in �, set

f #(z) := max|v|=1

√
Lz(log(1+ |f |2), v) (2.1)

and

#f (z) := min|v|=1

√
Lz(log(1+ |f |2), v). (2.2)

This quantities is well defined since the Levi form Lz(log(1 + |f |2), v) is
nonnegative for all z ∈ �.

In (2.1) resp. (2.2) the supremum resp. infinum is at the same time a maxi-
mum/minimum, since by Weiershtrass Theorem the continuous real-valued function
Lz(ϕ, v)/(v, v) achieving a least upper bound resp. greatest lover bound on the unit
sphere in Cn, a compact set.
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In particular, for n = 1 the formula (2.1) takes the form

f #(z) := |f ′(z)|
1+ |f (z)|2

and z# coincides with the spherical metric on C.
We have Marty’s characterization of normal families in terms of the spherical

metric.

Theorem 2.1 (Marty’s Criterion, See [3]) A family F of functions holomorphic
on � ⊂ Cn, is normal on � if and only if for each compact subset K ⊂ � there
exists a constantM(K) such that at each point z ∈ K

f #(z) ≤ M(K) (2.3)

for all f ∈ F .

Montel’s criterion for normality, one of the more important results in function
theory, and which will be used over and over again. Montel’s criterion has a
consequence that many might find astounding.

3 Non-normal Families

The following two theorems are the cornerstone of this chapter. Its are a powerful
tools which allows to extract informations from non-normal holomorphic families.

The proof of the Zalcman’s Rescaling Lemma is fairly short and elementary; it
uses only Marty’s Criterion (Theorem 2.1).

Using the ideas of Zalcman and Pang I derived the following important charac-
terizations of non-normality.

Theorem 3.1 (Zalcman’s Lemma, See [3]) Suppose that a family F of functions
holomorphic on � ⊂ Cn is not normal at some point z0 ∈ �. Then there exist
sequences fj ∈ F , zj → z0, ρj = 1/f #j (zj )→ 0, such that the sequence

gj (z) = fj (zj + ρjz)

converges locally uniformly in Cn to a non-constant entire function g satisfying
g#(z) ≤ g#(0) = 1.
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Theorem 3.2 (Pang’s Lemma) The simultaneous proof of this theorems. The
statement of Theorem 3.1 remains valid if the sequence gj (z) = fj (zj + ρj z) is
replaced with

gj (z) := fj (zj + rj z)
rαj

(0 ≤ α < 1 arbitrary).

For the simultaneous proof of Theorems 3.1 and 3.2 we need the following lemma.

Lemma 3.3 Let f be a holomorphic function on the unit ball B = {z ∈ Cn : |z| <
1}, and α be a real number with 0 ≤ α < 1. Suppose j ≥ 3 and

max|z|≤1/j

(1− j |z|)1+α(1+ |f (z)|2)f #(z)
(1− j |z|)2α + |f (z)|2 > 1.

Then there exists a point ξ∗, |ξ∗| < 1/j, and a real number ρ, 0 < ρ < 1, such
that

max|z|≤1/j

(1− j |z|)1+αρ1+α(1+ |f (z)|2)f #(z)
(1− j |z|)2αρ2α + |f (z)|2 =

(1− j |ξ∗|)1+αρ1+α(1+ |f (ξ∗)|2)f #(ξ∗)
(1− j |ξ∗|)2αρ2α + |f (ξ∗)|2 = 1.

In the proof of Theorem 3.2 the expression

(1− j |z|)1+α(1+ |fj (z)|2)f #j (z)
(1− j |z|)2α + |fj (z)|2

takes the part of (1− j |z|)f #j (z). The last function is continuous!

4 Montel’s Theorem in CN

Let us illustrate the use of Zalcman’s Rescalling Lemma [3] by showing how it can
be used to derive Montel’s Theorem in several complex variables (see also [12] for
one dimensional case).

Just to get a glimpse of a power and beauty of Zalcman’s Lemma, we will
give two proof of Montel’s theorem as an application of this lemma. Judicious
application of Zalcman’s Lemma often leads to proofs which seem almost magical
in their brevity.
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Theorem 4.1 (Montel’s Theorem) Let F be a family of holomorphic functions on
an open set � ⊆ Cn that omit two fixed complex values. Then, each sequence of
functions in F has a subsequence which converges uniformly on compact subsets.

First of all we shall need one auxiliary proposition for the proof of which see, for
example, [5, Corollary, p.80].

Theorem 4.2 (Hurwitz’s Theorem) Let � be an open connected set in Cn and
{gj (z)} a sequence of holomorphic functions on �, converging uniformly on
compact sets to a holomorphic function g. Then if gj (z) �= 0 for all j, and all
z, and g is nonconstant, we have g(z) �= 0 for all z ∈ �.
First Proof of Montel’s Theorem Composing the functions of F with a linear frac-
tional transformation, we may also assume that the omitted values are 0 and 1.
Suppose F is not normal on �. Then by Zalcman’s Rescalling Lemma [3], there
exist fj ∈ F , zj ∈ � and ρj → 0+ such that fj (zj + ρj ζ ) = gj (ζ ) → g(ζ )

uniformly on compact subsets of Cn, where g is a nonconstant entire function. By
Hurwitz’s Theorem (see, for example, [5, Corollary, p. 80]), g does not take on the
values 0 and 1, since no fj does. Let b ∈ Cn. The function

gb(λ) := g(λ · b)

is entire function on C, satisfies

gb(0) = g(0), gb(1) = g(b)

and

gb(C) ⊂ g(CN) ⊆ C \ {0, 1}.

But then, by one-dimensional version of Picard’s Little Theorem, gb is constant,
hence g(0) = g(b) for all b ∈ Cn, a contradiction. ��

We also give a simple proof of the theorem of Montel, based on the idea of A.
Ros [8] (see [11, p. 218]).

Second Proof of Montel’s Theorem Since normality is a local notion, we may
suppose that � = B, the unit ball. So let F be as in the statement of Montel’s
Theorem and suppose that F is not normal. Composing with a linear fractional
transformation, we may also assume that the omitted values are 0 and 1.This implies
that if f ∈ F and m ∈ N there exists a function g holomorphic in � such that
g2m = f. Let Fm be the family of all such functions g. Note that

∣∣∣ 1

2m

∣∣∣2( |f |−1 + |f |
|f |−1/2m + |f |1/2m

)2
Lz(log(1+ |f |2, v) = Lz(log(1+ |g|2, v)
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for all (z, v) ∈ �× Cn. This implies that

g#(z) = 1

2m
|f |−1 + |f |

|f |−1/2m + |f |1/2m f
#(z) ≥ 1

2m
f #(z) (z ∈ �),

where we have used the inequality a−1+a ≥ a−t+at valid for a > 0 and 0 < t < 1.
By Marty’s Criterion, the family {f # : f ∈ F} is not locally bounded. We deduce
that, for fixed m ∈ N, the family {g# : g ∈ Fm} is not locally bounded. Using
Marty’s Criterion again we find that Fm is not normal, for all m ∈ N. Note that
if g ∈ Fm, then g omits the values e2πik/2m for k,m ∈ Z. From the Zalcman
Rescalling Lemma we thus deduce that there exists an entire function gm omitting
the values e2πik/2m and satisfying gm(z) ≤ g#m(0) = 1. The gm thus form a normal
family and we have gmj → G for some subsequence {gmj } and some nonconstant
entire functionG.By Hurwitz’s Theorem,G omits the values e2πik/2m for all k,m ∈
N. Since G(Cn) is open this implies that |G(z)| �= 1 for all z ∈ Cn. Thus either
|G(z)| < 1 for all z ∈ Cn or |G(z)| > 1 for all z ∈ Cn. In the first case G
is bounded and thus constant by Liouville’s Theorem. In the second case 1/G is
bounded. Again 1/G and thus G is constant. Thus we get a contradiction in both
cases. ��

We shall now show that the following result, in which the values omitted are
allowed to vary with the function, as long as they do not approach one another too
closely, is also true.

Theorem 4.3 (Carathéodory’s Theorem) Let F be a family of functions holomor-
phic on � ⊂ Cn. Suppose that for some ε > 0, there exist for each f ∈ F distinct
points af , bf ∈ C such that for all z ∈ �, f (z) �= af , bf and

s(af ,∞)s(af , bf )s(∞, bf ) > ε.

Then F is normal on �.

Proof Otherwise, there exists some ball B in �, which we may assume to be unit
ball, on which F fails to be normal. Then by Zalcman’s Rescalling Lemma [3],
there exist fj ∈ F , zj ∈ B and ρj → 0+ such that fj (zj + ρj ζ ) = gj (ζ ) →
g(ζ ) uniformly on compact subsets of Cn, where g is a nonconstant entire function.
Taking successive subsequences and renumbering, we can assume that afj → a

and bfj → b, where a and b are distinct points in C. Since gj (ζ ) − afj �= 0 and
g is nonconstant, it follows from Theorem 4.2 that g(ζ ) �= a. Similarly, g(ζ ) �= b.
Again, we may assume that the omitted values are 0 and 1. The reasoning used at the
end of the first proof of Theorem 4.1 shows that g is a constant, a contradiction. ��

Montel’s theorem remains valid if the omitted values are replaced by omitted
functions, so long as the omitted functions never take on the same value at points
of �.
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Theorem 4.4 (Fatou’s Theorem) Let a(z) and b(z) be functions holomorphic on
� ⊂ Cn such that a(z) �= b(z) for each z ∈ �. Let F be a family of functions
holomorphic on � such that for each z ∈ �

f (z) �= a(z) f (z) �= b(z)

for all f ∈ F . Then F is normal on �.

Proof Consider the family of functions

G =
{f (z)− a(z)
f (z)− b(z) for all f ∈ F

}
.

Then each g ∈ G is holomorphic on �; and if g ∈ G, then g(z) �= 0, 1 for z ∈ �.
Thus G is normal on � by Theorem 4.1. But then, as is easily seen, F is normal on
� as well. ��

5 Criterion of Normality

Unfortunately, in practice Marty’s criterion almost useless, as verification of the
condition (2.3) in cases when normality is not already evident is generally extremely
difficult. For example, given a family of holomorphic functions F such that on every
compactK ⊂ �, say,

#f (z) ≥ M(K), z ∈ K,

we see that the Marty criterion is insufficient to establish normality, and a stronger
version is required. The following has been

Theorem 5.1 Let F be a family of holomorphic functions on � ⊂ Cn and assume
that for each compact subset K ⊂ � there exists a constantM(K) > 0 such that

#f (z) ≥ M(K), z ∈ K,

holds for every f ∈ F . Then F is normal in �.

The main tool in the proof of Theorem 5.1 are Montel’s Theorem and Montel’s
Criterium.
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To the Theory of One Class
of Three-Dimensional Integral Equation
with Super-Singular Kernels by Tube
Domain
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Abstract In this paper, we study one new class of three-dimensional integral
equations with super-singular kernels in a cylindrical domain, when the kernel
has super-singularity on the lower base and the lateral surface of the cylinder.
Depending on the roots of the characteristic equations (1.2) and (1.3), the integral
representations of the solutions of equation (1.1) are found in explicit form. In the
case where the parameters are present in the kernels, such that the general solution
of the integral equation contains arbitrary functions, inversion formulas are found.
On the basis of integral representations and their inversion formulas, in cases where
the general solutions of the integral equation contain arbitrary functions, the correct
formulation of a Dirichlet type problem is clarified and its solution is found.

Keywords Integral representation · Super-singular kernels · Inversion formula ·
Three-dimensional integral equations · Dirichlet type boundary value problem
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1 Integral Representations of a Variety of Solutions
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integral equation in the domain � of the form

ϕ(t, z)+
ˆ t

a

K1(t, τ )

(τ − a)α ϕ(τ, z)dτ +
1

π

¨

D

exp[iθ ]K2(r, ρ)

(R − ρ)β(s − z)ϕ(t, s)ds+

+ 1

π

ˆ t

a

dτ

(τ − a)α
¨

D

exp[iθ ]K3(t, τ ; r, ρ)
(R − ρ)β(s − z) ϕ(τ, s)ds = f (x, z),

(1.1)

where θ = args, s = ζ + iη, ds = dζdη, ρ2 = ζ 2 + η2, r2 = x2 +
y2, K1(t, τ ) = ∑n

j=1 Aj(w
α
a (t) − wαa (τ ))

j−1, K2(r, ρ) = ∑m
l=1 Bl(w

β
R(r) −

w
β
R(ρ))

l−1, K3(t, τ ; r, ρ; ) = K1(t, τ ).K2(r, ρ),Aj (1 ≤ j ≤ n), Bl(1 ≤
l ≤ m)—given constants , f (t, z)—are given functions and ϕ(t, z)—unknown
functions,wαa (t) = [(α− 1)(t − a)α−1]−1, α = const > 1, wβR(r) = [(β − 1)(R−
r)β−1]−1, β = const > 1.

The solution to the integral equation (1.1) will be sought in the class of functions
ϕ(t, z) ∈ C(�), ϕ(a, z) = 0, ϕ(t, Reiθ ) = 0, θ = argz, and its asymptotic
behavior, which for t → a and r → R are determined by the formulas

ϕ(t, z) = o[(t − a)δ1], δ1 > (n+ 1)(α − 1) at t → a,

ϕ(t, z) = o[(R − r)δ2], δ2 > (m+ 1)(β − 1) at r → R.

In this paper, depending on the roots of the characteristic equations

λn +
n∑
j=1

Aj(j − 1)!λn−j = o (1.2)

and

μm +
m∑
j=1

Bj (j − 1)!μm−j = o, (1.3)

integral representations of the variety of solutions are obtained. A study of
particular cases of Eq. (1.1) is devoted to the work [2–12] Let in the inte-
gral equation (1.1) K1(t, τ ), K2(r, ρ),K3(t, τ ; r, ρ) be related by the formula
K3(t, τ ; r, ρ) = K1(t, τ )K2(r, ρ). Then introducing the new "(t, z) function by
the formula

"(t, z) = ϕ(t, z)+
ˆ t

a

K1(t, τ )

(t − a)α ϕ(τ, z)dτ ≡ Kα(ϕ), (1.4)
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we arrive at the solution of the following Integral equation of the type
I.N. Vekua [13]

"(t, z)+ 1

π

¨

D

exp[iθ ]K2(r, ρ)

(R − ρ)β(s − z)ψ(t, s)ds = f (t, z). (1.5)

Thus, in this case, the problem of finding a solution to integral equation (1.1) has
been reduced to solving an extended system of integral equations (1.4) and (1.5).
The study of particular cases of integral equations (1.4) and (1.5) is the subject of
[2–12]. In the case when the roots of the characteristic equation (1.2) are different,
real, positive, and the solution of the integral equation (1.4) exists, then according
to [7] the general solution of the integral equation (1.4) is representable in the form

ϕ(t, z) =
n∑
j=1

Cj(z)exp[−λjwαa (t)] + ψ(t, z)+

1

	0

ˆ t

a

{ n∑
j=1

(−1)n+j	jnexp[λj(wαa (τ )− wαa (t))]
} ψ(τ, z)
(τ − a)α dτ ≡

n∑
j=1

Cj (z)exp[−λjwαa (t)] + (Kα)−1(ψ),

(1.6)

where 	0 is a Vandermond determinant, corresponding parameters λj (1 ≤ j ≤
n),	jn is minor of (n− 1)-order, which is obtained from	0 by dividing n-th lines
and j -th column,Cj (z)(1 ≤ j ≤ n) are arbitrary function of the domainD. Integral
in the right part of the formula (1.6) converges, if ψ(t, z) ∈ C(�),ψ(a, z) = 0 with
asymptotic behavior

ψ(t, z) = o[exp[−λwαa (t)](t − a)]γ ], γ > α − 1 at t → a, (1.7)

where λ = max(λ1, λ2, . . . , λn). The function ψ(t, z) have property(1.7), if
f (t, z) ∈ C(�), f (a, z) = 0 with asymptotic behavior

f (t, z) = o[exp[−λwαa (t)](t − a)]γ ], γ > α − 1 at t → a, (1.8)

where λ = max(λ1, λ2, . . . , λn). Note that

∂

∂ζ

[K2(r, ρ)ψ(t, ρ)

(R − ρ)β
]
= − ∂

∂ρ

[ˆ R

ρ

K2(r, ρ1)ψ(t, ρ1)

(R − ρ1)β
dρ1

]
eiθ

= K2(r, ρ)ψ(t, ρ)

(R − ρ)β eiθ .
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From here

K2(r, ρ)ψ(t, ρ)

(R − ρ)β eiθ = ∂

∂ζ

[K2(r, ρ)ψ(t, ρ)

(R − ρ)β
]

Then in the integral equation (1.5)"(t, z) = "(t, r), we have

1

π

¨

D

exp[iθ ]K2(r, ρ)

(R − ρ)β(s − z)ψ(t, s)ds =
1

π

¨

D

exp[iθ ]K2(r, ρ)

(R − ρ)β(s − z)ψ(t, ρ)ds =

= 1

π

¨

D

∂

∂ζ

[K2(r, ρ1)ψ(t, ρ1)

(R − ρ1)β
dρ1

] ds

s − z = −
ˆ R

r

K2(r, ρ)ψ(t, ρ)

(R − ρ)β dρ.

Then the integral equation (1.5) has the following form

ψ(t, r) −
ˆ R

r

K2(r, ρ)ψ(t, ρ)

(R − ρ)β dρ = f (t, r), (1.9)

if f (t, z) = f (t, r).
In addition, suppose that in Eq. (1.9)ψ(t, r) ∈ C(m)(D) respect to the variable r.

Then, differentiating the integral equation (1.9)m times with respect to the variable
r and each time multiplying by (R − r)β, we arrive at the solution of the following
expressed m-order differential equation

(Dβr )
mψ(t, r)+ B1(D

β
r )
m−1ψ(t, r)+ B2(D

β
r )
m−2ψ(t, r)+

+ 2!B3(D
β
r )
m−3 + . . .+ (m− 1)!Bmψ(t, r) = 0,

(1.10)

whereDβr = (R − r)β ∂∂r .
The homogeneous differential equation (1.10) corresponds to the characteristic

equation (1.3). In the case when in the Eq. (1.9) the parameters Bj (1 ≤ j ≤ m) are
such that the roots of characteristic equation (1.3) are real, different, and negative,
then the solution of the homogeneous differential equation (1.10) is given by the
formula

ψ(t, r) =
n∑
j=1

exp[μjwβR(r)]ψj(t), (1.11)

where ψj (t)(1 ≤ j ≤ m)—arbitrary function variable t, μj—roots of char-
acteristic equation (1.3). A function of the form (1.11) will also be a solution
to the inhomogeneous integral equation (1.9). To find a general solution to the
inhomogeneous integral equation (1.9), it is necessary to find a particular solution
to the inhomogeneous integral equation (1.9).
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In the case when the parameters Bj(1 ≤ j ≤ m) in the integral equation (1.9)
are such that the roots of the characteristic equation (1.3) are real, different, and
negative, the following statement holds

Lemma 1 Let the parameters Bj (1 ≤ j ≤ m) in integral equation (1.9) be such
that the roots of characteristic equation (1.3) are real, different, and negative, the
function f (t, r) ∈ C(�), f (t, R) = 0 with asymptotic behavior

f (t, r) = o[exp[−μwβR(r)](R − r)]δ], δ > α − 1 at r → R, (1.12)

where μ > max(|μ1|, |μ2|, . . . , |μm|).
Then the integral equation (1.9) in the class of functions "(t, z) ∈ C(�),

vanishes on the line r = R is always solvable and its solution is given by the
formula

"(t, z) =
n∑
j=1

�j(t, z)exp[μjwβR(r)] + f (t, r)+

1

	1
0

ˆ R

r

{ m∑
j=1

(−1)m+j	1
jmexp[μj(wβR(r)−wβR(ρ))]

} f (t, ρ)

(R − ρ)β dρ

where 	1
0 is Vandermond determinant for parameters μj(1 ≤ j ≤ m),	1

jm is

minor of (m − 1)-order, which obtained from 	1
0 by dividing m-th lines and j -th

column, �j(t, z) (1 ≤ j ≤ m) are arbitrary function of two variables which are
continuously by variables t and analytically by variables z.

Note that

ˆ R

r

exp[μjwβR(ρ)]f (t, ρ)
(R − ρ)β dρ = − 1

π

¨

D

exp[iθ + μjwβR(ρ)]
(R − ρ)β(s − z) f (t, ρ)ds,

we have

"(t, z) =
n∑
j=1

�j(t, z)exp[−μjwβR(r)] + f (t, r)−

− 1

	1
0

1

π

¨

D

{ m∑
j=1

(−1)m+j	1
jmexp[μj(wβR(ρ)−wβR(r))]

} exp[iθ ]f (t, ρ)
(R − ρ)β(s − z)ds ≡

≡
n∑
j=1

�j(t, z)exp[−μjwβR(r)] + Tβ(f ).
(1.13)
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For μj > 0 (1 ≤ j ≤ m) a solution of the form (1.3) exists if f (t, r) ∈ C(D),
f (t, R) = 0 with asymptotic behavior

f (t, r) = o[exp[−μwβR(r)](R − r)]δ1], δ1 > α − 1 at r → R, (1.14)

where μ = max(μ1μ2, . . . , μm). Substituting the obtained value "(t, z) from
expression (1.3) into formula (1.6), we have

ϕ(t, z) =
n∑
j=1

Cj(z)exp[−λjwαa (t)]+

+
m∑
j=1

exp[μjwβR(r)](Kα)−1(�j (t, z))+ (Kα)−1Tβ(f ).

(1.15)

The integrals in expression (1.15) converge if f (a, r) = 0 with asymptotic
behavior (1.8). Thus, the following sentence is proved

Theorem 1 Suppose that in the integral equation (1.1) the functions present in the
nuclei are interconnected by the formula K3(t, τ ; r, ρ) = K1(t, τ )K2(r, ρ).

In K1(t, τ ) the parameters Aj (1 ≤ j ≤ n) are such that the roots of the
characteristic equation (1.2) λj (1 ≤ j ≤ n) are real, different, and positive and
parameters Bj (1 ≤ j ≤ m) such that the roots of characteristic equation (1.3)
are real, different, and negative, the function f (t, r) ∈ C(�), f (t, R) = 0 with
asymptotic behavior (1.12), f (a, r) = 0 with asymptotic behavior (1.8).

Then any solution of the integral equation (1.1) from the class C(�) is repre-
sentable in the form (1.15), where Cj (z)(1 ≤ j ≤ n) are arbitrary continuous
functions in the domain D, with Cj (Reiθ ) = 0 (1 ≤ j ≤ n), with asymptotic
behaviors

Cj (z) = o[(R − r)]γ ](1 ≤ j ≤ n), γ > β − 1 at r → R. (A)

�j(t, z)(1 ≤ j ≤ m) are arbitrary function of two variables which are continuously
by variables t and analytically by variables z. Moreover �j(a, z) = 0 with
asymptotic behavior

�l(t, z) = o[(t − α)]γ ], γ > α − 1 at t → a. (B)

Depending on the sign of the roots of characteristic equations (1.2) and (1.3),
various integral representations of the solution manifold are obtained containing a
finite number of arbitrary functions Cj(z) of the domain D and a finite number of
arbitrary functions of two variables �j (t, z) are continuous in the variable t and
analytic in the variable z.
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In particular, if the parameters Aj(1 ≤ j ≤ n) are such that the roots of the
characteristic equation (1.2) λj (1 ≤ j ≤ n) are real, different, and negative, and
the parameters Bj (1 ≤ j ≤ m) such that the roots of characteristic equation (1.3)
are real, different, and negative, the following statement holds:

Theorem 2 Let in the integral equation (1.1) the functions present in the nuclei are
interconnected by the formula K3(t, τ ; r, ρ) = K1(t, τ )K2(r, ρ).

In K1(t, τ ), the parameters Aj (1 ≤ j ≤ n) are such that the roots of the
characteristic equation (1.2) λj (1 ≤ j ≤ n) are real, different, and negative and
in K2(r, ρ) the parameters Bj (1 ≤ j ≤ m) are such that the roots of characteristic
equation (1.3) are real, different, and positive, the function f (t, z) = f (t, r) ∈
C(�), f (a, z) = 0 with asymptotic behavior (1.8), f (t, R) = 0 with asymptotic
behavior

f (t, r) = o[(R − r)δ1], δ1 > β − 1 at r → R. (1.16)

Then the integral equation (1.1) in the class C(�) has a unique solution, which is
given by the formula

ϕ(t, z) = (Kα)−1Tβ(f ).

2 Inversion Formula

Now suppose that in the integral representation (1.13) the functions "(t, z) =
Kα(ϕ) are known, then according to [1] we find

�k(t, z) = exp[μkwβR(r)]
	1

0

n∑
j=1

(−1)k+j	1
jkD

j−1
z [Kα(ϕ)− Tβ(f )], (1 ≤ k ≤ m),

(2.1)

whereDz = 2exp[−iθ ] ∂
∂z
,	1

0 is Vandermond determinant for parameters μj (1 ≤
j ≤ m),	1

jm is minor of (m− 1)-order, which obtained from 	1
0 by dividing m-th

lines and j -th column.

Theorem 3 Let all the conditions of Theorem 1 be fulfilled, the function f (t, z) and
the unknown function �(t, z) be differentiable (m − 1) times. Then in the integral
equation (1.13) the functions �k(t, z) (1 ≤ k ≤ m) through ϕ(t, z), f (t, z) and
their derivatives (m− 1)th orders are found by formulas (2.1).

Now, in the integral representation (1.15), suppose that the functions f (t, z),
�k(t, z) (1 ≤ k ≤ m), ϕ(t, z) are known and it is necessary to find
Cj(z)(1 ≤ j ≤ n). For this purpose, we represent formula (1.15) in the following
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form

n∑
j=1

Cj (z)exp[−λjwαa (t)] = ϕ(t, z)−

−
m∑
j=1

exp[μjwβR(r)](Kα)−1(�j (t, z))− (Kα)−1Tββ(f ) ≡

≡ T [f (t, z), ϕ(t, z),�1(t, z), . . . ,�m(t, z)].

(2.2)

Suppose that in (2.2) the well-known function f (t, z), is the unknown function
ϕ(t, z) and the functions �j(t, z) (1 ≤ j ≤ m) by variable t differentiable
(n−1)-times. Each time after differentiation, multiplying both sides of the resulting
expression by (t − a)α, to find the function Cj (z) (1 ≤ j ≤ n), we obtain the
following algebraic system

n∑
j=1

Cj (z)exp[−λjwαa (t)] = T [f (t, z), ϕ(t, z),�1(t, z), . . . ,�m(t, z)]

n∑
j=1

Cj (z)exp[−λjwαa (t)]λj = Dtα[T [f (t, z), ϕ(t, z),�1(t, z), . . . ,�m(t, z)]]

n∑
j=1

Cj (z)exp[−λjwαa (t)]λ2
j = (Dtα)2[T [f (t, z), ϕ(t, z),�1(t, z), . . . ,�m(t, z)]]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n∑
j=1

Cj (z)exp[−λjwαa (t)]λn−1
j = (Dtα)n−1

[T [f (t, z), ϕ(t, z),�1(t, z), . . . ,�m(t, z)]].

whereDtα = (t − a)α ddt . Solving this system, we found

Cj (z) = exp[λjwαa (t)]
	0

n∑
k=1

(−1)j+k	jk((D
t
α))

k−1[T [f (t, z), ϕ(t, z),�1(t, z), . . . ,�m(t, z)]]
(2.3)

1 ≤ j ≤ n, where 	0 is Vander mond determinant for parameters λj (1 ≤ j ≤ n),
	
j
k is minor of (n−1)-order, which obtained by dividing k-th lines and j -th column.
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Theorem 4 Let all the conditions of Theorem 1 be fulfilled, the function f (t, z),
the unknown function ϕ(t, z) be differentiable (n − 1)-times with respect to
the variable t . Then, in the integral representation (1.5) of the function Ck(z)
(1 ≤ k ≤ n) through the values ϕ(t, z), f (t, z), �j (t, z) (1 ≤ k ≤ n) and their
derivatives of order (m− 1) with respect to variable t are found by formula (2.3).

The integral representations and those obtained in Theorems 1 and their inversion
formulas obtained in Theorems 5 and 6 make it possible for the integral equa-
tion (1.1) to pose and study various boundary value problems.

Problem D It is required to find a solution to the integral equation (1.1) from the
class C(�) when all the conditions of Theorems 1, 3, and 4 are satisfied with respect
to the boundary conditions

Re
[
exp[μkwβR(r)Dj−1

z [Kα(ϕ)]]
]
r=R = E

j
k (t, θ)(1 ≤ j, k ≤ m), 0 ≤ θ ≤ 2π

(2.4)

on the boundary of the regionD, the condition

[
exp[μkwβR(r)Dj−1

z [Kα(ϕ)]]
]
z=0

= Fjk (t) (1 ≤ j, k ≤ m) (2.5)

on the axis of the cylinder, condition

[
exp[λkwαR(t)(Dtα)j−1[(ϕ)]]

]
t=a = W

j
k (z) (1 ≤ j, k ≤ n) (2.6)

to the lateral surface of the cylinder, where Ejk (t, θ) (1 ≤ j, k ≤ m) are the given

functions of the boundary of the lower base of the cylinder, Fjk (t) (1 ≤ j, k ≤
m) are given functions of the cylinder axis and Wj

k (z) (1 ≤ j, k ≤ n) are given
functions of the lower base of the cylinder.

Solution Problem D Let all the conditions of Theorems 3 and 4 be fulfilled. Then
from formula (2.1) we find

[
Re�k(t, z)

]
r=R =

= 1

�1
0

m∑
j=1

(−1)k+j	1
jkKa

[
Re

[
exp

[
μkω

β

R(r)
]
D
j−1
z (ϕ)

]
r=R

]
=

= 1

�1
0

m∑
j=1

(−1)k+j	1
jkKa

[
E
j
k (t, θ)

]
≡ Wk(t, θ) (1 ≤ k ≤ m).

(2.7)

Thus, to determine the unknown functions �k(t, z)(1 ≤ k ≤ m), it is necessary to
solvem Schwarz-type problems of the theory of analytic functions [13]. According
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to [1], the solution of type problems (2.7) are given by the formulas

�k(t, z) = 1

2π

ˆ

γ

τ + z
τ(τ − z)Wk(t, θ)dτ + i�k(t) (1 ≤ k ≤ m), (2.8)

where�k(t)—arbitrary functions point t . From formula (2.1) we find

�k(t, 0) =

= 1

�1
0

m∑
j=1

(−1)k+j	1
jk

[
Ka[exp[μkωβR(r)]Dj−1

z (ϕ)
z=0

]
]
=

= 1

�1
0

m∑
j=1

(−1)k+j	1
jk

[
Ka[Fjk (t)]

]
≡ Ek(t), (1 ≤ k ≤ m). (2.9)

From formula (2.8) we find

�k(t, 0) = 1

2π

ˆ

γ

1

τ
Wk(t, θ)dτ + i�k(t), (1 ≤ k ≤ m), (2.10)

Comparing formulas (2.9) and (2.10), we have

1

2π

ˆ

γ

1

τ
Wk(t, θ)dτ + i�k(t) = Ek(t), (1 ≤ k ≤ m),

From here we find

i�k(t) = Ek(t)− 1

2π

ˆ

γ

1

τ
Wk(t, θ)dτ.

Representing the found values of i�k(t) in formula (2.8), we find the explicit
form�k(t, z) in the following form

�k(t, z) = 1

2π

ˆ

γ

τ + z
τ(τ − z)Wk(t, θ)dτ + Ek(t)−

− 1

2π

ˆ

γ

1

τ
Wk(t, θ)dτ, (1 ≤ k ≤ m)

(2.11)
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To find Cj (z) (1 ≤ j ≤ n), we use formula (2.3) and condition (2.6). From these
formulas we find

Cj(z) = 1

	0

n∑
k=1

(−1)j+k	jk
[
exp[λjωαa (t)](Dta)k−1(ϕ)

]
t=a =

= 1

	0

n∑
k=1

(−1)j+k	jkW
j
k (z) ≡ "j(z) (1 ≤ j ≤ n)

(2.12)

Thus, if a solution to problem D exists, then it can be represented in the
form (1.15), (2.11) and (2.12). If we take into account properties (A) and (B), we
see that the functions "j(z)(1 ≤ j ≤ n) vanish on the boundary of the region D
with the following asymptotic behaviors

"j(z) = o[(R − r)γ ], (1 ≤ j ≤ n), γ1 > β − 1 at r → α (2.13)

and the functionsEk(t), Wk(t, θ) vanish on the side surface of the cylinder with the
following asymptotic behavior

Ek(t) = o[(t − α)γ1], γ1 > α − 1 at t → a (2.14)

Thus, the following statement is proved

Theorem 5 Let the conditions of Theorem 1, 3, and 4 be satisfied. In addition,
under the conditions of problem D, let the functions Ejk (t, θ), F

j

k (t) (1 ≤ j, k ≤
m), W

j
k (z) (1 ≤ j, k ≤ n), such that "j(Reiθ ) = 0 (1 ≤ j ≤ n) with asymptotic

behavior (2.13) and Ek(a) = 0 (1 ≤ k ≤ m) with asymptotic behavior (2.14).
Then problem D has a unique solution, which is given by formulas (1.15), (2.11)
and (2.12).
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Principal Higgs Bundles and Schottky
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Abstract Schottky representations are shown to be related to (A,B,A) branes in
the moduli space of Principal Higgs bundles over a compact Riemann surface.
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1 Introduction

The moduli space of G-Higgs bundles over a compact Riemann surface X, where
G is a reductive complex algebraic group, was constructed by Hitchin [10], it has a
structure of Hyperkähler manifold and it is related with mirror symmetry [9] and to
the geometric Langlands correspondence [11]. It is well known by the Non Abelian
Hodge theory [4, 5, 10, 15] that the moduli space of Higgs bundles is homeomorphic
to the moduli space of solutions to the Hitchin equations and to the moduli space of
representations of the fundamental group of X, π1(X), in G.

On the other hand, to parameterize all Riemann surfaces X of genus g ≥
2, a less well-known result, the so-called “retrosection theorem”, or Schottky
uniformization, asserts that we can write X ∼= �/$, for a certain free group of
Möbius transformations $ ⊂ PSL2C of rank g (called, in this context, a Schottky
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group) and region of discontinuity (for the $-action) � ⊂ CP
1 (see [2, 6]). This

uniformization is defined on a less explicit subset of Hom($, PSL2C)/PSL2C,
having the advantage of providing holomorphic coordinates, when comparing for
instance with the Fuchsian parameterization. Motivated by the mentioned Schottky
uniformization, consider the presentation of the fundamental group of a fixed
comapct Riemann surface X, of genus g ≥ 1 (we are implicitly choosing a base
point x0 ∈ X, but this is irrelevant when considering isomorphism classes of

representations) π1(X) =
〈
α1, · · · , αg, β1, · · · , βg |∏g

i=1αiβiα
−1
i β

−1
i = 1

〉
. A

representation ρ : π1(X) → G is said to be Schottky (with respect to our choice
of generators above) if ρ(αi) = e for all i = 1, · · · , g, with e the identity of
G. Although the definitions require a choice of generators for π1(X), our results
are independent of such choices. Thus, from an algebro-geometric perspective,
Schottky representations (up to conjugation) are naturally parametrized by the affine
geometric invariant theory (GIT) quotient

S := Hom
(
Fg, G

)
//G ⊂ B := Hom (π1(X), G) //G

where Fg denotes a fixed free group of rank g. This affine algebraic variety was
introduced and studied in [3] where was given its relation with the so called Schottky
principal bundles. Schottky representations have the following natural topological
interpretation. Suppose thatM is a 3-manifold whose boundary isX, and the natural
morphism i∗ : π1(X) → π1(M) induced by the inclusion i : X ↪→ M , has all the
αi in its kernel and the βi are free, i = 1, · · · , g. Then it is easy to see that Schottky
representations are the representations of π1(X) which “extend toM”, meaning that
they factor through i∗ (note that π1(M) is indeed a free group of rank g).

In addition to its relation to the uniformization problems for holomorphic G-
bundles, Schottky representations also appear in a different context, related to the
above mentioned non-abelian Hodge theory: recently, Baraglia and Schaposnik
considered G-Higgs bundles over a Riemann surface equipped with an anti-
holomorphic involution and showed that, inside the moduli space of G-Higgs
bundles, the locus of those which are fixed by an associated involution define what is
called an (A,B,A)-brane [1]. The study of branes is of great interest in connection
with mirror symmetry and the geometric Langlands correspondence (see [11]).

In Sect. 2, we recall the definition of a Schottky respresentation introduced in
[3], endow the set of Schottky representations, S, with the structure of an affine
algebraic variety, we consider the conjugation action of G on the variety and
construct the GIT quotient, the Schottky space S := S//G, which is an irreducible
affine algebraic variety but with singularities. In order to compute the dimension of
the Schottky space we consider its tangent spaces in smooth representations (good
representations). We describe them in terms of the first cohomology group of Fg
in certain Fg-modules, and compute the dimension of the Schottky space. We also
prove that the good locus of the Schottky space is a Lagrangian submanifold of
the complex manifold of the smooth points of B and relate it with some moduli
space of flat connections. In Sect. 3 we recall the moduli space ofG-Higgs bundles,
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H, and the construction of branes inside the moduli space. More particulary, we
consider anti-holomorphic involutions of a compact Rieman surface which will give
an involution onH and onB. Baraglia and Schaposnik [1] proved that the set of fixed
smooth points of the involution is a Lagrangian submanifold of B and an (A,B,A)-
brane inside H. In Sect. 4, we identify all Schottky representations as elements of
this brane (see [1, Proposition 43] and Proposition 4.1).

2 Schottky Representations

In this section, following [3], we give the definition of a Schottky represen-
tation of Fg into a general complex reductive algebraic group G, and some
properties of the corresponding algebraic variety. Denote by π1 = π1(X) the
fundamental group of a compact Riemann surface X, with genus g ≥ 2, and
fix generators αi , βi , i = 1, · · · , g, of π1 giving the usual presentation π1 =〈
α1, · · · , αg, β1, · · · , βg |∏g

i=1αiβiα
−1
i β

−1
i = 1

〉
. Let G be a complex connected

reductive algebraic group and denote by Fg a fixed free group of rank g, with
g fixed generators γ 1, · · · , γg. Since G is algebraic, and π1 and Fg are finitely
presented, both Hom(π1,G) and Hom(Fg,G) are affine algebraic varieties. The
reductive group G acts by conjugation on Hom(π1,G) and hence, one can define
a geometric invariant theory (GIT) quotient, called the G-character variety of π1
(also called the Betti space in the context of the non-abelian Hodge theory, see
[15]), as B := Hom(π1,G)//G. This is a categorical quotient which, as an affine
algebraic variety, is the maximal spectrum of the C-algebra of G-invariant regular
functions in C[Hom(π1,G)] (see, for example [13, Theorem 3.5]). Denote by
e ∈ G, the unit element of G, and consider the short exact sequence of groups,

1 → kerϕ ↪→ π1
ϕ→ Fg → 1, where ϕ is the natural epimorphism given, in terms

of the generators, by

ϕ(αi) = 1, and ϕ(βi) = γi, ∀i = 1, · · · , g, (2.1)

so that kerϕ is the normal subgroup of π1 generated by all αi .

Definition 2.1 A representation ρ : π1 → G is called a Schottky representation
if ρ(ker ϕ) = {e}, for all i ∈ {1, · · · , g}.
Let S denote the set of Schottky representations, it is easy to see that

S∼=Hom(Fg, {e} ×G)∼=Hom(Fg,G)∼=Gg⊂Hom(π1,G)

where the last isomorphism is the evaluation map: (σ : Fg → G) �→(
σ(γ1), · · · , σ (γg)

)
. Thus, S is a smooth and irreducible affine algebraic variety.

The conjugation action of the reductive group G on Hom(π1,G) restricts to an
action on S thus it can be constructed the affine GIT quotient and also we have
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the homeomorphisms: S := S//G ∼= Gg//G ⊂ B = Hom(π1,G)//G The affine
algebraic variety S is also irreducible but singular in general ([3, Proposition 2.4]).

The notion of a good representation allows us to consider smooth points of the
GIT quotient, as we will see in this subsection. Let � be a finitely generated group,
for example the fundamental group of a compact manifold. Denote by Z the center
of G and given a representation ρ : � → G we denote by Z(ρ) = {h ∈ G :
ρ(γ )h = hρ(γ ) ∀γ ∈ �} its stabilizer in G, and denote by G · ρ its G-orbit in the
algebraic variety Hom(�,G). Recall the following standard definitions.

Definition 2.2 Let ρ : �→ G be a representation. We say that ρ is:

(a) reducible if ρ(�) is contained in a proper parabolic subgroup of G,
(b) irreducible if it is not reducible,
(c) good if ρ is irreducible and Z(ρ) = Z.

In the case of Schottky representations.

Definition 2.3 A representation ρ ∈ S ⊂ Hom (π1,G) is said to be good if ρ is
good as an element of Hom (π1,G).

Denote the set of all good (resp. good Schottky) representations by Homgd (π1,G)

(resp. Sgd). Since these notions are well defined under conjugation, we can define
the corresponding quotient spaces: Bgd := Homgd (π1, G) //G and Sgd := Sgd//G,

and, we have the inclusion S
gd ⊂ B

gd. The set of good representations is Zariski
open in S (see for example [14]). By Martin [12, Lemma 4.6] there exists a good
representation in Hom (π1,G), that is, Homgd (π1, G) �= ∅, if X has genus g ≥ 2.
The case g = 1 is slightly different (see Section 9 of [3]).

Proposition 2.4 ([3, Proposition 2.13]) Let g ≥ 2. Then, there is always a good
Schottky representation ρ : π1 → G. Moreover, such a representation can be
defined to take values in a maximal compact subgroup ofG.

Theorem 2.5 Let g ≥ 2. The subsets of good representations Homgd (π1, G) and
Sgd are Zariski open in Hom (π1, G) and S, respectively. A good representation
defines a smooth point in the corresponding geometric quotient. Thus, the geometric
quotients Bgd and S

gd are complex manifolds, and S
gd is a complex submanifold of

B
gd.

Proof By Proposition 2.4 there is a good Schottky representation, for g ≥ 2. By
Sikora [14, Proposition 33], the subspaces of good representations in Hom(π1,G)

and S are Zariski open. Thus, Homgd (π1, G) and Sgd are open. Since we are
considering either surface groups or free groups, [14, Corollary 50] shows that if
ρ ∈ Homgd (π1, G), respectively ρ ∈ Sgd, then its class [ρ] is a smooth point of B,
respectively S. ��

We begin by describing the tangent space of B, at a good representation, in terms
of the group cohomology of π1. More generally, let � denote a finitely generated
group and fix ρ ∈ Hom (�,G). The adjoint representation on the Lie algebra of
G, g = Lie(G), composed with ρ, that is Adρ : � → G → GL(g) , induces
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on g a �-module structure, which we denote by gAdρ . The following result giving
an isomorphism between the Zariski tangent space of the character variety at a
good representation ρ, and the first cohomology group H 1

(
�, gAdρ

)
, was proved

by Goldman [7] and Martin [12].

Theorem 2.6 For a good representation ρ ∈ Hom (�,G) we have,

T[ρ] (Hom (�,G) //G) ∼= H 1 (�, gAdρ
)
.

The identification between tangent spaces to character varieties and group coho-
mology spaces is very useful in many situations. In particular, we can use it to
compute the dimension of the complex manifolds Bgd = Hom (π1, G)

gd //G and
S
gd ⊂ B

gd, consisting of classes of good representations, when� is the fundamental
group π1 of a surface of genus g. In fact, by Martin [12, Lemma 6.2], we have, for
ρ ∈ B

gd:

dimZ1 (π1, gAdρ

) = (2g − 1) dimG+ dimZ, dimB1 (π1, gAdρ

) = dimG− dimZ,

and also if [ρ] ∈ B
gd, then T[ρ]B ∼= H 1

(
π1, gAdρ

)
and

dim T[ρ]B = (2g − 2) dimG+ 2 dimZ (2.2)

We now compute the dimension of S, using the techniques of group cohomology.
By the density result (Theorem 2.5), the computations can be carried out at good
representations.

Proposition 2.7 ([3, Proposition 7.1]) Let g ≥ 2, the dimension of S is given by
dimS = (g − 1) dimG+ dimZ.

Recall that a Lagrangian submanifold L ⊂ M of a symplectic manifold M is
a half dimensional submanifold such that the symplectic form vanishes on any
tangent vectors to L. It is well known that character varieties of surface group
representations have a natural symplectic structure [7], which can be constructed
as follows. Consider an Ad-invariant bilinear form 〈 , 〉 on g. Then, using the cup
product on group cohomology

∪ : H 1 (π1, gAdρ

)⊗H 1 (π1, gAdρ

)→ H 2 (π1, gAdρ

)
, (2.3)

and composing it with the contraction with 〈 , 〉 and with the evaluation on the
fundamental 2-cycle, we obtain a non-degenerate bilinear pairing:

H 1 (π1, gAdρ

)⊗H 1 (π1, gAdρ

) ∪−→ H 2 (π1, gAdρ

) 〈 , 〉−→ H 2 (π1, C) ∼= C

(2.4)
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Under the identification of the first cohomology group H 1
(
π1, gAdρ

)
with the

tangent space at a good representation ρ ∈ B
gd, this pairing defines a complex

sympletic form on the complex manifold B
gd. This symplectic form is complex

analytic with respect to the complex structure on B
gd coming from the complex

structure on G, and S
gd ⊂ B

gd is Lagrangian.1

Theorem 2.8 The good locus of the Schottky space S
gd is a Lagrangian submani-

fold of Bgd.

Proof The restriction of the map (2.3) to H 1
(
Fg, gAdρ

)
is a vanishing map:

∪ : H 1 (Fg, gAdρ

)⊗H 1 (Fg, gAdρ

)→ H 2 (Fg, gAdρ

) = 0,

because free groups have vanishing higher cohomology groups (see [2]). Since the
tangent space, at a good point, to the strict Schottky locus S is identified with
H 1

(
Fg, gAdρ

)
(see Theorem 2.6), this means that the symplectic form, defined

above on B
gd, vanishes on any two tangent vectors to S

gd. Since the dimension
of Bgd is twice the dimension of Sgd (see (2.2) and Proposition 2.7), we conclude
the result. ��

Let X be a compact Riemann surface of genus g, and let M be a compact 3-
handlebody of genus g with boundary ∂M ∼= X such that π1(M, x0) = Fg and let
x0 ∈ X ⊂ M . Thus, the inclusion (X, x0) ↪→ (M, x0) implies the surjective map
ϕ : π1 = π1(X, x0) → π1(M, x0) which asigns αi → 1, βi → γi . Let FM(G)
denote the moduli space of flat G-connections overM .

Theorem 2.9 The moduli space S, of Schottky representations with respect to ϕ,
coincides with the moduli space FM(G). That is, S = Hom(Fg,G)//G ∼= FM(G).

Proof By hypothesis π1(M, x0) is a free group of rank g, and π1 has a “symplectic
presentation” in terms of generators αi and βi , i = 1, · · · , g, as in Eq. (2), so that
ϕ(αi) = 1, ϕ(βi) = γi, i = 1, · · · , g, where γ1, · · · , γg form a free basis of
π1(M, x0). Thus, a Schottky representation ρ : π1 → G with respect to ϕ factors
through a representation of π1(M, x0) ∼= Fg via ϕ. This is precisely the same as
saying that the corresponding flat connection∇ρ on X extends, as a flat connection,
to the 3-manifoldM . Conversely, a flatG-connection onM induces a representation
ρ : π1 → G satisfying ρ(kerϕ) = {e}, and thus it is a Schottky representation of
π1 (with respect to ϕ). This correspondence is well defined up to conjugation byG,
and so, we have a natural identification: S = Hom(Fg,G)//G ∼= FM(G). ��

1 For a general real Lie group, the analogous pairing defines a smooth (C∞) symplectic structure,
see [7].
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3 Principal Higgs Bundles and Branes

Let X be a compact Riemann surface of genus g ≥ 2 and G a connected complex
reductive group

Definition 3.1 A pair (E, φ) is a G-Higgs bundle on X: if E is a G-bundle on X
and φ, the Higgs field, is a holomorphic section ofAd(E)⊗K . (Ad(E) is the adjoint
bundle and K the canonical bundle of X)

Considering a notion of stability it can be constructed H, the moduli space of
G-Higgs bundles which has a hyperkähler structure (Hitchin, [10]). Denoting by
(I, J,K) the choice of the three Hyperkähler complex structures we can consider
submanifolds of H that are Lagrangian (type A) or complex (type B) with respect
to each of the hyperkähler structures. Kasputin and Witten [11] called these
submanifolds branes, more specifically, (B,A,A), (A,B,A) or (A,A,B)-branes.
They have connection with the geometric Langlands program and mirror symmetry.
In order to obtain branes we can consider anti-holomorphic involutions of X.

Let X be a compact Riemann surface of genus g ≥ 2 and f : X → X an anti-
holomorphic involution. This induces an involution on B, indeed, fixing x0 ∈ X,
f induces an isomorphism between π1(X, x0) and π1(X, f (x0)) and fixing γ , a
path from x0 to f (x0), the composition of the isomorphism with the conjugation
by γ gives an automorphism of π1(X, x0). Changing γ , the automorphism changes
by composing with a inner automorphism. If we consider the good locus, Bgd, the
involution preserves this subvariety. This can be identified with the moduli space
of gauge equivalence classes of flat G-connections on X with reductive holonomy,
so we get an involution of this one by pullback of connections. Now, the moduli
space of gauge equivalence classes of flat G-connections on X is isomorphic to the
moduli space of solutions to the Hitchin equations and this last one is isomorphic to
H. (Non-Abelian Hodge Theorem [4, 5, 10, 15]). In [1], it is denoted by LG the set
of fixed points of the involution in B

gd (or in H) and proved that

Proposition 3.2 ([1, Proposition 10]) If non-empty, the set of good points of LG is
a smooth Lagrangian submanifold of Bgd.

Following the ideas of [11], Baraglia and Schaposnik proved that

Theorem 3.3 ([1, Theorem 14]) LG is an (A,B,A)-brane defined on H.

Consider now the 3-manifold with boundary X̂ := X × [−1, 1], such that f
defines an orientation preserving involution σ : X̂ → X̂ given by σ(x, t) =
(f (x),−t). The boundary of X̂ consists of two copies of X and the boundary of
the compact 3-manifoldM := X̂/σ, is homeomorphic to X.

Proposition 3.4 ([1, Proposition 43]) The representations ofX inG, which extend
toM , belong to the (A,B,A)-brane LG.

This subspace of representations can be viewed as flat G-connections on X that
extend to flat G-connections overM , that is, as FM(G).
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4 Schottky Representations and Branes

Suppose now that we have X a compact Riemann surface with an anti-holomorphic
involution f : X → X, defining a real structure on X. Using the construction
and notations of the Sect. 3, let M be the compact 3-manifold whose boundary is
homeomorphic to X. Then,

Theorem 4.1 Let f : X → X be an anti-holomorphic involution such that M is a
handlebody of genus g, and let x0 ∈ X ⊂ M be fixed by f . Then, the moduli space
S of Schottky representations with respect to the map ϕ in (2.1) is included in the
Baraglia-Schaposnik brane LG.

Proof In Proposition 3.4 it is proved the existence of an inclusion:FM(G)→ LG ⊂
H. Since, by Theorem 2.9, S can be identified with FM(G) the result follows. ��
Remark 4.2 The assumption of the previous proposition is verified when the anti-
holomorphic involution f has as fixed point locus the union of g + 1 disjoint loops
and disconnected orientation double cover (see [8]). In this case, Proposition 3.2
says that the set of smooth points of LG is a non-empty Lagrangian submanifold of
H. In a future work, we plan to further address this construction.

Conclusions
• Under our approach, since there are good Schottky representations for every g ≥

2, this furnishes a proof that the set of smooth points of the Baraglia-Schaposnik
brane is non-empty.

• As S ⊂ LG, in a future work, we plan to study the conditions under which this
inclusion is actually a bijection.
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1 Introduction

Let G be a connected reductive complex algebraic group, and � be a finitely
presented group. TheG-character variety of � is defined to be the (affine) geometric
invariant theory (GIT) quotient

X�G = Hom(�,G)//G.

The most well studied families of character varieties include the cases when the
group � is the fundamental group of a Riemann surface $, and its “twisted”
variants. In these cases, the non-abelian Hodge correspondence (see, for example
[20]) shows that (components of) X�G are homeomorphic to certain moduli
spaces of G-Higgs bundles which appear in connection to important problems
in Mathematical-Physics: for example, these spaces play an important role in the
quantum field theory interpretation of the geometric Langlands correspondence, in
the context of mirror symmetry [13].

The study of geometric and topological properties of character varieties is
an active topic and there are many recent advances in the computation of their
Poincaré polynomials and other invariants. For the surface group case (� = π1($)

and related groups) the calculations of Poincaré polynomials started with Hitchin
and Gothen, and have been pursued more recently by Hausel, Lettelier, Mellit,
Rodriguez-Villegas, Schiffmann and others, who also considered the parabolic
version of these character varieties (see [12, 16, 19]). Those recent results use
arithmetic methods: it is shown that the number of points of the corresponding
moduli space over finite fields is given by a polynomial, which turns out to coincide
with theE-polynomial of X�G ([12, Appendix]). Then, in the smooth case, the pure
nature of the cohomology of Higgs bundles moduli spaces allows the derivation of
the Poincaré polyomial from the E-polynomial.

On the other hand, for many important classes of singular character varieties,
explicitly computable formulas for the E-polynomials (also called Serre poly-
nomials) are very hard to obtain. In the articles of Logares, Muñoz, Newstead
and Lawton [14, 15] (using geometric methods) and of Baraglia and Hekmati [1]
(using arithmetic methods), the E-polynomials are computed for several character
varieties, with G = GL(n,C), SL(n,C) and PGL(n,C) for small values of n, but
the computations quickly become intractable for n higher than 3.

In this short article, we describe some of the techniques and constructions that we
have recently developed for computations of E-polynomials of singular character
varieties, and present some of their main applications.

The outline of the article is as follows. Section 1 covers notations and prelimi-
naries on mixed Hodge and E-polynomials and on character varieties in the context
of GIT. In Sect. 2, we explain how to use equivariant mixed Hodge structures to
study (the identity component of) X�G when � is a free abelian group and G a
classical group. These character vareities have orbifold singularities and we can
obtain their full mixed Hodge polynomials. In Sect. 3, for arbitrary �, we define a
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stratification of GL(n,C)-character varieties (which also exists for G = SL(n,C)
or PGL(n,C)) which allows writing down an explicit plethystic exponential
relation between generating functions of the E-polynomials of X�GL(n,C) and
of its locus of irreducible representations X irr

� GL(n,C). Finally, in Sect. 4, we
consider the free group � = Fr of rank r , and announce the solution of a conjecture
of Lawton and Muñoz: the E-polynomials of XFr SL(n,C) and of XFr PGL(n,C)
coincide, for every n ∈ N. For lack of space, the proofs are omitted and will be
published elsewhere.

2 Preliminaries on Hodge-Deligne Polynomials, Affine GIT
and Character Varieties

In this article, all algebraic varieties are defined over C, G is a connected reductive
algebraic group, and � is a finitely presented group.

Let X be a quasi-projective variety (not necessarily irreducible), of com-
plex dimension ≤ d . Deligne showed that the compactly supported cohomology
H ∗
c (X) := H ∗

c (X,C) can be endowed with a mixed Hodge structure whose mixed
Hodge numbers are given by

hk,p,q(X) := dimCH
k,p,q
c (X) ∈ N0,

for k, p, q ∈ {0, · · · , 2d}, and we call (p, q) the k-weights of X, if hk,p,q �= 0 (c.f.
[3, 18]).

Mixed Hodge numbers are symmetric in the weights, hk,p,q = hk,q,p, and
dimCH

k
c (X) =

∑
p,q h

k,p,q . Therefore, they provide the (compactly supported)
Betti numbers, yielding the usual Betti numbers, by Poincaré duality, in the non-
singular case. They are also the coefficients of the mixed Hodge polynomial of X
on three variables,

μ(X; t, u, v) :=
∑
k,p,q

hk,p,q(X) tkupvq ∈ N0[t, u, v], (2.1)

which specializes to the (compactly supported) Poincaré polynomial by setting u =
v = 1, Pct (X) := μ(X; t, 1, 1) (and provides the usual Poincaré polynomial in
the smooth situation). Plugging t = −1, mixed Hodge polynomials convert into the
E-polynomial of X, or the Serre polynomial of X, given by

E(X; u, v) =
∑
k,p,q

(−1)khk,p,q(X) upvq ∈ Z[u, v].

From the E-polynomial we can compute the (compactly supported) Euler charac-
teristic of X as χc(X) = E(X; 1, 1) = μ(X; −1, 1, 1).
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Serre polynomials satisfy an additive property with respect to stratifications by
locally closed (in the Zariski topology) strata: if X has a closed subvariety Z ⊂ X

we have (see, eg. [18]),

E(X) = E(Z)+ E(X \ Z).

TheE-polynomial also satisfies (c.f. [4, 15]) a multiplicative property for fibrations.
Namely, for a given algebraic fibration F ↪→ X→ B, we have

E(X) = E(F) · E(B)

in any of the following three situations:

(i) the fibration is locally trivial in the Zariski topology of B,
(ii) F , X and B are smooth, the fibration is locally trivial in the complex analytic

topology, and π1(B) acts trivially on H ∗
c (F ), or

(iii) X, B are smooth and F is a complex connected Lie group.

We say X is of Hodge-Tate type (also called balanced type) if all the k-weights are
of the form (p, p) with p ∈ {0, · · · , k}, in which case the sum in μ(X) reduces to
a one-variable sum. In particular, the E-polynomials of Hodge-Tate type varieties
depend only the product uv, so we write x = uv and use the notation E(X; x) :=
E(X; √x,√x) ∈ Z[x].

Now let X be an affine algebraic variety, and let the reductive group G act
algebraically on X. The induced action of G on the ring C[X] of regular functions
on X defines the (affine) GIT quotient

X//G := Spec
(
C[X]G

)
,

where C[X]G is the subring of G-invariants in C[X]. This quotient identifies G-
orbits whose closures intersect, such that each point in the quotient classifies an
equivalence class of orbits, leading to a stability condition. Let Gx ⊂ G be the
stabilizer of x ∈ X and consider the orbit map through x, ψx : G→ X; g �→ g · x.
We define x ∈ X to be stable if ψx is a proper map and polystable if the orbitG · x
is closed in X. Stability implies polystability, but not conversely.

GIT shows that the stable locusXs ⊂ X is a Zariski open set (hence dense, when
non-empty) and that the restriction of the affine quotient map� : X→ X//G to the
stable locus,Xs → Xs/G, is a geometric quotient (or an orbit space), where�(Xs)
is Zariski open in X//G.

Now, consider a finitely presented group �. The (generally singular) algebraic
variety of representations of � in G is

R�G = Hom(�,G).
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Each ρ ∈ R�G is determined by ρ(γ ), for each generator γ ∈ �, and satisfying the
relations of the group �. There is an algebraic action of G on the variety R�G by
conjugation of representations, g−1ρg, yielding the G-character variety of �,

X�G := Hom(�,G)//G,

as the GIT quotient.
By definition, polystable representations are representations ρ : � → G whose

orbits G · ρ := {gρg−1 : g ∈ G} are Zariski closed in R�G. Alternatively, a
representation ρ is polystable if and only if it is completely reducible (i.e, if ρ(�) ⊂
P ⊂ G for some proper parabolicP ofG, then ρ(�) is contained in a Levi subgroup
of P ). Denote the subset of polystable representations in R�G by Rps� G ⊂ R�G,
which is a Zariski locally-closed subvariety containing the stable locus Rs�G ⊂
R�G.

Proposition 2.1 ([7]) There is a bijective correspondence:

X�G = R�G//G ∼= Rps� G/G,

where the right hand side is called the polystable quotient.

We say that ρ is irreducible if ρ(�) is not contained in a proper parabolic
subgroup of G. Alternatively, ρ is irreducible if it is polystable and Zρ , the
centralizer of ρ(�) inside G, is a finite extension of the center ZG ⊂ G. Denote
by Rirr� G ⊂ Rps� G the subset of irreducible representations (being a Zariski open
subset of R�G, Rirr� G is a quasi-projective variety), and since irreducibility is well
defined on G-orbits, denote by

X irr
� G := Rirr� G/G (2.2)

the G-irreducible character variety of �, which is a geometric quotient, as it
happens with the stable locus. In fact, it can be proved that irreducibility is
equivalent to GIT stability for character varieties (see [2, Thm. 1.3(1)]).

3 The Free Abelian Case

In this section, we are concerned with the determination of the mixed Hodge
polynomials of character varieties X�G of the free abelian group of rank r , � ∼= Z

r .
As we always work over C, we abbreviate the notation of the classical groups such
as the linear group, special linear, special orthogonal and symplectic to GLn, SLn,
SOn and Spn, respectively (instead of GL(n,C), etc).



104 C. Florentino et al.

The topology and geometry of the character varieties XZrG was studied in [8,
21], among others. Most important for us are the following facts:

(i) there is only one irreducible component containing the trivial representation,
that we denote by X 0

Zr
G [21, Theorem 2.1],

(ii) if the semisimple part ofG is a classical group (ie, one of SLn, SOn and Spn),
there exists an algebraic isomorphism

X 0
Zr
G ∼= (TG)r /WG (3.1)

where TG is a maximal torus of G, andWG its Weyl group [21, Theorem 2.1],
(iii) the irreducibility of the free abelian character varieties XZrG can be character-

ized, in terms of G: for example, if the semisimple part of G is a product
of SLn’s and Spn’s then XZrG is irreducible, so that XZrG ∼= X 0

Zr
G [8,

Theorem 1.2].

We now focus on the determination of the mixed Hodge numbers of XZrG when it
is irreducible, or of X 0

Zr
G when the algebraic isomorphism (3.1) applies. We start

by explaining how mixed Hodge numbers transform under finite quotients.
Let X be a complex quasi-projective variety and F a finite group acting

algebraically on it. The action of F on X induces an action on its cohomology.
Since F acts by algebraic isomorphisms, it also induces an action on the mixed
Hodge components. Then we can regard Hk,p,q (X) as F -modules, that we denote
by

[
Hk,p,q (X)

]
F

. As in Eq. (2.1) for the mixed Hodge polynomial, we codify these
in the equivariant mixed Hodge polynomial, defined by

μF (X; t, u, v) :=
∑
k,p,q

[
Hk,p,q (X)

]
tkupvq ∈ R (F) [t, u, v]

whose coefficients belong to R(F), the representation ring of F . The polynomial
μF (X; t, u, v) may also be seen as a polynomial-weighted representation. For
instance, one can consider equivariant cohomology to obtain an isomorphism

H ∗ (X/F) ∼= H ∗ (X)F (3.2)

that respects mixed Hodge structures. In particular, this isomorphism allows us to
identify the mixed Hodge polynomial of the quotient X/F as the coefficient of
the trivial representation of μF (X; t, u, v) when written on a basis of irreducible
representations of F . Another important consequence for us is the inequality
hk,p,q (X) ≥ hk,p,q (X/F), which holds since Hk,p,q (X/F) is given by the F -
invariant part of Hk,p,q (X). We conclude that if X is, for instance, a balanced
variety, or if its mixed Hodge structure is actually pure (that is, if hk,p,q �= 0 then
k = p + q), then the same holds for X/F .
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We now summarize our strategy to obtain the mixed Hodge polynomials of
X 0
Zr
G, in the cases when the isomorphism (3.1) holds (so, these character varieties

are isomorphic to finite quotients of algebraic tori). The only non-zero Hodge
numbers of the maximal torus TG ∼= (C∗)n are hk,k,k (TG). Moreover, its natural
mixed Hodge structure satisfies:

Hk,k,k (TG) ∼=
k∧
H 1,1,1 (TG) .

So, the action ofWG on the cohomology ring can be understood from the one on the
mixed Hodge componentH 1,1,1 (TG). The next three theorems are proved in [11].

Theorem 3.1 For a reductive groupG satisfying (3.1), we have

μ(X 0
Zr
G; t, u, v) = 1

|WG|
∑
g∈WG

[
det

(
I + tuv Ag

)]r

where Ag is the automorphism of H 1,1,1(TG) induced by the action of g ∈ WG.

The proof starts by establishing the r = 1 case, and using the diagonal action
for higher r as well as the isomorphism (3.1), together with the multiplicative
relation for the equivariant polynomialsμWG

(
T rG

) = μWG (TG)⊗r .We remark that
Theorem 3.1 generalizes a formula for the Poincaré polynomial of X 0

Zr
G, recently

obtained in [22].
To further work with Theorem 3.1, we examine the induced action of WG on

H 1,1,1 (TG) for some classical groups. In the case G = GLn, the Weyl group is the
symmetric group Sn on n letters, which acts on H 1,1,1 (TG) ∼= C

n by permutation
of coordinates, and we obtain a general formula in terms of partitions of n.

A partition of n ∈ N is denoted by [k] = [1k1 · · · jkj · · · nkn ] where the exponent
kj ≥ 0 is the number of parts of size j ∈ {1, · · · , n}, so that n = ∑n

j=1 j · kj . Let
Pn denote the finite set of partitions of n.

Theorem 3.2 The mixed Hodge polynomials of XZrGLn and of XZr SLn satisfy

μ(XZrGLn; t, u, v) = μ(XZr SLn; t, x)(1 + tuv)r =
∑
[k]∈Pn

n∏
j=1

(1− (−tuv)j )kj r
kj ! jkj

,

By using similar considerations as for theGLn case, we can also deduce a concrete
formula for Spn in terms of bipartitions. A bipartition of n, denoted [a, b] ∈ Bn
consists of two partitions [a] ∈ Pk and [b] ∈ Pl , such that 0 ≤ k, l ≤ n with
k + l = n. One can show that bipartitions of n are in one-to-one correspondence
with conjugacy classes inWSpn , the Weyl group of Spn.
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Theorem 3.3 The mixed Hodge polynomial of XZr SpnC is given by

μ(XZr Spn; t, u, v) = 1

2nn!
∑

[a,b]∈Bn
c[a,b]

k∏
i=1

(1− (−tuv)i )air
l∏
j=1

(1+ (−tuv)j )bj r

where c[a,b] is the size of the conjugacy class inWSpn , corresponding to [a, b] ∈ Bn.

The same method allows to obtain explicit expressions for μ(X 0
Zr
G) in the case of

other reductiveG; the special orthogonal groups SOn will be addressed in a future
work.

4 Generating Functions for E-Polynomials

In this section we consider character varieties with arbitrarily bad singularities. In
this case, there are formidable difficulties in computing the corresponding Poincaré
polynomials in general, and previous explicit methods have dealt with the E-
polynomials for low dimensional groups such as SL2 and SL3 [1, 14, 15].

By using the additive and multiplicative properties of E-polynomial, for G =
GLn we now address our new approach on E-polynomial computations based
on a stratification of X�G that we term by partition type, and which works for
arbitrary �.

Using standard arguments in GIT, any character variety admits a stratification
by the dimension of the stabilizer of a given representation. When G is the general
linear group GLn (as well as the related groups SLn and PGLn), there is a more
convenient refined stratification that gives a lot of information on the corresponding
character varieties X�G which we call stratification by partition type.

Definition 4.1 Let G = GLn and [k] ∈ Pn. We say that ρ ∈ R�G = Hom(�,G)
is [k]-polystable if ρ is conjugated to

⊕n
j=1 ρj where each ρj is, in turn, a direct

sum of kj > 0 irreducible representations of R�(GLj ), for j = 1, · · · , n (by
convention, if some kj = 0, then ρj is not present in the direct sum).

We denote [k]-polystable representations by R[k]
� G and use similar terminol-

ogy/notation for equivalence classes under conjugation X [k]
� G ⊂ X�G. It is to be

noted that the trivial partition [n] = [n1] ∈ Pn corresponds exactly to the irreducible
(or stable) locus: X [n]

� G = X irr
� G.

Proposition 4.2 Fix n ∈ N, and let G = GLn. Then X�G =⊔
[k]∈Pn X

[k]
� G, as a

disjoint union of locally closed quasi-projective varieties.

The next result relates, by the plethystic exponential, the generating functions
of the E-polynomials E(X�GLn) to the corresponding generating functions of the
E-polynomials of the irreducible character varieties E(X irr

� GLn).
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The plethystic exponential of a formal power series f (x, y, z) =∑
n≥0 fn(x, y)

zn ∈ Q[x, y][[z]] is denoted by PExp(f ), and defined formally (in terms of the usual
exponential) as PExp(f ) := e"(f ) ∈ Q[x, y][[z]], where " acts on monomials as:

"(xiyj zk) = ∑
l≥1

xliylj zlk

l
, where (i, j, k) ∈ N

3
0 \ {(0, 0, 0)}, and is Q-linear

on Q[x, y][[z]]. This exponential plays a prominent role in the combinatorics of
symmetric functions, and has applications in counting of gauge invariant operators
in supersymmetric quantum field theories (see eg. [5]).

Theorem 4.3 Let � be any finitely presented group. Then:

∑
n≥0

E(X�GLn; u, v) tn = PExp

⎛
⎝∑
n≥1

E(X irr
� GLn; u, v) tn

⎞
⎠ .

The proofs of Theorem 4.3 and Proposition 4.2 are detailed in [9]; they allow to
write explicit expressions for E(X�GLn), for any group �, for which we have a
formula for E(X irr

� GLm), for all m ≤ n, by a simple finite algorithm (and vice-
versa). The formula of Theorem 4.3 generalizes a formula of [17] to an arbitrary
group �, even if the correspondingGLn-character variety is not of polynomial type.

5 The Free Group Case

In this last section, we describe applications of the above methods to the case of
the free group of rank r , � = Fr ; for simplicity we adopt the notations XrGLn,
XrSLn, etc, for the corresponding character varieties. In [17], it was shown that
X irr
r GLn and XrGLn are of polynomial type. Moreover, by counting points over

finite fields and using a theorem of Katz ([12, Appendix]), Mozgovoy and Reineke
found a formula for the E-polynomial of X irr

r GLn that can be written as follows
(dropping the x variable in E(X; x), and using |[k]| := k1 + · · · + kd for the length
of a partition [k] ∈ Pd ).

Proposition 5.1 ([9, 17]) For r, n ≥ 2, we have:

E(X irr
r GLn) = (x − 1)

∑
d |n

μ(n/d)

n/d

∑
[k]∈Pd

(−1)|[k]|

|[k]|
( |[k]|
k1, · · · , kd

)

d∏
j=1

bj (x
n/d)kj x

n(r−1)kj
d (j2),
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where μ is the Möbius function, and the bj (x) are polynomials defined by:

(1+
∑
n≥1

bn(x) t
n)

⎛
⎝1+

∑
n≥1

(
(x − 1)(x2 − 1) . . . (xn − 1)

)r−1
tn

⎞
⎠ = 1. (5.1)

Using Propositions 4.2 and 5.1 and Theorem 4.3, we are able to write down very
explicit expressions for E(X [k]

r GLn), the E-polynomials of all polystable strata of
XrGLn (see [9, Secs. 5 and 6], where we also compute E(X irr

� GLn) for other �
and low n).

We now provide a few lines on a forthcoming proof of the equality between the
E-polynomials of XrSLn and of XrPGLn for all n ∈ N. This has been conjectured
in Lawton-Muñoz in [14], who proved by explicit computation the cases n = 2
and 3.

In a analogous way as for GLn (see Sect. 4), we can define the [k]-polystable
loci X [k]

r SLn and X [k]
r PGLn as follows. For a partition [k] ∈ Pn, the [k]-stratum

of XrSLn is defined by restriction of the corresponding one forGLn:

X [k]
r SLn := {ρ ∈ X [k]

r GLn | detρ = 1},

where the determinant of a representation is an element of RrC∗. By considering the
action RrC∗ × XrGLn → XrGLn given by multiplication of (conjugacy classes
of) representations, which is well defined on the GIT quotients and preserves the
stratification of GLn, we can define

X [k]
r PGLn := X [k]

r GLn/RrC∗ = X [k]
r GLn/(C

∗)r . (5.2)

Theorem 5.2 ([10]) For the free group Fr , we have the equalities:

E(XrSLn) = E(XrPGLn) = E(XrGLn)(x − 1)−r

E(X [k]
r SLn) = E(X [k]

r PGLn) = E(X [k]
r GLn)(x − 1)−r ,

for every r, n and partition [k] ∈ Pn.

The proof of Theorem 5.2 uses geometric methods and has two parts. The easy part
is the relation between the E-polynomials of X [k]

r PGLn and of X [k]
r GLn, which

follows from the locally trivial (in the Zariski topology) fibration corresponding to
the quotient (5.2). The difficult part is the relation between the strata X [k]

r PGLn

and X [k]
r SLn which involves finite quotients: it requires the proof of the triviality

of the action of the center Zn ⊂ SLn on the cohomology (with compact
support) of all the strata X [k]

r SLn; for this we use equivariant cohomology and a
deformation retraction between X irr

r SLn and the smooth part of the semialgebraic
set Hom(Fr , SU(n))/SU(n) (see [6]).
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Diagonal Double Kodaira Structures
on Finite Groups

Francesco Polizzi

Abstract We introduce some special system of generators on finite groups, that
we call diagonal double Kodaira structures and whose existence is equivalent to
the existence of some special Kodaira fibred surfaces, that we call diagonal double
Kodaira fibrations. This allows us to rephrase in purely algebraic terms some results
about finite Heisenberg groups, previously obtained in Causin and Polizzi (Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) XXII:1309–1352, 2021), and makes possible to
extend them to the case of arbitrary extra-special p-groups.

Keywords Surface braid groups · Extra-special p-groups · Kodaira fibrations
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1 Introduction

A Kodaira fibration is a smooth, connected holomorphic fibration f1 : S −→ B1,
where S is a compact complex surface and B1 is a compact complex curve, which
is not isotrivial (this means that not all its fibres are biholomorphic to each others).
The genus b1 := g(B1) is called the base genus of the fibration, whereas the genus
g := g(F ), where F is any fibre, is called the fibre genus. If a surface S is the total
space of a Kodaira fibration, we will call it a Kodaira fibred surface; it is possible to
prove that every such a surface is minimal and of general type.

Examples of Kodaira fibrations were originally constructed in [1, 11] in order
to show that, unlike the topological Euler characteristic, the signature σ of a real
manifold is not multiplicative for fibre bundles. In fact, every Kodaira fibred surface
S satisfies σ(S) > 0, see for example the introduction of [12], whereas σ(B1) =
σ(F ) = 0, and so σ(S) �= σ(B1)σ (F ).
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A double Kodaira surface is a compact complex surface S, endowed with a
double Kodaira fibration, namely a surjective, holomorphic map f : S −→ B1 ×
B2 yielding, by composition with the natural projections, two Kodaira fibrations
fi : S −→ Bi , i = 1, 2.

In [5] the author (in collaboration with A. Causin) introduced a new topological
method to construct double Kodaira fibrations, based on the so-called Heisenberg
covers of $b × $b, where $b denotes a real, closed, connected, orientable surface
of genus b (from now on, we will simply write “a real surface of genus b”). These
are finite Galois covers S −→ $b × $b, whose branch locus is the diagonal
	 ⊂ $b × $b and whose Galois group is isomorphic to a finite Heisenberg
group. In this note we rephrase the group-cohomological methods of [5] in a purely
algebraic way, by introducing the so-called diagonal double Kodaira structures on
a finite group G, see Definition 2.1. These are special systems of generators of
G, whose existence is equivalent to the fact that G is a good quotient of some
higher genus pure braid group on two strands, where “good” means that the natural
braid called A12 in [6] has non-trivial image under the quotient map. The existence
of diagonal double Kodaira structures yields in turn the existence of some special
double Kodaira fibrations, that we call of diagonal type, see Definition 4.2.

With this new and compact terminology, we give a short account of some of the
main results contained in [5], namely

• the existence of (double) Kodaira fibrations over every curve of genus b (and not
only over special curves with extra automorphisms) and the proof that the number
of such fibrations over a fixed base can be arbitrarily large, see Theorem 4.5;

• the first “double solution” to a problem, posed by Geoff Mess, from Kirby’s
problem list in low-dimensional topology, see Theorem 4.6;

• the existence of an infinite family of (double) Kodaira fibrations with slope
strictly higher than 3+ 1/3, see Theorem 4.8 and Remark 4.9.

This paper also contains some new results, namely

• the construction of diagonal double Kodaira structures on extra-special p-groups
of any exponent, see Theorems 3.7 and 3.10. This extends the equivalent
statements for extra-special p-groups of exponent p proved in [5];

• an explicit upper bound for the slope of a diagonal double Kodaira fibration, see
Proposition 4.12 and Remark 4.13.

An intriguing problem is the existence of diagonal double Kodaira structures on
finite groups that are not extra-special or, more generally, on finite groups whose
nilpotency class is at least 3, cf. Remark 2.4. However, we will not develop this
point here, hoping to come back on it in a sequel to this paper.

Notation and Conventions The order of a finite group G is denoted by |G|. If
x ∈ G, the order of x is denoted by o(x). The subgroup generated by x1, . . . , xn ∈ G
is denoted by 〈x1, . . . , xn〉. The center of G is denoted by Z(G). If x, y ∈ G, their
commutator is defined as [x, y] = xyx−1y−1. We denote both the cyclic group of
order p and the field with p elements by Zp.
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2 Diagonal Double Kodaira Structures

LetG be a finite group and let b, n ≥ 2 be two positive integers.

Definition 2.1 A diagonal double Kodaira structure of type (b, n) on G is an
ordered set of 4b + 1 generators

S = (r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z),

with o(z) = n, such that the following relations are satisfied. We systematically
use the commutator notation in order to indicate the conjugacy action, writing for
instance [x, y] = zy−1 instead of xyx−1 = z.
• Surface relations

[r−1
1b , t

−1
1b ] t−1

1b [r−1
1 b−1, t

−1
1 b−1] t−1

1 b−1 · · · [r−1
11 , t

−1
11 ] t−1

11 (t11 t12 · · · t1b) = z

[r−1
21 , t21] t21 [r−1

22 , t22] t22 · · · [r−1
2b , t2b] t2b (t−1

2b t−1
2 b−1 · · · t−1

21 ) = z−1

• Conjugacy action of r1j

[r1j , r2k] = 1 if j < k (2.1)

[r1j , r2j ] = 1

[r1j , r2k] = z−1 r2k r
−1
2j z r2j r

−1
2k if j > k

[r1j , t2k] = 1 if j < k

[r1j , t2j ] = z−1

[r1j , t2k] = [z−1, t2k] if j > k

[r1j , z] = [r−1
2j , z]

• Conjugacy action of t1j

[t1j , r2k] = 1 if j < k (2.2)

[t1j , r2j ] = t−1
2j z t2j

[t1j , r2k] = [t−1
2j , z] if j > k

[t1j , t2k] = 1 if j < k

[t1j , t2j ] = [t−1
2j , z]

[t1j , t2k] = t−1
2j z t2j z−1 t2k z t

−1
2j z−1 t2j t

−1
2k if j > k

[t1j , z] = [t−1
2j , z]
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Remark 2.2 From (2.1) and (2.2) we can deduce the corresponding conjugacy
actions of r−1

1j and t−1
1j . We leave the cumbersome but standard computations to

the reader.

Remark 2.3 Abelian groups admit no diagonal double Kodaira structures. Indeed,
the relation [r1j , t2j ] = z−1 in (2.1) provides a non-trivial commutator in G,
because o(z) = n.

Remark 2.4 Assume that the commutator subgroup [G, G] is contained in the
center Z(G), i.e., that G/Z(G) is abelian (being G non-abelian, this is equivalent
to the fact that G has nilpotency class 2, see [9, p. 22]). Then the relations defining
a diagonal double Kodaira structure on G assume the following simplified form.

• Relations expressing the centrality of z

[r1j , z] = [t1j , z] = [r2j , z] = [t2j , z] = 1 (2.3)

• Surface relations

[r−1
1b , t

−1
1b ] [r−1

1 b−1, t
−1
1 b−1] · · · [r−1

11 , t
−1
11 ] = z (2.4)

[r−1
21 , t21] [r−1

22 , t22] · · · [r−1
2b , t2b] = z−1

• Conjugacy action of r1j

[r1j , r2k] = 1 for all j, k (2.5)

[r1j , t2k] = z−δjk

• Conjugacy action of t1j

[t1j , r2k] = zδjk (2.6)

[t1j , t2k] = 1 for all j, k

where δjk stands for the Kronecker symbol.

If S is a diagonal double Kodaira structure of type (b, n) on G, then the subgroup

K2 := 〈r21, t21, . . . , r2b, t2b, z〉

is normal in G and so there is a short exact sequence

1 −→ K2 −→ G −→ Q1 −→ 1,
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where the elements r11, t11, . . . , r1b, t1b yield a complete set of representatives
for Q1. On the other hand, the set of relations defining S is invariant under the
substitutions

z←→ z−1, t1j ←→ t−1
2 b+1−j , r1j ←→ r2 b+1−j ,

hence we can also see G as the middle term of a short exact sequence

1 −→ K1 −→ G −→ Q2 −→ 1,

where

K1 := 〈r11, t11, . . . , r1b, t1b, z〉

and r21, t21, . . . , r2b, t2b yield a complete set of representatives forQ2.

Definition 2.5 A diagonal double Kodaira structure S as above will be called of
strong type (b, n) if K1 = K2 = G. Otherwise, it will be called of non-strong type
(b, n).

Sometimes we will not specify the pair (b, n), and we will simply say that S is “of
strong type” or “of non-strong type”, respectively.

3 The Case of Extra-Special p-Groups

The following classical definition can be found, for instance, in [7, p. 183] and [9,
p. 123].

Definition 3.1 Let p be a prime number. A finite p-groupG is called extra-special
if its center Z(G) is cyclic of order p and the quotient V = G/Z(G) is a non-trivial,
elementary abelian p-group.

An elementary abelian p-group is a finite-dimensional vector space over the field
Zp, hence it is of the form V = (Zp)dimV andG fits into a short exact sequence

1 −→ Zp −→ G −→ V −→ 1. (3.1)

Note that, V being abelian, we must have [G, G] = Zp, namely the commutator
subgroup of G coincides with its center. Furthermore, since the extension (3.1) is
central, it cannot be split, otherwiseG would be isomorphic to the direct product of
the two abelian groups Zp and V , which is impossible because G is non-abelian. It
can be also proved that, ifG is extra-special, then dimV is even, so |G| = pdimV+1

is an odd power of p.
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For every prime number p, there are precisely two isomorphism classes M(p),
N(p) of non-abelian groups of order p3, namely

M(p) = 〈r, t, z | rp = tp = 1, zp = 1, [r, z] = [t, z] = 1, [r, t] = z−1〉
N(p) = 〈r, t, z | rp = tp = z, zp = 1, [r, z] = [t, z] = 1, [r, t] = z−1〉

and both of them are in fact extra-special, see [7, Theorem 5.1 of Chapter 5].
If p is odd, then the groupsM(p) and N(p) are distinguished by their exponent,

which equals p and p2, respectively. If p = 2, the groupM(p) is isomorphic to the
dihedral groupD8, whereas N(p) is isomorphic to the quaternion groupQ8.

The classification of extra-special p-groups is provided by the result below, see
[7, Section 5 of Chapter 5].

Proposition 3.2 If b ≥ 2 is a positive integer and p is a prime number, there are
exactly two isomorphism classes of extra-special p-groups of order p2b+1, that can
be described as follows.

• The central product H2b+1(Zp) of b copies ofM(p), having presentation

H2b+1(Zp) = 〈 r1, t1, . . . , rb, tb, z | rpj = tpj = zp = 1,

[rj , z] = [tj , z] = 1,

[rj , rk] = [tj , tk] = 1,

[rj , tk] = z−δjk 〉.

If p is odd, this group has exponent p.
• The central product G2b+1(Zp) of b − 1 copies ofM(p) and one copy of N(p),

having presentation

G2b+1(Zp) = 〈 r1, t1, . . . , rb, tb, z | rpb = tpb = z,

rp1 = tp1 = . . . = rpb−1 = tpb−1 = zp = 1,

[rj , z] = [tj , z] = 1,

[rj , rk] = [tj , tk] = 1,

[rj , tk] = z−δjk 〉.

If p is odd, this group has exponent p2.

Remark 3.3 In both cases, from the relations above we deduce

[r−1
j , tk] = zδjk , [r−1

j , t
−1
k ] = z−δjk . (3.2)

Remark 3.4 For both groups H2b+1(Zp) and G2b+1(Zp), the center is 〈z〉 $ Zp.
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Remark 3.5 If p = 2, we can distinguish the two groups H2b+1(Zp) and
G2b+1(Zp) by counting the number of elements of order 4.

Remark 3.6 The group H2b+1(Zp) is isomorphic to the matrix Heisenberg group of
order p2b+1, that is, the subgroup of GLb+2(Zp) consisting of matrices with 1 along
the diagonal and 0 elsewhere, except for the top row and rightmost column, namely

H2b+1(Zp) =
⎧⎨
⎩
⎛
⎝1 x z

t0 Ib ty
0 0 1

⎞
⎠

∣∣∣∣ x, y ∈ (Zp)b, z ∈ Zp

⎫⎬
⎭ .

With this identification, calling {e1, . . . , eb} the standard basis of (Zp)b, we have
that:

– rj corresponds to the matrix with x = 0, y = ej , z = 0;
– tj corresponds to the matrix with x = ej , y = 0, z = 0;
– z corresponds to the matrix with x = 0, y = 0, z = 1.

Here is our first main result, cf. [5, Section 3].

Theorem 3.7 Let b ≥ 2 be a positive integer and let p be a prime number. If p
divides b+ 1, then every extra-special p-groupG of order p2b+1 admits a diagonal
double Kodaira structure of strong type (b, p).

Proof In both cases G = H2b+1(Zp) and G = G2b+1(Zp), set

r1j = r2j := rj , t1j = t2j := tj

and define

S = (r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z).

Since every extra-special p-group G satisfies [G, G] = Z(G), it suffices to check
the simplified set of relations given in Remark 2.4. Verifying (2.3), (2.5) and (2.6)
is immediate from the presentation of G (see Proposition 3.2), whereas the surface
relations (2.4) follow from (3.2) because, by assumption, we have b = −1 in Zp.
Thus S provides a diagonal double Kodaira structure onG, that is of strong type by
construction. ��

Our next goal is to show that, if in Theorem (3.7) we drop the condition that p
divides b + 1, we can still obtain some diagonal double Kodaira structures of non-
strong type on extra-special p-groups of (bigger) order p4b+1. Let us first show a
couple of technical lemmas.

Lemma 3.8 If b ≥ 2 is an integer and p ≥ 5 is a prime number, we can find
non-zero elements

λ1, . . . , λb, μ1, . . . , μb ∈ Zp



118 F. Polizzi

such that

b∑
j=1

λj =
b∑
j=1

μj = 1 (3.3)

and λjμj �= 1 for all j ∈ {1, . . . , b}.
Proof The following simple argument is borrowed from [5, proof of Proposi-
tion 2.16]. Choose arbitrarily λj , with j ∈ {1, . . . , b − 1}, and μj , with j ∈
{1, . . . , b − 2}, such that λjμj �= 1 for all j ∈ {1, . . . , b − 2}. Then λb is uniquely
determined by λb = 1−∑b−1

j=1 λj , whereasμb−1 andμb are subject to the following
conditions:

• μb−1 + μb is equal to a constant c = 1−∑b−2
j=1 μj

• μb−1 �= λ−1
b−1, μb �= λ−1

b .

These requirements are in turn equivalent to μb−1 /∈ {λ−1
b−1, c − λ−1

b }. If p ≥ 5
this can be clearly satisfied, because there are more than two non-zero elements in
Zp. ��
Now, take any anti-symmetrix matrix A = (ajk) of order 2n over Zp, and consider
the finitely presented groups

H(A) = 〈 x1, . . . , x2n, z | xp1 = . . . = xp2n = zp = 1,

[x1, z] = . . . = [x2n, z] = 1,

[xj , xk] = zajk 〉,
(3.4)

G(A) = 〈 x1, . . . , x2n, z | xp1 = . . . = xp2n−2 = zp = 1,

xp2n−1 = xp2n = z,

[x1, z] = . . . = [x2n, z] = 1,

[xj , xk] = zajk 〉,

where the exponent in zajk stands for any representative in Z of ajk ∈ Zp.
Recall that, given three elements a, b, c in a group G, we have the commutator

relation [a, bc] = [a, b]b[a, c]b−1. Since all commutators in H(A) are central, we
get

[a, bc] = [a, b][a, c] for all a, b, c ∈ H(A), (3.5)

and similarly for G(A).
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Lemma 3.9 If detA �= 0, then the following holds:
• H(A) is an extra-special p-group of order p2n+1 and exponent p. In particular,

it is isomorphic to H2n+1(Zp);
• G(A) is an extra-special p-group of order p2n+1 and exponent p2. In particular,

it is isomorphic to G2n+1(Zp).

Proof We prove only the first point, the second being similar. The commutator
relations in (3.4) show that every element of H(A) can be written in the form
xt11 . . . x

t2n
2n , with t1, . . . , t2n ∈ Z. Since xj has order p and [xj , xk] is central, it

follows that H(A) has exponent p.
The quotient of H(A) by the central subgroup 〈z〉 is an elementary abelian p-

group of order p2n. Therefore the only remaining issue is check that the center
of H(A) is precisely 〈z〉, and no larger. To this purpose, it suffices to check that
an element of the form xt11 . . . x

t2n
2n is central if and only if all the tj are zero. By

using (3.4) and (3.5), we get

xk, x
t1
1 . . . x

t2n
2n t = [xk, x1]t1 . . . [xk, x2n]t2n

= zak1t1+...+ak2nt2n .

It follows that xt11 . . . x
t2n
2n is central if and only if we have

ak1t1 + . . .+ ak2nt2n = 0, k = 1, . . . , 2n.

This is a homogeneous system of linear equations in the variables t1, . . . , t2n and
whose coefficient matrix is A. Being A non-singular by assumption, there is only
the trivial solution t1 = . . . = t2n = 0. ��

We are now in a position to prove our second main result, cf. [5, Section 2].

Theorem 3.10 If b ≥ 2 is a positive integer and p ≥ 5 is a prime number, then
every extra-special p-group G of order p4b+1 admits a diagonal double Kodaira
structure of non-strong type (b, p).

Proof Again, we treat in detail the case G = H4b+1(Zp); the proof for G =
G4b+1(Zp) is similar. Let us consider the anti-symmetric matrix

�b =
(
Lb Jb

Jb Mb

)
∈ Mat4b(Zp),
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where the blocks are the elements of Mat2b(Zp) given by

Lb =

⎛
⎜⎜⎜⎜⎜⎝

0 λ1

−λ1 0
0

. . .

0
0 λb

−λb 0

⎞
⎟⎟⎟⎟⎟⎠

Mb =

⎛
⎜⎜⎜⎜⎜⎝

0 μ1

−μ1 0
0

. . .

0
0 μb

−μb 0

⎞
⎟⎟⎟⎟⎟⎠

Jb =

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0

0

. . .

0
0 −1
1 0

⎞
⎟⎟⎟⎟⎟⎠

and λ1, . . . , λb , μ1, . . . , μb are as in Lemma 3.8. We have

det�b = (1− λ1μ1)
2(1− λ2μ2)

2 · · · (1− λbμb)2 �= 0

and so, by Lemma 3.9, we infer that H(�b) is isomorphic to H4b+1(Zp). By
definition, the group H(�b) is generated by a set of 4b + 1 elements

S = {r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z}

subject to the relations

rp1j = tp1j = rp2j = tp2j = zp = 1,

[r1j , z] = [t1j , z] = [r2j , z] = [t2j , z] = 1,

[r1j , r1k] = [t1j , t1k] = 1,

[r1j , r2k] = [t1j , t2k] = 1,

[r2j , r2k] = [t2j , t2k] = 1,

[r1j , t1k] = zδjk λj ,

[r2j , t2k] = zδjk μj ,

[r1j , t2k] = [r2j , t1k] = z−δjk .

Using (3.3), we can check that the two surface relations (2.4) are satisfied. Since the
remaining relations (2.3), (2.5) and (2.6) clearly hold, it follows that S provides a
diagonal double Kodaira structure of type (b, p) on H(�b), and so a diagonal dou-
ble Kodaira structure of the same type on the isomorphic group H4b+1(Zp). Such a
structure is not strong, because the two subgroupsK1 = 〈r11, t11, . . . , r1b, t1b, z〉
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and K2 = 〈r21, t21, . . . , r2b, t2b, z〉 are isomorphic to H2b+1(Zp), hence they both
have index p2b in G. ��
Remark 3.11 The conclusion of Lemma 3.8 is false when p ≤ 3. If p = 2, this
follows immediately from the fact that there exists a unique non-zero element in
Z2. If p = 3, two non-zero elements λi , μi ∈ Z3 satisfy λiμi �= 1 if and only if
λi = −μi , so (3.3) cannot hold. This shows that, if Theorem 3.10 is also true for
p ≤ 3, then it must be proved in a different way.

Remark 3.12 The existence of a diagonal double Kodaira structure of non-strong
type on H4b+1(Zp) was first showed in [5, Section 2], although we did not use this
terminology; the original proof relies on some group-cohomological results related
to the structure the cohomology algebra H ∗($b × $b − 	, Zp), where $b is a
real surface of genus b and 	 ⊂ $b × $b is the diagonal. Besides, such a proof
does not use Lemma 3.9, but an equivalent statement coming from the identification
of H4b+1(Zp) with the so-called symplectic Heisenberg group Heis(V , ω), where
V = H1($b ×$b −	, Zp) $ (Zp)4b and ω is any symplectic form on V .

Then, assuming that p divides b + 1, in [5, Section 3] we deduced the existence
of a diagonal double Kodaira structure of strong type on H2b+1(Zp) by setting

λ1 = . . . = λb = μ1 = . . . = μb = −1.

Indeed, this yields a diagonal double Kodaira structure on a “degenerate” Heisen-
berg group of order p4b+1 (in this case det�b = 0), admitting the group H2b+1(Zp)

as a quotient.
In this note we adopted, instead, a purely group-theoretical approach; it is less

geometric but shorter than the original one and it naturally yields new results,
namely the existence of diagonal double Kodaira structures on the extra-special p-
groups of exponent p2.

4 Geometric Interpretation: From Diagonal Double Kodaira
Structures to Diagonal Double Kodaira Fibrations

For more details on the basic definitions and results of this section, we refer the
reader to the Introduction and to [5], especially Sects. 1 and 3. Recall that a Kodaira
fibration is a smooth, connected holomorphic fibration f1 : S −→ B1, where S is a
compact complex surface andB1 is a compact complex curve, which is not isotrivial.
The genus b1 := g(B1) is called the base genus of the fibration, whereas the genus
g := g(F ), where F is any fibre, is called the fibre genus.

Definition 4.1 A double Kodaira surface is a compact complex surface S, endowed
with a double Kodaira fibration, namely a surjective, holomorphic map f : S −→
B1 × B2 yielding, by composition with the natural projections, two Kodaira
fibrations fi : S −→ Bi , i = 1, 2.
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The aim of this section is to show how the existence of diagonal double Kodaira
structures is equivalent to the existence of some special double Kodaira fibrations,
that we call diagonal double Kodaira fibrations. Looking at Gonçalves-Guaschi’s
presentation of surface pure braid groups, see [6, Theorem 7] and [5, Theorem 1.7],
we see that a finite group G admits a diagonal double Kodaira structure S of type
(b, n) if and only if there is a surjective group homomorphism

ϕ : P2($b) −→ G, (4.1)

such that z := ϕ(A12) has order n. Here P2($b) is the pure braid group of genus
b on two strands, which is isomorphic to the fundamental group π1($b × $b −
	, (p1, p2)) of the configuration space of two ordered points on a real surface of
genus b, and the generator A12 is the homotopy class in $b ×$b −	 of a loop in
$b ×$b that “winds once” around the diagonal	.

With a slight abuse of notation, in the sequel we will use the symbol $b to
indicate both a smooth complex curve of genus b and its underlying real surface.
By using Grauert-Remmert’s extension theorem together with Serre’s GAGA, the
group epimorphism ϕ gives the existence of a smooth, complex, projective surface
S endowed with a Galois cover

f : S −→ $b ×$b,

with Galois groupG and branched precisely over	 with branching order n, see [5,
Proposition 3.4].

The braid group P2($b) is the middle term of two short exact sequences

1 −→ π1($b − {pi}, pj ) −→ P2($b) −→ π1($b, pi) −→ 1, (4.2)

where {i, j } = {1, 2}, induced by the two natural projections of pointed topological
spaces ($b×$b−	, (p1, p2)) −→ ($b, pi). Composing the left homomorphism
in (4.2) with ϕ : P2($b) −→ G, we get two homomorphisms

ϕ1 : π1($b − {p2}, p1) −→ G, ϕ2 : π1($b − {p1}, p2) −→ G,

whose image equals K1 and K2, respectively. By construction, these are the
homomorphisms induced by the restrictions fi : �i −→ $b of the Galois cover
f : S −→ $b×$b to the fibres of the two natural projections πi : $b×$b −→ $b.
Since 	 intersects transversally at a single point all the fibres of the natural
projections, it follows that both such restrictions are branched at precisely one point,
and the number of connected components of the smooth curve �i ⊂ S equals the
index mi := [G : Ki ] of Ki in G.
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So, taking the Stein factorizations of the compositions πi ◦ f : S −→ $b as in the
diagram below

b

bi

πi◦f
fi θi

(4.3)

we obtain two distinct Kodaira fibrations fi : S −→ $bi , hence a double Kodaira
fibration by considering the product morphism

f = f1 × f2 : S −→ $b1 ×$b2 .

Definition 4.2 We call f : S −→ $b1 ×$b2 the diagonal double Kodaira fibration
associated with the diagonal double Kodaira structure S on the finite group G.
Conversely, we will say that a double Kodaira fibration f : S −→ $b1 × $b2 is of
diagonal type (b, n) if there exists a finite group G and a diagonal double Kodaira
structure S of type (b, n) on it such that f is associated with S.

One can wonder whether all double Kodaira fibrations are of diagonal type; the
answer is negative, as we will show in Example 4.11, see also Proposition 4.12 and
Remark 4.13.

Since the morphism θi : $bi −→ $b is étale of degreemi , by using the Hurwitz
formula we obtain

b1 − 1 = m1(b − 1), b2 − 1 = m2(b − 1). (4.4)

Moreover, the fibre genera g1, g2 of the Kodaira fibrations f1 : S −→ $b1 ,
f2 : S −→ $b2 are computed by the formulae

2g1 − 2 = |G|
m1
(2b − 2+ n), 2g2 − 2 = |G|

m2
(2b − 2+ n) ,

where n := 1− 1/n. Finally, the surface S fits into a diagram

b × b

b1 b2

f

f
θ1×θ2

so that the diagonal double Kodaira fibration f : S −→ $b1 ×$b2 is a finite cover
of degree |G|

m1m2
, branched precisely over the curve

(θ1 × θ2)
−1(	) = $b1 ×$b $b2 .
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Such a curve is always smooth, being the preimage of a smooth divisor via an
étale morphism. However, it is reducible in general, see [5, Proposition 3.11]. The
invariants of S can be now computed as follows, see [5, Proposition 3.8].

Proposition 4.3 Let f : S −→ $b1×$b2 be the diagonal double Kodaira fibration
associated with a diagonal double Kodaira structure S of type (b, n) on a finite
groupG. Then we have

c2
1(S) = |G| (2b− 2)(4b− 4+ 4n− n2)

c2(S) = |G| (2b− 2)(2b− 2+ n).

As a consequence, the slope and the signature of S can be expressed as

ν(S) = c2
1(S)

c2(S)
= 2+ 2n− n2

2b − 2+ n

σ(S) = 1

3

(
c2

1(S)− 2c2(S)
)
= 1

3
|G| (2b− 2)(2n− n2),

where n = 1− 1/n.

Remark 4.4 By definition, S is a diagonal double Kodaira structure of strong type
if and only if m1 = m2 = 1, that in turn implies b1 = b2 = b, i.e., f = f. In other
words, S is of strong type if and only if no Stein factorization as in (4.3) is needed
or, equivalently, if and only if the Galois cover f : S −→ $b ×$b induced by (4.1)
is already a double Kodaira fibration, branched on the diagonal	 ⊂ $b ×$b.

We can now specialize the previous results, by taking as G an extra-special p-
group and using what we have proved in Sect. 3. Let ω : N −→ N be the arithmetic
function counting the number of distinct prime factors of a positive integer, see [8,
p.335]. The following is [5, Corollary 3.18].

Theorem 4.5 Let $b be any smooth curve of genus b. Then there exists a double
Kodaira fibration f : S −→ $b × $b . Moreover, denoting by κ(b) the number of
such fibrations, we have

κ(b) ≥ ω(b + 1).

In particular,

lim sup
b→+∞

κ(b) = +∞.

Proof Given a prime number p dividing b + 1, every extra-special p-group G of
order p2b+1 admits a diagonal double Kodaira structure of strong type (b, p), see
Theorem 3.7, and this gives in turn a diagonal double Kodaira fibration f : S −→
$b × $b , see Remark 4.4. Two different prime divisors of b + 1 give rise to two
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non-homeomorphic double Kodaira surfaces, because the corresponding signatures
are different (use the last equality in Proposition (4.3) with n = p and note that, for
fixed b, the function expressing σ(S) is strictly increasing in p). Since the number
of distinct prime factors of b+ 1 can be arbitrarily large when b goes to infinity, the
last statement follows. ��

The case b = 2, p = 3 is particularly interesting. In fact, it provides (to our
knowledge) the first “double solution” to a problem (posed by Geoff Mess) from
Kirby’s problem list in low-dimensional topology ([10, Problem 2.18A]), asking
what is the smallest number b for which there exists a real surface bundle over a
surface with base genus b and non-zero signature, see [5, Proposition 3.19].

Theorem 4.6 Let S be the diagonal double Kodaira surface associated with a
diagonal double Kodaira structure of strong type (2, 3) on an extra-special 3-group
G of order 35. Then the real manifold X underlying S is a closed, orientable 4-
manifold of signature 144 that can be realized as a real surface bundle over a
surface of genus 2, with fibre genus 325, in two different ways.

This naturally leads to the following interesting problem, see [5, Question 3.20].

Question 4.7 What are the minimal possible fibre genus fmin and the minimum
possible signature σmin for a double Kodaira fibration S −→ $2 ×$2?

Note that Theorem 4.6 implies fmin ≤ 325 and σmin ≤ 144.
Let us show now how to use our methods in order to obtain double Kodaira

fibrations with slope strictly higher than 2 + 1/3. Fix b = 2 and let p ≥ 5 be a
prime number. Then every extra-special p-group G of order p4b+1 = p9 admits a
diagonal double Kodaira structure S of non-strong type (2, p) and such that m1 =
m2 = p2b , see Theorem 3.10. Setting b′ := p4 + 1, cf. Eq. (4.4), and using also
Proposition 4.3, we obtain the following particular case of [5, Proposition 3.12].

Theorem 4.8 Let f : S2, p −→ $b′ ×$b′ be the diagonal double Kodaira fibration
associated with a diagonal double Kodaira structure of non-strong type (2, p) on an
extra-special p-group G of order p9. Then the maximum slope ν(S2, p) is attained
for precisely two values of p, namely

ν(S2, 5) = ν(S2, 7) = 2+ 12

35
.

Furthermore, ν(S2, p) > 2+1/3 for all p ≥ 5. More precisely, if p ≥ 7 the function
ν(S2, p) is strictly decreasing and

lim
p→+∞ ν(S2, p) = 2+ 1

3
.

Remark 4.9 The original examples by Atiyah, Hirzebruch and Kodaira have slope
lying in the interval (2, 2+1/3], see [3, p. 221]. Our construction provides an infinite
family of Kodaira fibred surfaces such that 2+1/3 < ν(S) ≤ 2+12/35, maintaining
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at the same time a complete control on both the base genus and the signature. By
contrast, the “tautological construction” used in [4] yields a higher slope than ours,
namely 2+ 2/3, but it involves an étale pullback “of sufficiently large degree”, that
completely loses control on the other quantities.

Remark 4.10 By Liu’s inequality (see [13]), every Kodaira fibred surface S satisfies
ν(S) < 3. The value ν = 2 + 2/3 is the current record for the slope, in particular
it is unknown whether the slope of a Kodaira fibred surface can be arbitrarily close
to 3.

Finally, let us show that there exist double Kodaira fibrations that are not of
diagonal type.

Example 4.11 Take any double Kodaira fibration f : S −→ $b1 ×$b2 with b2 = 2
and ν(S) = 2 + 1/2, see for instance [12, Examples 6.3 and 6.6 of Table 3]. We
claim that such a f cannot be of diagonal type. In fact, assume by contradiction that
f is associated with a diagonal double Kodaira structure of type (b, n) on a finite
groupG. Then, by using the second equation in (4.4), we obtain 2−1 = m2(b−1),
hence b = 2. Substituting in the slope expression provided by Proposition 4.3, we
get

1

2
= 2n− n2

2+ n
,

or, equivalently, n2 − n+ 2 = 0, that has no integer solutions.

In fact, Example 4.11 is an instance of the following, more general result.

Proposition 4.12 Let f : S −→ $b1 × $b2 be a double Kodaira fibration of
diagonal type (b, n). Then we have ν(S) = 2 + s, where s is a strictly positive
rational number such that (s+2)2−8bs is a perfect square in Q. As a consequence,
we obtain s < 6− 4

√
2.

Proof By definition ν(S) is a rational number, and moreover ν(S) > 2 because of
Arakelov inequality, see [2] . So we can write ν(S) = 2 + s, with s > 0. Since we
are assuming that S is associated with a diagonal double Kodaira structure of type
(b, n), the slope identity in Proposition 4.3 yields

s = 2n− n2

2b − 2+ n
,

or, equivalently,

(2bs − s − 1)n2 − sn+ 1 = 0.
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The discriminant of this quadratic equation is (s + 2)2 − 8bs, and this quantity
must be a perfect square in Q because n is an integer number. In particular, we have
(s + 2)2 ≥ 8bs, that is,

2 ≤ b ≤ (s + 2)2

8s
.

From this we deduce the inequality (s + 2)2 − 16s ≥ 0; since Remark 4.10 gives
s < 1, we infer s < 6− 4

√
2. ��

Remark 4.13 Since 6 − 4
√

2 = 0.3431... and 12/35 = 0.3428..., we see that the
surfaces S2, 5 and S2, 7, described in Theorem 4.8, “almost maximize” the slope of
a double Kodaira fibration of diagonal type. In fact, the upper bound s < 6 − 4

√
2

shows that high slope examples, like Catanese-Rollenske’s one for which s = 2/3,
are out of reach of the methods of this paper.
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Abstract This note is based on a talk given at the 2019 ISAAC Congress in Aveiro.
We give an expository account of joint work with Daniele Alessandrini and Gye-
Seon Lee on Hitchin components for orbifold groups, recasting part of it in the
language of analytic orbi-curves. This reduces the computation of the dimension
of the Hitchin component for orbifold groups to an application of the orbifold
Riemann-Roch theorem.

Keywords Fuchsian groups · Symmetric differentials · Hitchin components

Mathematics Subject Classification (2010) Primary 30F35, 30F30; Secondary
53C07.

1 Hitchin Components for Orbifold Fundamental Groups

1.1 Compact Orbi-Surfaces of Negative Euler Characteristic

An orbifold is a kind of space that generalises the notion of a manifold (be it a
topological, differentiable or analytic one). For instance, a differentiable orbifold
is a type of space that locally looks like the quotient of an open set U ⊂ R

n by
a finite group of diffeomorphisms � ⊂ Diff(U). What is meant here by quotient
depends a lot on how one understands the expression a type of space. For us, it will
be sufficient to consider (topological, differentiable or analytic) stacks as our notion
of space. Such a stack is then called an orbifold if it admits a covering by open
substacks of the form [U/�], parameterising families of �-orbits in U , where U is
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the local model for representable stacks (i.e. manifolds) and � is a finite subgroup
of the automorphism group of U . A fundamental example of orbifold is the stack
X := [M/π], where π is a discrete group acting (effectively and) properly on a
manifoldM .

A coarse moduli space (CMS) for an orbifold X is a manifold X equipped with
a morphism p : X −→ X that satisfies the following universal property for all
manifoldsM:

X
p

M

X

∃!

In the first part of the paper, we will work only with (effective) differentiable
orbifolds. Then, up to real dimension 2, it suffices to enlarge the category of
manifolds slightly and accommodate manifolds with corners, to ensure that coarse
moduli spaces always exist. This is convenient because it allows us to think of an
orbi-surface (or even an orbi-surface with boundary) as an ordinary surface with
an extra structure, namely some “special points", all of whose open neighbourhoods
are of the form [U/�] with non-trivial�. As a matter of fact, since we are in the C∞
setting and � is finite, we can always assume that it acts on the open set U ⊂ R

2

preserving a positive-definite metric. The classification of linear isometries of the
Euclidean plane then tells that a point in the coarse moduli space U/� is of one of
the following three types:

1. A cone point, which admits an open neighbourhood of the form D(0; ε)/Cm,
where Cm $ Z/mZ is a finite cyclic group of order m, acting on the open disk
D(0; ε) by rotation. Such a cone point is said to have order m.

2. A dihedral point (or corner reflector), which admits an open neighbourhood of
the form D(0; ε)/Dm, where Dm $ Cm � Z/2Z is the dihedral group of order
2m. Such a dihedral point is said to have order m.

3. A mirror point, which admits an open neighbourhood of the fromD(0; ε)/Z/2Z,
where Z/2Z acts on D(0; ε) by reflection through a diameter.

For instance, a 2-dimensional orbifold could have a triangle for a coarse moduli
space: the edges are mirror points, while the vertices are dihedral points. Another
good thing about (compact) orbi-surfaces is that they admit an orbifold Euler
characteristic, computable explicitly from the coarse moduli space through the
following formula (in which k is the number of cone points, & the number of dihedral
points, mi is the order of the i-th cone point and nj is the order of the j -th dihedral
point):

χ(X ) = χ(X) −∑k
i=1

(
1− 1

mi

)
− 1

2

∑&
j=1

(
1− 1

nj

)
∈ Q. (1.1)
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In the so-called orientable case, the quantity χ(X ) is negative if and only if the
coarse moduli space X is a closed surface of genus at least 2, or a torus with at least
one cone point, or a sphere with at least three cone points. For a more complete
treatment of the fundamental properties of orbifolds, we refer for instance to [4, 5,
15, 17] and for the stacky point of view, we refer to [3, 9].

1.2 Fundamental Group and Hyperbolic Structures

A cover of an orbifold X is a morphism Y −→ X which, in orbifold charts, is
conjugate to a morphism of the form %i∈I [U/�i ] −→ [U/�], where each �i is a
subgroup of �. In particular, the canonical map U −→ [U/�] is an orbifold cover.
A more concrete example is given as follows: the “flattening" of a sphere with 3
cone points is a 2-to-1 cover of a triangle, the cone points upstairs being mapped
to dihedral points of the same order downstairs. There is an orbifold structure on
the inverse limit of all connected covers and the latter is called the universal cover
of X . The fundamental group of X is the automorphism group of the universal
cover (whose total space may or may not be a manifold). We denote by π1X the
fundamental group of X . For instance, ifM is a simply connected manifold and π is
a discrete group acting properly onM , then π1([M/π]) $ π . If one is careful about
base points, connected covers of an orbifold X correspond bijectively to subgroups
of π1X .

A hyperbolic structure on a differentiable orbifold X is a covering by open
substacks of the form [U/�] in which U ⊂ H2 is an open subspace of the
(real) hyperbolic plane and � ⊂ Isom(H2) $ PGL(2;R) is a finite subgroup of
the isometry group of H2 that leaves U invariant. If χ(X ) < 0, then X admits
hyperbolic structures and its universal cover is isomorphic to H2. The deformation
space of hyperbolic structures on X is identified, via the space of holonomy
representations of such structures, to a connected component of the topological
space

Hom
(
π1X ;PGL(2;R))/PGL(2;R).

Namely, it is the space of discrete and faithful representations ! : π1X −→
PGL(2;R). Thus, if χ(X ) < 0, it is always possible to identify π1X with a discrete
subgroup of PGL(2;R), i.e. a Fuchsian group. If the orbifold X is orientable
(which in dimension 2 amounts to saying that the CMS X is an orientable surface
and that all groups � appearing in the orbifold charts contain only orientation-
preserving transformations), then the fundamental group of X admits the following
presentation:

π1X $
〈
(ai, bi)1�i�g, (cj )1�j�k |∏1�i�g[ai, bi]

∏
1�j�k cj = 1

= cm1
1 = . . . = cmkk

〉 =: πg,(m1, ... ,mk). (1.2)
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The space of discrete and faithful representations of π1X in PGL(2;R) will be
called the Teichmüller space of X and denoted by T (X ). It is homeomorphic to a
real vector space of dimension −3χ(X) + 2k + &. In particular, it is reduced to a
point if X is a (quotient of a) sphere with three cone points (see for instance [4]
for a full account on this, including for the more refined notion of orbifold with
boundary).

1.3 Hitchin Components

Let gC be a simple complex Lie algebra. The adjoint group GC := Int(gC) is the
neutral component, in the Lie group topology, of Aut(gC), and it is a complex Lie
group with trivial centre, whose Lie algebra is isomorphic to gC. Given a real form g
of gC, there is an associated anti-holomorphic involution θ ofGC, whose fixed-point
set we denote byG. It consists of interior automorphisms of g that commute with θ .
The neutral component of G is Int(g). In particular,G is not necessarily connected.
For instance, if we choose g = sl(n;R), then G $ PGL(n;R), which is connected
if n is odd and has two connected components if n is even. In what follows, we shall
always assume that g is the split real form of the Lie algebra gC.

In [8], N. Hitchin studies representations of surface groups intoG and shows that
the representation space Hom(π1X;G)/G has a contractible connected component.
His definition of that component rests on the notion of Fuchsian representa-
tion, which itself depends on the choice of a so-called principal morphism κ :
PGL(2;R) −→ G, first introduced by B. Kostant [11]. When G = PGL(n;R),
this morphism is induced by the linear action of GL(2;R) on the space Vn of
homogeneous polynomials of degree n−1 in two variables x, y. Hitchin’s definition,
extended to the orbifold case, is then the following. Given an orbi-surface X of
negative Euler characteristic and a principal morphism κ from PGL(2;R) to the
split real formG of Int(gC), a representation ! : π1X −→ G is called Fuchsian if it
lifts to a discrete and faithful representation h : π1X −→ PGL(2;R), in the sense
that the following diagram becomes commutative:

PGL(2; R)

κ

π1

h

G

This defines a map T (X ) −→ Hom(π1X ;G)/G whose image is called the
Fuchsian locus. As the Teichmüller space T (X ) is connected, this map picks out
a single connected component of the representation space Hom(π1X ;G)/G, called
the Hitchin component and denoted by Hit(π1X ;G). When G = PGL(2;R), we
have Hit(π1X ;PGL(2;R)) $ T (X ), by definition. For split real groups G of
higher rank, Hitchin components form a family of so-called Higher Teichmüller
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spaces [18]. Indeed, Hitchin representations are discrete and faithful [6, 12]. In the
surface group case, Hitchin has proved that Hit(π1X,G) has a trivial topology:

Theorem 1.1 (Hitchin, [8]) LetX be a closed orientable surface of negative Euler
characteristic and let G be the split real form of Int(gC), where gC is a simple
complex Lie algebra. Then Hit(π1X;G) is homeomorphic to a real vector space of
dimension −χ(X) dimG.

This formula cannot be generalised directly to the orbifold case, as χ(X ) is not
an integer in general. However, forG = PGL(3;R), S. Choi and W. Goldman have
proved the following formula.

Theorem 1.2 (Choi and Goldman, [4]) Let X be a closed orbi-surface of negative
Euler characteristic and with coarse moduli space X. Then Hit(π1X ;PGL(3;R))
is homeomorphic to a real vector space of dimension−8χ(X)+ (6k−2k2)+ (3&−
&2), where k2 (respectively, &2) is the number of cone points (respectively, dihedral
points) of order 2 of X .

In collaboration with D. Alessandrini and G.S. Lee, we have been looking
at Hitchin components for orbifold groups and we have obtained the following
common generalisation of the two results above. For the sake of clarity, we will
present it here for the groupG = PGL(n;R) only, but our results hold for split real
forms of all adjoint groups of simple complex Lie algebras (e.g. PO(m,m + 1) or
PO±(m,m)).

Theorem 1.3 ([2]) Let X be a closed orbi-surface of negative Euler characteristic
and with coarse moduli space X. Then Hit(π1X ;PGL(n;R)) is homeomorphic to
a real vector space of dimension

−(n2 − 1)χ(X)+∑n
d=2

(
2
∑k
i=1 R(d,mi)+

∑&
j=1 R(d, nj )

)

where mi (respectively, nj ) is the order of the i-th cone point (respectively, the j -
th dihedral point) of X and R(d,m) := ⌊

d − d
m

⌋
is the integral part of the real

number
(
d − d

m

)
.

As a matter of fact, like Choi and Goldman in [4], we can also deal with the case
of orbifolds with boundary. We also note that, when Y has only mirror points as
orbifold singularities (no cone or dihedral points), then χ(X ) = χ(X) and Hitchin’s
formula holds without modifications. There is another way of writing the formula
in Theorem 1.3, which resembles more that of Theorem 1.2, and we refer to [2] for
it. We get for instance

dim Hit
(
π1X ;PGL(4;R)) = −15χ(X)+ (12k − 4k2 − 2k3)+ (6&− 2&2 − &3),

where again ki (respectively, &i) is the number of cone points (respectively, dihedral
points) of order i of X . We see that this dimension may vanish for certain orbifolds
X and that such orbifolds form an infinite family, containing for instance all spheres
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with three cone points of order (2, 3, r) for all r � 7. This has applications to the
rigidity of projective structures on Seifert-fibered spaces with base X (see [2] for
details).

The methods of proof for Theorems 1.1 and 1.2 are quite different. Hitchin uses
tools from analytic and differential geometry (namely, Higgs bundles and the Non-
Abelian Hodge Correspondence), while Choi and Goldman’s methods are based
on the interpretation of Hit(π1X ;G) as the deformation space of convex projective
structures on X . In the absence of such a geometric interpretation for general G,
our approach in [2] consists in adapting Hitchin’s method to our setting. Thanks
to an orbifold version of the Non-Abelian Hodge Correspondence, we show that
the Hitchin component is homeomorphic to a space of symmetric differentials on
an analytic orbi-curve, the dimension of which we can compute using the orbifold
Riemann-Roch theorem, similarly to Hitchin’s proof in the surface group case. We
explain this in greater detail in the next section.

2 Analytic Parameterisation of Hitchin Components

2.1 Analytic Orbi-Curves

A complex analytic orbifold is an analytic stack X (over complex analytic mani-
folds) that admits a covering by open substacks of the form [U/�], where U ⊂ C

n

is an open subset and � ⊂ Aut(U) is a finite group of holomorphic transformations
of U . If the open sets U are all of complex dimension 1, we say that X is an orbi-
curve or an orbi-Riemann surface. The only possible orbifold points in this case are
cone points and it is a remarkable fact that there always exist coarse moduli spaces:
an orbi-Riemann surface always has an “underlying" Riemann surface, because
if � $ Cm acts by rotation of angle 2π

m
on the open disk D(0; ε) then the map

z �−→ zm induces a holomorphic chart D(0; ε)/Cm $ D(0; εm). In fact, the whole
theory of complex analytic orbi-curves can be phrased in terms of Riemann surfaces
with signature, where the signature is the map X −→ N taking a point to its order
(so the map is constant equal to 1, except possibly over a finite set of points in X).
We prefer to work, however, in the orbifold setting. In particular, subgroups of the
orbifold fundamental group (1.2) correspond to connected analytic covers of the
compact orbi-curve X := [H2/πg,(m1, ... ,mk)].

To prove Theorem 1.3, complex analytic orbi-curves will not be quite enough
if we want to include the case of non-orientable differentiable orbi-surfaces. To
deal with those, we need to consider also orbi-curves which are defined over the
real numbers. This essentially means complex analytic orbi-curves X+ equipped
with an anti-analytic involution σ : X+ −→ X+ given, in local charts, by a �-
equivariant anti-holomorphic involution σ : U −→ U ′. In particular, the orders
of the points x and σ(x) have to coincide for all x. More intrinsically perhaps,
one could consider dianalytic orbifolds, for which local models are quotient stacks
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[U/�], where U ⊂ C
n is an open subset but the finite group � ⊂ Aut±(U) is

now allowed to also contain anti-holomorphic transformations of U . If we consider
such a dianalytic orbifold X , its fundamental group π := π1X has a subgroup
π+, of index at most 2, consisting of transformations that preserve the orientation
of the universal cover X̃ , the latter being necessarily complex analytic: the quotient
orbifoldX+ := [X̃ /π+] is a complex analytic orbifold which is a cover, of degree at
most 2, of X . If π+ �= π , then π/π+ acts on X+ via an anti-holomorphic involution
σ and X $ [X+/ 〈σ 〉]. In this case, there is a short exact sequence

1 −→ π1X+ −→ π1X −→ {±1} −→ 1.

Note that X+ has two cone points x and σ(x) (of the same order) for each cone point
of X , and one cone point which is fixed by σ for each dihedral point of X . Consider
for instance the fundamental group of a triangle X with vertices of respective orders
(p, q, r). The double cover X+ is a sphere with three cone points, of respective
orders (p, q, r). The fundamental group of X+ is the Von Dyck group

π0,(p,q,r) $
〈
a, b, c | ap = bq = cr = abc = 1

〉

of (1.2), while that of X is the Coxeter (triangle) group with presentation

T(p,q,r) :=
〈
x, y, z | x2 = y2 = z2 = (xy)p = (yz)q = (zx)r = 1

〉
. (2.1)

The covering (flattening map) X+ −→ X induces the injective group morphism
π0,(p,q,r) −→ T(p,q,r) defined by a �−→ xy, b �−→ yz, c �−→ zx, and the quotient
map T(p,q,r) −→ {±1} is given by the reduced word length modulo 2.

When X is a compact orbi-curve of negative Euler characteristic, the fundamen-
tal group π1X is a finitely generated group that embeds onto a discrete subgroup
of PGL(2;R). Therefore, by Selberg’s lemma, it contains a finite index normal
subgroup which is torsion-free [16]. Geometrically, this means that there exists a
compact Riemann surface Y and a finite Galois cover Y −→ X . If we denote
by π the automorphism group of that cover, we therefore have an isomorphism
of orbifolds [Y/π] $ X , and a short exact sequence

1 −→ π1Y −→ π1X −→ π −→ 1.

2.2 The Riemann-Roch Formula

An orbifold line bundle L over X is a morphism of stacks L −→ X which is
locally conjugate, in the orbifold chart [U/�] about x, to the orbifold [(U×C)/�],
where � acts on U × C via a linear representation !� : � −→ GL(1,C). When
the finite group � is cyclic of order m, the morphism !� sends a generator of � to
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an m-th root of unity. If we choose a generator γ of � and a primitive m-th root
of unity ζ , then !�(γ ) = ζ a for a certain a ∈ {0; . . . ;m − 1} which does not
depend on the choices just made and is sometimes called the isotropy at the point
x. When � is a dihedral group, we write � $ Cm � Z/2Z, where Z/2Z acts on
the cyclic group Cm by inversion, and think of !� : � −→ C

∗ as a morphism
!Cm : Cm −→ C

∗ as before, which in addition is Z/2Z-equivariant with respect to
complex conjugation on C

∗. In particular, the number a ∈ {0; . . . ;m − 1} again
completely determines the morphism !� . Given a cone or dihedral point x of order
m, the quantity a

m
, where a ∈ {0; . . . ;m − 1} is defined as above, will be called

the age of the orbifold line bundle L at x and denoted by agex(L). Consider for
instance the canonical line bundle KX of an analytic orbi-curve X . The age of the
tangent bundle at a cone point of orderm is 1

m
(the action of Cm on tangent vectors

being multiplication by a primitive root of unity) and, since the canonical bundle
is the dual of the tangent bundle in this case, the group � $ Cm acts on tangent
covectors at a point via multiplication by ζ−1, so the age of KX at a cone point
of order m is m−1

m
. If we now look at tensor powers of KX , then the action of Cm

on homogeneous polynomial functions of degree d over the tangent space at a cone
point is given by multiplication by ζ d(m−1), so the age of KdX at a cone point is

d(m−1)modm
m

= d(m−1)
m

−
⌊
d(m−1)
m

⌋
.

We will see in Sect. 2.3 below that this is the origin of the term R(d,m) :=⌊
d(m−1)
m

⌋
in Theorem 1.3.

Let us denote by L the sheaf of local sections of L. There are associated
cohomology groups H0(X ;L) and H1(X ;L), which are finite-dimensional complex
or real vector spaces (depending on the field of definition of X ). The Euler
characteristic of L is the integer χ(X ;L) := dim H0(X ;L) − dim H1(X ;L).
The Riemann-Roch formula computes this quantity by comparing it to the Euler
characteristic of the structure sheaf OX . To state the result, we still need the notion
of degree of an orbifold line bundle, of which we recall the following two definitions
(in the complex case). When X $ [Y/π], where Y is a compact Riemann surface
and π is a finite group of analytic transformations of Y , an orbifold line bundle
L −→ X pulls back to a �-equivariant analytic line bundle E −→ Y and we can
define the degree of L as deg(E)

|π | ∈ Q, since this quantity is independent of the choice
of the finite Galois cover Y −→ X . Equivalently, if we denote by p : X −→ X

the coarse moduli space of X , then, given an orbifold line bundle L −→ X , there
exists a unique analytic line bundle L −→ X and for each cone point xi of X a
well-defined integer ai ∈ {0; . . . ;mi − 1} such that

L $ p∗L⊗OX
(∑k

i=1 aixi
)
.
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We then have agexi (L) = ai
mi

and deg(L) := deg(L) +∑k
i=1

ai
mi

, where mi is the

order of the cone point xi . For instance, when L = KdX $ [KdY /π], one can check
that

KdX $ p∗[KdX ⊗OX(∑k
i=1 R(d,mi)p(xi)

)]⊗OX
(∑k

i=1(d(mi − 1)modmi)xi
)

so, using (1.1),

deg(KdX ) = d(2g − 2)+∑k
i=1 R(d,mi)+

∑k
i=1

d(mi−1)modmi
mi

= −dχ(X )

= −d χ(Y )|π | =
deg(KdY )|π | , (2.2)

where g := dim H1(X ;OX ) is the genus of X . Indeed, π-invariant holomorphic
sections ofKdY correspond bijectively to meromorphic sections ofKdX with poles of
order at most R(d,mi) at xi , for all i ∈ {1; . . . ; k}. More generally, for j = 0, 1,
there are isomorphisms Hj (X ;L) $ Fixπ Hj (Y ; E) $ Hj (X;L), from which one
can deduce the following orbifold Riemann-Roch formula (see for instance [1, 14]
or [13] for an exposition; the theorem itself is due to Kawasaki, [10]).

Theorem 2.1 (Orbifold Riemann-Roch, [10]) Let X be a compact complex ana-
lytic orbi-curve and denote its cone points by (xi)1�i�k . Let L be an analytic line
bundle over X . Then

χ(X ;L) = χ(X ;OX )+ degL−∑k
i=1 agexi (L).

For instance, χ(X ;KX ) = g − 1 and χ(X ;K2
X ) = 3(g − 1) + k. When

X is defined over R, we can deduce the appropriate version of the Riemann-
Roch formula from the complex case, by applying Theorem 2.1 to the complex
analytic orbifold X+. Indeed, the real structure σ : X+ −→ X+ induces a C-
antilinear involution σ of the complex vector spaces Hj (X+;L+), in such a way
that Hj (X ;L) $ Fixσ Hj (X+;L+), so dimR Hj (X ;L) = dimC Hj (X+;L+) and
χ(X ;L) = χ(X+;L+). Setting degL := degL+, one gets:

χ(X ;L) = χ(X ;OX )+ deg(L)− 2
∑k
i=1 agexi (L)−

∑&
j=1 ageyj (L)

where the (xi)1�i�k and the (yj )1�j�& are respectively the cone points and dihedral
points of X . In particular, χ(X ;K2

X ) = 3(gX − 1) + 2k + &, where again g :=
dim H1(X ;OX ) is the genus of X .

2.3 Spaces of Symmetric Differentials

As we saw in Sect. 2.2, if X is a compact analytic orbi-curve, then χ(X ;K2
X ) =

dimT (X ) (this is a complex dimension if X is defined over C and a real dimension



138 F. Schaffhauser

if X is defined over R). While this result is well-known, it is also the n = 2
case of the Hitchin parameterisation of Hit(π1X ;PGL(n;R)), as we shall see
momentarily. Let us first recall Hitchin’s result in the surface group case [8]: If Y is
a closed orientable surface of negative Euler characteristic, the choice of a complex
analytic structure on Y induces a homeomorphism

Hit
(
π1Y ;PGL(n;R)) $⊕n

d=2 H0(Y ;KdY ).

The main result of [2] is the following extension of Hitchin’s result to the orbifold
case.

Theorem 2.2 ([2]) Let X be a compact differentiable orbi-surface of negative
Euler characteristic. Then the choice of an analytic structure on X induces a
homeomorphism

Hit
(
π1X ;PGL(n;R)) $⊕n

d=2 H0(X ;KdX ).

Here, choosing an analytic structure on X reduces to choosing a finite Galois
cover by a closed orientable surface Y −→ X and a complex analytic structure
on Y which is preserved by the automorphism group of that cover. As we have
seen, the fact that such a cover always exists is a consequence of Selberg’s lemma.
Note that we are considering at the same time the case where the differentiable
orbifold X is orientable (so admits a complex analytic structure, i.e. the finite group
π := AutX(Y ) acts holomorphically on Y ) and the case where it is not (here Y is still
a closed orientable surface but π will contain orientation-reversing transformation;
as a consequence, the coarse moduli space X of X $ [Y/π] will be a differentiable
surface with corners that has non-empty boundary or is non-orientable or both).

The proof of Theorem 2.2 consists in adapting Hitchin’s proof to the orbifold
case. The main tool is the orbifold version of the Non-Abelian Hodge Correspon-
dence (NAHC). In [2], we took a largely equivariant approach to the latter, making
the resulting formulation of the NAHC dependent on the choice of a presentation
X $ [Y/π]. Equivalently, we can rephrase this in terms of G-Higgs bundles
on X , where G is a real reductive group and G is the orbifold group bundle
[(X̃ ×G)/π1X ]. But in any case, the point is that, if G is the split real form of the
adjoint group Int(gC), where gC is a simple complex Lie algebra, then the Hitchin
component Hit(π1X;G) embeds into the moduli space of G-Higgs bundles, denoted
by MX (G).

Hit π1X ,PGL(n, R)
NAHC MX PGL(n; R)

Hitchin fibration

n
d 2 H

0( ,Kd )
Hitchin section

(2.3)
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In [2], we showed that the Hitchin fibration, which is a morphism from the moduli
space MX (G) to a vector space BX (g) called the Hitchin base, first constructed
by Hitchin in the surface group case [7], was well-defined in the orbifold case. For
g = sl(n;R), the Hitchin base is

⊕n
d=2 H0(X ;KdX ), as in Diagram (2.3). Then

we extended Hitchin’s construction of a section of that fibration: The image of that
section being exactly the embedded copy of Hit(π1X ;G) in MX (G), thus proving
Theorem 2.2.

This shows that Hit(π1X ;PGL(n;R)) is homeomorphic to the vector space
BX (sl(n;R)), which is a complex vector space if X is complex and a real vector
space if X is real. Using Theorem 2.1, we can compute the dimension of that
vector space. Since we already know how to deduce the result in the real case from
the result in the complex case, we will present the proof in the latter case only.
From (2.2), we get that, for all d ∈ {2; . . . ; n},

χ(X ;KdX ) = (2d − 1)(g − 1)+∑k
i=1 R(d,mi).

But for d � 2, one has deg KdX = d degKX > degKX , so H1(X ;KdX ) = 0
and χ(X ;KX ) = dim H0(X ;KdX ). Thus, when X is complex analytic, BX (g) is a
complex vector space of dimension

(g − 1)
∑n
d=2(2d − 1)+∑n

d=2
∑k
i=1 R(d,mi) = (g − 1)(n2 − 1)

+∑n
d=2

∑k
i=1 R(d,mi).

The real dimension is twice as much, which indeed coincides with the formula
in Theorem 1.3 (for & = 0).

Let us denote PGL(n;R) simply by G. A consequence of Theorem 2.2 is that,
given an analytic orbi-curve X , we can embed the Hitchin component Hit(π1X ;G)
into the Hitchin component Hit(π1Y;G) associated to any Galois cover Y −→
X . More precisely, given a Galois cover Y −→ X with automorphism group π ,
consider the short exact sequence

1 −→ π1Y −→ π1X −→ π −→ 1,

the induced morphism π −→ Out(π1Y) and the associated action of π on
Hit(π1Y;G). Then, the map taking a representation! : π1X −→ G to its restriction
!|π1Y induces a homeomorphism Hit(π1X ;G) $ Fixπ Hit(π1Y;G), since X $
[Y/π] implies that H0(X ;KdX ) = Fixπ H0(Y;KdY). As an example of this, consider
the Coxeter triangle group T(2,3,7) of (2.1). It is the orbifold fundamental group of
a hyperbolic triangle with vertices of respective orders 2, 3 and 7, which can be
obtained as the quotient of the Klein quartic K by its full automorphism group.
As Hit(T(2,3,7);PGL(6;R)) is of (real) dimension 1 by Theorem 1.3, it defines a
one-parameter family of Hitchin representations in Hit(π1K;PGL(6;R)), the latter
being, by Hitchin’s result for the closed orientable surface K (of genus 3), of real
dimension 140.
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of a Multidimensional Complex Space
with Poles on the Boundary of a Polydisk

Iryna Denega

Abstract In the paper we obtain estimates of the maximums of products of
generalized inner radii of mutually non-overlapping polycylindrical domains in C

n.
The main theorems of the paper generalize and strengthening known results in the
theory of non-overlapping domains with free poles on the unit circle onto the case
of n-dimensional complex space.

Keywords Inner radius of the domain · Non-overlapping polycylindrical
domain · The Green function · Transfinite diameter · Theorem on minimizing of
area · The Cauchy inequality
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1 Preliminaries

The goal of the present work is the study of the problems of a products of the
generalized inner radii of polycylindrical non-overlapping domains with poles on
the boundary of a polydisk. The spatial analogs of a number of known results
concerning the non-overlapping domains on a plane were obtained in [1], where
a generalization of the notion of inner radius was given. Namely, the notion of
harmonic radius of the spatial domain B ⊂ R

n relative to some internal point was
introduced. Work [1] was the essential break-through in the consideration of non-
overlapping domains in the spatial case. Then, work [2] advanced an approach that
allowed the transfer of some results known in the case of a complex plane onto
C
n. At the same time, the problems of non-overlapping domains in the case of a

complex plane represent a sufficiently well-developed trend of the geometric theory
of functions of complex variable (see, e.g., [1–14]).
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In this paper, we have obtained analogs of estimates of the maximums of products
of inner radii of domains for the case of multidimensional complex spaces, which
can be applied to coverage theorems, distortion theorems, and estimates of the
coefficients of univalent functions, also in holomorphic dynamics for study of the
number of critical points in parabolic basins.

Let N, R, and C be the sets of natural, real, and complex numbers, respectively,
and R

+ = (0,∞). Let C be a Riemann sphere (extended complex plane). It is
well known that Cn = (C×C× . . .×C︸ ︷︷ ︸

n−times

), n ∈ N. C
n = (C×C× . . .×C)︸ ︷︷ ︸

n−times

is a

compactification of the space Cn (see, e.g., [3–5]), where the set of infinitely remote
points has the complex dimension n − 1. Let [D]n (Cartesian degree of a domain
D ⊂ C) denote the Cartesian product D ×D × . . .×D︸ ︷︷ ︸

n−times

, and let [d]n (Cartesian

degree of a point d ∈ C) denote the point with C
n
, which have the coordinates

(d, . . . , d)︸ ︷︷ ︸
n−times

. It is clear that C1 = C, C
1 = C. The topology in C

n
is introduced like

in a Cartesian product of topological spaces. In this topology, C
n

is compact (see
[3–5]).

Definition 1.1 The domain B = B1 × B2 × . . . × Bn ⊂ C
n
, where each domain

Bk ⊂ C, k = 1, n, is called a polycylindrical domain in C
n

(see, e.g., [3]). The
domains Bk , k = 1, n, are called coordinate domains of the domain B.

Definition 1.2 Let B be a domain from C. Let

gB(z, a) = hB,a(z)+ log
1

|z− a|
be a generalized Green’s function of the domain B relative to the point a ∈ B. If
a→∞, then

gB(z,∞) = hB,∞(z)+ log
1

|z| .

The quantity r(B, a) := exp(hB,a(a))means the inner radius of the domain B ⊂ C

relative to the point a ∈ B (see [6–11]).

Definition 1.3 The generalized inner radius of the polycylindrical domain B

relative to the point A = (a1, a2, . . . , an) ∈ B, ak ∈ Bk , k = 1, n, is

R(B,A) :=
n∏
k=1

r(Bk, ak),

where the quantities r(Bk, ak), k = 1, n, mean the inner radii of the coordinate
domains Bk relative to ak. For n = 1, the quantity R(B,A) is the ordinary inner
radius of the domain B ⊂ C relative to the point A.
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Let Un = [U ]n, where U = {z ∈ C : |z| < 1} (unit disk in the complex plane
C). By �n we denote the skeleton (distinguished boundary) of the polydisk U

n (see
[7, 8]), i.e., the set of points A = (a1, a2, . . . , an) ⊂ C

n, |as| = 1, s = 1, n.

Definition 1.4 The system {Bk}mk=1

(
Bk = B(k)1 × . . .× B(k)n , k = 1,m

)
is called

a system of non-overlapping polycylindrical domains, if, for every fixed p0, p0 =
1, n, the system of domains

{
B
(k)
p0

}
, k = 1,m, is a system of non-overlapping

domains on C.

Further, we will consider the systems of points in the space Cn of the form

{Ak}mk=1 , Ak =
(
a
(k)
1 , a

(k)
2 , . . . , a(k)n

)
∈ C

n,

k = 1,m, a(1)p0
> 0, p0 = 1, n, (1.1)

arg a(k)p0
< arg a(k+1)

p0
, k = 1,m− 1, arg a(m)p0

< 2π.

2 Main Results

In the above posed notations, we establish the following results.

Theorem 2.1 Let m,n ∈ N, m ≥ 2, γ ∈ (0, m]. Then, for any system of different

points of the form (1.1) {Ak}mk=1 =
{
a
(k)
p

}m
k=1

∈ C
n
, p = 1, n, such that Ak ∈

�n, k = 1,m, and for any collection of mutually non-overlapping polycylindrical
domains B0, Bk , A0 = [0]n ∈ B0 ⊂ C

n
, Ak ∈ Bk ⊂ C

n
, k = 1,m, the inequality

Rγ (B0,A0)

m∏
k=1

R(Bk,Ak) ≤ m−
γ n
2

(
4

m

)n(m−γ )
(2.1)

holds.

Proof We make the transformation

Rγ (B0,A0)

m∏
k=1

R(Bk,Ak) =
⎡
⎣ n∏
p=1

r
(
B(0)p , 0

)⎤⎦
γ
m∏
k=1

⎡
⎣ n∏
p=1

r
(
B(k)p , a

(k)
p

)⎤⎦ =

=
n∏
p=1

[
rγ

(
B(0)p , 0

) m∏
k=1

r
(
B(k)p , a

(k)
p

)]
. (2.2)
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Then, for a fixed p = 1, n the domains B(k)p , k = 0,m, form a system of pairwise
non-overlapping domains on the complex plane C. Further, we will consider the
following product

rγ (D0, 0)
m∏
k=1

r (Dk, ak) ,

where γ ∈ (0,m], D0, D1, D2, . . . ,Dm, m ≥ 2, are mutually non-overlapping
domains in C, a0 = 0, |ak| = 1, k = 1,m, ak ∈ Dk ⊂ C, k = 0,m.

Let d(E) be the transfinite diameter of a compact set E ⊂ C. Then the following
relation holds

r (D0, 0) = r
(
D+

0 ,∞
) = 1

d
(
C \D+

0

) ≤ 1

d

(
m⋃
k=1
D
+
k

) , (2.3)

where D+ = {z : 1
z
∈ D}. Using the well-known Polya theorem [8, p. 34] and [13,

p. 28] the inequality

μE ≤ πd2(E),

whereμE denotes the Lebesgue measure of a compact setE, is valid. From whence,
we get

d(E) ≥
(

1

π
μE

) 1
2

.

Then from (2.3) we have

r (D0, 0) ≤ 1

d

(
m⋃
k=1
D
+
k

) ≤ 1√
1
π
μ

(
m⋃
k=1
D
+
k

) =
(

1

π

m∑
k=1

μD
+
k

)− 1
2

. (2.4)

From the theorem of minimization of an area [8, p. 34], we obtain

μ(D) ≥ πr2 (D, a) .

Inequality (2.4) implies directly that

r (D0, 0) ≤
(

1

π

m∑
k=1

μD
+
k

)− 1
2

≤
(

1

π

m∑
k=1

μD+
k

)− 1
2

≤
(
m∑
k=1

r2 (D+
k , a

+
k

))− 1
2

.
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Using conformal invariance of the Green function, we have

gDk (z, ak) = gD+k (w
+, a+k ), w+ = 1

z
.

Then, using relation

gD+k
(w+, a+k ) = gD+k

(
1

z
,

1

ak

)
= ln

1

| 1
z
− a+k |

+ ln r(D+
k , a

+
k )+ o(1),

we obtain

r
(
D+
k , a

+
k

) = r (Dk, ak)

|ak|2 .

Thus,

r (D0, 0) ≤
(
m∑
k=1

r2 (Dk, ak)

|ak|4
)− 1

2

.

This result yields the relation

rγ (D0, 0)
m∏
k=1

r (Dk, ak) ≤

m∏
k=1

r (Dk, ak)

(
m∑
k=1

r2(Dk,ak)

|ak |4
) γ

2
.

The Cauchy inequality yields automatically the inequality

1

m

m∑
k=1

r2 (Dk, ak)

|ak|4 ≥
(
m∏
k=1

r2 (Dk, ak)

|ak|4
) 1
m

.

Then we get easily

(
m∑
k=1

r2 (Dk, ak)

|ak|4
) γ

2

≥
⎛
⎝m

(
m∏
k=1

r2 (Dk, ak)

|ak|4
) 1
m

⎞
⎠

γ
2

≥ mγ
2

(
m∏
k=1

r (Dk, ak)

|ak|2
) γ
m

.
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In this way, using condition |ak| = 1, k = 1,m, we obtain

rγ (D0, 0)
m∏
k=1

r (Dk, ak) ≤

m∏
k=1
r (Dk, ak)

m
γ
2

(
m∏
k=1
r (Dk, ak)

) γ
m

= m− γ
2

(
m∏
k=1

r (Dk, ak)

)1− γ
m

.

In [11, Theorem 6.11] for any different points ak on the circle |ak| = 1, k = 1,m
(m ≥ 2), and any pairwise non-overlapping domains Dk ⊂ C such that ak ∈ Dk ,
k = 1,m, the inequality

m∏
k=1

r (Dk, ak) ≤
(

4

m

)m

is proved. Thus,

rγ (D0, 0)
m∏
k=1

r (Dk, ak) ≤ m−
γ
2

(
4

m

)m−γ
.

Finally, upon combining (2.2) and the last inequality, we easily see that, the
following relation

Rγ (B0,A0)

m∏
k=1

R(Bk,Ak) ≤
n∏
p=1

[
m−

γ
2

(
4

m

)m−γ]
= m− γ n

2

(
4

m

)n(m−γ )

holds. Thus, Theorem 2.1 is proved. ��
Remark 2.2 If γ = m, then under all conditions of above posed Theorem 2.1, the
inequality

Rm(B0,A0)

m∏
k=1

R(Bk,Ak) ≤ m−mn
2

holds.

Theorem 2.3 Let m,n ∈ N, m ≥ 2, γ ∈ (0, m]. Then, for any system of different

points of the form (1.1) {Ak}mk=1 =
{
a
(k)
p

}m
k=1

∈ C
n
, p = 1, n, such that Ak ∈

�n, k = 1,m, and for any collection of mutually non-overlapping polycylindrical
domains B0, Bk , A0 = [0]n ∈ B0 ⊂ C

n
, Ak ∈ Bk ⊂ C

n
, k = 1,m, and Bk ,

k = 1,m, are mirror-symmetric relative to �n, the inequality (2.1) holds.
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The proof of Theorem 2.3 is similar to that of Theorem 2.1, so we have chosen
to omit the analogous details.

Theorem 2.4 Letm,n ∈ N,m ≥ 2, γ ∈ (0, m+2
2 ]. Then, for any system of different

points of the form (1.1) {Ak}mk=1 =
{
a
(k)
p

}m
k=1

∈ C
n
, p = 1, n, such that Ak ∈

�n, k = 1,m, and for any collection of mutually non-overlapping polycylindrical
domains B0, B∞, Bk , A0 = [0]n ∈ B0 ⊂ C

n
, A∞ = [∞]n ∈ B∞ ⊂ C

n
, Ak ∈

Bk ⊂ C
n
, k = 1,m, the inequality

(R(B0,A0)R(B∞,A∞))γ
m∏
k=1

R(Bk,Ak) ≤ (m+ 1)−γ
n(m+1)
m+2

(
4

m

)mn(1− 2γ
m+2

)

holds.

Proof The proof of Theorem 2.4 is based on constructions given in proof of the
Theorem 2.1. First, let us consider the following product

Jm(γ ) = (r (D0, 0) r (D∞,∞))γ
m∏
k=1

r (Dk, ak) ,

where γ ∈ (0, m+2
2 ], D0, D∞, D1, D2, . . . ,Dm, m ≥ 2, are mutually non-

overlapping domains in C, a0 = 0, |ak| = 1, k = 1,m, 0 ∈ D0 ⊂ C,∞ ∈ D∞ ⊂ C,
ak ∈ Dk ⊂ C, k = 1,m. Using inequalities (2.3) and (2.4), we have

r (D0, 0) ≤
[
r2 (D∞,∞)+

m∑
k=1

r2 (Dk, ak)

|ak|4
]− 1

2

,

r (D∞,∞) ≤
[
r2 (D0, 0)+

m∑
k=1

r2 (Dk, ak)

]− 1
2

.

Taking into account the Cauchy inequality

(
r2 (D∞,∞)+

m∑
k=1

r2 (Dk, ak)

|ak|4
) 1

2

≥ (m+1)
1
2

[
r (D∞,∞)

m∏
k=1

r (Dk, ak)

|ak|2
] 1
m+1

,

and

(
r2 (D0, 0)+

m∑
k=1

r2 (Dk, ak)

) 1
2

≥ (m+ 1)
1
2

[
r (D0, 0)

m∏
k=1

r (Dk, ak)

] 1
m+1

.
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Upon combining two previous inequalities we easily see that

r (D0, 0) r (D∞,∞) ≤

(
m∏
k=1

|ak|
) 2
m+2

(m+ 1)
m+1
m+2

(
m∏
k=1
r (Dk, ak)

) 2
m+2

.

And we thus find that

Jm(γ ) ≤ (m+ 1)−γ
m+1
m+2

(
m∏
k=1

r (Dk, ak)

)1− 2γ
m+2

(
m∏
k=1

|ak|
) 2γ
m+2

.

By the virtue of [11, Theorem 6.11] and condition |ak| = 1, k = 1,m, we conclude
that

Jm(γ ) ≤ (m+ 1)−γ
m+1
m+2

(
4

m

)m(1− 2γ
m+2

)
.

Thus, using the fact that

(R(B0,A0)R(B∞,A∞))γ
m∏
k=1

R(Bk,Ak) =

=
n∏
p=1

[(
r
(
B(0)p , 0

)
r
(
B(∞)p ,∞

))γ m∏
k=1

r
(
B(k)p , a

(k)
p

)]

and for a fixed p = 1, n the domains B(0)p , B(∞)p , B(k)p , k = 1,m, form a system of
pairwise non-overlapping domains on the complex plane C, it is easy to see that

(R(B0,A0)R(B∞,A∞))γ
m∏
k=1

R(Bk,Ak) ≤ (m+ 1)−γ
n(m+1)
m+2

(
4

m

)mn(1− 2γ
m+2

)
.

Theorem 2.4 is proved. ��
Remark 2.5 If γ = m+2

2 , then under all conditions of above posed Theorem 2.4,
the inequality holds

(R(B0,A0)R(B∞,A∞))
m+2

2

m∏
k=1

R(Bk,Ak) ≤ (m+ 1)−
n(m+1)

2 .

From Theorem 2.4 (see also, [11, p. 176]), we obtain the following result.
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Theorem 2.6 Let m,n ∈ N, m ≥ 2, γ ∈ (0, m+2
2 ] and B0 ⊂ U

n. Then, for any

system of different points of the form (1.1) {Ak}mk=1 =
{
a
(k)
p

}m
k=1

∈ C
n
, p = 1, n,

such that Ak ∈ �n, k = 1,m, and for any collection of mutually non-overlapping
polycylindrical domains B0, Bk , A0 = [0]n ∈ B0 ⊂ C

n
, Ak ∈ Bk ⊂ C

n
, k = 1,m,

and Bk , k = 1,m, are mirror-symmetric relative to �n, the following inequality
holds

R2γ (B0,A0)

m∏
k=1

R(Bk,Ak) ≤ (m+ 1)−γ
n(m+1)
m+2

(
4

m

)mn(1− 2γ
m+2

)
.

Acknowledgments The present work is financially held up by the budget program “Support of
the development of priority trends of scientific researches” (KPKVK 6541230).

References

1. V.N. Dubinin, E.G. Prilepkina, On the extreme partition of spatial domains (in Russian). Zap.
Nauch. Sem. POMI 254, 95–107 (1998)

2. A.K. Bakhtin, A generalization of some results of the theory of one-sheeted functions onto
multidimensional complex spaces (in Russian). Dop. NAN Ukr. 3, 7–11 (2011)

3. B.V. Shabat, Introduction to Complex Analysis. Part II. Functions of Several Variables (in
Russian), 2nd edn., revised and augmented, Izdat (Nauka, Moscow, 1976)

4. E.M. Chirka, Complex Analytic Sets (in Russian). (Nauka, Moscow, 1985)
5. B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables

(Fizmatgiz, Moscow, 1962); English transl., Amer. Math. Soc., Providence, R. I., 1963
6. M.A. Lavrent’ev, On the theory of conformal mappings (in Russian). Tr. Sci. Inst An USSR 5,

159–245 (1934)
7. V. Hayman, Multivalent Functions (Cambridge University Press, Cambridge, 1958)
8. G.M. Goluzin, Geometric Theory of Functions of a Complex Variable (American Mathematical

Society, Providence, 1969)
9. N.A. Lebedev, The Area Principle in the Theory of Univalent Functions (in Russian) (Science,

Moscow, 1975)
10. A.K. Bakhtin, G.P. Bakhtina, Y.B. Zelinskii, Topological-Algebraic Structures and Geometric

Methods in Complex Analysis (in Russian). Zb. Prats of the Inst. of Math. of NASU (2008)
11. V.N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory

(Birkhäuser, Basel, 2014)
12. W. Bergweiler, On the number of critical points in parabolic basins. Ergod. Theory Dyn. Syst.

22, 655–669 (2002)
13. G. Polya, G. Szego, Isoperimetric Inequalities in Mathematical Physics (in Russian).

M:Fizmatgiz (Princeton University Press, Princeton, 1962)
14. G.P. Bakhtina, On Conformal Radii of Symmetric Non-overlapping Domains (in Russian).

Modern Problems of the Real and Complex Analysis I(nstitute of Mathematics of the Academy
of Sciences of USSR, Kiev, 1984), pp. 21–27



Some Properties of the Solutions Space
of Irregular Elliptic Systems

Grigori Giorgadze and Giorgi Makatsaria

Abstract In this paper we prove Liouville theorem for the irregular nonhomo-
geneous Cauchy-Riemann equation depended on parameters and we show that
qualitative properties of generalized analytic vectors strongly depend on the asymp-
totic parameters. We give an explicit formula for the solutions of the special type
elliptic system of two unknown functions by the spectrum of the corresponding
matrix. This result is a revision of the similarity principle for the elliptic system in
a whole complex plane.

Keywords Elliptic system · Nonhomogeneous Cauchy-Riemann equation ·
Liouville theorem · Similarity principle

Mathematics Subject Classification (2010) Primary 30G20; Secondary 30C55

1 Introduction and Motivation

A matrix elliptic system of the form

∂z̄W(z, z̄) = V (z, z̄)W(z, z̄)+ U(z, z̄)W(z, z̄) (1.1)

on the domain D ⊂ C(z,z̄), where V (z, z̄) and U(z, z̄) are the matrix functions,
given on D andW(z, z̄) is an unknown vector function, is the generalization of the
Carleman–Bers–Vekua equation

∂z̄ω + Aω + Bω̄ = 0, (1.2)
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where A and B is a pair of regular coefficients (functions) on a complex plane C
and ∂z̄ is an operator of partial derivation with respect to the independent variable
z̄ in generalized (Sobolev) sense [16]. We call the Eq. (1.2) regular on C if the
coefficients A and B are regular. It means that both A and B belong to the space
Lp,2, p > 2. By the definition Lp,2, p > 2 consists of all functions g defined on
the whole plane satisfying the conditions

ˆ ˆ

D

|g(ξ)|pdD <∞,
ˆ ˆ

D

1

|z|2p
∣∣∣∣g
(

1

z

)∣∣∣∣
p

dD <∞,

where D = {|z| ≤ 1} is a unit disc (see [1, 3, 6]). Similarly, the system (1.1) is
called regular if the entries of the matrix functions V andW are regular. Hence, we
call (1.1) or (1.2) irregular, if at least one coefficient is not regular.

The generalized solutions of the system (1.1) and Eq. (1.2) are called the
generalized analytic vectors [3] and generalized analytic functions respectively [16].
General representation of generalized analytic functions by the analytic functions is
the strongest tool in order to investigate the solutions of the Eq. (1.2). In particular,
the following takes place

ω = f exp(T ), (1.3)

where f is an arbitrary entire function and the function T = T (z) is evaluated by
the formula

T (z) = 1

π

ˆ ˆ

D

(
A(ξ)+ B(ξ)ω(ξ)

ω(ξ)

)
1

ξ − zdDξ .

Obtained representation of the solution by means of the entire function is crucial
for the solutions of (1.2) in order to get the analogue of the Liouville classical
theorem. Due to the regularity of the coefficients of equation, the factor exp(T ) is
continuous on the whole plane, never equals zero and exp(T )→ 1, z → ∞. Such
representation of the solution of the Eq. (1.2) is known as the main lemma [16]
or the similarity principle [2] in theory of generalized analytic or pseudo-analytic
functions theory.

Respectively, if the coefficients of the Eq. (1.2) are regular, solution ω is bounded
and is zero at some point of the plane then it is identically zero. Thus, every bounded
solution of the Eq. (1.2) with regular coefficients has exactly the same property
as the entire function of a complex variable; in particular, there is an alternative:
either the solution is not zero anywhere or is identically zero. At the same time one
principal difference should be mentioned. The bounded entire function is constant,
whereas the bounded solution of the Eq. (1.2) except of some special cases, is not
constant. This makes difficult describe effectively the solutions of the Eq. (1.2) with
O(zN) asymptotic at infinity, in particular to obtain representation of type (1.3).
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The Liouville theorem, which we will use below, has the following form:

Theorem 1.1 (J. Liouville) Let w be classical (of class C1) solution of the
equation ∂z̄ω = 0 on the whole complex plane C, for which there exists nonnegative
integer numberN, such that

ω(z) = O(zN), z→∞. (1.4)

Then

w(z) = a0 + a1z+ . . .+ aNzN,
where a0, a1, . . . , aN are complex numbers.

From this it follows that if we denote by �(N) the solutions space of equation
∂z̄ω = 0 with properties (1.4), then dimC�(N) = N + 1. Finiteness of the
dimensions of the solution space of the system of type (1.1), which follows from
the Liouville theorem, guarantees successful application of algebraic-topological
methods for the investigation of the space of holomorphic sections or deformation
of complex structures of the vector bundle [4, 7, 8].

Many fundamental works and monographs (see [3, 5, 6, 11, 14–17]) are dedicated
to the generalization of Theorem 1.1 for the solutions spaces of the Eqs. (1.1) and
(1.2). As it was mentioned above for the solution of the Eq. (1.2), obtained analogue
of Liouville classical theorem is essentially based on the principal limitation for the
coefficients A and B of the Eq. (1.2)—they must be regular. Theoretically (also
for the analysis of applied problems) the largest interest is attracted to find the
analogues of Liouville classical theorem for the Eq. (1.2) when these coefficients
are not regular. Recent research [10, 12] shows that irregular systems of type (1.1)
arise from the problems of mathematical physics. For such equations the Liouville
type theorems are obtained in the works of several authors [11, 17]. It seems to be
most notable the simplest case of the coefficients A = const �= 0, B = const �= 0.
Exactly, for these coefficients the most important results related with the Liouville
type theorem has been obtained in [17]. In general, for the regular system of type
(1.1) the Liouville theorem is not valid (see [6]).

In the next section we consider irregular elliptic system of type ∂z̄W(z, z̄) =
V (z, z̄)W(z, z̄) and investigate solutions space of such system in the case of two
equations in detail.

2 Main Theorem

Letm ∈ N and akp, bkp 1 ≤ k, p ≤ m be given real valued functions on the domain
D ⊂ R2

(x,y). Consider the first order elliptic system

∂uk

∂x
+

m∑
p=1

akp
∂up

∂y
=

m∑
p=1

bkpup (2.1)
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with unknown vector function (u1, . . . , um). From the ellipticity if follows that the

equation det
(
(ajk(x, y))

m
j,k=1 − λI

)
= 0 has only complex solutions for every

(x, y) ∈ D, where I is identity matrix.
Below we consider special case of the system (2.1) which in complex notation

ωk = u2k−1 + iu2k, k = 1, 2, . . . , n, n = m
2 , has the form

∂z̄ωk =
n∑
p=1

τkpωp, 1 ≤ k ≤ n, (2.2)

and

τkp = γαkp, 1 ≤ k, p ≤ n, (2.3)

where αkp are complex numbers and γ is a complex valued continous function on
the whole complex plane.

We call that the continous function (ω1, . . . , ωn) is the solution of the system
(2.2), if it satisfies (2.2) at all points of C.

In the following lemma we give an effective formula for the solutions of the
system (2.2) with assumption (2.3) by the spectrum of constant matrix (αij )ni,j=1.

We give the formulation and the proof of this lemma for the system of two equations.
Note that, the theorem is true for an arbitrary n.

Consider now the elliptic system of the equations

∂z̄ω1 = τ11ω1 + τ12ω2, ∂z̄ω2 = τ21ω1 + τ22ω2, (2.4)

where the functions τkp satisfy the conditions (2.3). Suppose λ1 and λ2 are
eigenvalues of the matrix (αij )2i,j=1 and H = (h1, h2), G = (g1, g2) are the
corresponding eigenvectors.

Lemma 2.1 The general solutions of the system (2.4) are

ω1 = �1h1e
λ1� +�2g1e

λ2�, ω2 = �1h2e
λ1� +�2g2e

λ2�. (2.5)

Here �1 and �2 are arbitrary entire functions, � is some ∂z̄-primitive of the
continuous function γ.

Proof Indeed, direct computations show that (2.5) satisfy the Eq. (2.4). Assume
that ω1 and ω2 are defined on the whole complex plane and satisfy (2.4). We have to
prove that they have the form (2.5). Fix some point z on complex plane and for the
pair of complex numbers�1(z),�2(z) consider the system of algebraic equations

h1e
λ1�(z)�1(z)+ g1e

λ2�(z)�2(z) = ω1(z),

h2e
λ1�(z)�1(z)+ g2e

λ2�(z)�2(z) = ω2(z).
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The matrix of this system

K =
(
h1e

λ1�(z) g1e
λ2�(z)

h2e
λ1�(z) g2e

λ2�(z)

)

is nondegenerate, because the vectors H and G are linearly independent and
therefore s = h1g2 − h2g1 �= 0. From the identity

s

(
�1(z)

�2(z)

)
= K−1

(
ω1(z)

ω2(z)

)

it follows that

s∂z̄

(
�1

�2

)
= ∂z̄

(
K−1

(
ω1

ω2

))
= γ T ,

where

T =
(
e−λ1�(z)(−λ1g2 + α11g2 − α21g1) e

−λ2�(z)(λ1g1 + α12g2 − α22g1)

e−λ1�(z)(−λ2h2 − α11h2 − α21h1) e
λ2�(z)(−λ2h1 − α12h2 + α22h1)

)
.

Since λ1 + λ2 = α11 + α22, we obtain that

∂z̄�1 ≡ ∂z̄�2 ≡ 0.

The lemma is proved.

Remark 2.2 Here we assume the existence of ∂z̄-primitive of continous function γ.
For the irregular equations of type (1.2), difference from regular case, existence of
primitive distinct non-trivial problem (see [9]).

Get back to (2.3) and suppose that the function γ has a specific form:

γν,μ =
{

0, if z = 0,
|z|ν exp(iμϕ), if z �= 0.

Here ϕ = arg z, ν > 0 is a real number and μ is a nonnegative integer.
To find explicitly ∂z̄-primitive of γν,μ rewrite it in the form

γν,μ = z ν+μ2 z̄
ν−μ

2 .

After the formal integration with respect to z̄ we obtain

ˆ
γν,μdz̄ = 2z̄

ν − μ+ 2
γν,μ.
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It means that, when the parameters ν,μ satisfy the inequality ν − μ + 2 �= 0, all
∂z̄-primitives �μ,ν of the continuous function γμ,ν have the form

�ν,μ = 2z̄

ν − μ+ 2
γν,μ +�(z),

where � is an arbitrary entire function. Indeed, to prove the identity ∂z̄�ν,μ =
γν,μ(z), z ∈ C it is sufficient to rewrite ∂z̄ operator in polar coordinates.

Let N be a nonnegative integer and δ be a nonnegative real number. Denote by
�(N, δ) such (ω1, ω2) solutions of system (2.4), with γ = γν,μ, which at infinity
satisfy the condition

max
1≤k≤2

|ωk(z)| = O(zN exp(δ|z|ν+1), z→∞. (2.6)

It is clear that �(N, δ) is the vector space over C.

Theorem 2.3 (The Liouville Theorem with Parameters) If the parameters ν,μ
of the irregular equation

∂z̄ω = λ|z|ν exp(iμϕ)ω (2.7)

satisfy the condition

|μ− 1| > 2(ν + 1), (2.8)

then the solution space �(N, δ) of (2.7) with condition (2.6) has finite dimension
and dimC�(N, δ) = N+1, where δ = |λ|

|μ−ν+2| and λ ∈ C defined form (2.3),when
n = 1.

Proof The proof of the theorem bases on the explicit representation of the solutions
of Eq. (2.7) and the application of Phragmén–Lindelöf principle for such solution.

The solution of (2.7) has form

ω(z) = �(z) exp

{
2λ

ν − μ+ 2
|z|ν+1

}
exp{i(μ− 1)ϕ}, ϕ = arg z, (2.9)

where�(z) is an arbitrary entire function. From this follows that along all ray

�ϕ∗ = {z : z = reiϕ∗}, r > 0, (μ− 1)ϕ∗ = 2πk, k = 0,±1,±2, . . . ,

�(z) satisfies the condition �(z) = O(zN), z → ∞, z ∈ �ϕ∗ . Therefore,
�(z) = O(zN), z → ∞. It means that dimC�(N, δ) = N + 1. The theorem
is proved.

In the Lemma 2.1 we additionally required that the eigenvalues λ1 and λ2 of
elliptic system (2.4) satisfy the condition |λ1| = |λ2|.
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Proposition 2.4 Let γ = γν,μ and |λ1| = |λ2| = λ0 in the system (2.4) satisfy the
inequality (2.8), then

dimC�

(
N,

2λ0

|μ− ν + 2|
)
= 2(N + 1) (2.10)

for every nonnegative integer N.

The basis of �
(
N, 2λ0|ν−μ+2|

)
is the system of vectors

H̃ , zH̃ , z2H̃ , . . . , zNH̃ , G̃, zG̃, z2G̃, . . . , zNG̃,

where H̃ = eλ1�ν,μH, G̃ = eλ2�ν,μG and H = (h1, h2), G = (g1, g2) are the
eigenvectors corresponding to the eigenvalues λ1, λ2.

Proof By Lemma 2.1 the general solutions of the system (2.4) are expressed by the
pair of eigenvalues and arbitrary entire functions. On the other hand by the Theorem
2.3 numbers of independent solutions of scalar equation satisfying condition (2.8)
equal to N + 1. Hence for the system of two equations the dimension of the vector
space of the solutions of the system (2.4) satisfying the condition (2.8) will be 2(N+
1). The proposition is proved.

Note that if the inequality (2.8) is not fulfilled, then in general the equality (2.10)
is not valid. In particular, if

|μ− 1| < 2(ν + 1), (2.11)

then

dimC�

(
N,

2λ0

|μ− ν + 2|
)
= ∞.

Example Let μ = −ν, then for such μ and ν the relation (2.11) is valid and |μ −
ν + 2| �= 0. The corresponding function γν,−ν has the form γν,−ν = z̄ν . Consider
the equation

∂z̄ω = λ0z̄
νω, (2.12)

where λ0 �= 0 and ν nonnegative integer as above. The solutions of (2.12) are the
functions

ω = "(z) exp

(
λ0
z̄ν+1

ν + 1

)
, (2.13)
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where "(z) is arbitrary entire function. ω ∈ �(N, δ) if and only if

|ω| = |"(z)|| exp

(
λ0

ν + 1
z̄ν+1

)
| ≤ M|z|N exp

( |λ0|
ν + 1

|z|ν+1
)
. (2.14)

Denote by f (z) = "(z)e λ̄0
ν+1 z

ν+1
. Then from (2.14) we have the estimation

|"(z)|
∣∣∣∣exp

(
λ̄0

ν + 1
zν+1

)
exp

(
λ0

ν + 1
z̄ν+1 − λ̄0

ν + 1
zν+1

)∣∣∣∣ =

|f (z)|
∣∣∣∣exp

(
λ0

ν + 1
z̄ν+1 − λ̄0

ν + 1
zν+1

)∣∣∣∣ ≤ M|z|N exp

( |λ0|
ν + 1

|z|ν+1
)
.

Therefore

|f (z)| ≤M|z|N exp

( |λ0|
ν + 1

|z|ν+1
)
.

The space of entire functions satisfying the last inequality have infinite dimension.

Remark 2.5 Denote W = (ω1, ω2) and by T = (τi,j )
2
i,j=1. Then the system (2.4)

obtains the form ∂z̄W = TW. Let C be an invertible analytic matrix function. Then
the systems ∂z̄W = TW and ∂z̄W1 = T1W1, where T1 = CTC−1 are equivalent
(see Sect. 1) and therefore Lemma 2.1 and Proposition 2.4 are true for such systems
also.
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Bases in Commutative Algebras
of the Second Rank and Monogenic
Functions Related to Some Cases of Plane
Orthotropy

S. V. Gryshchuk

Abstract Among all two-dimensional commutative associative algebras of the
second rank with unity over the field of complex numbers we want to find all
pairs (B∗, {e1, e2}), where B∗ is an algebra and {e1, e2} are its bases such that
e4

1 + 2pe2
1e

2
2 + e4

2 = 0 for every fixed p, −1 < p < 1. This problem is solved
in an explicit form. An approach of B∗-valued “analytic” functions �(xe1 + ye2)

({e1, e2} is fixed, x and y are real variables), such that their real-valued functions-
components satisfy the equation on finding the stress function in certain cases of
orthotropic plane deformations, is developing.

Keywords Anisotropic (orthotropic) media · Hooke’s generalized law · Stress
function · Lamé equilibrium system with respect to displacements · Commutative
and associative algebras · Monogenic functions

Mathematics Subject Classification (2010) Primary 30G35; Secondary 74B05

1 Statement of the Problem

Let p be an arbitrary fixed number such that −1 < p < 1. We assume that
a model of an elastic anisotropic medium occupied a bounded domain D of the
Cartesian plane xOy is a homogeneous (cf., e.g., [1, p. 25]) plane orthotropic (cf.,
e.g., [1, p. 35]) body, therefore, it physically obeys Hooke’s generalized law (to
be more exact, an element of the class of Hooke’s generalized laws including the
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corresponding parameters p and a12) of the form

⎛
⎝σxτxy
σy

⎞
⎠ =

⎛
⎜⎝

1
1−(a12)2

0 − a12
1−(a12)2

0 1
2(p−a12)

0

− a12
1−(a12)

2 0 1
1−(a12)

2

⎞
⎟⎠
⎛
⎝ εxγxy
εy

⎞
⎠ , (1.1)

or, the inverse equivalent form:

εx = σx + a12σy, γxy = 2 (p − a12) τxy, εy = a12σx + σy, (1.2)

where σx , τxy , σy and εx , γxy2 , εy are components of the stress tensor [1] and the
strain tensor [1], respectively, and the number a12 satisfies the relation −1 < a12 <

p. The physical meaning of the parameters p and a12 is given in [2], and the case
p > 1 is considered in [3, 4] (in this case, −1 < a12 < 1).

The equation of the stress function u(x, y) (σx(x0, y0) = ∂2u

∂y2 (x0, y0),

σy(x0, y0) = ∂2u

∂x2 (x0, y0), τxy(x0, y0) = − ∂2u
∂x∂y

(x0, y0) for all (x0, y0) ∈ D) in
the absence of body forces has a form (cf., e.g., [1, 5])

l̃pu(x, y) :=
(
∂4

∂x4 + 2p
∂4

∂x2∂y2 +
∂4

∂y4

)
u(x, y) = 0 ∀(x, y) ∈ D. (1.3)

By the same conditions a system of equilibrium equations for displacements known
also as the “Lamé system of equilibrium equations” has the following form (see,
e.g., [1, 5, 6]) for all (x, y) ∈ D:

⎧⎨
⎩
B11

∂2u(x,y)

∂x2 + B12
∂2u(x,y)

∂y2 + ∂2v(x,y)
∂x∂y

= 0,

B21
∂2v(x,y)

∂2x2 + B22
∂2v(x,y)

∂y2 + ∂2u(x,y)
∂x∂y

= 0,
(1.4)

where

B11 = B22 := 2 (p − a12)

(a12)2 − 2pa12 + 1
, B12 = B21 := 1− (a12)

2

(a12)2 − 2pa12 + 1
. (1.5)

Let B∗ denote a two-dimensional commutative associative algebra with unity e
over the complex field C which has a basis {e1, e2} satisfying the condition

Lp(e1, e2) := e4
1 + 2pe2

1e
2
2 + e4

2 = 0. (1.6)

We assume also that every nonzero element h ∈ μe1,e2 := {xe1 + ye2 : (x, y) ∈ R}
is invertible (i.e., there exists the inverse element h−1 ∈ B∗ such that hh−1 = e),
here R is a field of real numbers.
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For any complex numbers c1 and c2 we introduce the notation

lp(c1, c2) := c4
1 + 2pc2

1c
2
2 + c4

2. (1.7)

The characteristic equation of the Eq. (1.3) has a form

lp(s, 1) ≡ s4 + 2p s2 + 1 = 0, s ∈ C, (1.8)

a set of its roots is

{s1, s2, s1, s2} =: ker lp(s, 1), (1.9)

where

s1 =
√

2(1− p)
2

−
√

2(1+ p)
2

i, s2 = −
√

2(1− p)
2

+
√

2(1+ p)
2

i, (1.10)

x + iy := x − iy ≡ Rez − iImz, x, y ∈ R, z = x + iy, i is the imaginary complex
unity. Thus, the relation (1.6) is generated by the Eq. (1.8).

In what follows, (x, y) ∈ D, ζ = xe1 + ye2 ∈ Dζ := {ζ = xe1 + ye2 : (x, y) ∈
D} ⊂ μe1,e2 .

An arbitrary function� : Dζ −→ B can be presented in the form

�(ζ ) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 ∀(x, y) ∈ D,
(1.11)

where Uk : D −→ R, k = 1, 4, are real-valued functions.
We call the function� monogenic if there exists a finite (in the sense of a norm)

limit at every point ζ ∈ Dζ :

�′(ζ ) := lim
h→0, h∈μe1,e2

(
�(ζ + h)−�(ζ ))h−1. (1.12)

We call �′(ζ ) the derivative of a function� at the point ζ ∈ Dζ .
A problem of our consideration in the present work is to find all pairs (B∗,Bp),

where Bp is a totality of all required bases {e1, e2}, and, to deliver a procedures
of finding solutions of Eq. (1.3) and the system (1.4) via monogenic functions
� : Dζ −→ B∗.

Note, that a similar problem is solved in [7–9] for p = 1, and in [3, 4] for p > 1.
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2 Two-Dimensional Algebras Over the Field of Complex
Numbers and Their Bases Related to Plane Orthotropy

As it is well known (see, e.g., [10]), there exist (to within an isomorphism) two
associative commutative algebras of the second rank with unity e over the field
of complex numbers. Those algebras are generated by the bases {e, ρ} and {e, ω},
respectively:

B := {c1e + c2ρ : ck ∈ C, k = 1, 2}, ρ2 = 0, (2.1)

B0 := {c1e + c2ω : ck ∈ C, k = 1, 2}, ω2 = e. (2.2)

It is obvious that the algebra B0 is semisimple and has the basis composed of
orthogonal idempotents {I1,I2}, where

I1 = 1

2
(e + ω) , I2 = 1

2
(e − ω) , I1I2 = 0. (2.3)

It is obvious that

I1 + I2 = e, I1 − I2 = ω. (2.4)

It is clear that if

e1 = α1I1 + α2I2, e2 = β1I1 + β2I2, αk, βk ∈ C, k = 1, 2, (2.5)

are basis elements of the algebra (2.2) satisfying condition (1.6), then

e1 = β1I1 + β2I2, e2 = α1I1 + α2I2

are also basis elements of the algebra (2.2) satisfying condition (1.6).Combining
these two cases, we say that relation (2.5) specifies the basis {e1, e2} of B0 satisfying
condition (1.6) to within permutations.

Lemma 2.1 The algebra B does not contain any basis {e1, e2} satisfying condition
(1.6).

All bases of the algebra B0 satisfying condition (1.6) to within permutations can
be represented in the form

e1 = α1 I1 + α2 I2, e2 = β1 I1 + β2 I2,
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where the complex numbers αk �= 0, βk �= 0, k = 1, 2, satisfy one of the following
two conditions:

(a) βk = s̃k αk, k = 1, 2;

(b) β1 = ŝ1 α1, β2 = 1
ŝ2
α2,

where s̃1 and s̃2 are arbitrary distinct elements from ker lp(s, 1); ŝk ∈ ker lp(s, 1),
k = 1, 2, such that

ŝ2 �= ŝ1. (2.6)

Proof Seeking a basis {e1, e2} of the algebra B0 of the form (2.5), we get the
condition: Lp(e1, e2) = lp(α1, β1) I1 + lp(α2, β1) I2. Modifying a method of the
prove of [3, Theorem 1] to our case −1 < p < 1, we obtain the validity of all
statements of Lemma 2.1. ��

Using (1.10) we get relations 1
sk
= sk, k = 1, 2, which yield a fact, that a set

of pairs (̃s1, s̃2) is equal to the set of pairs (̂s1, 1
ŝ2
). Thus, a set of bases {e1, e2}

generated by the case (b) of Lemma 2.1 is a subset of the totality of bases {e1, e2}
generated by the case (a) of Lemma 2.1, and Lemma 2.1 turns into the following
form.

Theorem 2.2 The algebra B does not contain any basis {e1, e2} satisfying condi-
tion (1.6).

All bases of the algebra B0 satisfying condition (1.6) can be represented in the
form

e1 = α I1 + β I2, e2 = s̃1α I1 + s̃2β I2, (2.7)

where α and β are arbitrary complex numbers such that α �= 0, β �= 0, s̃1 and s̃2
are arbitrary distinct elements from ker lp(s, 1).

By Bp,1 we denote the totality of bases (2.7) with e1 = e. The symbol E we use
for a set of all invertible elements {e1 = a1I1+a2I2 ∈ B0 : ak ∈ C\ {0}, k = 1, 2}.
The product of sets Ek ⊂ B0, k = 1, 2, is defined as the set E ≡ E1E2 := {x1x2 :
xk ∈ Ek, k = 1, 2}.

A relationship between the sets Bp and Bp,1 is obtained similar to [3, Lemma 1].

Lemma 2.3 The equality of sets Bp = E Bp,1 is true.
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3 Monogenic Functions in the Plane Generated by a Basis
Satisfying Condition (1.6)

Consider monogenic functions� : Dζ −→ B0, Dζ ⊂ μe1,e2 , where a basis {e1, e2}
is chosen in (2.7). It easy to verify that any element ek, k = 1, 2, in (2.7) is invertible.
Every non-zero element in μe1,e2 is invertible too.

Analogously to the corresponding result in [11], we can prove that the a function
of the type� : Dζ −→ B0 is monogenic iff its componentsUk , k = 1, 4, (in (1.11))
are differentiable in the domainD and the following analog of the Cauchy–Riemann
conditions holds:

∂�(ζ )

∂y
e1 = ∂�(ζ )

∂x
e2 ≡ �′(ζ )e1e2 ∀ ζ ∈ Dζ . (3.1)

In a similar way to corresponding result of the paragraph 5 in [3], we obtain that
the functional algebra of monogenic functions of the variable ζ∗ = xe1 + ye2 is
isomorphic to the functional algebra of monogenic functions of the variable ζ =
xe+ ye2.

Thus, the investigation of monogenic functions in domains lying in μe1,e2 with
e1 �= e, is equivalent to the investigation of monogenic functions in domains lying
in μe1,e2 with e1 = e.

By this reason, here and below we assume that e1 = e in (2.7), i.e.,

e1 = I1 + I2, e2 = s̃1 I1 + s̃2 I2. (3.2)

For the variable ζ = xe1 + ye2 we introduce complex variables Zk ⊂ C and
their domainsDZk ⊂ C, k = 1, 2, by the formulas

Zk := x + s̃k y, DZk := {Zk = x + s̃k y : xe1 + ye2 ∈ Dζ }, k = 1, 2,

here s̃k , k = 1, 2, are the same as in (3.2). Then we can represent the variable ζ in
the form ζ = Z1 I1 + Z2 I2.

Analogous to [3, Theorem 3] we obtain the following statement: the function
� : Dζ −→ B0 is monogenic in Dζ if and only if the following equality is true

�(ζ ) = F1(Z1)I1 + F2(Z2) I2 ∀ζ ∈ Dζ , (3.3)

where Fk : DZk −→ C, k ∈ {1, 2}, is a holomorphic function.
Note that a relation between continuous and differentiable in the sense of Gateaux

functions considered in [12, 13] and monogenic functions (3.3) is the same as the
similar relation for p > 1 (see remarks after Theorem 3 in [3]), i.e., these two
notions coincide.
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The equalities (3.2) yield relations

I1 = s̃2

s̃2 − s̃1 e −
e2

s̃2 − s̃1 , I2 = − s̃1

s̃2 − s̃1 e +
e2

s̃2 − s̃1 .

Without loss of generality we replace F1(Z1) onto s̃2
s̃2−̃s1F1(Z1) and F2(Z2) onto(

− s̃1
s̃2−̃s1

)
F2(Z1), then (3.3) turns onto

�(ζ ) = (F1(Z1)+ F2(Z2)) e1 −
(

1

s̃2
F1(Z1)+ 1

s̃1
F2(Z2)

)
e2 ∀ζ ∈ Dζ , e1 = e.

(3.4)

4 Monogenic Functions Related to Eq. (1.3) and System (1.4)

It follows from (3.1) and (3.3) that every monogenic functions has derivatives �(n)

of any order n = 1, 2, . . . . Then each component

Uk [�(ζ )] := Uk(x, y) ∀ζ ∈ Dζ , k = 1, 4,

of monogenic function� in (1.11) satisfies Eq. (1.3) due to equalities

l̃p�(ζ ) = Lp(e1, e2)�
(4)(ζ ) ≡ 0.

Here and below we restrict our attention on the case s̃k , k = 1, 2, (̃s1 �= s̃2) such
that

s̃2 �= s̃1.

Let us assume now that the domainD is bounded and simply connected.
It is known (see, e.g., [1, 5, 14]) that the general solution of Eq. (1.3) takes the

form

u(x, y) = Re (F1 (Z1)+ F2 (Z2)) ∀(x, y) ∈ D, (4.1)

here Fk : DZk −→ C, k = 1, 2, are any holomorphic functions of the corresponding
complex variables.

A fixed solution u of (1.3) satisfies the equality

u(x, y) = U1 [�u(ζ )] ∀ζ ∈ Dζ , (4.2)
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where �u : Dζ −→ B0 is a monogenic function which has the same Fk , k = 1, 2,
in the equality (3.4) for� := �u as in (4.1) for u. Denote by�1,0 a function which
is monogenic in Dζ such that U1

[
�1,0

] ≡ 0.

Lemma 4.1 Let D be a bounded and simply connected domain of the Cartesian
plane xOy. Then all monogenic functions � : Dζ −→ B0 satisfying the equal-
ity (4.2) can be presented in the form

�(ζ ) = �u(ζ )+�1,0(ζ ) ∀ζ ∈ Dζ . (4.3)

Note that the equality (4.3) is found in the explicit form (the explicit formula for
�1,0) in [2] for a case when s̃k := sk , k = 1, 2.

Now, let us assume that s̃k = sk , k = 1, 2. In this case a procedure for
building solutions of the system (1.4) by means of components Uk = Uk [�] of
the monogenic in Dζ function� is found in [6, Theorem 5.1]

Theorem 4.2 Let � : Dζ −→ B0 be a monogenic function, αk , k = 1, 4, be any
real numbers, and let the numbers βk , k = 1, 4, be connected with them by the
linear relations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1 = (pB11 − B12) α3 −
√

1− p2B11α4,

β2 =
√

1− p2B11α3 + (pB11 − B12) α4,

β3 = (pB12 − B11) α1 +
√

1− p2B12α2,

β4 = −√1− p2B12α1 + (pB12 − B11) α2.

(4.4)

In addition, let the functions u and v be linear combinations of the components
Uk = Uk [�], k = 1, 4, of the form

u(x, y) =
4∑
k=1

αkUk(x, y), v(x, y) =
4∑
k=1

βkUk(x, y) ∀(x, y) ∈ D. (4.5)

Then the pair of functions (u, v) satisfies the system (1.4) in D.
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Abstract We study the behavior at infinity of ring Q-homeomorphisms with
respect to p-modulus for p > n.
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1 Introduction

Let us recall some definitions, see [1]. Let � be a family of curves γ in R
n, n � 2.

A Borel measurable function ρ : Rn → [0,∞] is called admissible for �, (abbr.
ρ ∈ adm�), if

ˆ

γ

ρ(x) ds � 1

for any curve γ ∈ �. Let p ∈ (1,∞).
The quantity

Mp(�) = inf
ρ∈adm�

ˆ

Rn

ρp(x) dm(x)

is called p–modulus of the family �.

R. Salimov (�) · B. Klishchuk
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Cerejeiras et al. (eds.), Current Trends in Analysis, its Applications
and Computation, Research Perspectives,
https://doi.org/10.1007/978-3-030-87502-2_17

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87502-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-87502-2_17


174 R. Salimov and B. Klishchuk

For arbitrary sets E, F and G of R
n we denote by 	(E,F,G) a set of all

continuous curves γ : [a, b] → R
n that connect E and F in G, i.e., such that

γ (a) ∈ E, γ (b) ∈ F and γ (t) ∈ G for a < t < b.
Let D be a domain in R

n, n � 2, x0 ∈ D and d0 = dist(x0, ∂D). Set

A(x0, r1, r2) = {x ∈ R
n : r1 < |x − x0| < r2} ,

Si = S(x0, ri ) = {x ∈ R
n : |x − x0| = ri} , i = 1, 2 .

Let a function Q : D → [0,∞] be Lebesgue measurable. We say that a
homeomorphism f : D → R

n is ring Q-homeomorphism with respect to p-
modulus at x0 ∈ D if the inequality

Mp(	(f S1, f S2, fD)) �
ˆ

A

Q(x) ηp(|x − x0|) dm(x)

holds for any ring A = A(x0, r1, r2) , 0 < r1 < r2 < d0, d0 = dist(x0, ∂D), and for
any measurable function η : (r1, r2)→ [0,∞] such that

r2ˆ

r1

η(r) dr = 1 .

The theory of Q-homeomorphisms for p = n was studied in works [2–6] , for
1 < p < n in works [7–14] and for p > n in works [15–19], see also [20, 21].

Denote by ωn−1 the area of the unit sphere S
n−1 = {x ∈ R

n : |x| = 1} in
R
n and by qx0(r) = 1

ωn−1 rn−1

´

S(x0,r)

Q(x) dA the integral mean over the sphere

S(x0, r) = {x ∈ R
n : |x − x0| = r} , here dA is the element of the surface area.

Now we formulate a criterion which guarantees for a homeomorphism to be ring
Q-homeomorphism with respect to p-modulus for p > 1 in R

n, n � 2.

Proposition 1 Let D be a domain in R
n, n � 2, and let Q : D → [0,∞] be a

Lebesgue measurable function such that qx0(r) �= ∞ for a.e. r ∈ (0, d0), d0 =
dist(x0, ∂D). A homeomorphism f : D → R

n is ring Q-homeomorphism with
respect to p-modulus at a point x0 ∈ D if and only if the inequality

Mp (	(f S1, f S2, fA)) �
ωn−1⎛

⎝ r2́

r1

dr

r
n−1
p−1 q

1
p−1
x0 (r)

⎞
⎠
p−1

holds for any 0 < r1 < r2 < d0 (see [12], Theorem 2.3).
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Following the paper [22], a pair E = (A,C) where A ⊂ R
n is an open set and

C is a nonempty compact set contained in A, is called condenser. We say that a
condenser E = (A,C) lies in a domain D if A ⊂ D. Clearly, if f : D → R

n

is a homeomorphism and E = (A,C) is a condenser in D then (fA, fC) is also
condenser in fD. Further, we denote f E = (fA, fC).

Let E = (A,C) be a condenser. Denote by C0(A) a set of continuous functions u :
A→ R

1 with compact support. Let W0(E) =W0(A,C) be a family of nonnegative
functions u : A → R

1 such that 1) u ∈ C0(A), 2) u(x) � 1 for x ∈ C and 3) u
belongs to the class ACL and

|∇u| =
(

n∑
i=1

(
∂u

∂xi

)2
) 1

2

.

For p � 1 the quantity

capp E = capp (A,C) = inf
u∈W0(E)

ˆ

A

|∇u|p dm(x)

is called p-capacity of the condenser E . It is known that for p > 1

capp E = Mp(	(∂A, ∂C;A \ C)), (1.1)

see in ([23] ,Theorem 1). For p > n the inequality

capp (A,C) � n�
p
n
n

(
p − n
p − 1

)p−1 [
m

p−n
n(p−1) (A)−m p−n

n(p−1) (C)
]1−p

(1.2)

holds where �n is a volume of the unit ball in R
n (see, e.g., the inequality 8.7 in

[24]).

2 Main Results

Now we present the main result of our paper on the behavior at infinity of ring
Q-homeomorphisms with respect to p-modulus for p > n. The case p = n was
studied in the work [25]. Let

L(x0, f, R) = sup
|x−x0|�R

|f (x)− f (x0)| .

Theorem 2.1 (Main Theorem) Suppose that f : R
n → R

n is a ring Q-
homeomorphism with respect to p-modulus at a point x0 with p > n where x0
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is some point in R
n and for some numbers r0 > 0, K > 0 the condition

qx0(t) � K tα (2.1)

holds for a.a. t ∈ [r0,+∞). If α ∈ [0, p − n) then

lim
R→∞

L(x0, f, R)

R
p−n−α
p−n

� K
1
n−p

(
p − n

p − n− α
) p−1
p−n

> 0 .

If α = p − n then

lim
R→∞

L(x0, f, R)

(lnR)
p−1
p−n

� K
1
n−p

(
p − n
p − 1

) p−1
p−n

> 0 .

Proof Consider a condenser E = (A,C) in R
n, where A = {x ∈ R

n : |x − x0| <
R}, C = {x ∈ R

n : |x − x0| � r0}, 0 < R < r0 < ∞. Then f E = (fA, fC) is a
ringlike condenser in R

n, and by (1.1) we have equality

capp f E = Mp (	(∂fA, ∂fC; f (A \ C))) .

Due to the inequality (1.2),

capp (fA, fC) � n�
p
n
n

(
p − n
p − 1

)p−1 [
m

p−n
n(p−1) (f A)−m p−n

n(p−1) (f C)
]1−p

,

we obtain

capp (fA, fC) � n�
p
n
n

(
p − n
p − 1

)p−1

[m(fA)]
n−p
n . (2.2)

On the other hand, by Proposition 1, one gets

capp (fA, fC) �
ωn−1⎛

⎝ Ŕ

r0

dt

t
n−1
p−1 q

1
p−1
x0 (t)

⎞
⎠
p−1 . (2.3)

Combining the inequalities (2.2) and (2.3), we obtain

n�
p
n
n

(
p − n
p − 1

)p−1

[m(fA)]
n−p
n � ωn−1⎛

⎝ Ŕ

r0

dt

t
n−1
p−1 q

1
p−1
x0 (t)

⎞
⎠
p−1

.
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Due to ωn−1 = n�n, the last inequality can be rewritten as

�
p
n
−1

n

(
p − n
p − 1

)p−1

[m(fA)]
n−p
n �

⎛
⎝

R̂

r0

dt

t
n−1
p−1 q

1
p−1
x0 (t)

⎞
⎠

1−p

. (2.4)

Consider the case α ∈ [0, p − n). Then from the condition (2.1) the estimate

�
p
n−1
n

(
p − n
p − 1

)p−1

[m(fA)]
n−p
n � K

(
p − n− α
p − 1

)p−1 (
R
p−n−α
p−1 − r

p−n−α
p−1

0

)1−p

holds. Therefore,

m(fB(x0, R)) � �n K
n
n−p

(
p − n

p − n− α
) n(p−1)

p−n (
R
p−n−α
p−1 − r

p−n−α
p−1

0

) n(p−1)
p−n

.

(2.5)

Due to

m(fB(x0, R)) � �n Ln(x0, f, R) , (2.6)

from the inequality (2.5) we have

L(x0, f, R) � K
1
n−p

(
p − n

p − n− α
) p−1
p−n (

R
p−n−α
p−1 − r

p−n−α
p−1

0

) p−1
p−n

.

Dividing the last inequality by R
p−n−α
p−n and taking the lower limit for R → ∞, we

conclude

lim
R→∞

L(x0, f, R)

R
p−n−α
p−n

� K
1
n−p

(
p − n

p − n− α
) p−1
p−n

.

Now we consider the case α = p − n. Then from (2.4) we get

�
p
n−1
n

(
p − n
p − 1

)p−1

[m(fA)]
n−p
n � K

(
ln
R

r0

)1−p
.

Therefore,

m(fB(x0, R)) � �n K
n
n−p

(
p − n
p − 1

) n(p−1)
p−n (

ln
R

r0

) n(p−1)
p−n

.
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Due to the estimate (2.6) we obtain

L(x0, f, R) � K
1
n−p

(
p − n
p − 1

) p−1
p−n (

ln
R

r0

) p−1
p−n

.

Finally, dividing the last inequality by (lnR)
p−1
p−n and taking the lower limit forR→

∞, we conclude

lim
R→∞

L(x0, f, R)

(lnR)
p−1
p−n

� K
1
n−p

(
p − n
p − 1

) p−1
p−n

.

This completes the proof of Main Theorem.

Let us consider some examples.

Example 2.1 Let f1 : Rn → R
n, where

f1(x) =
⎧⎨
⎩K

1
n−p

(
p−n
p−n−α

) p−1
p−n |x| p−n−αp−n x

|x| , x �= 0

0, x = 0 .

It can be easily seen that lim
x→∞

|f (x)|
|x|

p−n−α
p−n

= K
1
n−p

(
p−n
p−n−α

) p−1
p−n

. Let us show that

the mapping f1 is a ring Q-homeomorphism with respect to p-modulus with the
function Q(x) = K |x|α at the point x0 = 0. Clearly, qx0(t) = K tα . Consider
a ring A(0, r1, r2), 0 < r1 < r2 < ∞. Note that the mapping f1 maps the ring
A(0, r1, r2) onto the ring Ã(0, r̃1, r̃2), where

r̃i = K
1
n−p

(
p − n

p − n− α
) p−1
p−n

r

p−n−α
p−n

i , i = 1, 2.

Denote by � a set of all curves that join the spheres S(0, r1) and S(0, r2) in the ring
A(0, r1, r2). Then one can calculate p-modulus of the family of curves f1� in an
implicit form:

Mp(f1�) = ωn−1

(
p − n
p − 1

)p−1 (
r̃

p−n
p−1

2 − r̃
p−n
p−1

1

)1−p

(see, e.g., the relation (2) in [26]). Substituting in the above equality the values r̃1
and r̃2, defined above, one gets

Mp(f1�) = ωn−1K

(
p − n− α
p − 1

)p−1 (
r

p−n−α
p−1

2 − r
p−n−α
p−1

1

)1−p
.
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Note that the last equality can be written by

Mp(f1�) = ωn−1⎛
⎝ r2́

r1

dt

t
n−1
p−1 q

1
p−1
x0 (t)

⎞
⎠
p−1 ,

where qx0(t) = K tα .
Hence, by Proposition 1, the homeomorphism f1 is a ring Q-homeomorphism

with respect to p-modulus for p > n with the functionQ(x) = K |x|α at the point
x0 = 0.

Example 2.2 Let α = p − n and f2 : Rn → R
n, where

f2(x) =
⎧⎨
⎩K

1
n−p

(
p−n
p−1

) p−1
p−n

(ln |x|) p−1
p−n x

|x| , x �= 0

0, x = 0 .

It can be easily seen that lim
x→∞

|f (x)|
(ln |x|)

p−1
p−n

= K
1
n−p

(
p−n
p−1

) p−1
p−n

. By analogy to

Example 2.1, we can show that the mapping f2 is a ring Q-homeomorphism with
respect to p-modulus with the functionQ(x) = K |x|p−n.

Remark 2.1 Examples 2.1 and 2.2 show that the estimates in Main Theorem are
sharp, i.e. the bounds are attained on the above mappings.
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Domain Perturbation for the Solution
of a Periodic Dirichlet Problem
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Abstract We prove that the solution of the periodic Dirichlet problem for the
Laplace equation depends real analytically on a suitable parametrization of the
shape of the domain, on the periodicity parameters, and on the Dirichlet datum.

Keywords Laplace operator · Periodically perforated domains · Domain
perturbation · Real analyticity · Shape analysis · Integral equations method
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1 Introduction

In this paper we study the dependence of the solution of the periodic Dirichlet
problem for the Laplace equation in R

n upon joint perturbation of the shape of
the domain, of the periodicity structure, and of the Dirichlet datum. The shape
of the domain is determined by the image of a fixed domain through a map
φ in a suitable class of diffeomorphisms and the periodicity cell is a box of
edges of length q11, . . . , qnn. As a main result, we prove that the solution of
the problem depends real analytically on the ‘periodicity-domain-Dirichlet datum’
triple ((q11, . . . , qnn), φ, g). Our method is based on a periodic version of potential
theory which has already revealed to be a powerful tool to analyze boundary value
problems for elliptic differential equations in periodic domains.
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Many authors have exploited potential theory to analyze perturbation problems.
In the non-periodic setting, Potthast [20] and Potthast and Stratis [21] have proved
a Fréchet differentiability result for layer potentials associated to the Helmholtz
operator, with an application to inverse problems in scattering theory. Lanza de
Cristoforis and Preciso [15] have shown that the Cauchy integral depends real
analytically on domain perturbations. Lanza de Cristoforis and Rossi [16] have
considered the case of layer potentials associated to the Laplace operator and
have obtained real analyticity results. Later on, Lanza de Cristoforis [11, 12] has
exploited these results to prove that the solutions of boundary value problems for the
Laplace and Poisson equations depend real analytically upon domain perturbation.
Then, these results have been extended to singular perturbation problems and
to systems of partial differential equations (see, e.g., Dalla Riva and Lanza de
Cristoforis [4] for the Lamé equations and Dalla Riva [3] for the Stokes’ system).
Moreover, analyticity results for domain perturbation problems for eigenvalues and
eigenfunctions have been obtained for example for the Laplace equation by Lanza
de Cristoforis and Lamberti [10] and for the biharmonic operator by Buoso [2]. We
mention also Keldysh [9], Henry [8] and Sokolowski and Zolésio [22] for elliptic
domain perturbation problems.

Now, we introduce our problem. We fix once for all n ∈ N \ {0, 1}. If
(q11, . . . , qnn) ∈]0,+∞[n we introduce a periodicity cell Q and a matrix q ∈
D
+
n (R) by setting

Q ≡
n∏
j=1

]0, qjj [, q ≡

⎛
⎜⎜⎜⎝
q11 0 · · · 0
0 q22 · · · 0
...

...
. . .

...

0 0 · · · qnn

⎞
⎟⎟⎟⎠ ,

where Dn(R) is the space of n × n diagonal matrices with real entries and D
+
n (R)

is the set of elements of Dn(R) with diagonal entries in ]0,+∞[. We also denote
by |Q|n the n-dimensional measure of the cellQ, by νQ the outward unit normal to
∂Q, where it exists, and by q−1 the inverse matrix of q . Clearly qZn is the set of
vertices of a periodic subdivision of Rn corresponding to the fundamental cell Q.
Moreover, we find convenient to set

Q̃ ≡]0, 1[n , q̃ ≡ In ≡

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...
...
. . .
...

0 0 · · · 1

⎞
⎟⎟⎟⎠ .

Then we take

α ∈]0, 1[ and a bounded open connected subset � of Rn

of class C1,α such that Rn \� is connected.
(1.1)



Domain Perturbation for the Solution of a Periodic Dirichlet Problem 183

The symbol ‘·’ denotes the closure of a set. For the definition of sets and functions
of the Schauder class C1,α we refer, e.g., to Gilbarg and Trudinger [7]. Then we

consider a class of diffeomorphisms AQ̃∂� from ∂� into their images contained in

Q̃ (see (2.1) below). If φ ∈ AQ̃∂�, the Jordan-Leray separation theorem ensures that
R
n \ φ(∂�) has exactly two open connected components (see, e.g, Deimling [6,

Thm. 5.2, p. 26]), and we denote by I[φ] the bounded open connected component of
R
n \ φ(∂�). Since φ(∂�) ⊆ Q̃, a simple topological argument shows that Q̃ \ I[φ]

is also connected. Then we consider the following two periodic domains:

Sq [qI[φ]] ≡
⋃
z∈Zn

(qz+ qI[φ]) , Sq [qI[φ]]− ≡ R
n \ Sq [qI[φ]] .

Now, we take g ∈ C1,α(∂�) and we consider the following periodic Dirichlet
problem for the Laplace equation:

⎧⎨
⎩
	u = 0 in Sq [qI[φ]]− ,
u(x + qz) = u(x) ∀x ∈ Sq [qI[φ]]− ,∀z ∈ Z

n ,

u(x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ] .
(1.2)

If φ ∈ C1,α(∂�,Rn) ∩ AQ̃∂�, then the solution of problem (1.2) in the space

C
1,α
q (Sq [qI[φ]]−) of q-periodic functions in Sq [qI[φ]]− of class C1,α exists and

is unique and we denote it by u[q, φ, g]. Then we pose the following question:

What can be said on the regularity of the map (q, φ, g) �→ u[q, φ, g]? (1.3)

Our work stems from Lanza de Cristoforis [11, 12] where the author proved the
real analytic dependence of the solution of the Dirichlet problem for the Laplace
and Poisson equations upon domain perturbations. Moreover, it can be thought
as a continuation of [18] where the authors proved a real analyticity result for
the periodic layer potentials upon variation of the periodicity, of the shape of the
support of integration, and of the density. We note that this paper generalizes a part
of [17] where the authors proved an analyticity result for the longitudinal flow along
a periodic array of cylinders.

In this work, we answer to the question in (1.3) by proving that the map
(q, φ, g) �→ u[q, φ, g] is real analytic between suitable Banach spaces (see
Theorem 3.6). Such a result implies that if δ0 > 0 and we have a family of
triples {(qδ, φδ, gδ)}δ∈]−δ0,δ0[ in a suitable Banach space such that the map δ �→
(qδ, φδ, gδ) is real analytic, then, if x belongs to the domain of u[qδ, φδ, gδ] for all
δ ∈] − δ0, δ0[, we can deduce the possibility to expand u[qδ, φδ, gδ](x) as a power
series in δ, i.e.,

u[qδ, φδ, gδ](x) =
∞∑
k=0

ckδ
k (1.4)
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for δ close to zero. Moreover, the coefficients (ck)k∈N in (1.4) can be constructively
determined by exploiting the method developed in [5].

2 Preliminary Results

In order to consider shape perturbations, we introduce a class of diffeomorphisms.
Let � be as in (1.1). We denote by A∂� the set of functions of class C1(∂�,Rn)

which are injective and whose differential is injective at all points of ∂�. One can
verify that A∂� is open in C1(∂�,Rn) (see, e.g., Lanza de Cristoforis and Rossi
[16, Lem. 2.5, p. 143]). Then we set

AQ̃∂� ≡ {φ ∈ A∂� : φ(∂�) ⊆ Q̃}. (2.1)

Our method is based on a periodic version of classical potential theory. Therefore,
to introduce layer potentials, we replace the fundamental solution of the Laplace
operator by a q-periodic tempered distribution Sq,n such that	Sq,n =∑

z∈Zn δqz−
1

|Q|n , where δqz is the Dirac measure with mass in qz (see e.g., [13, p. 84]). The
distribution Sq,n is determined up to an additive constant, and we can take

Sq,n(x) = −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2 e
2πi(q−1z)·x

in the sense of distributions in R
n (see e.g., Ammari and Kang [1, p. 53] and [13,

§3]). Moreover, Sq,n is even, real analytic in R
n \ qZn, and locally integrable in R

n

(see e.g., [13, §3]). We now introduce the periodic double layer potential. Let�Q be
a bounded open subset of Rn of class C1,α for some α ∈]0, 1[ such that �Q ⊆ Q.
Then we consider the following two periodic domains:

Sq [�Q] ≡
⋃
z∈Zn

(
qz+�Q

)
, Sq [�Q]− ≡ R

n \ Sq [�Q] .

We set

wq [∂�Q,μ](x) ≡ −
ˆ

∂�Q

ν�Q(y) ·DSq,n(x − y)μ(y) dσy ∀x ∈ R
n

for all μ ∈ L2(∂�Q). The symbol ν�Q denotes the outward unit normal field to
∂�Q, dσ denotes the area element on ∂�Q, and DSq,n(ξ) denotes the gradient
of Sq,n computed at the point ξ ∈ R

n \ qZn. The function wq [∂�Q,μ] is called
the q-periodic double layer potential. As is well known, if μ ∈ C0(∂�Q) then
wq [∂�Q,μ]|Sq [�Q] admits a continuous extension to Sq [�Q], which we denote by

w+q [∂�Q,μ] and wq [∂�Q,μ]|Sq [�Q]− admits a continuous extension to Sq [�Q]−,
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which we denote by w−q [∂�Q,μ] (cf. e.g., [13, §3]). We also need the following
lemma about the real analyticity upon the diffeomorphism φ of some maps related
to the change of variables in the integrals and to the outer normal field (for a proof,
see Lanza de Cristoforis and Rossi [16, p. 166]).

Lemma 2.1 Let α, � be as in (1.1). Then the following statements hold.

(i) For each φ ∈ C1,α(∂�,Rn) ∩ A∂�, there exists a unique σ̃ [φ] ∈ C0,α(∂�)

such that σ̃ [φ] > 0 and

ˆ

φ(∂�)

w(s) dσs =
ˆ

∂�

w ◦ φ(y)σ̃ [φ](y) dσy, ∀w ∈ L1(φ(∂�)).

Moreover, the map σ̃ [·] from C1,α(∂�,Rn)∩A∂� to C0,α(∂�) is real analytic.
(ii) The map from C1,α(∂�,Rn)∩A∂� to C0,α(∂�,Rn) which takes φ to νI[φ] ◦ φ

is real analytic.

3 Analyticity of the Solution

As we shall see, we will reduce the analysis of the solution u[q, φ, g] of problem
(1.2) to that of a related integral equation. To do so, we start with a result on a
boundary integral operator, which is proved in [19, Prop. A.3].

Lemma 3.1 Let q ∈ D
+
n (R). Let α,� be as in (1.1). Let φ ∈ C1,α(∂�,Rn)∩AQ̃∂�.

Let N be the map from C1,α(∂qI[φ]) to itself, defined by

N[μ] ≡ −1

2
μ+wq [∂qI[φ], μ] ∀μ ∈ C1,α(∂qI[φ]).

Then N is a linear homeomorphism from C1,α(∂qI[φ]) to C1,α(∂qI[φ]).
Now we are able to establish a correspondence between the solution of our Dirichlet
problem and the solution of an integral equation in the proposition below, whose
proof follows from a straightforward modification of the proof of [18, Prop. 5.2].

Proposition 3.2 Let q ∈ D
+
n (R). Let α, � be as in (1.1). Let φ ∈ C1,α(∂�,Rn) ∩

AQ̃∂�. Let g ∈ C1,α(∂�). Then the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
	u = 0 in Sq [qI[φ]]−,
u(x + qz) = u(x) ∀x ∈ Sq [qI[φ]]−,∀z ∈ Z

n,

u(x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ]
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has a unique solution u[q, φ, g] in C1,α
q (Sq [qI[φ]]−). Moreover,

u[q, φ, g](x) = w−q [∂qI[φ], μ](x) ∀x ∈ Sq [qI[φ]]−,

where μ is the unique solution in C1,α(∂qI[φ]) of the integral equation

− 1

2
μ(x)+wq [∂qI[φ], μ](x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ] . (3.1)

Next, we analyze the dependence of the solution of (3.1) upon (q, φ, g). Since
Eq. (3.1) is defined on the (q, φ)-dependent domain ∂qI[φ], the first step is to
provide a reformulation on a fixed domain. More precisely, we have the following
lemma. The proof follows by a change of variable and by Lemma 3.1 (cf. [19, Lem.
3.4]).

Lemma 3.3 Let q ∈ D
+
n (R). Let α,� be as in (1.1). Let φ ∈ C1,α(∂�,Rn)∩AQ̃∂�.

Let g ∈ C1,α(∂�). Then the function θ ∈ C1,α(∂�) solves the equation

−1

2
θ(t)−

ˆ

qφ(∂�)

νqI[φ](s) ·DSq,n(qφ(t)− s)(θ ◦ φ(−1))(q−1s)dσs = g(t)

∀t ∈ ∂� ,
(3.2)

if and only if the function μ ∈ C1,α(∂qI[φ]), with μ delivered by

μ(x) = (θ ◦ φ(−1))(q−1x) ∀x ∈ ∂qI[φ],

solves the equation

−1

2
μ(x)+wq [∂qI[φ], μ](x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ] .

Moreover, Eq. (3.2) has a unique solution θ in C1,α(∂�).

Now, our aim is to prove the analyticity upon (q, φ, g) of the function θ which
solves Eq. (3.2). Inspired by Lemma 3.3, we introduce the map � from D

+
n (R) ×(

C1,α(∂�,Rn) ∩AQ̃∂�
)
× (
C1,α(∂�)

)2 to C1,α(∂�) by setting

�[q, φ, g, θ ](t) ≡ −1

2
θ(t)

−
ˆ

qφ(∂�)

νqI[φ](s) ·DSq,n(qφ(t) − s)(θ ◦ φ(−1))(q−1s)dσs − g(t) ∀t ∈ ∂�,
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for all (q, φ, g, θ) ∈ D
+
n (R) ×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× (
C1,α(∂�)

)2. Next, we

apply the implicit function theorem to the equation�[q, φ, g, θ ] = 0.

Proposition 3.4 Let α, � be as in (1.1). Then the following statements hold.

(i) � is real analytic.

(ii) For each (q, φ, g) ∈ D
+
n (R) ×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�), there

exists a unique θ in C1,α(∂�) such that

�[q, φ, g, θ ] = 0 on ∂�,

and we denote such a function by θ [q, φ, g].
(iii) The map θ [·, ·, ·] from D

+
n (R) ×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�) to

C1,α(∂�) which takes (q, φ, g) to θ [q, φ, g] is real analytic.

Proof Statement (i) follows from [18, Thm. 3.2 (ii)], while (ii) is a consequence
of Lemma 3.3. Next we consider (iii). Since the analyticity is a local property,

we fix (q0, φ0, g0) in D
+
n (R) ×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�) and we

show that θ [·, ·, ·] is real analytic in a neighborhood of (q0, φ0, g0) in the prod-

uct space D
+
n (R) ×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�). By standard calculus

in normed spaces, the partial differential ∂θ�[q0, φ0, g0, θ [q0, φ0, g0]] of � at
(q0, φ0, g0, θ [q0, φ0, g0]) with respect to the variable θ is delivered by

∂θ�[q0,φ0, g0, θ[q0, φ0, g0]](ψ)(t)

= −1

2
ψ(t)−

ˆ

q0φ0(∂�)
νq0I[φ0](s) ·DSq0,n(q0φ0(t)− s)(ψ ◦ φ(−1)

0 )(q−1
0 s) dσs

∀t ∈ ∂�,

for all ψ ∈ C1,α(∂�). By Lemma 3.1, ∂θ�[q0, φ0, g0, θ [q0, φ0, g0]] is a lin-
ear homeomorphism from C1,α(∂�) onto C1,α(∂�). Then the implicit function
theorem for real analytic maps in Banach spaces (see, e.g., Deimling [6, Thm.
15.3]) implies that θ [·, ·, ·] is real analytic in a neighborhood of (q0, φ0, g0) in

D
+
n (R)×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�). ��

Remark 3.5 By Lemma 2.1, Propositions 3.2 and 3.4, the solution u[q, φ, g] of
problem (1.2) can be written as

u[q, φ, g](x) = −
ˆ

∂�

νqI[φ](qφ(s)) ·DSq,n(x − qφ(s))θ [q,φ, g](s)σ̃ [qφ](s) dσs

∀x ∈ Sq [qI[φ]]−,

for all (q, φ, g) ∈ D
+
n (R)×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�).
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We are now able to deduce our main result, which answers to (1.3).

Theorem 3.6 Let α, � be as in (1.1). Let

(q0, φ0, g0) ∈ D
+
n (R)×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�).

Let U be a bounded open subset of Rn such that U ⊆ Sq0[q0I[φ0]]−. Then there
exists an open neighborhood U of (q0, φ0, g0) in

D
+
n (R)×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
× C1,α(∂�)

such that the following statements hold.

(i) U ⊆ Sq [qI[φ]]− for all (q, φ, g) ∈ U .
(ii) Let k ∈ N. Then the map of U to Ck(U) which takes (q, φ, g) to the restriction

u[q, φ, g]|U of u[q, φ, g] to U is real analytic.

Proof By taking U small enough, we can deduce the validity of statement (i).
Statement (ii) follows from the representation formula of Remark 3.5 together with
Lemma 2.1, Proposition 3.4 and standard properties of integral operators with real
analytic kernels and with no singularity (cf. [14]). ��
Remark 3.7 We considered the periodic Dirichlet problem for the Laplace equation.
Our method can be used for other periodic problems. For example, one can consider
the Dirichlet problem

⎧⎨
⎩
	v = 1 in Sq [qI[φ]]− ,
v(x + qz) = v(x) ∀x ∈ Sq [qI[φ]]− ,∀z ∈ Z

n ,

v(x) = 0 ∀x ∈ ∂qI[φ] ,
(3.3)

which generalizes the one considered in [17]. Then, if we denote by v[q, φ] the
solution to problem (3.3), by exploiting the periodic volume potential we can prove

that the map from D
+
n (R)×

(
C1,α(∂�,Rn) ∩AQ̃∂�

)
to R

(q, φ) �→
ˆ

Q\qI[φ]
v[q, φ](x) dx

is real analytic. Moreover, one can replace the right-hand side in the first equation
of problem (3.3) by a more general sufficiently regular periodic function.
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Real Analyticity of Periodic Layer
Potentials Upon Perturbation
of the Periodicity Parameters
and of the Support
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Abstract We prove that the periodic layer potentials for the Laplace operator
depend real analytically on the density function, on the supporting hypersurface,
and on the periodicity parameters.

Keywords Periodic simple layer potential · Periodic double layer potential ·
Laplace operator · Domain perturbation · Special nonlinear operators
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1 Introduction

This paper is devoted to the study of the dependence of the periodic simple and
double layer potentials upon perturbation of the periodicity cell and of the support
of the integration. A periodic version of potential theory has revealed to be a
powerful tool to analyze boundary value problems for elliptic differential equations
in spatially periodic domains. If one is interested into studying the behavior of the
solutions of boundary value problems for the Laplacian in a periodic domain upon
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perturbation of the periodicity cell and of the shape of the domain, then one faces
the problem of studying the behavior of the corresponding layer potentials upon the
same perturbations.

In view of such an application, several authors have studied the dependence of the
layer potentials upon domain perturbations. Potthast [15, 16] has obtained Fréchet
differentiability results for the dependence of the layer potentials. Costabel and Le
Louër [2] have analyzed the Fréchet differentiability of a class of boundary integral
operators with pseudohomogeneous hypersingular and weakly singular kernels in
the framework of Sobolev spaces. For elastic obstacle scattering, we mention Le
Louër [13]. Also, Lanza de Cristoforis and collaborators have developed a method
based on potential theory with the aim of proving real analyticity results in the
framework of Schauder spaces for the dependence of the solutions of boundary
value problems upon domain perturbations. In order to apply such a method, one
has to verify the real analytic dependence of the layer potentials on both variation
of the support of integration and on data. In [11, 12], Lanza de Cristoforis and Rossi
have considered the layer potentials associated with the Laplace and the Helmholtz
operators. In [5], instead, Dalla Riva and Lanza de Cristoforis have studied the
case of layer potentials associated to a family of second order differential operators
with constant coefficients. In Dalla Riva [3, 4] the author has considered the single
layer potential corresponding to the fundamental solution of a given elliptic partial
differential operator of order 2k with constant coefficients.

In order to introduce the problem, we fix n ∈ N \ {0, 1}. If (q11, . . . , qnn) ∈
]0,+∞[n we introduce a periodicity cellQ and a matrix q by setting

Q ≡
n∏
j=1

]0, qjj [ , q ≡

⎛
⎜⎜⎝
q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .

0 0 . . . qnn

⎞
⎟⎟⎠ .

We also denote by |Q|n the n-dimensional measure of the fundamental cell Q, by
νQ the outward unit normal to ∂Q, where it exists, and by q−1 the inverse matrix
of q . Clearly, qZn ≡ {qz : z ∈ Z

n} is the set of vertices of a periodic subdivision
of Rn corresponding to the fundamental cellQ. In order to construct periodic layer
potentials, we replace the fundamental solution of the Laplace operator by a q-
periodic tempered distribution Sq,n such that

	Sq,n =
∑
z∈Zn

δqz − 1

|Q|n ,

where δqz denotes the Dirac measure with mass in qz (see e.g., [8, p. 84]). The
distribution Sq,n is determined up to an additive constant, and we can take

Sq,n(x) = −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2 e
2πi(q−1z)·x
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in the sense of distributions in R
n (see e.g., Ammari and Kang [1, p. 53], [8, §3]).

Moreover, Sq,n is even, real analytic in R
n \ qZn, and locally integrable in R

n

(see e.g., [8, §3]). We now introduce the periodic layer potentials. We take a bounded
open subset �Q of Rn of class C1,α for some α ∈]0, 1[ such that �Q ⊆ Q. For the
definition of sets and functions of the Schauder class Ck,α (k ∈ N) we refer, e.g., to
Gilbarg and Trudinger [7]. We set

vq [∂�Q,μ](x) ≡
ˆ

∂�Q

Sq,n(x − y)μ(y) dσy ∀x ∈ R
n ,

wq [∂�Q,μ](x) ≡ −
ˆ

∂�Q

DSq,n(x − y) · ν�Q(y)μ(y) dσy ∀x ∈ R
n ,

wq,∗[∂�Q,μ](x) ≡
ˆ

∂�Q

DSq,n(x − y) · ν�Q(x)μ(y) dσy ∀x ∈ ∂�Q ,

for all μ ∈ L2(∂�Q). Here above, the symbol ν�Q denotes the outward unit normal
field to ∂�Q, dσ denotes the area element on ∂�Q, and DSq,n(ξ) denotes the
gradient of Sq,n computed at the point ξ ∈ R

n \qZn. The functions vq [∂�Q,μ] and
wq [∂�Q,μ] are called the q-periodic simple (or single) and double layer potentials,
respectively.

In order to consider the dependence of periodic layer potentials under shape
perturbations, we need to introduce some notation. First, we find convenient to set
Q̃ ≡]0, 1[n and to set q̃ equal to the n× n identity matrix. Then we take

α ∈]0, 1[ and a bounded open connected subset � of Rn of class C1,α

such that Rn \� is connected.
(1.1)

The symbol ‘·’ denotes the closure. Then we consider a class of diffeomorphisms

AQ̃∂� from ∂� into their images contained in Q̃ (see (1.2)). To define such a class, we
take � as in (1.1) and a bounded open connected subset �′ of Rn of class C1,α . We
denote by A∂� and by A

�′ the sets of functions of class C1(∂�,Rn) and of class
C1(�′,Rn) which are injective and whose differential is injective at all points of ∂�
and of �′, respectively. One can verify that A∂� and A

�′ are open in C1(∂�,Rn)

and C1(�′,Rn), respectively (see, e.g., Lanza de Cristoforis and Rossi [12, Lem.
2.2, p. 197] and [11, Lem. 2.5, p. 143]). Then we set

AQ̃∂� ≡ {φ ∈ A∂� : φ(∂�) ⊆ Q̃}, AQ̃
�′ ≡ {� ∈ A

�′ : �(�′) ⊆ Q̃}. (1.2)

If φ ∈ AQ̃∂�, the Jordan-Leray separation theorem ensures that Rn \ φ(∂�) has
exactly two open connected components (see, e.g., Deimling [6, Thm. 5.2, p. 26]),
and we denote by I[φ] the bounded open connected component of R

n \ φ(∂�).
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We denote by Dn(R) the space of n × n diagonal matrices with real entries and by
D
+
n (R) the set of elements of Dn(R) with diagonal entries in ]0,+∞[.
Then for each triple (q, φ, θ) in D

+
n (R) × (C1,α(∂�,Rn) ∩ AQ̃∂�) × C0,α(∂�)

we denote by V [q, φ, θ ] the function in C1,α(∂�) defined by

V [q, φ, θ ](x) ≡
ˆ

qφ(∂�)

Sq,n(qφ(x)− s)(θ ◦ φ(−1))(q−1s)dσs ∀x ∈ ∂� ,

and byW∗[q, φ, θ ] the function in C0,α(∂�) defined by

W∗[q, φ, θ ](x) ≡
ˆ

qφ(∂�)

DSq,n(qφ(x)− s) · νqI[φ](qφ(x))(θ ◦ φ(−1))(q−1s)dσs

∀x ∈ ∂� .

Similarly, for each triple (q, φ, θ) in D
+
n (R)× (C1,α(∂�,Rn) ∩AQ̃∂�)×C1,α(∂�)

we denote byW [q, φ, θ ] the function in C1,α(∂�) defined by

W [q, φ, θ ](x) ≡ −
ˆ

qφ(∂�)

DSq,n(qφ(x)− s) · νqI[φ](s)(θ ◦ φ(−1))(q−1s)dσs

∀x ∈ ∂� .

The functions V [q, φ, θ ] and W [q, φ, θ ] are associated with the qφ-pull backs on
∂� of the periodic simple layer potential and of the periodic double layer potential,
respectively. The functionW∗[q, φ, θ ], instead, is associated with the qφ-pull back
on ∂� of the normal derivative of the periodic simple layer potential. These func-
tions are well known to intervene in the integral equations associated with periodic
boundary value problems. We are interested in understanding the dependence of
V [q, φ, θ ], W [q, φ, θ ], and W∗[q, φ, θ ] upon perturbation of (q, φ, θ), i.e., of the
periodicity matrix, the support of integration, and the density function. Hence, we
pose the following question:

What can be said on the regularity of the maps (q, φ, θ) �→ V [q, φ, θ ],
(q, φ, θ) �→ W [q, φ, θ ], and (q, φ, θ) �→ W∗[q, φ, θ ]?

(1.3)

Our work stems from that of Lanza de Cristoforis and Preciso [10] for the
Cauchy integral operator, from that of Lanza de Cristoforis and Rossi [11, 12]
for the Laplace and for the Helmholtz operator, and from that of Dalla Riva and
Lanza de Cristoforis [5] for second order elliptic operators. Moreover this work
can be seen as complement of [8], where it has been shown that periodic layer
potentials associated with parameter dependent analytic families of fundamental
solutions of second order differential operators with constant coefficients depend
real analytically upon the density function and on a suitable parametrization of the



Real Analyticity of Periodic Layer Potentials 195

supporting hypersurface and on the parameter. Furthermore, it generalizes a part of
[14] where the authors have proven analyticity results for the double layer potential
in dimension two for a specific perturbation of the periodicity cell, in order to study
the longitudinal flow through a periodic array of cylinders.

In this paper, we answer to the question (1.3) by proving that the maps in (1.3)
are real analytic (see Theorem 3.2).

2 Preliminary Technical Results

To prove the analyticity of the operators V [·, ·, ·], W [·, ·, ·], andW∗[·, ·, ·], we need
the following results from Lanza de Cristoforis and Rossi [12, §2].

Lemma 2.1 Let α, � be as in (1.1). Then there exists β ∈ C1,α(∂�,Rn) such that
|β(x)| = 1 and β(x) · ν�(x) > 1/2 for all x ∈ ∂�.

Lemma 2.2 Let α, � be as in (1.1). Let β be as in Lemma 2.1. Then the following
statements hold.

(i) There exists δ� ∈]0,+∞[ such that the sets

�β,δ ≡ {x + tβ(x) : x ∈ ∂�, t ∈] − δ, δ[},
�+β,δ ≡ {x + tβ(x) : x ∈ ∂�, t ∈] − δ, 0[},

are connected and of class C1,α , and

∂�β,δ = {x + tβ(x) : x ∈ ∂�, t ∈ {−δ, δ}},
∂�+β,δ = {x + tβ(x) : x ∈ ∂�, t ∈ {−δ, 0}},

and �+β,δ ⊆ � for all δ ∈]0, δ�[.
(ii) Let δ ∈]0, δ�[. If � ∈ A�β,δ , then �|∂� ∈ A∂�.

(iii) If δ ∈]0, δ�[, then the set

A′
�β,δ

≡ {� ∈ A�β,δ : �(�+β,δ) ⊆ I[�|∂�]}

is open in A�β,δ .
(iv) If δ ∈]0, δ�[ and� ∈ C1,α(�β,δ,R

n) ∩A′
�β,δ

, then�(�+β,δ) is an open set of

class C1,α and ∂�(�+β,δ) = �(∂�+β,δ).
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3 Analyticity of the Integral Operators Associated
with Layer Potentials

In this section, we prove our main result on the analyticity of the maps in (1.3). We
first need to prove the following lemma which represents an intermediate step.

Lemma 3.1 Let α, � be as in (1.1). Let β and δ� be as in Lemma 2.2. Let

A
′Q̃
�β,δ

≡ A′
�β,δ

∩AQ̃
�β,δ

∀δ ∈]0, δ�[.

Let η ∈]0, 1[. Then there exists δη ∈]0, δ�[ such that for all δ ∈]0, δη[ the map
which takes

(q,�, θ) ∈ D
+
n (R)×

(
C1,α(�β,δ,R

n) ∩A
′Q̃
�β,δ

)
× C0,α(∂�)

to the function V +[q,�, θ ], which is defined as

V + [q,�,μ] (x) ≡
ˆ

q�(∂�)

Sq,n(q�(x)− s)
(
μ ◦�(−1)

)
(q−1s)dσs ∀x ∈ �+β,δ ,

is real analytic from O(η)× Uη,δ × C0,α(∂�) to C1,α(�+β,δ), where

O(η)≡
{
q ∈ D

+
n (R) : inf

ξ∈Rn,|ξ |=1

{ n∑
j=1

(qjj )
−2ξ2

j

}
>η, max{(qjj )−2 : j = 1, . . . , n}<η−1

}
,

Uη,δ ≡
⎧⎨
⎩� ∈ A

′Q̃
�β,δ

∩ C1,α(�β,δ,R
n) : sup

�β,δ

|det(D�)| < η−1

⎫⎬
⎭ .

Proof Let δ ∈]0, δ�[. Next, we note that if

(q,�) ∈ D
+
n (R)×

(
C1,α(�β,δ,R

n) ∩A
′Q̃
�β,δ

)

then

V+ [q,�,μ] (x) =
ˆ

q�(∂�)

Sq,n(q�(x)− s)
(
μ ◦�(−1)

)
(q−1s)dσs

=
ˆ

�(∂�)

Sq,n(q(�(x)− y))
(
μ ◦�(−1)

)
(y)| detq||q−1 · νI[�|∂�](y)|dσy
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for all μ ∈ C0,α(∂�) and for all x ∈ �+β,δ. Then we set

S̃n(q, x) ≡ det qSq,n(qx) ∀x ∈ R
n \ Zn .

We note that the q̃-periodic function S̃n(q, ·) is a q̃-periodic {0}-analog of the

fundamental solution of the operator
∑n
j=1

1
(qjj )

2
∂2

∂x2
j

, i.e., a q̃-periodic tempered

distribution such that

n∑
j=1

1

(qjj )2

∂2

∂x2
j

S̃n(q, ·) =
∑
z∈Zn

δz − 1 ,

in the sense of distributions (see [8, §1]). Then, if we set

σ#[q,�](s) ≡ |q−1 · (νI[�|∂�] ◦�)(s)| ∀s ∈ ∂� ,

for all (q,�) ∈ D
+
n (R)× Uη,δ , we can write

ˆ

�(∂�)

Sq,n(q(�(x)− y))
(
μ ◦�(−1)

)
(y)| det q||q−1 · νI[�|∂�](y)|dσy

=
ˆ

�(∂�)

S̃n(q,�(x)− y)
(
μ ◦�(−1)

)
(y)σ#[q,�] ◦�(−1)(y)dσy

≡ Ṽ +
q̃

[q,�,μ] (x) ∀x ∈ �+β,δ,

for all (q,�,μ) ∈ D
+
n (R) × Uη,δ × C0,α(∂�). By Lanza de Cristoforis and Rossi

[11, Lem. 3.3 and p. 166] and standard calculus in Banach spaces, we have that the
map from D

+
n (R) × Uη,δ to C0,α(∂�) which takes a pair (q,�) to σ#[q,�] is real

analytic. Now we note that by Lanza de Cristoforis and Musolino [9, Thm. 7] and
[8, §3] the map from D

+
n (R)×(Rn \Zn) to R which takes the pair (q, x) to S̃n(q, x)

is real analytic. Moreover, as noted above, for all q ∈ D
+
n (R), the map S̃n(q, ·) is a

q̃-periodic function inL1
loc(R

n) such that
∑n
j=1

1
(qjj )2

∂2

∂x2
j

S̃n(q, ·) =∑
z∈Zn δz−1 in

the sense of distributions. Accordingly, one can readily verify that the assumptions
(1.8) of [8, pp. 78, 79] are satisfied and thus we can apply the results of [8]. Hence,
[8, Prop. 5.6, pp. 105, 106] implies that there exists δη ∈]0, δ�[ such that for all
δ ∈]0, δη[ the map Ṽ +

q̃
[·, ·, ·] is real analytic from O(η) × Uη,δ × C0,α(∂�) to

C1,α(�+β,δ), and thus the proof is complete. ��
We can now deduce our main theorem on the analyticity of the periodic layer

potentials upon the periodicity parameter, the shape, and the density. The proof
follows the strategy exploited in Lanza de Cristoforis and Rossi [11, Thm. 3.12]
and in [8, Thm. 5.10].
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Theorem 3.2 Let α, � be as in (1.1). Then the following statements hold.

(i) The map from D
+
n (R)×(C1,α(∂�,Rn)∩AQ̃∂�)×C0,α(∂�) to C1,α(∂�) which

takes a triple (q, φ, θ) to the function V [q, φ, θ ] is real analytic.

(ii) The map from D
+
n (R)×(C1,α(∂�,Rn)∩AQ̃∂�)×C1,α(∂�) to C1,α(∂�) which

takes a triple (q, φ, θ) to the functionW [q, φ, θ ] is real analytic.

(iii) The map from D
+
n (R)×(C1,α(∂�,Rn)∩AQ̃∂�)×C0,α(∂�) to C0,α(∂�) which

takes a triple (q, φ, θ) to the functionW∗[q, φ, θ ] is real analytic.

Proof To prove statements (i) and (iii), it suffices to argue as in the proof of
[8, Thm. 5.10] and to replace [8, Prop. 5.6] by Lemma 3.1. Instead, the proof
of statement (ii), follows by the same argument as the one of the proof of [14,
Lem. 4.2], with the combination of the proof of [14, Lem. 4.1] and Lemma 3.1. ��
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Directional Derivatives and Stolz
Condition for Bicomplex Holomorphic
Functions

Lino F. Reséndis O., Gamaliel Y. Téllez S., and Luis M. Tovar S.

Abstract The focus of this paper is to present a characterization of bicomplex
holomorphic function in terms of the directional derivatives over the idempotent
planes. Moreover we give an equivalence between bicomplex holomorphy and
the Stolz’s condition. We have considered different representation of bicomplex
numbers and applying tools of complex analysis.

Keywords Bicomplex Holomorphic functions · Stolz condition

Mathematics Subject Classification (2010) 30G30, 32A10

1 Introduction

Bicomplex numbers are generated by two imaginary units in a similar way that
quaternions but bicomplex numbers are commutative respect to the product and
with zero divisors. The study of this set was started by J. Cockle in [1] under the
name of tessarines and recently there has been an increasing interest about this.

The bicomplex analysis has a hybrid behavior between the one complex analysis
and the analysis of several complex variables. So, many results from the theory of
one complex variable—that can be consulted in [2, 3]—, have a natural extension
into the bicomplex space. In the other hand, several results in several complex
variables specifically in two variables,—where the fundamental reference is [4]—
have a corresponding result in Bicomplex Holomorphic theory.
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Section 2, contains a brief compiled of the main tools of bicomplex holomorphic
functions analysis that we applied in this work, for a complete development of this
subject the featured references are [5–8].

Observe that the definition of bicomplex holomorphy evade the zero divisors. So
the main results are presented in Sect. 3, where we give the relationships between
bicomplex holomorphy with the directional derivatives over the idempotent planes
e and e†. Then we show that the Stolz condition for a complex holomorphic function
is extended for the bicomplex case.

2 Some Basic Results on Bicomplex Holomorphic Theory

We present several common facts about bicomplex numbers and bicomplex holo-
morphic functions. We will be free to use results and notation of [6].

The set of bicomplex numbers BC is defined as

BC := { z1 + jz2 : z1, z2 ∈ C(i), j2 = −1}.

Sum and product of bicomplex numbers are made in the expected way. We write
all the bicomplex numbers Z = z1 + jz2, with zl = xl + iyl ∈ C(i), in theirs
C(i)-idempotent form, that is

Z = β1 e+ β2e† (2.1)

where

β1 = z1 − iz2 and β2 = z1 + iz2

and

e := 1+ ij
2

and e† := 1− ij
2

.

Observe that e e† = 0; 1 = e+ e† or more general λ = λ( e + e†) with λ ∈ C(i).
A bicomplex valued function F : X → BC is completely determined by its

component functions F1, F2 : X→ C(i) such that for every x ∈ X,

F(x) = F1(x)+ jF2(x)

Or we can consider the idempotent representation of F as

F(x) = G1(x) e+G2(x)e†,
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where the functions G1,G2 : X → BC are the idempotent components and these
are related with F1 and F2 by 2.1.

Let � be a domain in BC and F : � → BC a BC-holomorphic function in �,
that means that for every Z0 ∈ � exists the limit

F ′(Z0) = lim
Z→Z0

F(Z)− F(Z0)

Z − Z0
, Z ∈ �

and such that H = Z − Z0 is an invertible bicomplex number, that is

Z − Z0 /∈ {β e+ 0 e†} ∪ {0 e+ β e†}, β ∈ C(i).

If F is derivable for all Z ∈ � we say that is a bicomplex holomorphic function
in �.

Like in the one complex variable case, the bicomplex holomorphic functions
fulfill with a Cauchy-Riemann type system

∂F1

∂z1
= ∂F2

∂z2
and

∂F1

∂z2
= −∂F2

∂z1
. (2.2)

As a consequence of this system we have the following essential result in the
theory of bicomplex holomorphic functions [5].

Theorem 2.1 Let � ⊂ BC be a domain. A bicomplex function F : � → BC of
class C1 and idempotent decomposition

F = G1 e+G2 e†

is BC-holomorphic if and only if, the following two conditions hold:

(a) The component G1, seen as a C(i)-valued function of the complex variables
(β1, β2) is holomorphic; moreover does not depend on the variable β2 and thus
G1 is a holomorphic function of the variable β1.

(b) The component G2, seen as a C(i)-valued function of the complex variables
(β1, β2) is holomorhic; moreover does not depend on the variable β1 and thus
G2 is a holomorphic function of the variable β2.

Therefore applying this result, the rules of derivability are the same like usual
ones and the derivatives of higher order are given by

F (n)(Z) = G(n)1 (β1) e+G(n)2 (β2)e†, n = 0, 1, 2 . . . (2.3)

Observe that as a straightforward result of this idempotent representation, we get
the following inverse mapping theorem.

Theorem 2.2 Let � be a domain in BC and F = F1 + jF2 : � → BC a BC-
holomorphic function in �. Then if F ′(Z0) is not a zero divisor, then the function
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F is locally invertible and the inverse function F−1 is BC-holomorphic at W0 =
F(Z0) with

(F−1)′(W0) = 1

F ′(Z0)
.

Proof If we consider the idempotent decomposition

F(Z) = G1(β1) e+G2(β)e†

As G′1(β0
1 ) �= 0 �= G′2(β0

2 ), then G1 and G2 are locally invertibles. Thus F results
locally invertible in a neighboorhood of Z0. IfW0 = F(Z0) then

F ′(W0) = 1

G′1(β
0
1 )

e+ 1

G′2(β0)
e† = 1

F ′(Z0)
.

��
Suppose that �1, �2 ⊂ C(i) are domains of holomorphy for G1, G2 respec-

tively, that is,G1 andG2 can not be holomorphically extended to any bigger open set
inC(i). Then the bicomplex functionF = G1 e+G2 e† defined on� = �1 e+�2 e†

can not be BC-holomorphically extended to any open set containing �, thus � is a
domain of bicomplex holomorphy for F .This fact represent an important difference
between the concept of Domains of Holomorphy in Several Complex Variables and
the Bicomplex Holomorphic Theory: Domains of holomorphy in Bicomplex Theory
are just product domains. While, for instance, the euclidian ball in C2 is a domain of
holomorphy in Two Complex Variables Theory but not in Bicomplex Holomorphic
Theory.

3 The Stolz Condition

Observe that {β e + 0 e†} and {0 e + β e†} are fields isomorphic to C, where the
inverse of β e and β e† are β−1 e and β−1 e†, respectively, for β �= 0.

Let Z0 = β0
1 e+β0

2 e†, Z = β0
1 e+β2 e† ∈ � and	Z = Z−Z0 = 0 e+ (β2−

β0
2 ) e†. Note that 	Z is an increment in the e† direction. If F is BC-holomorphic

in Z0, then

F(Z) = G1(β
0
1 ) e+G2(β2) e†

F(Z0) = G1(β
0
1 ) e+G2(β

0
2 ) e†

F ′(Z0) = G′1(β0
1 ) e+G′2(β0

2 ) e†.



Directional Derivatives and Stolz Condition for Bicomplex Holomorphic Functions 205

As G2(β2) is a holomorphic function in β2,and if 	Z → 0, then β2 → β0
2 . By

Stolz condition in the complex case

	F(Z) = F(Z)− F(Z0) = G1(β
0
1 ) e+G2(β2) e† − (G1(β

0
1 ) e+G2(β

0
2 ) e†)

= 0 e+ (G2(β2)−G2(β
0
2 )) e†

= 0 e+ (G′2(β0
2 )(β2 − β0

2 ) + α2(β2, β
0
2 )(β2 − β0

2 ) )e
†

= 0 e+ (G′2(β0
2 )+ α2(β2, β

0
2 ))(β2 − β0

2 ) e†

where

lim
β2→β0

2

α2(β2, β
0
2 ) = 0

The complex number β2 − β0
2 ∈ C(i) is invertible in C(i).If we multiply the

previous expression by the bicomplex number 0 e+ (β2 − β0
2 )
−1 e†, thus

0 e+ (G2(β2)−G2(β
0
2 ))(β2 − β0

2 )
−1 e† = 0 e+ (G′2(β0

2 )+ α2(β2, β
0
2 )) e†

As G2 is holomorphic at β0
2 , if β2 → β0

2 we get

0 e+G′2(β0
2 ) e† = 0 e+ (G′2(β0

2 )+ lim
β2→β0

2

α2(β2, β
0
2 )) e†.

Thus, by Stolz criterium for the one complex case, there exists the directional
derivative F ′

e†(Z
0) and

F ′e†(Z
0) = 0 e+G′2(β0

2 ) e†.

In the same way, we obtain

F ′e(Z0) = G′1(β0
1 ) e+ 0 e†.

Thus we have obtained the next result

Theorem 3.1 Let F(Z) = G1(β1) e+G2(β2) e† be a BC-holomorphic function in
a domain � ⊂ BC. If Z0 = β0

1 e + β0
2 e† then

• The directional derivatives F ′e(Z0), F ′e†(Z
0) exist and

F ′e(Z0) = G′1(β0
1 ) e+ 0 e†.

F ′e†(Z
0) = 0 e+G′2(β0

2 ) e†
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•

F ′(Z0) = F ′e(Z0) e+ F ′e†(Z
0) e†.

• The tangent space at the point (Z0, F (Z0)) is given by

W = F(Z0)+ F ′(Z0)(Z − Z0).

As Corollary of the previous proof and Theorem 7.6.3 in [5], we obtain the following
result.

Corollary 3.2 Let � ⊂ BC be a domain and let F : � → BC be a bicomplex
function given by F(Z) = G1(β1) e + G2(β2) e†. If the directional derivatives
F ′e(Z0), F ′e†(Z

0) exist for all Z0 ∈ � then F is a bicomplex holomorphic function

with derivative F ′(Z0) = F ′e(Z0) e+ F ′e†(Z
0) e†.

Theorem 3.3 Let � ⊂ BC be a domain and let F : � → BC be a bicomplex
function. Then F is a bicomplex holomorphic function on � if and only if, F is BC
Stolz differentiable on �, that is

F(Z +H) = F(Z)+ AZH + α(H)H, with AZ ∈ BC and lim
H→0

α(H) = 0.

(3.1)

Proof If F satisfies the Stolz condition (3.1) and ifH is a non zero divisor, we have
for Z ∈ �

F ′(Z) = lim
H→0

F(Z +H)− F(Z)
H

= lim
H→0

(AZ + α(H)) = AZ.

Reciprocally, if F = G1 e + G2 e† is a BC holomorphic function at Z0 ∈ �,
Z0 = β0

1 e+ β0
2 e†, by the Stolz condition for G1, G2 we have

	F(Z) = F(Z)− F(Z0)

= (G1(β1)−G1(β
0
1 )) e+ (G2(β2)− (G2(β

0
2 )) e†

= (G′1(β0
1 )(β1 − β0

1 )+ α1(β1, β
0
1 )(β1 − β0

1 )) e

+ ( G′2(β0
2 )(β2 − β0

2 )+ α2(β2, β
0
2 )(β2 − β0

2 ))e
†

with

lim
β1→β0

1

α1(β1, β
0
1 ) = 0 and lim

β2→β0
2

α2(β2, β
0
2 ) = 0.
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Define

α(Z,Z0) = α1(β1, β
0
1 ) e+ α2(β2, β

0
2 ) e†

then it follows limZ→Z0 α(Z,Z0) = 0. ��
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Fast Method for 2D Dirichlet Problem
for Circular Multiply Connected
Domains

Olaf Bar and Krzysztof Wójcik

Abstract This paper is devoted the optimization of application to determine the
flux around closely spaced nonoverlapping disks on the conductive plane. This
method is based on successive approximations applied to the functional equations.
This paper is concerned on influence of checking diagrams on convergence fast
Poincaré series method. This can be used to solve Laplace’s equation on a
conductive plane with nonoverlapping inclusions. The initial stream is composed
from set of two-point functions which are dependent on the graph which represents
connection between nearest neighbours circles.

Keywords Fast Poincaré series · Laplace’s equation · Voronoi diagram ·
Delaunay triangulation

Mathematics Subject Classification (2010) Primary 99Z99; Secondary 00A00

1 Introduction

The steady state heat distribution or electrical flux on the plane can be modelled by
two dimensional Laplace’s equation. Such a model can describe the phenomenon of
the flow perpendicular to the fibres embedded in matrix [1, 2].
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Fig. 1 Four disks and the
multiply connected region D

In many case we can compute the satisfied solution by the standard numerical
methods. One of most recently used method is finite element method FEM.
Numerical solutions are accurate but provides solutions of the local fields.

One can find papers devoted to the issue of boundary conditions with a large
number of inclusions. They usually relate to cases when the distances between
inclusions are relatively large [3, 4]

On the other hand the specific geometry of boundary conditions causes that the
numerical algorithm sometimes deliver poor results.

This paper is devoted to the analytical method of solution Laplace’s equation
with Dirichlet boundary conditions. The geometry of the system shown in Fig. 1.

It is convenient to go to the complex variables z = x+ iy. Then introduce proper
definitions:

Definition 1.1

Dk = {z ∈ C : |z− ak| < rk}(k = 1, 2, . . .) nonoverlapping open disks, ∂Dk{z ∈
C : |z− ak| = rk}(k = 1, 2, . . .),

D complement of the closest disks to the extended complex plane C ∪ {∞}
Physical problem is defined as follows: we are looking the flux ∇u which is a

gradient of potential u(x, y). Function u(x, y) is defined on plane D and satisfies
Laplace’s equation	u = 0 with Dirichlet boundary conditions on the closure ∂D.

In this paper we restrict the Dirichlet boundary condition to the constants defined
on the ∂Dk:

u(t) = uk, |t − ak| = rk, k = 1, 2, . . . , 4. (1.1)

This problem can be reduced to the Riemann–Hilbert problem [5] by introduce
the complex potential functionψ(z) = ux − iuy . Then we can rewrite the boundary
condition (1.1) in the form:

Imψ(t) := Im

[
t − ak
rk

ψ(t)

]
= 0, |t − ak| = rk, k = 1 . . . , 4, (1.2)
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The function ϕ(z) which is a primitive integral of ψ(z) satisfies the equation
(1.3)

Re ϕ(t) = uk, |t − ak| = rk, k = 1, 2, . . . ,N , (1.3)

where the function ϕ(t) is analytic in D.

2 Description of the Fast Poincaré Series Method

The fast series method is based on algorithm published in [6]
Introduce the inersion with respect to the k-circle:

z∗(k) =
r2
k

z− ak + ak (2.1)

As we know, the analytical solution for the flux between two circles is known
[7]:

"(z) = 1

z− z12
− 1

z− z21
(2.2)

where "(z) = ϕ′(z).
The function "(z) describes the flux for the known difference u1 − u2 and the

z12, z21 satisfy the quadratic equation z∗(1) = z∗(2). This function can be used as the
zero-th approximation for the fast algorithm.

Define the analytic function [6]:

fkm(z) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, k = m,
∑
&∈Jm;& �=k "(z;m, &)(z), k ∈ Jm,

∑
&∈Jm "(z;m, &)(z), k ∈ J ∗m,

(2.3)

where J ∗m is the complement of Jm ∪ {m} to {1, 2, . . . , n}.
The following algorithm can be applied. First, we compute auxiliary functions

ψk(z) by the following iterations:

ψ
(0)
k (z) = fkm(z), (2.4)

ψ
(p)
k (z) =

∑
m�=k

(
rm

z− am
)2

ψ
(p−1)
m

(
z∗(m)

)
+ fkm(z), p = 1, 2, . . . . (2.5)
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Fig. 2 Diagrams for settings Jm and J ∗m files

The p-th approximation of the complex flux ψ(z) = ϕ′(z) is calculated by formula

ψ(p)(z) =
n∑
m=1

(
rm

z− am
)2

ψ
(p)
m

(
z∗(m)

)
+ ψδ(z), z ∈ D, (2.6)

where ψδ(z) =∑
&∈Jm "(z;m, &).

The potential ϕ(z) is obtained by integration of ψ(z).
The main goal of this paper is studying the effect the selection of set Jm on

convergence speed of algorithm (2.6). The crucial point is that to determine which
circles are closest neighbours. The well known method of solutions this problem
is Delaunay triangulation. Disadvantage of this approach is that the Delaunay
triangulation takes into account only the centres of the circles. In our case the most
important parameter is the gap between closest circles (see the δ in the Fig. 1).

In this article three types of diagram (G1, G2, G3) were taken into account (see
Fig. 2). The first of them represents the nonplanar graph where interaction between
each of vertex with all other were allowed. The second graph were constructed only
from the least gaps. Third is the classic Delaunay triangulation (Figs. 3, 4 and 5).

Calculations were made for the following geometry properties:
[-1,−i, 1.1, 1.2 i]—the vector of the circle centres (see Fig. 1)

Fig. 3 Dependence of Uerr on number of iterations(left) and on graph (right) for parameters:
δ = 0.98, b = 1, k = 1
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Fig. 4 Dependence of Uerr on number of iterations for two graph G2 and G3. Parameters: δ =
0.98, b = 1, k = 1

Fig. 5 Dependence of Uerr on number of iterations for different δ. Parameters: graph G2 , b = 1,
k = 1

r =
√

2
2 δ—the radius (all of the circles has the same r)

The limit case δ = 1 yields tangent circles D1 and D2.
As is known [8] there is three (n−1 in general case) linear independent functions

ψ(p)(z) (2.6). These functions form three-dimensional basis. In previous formulas
basis index were omitted for transparency.
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Table 1 Calculation for
δ = 0.98

Iterations Uerr G2 Uerr G3

0 0.159 0.413

1 0.123 0.376

2 0.063 0.172

3 0.0513 0.158

4 0.0297 0.090

5 0.0239 0.075

6 0.0152 0.047

7 0.0117 0.037

8 0.00781 0.025

Thus, the procedure of error computation is defined as follows:
U
b,k
err = max(Reϕb(t))−min(Re ϕb(t)) where t ∈ ∂Dk and b denotes the basis

number.
Then as the total error Uerr assumed:

Uerr =Max{Ub,kerr b = 1 . . .3, k = 1 . . .4} (2.7)

The potential ϕb(z) was obtained by analytical integration of the flux ψ(z).
During the computation it turn out that the maximum error exists on the circles 1

and 2 for basis number 1 and 2 (Table 1).

3 Conclusions

The procedure to obtain the potential from the flux requires integration of the long
algebraic expressions. The analytical integration procedure requires a lot of time
and it is possible at most for the 8–9 iterations. Accordingly, optimal way to set
the starting point functions for fast series method is the most important point of
computation.

The results presented in this paper show that the best choice to construct the Jm
files is diagramG2. In this case the files Jm are equal:

J1 = {2, 4} J ∗1 = {3} , J2 = {1, 3} J ∗2 = {4} ,

J3 = {2, 4} J ∗3 = {1} , J4 = {1, 3} J ∗4 = {2}

The proper choice of diagram decreases the boundary condition error about three
times in comparison with the other.
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Local Stationary Heat Fields in Fibrous
Composites

Wojciech Baran, Krystian Kurnik, and Shareif Albasher

Abstract This work covers an analysis of the complex flux along a domain surface
D. The flux function is analytic in D surface and determined by different boundary
values. The boundary components of the surface are determined by a method of
functional equations. The flux distribution behaviours for different conditions were
investigated. This work is a follow up for the paper: local stationary heat fields in
fibrous composites.

Keywords Complex potential · Fibrous composite · Heat flux · Functional
equation · Schwarz problem

Mathematics Subject Classification (2010) 74A40

1 Introduction

The complex flux along a domain D filled by non-overlapping discs depend on many
factors that affect the flux flow and therefore the distribution of temperature. The
goal of this work is to estimate the complex flux. In the present paper, we applied
analytical approximate formula of complex potentials [2] to describe the flux in two-
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dimensional composites. As any function in a connected surface, the distribution
of the flow could be expressed as the real part of the flux function in the domain
[3, 4], the distribution is expressed through the real part of the complex potential
u(z) = Re ϕ(z)

2 Methodology

Let z = x1+ ix2 denote a complex variable in the extended complex plane Ĉ = C∪
{∞}. Consider non-overlapping disks |z−ak| < r (k = 1, 2, . . . , n), and the domain
D, the complement of all the disks |z−ak| ≤ r to Ĉ. The potentials u(z) is harmonic
in D except at infinity where u(z) ∼ x1 = Re z and continuously differentiable in
the closures of the considered domain. The singularity of u(z) determine the external
flux applied at infinity.

The distribution of temperature u(z) ≡ u(x1, x2) is expressed through the real
part of the complex potential [3, 4]

u(z) = Re ϕ(z), z ∈ D, (2.1)

where ϕ(z) = u(z) + iv(z) is analytic in D except at infinity where ϕ(z) ∼ z,
and continuously differentiable in the closures of the considered domain. For
definiteness, we assume that the disks |z − ak| < r (k = 1, 2, . . . , n) are filled
by a conductor with non-vanishing conductivity. It is worth noting that in this case
the function ϕ(z) is single-valued in the multiply connected domain D and does
not contain logarithmic terms [4]. It follows from the fact that the divergence of the
normal flux through every boundary component vanishes

ˆ

|z−ak |=r
∂u

∂n
(z) ds =

ˆ

|z−ak |=r
∂v

∂s
(z) ds = [v]|z−ak |=r = 0, k = 1, 2, . . . , n.

(2.2)

Here, ∂
∂n denotes the outward unit normal derivative ∂

∂s the tangent derivative to
|z − ak| = r , respectively, [v]|z−ak |=r the increment of the function v(z) along the
circle |z− ak| = r .

The gradient of u(z) is related to the heat flux [3] and can be calculated by
formula

ψ(z) = ∂u

∂x
− i ∂u
∂y
, (2.3)

where ψ(z) = ϕ′(z) in the closure of D.
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The perfect contact condition between the components is expressed by two real
relations

uk(z) = u(z), λ
∂uk

∂n
(z) = ∂u

∂n
(z), |z− ak| = r (k = 1, 2, . . . , n), (2.4)

where the conductivity of matrix is normalized to unity and the conductivity of
inclusions is equal to λ. Introduce the contrast parameter

! = λ− 1

λ+ 1
. (2.5)

Two real equations (2.4) are reduced to the R-linear complex condition [3]

ϕ(z) = ϕk(z)− ! ϕk(z), |z− ak| = r (k = 1, 2, . . . , n) (2.6)

where ϕk(z) are analytic in |z−ak| < r , respectively, and continuously differentiable
in the closures of the considered disks. The harmonic and analytic functions are
related by the equalities

uk(z) = 2

λ+ 1
Re ϕk(z), |z− ak| ≤ r. (2.7)

Consider Schottky group of inversions and their compositions with respect to the
circles |z− ak| = r , k = 1, 2, . . . , n (plus the identity element)

z∗(k) =
r2

z− ak + ak, z
∗
(k1k2...,km)

:= (z∗(k2...,km−1)
)∗k1
, (kj+1 �= kj ). (2.8)

Exact solution of the considered problem for any |!| < 1 was found in the form of
the absolutely and uniformly convergent Poincaré type series [3, formula (2.3.100)]
up to an additive constant

ϕk(z) = z + !
∑
k1 �=k

z∗(k1)
+ !2

∑
k1 �=k

∑
k2 �=k1

z∗(k2k1)
+ !3

∑
k1 �=k

∑
k2 �=k1

∑
k3 �=k2

z∗(k3k2k1)
+ · · ·

(2.9)

and

ϕ(z) = z+!
n∑
k=1

z∗(k)+!2
n∑
k=1

∑
k1 �=k

z∗(k1k)
+!3

n∑
k=1

∑
k1 �=k

∑
k2 �=k1

z∗(k2k1k)
+· · · . (2.10)
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It is worth noting that our formulae (2.9)–(2.10) have simpler form than [3,
formula (2.3.100)] because the restriction |!| < 1 is supposed. The functions ϕk(z)
and ϕ(z) in the limit case ! = 1 have more complicated structure, since it is
represented by a uniformly and not necessary absolutely convergent Poincaré type
series [3].

Below, we consider this, the most difficult in computations, case. The relation
! = 1 means that inclusions are filled by a perfectly conducting materials when λ
tends to infinity. Formally, the R-linear problem (2.6) does not hold in this case and
has to be written as the modified Dirichlet problem [3]

uk(z) = ck, |z− ak| = r (k = 1, 2, . . . , n), (2.11)

where ck are undetermined constants.
In the present paper, we do not consider the boundary value problem (2.11). We

use the limit ! → 1 in the final formulae for the local flux justified by uniform
convergence of the corresponding series for ! ≤ 1

Therefore, we may differentiate the corresponding uniformly convergent
Poincaré type series (2.9)–(2.10) term by term and arrive at the uniformly
convergent series

ψk(z) = f (z)+ !
∑
k1 �=k

d

dz
z∗(k1)

+ !2
∑
k1 �=k

∑
k2 �=k1

d

dz
z∗(k2k1)

(2.12)

+!3
∑
k1 �=k

∑
k2 �=k1

∑
k3 �=k2

d

dz
z∗
(k3k2k1)

+ · · · , z ∈ Dk (k = 1, 2, . . . , n)

and

ψ(z) = f (z)+ !
n∑
k=1

d

dz
z∗(k) + !2

n∑
k=1

∑
k1 �=k

d

dz
z∗(k1k)

(2.13)

+!3
n∑
k=1

∑
k1 �=k

∑
k2 �=k1

d

dz
z∗(k2k1k)

+ · · · , z ∈ D.

It is worth noting that formula (2.13) is universal and takes place for ! ≤ 1.
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3 Numerical Examples

We can now compare a number of flux behaviours which shows the distribution of
the flux in different conditions.

As any function in a connected surface, the distribution of the flow could be
expressed as the real part of the flux function in the domain [3, 4], the distribution
is expressed through the real part of the complex potential u(z) = Re ϕ(z).

In the first cases we considered the function f (z) = 1 and applied that on a
surface contains.

140 non-overlapped discs firstly with 0.828402 concentration and radiuses
of 0.027448063 for all the discs, and secondly with reducing disc radius and
concentration to 0.00178412 and 0.2 respectively.

The computation was executed and showed a linear flux in both cases. The results
represented the complex flux in a standard way of a heat flowing and leaving through
the surface.

With changing the function to an exponential function and applying that f (z) =
z2, the flux flows in a continuous whirlpool towards the centre. We investigated a
three cases of a surface with also 140 discs (firstly with a concentration of 0.828402
and radiuses: 0.027448063 for all discs. Secondly with a concentration of 0.3 and
radiuses: 0.021851, and the third with reducing the concentration to 0.1 and the
radiuses: 0.0126157.

In these cases, a big amount of the heat flux flows inside the surface instead of
leaving the surface. And because we used the approximate functional equations for
calculating the flux, then in reality, the flow leaving through the surface should be
more than the shown whirlpool limits as well as more intertwined in the centre.

Even in the cases of using a various properties and keeping the exponential
function is maintained, the bulk of the heat flow remains in vortex inward, as
some heat flow out of the surface, and accordingly, the models of the fibrous
composites are designed to reflect the heat flow functionality which serves the
required technology.

Finally, with applying an inverse functionality f (z) = 1/z + 07 (0.0126157
radius, 0.1 concentration), and f (z) = 1/z + 0.7 (0.021851 radius, 0.3 concentra-
tion) and also with (radius of 0.027448063 and concentration: 0.828402). All the
cases were applied on the surface of 100 symmetric discs.

Although, the flux distribution is not perfectly anisotropic due to the distribution
of the random discs and the boundary conditions, but when using an inverse values,
the thermal behaviour will still reverses the flow towards the centre of the discs.
However, choosing the linear or non-linear functions of f (z) strongly affect the
flux distribution and it is a main factor in heat flow technology of these composites
(Figs. 1, 2, 3, 4, 5, 6, 7, and 8).
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Fig. 1 Nawalaniec [5] Function: f (z) = 1 Number of disks: 140 radius: 0.00178412 concentra-
tion: 0.2

Fig. 2 Nawalaniec [5] Function: f (z) = 1 Number of disks: 140 radius: 0.027448063 concentra-
tion: 0.828402
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Fig. 3 Nawalaniec [5] Function: f (z) = z2 Number of disks: 140 radius: 0.027448063
concentration: 0.828402

4 Conclusion

The considered samples are a cluster of non-overlapping disks simulated randomly
along a domain surface D. Numerical approximation solution was computed to
discover the complex flux along a domain surface filled by non−overlapping discs.
The simulation had been repeated several times with different complex conditions.
It was clearly shown that changing the heat flow control for these models is highly
dependent on the complex variable functions f (z) and whether it is linear or non-
linear. The simulation was applied for different conditions and different multiple
disks. On the basis of the result, it is possible to adjust and determine the flow
performance characteristics to fulfil the required heat transfer technology and its
applications on fibrous composites.
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Fig. 4 Nawalaniec [5] Function: f (z) = 1/z + 0, 7 Number of disks: 140 radius: 0.027448063
concentration: 0.828402
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Fig. 5 Czapla [1] Function: f (z) = z2 Number of disks: 100 radius: 0.0126157 concentration:
0.1
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Fig. 6 Czapla [1] Function: f (z) = 1/z + 07 Number of disks: 100 radius: 0.0126157
concentration: 0.1
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Fig. 7 Czapla [1] Function: f (z) = z2 Number of disks: 100 radius: 0.021851 concentration: 0.3



230 W. Baran et al.

Fig. 8 Czapla [1] Function: f (z) = 1/z + 0, 7 Number of disks: 100 radius: 0.021851
concentration: 0.3
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The Robin Problem for Quasi-Linear
Elliptic Equation p(x)-Laplacian
in a Domain with Conical Boundary Point

Mikhail Borsuk

Abstract This paper is a survey of our last results about bounded weak solutions
to the Robin boundary and the Robin transmission problems for an elliptic quasi-
linear second-order equation with the variable p(x)-Laplacian in a conical bounded
n−dimensional domain.
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1 Introduction

In this paper I present a survey of our last results [5–8] about bounded weak
solutions to the Robin boundary and the Robin transmission problems for an elliptic
quasi-linear second-order equation with the variable p(x)-Laplacian in a conical
bounded n−dimensional domain. We consider the next problems:

(1) L∞—estimate of bounded weak solutions. (2) The behavior of weak
solutions near the angular or conical point of the boundary. (3) Existence of bounded
weak solutions. (4) Transmission Robin problem.

Boundary value problems for elliptic second order equations with a non-standard
growth in function spaces with variable exponents have been an object of active
investigation in recent years. Differential equations with variable exponents-growth
conditions arise from the nonlinear elasticity theory, electrorheological fluids, etc.
There are many essential differences between the variable exponent problems and
the constant exponent problems. In the variable exponent problems, many singular
phenomena occurred and many special questions were raised. V. Zhikov [14] has
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given examples of the Lavrentiev phenomenon for the variational problems with
variable exponent.

Most of the works devoted to the quasi-linear elliptic second-order equations
with the variable p(x)-Laplacian refers to the Dirichlet problem (see [1, 11]). In
[2, 3, 10] the Robin problem for such equations has been considered, but in smooth
domains only. What is more, in these works the lower order terms depend only on
(x, u) and do not depend on |∇u|. A problem with a lower order term that does
not depend on |∇u| in a non-smooth domain has been recently studied in [9]. Our
recent works [5–8] are devoted to the Robin boundary and the Robin transmission
problems in a cone for equations with a singular p(x)− power gradient lower
order term. We use the following standard notations:

• C : an open cone in R
n, n ≥ 2, with the vertex at the origin O and the angular

opening of cone ω0 ∈ (0, π); Br : an open ball with radius r centered at O;
• Sn−1 : a unit sphere in R

n centered at O; (r, ω), ω = (ω1, ω2, . . . , ωn−1) : the
spherical coordinates of x ∈ R

n with pole O:
• � : a domain on the unit sphere Sn−1 with the smooth boundary ∂� obtained by

the intersection of the cone C with the sphere Sn−1;
∂� = ∂C ∩ Sn−1;

• Gd0 ≡ C∩Bd = {(r, ω) | 0 < r < d; ω ∈ �}; Gd0 = Gd+ ∪Gd− is divided into
two subdomainsGd± := {(r, ω) : 0 < r < d, ω ∈ �±} by a

$d0 := Gd0 ∩ {xn = 0}, where O ∈ $d0 ;
�+ = � ∩ {xn > 0}, �− = � ∩ {xn < 0} &⇒ � = �+ ∪�−;

• �d0 ≡ ∂C ∩ Bd = {(r, ω) | 0 < r < d; ω ∈ ∂�}; �d0 = �d+ ∪ �d−,
�d± := {(r, ω) : 0 < r < d, ω ∈ ∂±�}; ∂±� = �± ∩ ∂C;
∂�± = ∂±� ∪ σ0; σ0 = $d0 ∩�d; �d = Gd0 ∩ {|x| = d}.

• u(x) =
{
u+(x), x ∈ Gd+,
u−(x), x ∈ Gd−;

f (x) =
{
f+(x), x ∈ Gd+,
f−(x), x ∈ Gd−

etc.;

• [u]$d0 denotes the saltus of the function u(x) on crossing $d0 , i.e.

[u]$d0 = u+(x)
∣∣∣
$d0

− u−(x)
∣∣∣
$d0

, where u±(x)
∣∣∣
$d0

= lim
Gd±(y→x∈$d0

u±(y);
• ni = cos(−→n , xi), i = 1, 2, where −→n denotes the unit outward vector with

respect to Gd+ (orGd0 ) normal to $d0 (respectively ∂Gd0 \O).

We shall investigate the bounded weak solutions of the Robin boundary problem:

{
−�p(x)u+ a(x)u|u|p(x)−1 + b(u,∇u) = f (x), x ∈ G,

|∇u|p(x)−2 ∂u
∂
−→
n
+ γ

|x|p(x)−1u|u|p(x)−2 = g(x), x ∈ ∂G,
(RQL)

(here G ∈ C0,1 is a bounded domain in R
n with the boundary ∂G, containing a

conical point in the origin O, and near O it is a conical surface) and of the Robin
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transmission problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�p(x)u+ a(x)u|u|p(x)−1 + b(u,∇u) = f (x), x ∈ Gd0
0 ,

[u]
$
d0
0
= 0,[

|∇u|p(x)−2 ∂u
∂−→n

]
$
d0
0

+ β

|x|p(x)−1u|u|p(x)−2 = h(x, u), x ∈ $d0
0 ,

|∇u|p(x)−2 ∂u
∂
−→
n
+ γ

|x|p(x)−1u|u|p(x)−2 = g(x, u), x ∈ �d0
0 ,

(T RQL)

where 0 < d0 ) 1 (d0 is fixed); �p(x)u ≡ div
(|∇u|p(x)−2∇u) ;

1 < p− ≤ p(x) ≤ p+ = p(0) < n, ∀x ∈ G. (1.1)

We define the functions class N
1,p(x)
−1,∞ (G) =

{
u

∣∣∣∣ u(x) ∈ L∞(G) and

´

G

〈|x|−p(x)|u|p(x) + |u|−1|∇u|p(x)〉 dx <∞
}
. It is obvious that

N
1,p(x)
−1,∞ (G) ⊂ W 1,p(x)(G).

Remark 1.1 If p(x) > n, by the Sobolev imbedding theorem, we have

u ∈ C1− n
p(0) (G). Therefore we investigate only p(x) ∈ (1, n).

2 L∞: Estimate of Bounded Weak Solutions

Definition 2.1 The function u is called a weak bounded solution of problem (RQL)
provided that u(x) ∈ N

1,p(x)
−1,∞ (G) and u satisfies the integral identity

Q(u, η) :≡
ˆ

G

〈
|∇u|p(x)−2uxi ηxi + a(x)u|u|p(x)−1η(x)+ b(u,∇u)η(x)

〉
dx

+ γ
ˆ

∂G

|x|1−p(x)u|u|p(x)−2η(x)ds =
ˆ

∂G

g(x)η(x)ds +
ˆ

G

f (x)η(x)dx. (II )

for all η(x) ∈ N
1,p(x)
−1,∞ (G).

Theorem 2.2 Let u(x) be a weak bounded solution of (RQL). Assume that

(i) p(x) ∈ C(0)(G) and (1.1);
(ii) 0 ≤ a0 ≤ a(x) ≤ const · |x|−p(x); a0 = const > 0, ∀x ∈ G;

b(u, ξ) : Rn+1 ⇒ R is a Carathéodory function satisfying for all
(u, ξ) ∈ R

n+1 the following inequalities:

|b(u, ξ)| ≤ μ|u|−1|ξ |p(x), 0 ≤ μ < 1, ∀x ∈ G;
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(iii)

|f (x)| ≤ f0|x|β(x), β(x) ≥ β0 − n

s
; s > n

p−
; f0 ≥ 0, β0 > 0, ∀x ∈ G;

|g(x)| ≤ g0|x|1−p(x), g0 ≥ 0, ∀x ∈ ∂G.

Then there exists a constantM0 > 0 depending only on measG,n, p±, s, μ,f0, g0,

a0, β0, γ such that ‖u‖L∞(G) ≤M0.

Remark 2.3 It is easy to verify that the assumptions (i)–(iii)) guarantee the existence
of integrals over G and ∂G in the integral identity (II). Therefore,Q(u, η) is well
defined.

The proof of this Theorem is based on the well-known level method and the
Stampacchia Lemma. Namely, we consider the set
A(k) = {x ∈ G, |u(x)| > k}. New is our presentation
A(k) = A−(k) ∪ A+(k), where A−(k) = A(k) ∩ {|∇u| ≤ 1},
A+(k) = A(k) ∩ {|∇u| ≥ 1} and the application of the inequalities
|∇u|p+ ≤ |∇u|p(x) ≤ |∇u|p− on A−(k); |∇u|p− ≤ |∇u|p(x) ≤ |∇u|p+ on A+(k).

We note that prior to that the L∞—regularity of weak solutions for quasi-linear
equations with p(x)—Laplacian was studied:

• in [1] for b(u, ξ) ≡ 0 (the Dirichlet problem),
• in [2, 3] for b(u, ξ) not depending on ξ (the Dirichlet and the Robin problems),
• in [12] for |b(x, u, ξ)| ≤ c1|ξ |α(x) + c2|u|r(x)−1 + c3; α(x) = r(x)−1

r(x)
p(x),

p(x) ≤ r(x) < p∗(x), where p∗(x) is the Sobolev embedding exponent of p(x)
(the Dirichlet problem).

3 The Behavior of Weak Solutions Near the Angular
or Conical Point of the Boundary

Here we describe qualitatively the behavior of the weak solution near a conical
point, namely, we derive the sharp estimate of the type |u(x)| = O(|x|') for the
weak solution modulus (for the solution decrease rate) of problem (RQL) near a
conical boundary point. As well, we establish the comparison principle for weak
solutions.

Theorem 3.1 Let u(x) be a weak bounded solution of (RQL) in a cone
Gd0 ⊂ G, 0 < d ) 1 with the boundary condition with g(x, u) instead of g(x) on
the lateral surface �d0 of the cone Gd0 andM0 = sup

x∈Gd0
|u(x)|. Assume that

(v) p(x) ∈ C(0,1)(Gd0 ) and (1.1);
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(iv) b(u, ξ) : Rn+1 ⇒ R is a Carathéodory function satisfying for all
(u, ξ) ∈ R

n+1 the following inequalities:

(iv)a |b(u, ξ)| ≤ δ|u|−1|ξ |p(x) + b0|u|p(x)−1,

{
0 ≤ δ < μ, if μ > 0;
δ ≥ 0, if μ = 0;

(iv)b b(u, ξ) signu ≥ ν|u|−1|ξ |p(x) − b0|u|p(x)−1, ν > 0; if μ = 0;

(iv)c

√√√√ n∑
i=1

∣∣∣∣∂b(u, ξ )∂ξi

∣∣∣∣
2

≤ b1|u|−1|ξ |p(x)−1; ∂b(u, ξ )

∂u
≥ b2|u|−2|ξ |p(x);

b0 ≥ 0, b1 ≥ 0, b2 ≥ 0;

(vi) 0 ≤ a0 ≤ a(x) ≤ const · |x|−p(x);
(vii) |f (x)| ≤ f0|x|β(x), f0 ≥ 0, β(x) ≥ p+−1

p+−1+μ (p(x)− 1) λ− p(x);
∀x ∈ Gd0

0 ; 0 ≤ μ < 1, γ = const ≥ 1 and λ is the least positive eigenvalue
of problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−divω
(
(λ2ψ2 + |∇ωψ |2)(p+−2)/2∇ωψ

) =
λ (λ(p+ − 1)+ n− p+) (λ2ψ2 + |∇ωψ |2)(p+−2)/2ψ, ω ∈ �,
(λ2ψ2 + |∇ωψ |2)(p+−2)/2 ∂ψ

∂−→ν + γ
(
p+−1+μ
p+−1

)p+−1 · ψ |ψ |p+−2 = 0, ω ∈ ∂�,

for ψ(ω) ∈ C2(�) ∩ C1(�), where |∇ωψ| denotes the projection of the
vector ∇ψ onto the tangent plane to the unit sphere at the point ω and −→ν
denotes the exterior normal to ∂C at points of ∂�;

(vv) |g(x, u)| ≤ g0|x|1+β(x); ∀u ∈ L∞; ∂g(x,u)
∂u

≤ 0, g(x, 0) ≡ 0, x ∈ �d0
0 ;

(vvv) the spherical region� ⊂ Sn−1 is invariant with respect to rotations in Sn−2.

Then there exist d̃ ∈ (0, d) and a constant C0 > 0 depending only on λ, d,M0,

p+, p−, L, n, (μ − δ), ν, b0, f0 and such that

|u(x)| ≤ C0|x|', ' = p+ − 1

p+ − 1+ μλ; ∀x ∈ Gd̃0 .

The proof of this Theorem is based on the our new comparison principle,
adapted to the problem, and the construction of a barrier function

w = w(r, ω) = r'ψ'/λ(ω), ' = p+ − 1

p+ − 1+ μλ
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as a solution of the auxiliary problem:

⎧⎨
⎩

−�p+w = μw−1|∇w|p+, x ∈ Gd0 ,
|∇w|p+−2 ∂w

∂
−→
n
+ γ

|x|p+−1w|w|p+−2 = 0, x ∈ �d0 ,

where (λ,ψ(ω)) is the solution of the above eigenvalue problem.

4 Existence of Bounded Weak Solutions

Here we study the existence of bounded weak solutions of (RQL). We need the
space M(G) : it is the set of all measurable and bounded almost everywhere in G
functions u(x) with the norm

‖u‖ = vraimax
x∈G

|u(x)| = inf
meas E=0

{
sup
x∈G\E

|u(x)|
}
.

The convergence inM(G) is the uniform convergence almost everywhere.

Theorem 4.1 Let suppositions (v), (vi) be satisfy and assume that

(w) b(u, ξ) : Rn+1 ⇒ R is a Carathéodory function satisfying for all
(u, ξ) ∈ R

n+1 the following inequalities:

(w)a |b(u, ξ)| ≤ b1

(
|u(x)|q0(x) + |ξ |q1(x)

)
, where b1 = const ≥ 0,

q0(x) < p
∗(x)− 1, q1(x) < p(x) − 1+ p(x)

n
, p∗(x) = np(x)

n− p(x) ;

(w)b ub(x, u, ξ) ≥ |u|p(x) for |u| > 1;

(ww) f ∈ Lp′(x)(G), 1
p′(x) + 1

p(x)
= 1; g(x) ≡ 0.

Then (RQL) has at least one bounded weak solution

u ∈ Vp(x)(G) ≡ W 1,p(x)(G) ∩M(G).

Proof For all u, η ∈ Vp(x)(G) we define nonlinear operators

J,B, � : Vp(x)(G)→ V ∗p(x)(G) and an element f ∗ ∈ V ∗p(x)(G)
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by

〈J (u), η〉 =
ˆ

G

|∇u(x)|p(x)−2∇u(x)∇η(x)dx,

〈B(u), η〉 =
ˆ

G

b̃ (x, u(x),∇u(x)) η(x)dx,

〈�(u), η〉 =
ˆ

∂G

|x|1−p(x)u(x)|u(x)|p(x)−2η(x)dS,
〈
f ∗, η

〉 =
ˆ

G

f (x)η(x)dx.

At first, we verify that operators J,B, �, f ∗ are well defined. Next we put T :=
J +B +�. Then the operator equation T (u) = f ∗ is equivalent to validity of the
integral identity (II). This fact means that the solutions of this operator equation
correspond one-to-one to the weak solutions of (RQL). Further, to prove that there
is a solution of the operator equation we verify the assumptions of the Leray-Lions
Theorem (see [13]). ��

5 Transmission Robin Problem

We investigate the behavior in a neighborhood of the origin O of solutions to the
transmission Robin problem (T RQL). The same problems for p(x) = p = const
were studied in our monograph [4]. We suppose from Sect. 3 (iv), (vi), (vvv) and
(vii) with λ being the least positive eigenvalue of problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−divω
(
(λ2ψ2 + |∇ωψ|2)(p+−2)/2∇ωψ

)
= λ (λ(p+ − 1)+ n− p+) (λ2ψ2 + |∇ωψ|2)(p+−2)/2ψ, ω ∈ �,

[ψ]σ0 = 0;[
(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ

∂−→ν
]
σ0
+ β

(
p+−1+μ
p+−1

)p+−1 · ψ|ψ|p+−2
∣∣∣
σ0
= 0,

(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ
∂−→ν + γ

(
p+−1+μ
p+−1

)p+−1 · ψ|ψ|p+−2 = 0, ω ∈ ∂�,

and the following:

(1) 1 < p− ≤ p(x) ≤ p+ = p(0) < n; ∀x ∈ Gd0
0 ; p(x) ∈ C0,1(G

d0
0 ) &⇒

0 ≤ p+ − p(x) ≤ L|x|, ∀x ∈ Gd0
0 ; where L is the Lipschitz constant for

p(x);
(2) constants β, γ, are such that

{
β ≥ 2 and γ ≥ 1

2β, if p+ ≥ 2;
1 ≤ γ ≤ 1

2β, if 1 < p+ ≤ 2;
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(3) |h(x, u)| ≤ h0|x|1+β(x); ∀u ∈ L∞; ∂h(x,u)
∂u

≤ 0, h(x, 0) ≡ 0, x ∈ $d0
0 ;

|g(x, u)| ≤ g0|x|1+β(x); ∀u ∈ L∞; ∂g(x,u)
∂u

≤ 0, g(x, 0) ≡ 0, x ∈ �d0
0 .

The main result is the following statement:

Theorem 5.1 Let u be a weak bounded solution of problem (T RQL), M0 =
sup
x∈Gd00

|u(x)| and above assumptions hold. Then there exist d̃ ∈ (0, d0) and a

constantC0 > 0 depending only on λ, d0,M0, p+, p−, L, n, (μ−δ), ν, b0, f0 such
that

|u(x)| ≤ C0|x|', ' = p+ − 1

p+ − 1+ μλ; ∀x ∈ Gd̃0 .

Proof As in the proof of the Theorem 3.1 we prove maximum and comparison
principles and construct a barrier function

w(r, ω) = r'ψ'/λ(ω), ' = p+ − 1

p+ − 1+ μλ,

where (λ,ψ(ω)) is the solution of the above eigenvalue problem. For details we
refer to [6, 8]. ��

References

1. Yu. Alkhutov, M. Borsuk, The behavior of solutions to the Dirichlet problem for second order
elliptic equations with variable non-linearity exponent in a neighborhood of a conical boundary
point. J. Math. Sci. 210(4), 341–370 (2015)

2. S. Antontsev, L. Consiglieri, Elliptic boundary value problems with nonstandard growth
conditions. Nonlinear Analy. 71, 891–902 (2009)

3. S. Antontsev, S. Shmarev, Elliptic equations and systems with nonstandard growth conditions:
existence, uniqueness and localization properties of solutions. Nonlinear Analy. 65, 728–761
(2006)

4. M. Borsuk, Transmission Problems for Elliptic Second-Order Equations in Non-smoooth
Domains. Frontiers in Mathematics (Birkhäuser, Basel, 2010), 218 p. https://doi.org/10.1007/
978-3-0346-0477-2

5. M. Borsuk, L∞ -estimate for the Robin problem of a singular variable p - Laplacian equation
in a conical domain. Electr. J. Differ. Equ. 2018(49), 1–9 (2018)

6. M. Borsuk, The Robin problem for singular p(x)-Laplacian equation in a cone. Electr. J.
Qualitat. Theory Differ. Equ. 93, 1–14 (2018). https://doi.org/10.14232/ejqtde.20218.1.93

7. M. Borsuk, Existence of bounded weak solutions of the Robin problem for quasi-linear elliptic
equation with p(x)-Laplacian. Electr. J. Qualitat. Theory Differ. Equ. 16,1–11 (2019). https://
doi.org/10.14232/ejqtde.2019.1.16

8. M. Borsuk, Transmission Robin problem for singular p(x)-Laplacian equation in a cone.
Electr. J. Qualitat. Theory Differ. Equ. 93, 1–17 (2019). https://doi.org/10.14232/ejqtde.2019.
1.93

https://doi.org/10.1007/978-3-0346-0477-2
https://doi.org/10.1007/978-3-0346-0477-2
https://doi.org/10.14232/ejqtde.20218.1.93
https://doi.org/10.14232/ejqtde.2019.1.16
https://doi.org/10.14232/ejqtde.2019.1.16
https://doi.org/10.14232/ejqtde.2019.1.93
https://doi.org/10.14232/ejqtde.2019.1.93


The Robin Problem for Quasi-Linear Elliptic Equation p(x)-Laplacian. . . 239

9. M.M. Boureanu, A. Vélez-Santiago, Fine regularity for elliptic and parabolic anisotropic
Robin problems with variable exponents. J. Differ. Equ. (2019). https://doi.org/10.1016/j.jde.
2018.12.026

10. Sh.-G. Deng, Positive solutions for Robin problem involving the p(x)−Laplacian. J. Math.
Anlys. Appli. 360, 548–560 (2009)

11. X. Fan, Existence of solutions for p(x)−Laplacian Dirichlet problem. Nonlinear Analys. 52,
1843–1852 (2003)

12. X. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity. Nonlinear Analy. 36, 295–
318 (1999)

13. J. Leray, J.L Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par
les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)

14. V.V. Zhikov, On Lavrentiev’s phenomenon. Russian J. Math. Phys. 13(2), 249–269 (1994)

https://doi.org/10.1016/j.jde.2018.12.026
https://doi.org/10.1016/j.jde.2018.12.026


Analysis of Distributions of Stadiums
on the Plane Using e-Sums

Roman Czapla

Abstract The main goal of this paper is to discuss the method of characterization of
distributions of geometric objects on the plane. The method is based on the structural
sums performing the same role in description of image as the n-point correlation
functions. In this paper we present applications of this theory to description of
distributions of non-circular objects (stadiums) on the plane approximated by disks.

Keywords Structural sums · Distributions of object on the plane · Stadium shape

Mathematics Subject Classification (2010) Primary 62-07; Secondary 60G55

1 Introduction

Description of geometry of images1 has fundamental meaning in different branches
of science i.e. engineering materials, biology, medicine, astronomy etc. In addition
to analyzing visible features from studied image it is very interesting to extract the
hidden features—invisible to the human, but significant (for example isotropy of
material). This problem can be reduced to the construction of set G containing
parameters describing geometry. More precisely, we can build structural sums
feature vectors [13, 22]. Usually we use this representation for images containing
non-overlapping disks, but in this paper we will extend the method to other shapes.
Structural sums constitute a crucial part of the framework of modern computational
material science [13, 14] forming a coherent whole with other contemporary results
and applications in the field [1, 2, 6–12, 16, 18, 19, 22, 25–28, 30].

1 Without loss of generality, we can consider only two-phase images [29, p. 24].
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2 Structural Sums

Consider a lattice Q which is determined on the complex plane by two vectors ω1

i ω2

(
for definiteness, it is assumed that Im

[
ω2/ω1

]
> 0

)
.We introduce the cell

(0, 0) as the parallelogram:

Q(0,0) :=
{
z = s1ω1 + s2ω2 : − 1

2
< sk <

1

2
(k = 1, 2)

}
.

The lattice Q consists of the cells

Q(m1,m2) :=
{
z ∈ C : z −m1ω1 −m2ω2 ∈ Q(0,0)

}

where m1, m2 run over integer numbers. We will consider unit cell which include
N non-overlapping disks of radii rk (k = 1, 2, . . . , N) (see Fig. 1). This distribution
will be realized in the torus topology. We define concentration of disks by equals

ν = π

N∑
k=1

r2
k . Let R be the largest of the radii rk (k = 1, 2, . . . , N) and introduce

constants vk =
(
rk
R

)2
, k = 1, 2, 3, . . . , N describing polydispersity of disks.

Consider points ak = xk + iyk (k = 1, 2, . . . , N) in the cell Q(0,0). Let q be
a natural number, k0, k1, . . . , kq run over integer numbers from 1 to N , and pj >
1 (j = 1, 2, . . . , q) are integer numbers. The following sum was introduced by
Mityushev [15]:

e
v1,v2,...,vq
p1,p2,...,pq = 1

ηδ+1

∑
k0,k1,...,kq

v
t0
k0
v
t1
k1
v
t2
k2
· · · vtqkqEp1(ak0 − ak1)

×Ep2(ak1 − ak2)Ep3(ak2 − ak3) · · ·Cq+1Epq (akq−1 − akq ),
(2.1)

Fig. 1 Doubly periodic cell
Q(0,0) with a configuration of
non-overlapping disks
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where η =
n∑
j=1

vj and δ = 1

2

n∑
j=1

pj . Symbol C denote operator of complex

conjugation. Superscripts tj (j = 0, 1, . . . , n) are given by recurrence relations:
t0 = 1, tj = pj − tj−1, j = 1, 2, . . . , n. Functions Em (m = 2, 3, . . . ) are the
Eisenstein functions corresponding to double periodic cellQ(0,0) (see [13] for more
information). The sum (2.1) is called structural sum (or e-sum) of the multi-index
p = (p1, p2, . . . , pq) and number δ is called the order of the structural sum.

Now we describe the connection of structural sums with the geometry of a set of
disks distributed on a plane. It turns out that we can choose geometric parameters as
the following set of structural sums:

G = {em, m ∈Me},

where the set Me is defined recursively in [20]. The justifications for this fact show
latest research by Mityushev and Nawalaniec [17], in which structural sums were
used in systematic studies of dynamically changing structures. We can consider the
set G as the parameters describe structural features of data represented by non-
overlapping disks. Because the set Me is infinite, therefore practical applications
require finite approximations in form of the structural sums feature vector Xq of
order q defined in [22]. For example, the feature vector of order 5 has the following
form:

X5 = {e2, e2,2, e2,2,2, e3,3, e2,2,2,2,

e3,3,2, e4,4, e2,2,2,2,2, e2,3,3,2, e3,3,2,2, e3,4,3, e4,4,2, e5,5}.

More detailed construction of Xq is presented in [22] as well as in [13]. In next part
of this paper we will consider selected sums from the vector X5 i.e.: e2,2, e3,3, e4,4,
e5,5.

3 Applications of Structural Sums in Description
of the Geometry of Distributions of Stadiums

As we know application of basis sums in description of the geometry of two-phase
image is justified for geometric objects being disks. However, any geometric object
can be approximated by clusters of disks. In this section we focus on the study of
the impact of choosing an approximation of a given geometric object by disk on
the ability of distinguishing distributions of objects. We will study distributions of
geometric objects called stadiums. The study of such distributions is related to the
collective behavior of bacteria [3–5].
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First, we introduce a formal definition of stadium. Let R > 0 be a real number
and a, b ∈ C be such that a �= b. The stadium S

(
(a, b), r

) ⊂ C is defined as follows

S
(
(a, b), R

) :=
{
z ∈ C : |z− a| ≤ r

∨ |z− b| ≤ r ∨
(

Im[z− a] · Im[a − b]
+ Re[z− a] · Re[a − b] ≤ 0 ∧ Im[z− b] · Im[a − b]
+ Re[z− b] · Re[a − b] ≥ 0 ∧

∣∣∣Im[
(b − a) · Re[z]

+ (z− b) · Re[a] + (a − z) · Re[b]]∣∣∣ ≤ R · |a − b|)
}
,

where R is called its radius and the (a, b) its centers (see Fig. 2).
Consider a lattice Q which is defined by two fundamental translation vectors

ω1 = 1 and ω2 = i forming a square cell Q(0,0) (see Fig. 3). Consider N non-
overlapping stadiums Sk = Sk

(
(ak, bk), r

)
of radius r with centers ak, bk ∈ Q(0,0)

and such that |ak − bk| = μ = 6r . Let νS stands for the concentration of stadiums
in the unit cell, i.e.

νS = N(r2π + 2rμ).

Fig. 2 Stadium with centers a and b, radius r and distance between centers equal to μ

Fig. 3 Doubly periodic unit cellQ(0,0) with a configuration of non-overlapping identical stadiums
(a) and their approximations (b)



Analysis of Distributions of Stadiums on the Plane Using e-Sums 245

We will consider distributions of stadiums generated by two algorithms. First
algorithm (A) is based on the RSA method - this algorithm is described in details in
[4]. Second algorithm (B) generate distributions of stadiums with deterministically
fixed orientations of objects (description of this algorithm can be found in [3]). In
order to study the distributions obtained by algorithms A and B, we approximate
stadiums by disks. Let’s consider four types of such approximations with radii equal
to the radius of the stadium:

• approximation by one disk with center in geometric center of stadium;
• approximation by two disks with centers in centers of stadium;
• approximation by three disks with centers in geometric center and centers of

stadium;
• approximation by the chain of four disks (see Fig. 3b).

Using algorithms A and B we generatedM = 50 distributions containingN = 300
stadiums for νS ∈ {0.15, 0.25, 0.35}. In the next step, we calculated the feature
vector X5 considered approximations. Selected results are presented in Figs. 4, 5,
6 and 7 show comparison of real parts of values e2,2, e3,3, e4,4 and e5,5 for two
sets of 50 samples (M) drawn from distributions of stadiums. Black points denote
distributions generated by algorithm A, gray points denote distributions generated
by algorithm B.

4 Conclusions

By analysis of the obtained results one can notice the following remarks:

• approximation of stadiums (such that μ = 6r) by one disk is insufficient to study
their distributions;

• approximation of stadiums using two disks seems to be the best; moreover, for
higher concentrations, approximation of stadiums by three or four disks may lead
to less expressive distinction between the considered distributions;

• as the concentration increases, the distributions generated by the A and B
algorithms are less and less distinguishable;

• the parameter e4,4 seems to be the best for analyzing the considered distributions.

In order to calculate structural features, one can use the Python software package
basicsums [23, 24] providing high level of abstraction in the computation of
structural sums using algorithms reported in [20] and [21].
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Boundary Value Problems and Their
Applications to 2D Composites Theory

Drygaś Piotr

Abstract Analytical effective formulas are derived separately for conductivity and
for elasticity. We consider 2D material with circular inclusions with different radii
and different properties (n-phase material). We derive new analytical formulas
determining the effective properties of such materials. They are connected by
structural basic sum expressed through the Eisenstein and Natanzon functions.

Keywords Elasticity · Conductivity · Complex potential · Random composite
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1 Introduction

Traditional computational methods for calculation of the effective properites of
random composites are usually based on the repeated applications of the pure
numerical schemes to simulated random structures [1]. Application of analytical
methods reduces the computational expenses [2] and gives an effective possibility
to study structures whose representative cells contains more than 1000 inclusions
per cell [3–5].

In the present paper, we make the next step to reduce the computational expenses
for a class of random composites. It was noted in [2, 6, 7] that application of
the Schwarz alternating method to multi-phase dispersed composites leads to
a representation of the effective constants as a series in the concentration f
of inclusions with coefficients explicitly decomposed onto terms with physical
properties of components and terms depending only on the location of inclusions.
This yields a simple method for computation of the effective properties of random
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composites [8–10]. It should be noted that research is also being conducted into
analytical formulas for elliptic inclusions [11]. In the present paper, we apply this
method to 2D conducting composites with circular inclusions with the imperfect
contact between the components. An analytic symbolic algorithm to solve the
problem for random composites was proposed in [12]. The symbolic algorithm from
[12] is developed in the present paper to deduce a decomposition formula for the
effective conductivity of random composites. This decomposition yields explicitly
the terms including the contrast parameter ρk and the thermal resistance Rk on the
kth component of composite. When the distribution of ρk and Rk does not depend
on the geometry, one can replace the huge expressions with these parameters by
their mathematical expectations. As a result, we obtain an analytical approximate
formula for the effective conductivity of the considered class of random composites
in terms of the series in f . The effective conductivti expression has many apllication
to study heat flux and local field in composite materials [9, 10, 13–15]. Effective
conductivity problems are also used for biological problems [16, 17] In these paper
we use basic sums of the multi-orser p, which was hard study in [18–22]

It is considered that for random composite materials, it is imposible to obtain
exact analytical solution for the elastic moduli. Exists only approximate expresions
most of which are only for small concentyration [23]. Recently in works [24–26] this
defect has been removed. In this paper, we present some results coincides effective
conductivity and effective elastic properties.

Consider the square lattice Q, the set of points Z[i] = {m1+ im2 : m1,m2 ∈ Z},
on the complex plane C determined by the pair of periods 1 and i = √−1. The
zero-th square cell Q is defined as

Q = Q(0,0) =
{
z = z1 + iz2 ∈ C : −1

2
< t1, t2 <

1

2

}
.

Here, Z stands for the set of integer numbers. Introduce the cells Q(m1,m2) =
Q(0,0) +m1 + im2.

Consider N non-overlapping equal disks Dk = {z ∈ C : |z − ak| < r} of
radius r with the centers ak ∈ Q (k = 1, 2, . . . , N). Let each circle Lk = {z ∈
C : |z − ak| = r} leave Dk to the left. Introduce the multiply connected domain
D = Q\ ∪Nk=1 (Dk ∪ Lk), the complement of all the closures of Dk toQ.

Introduce

r2 = 1

N

N∑
k=1

r2
k ,

which is proportional to concentration f , i.e.,

r2
k = Rkr2,

where Rk is the proportionality ratio.
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2 General Formulae for Effective Conductivity

Consider a conducting infinite host medium of the normalized unit conductivity with
the inclusionsDk +m (m ∈ Z[i]) of conductivity λk > 0, respectively.

The temperature distribution in the considered composite is expressed by the
function

u(z) =
{
u0(z), z ∈ D,
uk(z), z ∈ Dk, (2.1)

harmonic in every component of the composite, continuously differentiable in the
closures of D and Dk . Let n = (n1, n2) denote the outward unit normal vector to
the circleLk and ∂

∂n the normal derivative. Introduce the Kapitza interface resistance
Rk on Lk [23]. The following conjugation conditions express the imperfect contact
between the components

∂u0

∂n
(t) = λk ∂uk

∂n
(t), (2.2)

Rkrk
∂uk

∂n
(t)+ uk(t)− u0(t) = 0, t ∈ Lk (k = 1, 2, . . . , N). (2.3)

The relations (2.2)–(2.3) model the imperfect thermal contact between inclusion
and matrix. Equation (2.2) expresses equality of the normal heat flux on Lk .
Equation (2.3) describes a linear relation between the jump of the temperature
across the boundary of inclusion and the normal heat flux on the interface. The
case Rk = 0 corresponds to the perfect thermal contact between fiber and matrix,
while Rk = +∞ corresponds to the perfect thermal insulator.

It is assumed that the external flux is applied in the x–direction and it is
normalized in such a way that the function u0(z) − x is doubly periodic in the
perforated domain D = ∪m∈Z[i](D +m). The function u0(z) has the unit jump per
a cell along the x–axis and is periodic along the y–axis

u0(z + 1)− u0(z) = 1, u0(z+ i)− u0(z) = 0. (2.4)

Introduce the complex potentials ϕk(z) analytic inDk respectively, continuously
differentiable in the closures of the considered domains. The harmonic and the
analytic functions are related by the equalities

u0(z) = Re ϕ0(z), z ∈ D, uk = Re ϕk(z), z ∈ Dk. (2.5)
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The heat flux ∇u(x, y) is determined by means of the complex potentials

ψk(z) := ∂ϕk

∂z
= ∂uk

∂x
− i ∂uk

∂y
, z ∈ Dk, k = 0, 1, . . . , n. (2.6)

The problem (2.2)–(2.3) is reducing to the followign boundary problem

ψ−(t) =
(

1

1− ρk +
Rk
2

)
ψk(t)+

(
ρk

1− ρk −
Rk
2

)(
rk

t − ak
)2

ψk(t)

+ Rk
2
(t − ak)ψ ′k(t)−

Rk
2

r4
k

(t − ak)3ψ
′
k(t), (2.7)

where |t − ak| = rk .
Introduce the contrast parameter ρk assigned to the kth inclusion

ρk = λk − 1

λk + 1
(2.8)

and the constant parameters

*
(l)
k =

(
1

1− ρk + (l + 1)
Rk
2

)−1

, �
(l)
k = ρk

1− ρk − (l + 1)
Rk
2

(2.9)

for k = 1, 2, . . . , N and l = 0, 1, . . .. This problem (2.2)–(2.3) was solved in [12]
by method of successive approximation for Taylor coefficients of potentials ψ .

In the case of macroscopically isotropic composites, the effective conductivity
tensor becomes λ̂ = λ̂I , where λ̂ stands for the scalar effective conductivity and I
for the identity matrix. The following formula was deduced in [12]

λ̂ = 1+ 2πr2
N∑
k=1

�
(0)
k ψk(ak). (2.10)

Such formulae were obtained and described in [12] for deterministic composites.
Let f = Nπr2 denote the concentration of inclusions in composite. Then, the

effective conductivity (2.10) can be written in the form of series in f

λ̂ = 1+ 2f
∞∑
p=0

Apf p, (2.11)
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where the first few coefficients Ap have the form

A0 = 1

N

N∑
k=1

ρ̃
(0)
k , A1 = 1

π
g
(0)
2 , A2 = 1

π2
g
(00)
22 ,

A3 = 1

π3

[
−2g(10)

33 + g(000)
222

]
, (2.12)

A4 = 1

π4

[
3g(20)

44 − 2(g(100)
332 + g(010)

233 )+ g(0000)
2222

]
,

where the multiple convolution sums is defined by

g
(l1,...,lq)
m1,...,mq =

1

N1+ 1
2 (m1+···+mq)

∑
k0,k1,...,kq

ρ̃
(0)
k0
ρ̃
(l1)
k1

· · · ρ̃(lq)kq
×

Em1(ak0 − ak1)Em2(ak1 − ak2) . . .C
q+1Emq (akq−1 − akq ),

(2.13)

where C denote the operator of complex conjugation,

ρ̃
(l)
k = Rl+1

k �
(l)
k *

(l)
k = Rl+1

k

ρk − (1− ρk)(l + 1)Rk

2

1+ (1− ρk)(l + 1)Rk

2

, (2.14)

E2(z) = ℘(z)+ S2

and for n > 2

En(z) = (−1)n

(n− 1)!
dn−2

dzn−2℘(z).

Properties of the Eisenstein functions are described in [18, 20, 21, 27, 28].
The next coefficients can be explicitly written by using of the symbolic com-

putation code. The structure of Ap as linear combinations of g
(l1,...,lq )
m1,...,mq follows

form the iterative scheme. The obtained expressions can be considered as a
decomposition of the effective conductivity on the “geometrical” and “physical”
terms as follows. First, the formula (2.11) contains the sum of terms with the
powers of the concentration f . The coefficients Ap are presented in (2.12) as

linear combinations of the sums (2.13). The latter sums g
(l1,...,lq )
m1,...,mq are decomposed

onto the sum of pure geometric objects expressed by means of the Eisenstein

functions with the pure physical multipliers ρ̃(0)k0
ρ̃
(l1)
k1

· · · ρ̃(lq )kq
. Therefore, we have

the explicit decomposition of the effective conductivity on the powers of f , the
physical parameters ρ̃k and the geometrical parameters Em(ak − al) calculated by
the centers of inclusions.
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3 General Formulae for Effective Shear Moduli

3.1 Statement the Problem

The component of the stress tensor can be determined by the Kolosov-
Muskhelishvili formulae [29]

σxx + σyy =
{

4Re ϕ′k(z), z ∈ Dk,
4Re ϕ′0(z), z ∈ D,

(3.1)

σxx − σyy + 2iσxy =
⎧⎨
⎩
−2

[
zϕ′′k (z)+ ψ ′k(z)

]
, z ∈ Dk,

−2
[
zϕ′′0 (z)+ ψ ′0(z)

]
, z ∈ D,

where Re denotes the real part and the bar the complex conjugation. Let

(
σ∞xx σ∞xy
σ∞yx σ∞yy

)

be the stress tensor applied at infinity. Following [29] introduce the constants

B0 =
σ∞xx + σ∞yy

4
, �0 =

σ∞yy − σ∞xx + 2iσ∞xy
2

. (3.2)

Then,

ϕ0(z) = B0z+ ϕ(z), ψ0(z) = �0z+ ψ(z), (3.3)

where ϕ(z) and ψ(z) are analytical in D and bounded at infinity. The functions
ϕk(z) and ψk(z) are analytical in Dk and twice differentiable in the closures of the
considered domains. The displacement (u, v) are calculated by formulae [29]

u+ iv =
⎧⎨
⎩

1
2Gk

(
κkϕk(t)− tϕ′k(t)− ψk(t)

)
, z ∈ Dk,

1
2G

(
κϕ0(t)− tϕ′0(t)− ψ0(t)

)
, z ∈ D. (3.4)

The perfect bonding at the matrix-inclusion interface present displacement and
traction vectors continuity across the interface, can be expressed by two equations
[29]

ϕk(t)+ tϕ′k(t)+ ψk(t) = ϕ0(t)+ tϕ′0(t)+ ψ0(t), (3.5)

κkϕk(t)− tϕ′k(t)− ψk(t) =
Gk

G

(
κϕ0(t)− tϕ′0(t)− ψ0(t)

)
. (3.6)
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The problem (3.5)–(3.6) is the classic boundary value problem of the plane elastic-
ity. It was discussed in many works by various methods [29]. Below, we concentrate
our attention to its analytical solution. Introduce the following nondimensional
contrast parameters

!1k,m = Gm −G
Gk + κkG · Gk

Gm
, !2k,m = κGm − κmG

κGk +G · Gk
Gm

, !3k,m = Gm −G
κGk +G · Gk

Gm
.

In the case of k = m for brevity we use notations !ik,k = !ik (i = 1, 2, 3).
The problem (3.5)–(3.6) was reduce to the system of functional equations and

solved by method of successive approximation [26].

3.2 Effective Constants Up to O(f 3)

The effective shear moduli is calculted from formula [26]

Ge

G
= 1+ Re A

1− κ Re A
. (3.7)

where

A =
∞∑
s=1

A(s)f s,

and

A(s) = i

nsπs−1

n∑
k=1

Rk
!3k

1+ !3k

(
3Rkα

(s−2)
k,3 + 2akα

(s−1)
k,2 + β(s−1)

k,1

)
. (3.8)

The few initial coefficients o A has the form

A(1) = 1

n

n∑
k=1

Rk!3k, A
(2) = − 2

n2π

n∑
k=1

n∑
m=1

RkRm!3k!3mE
(1)
3 (ak − am)

A(3) = 1

n3π2

n∑
m1=1

n∑
m2=1

n∑
m3=1

[
4Rm1Rm2Rm3!3m1!3m2!3m3

×E(1)3 (am1 − am2)E
(1)
3 (am2 − am3)

+Rm1Rm2Rm3

!3m1(!1m2 − !3m2)!3m3

(1+ !1m2)!3m2

E2(am1 − am2)E2(am2 − am3)
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−Rm1Rm2Rm3

!3m1(!1m2 − !3m2)!3m3

(1+ !1m2)!3m2

E2(am1 − am2)E2(am2 − am3)

]

+ 3

n3π2

n∑
m1=1

n∑
m2=1

Rm1Rm2(Rm1 + Rm2)!3m1!3m2E4(am1 − am2) , (3.9)

where the Natanzon functions are used

E(1)p (z) =
(−1)p

(p − 1)!
(
z
dp−2

dzp−2℘(z)−
dp−2

dzp−2℘1(z)

)
, (3.10)

℘ ′1(z) = −2
∑
m∈Z[i]
m �=0

(
m

(z−m)3 +
m

m3

)
. (3.11)
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Selected Aspects of Visualization
in Education of Functions

Ján Gunčaga

Abstract The aspect of visualization plays an important role in the calculus
teaching. The notion of the function is basic notion at the lower secondary level
and in the teacher training of future mathematics teachers. The notion of the graph
of the function and his graphical and visual representation is important at upper
secondary level and university level. If the student draws the graph of the function,
then the work with graphical representation of the function can help to make his
knowledge about notions such continuity, derivative more deep. The development
of information and communication technologies (ICT) gives the possibility to
use different tools (for example educational software) as a supporting aspect for
mathematics education with better understanding. We would like to show some
examples with the help of GeoGebra for motivational analysis teaching.

Keywords Function · Graph of the function · Calculus · Visualization

Mathematics Subject Classification (2010) Primary 97I20; Secondary 97I40

1 Introduction

Visual imagery has been an effective tool to communicate ideas connected with
basic mathematics concepts since the dawn of mankind. The notion of the function
belongs to these concepts. The development of educational visualization technology
allows these ideas to be demonstrated with the help of some educational software.
In this paper, we specifically consider the use of GeoGebra, a free, open-source
educational application developed by an international consortium of mathematics
and statistics educators, but other educational software could also be used for the
same visualization tasks.
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Using ICT and educational software is effective tool for supporting visualization
during the educational process in mathematics. These tools bring according [15] and
[3] relevant contribution to:

• Effecting working processes and improving production, notably by increasing
the speed and efficiency of such processes, and supporting visual presentation of
results, so contributing to the pace and productivity of lessons;

• Supporting processes of checking, validating and refinement, notably with
respect to checking and correcting elements of work, and testing and improving
problem strategies and solutions; see also [8]

• Overcoming student difficulties and building assurance, notably by circumvent-
ing problems experienced by students when writing and drawing by hand, and
easing correction of mistakes, so enhancing students sense of capability in their
work;

• Enhancing the variety and appeal of classroom activity, notably by varying the
format of lessons and altering their ambience by introducing elements of play,
fun and excitement and supporting using real life problems;

• Using of different visual separate and universal models for understanding
mathematic notions, their properties and relationships to other notions.

Visualization belongs according Brunner [1] to the stage of iconic forms
and many notions in calculus teaching are taught without visual and graphical
representation.

Weigand and Weth in [18] argue, that students need according the properties of
mathematic notions adequate visual image of this notion, which alow graphically
represent their main properties. We shows some examples for this aspect of
mathematic teaching in the next part of the paper.

2 Threshold Concepts and Using ICT in the Education
of Functions

A threshold concept according Meyer and Land [9] can be considered as akin
to a portal, opening up a new and previously inaccessible way of thinking about
something. It represents a transformed way of understanding, or interpreting, or
viewing something without which the learner cannot progress. As a consequence of
comprehending a threshold concept there may thus be a transformed internal view
of subject matter, subject landscape, or even world view. This transformation may be
sudden or it may be protracted over a considerable period of time, with the transition
to understanding proving troublesome.

The use of ICT in mathematics education is possible to characterize on several
levels (see also [10]):

Cognitive level ICT support students in various ways in the development of
mathematical notions. Computer Algebra Systems (CAS) support functional
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thinking according Vollrath [17]. In the case of universal mathematical programs
such GeoGebra—they integrate CAS, dynamic geometry systems (DGS) and
spreadsheets—several different representations can be according [3] achieved in
one teaching unit.

Affective level ICT increases the joy of the students in dealing with mathematics.
ICT tools They enable students to quickly and correctly solve problems with

changed parameters (see also [4]).

We present now some threshold concepts used in education of functions [14]. The
first notion will be a derivative. We use in our reasoning the approximate description
of a real function f differentiable at x0, when we use linear approximation (see [6]).
We define the real function f (x) = x2 + 1.2|x − 2| − 2.2.

The following figure show, how we can analyze with students graph of the
function with educational software, if we can show via visualization, that some
continuous function hasn’t a derivative in some point (see Fig. 1).

Let us continue with the discussion of the local extremes of a real function. We
define for this a new real function g = x4 − 0.02x2 + 0.1. We see in the next
figure (see Fig. 2) the function g with three extremals, which we cannot see in the
beginning (see [5]).

Fig. 1 The function f hasn’t a derivative at the point 2

Fig. 2 The function g with the three extremals in two views
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3 Visualization as a Helping Tool for Explanation
of Misconceptions

Visualization with the graph of the function can help in the mathematics education,
if we find some misconceptions connected with the notion of function. Many
practical examples with concrete works prepared by students about different kind
of functional properties show Sajka in [16]. Csachová and Jurečková in [2] gave
attention to the analysis of the knowledge in understanding and correct solution of
mathematical tasks with figures and graphs of the functions by students in secondary
level.

The identification of problems in calculus teaching is good feedback for the
preparation of the future mathematics teachers at the universities. We present
now one situation from lesson with future teachers of mathematics at University
Innsbruck in Austria. Student Simone solved following quadratic inequality in the
wrong way in the end of solution:

x2 + 7x + 10 > 0(
x + 7

2

)2

− 72

4
+ 10 > 0

(
x + 7

2

)2

>
9

4

x + 7

2
> ±3

2
x1 > −2

x2 > −5

This student forget connection between quadratic inequality with quadratic equation
and graph of the quadratic function. We can start with quadratic equation x2+ 7x+
10 = 0. It is possible to follow the style of solving strategy of this student.

x2 + 7x + 10 = 0(
x + 7

2

)2

− 72

4
+ 10 = 0

(
x + 7

2

)2

= 9

4

x + 7

2
= ±3

2
x1 = −2

x2 = −5
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Fig. 3 The graphic solution for x2 + 7x + 10 > 0

Now, we can draw the graph of the function y = x2 + 7x + 10 and we can show
graphically the solution for the quadratic inequality x2 + 7x + 10 > 0. We see
from the Fig. 3, that correct solution is the set (−∞,−5) ∪ (−2,∞). The notion
of function belongs to some mathematical structure, many practical information is
possible to find in Pauer and Stampfer [12].

4 The Notion of the Inverse Function

The notion of inverse function is interesting for discovery of graphs of function and
its inverse function. Base property is, that these graphs are in the axial symmetry
according axis y = x. We show this kind of discovery on example of the quadratic
functions of type x2 + a.
f (x) = x2 + a, x ≥ 0 is our function and the inverse function is f−1(x) =√
x − a, x ≥ a. We can find common points of the graphs of these two functions:

f (x) = f−1(x)

x2 + a = √
x − a

x4 + 2ax2 + a2 = x − a
x4 + 2ax2 − x + a2 + a = 0

x4 + 2ax2 + x2 − x2 − x + a2 + a = 0

x4 + (2a + 1)x2 − x2 − x + a2 + a = 0
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(
x2 +
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))2
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a + 1

2
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))2
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We obtain following solutions:

x1,2 = −1±√1− 4(a + 1)

2
x3,4 = 1±√1− 4a

2
.

It is possible to conclude solutions according parameter a in following Table 1:
These solutions have also graphical interpretation. We present in the Fig. 4 the

case, when the graphs have one common point.

5 Conclusions

It is possible according [13] to formulate some general impediments to the use of
technology for mathematics teaching:

1. teachers should not prioritizing technological tools,
2. the curriculum supports in the few range the use of technology (the task is, how

to use it),

Table 1 Solutions according
parameter a a ∈ (−∞,−1〉

{
−1−√−3− 4a

2
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1+√
1− 4a

2

}
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}
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}
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1

4
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)
∅
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Fig. 4 The solution for the case a = 0.25. g is inverse function to f

3. assessment of teachers and students sometimes not encourage the use of techno-
logical tools,

4. teachers’ unwillingness to attend professional development programs or up-skill
on the latest technology developments, and

5. the use of technology reinforces other skills (e.g. computation) rather than the
development of concepts,

One solution for these problems can be according [19] life-long learning courses for
in-service teachers can support their teaching digital skills.

Visual representation in mathematics education plays according [7] an important
role. We tried to present in our contribution some examples suitable for calculus
teaching. It is needed for this topic to know and connect the knowledge of many
parts of school mathematics. One part is arithmetic with operation (see more in
[11]).

Graph of the function, pictures and schemas can help in the building of
mathematic notions in the knowledge of students in secondary level. These tasks
are important to present in appropriate way also for students-future teachers
mathematics at universities, who can use them in their educational practise (see
also [20]).

Acknowledgments This article is prepared with the help of the project VEGA 1/0079/19
“Analysis of critical points in school mathematics and identification of factors influencing pupils’
attitude to mathematics”.
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Key Cell Method Based on the ARVE.
How Not to Fall Into
the Representative Cell “Trap”

Natalia Rylko, Pawel Kurtyka, and Michal Stawiarz

Abstract We develop novel Key Cell method and the theory of analytical represen-
tative volume element (ARVE) based on the Eisenstein-Rayleigh-Mityushev sums.
ARVE is constructed by means of the discrete convolutions of elliptic functions.
Examples of various types of particle-reinforced composite structures are given
instead of discussed.

Keywords Key Cell · ARVE theory with Eisenstein–Rayleigh-Mityushev sums
(ERM-sums) · Homogeneous and heterogeneous structure analysis · Multiscale
modeling · Anisotropy

Mathematics Subject Classification (2010) Primary 99Z99; Secondary 00A00

1 Introduction

Composite structures (reinforcing phase distributions, shapes and sizes of reinforc-
ing particles) largely determine various properties of the manufactured material
[1–5]. This is the reason why issues related to the optimization of the composite
structure are extremely important in the development of technology for their
manufacture and subsequent use [6, 7]. Therefore, the selection of the composite
structures analysis methodology becomes one of the basic issue in conducting
research. The contemporary approach to the subject of composite structure analysis
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always includes the stage of image analysis using advanced 2D or 3D structure
imaging techniques which is not the subject of the presented work [8, 9]. Photomi-
crograph, electron micrograph as the image of a field of the composite samples is
the primary unit of the geometrical data collection. Data and parameters obtained in
this way are used in further research by selecting appropriate statistical, numerical
or analytical methods [10–15].

Methodology appropriate to the issue of structure optimization has to provide the
possibility of an objective and not a subjective comparison of composites structures
of the same content, obtained as a result of various technological processes, changes
in process parameters, processing methods, etc. Statistical methods are commonly
used in order to compare the quality of a structure. But we cannot consider them as
the best solution to the problem. In this way, researchers are able to prove that e.g.
homogenization of the composite structure occurs as a result of the technological
process used. However, they are not able to estimate the effects of homogenization
or compare the results obtained [16, 17].

An alternative analysis of changes in the distribution of reinforcing particles can
be carried out by other conventional methods, among them Voronoi tessellation,
examination of the function of covariance or radial distribution, etc. [10, 18–23].

Determining a representative cell is based on appropriate parameters—for
example, it can be reinforcing phase concentration, anisotropy coefficient, etc.

2 Methodology of the Study Composite Structures

2.1 Eisenstein–Rayleigh-Mityushev Sums (ERM-Sums)

Methodology of ARVE theory is based on the application of fast computational
algorithms to calculating subsequent terms of the ERM series [24]. The calculated
values are an infinite set of parameters that precisely determine the structure. A
truncated set is taken into account in practical applications.

The structural ERM-sums are defined by the following discrete convolutions [25,
29]:

em1...mq := N−[1+ 1
2 (m1+···+mq)] ∑

k0k1...kq

Em1(ak0 − ak1)

×Em2(ak1 − ak2) . . .C
q+1Emq (akq−1 − akq ).

(2.1)

It is assumed for convenience that C stands for the operator of complex conjugation
and Em(0) := Sm, where Sm denotes the lattice sum of order m; ak denotes the
complex coordinate of the center of the kth inclusion and Em(z) the Eisenstein
series described in [26, 27]; the bar denotes the complex conjugation,N the number
of inclusions per cell.
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The sum e2 was used in practical applications to study anisotropy of random
structures [28]. It yields the anisotropy factor [24, 27]

κ = 1

2πN2

∣∣∣∣∣∣Re
N∑
k=1

⎡
⎣ N∑
m�=k

E2(ak − am)− π
⎤
⎦
∣∣∣∣∣∣ , (2.2)

As κ = 0, the material is isotropic, and the degree of anisotropy increased as κ
increases.

The method of structural sums was extended to the elastisity problems [30–33]

2.2 Determination of the Key RVEc and RVEa Cells

The input data needed for the analysis of the reinforcing particles distribution and
for the calculations of the composites effective properties can be obtained with the
use of variety of data sets. Typically, these data are established by image processing
techniques applyed to the microstructure images obtained e.g. by the LM (Light
microscopy), SEM (Scanning electron microscopy), TEM (Transmission electron
microscopy), XTM (X-ray microtomograph) and by other methods.

As basis to the further analysis we use the geometrical parameters of structure,
for instance:

(i) particles distribution,
(ii) particles size,

(iii) particles shape factor.

Often, the subject of such analysis is to determine whether the structure under
study is homogeneous or heterogeneous. Heterogeneity can be described by means
of the features introduced below in order to determine the composite structure in
the context of its properties. We mean here such parameters as the concentration
of reinforcing phase, the size of particles, etc. Below, we construct two types of
the cells RVEc and RVEa formed from the concentration and from the anisotropy
coefficient, respectively. These cells are called the Key Cells (KC).

For this purpose, the KC method was developed, which involves the implemen-
tation of subsequent stages of structure research:

(i) determination of RVE through the selected parameters, the KC to further.
(ii) creation of the data collection assotiated to the KC.

(iii) detailed analysis of data obtained and computation of the non-uniformity
coefficient U [34].

The analyzed area contains at least several hundred thousand reinforcing phase
particles with the largest possible presentation their typical distributions. In order to
facilitate the presentation of the method, let us introduce the upper index in the cell
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Fig. 1 Scheme of the RVENc build

Fig. 2 The generated composite structures, from left: random, clusters, gradient

designations RVENc whereN , as mentioned above, gives us the number of inclusions
per cell.

To determine the key cell RVEc we started by measuring of the concentration
in a randomly selected 2D section of composite. The cell has a square shape.
The adopted scheme of cell expansion is shown in Fig. 1. Subsequent particles are
included to the cell according to the specific algorithm [34].

To make the KC method presentation more complete we generated structures
with the same concentration of the particle phase as for the real composite, i.e.
c = 10%. At the generated structures the particles are arranged randomly, in
clusters, with a gradient, see Fig. 2. Total number particles in each generated
structures equals to 2000. The concentration of the reinforcing phase is determined
for each subsequent cell built by increasing number of particles up to N = 2000 for
the generated structures and N = 5000 for the real composite structures.

2.3 Results of RVEc and RVEa Cells Analysis

The obtained results are shown in Fig. 3 as the dependence of concentration on
the number of inclusions per cell. The red line color corresponds to the specially
selected cell that contains a large area without particles. This yields the shape of
the concentration curve gradually increasing from c = 0.03 for RVE50

c through
c = 0.08 for RVE400

c , see Table 1.
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Fig. 3 The concentration stabilization for (a) the real composite structures and (b) the generated
structures

Table 1 Examples of RVENc cell data sets

Parameter

N 50 400 2000

Concentration 0.03 0.08 0.10

Re e2 −14.01 −23.49 −14.89

Im e2 63.92 1.14 0.42

κ 2.73 4.24 2.87

In order to determine the parameters of the key cell, we find the concentration
stabilization area by comparing the obtained concentration with the one concentra-
tion of the composite manufacturer. For both real structure we observe stabilization
of the reinforcement phase concentration at the level 1000 particles per cell.

The presented KC method seems to be quite general. We will try validate it
by examining three types of generated structures shown in Fig. 2. Additionally,
for cluster and gradient structures, the cell building process was carried out twice
starting the cell building from the point belong to the cluster (dashed lines) or out of
them, and from the area of the low or the high (dashed lines) concentration for the
gradient structure.

The graph for the generated random structure has the same character as well as
the key cell parameters for the previously analyzed real structure.

In the case of the gradient structure, it is clear that we cannot determine a RVE
cell. But the shape of the related curves and the symmetry will help us to classify
the structure by the gradient type.

In the case of cluster structures, concentration curves have a wave shape with
decreasing amplitude and increasing wavelength. The same area between the curve
and the line c = 0.1 for every wave indicates homogeneity in terms of the size
of cluster surface. The distance between the maximum concentration values of the
neighboring waves gives us the average distance between the nearest clusters. In this
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Fig. 4 The anisotropy coefficient stabilization for (a) the real composite structures and (b) the
generated structures

case, the determination of the KC is still possible, but the generated structure does
not contain sufficient number of particles to complete the investigation.

The same procedure is used to build the RVENa . The results of anisotropy
coefficient calculations are shown in Fig. 4 and can be analyzed by the KC method
[2, 3, 34]. We pay attention to the comparison of key cells show the RVEa cell
is significantly larger than the RVEc cell. However, the big surprise is the lack of
anisotropy stabilization for the gradient material. For this type of materials when
the concentration changes according to a prescribed rule, this procedure has to be
developed yet.

2.4 Summary and Conclusion

The developed KC method based on ARVE theory and ERM-sums can be a pow-
erful tool for optimization of technological processes. The presented methodology
allows us:

(i) to carry out a quantitative analysis of composite structures,
(ii) to identify the parameters of technological processes,

(iii) to design materials within a strictly defined structure, etc.

KC method was presented for 2D structures. Research on its extension to
3D structures is currently underway. Hence, based on the 2KC method after its
development the 3KC method will be created.

Acknowledgments This work has been funded by the Research Fund of the Institute of
Technology of Pedagogical University of Krakow.
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30. P. Drygaś, Generalized Eisenstein functions. J. Math. Analy. Appl. 444(2), 1321–1331 (2016)
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Neutral Inclusion and Spectral R-Linear
Problem

Vladimir Mityushev

Abstract An eigenvalue R-linear problem arisen in the theory of invisible and
neutral inclusions is discussed by a method of complex potentials. A nodal domains
conjecture is posed. Demonstration of the conjecture allows to justify that a set of
inclusions can be made invisible by surrounding it with an appropriate coating.

Keywords R-linear spectral problem · Invisible inclusion · Coated neutral
inclusion · Composite · Metamaterial

Mathematics Subject Classification (2010) Primary 30E25; Secondary 39B32,
74Q15

1 Introduction

The concentric-spheres model introduced by Hashin [1] led to advanced models
for neutral (invisible) inclusions in composites, see [2, 3] and the conference
etopim11.up.krakow.pl/. Following these models in the last few years physicists and
engineers create metamaterials which possess surprising cloaking properties.

The present paper is devoted to a 2D stationary model of neutral inclusions
and the corresponding spectral boundary value problem problem discussed in [4–
6] and works cited therein. It is suggested that the maximal eigenvalue and the
corresponding eigenfunction determine the physical coefficient (conductivity) and
the shape, respectively, of the coating which hides a given inclusion from the
external field.

The spectral problems are sufficiently well studied when the spectral parameter
λ is included into PDE in a domain D, e.g., −	u = λu [7]. Another type
of the spectral problem is the Steklov problem ∂u

∂n
= λu when the relation
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takes place on the boundary ∂D of the domain [8], see also the workshop
events.math.unipd.it/spectralPD2019/. The neutral problem leads to the spectral
conjugation (transmission) problem discussed below.

2 Eigenvalue Problem

Introduce the complex variable ζ = x1+ix2 on the planeR2. Let a simply connected
domain G1 be bounded by a smooth curve � and the domain G1 ∪ � ∪ G be by a
smooth curve γ as shown in Fig. 1. It is assumed for definiteness that 0 ∈ G1.
Let an unknown function u(ζ ) be harmonic in the doubly connected domain G and
continuously differentiable in its closure. The function u(ζ ) satisfies the Dirichlet
boundary condition

u(ζ ) = 0, ζ ∈ �. (2.1)

The condition (2.1) holds for the perfectly conducting inclusion. The perfect
insulator is modeled by the Neumann condition ∂u

∂n
= 0.

Let σ and σ2 be given positive constants which denote the coefficients of
conductivity of materials occupied the domains G and the exterior domain G2 =
R

2\(G1 ∪ � ∪G). The following conjugation (transmission) condition holds

u(ζ ) = u2(ζ ), σ
∂u

∂n
(ζ ) = σ2

∂u2

∂n
(ζ ), ζ ∈ γ, (2.2)

where ∂
∂n

stands for the normal derivative on γ .
Below, we consider the inverse problem when the function u2(ζ ) is given and the

curve γ is unknown. In the theory of neutral inclusions, it is interesting to consider
u2(ζ ) as an R-linear function, for instance,

u2(ζ ) = 2σ

σ + σ2
Re ζ ≡ 2σ

σ + σ2
x1. (2.3)

Fig. 1 The plane
ζ = x1 + ix2. Inclusion G1 is
bounded by �, coating G by
� ∪ γ
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Fig. 2 Hashin’s neutral
perfectly conducting
inclusion of the normalized
radius r < 1 embedded in the
circular coating of the
exterior unit radius. The
vector field is calculated by
the gradients σ∇u in
r < |ζ | < 1 and σ2∇u2 in
|ζ | > 1 with formulas
(4.12)–(4.13)

The potential (2.3) yields the constant gradient ∇u2 in G2, i.e., the inclusion G1
does not perturb the constant external field and becomes invisible.

The multiplier 2σ
σ+σ2

is taken in (2.3) for convenience. Two real conditions (2.2)
can be written in the complex form

φ(ζ ) = φ2(ζ )− λφ2(ζ ), ζ ∈ γ, (2.4)

where u2(ζ ) = 2σ
σ+σ2

Re φ2(ζ ) with φ2(ζ ) = ζ and u(ζ ) = Re φ(ζ ) in the
corresponding domains. The spectral parameter

λ = σ2 − σ
σ2 + σ (2.5)

determines the unknown conductivity σ of the coatingG.
In the case of the circular inclusion G1, a solution of the problem is given by

Hashin’s fomulas (4.12)–(4.13) at the end of the paper. The corresponding flux with
the invisible perfect inclusion is displayed in Fig. 2.

3 R-Linear Eigenvalue Problem

Let ζ = ω(z) be a conformal mapping of the unit disk |z| < 1 onto G1 ∪ � ∪ G
normalized by the relationsω(0) = 0 andω′(0) > 0. The unit circle ∂U corresponds
to γ and a curve L to �. The doubly connected domainD is transformed ontoG by
the conformal mapping ω(z) (Fig. 3).
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Fig. 3 The complex plane z.
The unit circle ∂U is shown
by dashed line, ω(D1) = G1,
ω(D) = G, ω(L) = �. The
curve L1, the inversion of L
with respect to the unit circle,
and L are shown by solid line

Introduce the function ϕ(z) = φ[ω(z)] analytic in the domain D and continu-
ously differentiable in its closure. Application of the conformal mapping transforms
the problem (2.1) and (2.4) into the spectral R-linear problem

Re ϕ(z) = 0, z ∈ L, (3.1)

ϕ(z) = ω(z)− λω(z), |z| = 1. (3.2)

In the above statement of the problem, the boundary L of the domain D is given,
the unknown functions ϕ(z) and ω(z) are analytic in G and |z| < 1, respectively.
The spectral parameter λ has to be positive. The corresponding eigenfunctionωλ(z)
has to be a conformal mapping. This is equivalent to the condition that z = 0 is the
unique zero of ωλ(z) in the unit disk or to the vanishing winding number (index)
windLωλ = 0.

The relation (3.2) can be written in the form

ϕ(z) = −λϕ2(z)+ ϕ2(z), |z| = 1, (3.3)

where the function ϕ2(z) = ω
(

1
z

)
is analytic in |z| > 1.

The spectral R-linear problem (3.1) and (3.3) can be stated in the equivalent real
form [9]

v(z) = 0, z ∈ L, (3.4)

v = v2, (−σ)∂v
∂n

= σ2
∂v2

∂n
, |z| = 1, (3.5)



Neutral Inclusion 285

where

v(z) = Re ϕ(z), z ∈ D, and v2(z) = 2σ

σ + σ2
Re ϕ2(z), |z| > 1. (3.6)

The spectral parameter λ is related to σ by Eq. (2.5) where the constant σ2 > 0
is supposed to be given as the conductivity of the surround medium. The relation
(3.5) on the unknown constant σ differs from (2.2) by the minus sign on σ . It is
worth noting that the direct problem (3.4)–(3.5) with negative (−σ) and positive σ2
models the field in metamaterials [2, 3].

The main spectral properties of the problems (3.1), (3.3) such as countability of
real eigenvalues were established in [4], see the integral equation (3.12) with ! = 1.
The condition (3.5) with (−σ) < 0 does not refer to the elliptic case introduced by
Mikhajlov, see the most general discussion in [10] and [9]. An alternative way to
study the spectral properties can be based on the reduction of (3.4), (3.5) to integral
equations. In such a statement, the study can be extended to the Helmholtz equation
important in applications.

The condition that the function ω(z) has the unique zero at the origin in the unit

disk is equivalent to the unique zero at infinity of the function ϕ2(z) = ω
(

1
z

)
in

the domain |z| > 1. For the function v2(z) this condition transforms into the nodal
domain condition. The nodal lines of the function v2(z) are determined by equation
v2(z) = 0. The nodal lines divide the domain |z| > 1 onto subdomains where the
function v2(z) has the same sign. The numerical examples [4] suggest Courant’s
type theorem about nodal domains [11] though its proof has not been established
yet.

4 Functional Equation

In the present section, we reduce the boundary value problem (3.1)–(3.2) to an
iterative functional equation. Introduce the function �(z) = ϕ(z) − ω(z) analytic
in D. It follows from (3.2) that �(z) is analytically continued into |z| > 1 by the
relation

�(z) = −λ ω
(

1

z

)
, |z| > 1. (4.1)

Therefore, �(z) is analytic in D−
1 = (C ∪ {∞})\(D1 ∪ L), the complement of

the closure of D1 to the extended complex plane. Then, (4.1) yields the analytic
continuation of ω(z) through the unit circle up to the curve L1 obtained from L by
the inversion z �→ 1

z

ω(z) = −1

λ
�

(
1

z

)
, z ∈ D∗. (4.2)
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Here, D∗ is the image of D after the inversion z �→ 1
z
. Therefore, ω(z) is analytic

in the domain D+ = D1 ∪ L ∪D ∪ ∂U ∪D∗, the interior domain to the curve L1,
and continuously differentiable in its closure.

Substitute ϕ(z) = �(z)+ ω(z) in (3.1)

Re [�(z)+ ω(z)] = 0, z ∈ L. (4.3)

Using (4.1) we obtain the boundary condition on the function ω(z) analytic in D+
and continuously differentiable in its closureD+ ∪ L1

Re

[
ω(z)− λ ω

(
1

z

)]
= 0, z ∈ L. (4.4)

Using the inversion we rewrite this boundary condition in the form

Re

[
λ ω(z)− ω

(
1

z

)]
= 0, z ∈ L1 ≡ ∂D+. (4.5)

Let U(z) be the real part of ω(z). Hence, U(z) is harmonic in D+. Then, (4.5) can
be written in the form of functional equation in a space of harmonic functions

λ U(z) = U
(

1

z

)
, z ∈ ∂D+. (4.6)

The shift 1
z

maps L1 ≡ ∂D+ onto L, hence, it is a shift into domain.
The functional equation (4.6) yields the third way to investigate the spectral

boundary value problems. Let f : D+ → U be the conformal mapping normalized
by the relations f (0) = 0 and f ′(0) > 0. Using this conformal mapping we
transform the functional equation (4.6) to the following one

λ V (z) = V [α(z)], |z| = 1, (4.7)

where U = V ◦ f and α(z) = f

(
1

f−1(z)

)
is a diffeomorphism of the unit circle

onto a curve lying interior of the unit disk and having the same orientation as the
unit circle. Using the Poisson formula for harmonic functions one can write (4.7) as
the integral equation

λ V (z) = 1

2π

ˆ 2π

0
V (eiθ )

1− |α(z)|2
|α(z)− eiθ |2 dθ, |z| = 1. (4.8)

It is convenient to consider (4.8) as the Fredholm integral equation in the Hilbert
space L2. This yields the compactness of operators from the right part of (4.6) and
of (4.7) in the corresponding Hardy type spaces.
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Hypothesis
(i) All the eigenvalues of (4.7) are positive and can be arranged in a decreasing

sequence 1 = λ0 ≥ λ1 ≥ λ2 ≥ . . . where each eigenvalue is repeated the
number of times equal to its multiplicity.

(ii) The number of nodal domains in the unit disk of the eigenfunction Vk(z)
corresponding to the eigenvalue λk is less than or equal to k (k = 0, 1, 2, . . .).

In particular, the eigenfunction V1(z) yields the desired confomal mapping ω(z),
hence, the shape of the coating and λ1 determines its conductivity through (2.5).

Example Let L be the circle |z| = r < 1. Then, L1 is the circle |z| = r−1 on which
1
z
= r2z. The functional equation (4.6) becomes

λ U(z) = U
(
r2z

)
, |z| = r−1. (4.9)

It is equivalent to the functional equation for analytic functions up to an arbitrary
pure imaginary constant

λ ω(z) = ω
(
r2z

)
, |z| ≤ r−1, (4.10)

since the function λ U(z) − U (
r2z

)
is harmonic in the unit disk and vanishes on

its boundary. It follows from the theory of iterative functional equations [9] that the
spectral problem (4.10) has the countable number of solutions

λ = r2k, ω(z) = zk, k = 0, 1, . . . . (4.11)

Excluding the constant eigenvalue one can see that only the eigenfunction ω(z) = z
is a conformal mapping. The corresponding eigenvalue λ = r2 is the maximal one
after 1.

The considered example represents Hashin’s result [1] concerning the circular
inclusion |z| = r , since the conformal mapping ζ = ω(z) = z is identical. One can

check that the analytic functions φ(ζ ) = ζ − r2

ζ
and φ2(ζ ) = ζ satisfy the boundary

conditions (2.4) on |ζ | = 1 with λ = r2 and Re ϕ(ζ ) = 0 on |ζ | = r .
The conductivity of coating and the harmonic potentials have the form

σ = σ2
1− r2

1+ r2
, (4.12)

u(ζ ) = x1

(
1− r2

x2
1 + x2

2

)
, r ≤ |ζ | ≤ 1, u2(ζ ) = (1−r2)x1, |ζ | ≥ 1, (4.13)

where ζ = x1 + ix2.



288 V. Mityushev

5 Conclusion

In the present paper, we discuss relations between 2D stationary conductivity
problem governed by Laplace’s equation and the spectral R-linear problem.

One can find various extensions and applications of metamaterials in the
presentation [2] and works cited therin. An extension of Hashin’s result to the heat
equation in a circular ring can be found in [12].

Application of the spectral theory lead to the conjecture that any smooth
inclusion can be made invisible by appropriate coating. It is a mathematical result
concerning existence of solutions. Physicists and engineers successfully discover
new metamaterils and do not think too much about a mathematical justification
of their existence. In this field, physicists overtake mathematicians and solve the
problems existence of solutions of which has been not proved yet. However, the
mathematical problem outlined in the present paper might be useful to discuss
various shapes of neutral inclusions and to develop methods of their determination.

Acknowledgments This paper was supported by National Science Centre, Poland, Research
Project No. 2016/21/B/ST8/01181.
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Regularization Method for Stable
Structural Features

Wojciech Nawalaniec

Abstract The main goal of this paper is to provide regularization method for
structural sums in order to achieve stable features in analysis of data represented
by distributions of non-overlapping disks on the plane as well as by point process
patterns. The presented approach is illustrated by calculation of stable structural
features characterizing the Poisson point process.

Keywords Structural sums · Structural features vector · Data analysis · Point
pattern analysis · Distributions of disks on the plane
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1 Introduction

Structural sums constitute a crucial part of the framework of modern computational
material science [14, 15] forming a coherent whole with other contemporary results
and applications in the field [1, 2, 4–13, 16, 18, 21, 24, 27–30].

Recent study brings yet another application of structural sums in construction of
structural sums feature vector [24]. Such an approach enables the immediate appli-
cation of machine learning tools and data analysis techniques to data represented
by distributions of non-overlapping disks on the plane. In case of data represented
by distributions of disks, we calculate basics sums directly. On the other hand, the
analysed data can be represented by points (i.e. point process patterns). In such
a case, a standard scenario involves straightforward application of the equal-disks
form of basic sums assuming that the data points are centres of identical disks.
Unfortunately, for a certain kind of data, where pairs of a very close points may
appear, the calculation may lead to unstable results (with very high deviations). This
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work presents a method of obtaining stable features for such systems. We propose
a method of data transformation into the corresponding polydispersed disks case
that may regularize the problem.

The present paper is organized as follows. In Sect. 2, we briefly review the
background material on structural sums and structural features. Section 3.1 covers
calculations of selected structural features for Poisson point process patterns yield-
ing results with high deviations. In Sect. 3.2 we observe that the transformation of
data into the corresponding configuration of disks with so-called nearest neighbour
radii, defined therein, yields reliable results.

2 Structural Sums and Structural Features

2.1 Definition of Structural Sum

Consider a periodic two–dimensional lattice Q, defined by complex numbersω1 and
ω2 on the complex plane C. The (0, 0)-cell is introduced as the unit parallelogram
Q(0,0) := {z = t1ω1 + t2ω2 : −1/2 < tj < 1/2 (j = 1, 2)}. The lattice Q
consists of the cells Q(m1,m2) := {z ∈ C : z − m1ω1 − m2ω2 ∈ Q(0,0)}, where
m1 and m2 run over integer numbers. Consider N non-overlapping disks of radii rj
(j = 1, 2, . . . , N) distributed in the (0, 0)-cell (see Fig. 1). The total concentration
of disks equals ν = π∑N

j=1 r
2
j . Let r be the largest of the radii rj (j = 1, 2, . . . , N)

and introduce constants

νj =
(
rj /r

)2
, j = 1, 2, 3, . . . , N (2.1)

describing polydispersity, i.e. heterogeneity of sizes of disks.
Consider a set of points ak (k = 1, 2, . . . , N) being the centres of the disks. Let

n be a natural number; k0, k1 . . . , kn be integers from 1 to N ; pj ≥ 2. Let C be

Fig. 1 Doubly periodic cell
Q(0,0) with a configuration of
non-overlapping disks
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the operator of the complex conjugation. The following sums were introduced by
Mityushev [17]:

e
ν0,ν1,...,νn
p1,p2,...,pn =

1

ηδ+1

∑
k0,k1,...,kn

ν
t0
k0
ν
t1
k1
ν
t2
k2
· · · νtnknEp1(ak0 − ak1)

×Ep2(ak1 − ak2)Ep3(ak2 − ak3) · · ·Cn+1Epn(akn−1 − akn),
(2.2)

where η = ∑N
j=1 νj and δ = 1

2

∑n
j=1 pj . Functions Ek (k = 2, 3, . . .) are

Eisenstein functions corresponding to the doubly periodic cell Q(0,0) (see [14] for
more details), and the superscripts tj (j = 0, 1, . . . , n) are given by recurrence
relations

t0 = 1,
tj = pj − tj−1, j = 1, 2, . . . , n.

(2.3)

The sum (2.2) is called the structural sum of the multi-order p = (p1, . . . , pn). We
also call δ the order of the structural sum. From this point, the superscripts for struc-
tural sums are omitted for the purpose of conciseness. In addition, following [22]
we have tn = 1.

For example, in case of data represented by N non-identical disks with radii rj
(j = 1, 2, . . . , N), structural sums e2 and e2,2 take the following forms:

e2 = 1

N2

N∑
k0=1

N∑
k1=1

νk0νk1E2(ak0 − ak1),

e2,2 = 1

N3

N∑
k0=1

N∑
k1=1

N∑
k2=1

νk0νk1νk2E2(ak0 − ak1)E2(ak1 − ak2)

(2.4)

On the other hand, in case of system of identical disks we have νj = 1 (j =
1, 2, . . . , N).

2.2 Structural Features

Let the properties of the composite be fixed. Then, the fundamental problem of
composites consists in the construction of a homogenization operator H : G→ M ,
where G stands for microstructure (geometry) and M for the macroscopic physical
constants. The key point is a precise and convenient description of the geometrical
set G which can be given, for instance, as a set of images. The recent research
by Mityushev and Nawalaniec [19], where structural sums were applied in the
systematic investigation of the dynamically changing structures, proposes a choice
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of the geometric parameters as the following set of structural sums:

G = {em, m ∈Me},

where the set Me is defined recursively in [22]. One can consider the set G as the
base for structural features of data represented by non-overlapping disks as well as
points distributed on the plane. The set Me is infinite, therefore applications require
finite approximations in form of the structural sums feature vector of order q Xq
defined in [24]. For example, the feature vector of order 4 has the following form:

X4 = {e2, e2,2, e2,2,2, e3,3, e2,2,2,2, e2,3,3, e4,4}.

The detailed construction of Xq is presented in [24] as well as in [14]. Let us limit
our considerations to sums e2 and e2,2.

3 Numerical Experiments

3.1 Structural Features of Poisson Point Process

As an application let us compute structural features of Poisson point processes
considered to be completely random process [3, p. 36]. We generated 1000 patterns
consisting of 256 points each. Figure 2 presents complex modulus of sums (2.4)
calculated with no assumption about radii, i.e. the points are treated as centres
of disks with identical radii (νj = 1). One can observe a number of outliers,
hence we cannot consider these values as reliable characteristics. Table 1 presents
high standard deviations of obtained sums. Moreover, it is known from the theory
that the values of e2 for isotropic distributions oscillate around π which is not
the case in considered example. We will tackle the above issues in the following

Fig. 2 Complex modulus of considered structural sums for 1000 Poisson process point patterns
computed with application of identical radii representation



Regularization Method for Stable Structural Features 293

Table 1 Mean value and
standard deviation of
considered structural sums
computed for identical radii

Sum Mean Stdev

e2 1.7851 − 8.5439i 1.7238 · 102

e2,2 3.7894 · 106 − 2.2854 · 10−10i 7.5646 · 107

subsection introducing the method for transforming such ill-conditioned systems
onto corresponding configurations of disks with so-called nearest neighbour radii.

3.2 Stable Features with the Nearest Neighbour Radii

Let us introduce nearest neighbour (NN) radii rj yielding corresponding set of
constants νj in (2.2). Let aj (j = 1, 2, 3, . . . , N) be points distributed in the cell
Q(0,0). Then rj is defined as follows:

rj = 1

2
min
k �=j dist (aj , ak), j = 1, 2, 3, . . . , N, (3.1)

where dist is the distance between points ak and aj in torus topology. Hence, we
transform point process pattern into a system of disks with non-zero radii (see Fig. 3)
and apply (2.4) with constants νj calculated via (2.1). Such an approach results in
obtaining reliable structural features (see Fig. 4 and Table 2).

Fig. 3 Example of regularization of data: distribution of data points (left) and the corresponding
system of disks with the nearest neighbour radii (right)
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Fig. 4 Complex modulus of considered structural sums for 1000 Poisson process point patterns
computed with application of nearest neighbour radii

Table 2 Mean value and standard deviation of considered structural sums computed for nearest
neighbour radii

Sum Mean Stdev

e2 3.1424 − 1.5135 · 10−3i 0.2602

e2,2 19.0998 + 9.5403 · 10−20i 1.7613

4 Conclusions

We proposed a method of obtaining reliable structural features in case of data
represented by distributions of circles or points on the plane. In order to present the
method, we applied it to calculations of Poisson point process patterns. Our study
shown that the structural sums can be applied as characteristics of point fields, an
important area of statistics [3]. A detailed investigation of structural sums in a role
of characteristics of point patterns is under the development and will be published
in a future paper.

In order to calculate structural features, one can use the Python software package
basicsums [25, 26] providing high level of abstraction in the computation of
structural sums using algorithms reported in [22] and [23].
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Multidimensional Potential and Its
Application to Social Networks

Natalia Rylko and Karolina Tytko

Abstract We consider application of the structural approximation method to
research information flow in social networks. The notations of potential, inter-
particle flux and energy are considered in terms of social networks. The basic
notations of society functioning related to the communication and information
transfer processes are modeled by means of multidimensional potentials and the
corresponding interactions arisen in networks. A graph associated to the network is
considered in the high dimensional space Rd when d is comparable with the number
of vertices in graphs.

Keywords Social network · Structural approximation · Multidimensional
potential

Mathematics Subject Classification (2010) Primary 94C15; Secondary 00A71,
05C21

1 Introduction

Communication and information transfer plays a great role in society [15]. It is
supposed that existance of society relies on communication processes and informa-
tion transfer [4]. Structural approximation is a power method used in Physics and
Mechanics in order to study densely packed composites [1, 7, 11, 12, 17, 19, 21, 22].
A similar approach was applied to the study of collective behavior of bacteria [2, 3].
Previous models were created for two– and three– dimensional media. Analogous
model can be created for social networks in the high dimensional space Rd when d
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is comparable with the number of participants n involved into a network. The high
dimension of space is required by the following reasons. Every participant may
connect with the n − 1 others despite of their remoteness in the physical space R

3.
Structural approximation is strictly related to the dimension of the considered space.
Hence, in order to properly describe all the connections in the geometry of social
network we need to work in the higher dimensional space Rn−1.

In this paper, we present application of the multidimensional potentials intro-
duced in [18] to social networks. We use the following terminology associated to
the graph theory and flows in the graphs. The term vertex is used for a participant
of social network, edge for interpersonal relation. Instead of interparticle flux we
say intensity of interaction between two participants of social network. Potential is
understood as the information flow potential in the social network. Energy becomes
the amount of information or simply information. Let we have the external potential
in the form of information u0(x) determined on the boundary vertices of graph and
the potential uk prescribed to the kth participant.

The Voronoi tessellations of finite networks in bounded domains were used in
[1, 11] to estimate the effective properties of composites. Following [1, 11, 18] we
extend the theory to network communications.

2 Structural Approximation in R
d

Let Dk = {x ∈ R
d : |x− ak| < r} denote a ball with the centers ak and with radius

r . Consider mutually disjoint balls Dk (k = 1, 2, . . . , n) in the space R
d . Let D0

be the complement of all closure balls Dk ∪ ∂Dk to R
d . Following [1, 11, 18] and

works cited therein we outline the results concerning closely spaced balls and flows
in the domainD0 governed by the p-Laplace equation

∇ · |∇u|p−2∇u = 0, x ∈ D0, (2.1)

where p ≥ 2. In this model [5, 8], the function u(x) denotes the information flow
potential, the vector function J = |∇u|p−2∇u the intensity interaction between
participant of social network. Let u0(x) denote the given external information.

The potential satisfies the boundary conditions

u(x) = uk, |x− ak| = r (k = 1, 2, . . . , n), (2.2)

where uk are undetermined constants. The total normal flow through each sphere
vanishes:

ˆ

∂Dk

J(x) · n ds = 0, k = 1, 2, . . . , n, (2.3)

where n is the outward unit normal vector to the sphere ∂Dk [18].
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Information passing through the whole network is calculated by formula [18]

E = 1

2

ˆ

D0

|∇u|pdx. (2.4)

The quantitive of information E can be found as the minimum of the functional
[1, 18]:

E = min
v∈V

1

2

ˆ

D0

|∇v|pdx, (2.5)

where the space V consists of the quasi-periodic functions from the Sobolev space
W 1,p(Q0) [18]:

V = {v ∈ W 1,p(Q0) : v(x) = tk on Dk (k = 1, 2, . . . , n)}. (2.6)

The discrete social network is a graph � with the numbered vertices at ak
(k = 1, 2, . . . , n) and the edges which show interpersonal relations between two
participants of social network. Participants are defined as balls that divide a common
interaction (edge) of the Voronoi tessellation. For each fixed ak , state the set Jk of
numbers for neighbor vertices. Their total number Nk = #Jk is called the degree of
the vertex ak.

The discrete social network model is based on the justification that the intensity
interaction is concentrated in the relationships between people. In the linear case
p = 2, two participants of social network Dk and Dj have the relative intensity

interaction g(0)kj calculated by the following asymptotic Keller formula [10]

g
(0)
kj = −πr ln δkj in R

3, (2.7)

and

g
(0)
kj = π

√
r

δkj
in R

2. (2.8)

Here, δkj denotes the gap between the balls—the communication gapDk and Dj

δkj = |ak − aj | − 2r. (2.9)

The above formulas hold asymptotically as δkj → 0.
Let for shortness, t = (t1, t2, . . . , tn) ∈ R

n and a = (a1, a2, . . . , an) ∈ R
n ×R

d .
Following [18], introduce the double sum

∑′

k,j

=
n∑
k=1

∑
j∼k

≡
n∑
k=1

∑
j∈Jk

. (2.10)
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In order to formulate the main asymptotic result of [1] introduce the maximal length
of edges δ = maxk maxj∈Jk δjk of the graph �. Following [11, 18] we consider a
class D of social networks. We assume the existence of a percolation chain for δ =
0. This case δ = 0 means that information transmitted instantly spread in the social
network. Change of δmeans that the centers of balls are fixed but their radii r change
and remain equal, more precisely, participants can improve communication by the
control parameter r . If δ = 0 then there exists a chain of contacting balls which
connect a set of balls. Such a chain is defined a percolation chain. Macroscopic
isotropy of the graph representing the network is assumed in our consideration.

Any location of balls not belonging to the class D of participants having close
enough relationships with each other, can be replaced by an element of D having
higher communication intencity. It is possible to do it by parallel translations of
non-touching groups of balls to make them touched [18].

3 Discrete Network in R
d

Introduce the main term of the discrete information

E = min
u

1

2

∑′

k,j

g
(0)
kj |uk − uj |p. (3.1)

Mityushev [18] estimated (3.1) following Keller [10] by the integral

g
(0)
jk =

ˆ

B

dxd−1(
δjk + R2

r

)p−1 , (3.2)

where dxd−1 = dx1 dx2 · · · dxd−1. The integral (3.2) was calculated in [18] in
terms of the hypergeometric function 2F1

gjk = 2π
d−1

2 rd−1

�
(
d−1

2

) 2F1

(
d−1

2 , p − 1, d+1
2 ,− r

δjk

)

δ
p−1
jk (d − 1)

(3.3)

for natural p > 2 and

p >
d + 1

2
. (3.4)

The main asymptotic term of (3.3) as δjk → 0 was simplified in [18]. The final
expressions are given below

g
(0)
jk =

1

δ
p− d+1

2
jk

(πr)
d−1

2

(
p − d+3

2

)
!

(p − 2)! , (3.5)
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when d is an odd number. If d is even,

g
(0)
jk =

1

δ
p− d+1

2
jk

√
π(πr)

d−1
2 (2p − d − 3)!!

2p− d+1
2 (p − 2)

. (3.6)

Introduce the discrete information

E(t, a) = 1

2

∑′

k,j

|uk − uj |pf (‖ak − aj‖) (3.7)

and its minimization

E0 = min
t

1

2

∑′

k,j

|uk − uj |pf (‖ak − aj‖). (3.8)

Following [18] we note that the main term of the intensity interaction g(0)jk is written

through the function f (x) = c(x−2r)
−
(
p− d+1

2

)
of one variable x ≥ 0. The constant

c is expressed through r , p, d and can be exactly written by use of (3.5) and (3.6).

4 Discussion

In this article, we proposed an application of multidimensional potential to the social
network model. We point out analogies between the structures of physics/mechanics
and social networks. We considered the intensity interaction problem in the
interpersonal relations. The intensity interaction g(0)jk depends on the number of
participants of the given social network n related to the dimension of the space
d , and on p also related to d by (3.4). Intensity interaction depends also on r .
It can be interpret as the dependence between intensity interaction and quality of
interpersonal relation, see (2.9), and the dependence between intensity interaction
and properties (weights) of social network participants expressed by means of the
parameter r .

Interpersonal relation is a process which based on the communication and
information transfer. Information theory investigate the physical properties of infor-
mation and flow of information. Communication theory investigate the processes
of human interaction [14]. If we accept the theory of emboddied mind, studied
in [6, 13] and [25] we can argue, that social mechanisms are also embodied [9].
Therefore, the information flow, can also change a given social network. It should
be noted that we do not take part in the discussion on the scope of determination of
human behavior and, as a consequence, determination of social mechanisms.
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The proposed model can be applied to participants and their relationschip in
the steady state time regime. This is a simplification since the scientific research
suggests that the internet [16] or kind of the information (for example gossip [24])
changes the quality of interpersonal relations in time.

In the future paper, we will minimize the information flow potential for the social
network model including the time regimes. This will be related to resistance, or
impediments in the communication theory. Thanks to this, it will be possible to
examine more thoroughly difficulties in communication processes and in interac-
tions of interpersonal relations.
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Heat and Energy Consumption
Management of a Public Object

S. Sh. Ixanov, Zh. Kh. Zhunussova, V. V. Nikulin, and L. Kh. Zhunussova

Abstract The effects of market and seasonal changes in the cost of heat and energy
resources on the financial self-sufficiency of a public object. As an example, we
take a college, the most important link in educational institutions of Kazakhstan.
The necessity to calculate the share of the energy-saving budget compensator,
the adjustments of which will reduce the loss of unplanned funds during the
period of sharp cold snap and achieve financial sustainability of the college as
a management object is justified by computer experiments in MathCad 15 and
MatLab 6.5 packages. The calculated data make it possible to predict the amplitude-
frequency characteristics of the control signal for smoothing jumps and disturbances
in the adaptive control system at the optimal time. This allows to ultimately save
college money and spend part of it on additional financial support for the educational
process and increase teachers’ salaries. It is shown, that the introduction of resource
saving technologies (heat, electricity, utilities, staff) contributes to the sustainable
development of the institution.

Keywords Adaptive management · Adaptive automated management system ·
Computer simulation modeling · Stability · The two-link adaptive control
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1 Introduction

Education in colleges in the Republic of Kazakhstan is an important and promising
direction for improving the business and innovative education of the country’s
population. The management structure of colleges is based, in the majority, on
private entrepreneurship. The competitive environment in the field of special pre-
university education requires the effective use of all creative and material resources
of the college whose ultimate goal is to train demanded middle-level specialists
in the field of innovative economics and banking informational systems. The high
quality training of specialists is the most important advantage in the work of the
admission committee of a private college, and this, in many ways, determines
its financial and economic sustainability and the prospects for the development
of the educational institution. One of the components that negatively affects the
effectiveness of college management is the consideration of unpredictable external
factors: different levels of training for students, undifferentiated wages, spasmodic
inflation of money, a reduction in the real incomes of teachers, higher tariffs for
electricity, water, higher utility costs, etc. Computerization and informatization of
educational and teaching and educational processes, creation of modern microcon-
troller automated management of heat, electricity and other material resources of
the college set the new tasks for adapting management of technical and economic
parameters and indicators of the educational process to the realities of modern
society [1]. It should be noted, that among all colleges of the country there is no
example of a fully computerized college that meets the standards of the digital
society. Therefore, the study and application of mathematical and computer analysis
methods of sustainability colleges in the Republic of Kazakhstan as an management
object are an actual and poorly studied problem in the theory of control.

2 Materials and Methods

In the scientific and technical literature and in legislative norms, the concept of an
adaptive educational institution (school, college, university) is actively discussed.
In the city of Karaganda, on the basis of the secondary school 27 under the
auspices of the Ministry of Education and Science of the Republic of Kazakhstan,
an experimental program “Adaptive School - School for All” has been implemented
for more than 5 years. It is aimed at the preparation and development of intel-
lectual abilities for the various levels of training, mental and physical abilities of
secondary school pupils [2, 3]. Creation of technologies of inclusive education
from the viewpoint of control theory is interpreted as the management of education
with significantly fuzzy regulators requiring the creation of costly corrective and
development methods and the corresponding payment for teachers. Thus, tough
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budgetary financing without appropriate adjusting regulators led this new and
necessary for the country project to the path of unsustainable development due to
strong fluctuations in the financial and economic parameters of the school. Children
with disabilities often can not obtain private elitist and specialized education in the
school system. For compulsory secondary education the decrease in the probability
of fuzziness in the input parameters in the management of an established institution
is discussed at the legislative level and the state legislatively creates a system of
additional funding for children with disabilities, then for secondary pre-university
education these standards do not work yet. When students with disabilities enter the
college, this institution must ensure, at the expense of its own resources, a quality
education for all students, regardless of their abilities. Therefore, the definition of
an adaptive college should be considered much broader and taking into account
the characteristics of modern development of society. A more precise definition of
adaptive college is reduced to three words—a digital adaptive college. The most
important criteria for such educational institution are: availability of all conditions
(ramps, elevators, special suites, places in canteens, parking lots and special means
of electronic communication and transfer) for full-time education of students with
limited opportunities, depending on medical indications on technical specialties it is
necessary to ensure by individual ventilation systems and heating; availability of all
information resources (portal, content, simulators of laboratory works, webinars,
smart desk, etc.) for distance learning of students with limited opportunities;
availability of special financial, material and pedagogical resources for training
and consultations in educational and counseling centers close to the residence of
students with disabilities. Thus, to create a digital adaptive college, it is necessary
to develop and constantly improve modern adaptive control systems of information,
material and pedagogical resources for colleges using fuzzy microcontroller PID
regulators [4, 5]. The created mathematical model Smart-system should provide
a stable, optimal and efficient management of all resources of the educational
institution [6–10]. It should be noted, that with the availability of distance learning
facilities in the college, it can gradually increase the number of students without
entering new training areas, not only from the number of people with disabilities,
but also those who temporarily do not have opportunity to study internally. It
is known, that the most common adaptive control systems are automatic control
system (ACS) with feedback [11], under the conditions that all parameters of the
system are digitized and formalized [12, 13]. The principle of operation of such
automatic control system is based on the fact that from the vector of input signals
r(t) (a test of knowledge of applicants, current and final control of knowledge, over
normative heat, power consumption, decline in academic performance, attendance,
etc.) in order to form the error vector e(t), the response vector c(t) is extracted, on
the basis of which the signal e(t) is calculated. This signal, using the control system
(the college directorate), affects the managed controlled system—management
object (college) until the error signal is zero. Figure 1 shows the ACS variants
with feedback. This model and model with a compensator can be acceptable
both to the technical elements of the college and to the collective of the college
whose effectiveness can be quantified as the ratio of the real functionality of the
organization vector to the vector of its functionality as an “ideal” functional system.
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Fig. 1 Control system with feedback

This ratio N.N. Moiseyev designated “as the amount of dissipation (dissipation,
volatilization) of energy, a certain analog of this ratio is the coefficient of efficiency”
[13]. The objective function of the adaptation model should tend to minimum of the
absolute difference between the vectors c(t) and r(t), provided that the poles of the
transfer function of the entire system (college) in the stability zone. This definition
has a geometric interpretation and is easily calculated using the sisotool tools of the
MatLab 6.5 software package [14]. One of the criteria for the stability of the transfer
function and the system as a whole is the character of the location of the points on
the complex plane of the roots of the characteristic equation. There are three variants
of the location of the roots: all the roots lie in the left semi-plane (for example, p1,
p2, p3, p4, p5, p6). The system is stable; at least one root lies in the right semi-plane
(for example, p7). The system is not stable; the roots lie on the imaginary axis Ym
and in the left semi-plane. The system is at the stability bound (conditionally stable).

3 Results and Discussion

The control object (college) can not be studied as an adaptive system with fuzzy PID
controllers unless the system is stable with feedback or with corrective elements
[7]. We note, that the content of the educational building, as a technical object, is
the most important and most costly component of the multi-linked management
system of the college. Technological processes associated with the operation of the
college’s academic building are characterized by the presence of complex links
such as “control-output”, “perturbation-output”. We note, that the algorithm for
implementation the study of stability of college as an management object by means
of the MathCad 15 software package have not been used anywhere. In particular,
when applying a semi-empirical method based on the selection and evaluation of
parameters of a controlled system by the least squares method, it is possible to
restore the form of the transfer function. This opens the possibility to study all
the complex processes which are characteristic for educational institution on the
principle of “from a simple adaptive system to a complex multi-linked adaptive
control system with fuzzy PID regulators.” We consider, for example, the effect
of overclocking curves of financial indicators of heat and power supply on the
manageability and stability of the college as a two-link management system. Data on
heat and electricity are obtained by processing the financial and statistical data of the
financial and technical services of the college. It is known, that there is no possibility
to select analytically differential equations for the adaptive management of the
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material resources of the college, therefore, the specific values of the coefficients
of the transfer function is determined by the technical and economic indicators of
the research object, the normative indicators of the material balance of heat and
electricity flows, depending on the season and the time of year. The overclocking
curves are taken from the financial and statistical data of the technical department of
the college. When removing the acceleration curves on the “control-output” channel
or processing the existing ones, it is necessary to monitor that the control and
output values of the object are within the limits specified by the technical standards,
the perturbations were constant and their values corresponded to the intervals
normalized for the selected periods of the year. Accordingly, the acceleration curves
for each perturbation through the channels “perturbation-output” must be removed
with a fixed control action and constant other perturbations. We give an algorithm
for obtaining a transfer function. The curve for the acceleration of the discharge
characteristics of the college is derived from the origin of coordinates as a function
of time by training calendar.

Step 1. According to the overclocking curve, the tabulated values of the heat
and power consumption data are compiled by the integral regulatory
indicators, depending on the time of the year and day.

Step 2. By the form of the curve, as well as by the physical nature of the object,
the possible orders of the left and right parts of the differential equation
describing the object are selected.

Step 3. We describe the differential equation of the object in general form and the
solution of the equation for a given input action.

Step 4. By the method of the least squares with respect to the reduced acceleration
curve and the solution of the differential equation determines the coeffi-
cients of the differential equation. The graphs of the initial curve and the
calculated curve are plotted.

Step 5. The transfer function is written by the differential equation.

y t y t y t y

0.00 10.0 0.00 15.0 0.02 20.0 0.90

1.67 45.0 1.68 50.0 2.01 55.0 2.26

2.85 85.0 3.00 90.0 3.08 95 3.1

3.64 140.0 3.79 150.0 3.93 160. 4.05

It can be seen, that the process of consumption of heat and electricity by the
college is delayed due to the fact that in the first months of the school year
consumption increases through a certain time interval τ , which is measured from the
moment of the input signal change to the resource saving before the change of the
output control signal begins. The delayed link is a link in which the output quantity
y exactly repeats the input quantity x with some delay t : y(t) = x(t − τ ). Transfer
function of this link: W(s) = e − τs. Cutting out the first eight constant values



310 S. Sh. Ixanov et al.

corresponding to the pure delay with τ = 40 we introduce the following values,
starting the countdown of the time and the output quantity from zero. Assuming
that the curve corresponds to the transient process of a second order aperiodic link
with a transfer functionW0(s) = k0

(T1s+1)(T2s+1) , transient process can be described

by expression h(t) = k0 ·
( −τ1
τ1−τ2 · e

−t
T1 + −τ2

τ1−τ2 · e
−t
T2 + 1

)
· u, where u = 4 is the

input effect, k0 is the transfer coefficient of the object. From the graph, the transfer
coefficient of the object can be taken to be 1.1. Estimation of the unknown constants
T1, T2, as well as a more accurate value of ko, providing the best approximation of
the calculated curve h(t) and the experimental acceleration curve given numerically,
can be obtained with the function genf it (V t, V y, V s, F ) of the MathCad 15
package. This function returns the parameter vector T of the functionF , which gives
the minimum standard deviation of the function F(t, . . . , Tn) from some function
y(t) given by the sets (vectors) of the values of Vy, V t . The function F must be
given in the form of a vector containing the function F itself in the symbolic form,
and the expressions for all its derivatives with respect to the parameters T (including
k0, for which we introduce k0 into the vector T ), u ≥ 4 τ0 = k0.F (t, τ ) :=⎡
⎢⎢⎢⎢⎢⎣

τ0(
−τ1
τ1−τ2 e

−t
τ1 + −τ2

τ1−τ2 e
−t
τ2 + 1)u

( −τ1
τ1−τ2 e

−t
τ1 + −τ2

τ1−τ2 e
−t
τ2 + 1)u

τ0[ −t
τ1−τ2 e

−t
τ1 + τ1

(τ1−τ2)2 e
−t
τ1 + −τ1

(τ1−τ2)τ1 e
−t
τ1 + −τ2

(τ1−τ2)2 e
−t
τ2 ]u,

τ0[ −τ1
(τ1−τ2)2 e

−t
τ1 + 1

(τ1−τ2)2 e
−t
τ2 + t

(τ1−τ2)τ1 e
−t
τ2 + τ2

(τ1−τ2)2 e
−t
τ2 ]u,

⎤
⎥⎥⎥⎥⎥⎦

We prescribe the

initial increment of the vector parameters T 0, T 1, T 2 and consider to the function

genf it (V t, V v, V s, F ), V T :=
⎛
⎝ 1

1
4

⎞
⎠ ,

T T := genf it (Vt, Vv, V F, F ). We derive the vector of parameters T as T T =⎛
⎝ 1.245

89.651
3.152

⎞
⎠ , the vector calculated values of the functions with concrete parameters

T as Y (t) := F(t, T T )0 (Table 1).
The transfer function of the object in increments taking into account the delay is

W0(s) = k0
(T1s+1)(T2s+1) e

−sτ , where k0 = 1.245, T1 = 89.65c, T2 = 3.15c.

Table 1 Table values of experimental data on the acceleration of costs for heat and energy
consumption as a function of time t (training day), y is the relation of energy consumption on
a student to standard (standard 4.00 kW/month)

t y t y t y t

0.5 0.00 1.5 0.00 2.0 0.00 5.0

25.0 0.90 30.0 1.29 35.0 1.55 40.0

65.0 2.42 70.0 2.60 75.0 2.76 80.0

100.0 3.29 110.0 3.29 120.0 3.47 130.0

170.0 4.15 180.0 4.22 190.0 4.26
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Thus, the transfer function of the two-link adaptive control system under
consideration can be represented as W0(s) = 1,245

(282,3975s2+92,8s+1)
. The resulting

transfer function allows computer experiments to be conducted to study the behavior
of the control object (college) when external input parameters change (in our
case, heat and power consumption). The adaptive automation system with feedback
consists of two series-connected inertial links with one input and one output with
a resulting transmission factor equal to 1.245 and time constants T1 = 89.65 and
T2 = 3.15. To analyze and synthesize one-dimensional linear (linearized) adaptive
systems for automatic control of college, we use the toolkit of the Control System
Toolbox SISO (Single Input / Single Output) of MatLab 6.5. The results of computer
experiments in the energy management process in the MatLab 6.5 prove the stability
of the system for sharp external disturbances. As it is shown above, the dynamics
of the management of the two-link adaptive heat and power management system
of the college possesses by increased sustainability to spasmodic changes in energy
consumption, however this result is achieved by additional financial costs for the
purchase of resources [15].

4 Conclusion

The adaptive system for automated management of the process of heat and energy
consumption by the college can be optimized through the rational use of heat and
electricity. Smoothing of sharp perturbing external factors of heat and power supply
of the college allows smoothly and steadily regulates the consumption of these
expensive resources within the given limits. Automated adaptive resource saving
has a significant impact on the financial management of the educational institution,
it allows to conduct modern scientific and technical measures for resource saving to
attract additional funds for the adaptive learning process and increase the salaries of
teachers.
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A Generalized Hardy Operator
on Rearrangement Invariant Spaces

Oscar Blasco and Carolina Espinoza-Villalva

Abstract In this paper we consider a weighted generalization of the Hardy operator
acting on a rearrangement invariant function space. We give necessary and sufficient
conditions for this linear operator to be bounded on a rearrangement invariant
function space in terms of its upper Boyd index and the integrability of the norm
of the dilation operator with respect to the considered weight.

Keywords Hardy operator · Rearrangement invariant space · Boyd index

Mathematics Subject Classification (2010) 47B38; 46E30

1 Introduction

In 1925 G.H. Hardy [3, 4] proved the following integral inequality

ˆ ∞

0
(Af (x))pdx ≤

( p

p − 1

)p ˆ ∞

0
f p(x)dx (1.1)

where 1 < p <∞, f is a measurable non-negative function defined in (0,∞) and

Af (x) = 1

x

ˆ x

0
f (t)dt. (1.2)

It was the essential role that the Hardy operator plays in the boundedness of
other operators what motivated the study of its several generalizations in different
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settings. In particular, it is a cornerstone for the analysis of classical operators such
as the Hilbert transform ([2, 11]) or the Hardy-Littlewood maximal operator ([7])
on Lp-spaces and more generally on rearrangement invariant spaces.

Some works concerning different generalizations of (1.2) are given in [8–10, 13].
For instance for 0 < a ≤ 1 the operator Pa given by

Paf (t) = t−a
ˆ t

0
f (s)sa

ds

s
, (0 < t <∞) (1.3)

was shown (see [1, Theorem 5.15]) to be bounded on a r.i. Banach space X of
measurable functions defined in (0,∞) if and only if αX < a, where αX stands for
the upper Boyd index

αX = lim
t→∞

log ‖E1/t‖B(X)
log t

= inf
t>1

log ‖E1/t‖B(X)
log t

with Etf (s) = f (ts) for t, s > 0.
A further generalization considered by L. Maligranda in [8] reads as follows: If

ψ is measurable and positive in (0,∞) the operator Pψ is given by

Pψf (t) = ψ(t)−1
ˆ t

0
f (s)ψ(s)

ds

s
, (0 < t <∞). (1.4)

It was proved (see [8, Theorem 1]) that for a r.i. Banach space X of measurable
functions defined in (0,∞) the condition

ˆ 1

0
‖Et‖B(X)M(t, ψ)dt

t
<∞ (1.5)

implies the boundedness of Pψ from X into X. Furthermore it was shown ([8,
Lemma 2] that condition (1.5) is equivalent to αX < p0(ψ) where p0(ψ) =
sup0<s<1

logM(s,ψ)
log s and

M(s,ψ) = sup
0<t<∞

ψ(ts)

ψ(t)
, s > 0.

Another generalization of (1.2) was considered by J. Xiao in [13]: For a non-
negative function ψ defined on the interval (0, 1) and a measurable function f
defined on R

n he introduced

Aψf (x) =
ˆ 1

0
f (tx)ψ(t)

dt

t
, x ∈ R

n, (1.6)
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and he showed that Aψ defines a bounded operator on Lp(Rn) for 1 ≤ p ≤ ∞ if
and only if

ˆ 1

0
t−1−n/pψ(t)dt <∞. (1.7)

Throughout this paper we shall consider measurable weights ω : (0,∞) →
(0,∞) and define Aω as the operator

Aωf (s) =
ˆ 1

0
f (ts)ω(t)

dt

t
, (0 < s <∞) (1.8)

whenever the integral exists a.e. acting on measurable functions defined on (0,∞).
Such operators are also known as Hausdorff operators, see for instance [5, 6].

Both (1.4) and (1.8) are related by the following inequality

Pωf ≤ AM(·,ω)f, f ≥ 0. (1.9)

Clearly M(·, ω) is submultiplicative and, in particular Pωf ≤ Aωf for
submultiplicative weights ω. We shall analyze Aω acting on r.i. spaces in this paper.
The reader is referred to [12] for the study of optimal domain for this type of
operators.

Throughout the paper X ⊂ L0(0,∞) is a Banach function space (see [1,
Definition 1.3] of measurable functions on (0,∞), in short X ∈(BFS).

The associate space ofX, denoted byX′, consists of all the measurable functions
g defined on (0,∞) such that fg is integrable for all f ∈ X. The associate space
X′ of X endowed with the norm

‖g‖X′ = sup

{ˆ
R
|fg| : ‖f ‖X ≤ 1

}
,

becomes a Banach function space itself (see [1, Lemma I.2.8]).
The space X ∈(BFS) is said to be rearrangement invariant (r.i.) if f ∈ X and g

equimeasurable to f implies g ∈ X and ‖g‖X = ‖f ‖X .
In particular for a r.i. X defined on (0,∞) and f ∈ X one has that ‖f ‖X =

‖f ∗‖X, where f ∗(t) = inf{λ : |{x : |f (x)| > λ}| ≤ t} and, since ((0,∞), | · |) is a
resonant space ([1, Theorem 2.7])

‖h‖X = sup

{ˆ ∞

0
g∗(t)h∗(t)dt : ‖g‖X′ ≤ 1

}
. (1.10)
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As usual we denote the dilation operator by Etf (s) = f (ts) for s, t > 0. It is
elementary to see that for t > 0 and f ∈ X one has

(Etf )
∗ = Etf ∗ (1.11)

‖Etf ‖X = sup{
ˆ ∞

0
f ∗(ts)g∗(s)ds : ‖g‖X′ ≤ 1}. (1.12)

Let us recall now that for a submultiplicative weight ω(t) one can consider the
indices

α(ω) = inf
t>1

logω(t)

log t
= lim
t→∞

logω(t)

log t
, and

α(ω) = sup
0<t<1

logω(t)

log t
= lim
t→0

logω(t)

log t

which are known to satisfy −∞ < α(ω) ≤ α(ω) <∞ (see [8] or [1, Pag 147]).
The aim of this paper is to provide conditions under whichAω defines a bounded

linear operator from a rearrangement invariant Banach function space to itself. We
shall prove that for any submultiplicative and locally integrable weight ω such
that α(ω) > 0 and for any r.i. Banach function space X defined on (0,∞) the
boundedness of Aω on X is equivalent to either

ˆ 1

0
‖Et‖B(X)ω(t)dt

t
<∞. (1.13)

or

αX < α(ω). (1.14)

The proof of the equivalence between (1.13) and (1.14) follows same ideas as in
[8, Lemma 2] and it holds for any submultiplicative and locally integrable weight.
Our main contribution consists in showing that the boundedness of Aω leads for
submultiplicative weights to the boundedness of Avε for vε(t) = ω(t)/tε which
allows to show the integrability condition (1.13).

2 Some Results on Weights

Definition 2.1 Let ω : (0, 1)→ (0,∞) be measurable and let n ∈ N. Let us define
ω0(u) = ω(u) and

ωn(u) =
ˆ 1

u

ωn−1(t)ω(u/t)
dt

t
, 0 < u < 1.
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Lemma 2.2 Let ω : (0, 1)→ (0,∞) be a measurable function and n ∈ N. Then

An+1
ω f (x) =

ˆ 1

0
f (tx)ωn(t)

dt

t
, n ∈ N. (2.1)

Proof We will proceed by induction on n. The case n = 0 follows from the
definition of Aω. If we assume now that the result holds true for n then we can
write

An+1
ω f (x) = Aω(Anωf )(x)

=
ˆ 1

0
(Anωf )(tx)ω(t)

dt

t

=
ˆ 1

0
ω(t)

(ˆ 1

0
f (stx)ωn−1(s)

ds

s

)
dt

t

=
ˆ 1

0
ω(t)

(ˆ t

0
f (ux)ωn−1(u/t)

du

u

)
dt

t

=
ˆ 1

0
f (ux)

(ˆ 1

u

ωn−1(u/t)ω(t)
dt

t

)
du

u

=
ˆ 1

0
f (ux)

(ˆ 1

u

ω(u/t)ωn−1(t)
dt

t

)
du

u

=
ˆ 1

0
f (ux)ωn(u)

du

u
.

This gives the result. ��
Lemma 2.3 Let ω : (0, 1)→ (0,∞) be submultiplicative. Then

ω(t)
(log 1/t)n

n! ≤ ωn(t), n ∈ N. (2.2)

If 0 < ε < 1 and we write ωε,∞(t) =∑∞
n=0 ε

nωn(t) then

ω(t)/tε ≤ ωε,∞(t), 0 < t < 1. (2.3)

Proof We prove (2.2) by induction on n. For n = 0 it is obvious. Assume the
estimate for n ∈ N and observe that

ωn+1(u) ≥
ˆ 1

u

ω(t)ω(u/t)
(log 1/t)n

n!
dt

t
≥ ω(u)(log 1/u)n+1

(n+ 1)! .

This gives (2.2).
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Now (2.3) follows trivially from (2.2) since

ω(t)/tε =
∞∑
n=0

ω(t)
(ε log 1/t)n

n! ≤
∞∑
n=0

εnωn(t) = ωε,∞(t).

��
Lemma 2.4 If Aω is bounded on X then there exists ε0 > 0 such that Aωε,∞ is
bounded on X for any 0 < ε ≤ ε0.

Proof Choose ε0 > 0 sufficiently small so that ε0‖Aω‖B(X) < 1. Then for any
0 < ε ≤ ε0 we have that I − εAω is bounded on X, invertible and

(I − εAω)−1 =
∞∑
n=0

εnAnω,

where the convergence of the series is in the norm of B(X). Therefore

Aω(I − εAω)−1 =
∞∑
n=0

εnAn+1
ω ∈ B(X).

For a non-negative function f ∈ X, the formula given by Lemma 2.3 combined
with the Monotone Convergence Theorem gives

Aω(I − εAω)−1f (x) =
∞∑
n=0

εnAn+1
ω f (x)

=
∞∑
n=0

ˆ 1

0
f (xt)εnωn(t)

dt

t

=
ˆ 1

0
f (xt)

( ∞∑
n=0

εnωn(t)

)
dt

t

= Aωε,∞f (x).

We see the identity holds for an arbitrary f ∈ X by writing f = f+−f−, where
f+ and f− are the positive and negative parts of f , respectively, and appealing to
the linearity of both Aω(I − εAω)−1 and the integral. The proof is complete. ��
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3 The Main Theorem

Proposition 3.1 Let ω be submultiplicative and locally integrable. The following
assertions are equivalent:

(i)
´ 1

0 ‖Et‖B(X̄)ω(t) dtt <∞.
(ii) αX < α(ω).

Proof (i) &⇒ (ii) From the definition tα(ω) ≤ ω(t) for 0 < t < 1. The integrability
condition implies that

´ 1
0 ‖Et‖B(X)tα(ω) dtt < ∞, and therefore there exists 0 <

t0 < 1 such that ‖Et0‖B(X)tα(ω)0 < 1. In particular ‖E1/s0‖B(X) < s
α(ω)

0 where
s0 = 1/t0 > 1. Hence αX < α(ω).

(ii) &⇒ (i) Let ε > 0 such that αX + ε < α(ω) − ε. From the definitions there
exists 0 < δ < 1 so that

‖Et‖B(X) ≤ t−(αX+ε) and ω(t) ≤ tα(ω)−ε for 0 < t < δ.

Therefore

ˆ δ

0
‖Et‖B(X)ω(t)dt

t
≤
ˆ δ

0
t−(αX+ε)tα(ω)−ε dt

t
<∞.

Since
´ 1
δ
ω(t)dt <∞ and ‖Et‖B(X) ≤ 1/t ≤ 1/δ for δ < t < 1 then we obtain (i)

and the proof is complete. ��
Proposition 3.2 Let X be a r.i on (0,∞) and let ω : (0,∞) → (0,∞) be a
measurable weigth such that

´ 1
0 ω(s)

ds
s
< ∞. Assume that Aω is bounded on X.

Then

sup
0<t<1

�(t)‖Et‖B(X) <∞ (3.1)

where �(t) = ´ t
0
ω(s)
s
ds.

Furthermore αX ≤ α(ω) for submultiplicative weights ω.

Proof Fix functions f ∈ X and g ∈ X′ with ‖f ‖X ≤ 1 and ‖g‖X′ ≤ 1.
Define �(t) = ´ t

0 ω(u)
du
u

for t ∈ (0, 1). Then, for all 0 < t < 1 we have

ˆ ∞

0
f ∗(st)g∗(s)ds = 1

�(t)

ˆ t

0
ω(u)

(ˆ ∞

0
f ∗(st)g∗(s)ds

)
du

u

≤ 1

�(t)

ˆ t

0
ω(u)

(ˆ ∞

0
f ∗(su)g∗(s)ds

)
du

u
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≤ 1

�(t)

ˆ ∞

0
g∗(s)

(ˆ 1

0
f ∗(su)ω(u)du

u

)
ds

= 1

�(t)

ˆ ∞

0
g∗(s)Aωf ∗(s)ds.

Taking supremum on both sides over all the functions f ∈ X and g ∈ X′ with
‖f ‖X ≤ 1 and ‖g‖X′ ≤ 1, we obtain

‖Et‖B(X) ≤ 1

�(t)
‖Aω‖B(X) (0 < t < 1).

This gives (3.1).
Assuming now that ω is submultiplicative we have for t, s > 0

�(ts) =
ˆ 1

0
ω(tsu)

du

u
≤ ω(t)

ˆ 1

0
ω(su)

du

u
= ω(t)�(s).

Therefore

�(1)/�(t) ≤ ω(1/t), 0 < t < 1.

Equation (3.1) and the above estimate give ‖E1/s‖B(X) ≤ ‖Aω‖B(X)ω(s)
�(1) for s > 1

and therefore

log
(‖E1/s‖B(X)

)
log s

≤ log( ‖Aω‖B(X)
�(1) )

log s
+ log(ω(s))

log s
, s > 1.

Taking limits as s →∞ we obtain αX ≤ α(ω). ��
Theorem 3.3 Let ω : (0,∞) → (0,∞) be a submultiplicative function, locally
integrable with α(ω) > 0 and let X be a r.i. Banach function space on (0,∞). The
following assertions are equivalent:

(i)
´ 1

0 ‖Et‖B(X)ω(t) dtt <∞.
(ii) αX < α(ω).

(iii) Aω is bounded on X.

Proof The equivalence between (i) and (ii) was shown in Proposition 3.1.
(i) &⇒ (iii) From Minkowski’s inequality and (1.11) one gets

‖Aωf ‖X ≤
ˆ 1

0
‖f (t·)‖Xω(t)dt

t
≤ ‖f ‖X

ˆ 1

0
‖Et‖B(X)ω(t)dt

t
.
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(iii) &⇒ (i) Let vε(t) = ω(t)/tε . It follows from (2.3) that for any 0 < ε < ε0
|Avεf (x)| ≤ Aωε,∞|f |(x), which implies

‖Avεf ‖X ≤ ‖Aωε,∞|f |‖X ≤ ‖Aωε,∞‖B(X)‖f ‖X.

That is Avε ∈ B(X).
Let 0 < ε < α(ω)/2 and select δ > 0 such that ω(t) ≤ tα(ω)−ε for 0 < t < δ.
In particular one has that

´ δ
0 vε(t)

dt
t
≤ ´ δ

0 t
α(ω)−2ε dt

t
<∞. Using now the local

integrability of ω we have
´ 1

0 vε(t)
dt
t
<∞.

Setting �ε(t) =
´ t

0 ω(u)
du

u1+ε , we can apply Proposition 3.2 to obtain that

sup
0<t<1

�ε(t)‖Et‖B(X) ≤ ‖Aωε0 ,∞‖B(X).

Hence, since ω(s) ≥ sα(ω) for 0 < s < 1, given 0 < ε < min{ε0/2, α(ω)/2}
and 0 < t < δ we have

�2ε(t) ≥
ˆ t

0
uα(ω)u−2ε−1du = tα(ω)−2ε

α(ω)− 2ε
≥ ω(t)t−ε

α(ω)− 2ε
.

Therefore

ˆ δ

0
‖Et‖B(X)ω(t)dt

t
≤ C

ˆ δ

0

ω(t)

�2ε(t)

dt

t
≤ C(ε)

ˆ 1

0

dt

t1−ε
<∞.

Using now that
´ 1
δ
‖Et‖B(X)ω(t) dtt <∞ (as seen at the end of Proposition 3.1) the

proof is complete.
��
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Restricted Boundedness of Translation
Operators on Variable Lebesgue Spaces

Douadi Drihem

Abstract In this paper, we investigate the inequality

‖f (· + h)‖p(·) ≤ A ‖f ‖p(·) , h ∈ R
n,A > 0

under some suitable assumptions on the function f and the variable exponent p.

Keywords Translation operator · Maximal function · Variable exponent
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1 Introduction

Function spaces with variable exponents have been intensively studied in the recent
years by a significant number of authors. The motivation for the increasing interest
in such spaces comes not only from theoretical purposes, but also from applications
to fluid dynamics [10], image restoration [3] and PDEs with non-standard growth
conditions. Some example of these spaces can be mentioned such as: variable
Lebesgue space, variable Besov and Triebel-Lizorkin spaces. We only refer to the
papers [1, 4, 6–8] and to the monograph [5] for further details and references on
recent developments on this field.

The purpose of the present paper is to study the translation operators τh : f �→
f (· + h), h ∈ R

n in the framework of variable Lebesgue spaces Lp(·)(Rn). Their
behavior is well known if p is constant. In general τh maps Lp(·)(Rn) to Lp(·)(Rn)
for any λ > 0 if and only if p is constant, see [5, Proposition 3.6.1]. Allowing p to
vary from point to point will raise extra difficulties which, in general, are overcome
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by imposing some regularity assumptions on this exponent. By these additional
assumptions we ensure the boundedness of these operators on variable Lebesgue
spaces but with some appropriate assumptions. Before to state the main result, we
fix some notation and recall some basics facts on variable Lebesgue spaces. We
denote by B(x, r) the open ball in R

n with center x and radius r . By supp f we
denote the support of the function f , i.e., the closure of its non-zero set. By S(Rn)
we denote the Schwartz space of all complex-valued, infinitely differentiable and
rapidly decreasing functions on R

n and by S ′(Rn) the dual space of all tempered
distributions on R

n. We define the Fourier transform of a function f ∈ S(Rn) by

F(f )(ξ) := (2π)−n/2
ˆ

Rn

e−ix·ξf (x)dx, ξ ∈ R
n.

The variable exponents that we consider are always measurable functions on R
n

with range in [c,∞) for some c > 0. We denote the set of such functions by P0(R
n).

The subset of variable exponents with range [1,∞) is denoted by P(Rn). We use
the standard notation p− := ess-inf

x∈Rn
p(x) and p+ := ess-sup

x∈Rn
p(x). Everywhere

below we shall consider bounded exponents.
The variable exponent Lebesgue space Lp(·)(Rn) is the class of all measur-

able functions f on R
n such that for some λ > 0 the modular !p(·)(f ) :=

´
Rn
| f (x)
λ
|p(x) dx is finite. This is a quasi-Banach function space equipped with the

quasi-norm ‖f ‖p(·) := inf
{
μ > 0 : !p(·)

( f
μ

) ≤ 1
}
. If p(x) := p is constant, then

Lp(·)(Rn) = Lp(Rn) is the classical Lebesgue space.
An useful property is that !p(·)(f ) ≤ 1 if and only if ‖f ‖p(·) ≤ 1 (unit ball

property), which is clear for constant exponents since the relation between the norm
and the modular is obvious in that case. As is known, the following inequalities hold

min
(
!p(·)(f )1/p

−
, !p(·)(f )1/p

+)≤‖f ‖p(·)≤max
(
!p(·)(f )1/p

−
, !p(·)(f )1/p

+)
.

(1.1)

We say that a function g : R
n → R is locally log-Hölder continuous, if there

exists a constant clog > 0 such that |g(x)− g(y)| ≤ clog
ln(e+1/|x−y|) for all x, y ∈ R

n.

If, for some g∞ ∈ R and clog > 0, there holds |g(x) − g∞| ≤ clog
ln(e+|x|) for all

x ∈ R
n, then we say that g satisfies the log-Hölder decay condition (at infinity).

Note that every function with log-decay condition is bounded.
The notation P log(Rn) is used for all those exponents p ∈ P(Rn) which satisfy

the local log-Hölder continuity condition and the log-Hölder decay condition, where
we consider p∞ := lim|x|→∞ p(x). The class P log

0 (Rn) is defined analogously. By
c we denote generic positive constants, which may have different values at different
occurrences. We refer to the recent monograph [5] and the paper [9] for further
details, and historical remarks and references on variable exponent spaces.
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In this paper we shall show the following result:

Theorem 1.1 Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞, h ∈ R
n and k ∈ N.

Then for all f ∈ Lp(·)(Rn) with supp Ff ⊂ {ξ ∈ R
n : |ξ | ≤ 2v+1}, v ∈ N0, we

have

‖τhf ‖p(·) ≤ c exp
(
(2+ 2vnk |h|k)clog (1/p)

)
‖f ‖p(·) ,

where c > 0 is independent of h, v and k.

We mention that the boundedness of these operators in function spaces play an
important role in mathematical analysis. They appear in the localizations of Besov
spaces [2], where the author used the boundedness of these operators in Besov
spaces which based on the Lebesgue spaces.

2 Auxiliary Results

In this section we present some results which are useful for us. The next lemma
often allows us to deal with exponents which are smaller than 1, see [4, Lemma
A.6]. Recall that ηv,m (x) := 2nv (1+ 2v |x|)−m, for any x ∈ R

n, v ∈ Z andm > 0.
Note that ηv,m ∈ L1(Rn) when m > n and that

∥∥ηv,m∥∥1 = cm is independent of v.

Lemma 2.1 Let r > 0, v ∈ N0 and m > n. Then there exists c = c(r,m, n) > 0
such that for all g ∈ S ′(Rn) with supp Fg ⊂ {ξ ∈ R

n : |ξ | ≤ 2v+1}, we have

|g(x)| ≤ c(ηv,m ∗ |g|r (x))1/r , x ∈ R
n.

We will make use of the following statement.

Theorem 2.2 Let p ∈ P log(Rn), θ := 2 + |h|k
|Q|k , k ∈ N, M := exp

θclog(1/p)
p− , if

|Q| < min(|h| , 1) and M := 1, otherwise. Then for every m > 0 there exists

γ = exp
(−4mclog (1/p)

)
such that

(
γ
|Q|

´
Q
|τhf (y)| dy

)p(x)
is bounded by

cM

|Q|
ˆ

Q

|τhf (y)|p(y+h) dy + cB
(
(e + |x|)−m + 1

|Q|
ˆ

Q

(e + |y + h|)−m dy
)

for every cube (or ball) Q ⊂ R
n, all x ∈ Q, h ∈ R

n and all f ∈ Lp(·)(Rn) +
L∞(Rn) with ‖f ‖p(·) ≤ 1, where B = min

(
1, |Q|mθ ) and c > 0 is independent of

h, k and x .



328 D. Drihem

Proof Our estimate use partially some decomposition techniques already used in [5,
Theorem 4.2.4]. Let p ∈ P log(Rn) with 1 ≤ p− ≤ p+ < ∞ and p−Q+h = ess-inf

z∈Q
p(z+ h). Define q ∈ P log(Rn ×R

n × R
n) by 1

q(x,y,h)
= max

(
1
p(x)

− 1
p(y+h) , 0

)
.

Then

(
γ

|Q|
ˆ

Q

|f (y + h)| dy
)p(x)

≤ M

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy + 1

|Q|
ˆ

Q

γ q(x,y,h)dy

for every cubeQ ⊂ R
n, all x ∈ Q, h ∈ R

nand all f ∈ Lp(·)(Rn) with ‖f ‖p(·) ≤ 1.
Indeed, we split f (y + h) into three parts

f1(y + h) = f (y + h)χ{y:|f (y+h)|>1}(y),
f2(y + h) = f (y + h)χ{y:|f (y+h)|≤1,p(y+h)≤p(x)}(y),
f3(y + h) = f (y + h)χ{y:|f (y+h)|≤1,p(y+h)>p(x)}(y).

By convexity of t �→ tp,

(
γ

|Q|
ˆ

Q

|f (y + h)| dy
)p(x)

≤ 3p
+−1

3∑
i=1

(
γ

|Q|
ˆ

Q

|fi(y + h)| dy
)p(x)

= 3p
+−1 (I1 + I2 + I3) .

Estimation of I1 We divide the estimation in three cases.

Case 1. p(x) ≤ p−Q+h By Jensen’s inequality,

I1 ≤ γ p(x) 1

|Q|
ˆ

Q

|f1(y + h)|p(x) dy = I.

Since |τhf1(y)| > 1, we have |τhf1(y)|p(x) ≤ |τhf1(y))|p
−
Q+h ≤ |τhf1(y))|p(y+h)

and thus

I ≤ 1

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy.

Observe that if ‖f ‖∞ ≤ 1, then f1(y + h) = 0 and I = 0.
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Case 2. p(x) > p−Q+h ≥ p−Q Again Jensen’s inequality implies that

I1 ≤
(
γ

|Q|
ˆ

Q

|f1(y + h)|p
−
Q dy

)p(x)

p−
Q

≤
(
γ

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy
)p(x)

p−
Q

−1 (
γ

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy
)

≤ c γ|Q|
ˆ

Q

|f (y + h)|p(y+h) dy,

by the fact that
´
Q
|f (y + h)|p(y+h) dy ≤ 1 and

(
1
|Q|

) p(x)
p
−
Q

−1
≤ c, which follows

from p ∈ P log(Rn), with c > 0 independent of x, h and |Q|.
Case 3. p(x) ≥ p−Q > p−Q+h We have

I1 ≤
(
γ

|Q|
ˆ

Q

|f1(y + h)|p
−
Q+h dy

) p(x)

p
−
Q+h

≤
(
γ

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy
)(

γ

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy
) p(x)

p
−
Q+h

−1

≤ 1

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy
(

1

|Q|
) p(x)

p
−
Q+h

−1

.

If |Q| ≥ 1, then the second term is bounded by 1. Now we suppose that |Q| < 1.
We use the local log-Hölder condition:

(
1

|Q|
) p(x)

p
−
Q+h

−1

=
(

1

|Q|
) p(x)−p−

Q

p
−
Q+h

(
1

|Q|
) p

−
Q
−p−
Q+h

p
−
Q+h ≤ c

(
1

|Q|
) p

−
Q
−p−
Q+h

p
−
Q+h .

Let p (x0) = p−Q and p (y0 + h) = p−Q+h with x0, y0 ∈ Q. Since p ∈ P log(Rn), we
have

(
1

|Q|
) p−

Q
−p−
Q+h

p−
Q+h =

(
1

|Q|
) p(x0)−p(y0)

p−
Q+h

(
1

|Q|
) p(y0)−p(y0+h)

p−
Q+h

≤ c
(

1

|Q|
) p(y0)−p(y0+h)

p−
Q+h .
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We see that

|p (y0)− p (y0 + h)| ≤
N−1∑
i=0

∣∣∣p(y0 + i

N
h
)− p(y0 + i + 1

N
h
)∣∣∣,

where

N :=
{[ |h|k

|Q|k
]
+ 1, |h| > |Q|,

1, otherwise.

Therefore,

(
1

|Q|
) p(y0)−p(y0+h)

p
−
Q+h ≤

N−1∏
i=0

(
1

|Q|
) p(y0+ i

N
h)−p(y0+ i+1

N
h)

p
−
Q+h ≤ c exp(Nclog (p) /p

−),

where c > 0 independent of y0, h, N and |Q|, since

∣∣∣p(y0 + i

N
h
)− p(y0 + i + 1

N
h
)∣∣∣ ≤ clog (1/p)

log
(
e + N

|h|
) ≤ clog (1/p)

log
(
e + 1

|Q|
)

if |h| > |Q|.
Estimation of I2 By Jensen’s inequality,

I2 ≤ γ p(x) 1

|Q|
ˆ

Q

|f2(y + h)|p(x) dy = J.

Since |f2(y + h)| ≤ 1 we have |f2(y + h)|p(x) ≤ |f2(y + h)|p(y+h) and thus

J ≤ 1

|Q|
ˆ

Q

|f (y + h)|p(y+h) dy.

Estimation of I3 Again by Jensen’s inequality,

(
γ

|Q|
ˆ

Q

|f3(y + h)| dy
)p(x)

≤ 1

|Q|
ˆ

Q

(|γf (y + h)|)p(x) χ{|f (y+h)|≤1,p(y+h)>p(x)}(y)dy.

Now, Young’s inequality give that the last term is bounded by

1

|Q|
ˆ

Q

(
|f (y + h)|p(y+h) + γ q(x,y,h)

)
dy.
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Observe that

1

q(x, y, h)
= max

( 1

p(x)
− 1

p(y + h) , 0
)
≤ 1

s(x)
+ 1

s(y + h) ,

where 1
s(·) =

∣∣∣ 1
p(·) − 1

p∞

∣∣∣. We have

γ q(x,y,h) = γ q(x,y,h)/2γ q(x,y,h)/2 ≤ γ q(x,y,h)/2
(
γ s(x)/4 + γ s(y+h)/4

)
.

We suppose that |Q| < 1. Then

1

q(x, y, h)
≤
∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣+
∣∣∣ 1

p(y)
− 1

p(y + h)
∣∣∣

≤ clog (1/p)

− log |Q| +
N−1∑
i=0

∣∣∣ 1

p(y + i
N
h)
− 1

p(y + i+1
N
h)

∣∣∣.

Therefore,

1

q(x, y, h)
≤ clog (1/p)

− log |Q| +
N−1∑
i=0

clog (1/p)

log
(
e + N

|h|
) ≤ clog (1/p)

− log |Q| (1+N)

≤ clog (1/p)

− log |Q|
(

2+ |h|k
|Q|k

)
.

Hence, γ q(x,y,h)/2 = γ q(x,y,h)
4 γ

q(x,y,h)
4 ≤ |Q|

m

2+ |h|k
|Q|k γ

q(x,y,h)
4 . If |Q| ≥ 1, then we use

γ q(x,y,h)/2 ≤ 1 which follow from γ < 1. Now by [5, Proposition 4.1.8], we obtain
the desired inequality. The proof is complete.

��

3 The Proof of the Main Result

In section we prove our result. Let p ∈ P log(Rn) and define the translation operator
by (τhf )(·) := f (· + h). We recall that the Hardy-Littlewood maximal operator M
is defined on L1

loc by

Mf (x) := sup
r>0

1

|B(x, r)|
ˆ

B(x,r)

|f (y)|dy, x ∈ R
n.
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Let

MB(x,r)f := 1

|B(x, r)|
ˆ

B(x,r)

|f (y)| dy, r > 0, x ∈ R
n.

Proof of Theorem 1.1 Obviously, we assume that ‖f ‖p(·) �= 0. Since Lp(·)(Rn) ⊂
S ′(Rn), Lemma 2.1 yields |f | ≤ ηv,N ∗ |f |, for any N > n, v ∈ N0. We write

ηv,N ∗ |f |(x + h) =
ˆ

Rn

ηv,N(x − y) |f (y + h)| dy.

We split the integral into two parts, one integral over the set B(x, 2−v) and one over
its complement. The first part is bounded byMB(x, 2−v)(τhf )(x), and the second one
is majorized by c

∑∞
i=0 2(n−N)iMB(x, 21−v+i )(τhf )(x). Consequently, whereN > n,

‖τhf ‖p(·) ≤ c
∞∑
i=0

2(n−N)i
∥∥MB(·, 21−v+i )(τhf )

∥∥
p(·).

We will prove that

∥∥∥γ δMB(·, 21−v+i )
( τhf

‖f ‖p(·)
)∥∥∥
p(·) ≤ c, i, v ∈ N0,

with c > 0 independent of i, v and h, γ = exp
( − 4mclog (1/p)

)
and δ = exp

( −
(2 + 2vnk |h|k)clog (1/p)

)
. Taking into account Theorem 2.2 we have, for any i ∈

N0,m > 0,

(
γ δ2(v−i−1)n

ˆ

B(x, 21−v+i )

∣∣τhf (y)∣∣
‖f ‖p(·)

dy

)p(x)/p−
(3.1)

we majorized it by, after a simple change of variable,

cMB(x+h, 21−v+i )
(
|g|p(·)/p−

)
+ c (e + |x|)−m

+cMB(x+h, 21−v+i )
(
(e + |·|)−m

)
,

with g = f
‖f ‖p(·) . Therefore the expression (3.1) is bounded by

cM
( |g|p(·)/p− )(x + h)+ c (e + |x|)−m + cM(e+ |·|−m)(x + h). (3.2)
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Obviously,

!p(·)
(
γ δMB(·, 21−v+i )

( τhf

‖f ‖p(·)
))

= 3p
−
!p−

(1

3

(
γ δMB(·, 21−v+i )

( τhf

‖f ‖p(·)
))p(·)/p−)

.

In view of (3.2), the last term can be estimated by

c
∥∥M(|g|p(·)/p−)(· + h)∥∥p−

p− + c
∥∥(e + |·|)−m∥∥p−

p− + c
∥∥M((e+ |·|)−m)(· + h)∥∥p−

p− .

First we see that (e + |·|)−m ∈ Lp−(Rn) for m > n
p− . Secondly the classical result

on the continuity of M on Lp
−
(Rn) implies that

∥∥M(|g|p(·)/p−)(· + h)∥∥p−
p− =

∥∥M(|g|p(·)/p−)∥∥p−
p− ≤ c

∥∥|g|p(·)/p−∥∥p−
p−

= c !p(·)(g) ≤ c,

and

∥∥M((e+ |·|)−m)(· + h)∥∥p−
p− =

∥∥M(e+ |·|)−m∥∥p−
p− ≤ c

∥∥(e + |·|)−m∥∥p−
p− ≤ c,

since m > n
p− (with c > 0 independent of h). Hence

!p(·)
(
γ δMB(·, 21−v+i )

( τhf

‖f ‖p(·)
))

≤ C,

where C > 0 independent of i and v. Consequently,

‖τhf ‖p(·) ≤ c exp
(
(2+ 2vnk |h|k)clog (1/p)

) ‖f ‖p(·) .
The proof is complete.

Remark 3.1 Using Lemma 2.1 we can extend Theorem 1.1 to the case where p ∈
P log

0 (Rn) with 0 < p− ≤ p+ <∞.
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Fourier Convolution Operators
with Symbols Equivalent to Zero
at Infinity on Banach Function Spaces

C. A. Fernandes, A. Yu. Karlovich, and Yu. I. Karlovich

Abstract We study Fourier convolution operatorsW 0(a) with symbols equivalent
to zero at infinity on a separable Banach function space X(R) such that the Hardy-
Littlewood maximal operator is bounded onX(R) and on its associate spaceX′(R).
We show that the limit operators ofW 0(a) are all equal to zero.

Keywords Fourier convolution operator · Fourier multiplier · Limit operator ·
Banach function space · Hardy-Littlewood maximal operator · Equivalence at
infinity
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1 Introduction

The set of all Lebesgue measurable complex-valued functions on R is denoted by
M(R). Let M+(R) be the subset of functions in M(R) whose values lie in [0,∞].
The Lebesgue measure of a measurable set E ⊂ R is denoted by |E| and its
characteristic function is denoted by χE . Following [1, Chap. 1, Definition 1.1], a
mapping ρ :M+(R)→ [0,∞] is called a Banach function norm if, for all functions
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f, g, fn (n ∈ N) in M+(R), for all constants a ≥ 0, and for all measurable subsets
E of R, the following properties hold:

(A1) ρ(f ) = 0 ⇔ f = 0 a.e., ρ(af ) = aρ(f ), ρ(f + g) ≤ ρ(f )+ ρ(g),
(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f ) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f ) (the Fatou property),

(A4) |E| <∞⇒ ρ(χE) <∞,
(A5) |E| <∞⇒

ˆ

E

f (x) dx ≤ CEρ(f )

with CE ∈ (0,∞) which may depend on E and ρ but is independent of f . When
functions differing only on a set of measure zero are identified, the set X(R) of all
functions f ∈ M(R) for which ρ(|f |) < ∞ is called a Banach function space.
For each f ∈ X(R), the norm of f is defined by ‖f ‖X(R) := ρ(|f |). Under the
natural linear space operations and under this norm, the setX(R) becomes a Banach
space (see [1, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its
associate norm ρ′ is defined on M+(R) by

ρ′(g) := sup

{ˆ
R

f (x)g(x) dx : f ∈M+(R), ρ(f ) ≤ 1

}
, g ∈M+(R).

It is a Banach function norm itself [1, Chap. 1, Theorem 2.2]. The Banach function
space X′(R) determined by the Banach function norm ρ′ is called the associate
space (Köthe dual) of X(R). The associate space X′(R) is naturally identified with
a subspace of the (Banach) dual space [X(R)]∗.

Let F : L2(R)→ L2(R) denote the Fourier transform

(Ff )(x) := f̂ (x) :=
ˆ

R

f (t)eitx dt, x ∈ R,

and let F−1 : L2(R)→ L2(R) be the inverse of F . It is well known that the Fourier
convolution operator

W 0(a) := F−1aF

is bounded on the space L2(R) for every a ∈ L∞(R). Let X(R) be a separable
Banach function space. Then by Karlovich and Spitkovsky [9, Lemma 2.12(a)],
L2(R)∩X(R) is dense inX(R). A function a ∈ L∞(R) is called a Fourier multiplier
on X(R) if the convolution operator W 0(a) maps L2(R) ∩ X(R) into X(R) and
extends to a bounded linear operator on X(R). The function a is called the symbol
of the Fourier convolution operatorW 0(a). The set MX(R) of all Fourier multipliers
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on X(R) is a unital normed algebra under pointwise operations and the norm

‖a‖MX(R)
:=

∥∥∥W 0(a)

∥∥∥B(X(R)) ,
where B(X(R)) denotes the Banach algebra of all bounded linear operators on the
space X(R).

Recall that the (non-centered) Hardy-Littlewood maximal operator M of a
function f ∈ L1

loc(R) is defined by

(Mf )(x) := sup
J(x

1

|J |
ˆ

J

|f (y)| dy,

where the supremum is taken over all finite intervals J ⊂ R containing x.
Let V (R) be the Banach algebra of all functions a : R → C with finite total

variation

V (a) := sup
n∑
i=1

|a(ti)− a(ti−1)|,

where the supremum is taken over all partitions−∞ < t0 < · · · < tn < +∞ of the
real line R and the norm in V (R) is given by ‖a‖V := ‖a‖L∞(R) + V (a).
Theorem 1.1 LetX(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R) and on its associate space
X′(R). If a ∈ V (R), then the convolution operatorW 0(a) is bounded on the space
X(R) and

‖W 0(a)‖B(X(R)) ≤ cX‖a‖V (1)

where cX is a positive constant depending only on X(R).

This result follows from [5, Theorem 4.3]. Inequality (1) is usually called the
Stechkin type inequality (see also [6, inequality (2.4)]).

Following [3, p. 140], two Fourier multipliers c, d ∈MX(R) are called equivalent
at infinity if

lim
N→∞

∥∥χR\[−N,N](c − d)∥∥MX(R)
= 0.

In the latter case we will write c
MX(R)∼ d .

The aim of this paper is to start the study of Fourier convolution operators
with symbols equivalent at infinity to well behaved symbols by the method of
limit operators in the context of Banach function spaces. We refer to [10] for a
general theory of limit operators and to [6–8] for its applications to the study
of Fourier convolution operators with piecewise slowly oscillating symbols on
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Lebesgue spaces with Muckenhoupt weights, constituting a remarkable example
of Banach function spaces.

For a sequence of operators {An}n∈N ⊂ B(X(R)), let s- lim
n→∞ An denote the strong

limit of the sequence, if it exists. For λ, x ∈ R, consider the function eλ(x) := eiλx .
Let T ∈ B(X(R)) and h = {hn}n∈N ⊂ (0,∞) be a sequence satisfying hn → +∞
as n→∞. The strong limit

Th := s- lim
n→∞ ehnT e

−1
hn
I

is called the limit operator of T related to the sequence h = {hn}n∈N, if it exists.

Theorem 1.2 (Main Result) LetX(R) be a separable Banach function space such
that the Hardy-Littlewood maximal operatorM is bounded on the space X(R) and

on its associate space X′(R). If a ∈ MX(R) is such that a
MX(R)∼ 0, then for every

sequence h = {hn}n∈N ⊂ (0,∞), satisfying hn → +∞ as n → ∞, the limit
operator ofW 0(a) related to the sequence h is the zero operator.

As usual, let C∞0 (R) denote the set of all infinitely differentiable functions with
compact support and let S(R) be the Schwartz space of rapidly decreasing smooth
functions. Finally, denote by S0(R) the set of all functions f ∈ S(R) such that their
Fourier transforms Ff have compact supports.

The paper is organized as follows. In Sect. 2, we discuss approximation by
mollifiers in separable Banach function spaces such thatM is bounded on X(R). In
Sect. 3, we show that under the assumptions of the previous section, the set S0(R)

is dense in the space X(R). Finally, in Sect. 4, we prove Theorem 1.2, essentially
using the density of S0(R) in the space X(R).

2 Mollification in Separable Banach Function Spaces

The following auxiliary statement might be of independent interest.

Theorem 2.1 Let ϕ ∈ L1(R) satisfy
´
R
ϕ(x) dx = 1 and

ϕδ(x) := δ−1ϕ(x/δ), x ∈ R, δ > 0. (2)

Suppose that the radial majorant of ϕ given by �(x) := sup
|y|≥|x|

|ϕ(y)| belongs to

L1(R). IfX(R) is a Banach function space such that the Hardy-Littlewood maximal
operatorM is bounded on the space X(R), then for all f ∈ X(R),

sup
δ>0

‖f ∗ ϕδ‖X(R) ≤ L‖f ‖X(R), (3)
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where L := ‖�‖L1(R)‖M‖B(X(R)) and ‖M‖B(X(R)) denotes the norm of the
sublinear operator M on the space X(R). If, in addition, the space X(R) is
separable, then for all f ∈ X(R),

lim
δ→0+

‖f ∗ ϕδ − f ‖X(R) = 0. (4)

Proof The idea of the proof is borrowed from [11, Theorem 2.4]. By the proof of
[2, Lemma 5.7], for every f ∈ L1

loc(R),

sup
δ>0

|(f ∗ ϕδ)(x)| ≤ ‖�‖L1(R)(Mf )(x), x ∈ R. (5)

Inequality (3) follows from inequality (5), the boundedness of the Hardy-Littlewood
maximal operatorM on the space X(R) and Axiom (A2).

Now assume that the spaceX(R) is separable. Then by Karlovich and Spitkovsky
[9, Lemma 2.12(a)], the set C∞0 (R) is dense in the spaceX(R). Take f ∈ X(R) and
fix ε > 0. Then there exists g ∈ C∞0 (R) such that

‖f − g‖X(R) < ε

2(L+ 1)
. (6)

Hence for all δ > 0,

‖f ∗ ϕδ − f ‖X(R) ≤ ‖(f − g) ∗ ϕδ − (f − g)‖X(R) + ‖g ∗ ϕδ − g‖X(R). (7)

Taking into account inequalities (3) and (6), we obtain for all δ > 0,

‖(f − g) ∗ ϕδ − (f − g)‖X(R) ≤ ‖(f − g) ∗ ϕδ‖X(R) + ‖f − g‖X(R)
≤ (L+ 1)‖f − g‖X(R) < ε/2. (8)

Let {δn} be an arbitrary sequence of positive numbers such that δn → 0 as n→∞.
Since g ∈ C∞0 (R), it follows from [13, Chap. III, Theorem 2(b)] that

lim
n→∞(g ∗ ϕδn)(x) = g(x) for a.e. x ∈ R. (9)

In view of (5), we have for all n ∈ N,

|(g ∗ ϕδn)(x)| ≤ ‖�‖L1(R)(Mg)(x), x ∈ R. (10)

Since g ∈ C∞0 (R) ⊂ X(R) and the Hardy-Littlewood maximal operator M is
bounded on the space X(R), we see that Mg ∈ X(R). Then Mg has absolutely
continuous norm because the Banach function space X(R) is separable (see [1,
Chap. 1, Definition 3.1 and Corollary 5.6]). It follows from (9)–(10) and the
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dominated convergence theorem for Banach function spaces (see [1, Chap. 1,
Proposition 3.6]) that

lim
n→∞‖g ∗ ϕδn − g‖X(R) = 0.

Since the sequence {δn} is arbitrary, this means that one can find δ0 > 0 such that
for all δ ∈ (0, δ0),

‖g ∗ ϕδ − g‖X(R) < ε/2. (11)

Combining (7), (8), and (11), we see that for all δ ∈ (0, δ0) one has

‖f ∗ ϕδ − f ‖X(R) < ε,

which immediately implies (4). ��

3 Density of the Set S0(R)

Lemma 3.1 Let X(R) be a Banach function space such that the Hardy-Littlewood
maximal operatorM is bounded on X(R). Then S(R) ⊂ X(R).
Proof Suppose that f ∈ S(R). Then, in particular,

ρ0(f ) := sup
x∈R

|f (x)| <∞, ρ1(f ) := sup
x∈R

|xf (x)| <∞.

By Grafakos [4, Example 2.1.4],

χR\[−1,1](x)
|x| ≤ χR\[−1,1](x)(Mχ[−1,1])(x). (12)

Since the function χ[−1,1] belongs to X(R) by Axiom (A4) and since the operator
M is bounded on the spaceX(R), we haveMχ[−1,1] ∈ X(R). Letψ(x) = |x|. Then
in view of (12) and Axiom (A2), we obtain

‖f ‖X(R) ≤
∥∥χ[−1,1]f

∥∥
X(R)

+ ∥∥χR\[−1,1]ψfMχ[−1,1]
∥∥
X(R)

≤ ρ0(f )
∥∥χ[−1,1]

∥∥
X(R)

+ ρ1(f )
∥∥Mχ[−1,1]

∥∥
X(R)

.

Thus, f ∈ X(R). ��
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Theorem 3.2 LetX(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R). Then the set S0(R) is dense
in the space X(R).

Proof Let f ∈ X(R). Fix ε > 0. By Karlovich and Spitkovsky [9, Lemma 2.12(a)],
there exists a function g ∈ C∞0 (R) such that

‖f − g‖X(R) < ε/2. (13)

Let

!(x) :=
{
e1/(x2−1) if |x| < 1,
0 if |x| ≥ 1,

ϕ(x) := (F−1!)(x)
´
R
(F−1!)(y) dy

, x ∈ R.

As ! ∈ C∞0 (R) ⊂ S(R), it follows immediately from [4, Corollary 2.2.15] that
ϕ ∈ S0(R). For all δ > 0, we define the family of functions ϕδ by (2). Since
g ∈ C∞0 (R) and ϕδ ∈ S(R), we infer from [4, Proposition 2.2.11(12)] that

[F(g ∗ ϕδ)](x) = (Fg)(x)(Fϕδ)(x) = (Fg)(x)(Fϕ)(δx), x ∈ R.

As Fϕ has compact support, we conclude that F(g ∗ ϕδ) also has compact support.
Thus g ∗ ϕδ ∈ S0(R) for every δ > 0. By Lemma 3.1, g ∗ ϕδ ∈ X(R).

By the definition of the Schwartz class S(R), there are constants Cn > 0 such
that

|ϕ(x)| ≤ Cn(1+ |x|)−n, x ∈ R, n ∈ N ∪ {0}.

Then

�(x) = sup
|y|≥|x|

|ϕ(y)| ≤ Cn sup
|y|≥|x|

(1+ |y|)−n = Cn(1+ |x|)−n

for x ∈ R and n ∈ N ∪ {0}. This estimate implies that the radial majorant � of the
function ϕ is integrable.

Since � ∈ L1(R), the space X(R) is separable, and the Hardy-Littlewood
maximal operatorM is bounded onX(R), it follows from Theorem 2.1 that there is
a δ > 0 such that

‖g ∗ ϕδ − g‖X(R) < ε/2. (14)

Combining (13) and (14), we see that for every ε > 0 there is a δ > 0 such that
‖f − g ∗ ϕδ‖X(R) < ε. Since g ∗ ϕδ ∈ S0(R), the proof is completed. ��
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4 Proof of Theorem 1.2

Fix a sequence {hn}n∈N ⊂ (0,∞) such that hn → +∞ as n → ∞. For every
function f ∈ S0(R) there exists a segmentK = [x1, x2] ⊂ R such that suppFf ⊂
[x1, x2]. Therefore

ehnW
0(a)e−1

hn
f = W 0[a(· + hn)]f = F−1[a(· + hn)χK ]Ff
= W 0(aχK+hn)f, (15)

whereK + hn = {x + hn : x ∈ K}.
Fix ε > 0. Without loss of generality we may assume that f �= 0. As a

MX(R)∼ 0,
there exists N > 0 such that

∥∥χR\[−N,N]a∥∥MX(R)
<

ε

3cX‖f ‖X(R) , (16)

where cX > 0 is the constant from Stechkin’s type inequality (1). Since hn →+∞
as n→ ∞, we conclude that there exists n0 ∈ N such that for all n > n0, one has
K + hn ⊂ (N,+∞) ⊂ R \ [−N,N]. Therefore, for n > n0, we have

aχK+hn = χR\[−N,N]aχK+hn. (17)

By Theorem 1.1, for every n > n0, we have

∥∥χK+hn∥∥MX(R)
≤ cX

∥∥χK+hn∥∥V = 3cX. (18)

Combining (15)–(18), we see that for n > n0,

∥∥∥ehnW 0(a)e−1
hn
f

∥∥∥
X(R)

≤ ∥∥χR\[−N,N]aχK+hn∥∥MX(R)
‖f ‖X(R)

≤ ∥∥χR\[−N,N]a∥∥MX(R)

∥∥χK+hn∥∥MX(R)
‖f ‖X(R) < ε.

Hence, for every f ∈ S0(R),

lim
n→∞

∥∥∥ehnW 0(a)e−1
hn
f

∥∥∥
X(R)

= 0.

Since S0(R) is dense in X(R) (see Theorem 3.2), the latter equality immediately
implies that

s- lim
n→∞ ehnW

0(a)e−1
hn
I = 0

on the space X(R) in view of [12, Lemma 1.4.1(ii)]. ��
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Abstract Some properties shared by almost periodic functions and almost auto-
morphic functions are used to study spaces of smooth functions and distributions
as well as algebras of generalized functions. An application to ordinary differential
equations is given.
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1 Introduction

The concepts of Bohr almost periodicity [5] and Bochner almost automorphy [2–4]
for functions are nowadays well known and applied in different areas. Although
almost automorphy is more general than almost periodicity, the spaces of such
functions share some important properties that we use in this work to construct in a
unifying abstract setting the spaces of smooth functions and distributions as well as
algebras of generalized functions of almost periodic and almost automorphic type
studied respectively in [6, 8, 10] and [7]. An application to linear systems of ordinary
differential equations is given.

Putting forward the construction, one can obtain this abstract setting not only
for distributions and generalized functions as it is done in this paper but also for
ultradistributions and generalized ultradistributions.
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2 Smooth E-Functions

We consider functions defined on the whole space R. Let Cb denote the algebra of
continuous and bounded complex-valued functions on R endowed with the norm
‖.‖∞ of uniform convergence on R. It is well known that (Cb, ‖.‖∞) is a Banach
algebra. Recall the different definitions of an almost periodic function, see [4, 5].

Theorem 2.1 (Definition) A countinuous function f is called almost periodic, if it
satisfies one of the following equivalent propositions :

1. (Bohr) For any ε > 0, the set {τ ∈ R : ‖f (· + τ )− f (·) ‖∞ < ε} is relatively
dense in R.

2. (Approximation) For any ε > 0, there exists a trigonometric polynomial P such
that ‖f − P‖L∞ < ε.

3. (Bochner) The set (f (.+ h))h∈R is relatively compact in (Cb, ‖.‖∞) .
S. Bochner introduced and studied a more general class of functions, see [2, 3].

Definition 2.2 A countinuous function f is called almost automorphic, if for any
sequence (sm)m∈N ⊂ R, one can extract a subsequence

(
smk

)
k

such that

g (x) := lim
k→+∞ f

(
x + smk

)
is well-defined for every x ∈ R

and

lim
k→+∞ g

(
x − smk

) = f (x) for every x ∈ R

Remark 2.3 It is known that Cap � Caa
Notation We denote by E either the space of almost periodic functions Cap or the
space of almost automorphic functions Caa

Although Cap � Caa , these spaces share some important properties that we
summarize in the following results.

Theorem 2.4

1. The space (E,‖.‖∞) is a Banach algebra.
2. If f ∈ E and g ∈ L1, then f ∗ g ∈ E.
3. If the derivative f ′ of f ∈ E is uniformly continuous on R, then it belongs to E.
4. A primitive of f ∈ E belongs to E if and only if it is bounded.
5. If f ∈ E and F is continuous on C then F ◦ f ∈ E.
6. If f ∈ E and lim

x−→+∞f (x) = 0, then f = 0.
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Let p ∈ [1,+∞] and DLp := {ϕ ∈ C∞ (R) : ϕ(j) ∈ Lp (R) ,∀j ∈ Z+}, this
space endowed with the family of seminorms |ϕ|k,p :=∑

j≤k
∥∥ϕ(j)∥∥

Lp
, k ∈ Z+,

is a Fréchet algebra. Denote DL∞ by B and Ḃ the closure in B of the space D of
smooth functions with compact support.

Definition 2.5 The space of smooth E-functions is denoted and defined by

BE :=
{
ϕ ∈ C∞ (R) : ϕ(j) ∈ E,∀j ∈ Z+

}

We endow BE with the family of seminorms |ϕ|k :=∑
j≤k

∥∥ϕ(j)∥∥∞ , k ∈ Z+.

Proposition 2.6

1. BE is a Fréchet algebra.
2. BE ∗ L1 ⊂ BE.
3. Let f ∈ BE and h its primitive, then h ∈ BE if and only if h is bounded.
4. If f ∈ BE and F is of class C∞ on C then F ◦ f ∈ BE.
5. If f ∈ BE and ∃k ∈ Z+ such that lim

x−→+∞f
(k)(x) = 0, then f ≡ 0.

Proof 1. Using the Leibniz formula we obtain that BE is stable under product and
as E is a closed subalgebra of the Banach algebra (Cb, ‖.‖∞) it holds that BE is
complete. 2. The proof is obtained from the facts that E is stable under convolution
with L1 and (f ∗ g)′ = f ′ ∗ g, where f ∈ BE and g ∈ L1. 3. If a primitive belongs
to BE then it is bounded. On the other hand, if a primitive is bounded then it belongs
to E consequently it is an element of BE. 4. By the classical Faà di Bruno formula
we have

(F ◦ f )(j)
j ! =

∑
l1+2l2+···+j lj=j
r=l1+···+lj

F (r)(f )

l1! · · · lj !
j∏
i=1

(
f (i)

i!

)li
,∀j ∈ Z+,

the properties of the space E give the result. 5. is easy to prove.

Remark 2.7 All the properties of E given by Theorem 2.4 are lifted to BE.

Proposition 2.8 We have BE = E ∩ B.

Proof It is clear that BE ⊂ E ∩ B. As the derivative f ′ of f ∈ BE is bounded, so
f is uniformly continuous and then f ′ ∈ E, repeating this argument we obtain that
f (j) ∈ E,∀j ∈ N, so the reverse inclusion is proved.

Example If E= Cap then BE = Bap is the space of L. Schwartz [10], if E= Caa
then BE = Baa see [8].
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3 E-Distributions

The space of Lp−distributions D′
Lp, 1 < p ≤ +∞, is the topological dual of DLq ,

where 1
p
+ 1
q
= 1. The topological dual of Ḃ is denoted by D′

L1 . The space D′
L∞ is

called the space of bounded distributions and denoted by B′, see [10].

Theorem 3.1 (Definition) The space of E-distributions on R, denoted by B′E,
is the space of distributions T ∈ B′ satisfying one of the following equivalent
propositions :

1. T ∗ ϕ ∈ E, ∀ϕ ∈ D.
2. ∃m ∈ Z+, ∃

(
fj
)
j≤m ⊂ E such that T =

m∑
j=0

f
(j)
j .

Proof 1 ⇒ 2 : Let T ∈ B′, then there exist m ∈ Z+, C > 0 such that

|〈T ,ψ〉| ≤ C |ψ|m,1 ,∀ψ ∈ DL1 .

In [10] it is shown that if k ∈ N is sufficiently large there exists a fundamental

solution h of the linear differential operator
(

1− d2

dx2

)k
which is of class Cm+2

and with integrable derivatives of order ≤ m + 2, i.e. h ∈ D2m+2
L1 :={

ϕ ∈ C2m+2 : ϕ(j) ∈ L1,∀j ≤ 2m+ 2
}
, and as T ∈ B′, it follows that T ∗ h

exists. We have T =
(

1− d2

dx2

)k
(T ∗ h) . The space D2m+2

L1 is endowed with the

norm |.|2m+2,1 . It is well known that D is dense in D2m+2
L1 , then T is extended

continuously to the space D2m+2
L1 . There exists a sequence (θk)k∈N ⊂ D such that

(θk)k converges to h in D2m+2
L1 . We have

|(T ∗ θk) (x)− (T ∗ h) (x)| ≤ C |θk − h|2m+2,1

which means that the sequence (T ∗ θk)k∈N converges uniformly to T ∗ h on R. By
the properties of the space E we get g := T ∗ h ∈ E.

2 ⇒ 1 : For ϕ ∈ D, we have T ∗ϕ =∑
j≤k f

(j)
j ∗ϕ =∑

j≤k fj ∗ϕ(j) ∈ E due
to the properties of the space E.

The translate τωT , ω ∈ R, of a distribution T ∈ D′ is defined by ∀ϕ ∈ D,
〈τωT , ϕ〉 = 〈T , τ−ωϕ〉 , where τ−ωϕ(x) = ϕ(x − ω), x ∈ R.

Proposition 3.2

1. If T ∈ B′E, then T (i) ∈ B′E, ∀i ∈ N.

2. B′E × BE ⊂ B′E.
3. B′E ∗D′

L1 ⊂ B′E.
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4. A primitive of an E-distribution is an E-distribution if and only if it is a bounded
distribution.

5. If T ∈ B′E and lim
ω→+∞ τωT = 0, then T = 0.

Proof 1. The proof is clear. 2. If T ∈ B′E there exists
(
fj
)
j≤k ⊂ E such that

T =∑
j≤k f

(j)
j . We have ϕT =∑

j≤k ϕf
(j)
j , so

ϕT =
k∑
j=0

j∑
l=0

(−1)l
(
j

l

)(
ϕ(l) fj

)(j−l)
,

due to the transposed Leibniz formula. Since E is an algebra and ϕ ∈ BE, it follows
that ϕT ∈ B′E. 3. Let T ∈ B′E and S ∈ D′

L1, so we have that T ∗ S ∈ B′. Morever,

there exist (fl)l≤k ⊂ E and
(
gj
)
j≤m ⊂ L1 such that T = ∑

j≤k f
(l)
l and S =∑

j≤m g
(j)
j . Hence

(T ∗ S) =
k∑
l=0

m∑
j=0

(
fl ∗ gj

)(l+j)
.

By the properties of the space E, and the definition of B′E, T ∗S ∈ B′E. 4. If T ∈ B′E
has a primitive S ∈ B′, i.e. S′ = T , then S ∗ ϕ ∈ L∞, ∀ϕ ∈ D, and

(S ∗ ϕ)′ = S′ ∗ ϕ = T ∗ ϕ ∈ E, ∀ϕ ∈ D,

i.e. (S ∗ ϕ) is a bounded primitive of the E- function (T ∗ ϕ) . Thus by the properties
of the space E we have S ∗ ϕ ∈ E,∀ϕ ∈ D, so S ∈ B′E. It is clear that if a
primitive belongs to B′E then it is a bounded distribution. 5. Let T ∈ B′E, , as

by hypothesis limx→+∞ (T ∗ ϕ) (x) = limx→+∞
〈
T , τ−x ϕ̌

〉 = 0, it follows, due
to the properties of the space E, that T ∗ ϕ ≡ 0, ∀ϕ ∈ D. On the other hand
〈T , ϕ〉 = (

T ∗ ϕ̌) (0) = 0, so T = 0.

Remark 3.3 All the properties of E and BE are lifted to the space B′E except the
multiplication and composition. These defects will be removed in the context of the
algebra of E-generalized functions, see Sect. 5.

The next result shows that BE is dense in B′E.

Proposition 3.4 Let T ∈ B′. Then T ∈ B′E if and only if there exists (ϕm)m∈N ⊂
BE such that lim

m→+∞ ϕm = T in B′.

Proof Let (ϕm)m∈N ⊂ BE such that lim
m→+∞ = T in B′. For any bounded subset

A ⊂ DL1 we have supψ∈A |〈ϕm − T ,ψ〉| −→
m→+∞ 0. For a fixed ϕ ∈ D, the set
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A : = {
τ−x ϕ̌ : x ∈ R

}
is bounded in DL1, so

sup
x∈R

|(ϕm ∗ ϕ) (x)− (T ∗ ϕ) (x)| = sup
ψ∈A

|〈ϕm − T ,ψ〉| −→
m→+∞ 0,

i.e. the sequence of functions (ϕm ∗ ϕ)m∈N ⊂ E converges uniformly to T ∗ ϕ, as
the space E is complete, it follows that T ∗ ϕ ∈ E, consequenyelly T ∈ B′E.
Conversely, let T ∈ B′E and take a sequence (ρm)m∈N ⊂ D such that ρm ≥ 0,

supp ρm ⊂
[
− 1
m
, 1
m

]
and

´

R

ρm (x) dx = 1. Define ϕm := ρm ∗ T ∈ BE. For

any bounded set U of DL1 we have sup
ϕ∈U

|〈ϕm − T , ϕ〉| −→
m→+∞ 0. Indeed, since

T ∈ B′, ∃ l ∈ Z+, ∃C > 0, |〈ϕm − T , ϕ〉| ≤ C
∣∣ρ̌m ∗ ϕ − ϕ∣∣l,1 ,∀ϕ ∈ DL1 . On the

other hand, by Minkowski’s inequality and the mean value theorem we obtain for a
t ∈ ]0, 1[ ,

∥∥∥(ρ̌m ∗ ϕ)(i) − ϕ(i)
∥∥∥
L1
≤

ˆ

[−1
m ,

1
m

]
ρ̌m (y)

ˆ

R

|y|
∣∣∣ϕ(i+1) (x + (t − 1) y)

∣∣∣ dxdy,

≤ 1

m

∥∥∥ϕ(i+1)
∥∥∥
L1
,

hence

|〈ϕm − T , ϕ〉| ≤ C
∣∣ρ̌m ∗ ϕ − ϕ∣∣l,1 ≤ C

m
|ϕ|l+1,1 ,∀ϕ ∈ DL1 .

Let U be a bounded set in DL1, then ∃C > 0 such that we obtain

sup
ϕ∈U

|〈ϕm − T , ϕ〉| ≤ C

m
−→
m→+∞ 0,

which gives the conclusion.

Example If E= Cap then B′E = B′ap is the space of L. Schwartz in [10], if E = Caa
then B′E = B′aa is the space of [8].

4 Application

The study of linear ordinary differential equations
∑
i≤p ai

dif

dxi
= g in the

framework of B′E can be tackled in the general case of systems of linear ordinary
differential equations for an unknown function U = (Ui)1≤i≤p ,

U ′ = AU + S, (4.1)
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where A = (
aij

)
1≤i,j≤p is a given square matrix of complex numbers and a given

vector of E-distributions S = (Si)1≤i≤p ∈
(
B′E

)p
.

Theorem 4.1 Let all Si, 1 ≤ i ≤ p, be E-distributions and assume that the matrix
A has no eigenvalues with real part zero. If U = (Ui)1≤i≤p ∈ (

B′
)p

is a solution

of the Eq. (4.1) then U ∈
(
B′E

)p
.

Proof Consider the Eq. (4.1) and let ϕ ∈ D, then

(U ∗ ϕ)′ = A (U ∗ ϕ)+ (S ∗ ϕ) ,

where U ∗ ϕ = (Ui ∗ ϕ)1≤i≤p and (S ∗ ϕ) = (Si ∗ ϕ)1≤i≤p , which gives the
following system of equations

v′ = Av + g

with g = S ∗ ϕ ∈ (E)p and v = U ∗ ϕ ∈ (E)p , consequently we apply Theorem 8
of [11] in the case of almost periodicity and Theorem 2 of [12] in the case of almost
automorphy to obtain the existence of a unique solution v ∈ (E)p . So Ui ∗ ϕ ∈
E,∀ϕ ∈ D,∀i = 1, . . . , p, i.e. U ∈ (B′E)p.
Corollary 4.2 If the polynomial

∑
i≤p aiλi has no roots with real part zero, then

any solution T ∈ B′ of the inhomogeneous equation
∑
i≤p ai d

iT
dxi

= S ∈ B′E is an
almost automorphic distribution.

5 E-Generalized Functions

In this section we introduce the algebra of E-generalized functions GE and we give
some of its properties. The proofs of the results of this section are obtained in a
straight way.

Let

ME : =
{
(uε)ε ∈

(
BE

)I
,∀k ∈ Z+, ∃m ∈ Z+, |uε|k,∞ = O (

ε−m
)
, ε −→ 0

}

NE : =
{
(uε)ε ∈

(
BE

)I
,∀k ∈ Z+,∀m ∈ Z+, |uε|k,∞ = O (

εm
)
, ε −→ 0

}

Proposition 5.1

(i) The space ME is a subalgebra of
(
BE

)I
.

(ii) The space NE is an ideal of ME.
(iii) NE = {

(uε)ε ∈ME : ∀m ∈ Z+, |uε|0,∞ = O (εm) , ε −→ 0
}
.
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Definition 5.2 The algebra of E-generalized functions is the quotient algebra

GE := ME
NE

If 1 ≤ p ≤ +∞, let GLp be the algebra of Lp-generalized functions defined on
R, see [1], and denote the algebra GL∞ by GB.

The algebra of tempered generalized functions defined on C is denoted by
Gτ (C) , see [9].

We give some properties of the algebra of E-generalized functions.

Proposition 5.3

1. GE is a subalgebra of GB stable under derivation.
2. GE ∗ GL1 ⊂ GE.
3. If u = [(uε)ε] ∈ GE and F = [(fε)ε] ∈ Gτ (C) , then F ◦ u := [(fε ◦ uε)ε] is a

well-defined element of GE.

The importance of GE is given by the following result. Let ρ ∈ S satisfying
´

R

ρ(x)dx = 1 and set ρε(.) := 1

ε
ρ
( .
ε

)
, ε > 0.

Proposition 5.4 The map

iE : B′
E −→ GE
T �−→ (T ∗ ρε)ε +NE

is a linear embedding which commutes with derivatives.

Example If E= Cap then GE = Gap of [6], and if E= Caa then GE = Gaa of [7].

Remark 5.5 In the same vein as Sect. 4, we can study linear systems of ordinary
differential equations in the framework of GE as in [6] and [7].

Acknowledgments The author thanks the anonymous referee for suggestions to improve the
quality of the text.
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Note on Vector Valued Hardy Spaces
Related to Analytic Functions Having
Distributional Boundary Values

Richard D. Carmichael, Stevan Pilipović, and Jasson Vindas

Abstract Analytic functions defined on a tube domain T C ⊂ C
n and taking values

in a Banach space X which are known to have X-valued distributional boundary
values are shown to be in the Hardy space Hp(T C,X) if the boundary value is
in the vector valued Lebesgue space Lp(Rn,X), where 1 ≤ p ≤ ∞ and C is a
regular open convex cone. Poisson integral transform representations of elements
of Hp(T C,X) are also obtained for certain classes of Banach spaces, including
reflexive Banach spaces.

Keywords Hardy spaces · Vector valued analytic functions on tube domains ·
Vector valued distributional boundary values · Poisson integral transform

Mathematics Subject Classification (2010) Primary 32A35; Secondary 46F20,
32A26

1 Introduction

In [1] Carmichael and Richters proved that if a holomorphic function on a tube
domain having as base a regular open convex cone has an Lp function (with 1 ≤
p ≤ ∞) as distributional boundary value, then the holomorphic function should
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belong to the Hardy space Hp on the tube. The authors have recently obtained a
vector valued generalization of this result in [2]. However, we were only able to
prove the desired vector valued version in the range 2 ≤ p ≤ ∞, and only for
Hilbert space valued spaces; see [2, Theorem 4.4].

The aim of this note is to improve the quoted main result from [2] by showing
that it holds for any 1 ≤ p ≤ ∞ and any Banach space. This will be done in
Sect. 3. Further, in Sect. 4, we prove that any element of anX-valued Hardy space is
representable as a Poisson integral ifX is a dual Banach space satisfying the Radon–
Nikodým property. In particular, the latter holds for reflexive Banach spaces.

Distributional boundary value results associated with Hardy spaces have been
of importance in particle physics; see [5] for example. The distributional boundary
value result of [5] motivated the authors’ work in [2] and the current paper.

2 Notation

Let X be a Banach space with norm ‖ · ‖X. Integrals for X-valued functions
are interpreted in the Bochner sense [3, 7] and the X-valued Lebesgue spaces
Lp(Rn,X), p ∈ (0,∞], are defined in the usual way. The space of X-valued
distributions [10] is the space of continuous linear mappings D(Rn)→ X, denoted
as D′(Rn,X). In analogy to the scalar valued case, we denote the evaluation of a
vector valued distribution f ∈ D′(Rn,X) at a test function ϕ ∈ D(Rn) as 〈f, ϕ〉 ∈ X.

An open convex cone (with vertex at the origin) C ⊂ R
n is called regular if its

closure does not contain any entire straight line. Equivalently, regularity means that
the conjugate cone C∗ = {y ∈ R

n : y · x ≥ 0, ∀x ∈ C} has non-empty interior.
The tube domain with base C is T C = R

n + iC. The Cauchy-Szegö kernel of T C

is defined as K(z) = ´
C∗ e

2πiz·udu for z ∈ T C, while its corresponding Poisson
kernel is

Q(z; u) = |K(z− u)|2
K(2iy)

, u ∈ R
n, z = x + iy ∈ T C.

It should be noted thatQ(z; ·) ∈ Lp(Rn) for any p ∈ [1,∞]; see [9, 3.7, p. 105].
If C is an open cone and 0 < p ≤ ∞, the X-valued Hardy space consists of

those vector valued holomorphic functions F : T C → X such that

sup
y∈C

ˆ

Rn

‖F(x + iy))‖pXdx <∞,

where the usual modification is made for the case p = ∞.
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3 Distributional Boundary Values in Lp(Rn,X)

In this section we improve [2, Theorem 4.4, p. 1650]. It is worth pointing out that
our method here is much simpler and shorter than the one employed in [2].

Theorem 3.1 Let X be a Banach spaces, let C be a regular open convex cone, and
let p ∈ [1,∞]. Suppose that the vector valued holomorphic function F : T C → X

has distributional boundary value f ∈ Lp(Rn,X), that is,

lim
y→0
y∈C

ˆ

Rn

F(x + iy)ϕ(x)dx =
ˆ

Rn

f(x)ϕ(x)dx in X (3.1)

holds for each test function ϕ ∈ D(Rn). Then, F ∈ Hp(T C,X) and

F(z) =
ˆ

Rn

f(u)Q(z; u)du, z ∈ T C. (3.2)

Proof Define

G(z) =
ˆ

Rn

f(u)Q(z; u)du, z ∈ T C.

We have shown in [2, Lemma 3.4, p. 1639] that G ∈ Hp(T C,X). Moreover, the
quoted lemma also gives that G has distributional boundary value f. It thus suffices
to prove that F(z) = G(z), z ∈ T C , which we verify via the Hahn-Banach theorem
and the (scalar valued) edge-of-the-wedge-theorem. Let w∗ ∈ X′. Consider the
scalar valued holomorphic function Hw∗(z) = 〈w∗,F(z)−G(z)〉. It satisfies

lim
y→0
y∈C

ˆ

Rn

Hw∗(x+iy)ϕ(x)dx=
〈

w∗, lim
y→0
y∈C

ˆ

Rn

(F(x + iy)−G(x + iy))ϕ(x)dx
〉
=0,

for each ϕ ∈ D(Rn). Using [6, Corollary of Theorem B, p. 20], we obtain
〈w∗,F(z) − G(z)〉 = 0 for all z ∈ T C . Since w∗ ∈ X′ was arbitrary, the Hahn-
Banach theorem yields the equality F(z) = G(z), z ∈ T C . This establishes the
theorem. ��

4 Poisson Integral Representation

We now turn our attention to Banach spaces X where any X-valued holomorphic
function F ∈ Hp(T C,X), 1 ≤ p ≤ ∞, admits the Poisson integral representation
(3.2) for some f ∈ Lp(Rn,X).
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We need to introduce some terminology. A Banach space is said to have
the Radon–Nikodým property if the Radon–Nikodým theorem holds for vector
measures on it; see [3, p. 61] or [7, Chapter 5, p. 102] for precise definitions and
background material on Banach spaces with this property. We call X a dual Banach
space if it is the strong dual of some Banach space.

Theorem 4.1 Let X be a dual Banach space having the Radon–Nikodým property,
let C be a regular open convex cone, and let p ∈ [1,∞]. If F ∈ Hp(T C,X), then
there is f ∈ Lp(Rn,X) such that F has the Poisson integral representation (3.2) and
f is the distributional boundary value of F.

Proof We first show that F has distributional boundary value. Let ϕ ∈ D(Rn) and
write �(x, y) = ϕ(x)+ i∑n

j=1 yj ∂jϕ(x) for x ∈ R
n and y = (y1, . . . , yn) ∈ T C .

Pick a unit vector ω ∈ C. Applying the Stokes theorem exactly in the same way as
in [4, p. 67], we have, if y ∈ C,

ˆ

Rn

F(x + iy)ϕ(x)dx =
ˆ

Rn

F(x + iy + iω)�(x, ω)dx

+ i
n∑
j=1

ωj

ˆ 1

0

ˆ

Rn

F(x + itω + iy)∂jϕ(x)dxdt .

Since F ∈ Hp(T C,X), we may take the limit as y → 0 on the right-hand side
of the above expression and conclude that F has distributional boundary value f ∈
D′(Rn,X), given in fact as

〈f, ϕ〉 =
ˆ

Rn

F(x + iω)�(x, ω)dx + i
n∑
j=1

ωj

ˆ 1

0

ˆ

Rn

F(x + itω)∂j ϕ(x)dxdt .

In view of Theorem 3.1, the representation (3.2) would follow at once if we are able
to show that f ∈ Lp(Rn,X). We now focus in showing the latter. The rest of the
proof exploits the fact that we can consider a weak* topology on Lp(Rn,X) due to
our assumptions on X. Let Y be a Banach space such that X = Y ′. For each y ∈ C,
write Fy(x) = F(x + iy). We split our considerations in two cases.

Case I: 1 < p ≤ ∞ In this case it is well-known (see1 [3, Theorem 1, Sect. IV.1,
p. 98]) that Lp(Rn,X) is the strong dual of Lq(Rn, Y ) where 1/p + 1/q = 1.
Besides its strong topology, we also provide Lp(Rn,X) with the weak* topology
with respect to this duality. Since the membership F ∈ Hp(T C,X) precisely means
that the set {Fy : y ∈ C} is strongly bounded in Lp(Rn,X), the Banach–Alaoglu
theorem [10] yields the existence of a sequence of points yk ∈ C and an X-valued

1 This result is stated in [3, p. 98] for vector valued Lp-spaces with respect to finite (scalar valued
positive) measures, but the proof given there shows that it holds for σ -finite measures, in particular
for the Lebesgue measure as we used it here.
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function g ∈ Lp(Rn,X) such that Fyk → g as k → ∞, weakly* in Lp(Rn,X).
But, this weak* convergence is stronger than convergence in D′(Rn,X), whence
f = g ∈ Lp(Rn,X), as required.

Case II: p = 1 Denote by M1(R
n,X) the Banach space of X-valued vector

measures with finite variation [7, Chapter 5] (cf. [3]) on the σ -algebra of Borel sets
of Rn. We regard L1(Rn,X) as a closed subspace of M1(R

n,X). Let M(Rn) be
the space of (signed) Borel measures on R

n. Denote also by C0(R
n) and C0(R

n,X)

the spaces of continuous andX-valued continuous functions, respectively, vanishing
at ∞. Due to the Radon–Nikodým property of X and the fact that C0(R

n) has the
approximation property (which follows from the fact that it has a Schauder basis [8,
Corollary 4.1.4, p. 112]), we have the following natural isomorphisms,

M1(R
n,X) ∼=M(Rn)⊗̂πX ∼= (C0(R

n)⊗̂εY )′,

where we have used [7, Theorem 5.22, p. 108] in the first isomorphism and [7,
Theorem 5.33, p. 114] in the second one, and we recall that the symbols ⊗̂π and
⊗̂ε stand for the projective and injective completed tensor products. Also, reasoning
as in [7, Example 3.3, p. 47], one readily verifies that C0(R

n)⊗̂εY = C0(R
n, Y ).

Summarizing, we may view M1(R
n,X) as the dual of C0(R

n, Y ). Similarly as
in Case I, we obtain with the aid of the Banach–Alaoglu theorem that there is an
X-valued vector measure μ such that f = dμ. Since X has the Radon–Nikodým
property, we must prove that μ is absolutely continuous with respect to the Lebesgue
measure in order to show that f ∈ L1(Rn,X). By the Hahn-Banach theorem it
suffices to show that if w∗ ∈ X′, then the scalar valued measure μw∗ = 〈w∗,μ〉 is
absolutely continuous with respect to the Lebesgue measure. But note that dμw∗ is
the distributional boundary value of 〈w∗,F〉. The function 〈w∗,F〉 clearly belongs
to the scalar valued Hardy space H 1(T C) and the well-known classical result [9,
Theorem 5.6, p. 119] says that it has boundary value in L1(Rn), so that indeed
μw∗ = 〈w∗,μ〉 is absolutely continuous with respect to the Lebesgue measure. ��

Let us point out that any reflexive Banach space has the Radon–Nikodým
property [3, Corollary 4, p. 82], whence we immediately obtain the ensuing
corollary.

Corollary 4.2 Let X be a reflexive Banach space, let C ⊂ R
n be a regular open

convex cone, and let p ∈ [1,∞]. Then any F ∈ Hp(T C,X) admits a Poisson
integral representation (3.2) for some f ∈ Lp(Rn,X). Moreover, the function f is
the distributional boundary value of F.

Remark 4.3 When 1 ≤ p < ∞, not only is the function f ∈ Lp(Rn,X) from
Theorem 4.1 and Corollary 4.2 the distributional boundary value of F, but also
limy→0 F( · + iy) = f in Lp(Rn,X) (cf. [2, Lemma 3.4, p. 1639]).

Acknowledgments J. Vindas was supported by Ghent University through the BOF-grants
01J11615 and 01J04017.
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On the Projective Description of Spaces
of Ultradifferentiable Functions
of Roumieu Type

Andreas Debrouwere, Bojan Prangoski, and Jasson Vindas

Abstract We provide a projective description of the space E {M}(�) of ultradiffer-
entiable functions of Roumieu type, where � is an arbitrary open set in R

d and
M is a weight matrix satisfying the analogue of Komatsu’s condition (M.2)′. In
particular, we obtain in a unified way projective descriptions of ultradifferentiable
classes defined via a single weight sequence (Denjoy-Carleman approach) and
via a weight function (Braun-Meise-Taylor approach) under considerably weaker
assumptions than in earlier versions of these results.

Mathematics Subject Classification (2010) Primary 46E10; Secondary 46F05

Keywords Ultradifferentiable classes of Roumieu type · Projective description

1 Introduction

In his seminal work [8], Komatsu gave an explicit system of seminorms generating
the topology of the space E {M}(�) of ultradifferentiable functions of Roumieu type
(for short, a projective description of E {M}(�)), where� is an arbitrary open subset
of Rd andM is a non-quasianalytic weight sequence satisfying the conditions (M.1)
and (M.2)′ [8, Proposition 3.5]. In [4, Proposition 4.8], the first and the third authors
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relaxed the non-quasianalyticity assumption on M to supp∈N pM
−1/p
p < ∞.

Similarly, a projective description of the space E {ω}(�) was implicitly given in
[6, Section 3], where ω is a weight function in the sense of Braun et al. [2] that
satisfies ω(t) = O(t). Projective descriptions are indispensable in the study of
spaces of vector-valued ultradifferentiable functions of Roumieu type [4, 8], e.g.,
for achieving completed tensor product representations of such spaces.

The goal of this article is to provide a projective description of spaces of
ultradifferentiable functions of Roumieu type defined via a weight matrix [11].
This approach leads to a unified treatment of ultradifferentiable classes defined
via a single weight sequence and via a weight function, but also comprises other
spaces, e.g., the union of all Gevrey spaces. For the two standard classes we
obtain projective descriptions under much weaker assumptions than in the above
mentioned works; see Corollaries 3.3 and 3.4.

2 Spaces of Ultradifferentiable Functions of Roumieu Type

Let M = (Mp)p∈N be a sequence of positive numbers (a weight sequence). We
consider the following three conditions onM:

(M.0) Mp ≥ chp, p ∈ N, for some c, h > 0;
(M.1) M2

p ≤ Mp−1Mp+1, p ∈ Z+;
(M.2)′ Mp+1 ≤ CHpMp, p ∈ N, for some C,H > 0.

The conditions (M.1) and (M.2)′ are denoted by (Mlc) and (Mdc), respectively, in
[11]. We use here the standard notation from [7]. The relationM ⊂ N between two
weight sequences means that there are C, h > 0 such that Mp ≤ ChpNp for all
p ∈ N. The stronger relationM ≺ N means that the latter inequality remains valid
for every h > 0 and a suitable C = Ch > 0. We setMα = M|α|, α ∈ N

d .
For h > 0 and a regular compact setK � R

d (i.e.,K = intK) we write EM,h(K)
for the Banach space consisting of all ϕ ∈ C∞(K)1 such that

‖ϕ‖EM,h(K) := sup
α∈Nd

h|α|‖∂αϕ‖L∞(K)
Mα

<∞.

We set

E {M}(K) := lim−→
h→0+

EM,h(K).

1 We define C∞(K) as the space consisting of all ϕ ∈ C∞(intK) such that ∂αϕ extends to a
continuous function on K for each α ∈ N

d .
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Given an open set � ⊆ R
d , we define the space of ultradifferentiable functions of

Roumieu type (of class {M}) on � as

E {M}(�) := lim←−
K��

E {M}(K).

Next, we introduce weight matrices and the associated spaces of ultradifferen-
tiable functions [11]. A weight matrix is a sequence M = (Mn)n∈N consisting
of weight sequences Mn such that Mn ≤ Mn+1 for all n ∈ N. We consider the
following condition on M:

{M.2}′ ∀n ∈ N ∃m ∈ N ∃C,H > 0 ∀p ∈ N : Mn
p+1 ≤ CHpMm

p .

The condition {M.2}′ is denoted by (M{dc}) in [11]. Given a regular compact set
K � R

d , we denote

E {M}(K) := lim−→
n∈N

E {Mn}(K).

Given an open set � ⊆ R
d , we define the space of ultradifferentiable functions of

Roumieu type (of class {M}) on � as

E {M}(�) := lim←−
K��

E {M}(K).

Finally, we introduce spaces of ultradifferentiable functions defined via a weight
function in the sense of Braun et al. [2] and explain how they fit into the weight
matrix approach; see [11, Section 5] for more details. By a weight function we
mean a continuous increasing function ω : [0,∞) → [0,∞) with ω|[0,1] ≡ 0
and satisfying the following three properties:

(α) ω(2t) = O(ω(t));
(γ0) log t = o(ω(t));
(δ) φ = φω : [0,∞)→ [0,∞), given by φ(x) = ω(ex), is convex.

The Young conjugate φ∗ of φ is defined as

φ∗ : [0,∞)→ [0,∞), φ∗(y) = sup
x≥0
(xy − φ(x)).

Note that φ∗ is increasing and convex, φ∗(0) = 0, (φ∗)∗ = φ, φ∗(y)/y is increasing
on [0,∞) and φ∗(y)/y →∞ as y →∞.

For ρ > 0 and a regular compact set K � R
d we write Eω,ρ(K) for the Banach

space consisting of all ϕ ∈ C∞(K) such that

‖ϕ‖Eω,ρ (K) := sup
α∈Nd

‖∂αϕ‖L∞(K) exp

(
− 1

ρ
φ∗(ρ|α|)

)
<∞.
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Given an open set � ⊆ R
d , we define the space of ultradifferentiable functions of

Roumieu type (of class {ω}) on � as

E {ω}(�) := lim←−
K��

lim−→
ρ→∞

Eω,ρ(K).

We associate to ω the weight matrix Mω = (Mn
ω)n∈N, where the weight sequence

Mn
ω is defined as

Mn
ω,p := exp

(
1

n
φ∗(np)

)
, p ∈ N.

Note that each Mn
ω satisfies (M.0) and (M.1). Furthermore, Mω satisfies {M.2}′

and E {ω}(�) = E {Mω}(�) as locally convex spaces [11, Corollary 5.15].

3 Projective Description of E{M}(�)

Given a weight matrix M, we define V (M) as the set of all weight sequences N
such thatMn ≺ N for all n ∈ N. The next theorem is the main result of this article.

Theorem 3.1 Let� ⊆ R
d be open and let M be a weight matrix satisfying {M.2}′.

A function ϕ ∈ C∞(�) belongs to E {M}(�) if and only if

‖ϕ‖EN,1(K) = sup
α∈Nd

‖∂αϕ‖L∞(K)
Nα

<∞

for all K � � and N ∈ V (M). Moreover, the locally convex topology of E {M}(�)
is generated by the system of seminorms {‖ · ‖EN,1(K) |K � �,N ∈ V (M)}.
Remark 3.2 Let M be a weight matrix satisfying {M.2}′ and suppose that each
weight sequenceMn satisfies (M.0) and (M.1). Obviously, every element of V (M)
automatically satisfies (M.0). Define V ∗(M) as the set of all N ∈ V (M) for which
(M.1) holds. Then, Theorem 3.1 still holds true if we replace V (M) by V ∗(M).
This follows from the fact that for each N ∈ V (M) its log-convex minorant Nc

belongs to V ∗(M) and satisfies Nc ≤ N .

Before we prove Theorem 3.1, let us show how it entails the projective description
of the spaces E {M}(�) and E {ω}(�). Following Komatsu [8], we denote by R the
family of all non-decreasing sequences r = (rj )j∈N of positive numbers such that
rj → ∞ as j → ∞. The next result generalizes [8, Proposition 3.5] and [4,
Proposition 4.8].
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Corollary 3.3 Let � ⊆ R
d be open and let M be a weight sequence satisfying

(M.2)′. A function ϕ ∈ C∞(�) belongs to E {M}(�) if and only if

‖ϕ‖EM,r (K) := sup
α∈Nd

‖∂αϕ‖L∞(K)
Mα

∏|α|
j=0 rj

<∞

for all K � � and r ∈ R. Moreover, the locally convex topology of E {M}(�) is
generated by the system of seminorms {‖ · ‖EM,r (K) |K � �, r ∈ R}.
Proof This follows from Theorem 3.1 (applied to the constant weight matrix M =
(M)n∈N) and [8, Lemma 3.4]. ��
Given a weight function ω, we define V (ω) as the set consisting of all weight
functions σ such that σ = o(ω).
Corollary 3.4 Let � ⊆ R

d be open and let ω be a weight function. A function
ϕ ∈ C∞(�) belongs to E {ω}(�) if and only if

‖ϕ‖Eσ,1(K) = sup
α∈Nd

‖∂αϕ‖L∞(K)e−φ∗σ (|α|) <∞

for all K � � and σ ∈ V (ω). Moreover, the locally convex topology of E {ω}(�) is
generated by the system of seminorms {‖ · ‖Eσ,1(K) |K � �,σ ∈ V (ω)}.
Proof By Theorem 3.1 and Remark 3.2 (applied to the weight matrix Mω) it
suffices to show that

(i) ∀σ ∈ V (ω) : M1
σ ∈ V (Mω).

(ii) ∀N ∈ V ∗(Mω) ∃σ ∈ V (ω) : M1
σ ⊂ N .

The first statement is obvious. We now show the second one. Let N ∈ V ∗(Mω) be
arbitrary. Consider the associated function of N

ωN(t) = sup
p∈N

log
tpN0

Np
, t ≥ 0.

Then,ωN = o(ω). By Braun et al. [2, Lemma 1.7 and Remark 1.8], there is a weight
function σ ∈ V (ω) such that ωN = o(σ). Since ωM1

σ
2 σ [11, Lemma 5.7], we

obtain that

ωN(t) ≤ ωM1
σ
(t)+ C, t ≥ 0.

Since both N and M1
σ satisfy (M.0) and (M.1), the latter inequality yields that

M1
σ ⊂ N [7, Lemma 3.8]. ��

We now turn to the proof of Theorem 3.1. We use the same idea as in Komatsu’s
proof of [8, Proposition 3.5]. Fix a weight matrix M satisfying {M.2}′. Since any
open set � ⊆ R

d admits an exhaustion by compact sets that are finite unions of
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regular connected compact sets K with smooth boundary2 (in particular, intK is a
Lipschitz domain), Theorem 3.1 follows from the next result.

Theorem 3.5 Let K � R
d be a regular compact set such that intK is a Lipschitz

domain and let M be a weight matrix satisfying {M.2}′. A function ϕ ∈ C∞(K)
belongs to E {M}(K) if and only if ‖ϕ‖EN,1(K) < ∞ for all N ∈ V (M). Moreover,

the locally convex topology of E {M}(K) is generated by the system of seminorms
{‖ · ‖EN,1(K) |N ∈ V (M)}.
The rest of this article is devoted to the proof of Theorem 3.5. We start with the
following technical lemma (cf. [8, Lemma 3.4]).

Lemma 3.6 Let (ap)p∈N be a sequence of positive numbers.

(i) sup
p∈N

hpap

Mn
p

<∞ for some h > 0 and n ∈ N if and only if sup
p∈N

ap

Np
<∞ for all

N ∈ V (M).
(ii) sup

p∈N
apNp < ∞ for some N ∈ V (M) if and only if sup

p∈N
apM

n
p

hp
< ∞ for all

h > 0 and n ∈ N.

Proof The direct implications are clear. We now show the converse ones.

(i) Suppose that supp∈N ap/(npMn
p) = ∞ for all n ∈ N. Choose a strictly

increasing sequence (pn)n∈N of natural numbers with p0 = 0 and

apn

npnMn
pn

≥ n, n ∈ Z+.

DefineNp = npMn
p if pn ≤ p < pn+1. Then,N = (Np)p∈N belongs to V (M)

but supp∈N ap/Np = ∞, a contradiction.
(ii) For each n ∈ N there is Cn > 0 such that

npMn
p ≤

Cn

ap
, p ∈ N.

Define

Np = sup
n∈N

npMn
p

Cn
, p ∈ N.

Then, N = (Np)p∈N belongs to V (M) and supp∈N apNp <∞.
��

2 This follows from the existence of a positive smooth exhausting function on � [9, Proposition
2.28] and Sard’s theorem [9, Theorem 6.10].
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A set A ⊆ R
d is said to be quasiconvex if there exists C > 0 such that any two

points x, y ∈ A can be joined by a curve in A with length at most C|x − y|. This
notion was introduced by Whitney [13] under the name property (P ). The closure
of a quasiconvex open set is again quasiconvex [13, Lemma 2]. Moreover, every
bounded Lipschitz domain is quasiconvex [3, Section 2.5].

Let K � R
d be a regular compact set such that intK is quasiconvex. For n ∈ N

we denote by Cn(K) the vector space of all ϕ ∈ Cn(intK) such that ∂αϕ extends
to a continuous function onK for each |α| ≤ n; it is a Banach space when endowed
with the norm sup|α|≤n ‖∂αϕ‖L∞(K). By [13, Theorem, p. 485], the space Cn(K)
is canonically isomorphic to the Banach space of Whitney jets of order n on K
[12]. Let R > 0 be such that K � B(0, R). Whitney’s extension theorem [14,
Theorem I] yields the existence of a continuous linear extension operatorCn(K)→
Cn(B(0, R)), that is, a continuous linear right inverse of the restriction mapping
Cn(B(0, R))→ Cn(K). The latter implies that the inclusion mappingCn+1(K)→
Cn(K) is compact. A standard argument (cf. [7, Proposition 2.2]) therefore gives the
following result.

Lemma 3.7 Let K � R
d be a regular compact set such that intK is quasiconvex.

Then, E {M}(K) is a (DFS)-space.

Next, we show a structural result for the dual of E {M}(K); this is the crux of
the proof of Theorem 3.5. We need some preparation. Given a Banach space E, a
weight sequence M = (Mp)p∈N and h > 0, we define �M,h(E) as the Banach

space consisting of all multi-indexed sequences e = (eα)α∈Nd ∈ EN
d

such that

‖e‖�M,h(E) := sup
α∈Nd

h|α|‖eα‖E
Mα

<∞.

We define the (LB)-space

�{M}(E) := lim−→
n∈N

lim−→
h→0+

�M
n,h(E)

and the Fréchet space

�
′{M}(E) := lim←−

n∈N
lim←−
h→0+

�1/Mn,1/h(E).

The dual of�
′{M}(E) may be identified with�{M}(E′); the dual pairing under this

identification is given by

〈e′, e〉 =
∑
α∈Nd

〈e′α, eα〉, e′ ∈ �{M}(E′), e ∈ �′{M}(E).
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Proposition 3.8 LetK � R
d be a regular compact set such that intK is a Lipschitz

domain and let M be a weight matrix satisfying {M.2}′. Let B be an equicontinuous
subset of (E {M}(K))′. There exist N ∈ V (M) and C > 0 such that for each T ∈ B
there is a family {Fα,T ∈ L2(K)| α ∈ N

d} satisfying

sup
α∈Nd

‖Fα,T ‖L2(K)Nα ≤ C (3.1)

and

〈T , ϕ〉 =
∑
α∈Nd

ˆ

K

Fα,T (x)∂
αϕ(x)dx, ϕ ∈ E {M}(K). (3.2)

Proof We claim that the continuous linear mapping

S : �′{M}(L2(K))→ (E {M}(K))′β, (Fα)α∈Nd �→
∑
α∈Nd

(−1)|α|∂αFα

is surjective. Before we prove the claim, let us show how it implies the result. By
Lemma 3.6(ii), it suffices to show that for every bounded subset B of (E {M}(K))′β
(in particular, for every equicontinuous subset B of (E {M}(K))′) there is a bounded
subset A of �′{M}(L2(K)) such that S(A) = B. Since (E {M}(K))′β is a Fréchet-
Montel space (Lemma 3.7), this follows from the following general fact [10,
Corollary 26.22]: Let T : E → F be a surjective continuous linear mapping
between a Fréchet space E and a Fréchet-Montel space F . Then, for every bounded
subset B of F there is a bounded subset A of E such that T (A) = B. We now
prove the claim. To this end, it suffices to show that the transpose of S is injective
and has weak-∗ closed range. By the remarks preceding this proposition and the fact
that E {M}(K) is reflexive (Lemma 3.7), we may identify the transpose of S with the
mapping

St : E {M}(K)→ �{M}(L2(K)), ϕ→ (∂αϕ)α∈Nd .

This mapping is clearly injective. We now show that it has weak-∗ closed range.
Let (ϕj )j be a net in E {M}(K) and F = (Fα)α∈Nd ∈ �{M}(L2(K)) such that
St (ϕj )→ F in the weak-∗ topology on�{M}(L2(K)). In particular, ∂αϕj → Fα in
L1

loc(intK) for all α ∈ N
d . Consequently, ∂αF0 = Fα ∈ L2(intK) (the derivatives

should be interpreted in the sense of distributions). By the Sobolev embedding
theorem [1, Theorem 4.12 Part II], there is k ∈ N such that the continuous
embeddingHk(intK)→ C(K) holds, whereHk(intK) denotes the Sobolev space
of order k. Since ∂αF0 ∈ Hk(intK) for all α ∈ N

d , we obtain that F0 ∈ C∞(K)
and

‖∂αF0‖L∞(K) ≤ D max|β|≤k ‖∂
α+βF0‖L2(intK) = D max|β|≤k ‖Fα+β‖L2(intK), α ∈ N

d ,
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for some D > 0. Pick 0 < h ≤ 1 and n ∈ N such that F ∈ �Mn,h(L2(K)).
Condition {M.2}′ implies that there are m ∈ N and C,H > 0 such that
max0≤j≤k Mn

p+j ≤ CHpMm
p for all p ∈ N. Hence,

‖F0‖EMm,h/H (K) ≤ DCh−k‖F‖�Mn,h(L2(K)).

This shows that F0 ∈ E {M}(K) and thus F = (Fα)α∈Nd = (∂αF0)α∈Nd ∈ Im St .
��

Remark 3.9 One can also use the dual Mittag-Leffler lemma [7, Lemma 1.4] in
the same way as in the proof of [5, Theorem 3.2(ii)] (see also the proof of [7,
Proposition 8.6]) to show Proposition 3.8.

Proof of Theorem 3.5 The first statement is a consequence of Lemma 3.6(i).
Moreover, it is clear that for each N ∈ V (M) the seminorm ‖ · ‖EN,1(K) is
continuous on E {M}(K). We now show that for every seminorm q on E {M}(K)
there are N ∈ V (M) and C > 0 such that

q(ϕ) ≤ C‖ϕ‖EN,1(K), ϕ ∈ E {M}(K).

Choose an equicontinuous subset B of E ′{M}(K) such that

q(ϕ) = sup
T ∈B

|〈T , ϕ〉|, ϕ ∈ E {M}(K).

By Proposition 3.8, there exist N ∈ V (M) and C > 0 such that for each T ∈ B
there is a family {Fα,T ∈ L2(K)| α ∈ N

d} satisfying (3.1) and (3.2). Set L =
(Np/2p)p∈N ∈ V (M). For all ϕ ∈ E {M}(K) it holds that

q(ϕ) ≤ sup
T ∈B

∑
α∈Nd

ˆ

K

|Fα,T (x)‖∂αϕ(x)|dx ≤ sup
T ∈B

∑
α∈Nd

‖Fα,T ‖L2(K)‖∂αϕ‖L2(K)

≤ C|K|1/2
∑
α∈Nd

‖∂αϕ‖L∞(K)
Nα

≤ 2dC|K|1/2‖ϕ‖EL,1(K).

��
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Singular Solutions to Equations of Fluid
Mechanics and Dynamics Near
a Hurricane’s Eye

Maximilian F. Hasler

Abstract In the first part of this paper, we prove a new theorem concerning non-
smooth solutions of nonlinear Navier–Stokes type PDE as they arise in atmospheric
and fluid dynamics, but here in arbitrary dimension. In its simplest form, the
theorem states that the velocity field must be tangent to the hypersurface on which
it has a jump discontinuity, i.e., its singular support. The theorem is proved using
Colombeau algebras of generalized functions, providing yet another example of the
fruitfulness of this concept for nonlinear problems with singularities, ill posed in
distribution theory.
In the second part, we discuss a numerical and analytic study of a two-dimensional
model which, in spite of its simplicity, predicts remarkably correctly the “wall of
the eye” of a hurricane and allows us to get analytic expressions for the asymptotic
behaviour of radial and tangential wind field near this wall. These results are
consistent with and confirm the theoretical results of the first part.

Keywords Navier–Stokes equations · Singular solutions · Hurricane’s eye

Mathematics Subject Classification (2010) 46F30; Secondary 35A20, 35Q30,
86A10

1 Introduction

During the last decades, much progress has been made concerning the prediction of
hurricane tracks, but the dynamics near the hurricane’s eye is still not very well
understood. This gives an additional “real-world” motivation, complementary to
the obvious theoretical interest in the study non-smooth solutions to equations of
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fluid dynamics derived from Navier–Stokes equations (being part of the famous
Millenium problems). We have in mind to focus on the behaviour of the wind field
near the eye of a hurricane, where it drops from its maximal value to nearly zero
within a very small region of space.

Mathematically speaking, the set of points where the solution makes such jumps
is called the singular support of the solution, which is the closure of the points in
space-time where it is not smooth. In the case at hand, this singular support is of
codimension one, i.e., a hypersurface, border of a domain we will specify later and
which will correspond to the hurricane’s eye.

Nonlinear differential equations with singularities are genuinely ill defined in
the classical theory of distributions which a priori does not allow to multiply these
generalized functions. Therefore we use the framework of Colombeau algebras of
generalized functions to tackle this problem. In this framework, multiplication and
differentiation of non-smooth functions is always well defined.

In the second part of this paper, we use convenient reparametrizations in similar
differential equations, but limited to two dimensions, in order to determine the wind
profile around a hurricane’s eye. We will find analytic asymptotic expressions for the
speed of the tangent and radial wind components, as was as their derivatives, in the
neighborhood of the singular support known as the wall of the eye of the hurricane.
We find that the derivatives are indeed unbounded, while the wind field itself has
a finite limiting value. This study also sheds new light on the physical problem we
consider, and confirms the earlier more theoretical results.

There has been earlier research on singular solutions to Navier–Stokes type
equations, in particular by Maslov [8] and his followers Zhikharev [12], Danilov [2]
and Dobrokhotov et al. [4, 5, and references therein], who also considered the
application to hurricanes. However, all this work focused on a point like vortex-
type weak singularity, in contrast to the (D − 1)-dimensional one considered here.
The technical approach used by these authors, based on “asymptotic expansions”,
is also completely different from ours. On the other hand, the vast literature on
propagation of shock waves with, as here, a (D − 1)-dimensional singular support,
is mainly focused on the case where this singular support moves in direction normal
to the hypersurface, as in the case of a plane wave or a spherically expanding or
collapsing wave. In most other work on singularities in Navier–Stokes equations,
authors are rather interested in infinitely large velocity and/or energy density, see
recent reviews by Moffatt [9] and Tao [11]. This is not at all the subject of your
investigation. Summarizing, we are not aware of any mathematical investigations
on singularities of the type we consider here, characterized by the fact that the
velocity field is tangent to its (D−1)-dimensional singular support, and not directly
correlated to the velocity of this moving hypersurface itself.
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2 Jump Condition at the Singular Support

2.1 Statement of the Problem

In this part we prove a new theorem for solutions to Navier–Stokes type equations
with presence of a jump discontinuity. We first found this result for the case of
the two-dimensional model analysed in the second part of the paper, but have
generalized it to an arbitrary number of n dimensions and more general terms on
the right hand side.

We consider the system of partial differential equations

∂tu+ u · grad u = A (u− u∗) , (2.1)

where u : R × R
n → R

n is an n-dimensional vector field depending on
(t, x) ∈ R

1+n, and A is a continuous linear operator without derivatives, or simply
a matrix acting on the n-component vector u, while u∗ is a given wind field. (In our
applications to hurricanes this will be the so-called trade wind.)

We wish to consider a solution of the form

u(t, x) = u∗(t, x)+H(S(t, x)) û(t, x) , (2.2)

where H is the Heaviside step function, equal to 1 for positive arguments and zero
else. This means that depending on the sign of S(t, x) the second term is present or
not. More precisely, we have u = u∗ inside the region D = {(t, x) | S(t, x) < 0}
which represents the hurricane’s eye where we have only the weak and roughly
constant trade wind, and u = u∗ + û outside this domain, with potentially very
strong winds right next to the eye’s wall. To get an idea, the function S(t, x) =
‖x − t u∗‖ − r2

0 would correspond to a ball-shaped “hurricane’s eye” of radius r0
and moving with constant speed u∗. (The choice of the letter S is inspired by Maslov
and Zhikharev’s “singularity function”, see [8, 12].)

In classical distribution theory, this nonlinear differential problem does not make
sense, because one cannot consistently multiply distributions. Schwartz’ counter-
example which has become folklore, considers H = H 2 = H 3, which, using
Leibniz’ rule, yields for the derivative H ′ = 2HH ′ = 3HH ′, whence HH ′ = 0,
while the right hand side of the equation is H ′ = δ �= 0.

2.2 The Framework of Colombeau Algebras

To formulate, study and solve nonlinear differential equations with irreg-
ular solutions, one needs a theory of algebras of generalized function, as
are given by the Colombeau type algebras of sequence spaces, in which
differentiation and multiplication is always well-defined [1]. More precisely,
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we consider the spaces E(�) of smooth functions equipped with seminorms
P(�) = {

pα,K : f �→ ‖∂αf ‖K,∞ ; α ∈ N
n,K � �

}
, and the asymptotic scale

M = {
(εm)ε∈�=(0,1];m ∈ N

}
. Then the space of “moderate” sequences is

EM = {
f ∈ E� | ∀p ∈ P ∃a ∈ M : p(aε fε) = O(1)

}
, and the Colombeau-

type algebra is the associated Hausdorff space GM = EM/N where N ={
f ∈ E� | ∀p ∈ P ∀a ∈ M : p(fε) = O(aε)

}
is the closure (intersection of

all neighborhoods) of zero for the naturally associated so-called “sharp”
topology [3, 10] (for which multiplication is continuous) [7]. The construction
is functorial, the spaces are (pre)sheaves of topological algebras, and the point
values of generalized functions are generalized numbers C̃ which can be infinitely
small or large and still mathematically well-defined, as for example δ(0).

Schwarz distributions D′(�) and L1
loc are injected into GM(�) via iϕ : T �→

[ϕε ∗ T ], i.e., convolution with a mollifier ϕε = ε−nϕ(·/ε), where ϕ has Fourier
transform equal to 1 near the origin, as to have

´
Rn
ϕ = 1 and vanishing higher

moments. Consequently, δ = iϕδ = [ϕε] is a Dirac delta function, which is for
n = 1 the derivative of

H(x) = iϕH(x) =
[ ˆ x

−∞
1
ε
ϕ
( y
ε

)
dy

]
; H(0) = 1

2 . (2.3)

The composition of two generalized functions is well defined if the first one is c–
bounded [6, Def. 1.2.7], which is the case for smooth functions. Thus, H ◦ S(x) =
[Hε(S(x))] ∈ GM(Rn) is well defined in GM(�).

2.3 Proof of the Jump Condition Theorem

Writing Dt = ∂t + u · ∇, we have

Dt(u
∗ + (H ◦ S) û) = Dtu∗ + (H ◦ S)Dt û+ (δ ◦ S) (DtS) û .

To prove the result, it is sufficient to take the scalar product of the differential
equation with û. Putting to the right hand side all terms without δ, we have:

û2 (δ ◦ S)DtS = û · ((A û−Dt û)H ◦ S −Dtu∗).

For x ∈ S0 := ∂D = {x | S(x) = 0}, δ◦S(x) = δ(0) is an infinitely large, invertible
generalized number, by which we can divide the equation. Using H(0) = 1

2 , we
have

∀x ∈ S0 : û2 (∂t + (u∗ + 1
2 û) · ∇)S =

1

δ(0)
û · ( 1

2 (Aû−Dt û)−Dtu∗).
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All expressions except 1/δ(0) take finite real values in any x ∈ S0. Therefore, the
left hand side must be zero, which we will rewrite as

∀x ∈ S0 : û · ∇S = −2 (∂t + u∗ · ∇)S(x).

So we have proved the following

Theorem 2.1 If the PDE (2.1), (∂t+u·∇)u = A(u−u∗), has a solution of the form
u = u∗+H ◦S û, whereH is the Heaviside step function (2.3), S ∈ C∞(Rn+1), and
u∗, û ∈ C∞(Rn+1;Rn), then û · ∇S = −2 (∂t + u∗ · ∇)S on S0 = {x | S(x) = 0}.

To get a grasp on the meaning of this jump condition, consider, e.g., S(x, t) =
‖x − tu∗‖2 − r2

0 , for which D = {x | S(x) < 0} is obviously a ball of radius r0
whose center moves according to x = t u∗, similar to the eye of a hurricane. In that
case, we have (∂t + u∗ · ∇)S = 0. With this, we can state:

Corollary 2.2 If the domain D = {x | S(x) < 0} moves with speed u∗, i.e., (∂t +
u∗ · ∇)S = 0 on ∂D, then the jump û is tangent (orthogonal to the normal vector
∇S) to the boundary of D in each point of this boundary.

This is (fortunately) in complete agreement with real-world observations and also
with the following study of the 2-dimensional case: We will see within a completely
different approach that the radial wind component goes to zero when approaching
the wall of the hurricane’s eye, as predicted by the Corollary.

3 Asymptotics of the Wind Field Near the Eye of a Hurricane

In this part, we consider the two-dimensional differential equation

∂t (u, v) + (u, v) · ∇(u, v) = σ (u, v)+ ω (v,−u),

which follows from the general Navier–Stokes equations in the limit of a nonviscid
fluid and after coordinate transformation to a frame having its origin on the surface
of the rotating earth, which induces the Coriolis “force” terms proportional to ω =
(2/24h) cos(latitude).

The parameter σ accounts for friction (negative contribution) but also for energy
supply from the hot water surface. Both are proportional to (u, v) only for weak
to moderately strong winds: the energy supply can be considered to saturate at
some limiting value σ ∗ u∗, while the friction is known to acquire quadratic terms for
larger wind speed. Concerning the energy supply, many more or less complicated
piecewise defined heat transfer functions are considered in the literature. We chose
a dependence of the form σ u = σ ∗ u/(1 + |u|/u∗) to have the above mentioned
limiting behaviour of the energy transfer.

We assume radial symmetry around the center of the hurricane located in
(x, y) = (0, 0), i.e., that the wind field (u, v) only depends on r = x2 + y2, and
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we reparametrize it using radial and tangential components (a, b), viz: (u, v) =
a(r) (x, y)+ b(r) (−y, x). This yields the system of equations

a′ = [(σ − a + (ω + b)b/a]/r, (3.1)

b′ = [(σ/a − 2)b − ω]/r. (3.2)

We can integrate these equations numerically, starting at a given point ri , if we know
the initial conditions a(ri), b(ri), and of course the parameters σ and ω. We can also
make a qualitative study of this system of ODE.

Both approaches lead to the following results: Corresponding to the counter-
clockwise rotating winds on the northern hemisphere, the tangent component b(r)
has a very small positive value for large r , which increases monotonically as r tends
to some finite value Reye at which the derivative diverges, b′(r) → −∞ as r →
Reye.

The radial component a(r) has a small negative value for large r (airflow towards
the hurricane), which decreases to a minimum (large negative value) at Rmin =
k Reye with some k ∈ ]2, 9[, and then tends to zero as r → Reye, where a′(r) also
tends to −∞ as r → Reye.

When we first noticed this behaviour, we thought that b(r) might be unbounded,
which would not be physical but could be explained by the right hand side σ u
which could explain allow an unbounded energy supply. At this point we introduced
the more sophisticated form explained earlier, which saturates at a value σ ∗ u∗.
However, a more thorough analysis shows that even with constant σ , we get a finite
value b0 as r → Reye.

Indeed, we can solve a simplified version of the system which is valid asymp-
totically, as r → Reye and a → 0. In this limit, the equation for b becomes
b′/b $ σ/(r a(r)), which we can integrate to get b(r) = b0 expJ (r) with
J (r) $ ´ r

Reye
σ/(s a(s))ds, provided this is well-defined. We find a solution using

the ansatz a(r) $ −c (r/Reye −1)α, which gives

b(r) $ b0 exp
[
−σ ( r

Reye
− 1)1−α/

(
(1− α) c r

Reye

)]

and back in (3.1), α = 1/2 and c2 = (ω + b0)b0. So we have found that

a(r) $ −c
√

r

Reye
− 1 with c = √

(ω + b0) b0

and (with r $ Reye)

b(r) $ b0 exp

(
−2

σ

c

√
r

Reye
− 1

)
= b0 exp( 2 σ a(r)/c2 ) .



Singular Solutions in Fluid Mechanics and Dynamics of Hurricanes 379

This concludes the asymptotic analysis of this system near the singularity at r =
Reye. We have deduced an analytic form for the tangent and radial wind profile near
that point.

Our next goal is the analysis of this simple system is to obtain further analytical
results for r → Reye and Rmin in terms of the initial data. But we are also aware that
this model has its limits. In particular, we think that an extension to 3D is required to
capture more of the dynamics of the real hurricane’s eye. The vertical airflows near
the eye and between the rainbands are physically important, and taking them into
account in our model should improve its potential for predicting realistic values.

4 Summary and Conclusion

The very simple equation (∂t+u ·∇)u = σ u+ω×u predicts qualitatively correctly
the existence of the eye of the hurricane and finite limiting speed of wind at the
border, in spite of the right hand side possibly violating laws of conservation. We
found an analytic expression for the asymptotic form of the solution near the eye’s
wall.

We also considered solutions of the n-dimensional Euler/Navier–Stokes type
equation (∂t + u · ∇) u = Au, in arbitrary dimension, which have a jump u =
u∗ + H(S) û. We obtained an orthogonality condition involving the jump û and
the normal vector ∇S on the hypersurface where the jump occurs, i.e., the singular
support.

Our theorem was straightforwardly proved in the framework of Colombeau
differential algebras, and the result is confirmed by numerical and algebraic analysis
of the 2-dimensional case and real-world observations. We plan to continue our
work on one hand to try to get explicit non-smooth solution to Euler/Navier–Stokes
equations in 2D, and to extend the analytic and numerical study to 3 dimensions.

Let us finally once again insist on two conceptual points: On one hand, the non-
linearity in the differential equations which is essential for producing singularities,
but which can’t be dealt with the linear theory of Schwartz distributions, making
algebras of generalized functions an essential tool for further progress in this
important field of research. On the other hand, still on the same token, one may
admire the simplicity with which we were able to prove our theorem in the
framework of Colombeau type algebras. We hope that this additional example of
a useful, real-world relevant application will further contribute to popularize this
theory.
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Dirac Delta-Function in Optimal Control
of Age-Structured Populations

Natali Hritonenko, Nobuyuki Kato, and Yuri Yatsenko

Abstract We demonstrate that use of the Dirac delta-function simplifies qualitative
optimization analysis of two contemporary population models. The first problem
maximizes the discounted profit from harvesting in the linear age-structured Lotka–
McKendrick model. The second problem describes optimal investments in new and
old equipment under evolving technology.
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1 Introduction

Generalized functions have long-time links to the optimization theory. L. Pontrya-
gin, I. Ekeland, J.-L. Lions, R. Rockafellar and other great mathematicians spent
enormous efforts to prove the existence of solutions to general optimization prob-
lems. They highlighted exotic trajectories that arose even in the optimal control of
simple ODEs and lead to solutions expressed in terms of measures and generalized
functions. The necessity of taking endogenous controls from non-smooth functional
spaces with measures was demonstrated in [14, 15] and significant results have been
obtained since then.
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The most common reason for getting measure controls and generalized functions
is the presence of inequality-constraints on state variables in optimal control
problems (OCPs) [4]. The state constraints lead to discontinuities in the optimal path
of state and co-state variables. Each time when the state trajectory reaches a state
constraint, its speed possesses jumps. In worst cases, the optimal state trajectory
can touch the state constraint indefinitely many times. It leads to optimal controls
and co-state variables (Lagrange multipliers) expressed in terms of measures and
functions of bounded variation.

Another more obvious reason for the appearance of measure controls is dis-
continuities or generalized functions in the state equations (equality-constraints)
or objective function, e.g., [13]. Relevant examples appear in particle mechanics,
elasticity theory, nonlinear waves, and other applications [12]. Such problems do not
often have solutions in traditional functional classes, and generalized functions and
measures should be employed to construct such solutions. Several approaches have
been proposed to extend the concept of optimal solutions: vibrational controls, chat-
tering regimes, generalized curves, measure values solutions, relaxed controls [4].

A powerful approach to deal with generalized functions is based on Colombeau
algebras. Konjik et al. [12] develop fundamentals of the calculus of variations in
Colombeau algebras with generalized functions and demonstrate its applications
in geodesics, mechanics, and elastostatics. Their approach is promising for the
optimal control, though it needs to be extended to closed sets of control variables.
The optimal control was born inside the calculus of variations because of practical
needs to consider closed sets of controls. The current extension of the algebras of
generalized functions to OCPs cannot consider inequalities-constraints, while most
applied optimization problems include them.

Solutions that involve generalized functions and measures appear in the optimal
control because of applied nature of the physical, biological, or economic problem
under study. This paper demonstrates how the use of a classic generalized function,
the Dirac delta-function, simplifies the contemporary analysis of two age-structured
population models in different applied areas.

The first discussed problem maximizes the discounted profit from harvesting
in the age- structured Lotka–McKendrick population model [1, 3, 7]. Such OCPs
often possess bang-bang harvesting controls. We consider a relaxed problem without
upper bound on harvesting control and prove that the optimal age-dependent
harvesting control is expressed via the Dirac delta-function. This structure is caused
by the presence of a state constraint.

The second problem is relevant to new applications of the Lotka-
McKendrick model in economics and technology [8, 11]. It describes the optimal
distribution of investments into new and old capital under evolving technology. The
optimal age- distributions of investment and capital appear to involve the delta-
function and its derivative. This OCP does not involve any inequality constraints. It
reveals a new phenomenon when generalized functions arise in applied optimization
problems with no constraints and smooth coefficients just because of the nature of
a process under study.
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2 Impulse Controls in Optimal Harvesting of Age-Structured
Populations

The Lotka–McKendrick model of harvested age-structured population is described
as

∂y(t, a)

∂t
+ ∂y(t, a)

∂a
= −μ(t, a)y(t, a)− u(t, a), (2.1)

y(t, 0) = x(t), t ∈ [0,∞), (2.2)

y(0, a) = y0(a), a ∈ [0, A), (2.3)

where t is time, a is individual age, A ≤ ∞ is the maximum age, y(t, a) is
the population age density, u(t, a) is the harvesting intensity, μ(t, a) is the given
mortality rate, x(t) is the planting intensity (the density of zero-age individuals), and
y0(a) is a given population density at time t = 0 [1]. The model describes harvested
populations in agriculture and aquaculture, when new zero-age individuals are
introduced into the population from outside.

Optimal Control Problem (OCP) We consider the problem of maximizing the
discounted profit from harvesting over the infinite horizon:

max
u,x

I = max
u,x

ˆ ∞

0
e−rt

(
zα(t)− b(t)x(t)) dt, z(t) =

ˆ A

0
c(t, a)u(t, a)da,

(2.4)
u(t, a) ≥ 0, x(t) ≥ 0, y(t, a) ≥ 0, (2.5)

subject to constraints-equalities (2.1)–(2.3). Here, z(t) is the monetary value of
harvesting yield, c(t, a) is the unit price of harvested individuals, b(t) is the unit
planting cost, r > 0 is the discounting rate, and 0 < α < 1 reflects the concavity, of
revenue-product curve. The price c(t, a) increases in a when an individual grows,
then slow down, and decreases at the end of its life A.

The majority of research related to optimization in the harvesting model (2.1)–
(2.5) involves the constraint-inequality 0 ≤ u ≤ umax, where the upper bound umax
is chosen for mathematical convenience. Optimal harvesting regimes in such PDE-
based models often have bang-bang structure [1, 2, 5, 6] but the impulse structure
of such regimes has not been suggested. We consider the nonlinear OCP(2.1)–(2.5)
without upper constraint u ≤ umax and prove that it possesses an impulse optimal
harvesting control is expressed via the Dirac delta-function.

We choose u and x as independent controls of the OCP (2.1)–(2.5) and assume
u(t, a) to be measurable in t and be a Borel measure with respect to a at a fixed t .
Under known u and x ∈ L∞[0,∞), the dependent state variable y ∈ L∞([0,∞)×
[0, A)) is a weak solution of the boundary problem (2.1)–(2.3).



384 N. Hritonenko et al.

Hritonenko and Yatsenko [6] analyzed the linear version of OCP (2.1)–(2.5) at
α = 1 and proved that the optimal harvesting control u∗(t, a) involves the Dirac-
function δ(a − a∗(t)) at certain age a∗(t), 0 < a∗(t) < A, and the optimal state
variable y∗(t, a) = 0 at a∗(t) < a < A. Here we extend this result to the nonlinear
problem (2.1)–(2.5) at 0 < α < 1. Such impulse controls are known in dynamic
optimization of homogeneous populations (described by ODEs) but are new in age-
dependent populations described by PDEs.

Lemma 2.1 (Necessary Condition for an Extremum) Let (u∗, x∗) be a solution
to the OCP (2.1)–(2.5). Then

Iu(t, a) ≤ 0 at u∗(t, a) = 0, Iu(t, a) = 0 at u∗(t, a) > 0,

Ix(t) ≤ 0 at x∗(t) = 0, Ix(t) = 0 atx∗(t) > 0,
(2.6)

where

Iu(t, a) = e−rt
(
αc(t, a)xα−1(t)− λ(t, a)

)
, (2.7)

Ix(t) = e−rt
(
λ(t, 0)− αb(t)xα−1(t)

)
, (2.8)

and the dual variables λ(t, a) and η(t, a) satisfy the following conditions:

∂λ(t, a)

∂t
+ ∂λ(t, a)

∂a
= (r + μ(t, a))λ(t, a)− η(t, a), (2.9)

lim
t→∞ e

−rtλ(t, a) = 0, a ∈ [0, A), λ(t, A) = 0, t ∈ [0,∞), (2.10)

η(t, a) > 0 at y∗(t, a) = 0, η(t, a) = 0 at y∗(t, a) > 0. (2.11)

The proof follows the standard method of Lagrange multipliers, which was adjusted
to age-structured population models in [5–7]. The condition of complementary
slackness (2.11) is an essential part of extremum conditions for the optimal control
with state constraints [1, 4, 10]. By (2.11), the dual variable η(t, a) > 0 when the
constraint y ≥ 0 is active, i.e., y(t, a) = 0.

Steady-State Solution in Autonomous Case For clarity, we restrict ourselves to the
autonomous (stationary) case of the problem (2.1)–(2.5) when all given functions
do not depend on the time t:

c(t, a) = c(a), b(t) = b, μ(t, a) = μ(a). (2.12)

Sustainable development of populations is of increasing importance for related
environmental policies. Mathematically, it means finding steady-state solutions
of an optimization problem. A steady-state solution of the OCP (2.1)–(2.5) is a
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trajectory that satisfies the constraints (2.1), (2.2), (2.5) and extremum conditions
(2.6)–(2.11), but not necessarily satisfies the initial condition (2.3). At conditions
(2.12), we look for a steady-state trajectory

x(t) = x̃ = const, u(t, a) = ũ(a), y(t, a) = ỹ(a). (2.13)

Theorem 2.2 (On a Steady-State Impulse Harvesting) Let (2.12) hold and
c′(0)/c(0) > r + μ(0), c′(A)/c(A) < μ(A). Then the OCP (2.1)–(2.5) has the
steady-state solution (̃x, ũ, ỹ),

ũ(a) = x̃δ(a − ã)e−
´ ã

0 μ(ξ)dξ , (2.14)

x̃ =
(α
b

(
c(̃a)e−

´ ã
0 μ(ξ)dξ

)α)1/(1−α)
, (2.15)

ỹ(a) =
{
x̃e−

´ a
0 μ(ξ)dξ , 0 < a ≤ ã,

0, ã < a ≤ A, (2.16)

Ĩ = 1− α
r

(α
b
c(̃a)e−

´ ã
0 μ(ξ)dξ

)α/(1−α)
, (2.17)

where the endogenous age ã, 0 < ã < A, is determined from

ã = arg max
0≤a≤A

[
c(a)e−

´ a
0 μ(ξ)dξ

]
. (2.18)

Proof Substituting (2.13) into (2.1) and disregarding the initial condition (2.3),
the boundary problem (2.1) and (2.2) and dual PDE equation (2.9) and (2.10) are
reduced to the ODEs

y ′(a) = −μ(a)y(a)− u(a), y(0) = x̃, (2.19)

λ′(a) = (r + μ(a))λ(a)− η(a), λ(A) = 0. (2.20)

The analytic solution of (2.19) is

y(a) = xe−
´ a

0 μ(ξ)dξ −
ˆ a

0
e−

´ a
τ μ(ξ)dξu(τ )dτ. (2.21)

Step 1: Let us prove that the optimal state variable ỹ(a) = 0 at a ∈ 	, meas(	) >
0. By contradiction, assuming that y(a) > 0 for 0 ≤ a ≤ A, we obtain η ≡ 0 by
(2.11) and λ ≡ 0 by (2.10). Then, by Lemma 2.1, Iu(a) > 0 and Ix < 0, which
means instant harvesting of all individuals without introducing new ones. Then,
by (2.1), the population will extinct over a finite time.
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Step 2: If y(ae) = 0 at some instant 0 < ae < A, then y ′(a) ≤ 0 by (2.19) at
a > ae, therefore, y(a) = 0 and u(a) = 0 for ae < a ≤ A. Let y(a) > 0 for
0 < a < ae and y(ae) = 0. Then, by (2.11), η(a) = 0 for 0 < a < ae and, by
(2.20), λ′(a) = (r + μ(a))λ(a) at 0 < a < ae.

Step 3: If c(0) > λ(0)̃x1−α, then Iu(0) > 0 by Lemma 2.1 and, therefore, all
young members of the population should be immediately harvested, which is
not realistic. On the other side, if c(a) > λ(a)̃x1−α on [0, A], then Iu(a) < 0
and there is no harvesting. Thus, for the existence of a non-trivial harvesting
regime, c(a) < λ(a)̃x1−α should hold on some initial interval [0, ã) and c(̃a) =
λ(̃a)̃x1−α at a certain switching age 0 < ã < A. Then, by (2.7), Iu(a) < 0
and u∗(a) = 0 on [0, ã). Let us assume that y(a) > 0 on a certain interval
[̃a, ae]. Then, c(a) > λ(a)̃x1−α and Iu(a) > 0 at ã < a < ae, i.e., the optimal
harvesting control ũ(a) should be maximal on [̃a, ae]. It means that it should
involve the Dirac delta-function δ(a):

ũ(a) = h̃δ(a − ã). (2.22)

and the optimal state variable ỹ(a) should be zero after the age ã:

ỹ(a) =
{
> 0, 0 < a ≤ ã,
0, ã < a ≤ A. (2.23)

Step 4: Let us find the unknown ã and h̃ in (2.22). Substituting (2.22) into (2.21)

and using that ỹ(a) = 0 at a > ã by (2.23), we find h̃ = x̃e−
´ ã

0 μ(ξ)dξ at a > ã,
which together with (2.22) leads to (2.14) for ũ(a). Next, substituting (2.14) into
(2.21) and using (2.23), we obtain (2.16) for ỹ(a). Finally, the substitution of
(2.14), (2.12) to (2.4) reduces the OCP (2.1)–(2.5) to

max
u,x

I = 1

r
max
a,x

[
xα

(
c(a)e−

´ a
0 μ(ξ)dξ

)α − bx] . (2.24)

Taking the derivatives of (2.24) in a and x and setting them to zero, we obtain
that the maximum of (2.24) is reached at ã and x̃ given by (2.18) and (2.15).

��
By Theorem 2.2, there exists a sustainable harvesting regime (̃u, x̃, ỹ). The opti-

mal harvesting control ũ(a) is selective and involves one age ã only. The population
density is zero for the individuals older than the harvesting age. The obtained
results demonstrate significance of impulse harvesting and have implications for
management policies. For instance, they indicate advantages of selective harvesting
over clear cutting in forestry.
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3 Optimal Investment in Old Capital Under Technological
Change and Learning-by-Doing

To demonstrate larger applicability of the age-structured model (2.1)–(2.3), we dis-
cuss its use in capital replacement problems of Operations Research and economics
presented in [9]. A new feature is that the optimal controls involve the delta-function
and its derivative.

We consider a firm that produces a product y(t) and invests x(t) into the new
capital assets of vintage t and u(t, a) into the old capital of the age a. The capital
vintage ν is the time of the asset creation and can be used instead of its age a = t−ν.
The evolution of the heterogeneous capital k(t, a) is described by the following
linear age-dependent population model [8, 11]:

∂k(t, a)

∂t
+ ∂k(t, a)

∂a
= −μk(t, a)+ u(t, a), (3.1)

with the boundary conditions

k(t, 0) = x(t), t ∈ [0,∞), (3.2)

k(0, a) = k0(a), a ∈ [0,∞), (3.3)

where μ > 0 is the capital deterioration rate, k0(a) is the given age distribution
of capital over past vintages at time zero. The linear PDE-based model (3.1)–(3.3)
closely resembles (2.1)–(2.3), though has a different interpretation.

We assume that the firm’s objective is to maximize its discounted net profit

max
u,x

ˆ ∞

0
e−rt

(
y(t)− x(t)−

ˆ t

−∞
u(t, a)da

)
dt, (3.4)

y(t) =
(ˆ t

−∞
eγ νA(t − ν)k(t, t − ν)dν

)α
, (3.5)

where r > 0 is the discounting rate and the unit price of all capital vintages equals
one. The investments x(t) and u(t, a) are control variables, and the unknown state
variables k(t, a) and y(t) are determined from (3.1) and (3.5). The parameter 0 <
α ≤ 1 describes returns to scale. The efficiency of new capital of vintage ν = t − a
exponentially increases with rate γ > 0 due to the embodied technological change
[7]. The factor A(a) in (3.5) describes the effects such as learning-by-doing and
spillovers, which depend on the age a = t − ν.
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Theorem 3.1 At increasing bounded learning curve A(a), A′(0) > γA(0), and
γα/(1−α) < r , the OCP (3.1)–(3.5) has the unique steady-state trajectory (k, x, u)
with growth rate g = γα/(1− α) > 0:

u(t, a) = egt û(a), û(a) = e(μ+g)a
[
f ′(a)+ f (a)

smax − a
]
δ(a − smax), (3.6)

k(t, a) = egtf (a)δ(a − smax), x(t) = 0, a ∈ [0,∞), t ∈ [0,∞), (3.7)

f (a) = (α/(r + μ)) 1
1−α

[
e−γ aA(a)

] α
1−α , (3.8)

and smax = arg max
(
e−γ aA(a)

)
> 0 is the optimal age of the only vintage to invest

in.

Proof is provided in [9]. It is interesting that the idea of the proof is conceptually
similar to elasticity problems of [12], but the regularizing parameter is the substi-
tutability β rather than the modulus of elasticity.

For clarity, this paper focuses on linear PDE-based population models and simple
impulse solutions with one delta-function. Similar results can be obtained for a more
general nonlinear age- and size-structured population models [6, 7].
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Generalized Solutions to Equations
for Probabilistic Characteristics
of Levy Processes

Irina V. Melnikova

Abstract We study relations between stochastic differential equations with inho-
mogeneities reflecting continuous and discontinuous random perturbations and
equations for probabilistic characteristics of processes specified by these stochastic
equations. The application of two approaches: based on the Ito formula and on limit
relations for process increments, allowed to obtain direct and backward integro-
differential equations for various probabilistic characteristics and justify them in
distribution spaces.

Keywords Stochastic equation · Ito formula · Generalized transition density ·
Levy process · Kolmogorov equation

Mathematics Subject Classification (2010) Primary 60G51; Secondary 60J35

1 Introduction

A wide class of processes arising in various fields of natural science, economics
and social phenomena, mathematically can be described using differential equations
with random perturbations, stochastic differential equations (SDEs). The best-
studied class of SDEs is one with random perturbations in the form of Wiener
processes. Solutions of such equations (normal diffusion processes), due to con-
tinuity of Wiener process trajectories also have continuous trajectories. In addition,
normal diffusion processes have the following characteristic property: the variance
of the process deviation over time 	t is proportional to 	t . Therefore, modeling
within the framework of diffusion-type equations is not suitable for describing
processes with jumps and ones with variance proportional to 	tμ,μ �= 1. The
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behavioral features unusual for normal diffusion processes, can be modeled using
Levy processes and more general Levy type processes.

Both in applications and in fundamental science, researchers are often interested
not in processes themselves but their characteristics; therefore, the relationship
between SDEs and equations of probabilistic characteristics of processes described
by SDEs is one of the main directions of stochastic analysis. Most investigated
remains the connection for diffusion processes and corresponding partial differential
equations for their probabilistic characteristics.

In the paper, we study Levy type stochastic equations and obtain equations
for probabilistic characteristics, which in the case are integro-differential (pseudo-
differential), in contrast to partial differential equations of parabolic type corre-
sponding to diffusion processes. For this purpose we distinguish two approaches:

– the approach based on the general Ito formula (see, e.g. [1, 2]) allowing to obtain
functions of studied processes, which are averaged, and as a result we get the
integro-differential equations for probabilistic characteristics.

– the approach allowing to obtain equations for probabilistic characteristics based
on the existence of three limits for the random process under study: the limits
of the quotient of dividing the local first and second moments by 	t → 0
(conditions (3.1)–(3.2)) and the limit (3.3) characterizing the absence of the
continuity property of Levy type processes (see, e.g. [3]).

There are deep, not always obvious connections between these approaches, and
not all of them, despite many works devoted to the indicated issues, worked out
in the desired completeness. In the paper we can see that in the both approaches
twice differentiable functions appear in equations for probabilistic characteristics
and we show that these functions can be used as test functions. We pay the important
attention to substantiation of the resulting direct and backward integro-differential
equations, in the general case not having classical solutions, in distribution (gener-
alized functions) spaces.

2 Direct and Backward Equations for Probabilistic
Characteristics Based on the Ito Formula

Let a probability space (�,F , (Ft )t≥0, P ) be given. We consider a random process
X = {X(t), t ≥ 0}, arising under the influence of continuous and discontinuous
random disturbances. In general, this is a Levy type process defined by the stochastic
equation

X(t)− x =
ˆ t

0
a(X(s−))ds +

ˆ t

0
b(X(s−))dW(s)

+
ˆ t

0

ˆ

|q|≥1
K(X(s−), q)N(ds, dq)

+
ˆ t

0

ˆ

|q|<1
F(X(s−), q)Ñ(ds, dq), t ∈ [0; T ]. (2.1)
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Here W = {W(t), t ≥ 0} is a standard Wiener process, N(t,A) for any bounded
from below set A is a Poisson random measure on (R+ × (R \ {0}),B(R+) ⊗
B(R\ {0})), and Ñ(t, A) := N(t,A)− tν(A) is a martingale-valued (compensated)
Poisson random measure on this space. By the definition, the random variable
N(t, ·)(ω) for ω ∈ � and t ≥ 0 is a counting measure on B(R \ {0}), and N =
{N(t,A), t ≥ 0} is a Poisson process with intensity λ = ν(A) := E[N(1, A)]. We
suppose the following conditions on coefficients supplying existence of a solution
to (2.1): functions a(·), b(·), F (·, q) satisfy the Lipschitz and sub-linear growth
conditions andK(·, q) is continuous.

Let f ∈ C1,2(R+,R) and {X(t), t ≥ 0} be a Levy type process defined by (2.1)
with a(·) = a(X(·)),b(·),F(·, q) square integrable a.s. Then with probability 1 the
following equality, the Ito formula for Levy type processes, holds (see, e.g. [2, c.
278]):

f (t,X(t))− f (0,X(0)) =
ˆ t

0
f ′s (s,X(s−))ds +

ˆ t

0
a(s)f ′x(s,X(s−))ds

+
ˆ t

0
b(s)f ′x(s,X(s−))dW(s) +

1

2

ˆ t

0
b2(s)f ′′xx(s,X(s−))ds

+
ˆ t

0

ˆ

|q|≥1
[f (s,X(s−)+ K(s, q))− f (s,X(s−))]N(ds, dq) (2.2)

+
ˆ t

0

ˆ

|q|<1
[f (s,X(s−)+ F(s, q))− f (s,X(s−))]Ñ(ds, dq)

+
ˆ t

0

ˆ

|q|<1
[f (s,X(s−)+F(s, q))−f (s,X(s−))−F(s, q)f ′x (s,X(s−))]ν(dq)ds.

We start by deriving a direct (forward) equation for transition probability
P(τ, y; t, A), the probability of transition from y at time τ to values on A at time t .
To this end, using (2.2) first we obtain the equation for the process {f (X(t)), t ≥ 0},
whereX is a solution to (2.1) and f ∈ C2(R), then we apply the expectation. Using
that integrals over W and over compensated Poisson process Ñ are martingales,
hence its expectations are zero, and changing the order of integration in other terms,
we obtain

E[f (X(t))] − f (x) =
ˆ t

0
E[a(X(s−))f ′(X(s−))+ 1

2
b2(X(s−))f ′′(X(s−))]ds

+
ˆ t

0

ˆ

|q|≥1
E[f (X(s−)+K(X(s−), q))− f (X(s−))]ν(dq)ds
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+
ˆ t

0

ˆ

|q|<1
E[f (X(s−)+ F(X(s−), q))− f (X(s−))

−F(X(s−), q)f ′(X(s−))]ν(dq)ds.

Further, since Levy type processes possess the property P(X(s−) = X(s)) = 1 for
any s > 0, we obtain the equality

ˆ

R

f (y)P (0, x; t, dy)−f (x) =
ˆ t

0

ˆ

R

[a(z)f ′(z)+ 1

2
b2(z)f ′′(z)]P(0, x; s, dz)ds

+
ˆ t

0

ˆ

|q|≥1

ˆ

R

[f (z+K(z, q))− f (z)]P(0, x; s, dz)ν(dq)ds

+
ˆ t

0

ˆ

|q|<1

ˆ

R

[f (z + F(z, q))− f (z)− F(z, q)f ′(z)]P(0, x; s, dz)ν(dq)ds.

The right-hand side of the resulting equality are integrals with a variable upper limit,
then after differentiating both sides of this equality with respect to parameter t we
obtain the direct equation for transition probability:

∂

∂t

ˆ

R

f (y)P (0, x; t, dy) =
ˆ

R

[a(y)f ′(y)+ 1

2
b2(y)f ′′(y)]P(0, x; t, dy)

+
ˆ

|q|≥1

ˆ

R

[f (y +K(y, q))− f (y)]P(0, x; t, dy)ν(dq) (2.3)

+
ˆ

|q|<1

ˆ

R

[f (y + F(y, q))− f (y)− F(y, q)f ′(y)]P(0, x; t, dy)ν(dq).

We show that (2.3) is correct in a space of distributions, where functions f
will play the role of test functions for functionals determined by the transition
probability. To do this, we consider � = C2

c (R), the linear space of compactly
supported twice continuously differentiable functions f : R→ R and�′, the space
of linear continuous functionals on �. Since integral

´
R
f (y)P (0, x; t, dy) exists

for any f ∈ Cc(R) functional p(0, x; t, ·) is well defined as follows:

ˆ

R

f (y)P (0, x; t, dy) =: 〈f (y), p(0, x; t, y)〉, f ∈ Cc(R). (2.4)

In particular for f ∈ �, we call p(0, x; t, ·) the generalized transition probability
density of X. If the transition probability has a classical density, then p(0, x; t, ·) is
a regular generalized function and (2.4) turns into the equality for integrals.
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Having defined the functional p(0, x; t, ·) on �, we pass to the formalization of
Eq. (2.3) in�′ and begin with “differential” terms of the equation. Since there exists
∂
∂t

´
R
f (y)P (0, x; t, dy), for p(0, x; t, ·) exists a derivative with respect to t:

∂

∂t

ˆ

R

f (y)P (0, x; t, dy) = ∂

∂t
〈f (y), p(0, x; t, y)〉 = 〈f (y), ∂

∂t
p(0, x; t, y)〉.

Next, we consider integral
´
R
[a(y)f ′(y) + 1

2b
2(y)f ′′(y)]P(0, x; t, dy). By virtue

of conditions on coefficients of (2.1) supplying existence of its solution, functions
a, b satisfy the Lipschitz condition. It follows that products af ′ and b2f ′′ define
continuous functions with compact supports. Then the integral exists and is equal to

〈f (y),− ∂

∂y
(a(y)p(0, x; t, y))+ 1

2

∂2

∂y2

(
b2(y)p(0, x; t, y)

)
〉.

Next, we go on to formalize “integral” terms, integrals with respect to q

included in the direct equation. Consider integral
´
|q|≥1

´
R
[f (y + K(y, q)) −

f (y)]P(0, x; t, dy)ν(dq). Since, by conditions on coefficients, K(·, q), |q| ≥ 1, is
continuous, then f (· +K(·, q)) ∈ Cc(R) and the integral is equal to

〈f (y),
ˆ

|q|≥1
(p(0, x; t, y −K(y, q))− p(0, x; t, y)) ν(dq)〉.

Finally, consider the last term in the right-hand side of (2.3). By virtue of the
conditions imposed on F we obtain f (·+F(·, q)) and F(·, q)f ′(·) belong toCc(R).
Then the term is equal to:

〈f (y),
ˆ

|q|<1

(
p(0, x; t, y − F(y, q))− p(0, x; t, y)

+ ∂

∂y
(F (y, q)p(0, x; t, y))

)
ν(dq)〉.

Thus, it is shown that if coefficient a, b,K,F of (2.1) satisfy conditions
supplying existence of its solution, then the direct equation for the generalized
transition probability density of X is correct on functions f ∈ �:

〈f (y), ∂
∂t
p(0, x; t, y)〉 = 〈f (y),− ∂

∂y
(a(y)p(0, x; t, y))

+1

2

∂2

∂y2

(
b2(y)p(0, x; t, y)

)
〉

+ 〈f (y),
ˆ

|q|≥1
(p(0, x; t, y −K(y, q))− p(0, x; t, y)) ν(dq)〉 (2.5)
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+〈f (y),
ˆ

|q|<1

(
p(0, x; t, y − F(y, q))− p(0, x; t, y)

+ ∂

∂y
(F (y, q)p(0, x; t, y))

)
ν(dq)〉.

By (2.4), the correctness of the direct equation for the generalized density on �
leads to the correctness of (2.3) for the transition probability.

Now, briefly, due to the size restriction of the paper, we show that for the
important in applications probabilistic characteristic

g(t, x) := Et,x [h(X(T ))] =
ˆ

R

h(y)P (t, x; T , dy), t ∈ [0; T ], h ∈ Cb(R)
(2.6)

the backward equation is correct on � under some additional conditions on
coefficients of (2.1).

At the first stage, we assume the existence of continuous partial derivatives
g′t , g′x, g′′xx and write the equation for {g(t,X(t)), t ∈ [0; T ]} using the Ito formula.
By the Markov property of X, we have

E[g(t,X(t))] = E[Et,X(t)[h(X(T ))]]

=
ˆ

R

ˆ

R

h(y)P (t, x; T , dy)P (0, ξ ; t, dx) =
ˆ

R

h(y)P (0, ξ ; T , dy) = E[g(0,X(0))].

Therefore, the expectation of the right-hand side of the equation written for
{g(t,X(t))} on the basis of formula (2.2) is zero. Using the Fubini stochastic
theorem we can move the expectation under the integral sign, then using the
martingale property of W and Ñ we obtain expectation of integrals over W and
Ñ are equal to zero.

If the evolution of X started at the moment t ∈ [0; T ] from the pointX(t) = x ∈
R, then the resulting equality leads to the backward equation for g:

−g′t (t, x) = a(x)g′x(t, x)+
1

2
b2(x)g′′xx(t, x)+

ˆ

|q|≥1

[
g
(
t, x +K(x, q)

)
− g(t, x)

]
ν(dq)

+
ˆ

|q|<1

[
g
(
t, x + F(x, q)

)
− g(t, x)− F(x, q)g′x(t, x)

]
ν(dq), t ∈ [0; T ].

(2.7)

Now we pass to the second stage, the study of the correctness of (2.7) in
spaces of generalized functions. On the previous stage (2.7) was obtained under the
assumption that there exist continuous partial derivatives g′t , g′x, g′′xx . The existence
of derivatives g′x, g′′xx and corresponding derivatives p′x(t, x; T , ·), p′′xx(t, x; T , ·),
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as we can see from formulas (3.1)–(3.2) in the next section, is closely related to
existence of derivatives of coefficients. In the general case, even provided that the
coefficients of (2.7) are twice continuously differentiable, g′t , g′x, g′′xx may not exist.
More accurately: the following conditions guarantee the existence of the derivatives
of g: coefficients a(x), b(x), F(x, q), |q| < 1, K(x, q), |q| ≥ 1 are twice
continuously differentiable with respect to x and their derivatives satisfy Lipschitz
and sub-linear growth conditions, function h is twice continuously differentiable
and its derivatives are bounded [4, 5]. Thus, we formalize the backward equation
for g with h ∈ Cb(R) on the space of test functions � under the conditions on
a(·), b(·), F(·, q), K(·, q) to be twice continuously differentiable on R. Indeed, for
f ∈ � and such a, b, K, F the following equalities are correct:

〈f (x), a(x)g′x(t, x)〉 = −〈(a(x)f (x))′ , g(t, x)〉,

〈f (x), b2(x)g′′xx(t, x)〉 = 〈(b2(x)f (x))′′, g(t, x)〉,

〈f (x), F (x, q)g′x(t, x)〉 = −〈(F (x, q)f (x))′, g(t, x)〉,

〈f (x), g(t, x + F(x, q))〉 = 〈f (x − F(x, q)), g(t, x)〉, |q| < 1,

〈f (x), g(t, x +K(x, q))〉 = 〈f (x −K(x, q)), g(t, x)〉, |q| ≥ 1, t ∈ [0; T ].

Under the indicated conditions on coefficients, these equalities justify the correct-
ness of (2.7) on f ∈ �. It is not difficult to show that under these conditions a
backward equation for the transition density can be obtained on� as well.

Remark It is important to note that although we justified the direct and backward
equations in distribution spaces, the Cauchy problems for them: the problem with
an initial condition for the direct equation and with final condition g(T , x) = h(T )
for the backward one, are well-posed from the point of view of the theory of ill-
posed problems. This is the fundamental difference between the considered finite-
dimensional problems and the infinite-dimensional ones, where ill-posedness can
arise due to generators that do not generate semigroups of class C0 [6].

3 The Approach via Limit Relations

This approach goes back to the ideas of A.N. Kolmogorov (see, e.g. [7]) for diffusion
processes and is based on three limit values (3.1)–(3.3).

Let p(t, x; T , y) be the transition probability density of a process X and let for
any ε > 0 there exist finite limits

lim
	t→0

1

	t

ˆ

|z−x|<ε
(z− x)p(t, x; t +	t, z)dz = a(t, x)+O(ε), (3.1)
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lim
	t→0

1

	t

ˆ

|z−x|<ε
(z− x)2p(t, x; t +	t, z)dz = b(t, x)+O(ε), (3.2)

lim
	t→0

p(t, x; t +	t, z)
	t

= G(t, x; z), |z− x| > ε, (3.3)

uniform with respect to x, z and t , and with respect to x and t in (3.2). Then for any
f ∈ C2(R), transition density p(t, x; T , y), 0 ≤ t ≤ T < ∞, satisfies the direct
equation [3, pp. 51, 56]:

∂

∂T

ˆ

R

f (y)p(t, x; T , y)dy =
ˆ

R

[
a(t, y)

∂f (y)

∂y
p(t, x; T , y)

+1

2
b(t, y)

∂2

∂y2p(t, x; T , y)
]
dy

+
ˆ

R

f (y)dy

ˆ

R\0
dz [G(T , z; y)p(t, z; T , y)−G(T , y; z)p(t, x; T , y)]

and, under the assumption that there exist p′t , p′x, p′′xx , the backward equation:

−p′t (t, x; T , y) = a(t, x)p′x(t, x; T , y)+
1

2
b(t, x)p′′xx(t, x; T , y)

+
ˆ

R\0
(p(t, z; T , y)− p(t, x; T , y))G(t, x; z)dz.

Note that in the case of diffusion processes, the third limit is zero, in general case
this limit describes the discontinuity of X.

As an example of using the approach, we obtain direct and backward equations
for the transition density of X = {X(t) = at + bW(t) + cN(t)}, where W =
{W(t), t ≥ 0} is the standard Wiener process, N = {N(t), t ≥ 0} is the Poisson
process with intensity λ, and a, b, c are constants. We assume thatW and N are set
independently of each other. Since the density ofW is determined by the equality

pW(t, x; T , y) = 1√
2π(T − t) e

− (y−x)2
2(T−t) ,

density of process {at + bW(t)} has the form:

pa,b,W(t, x; T , y) = 1

b
√

2π(T − t) e
− (y−x−a(T−t))2

2b2(T−t) .



Solutions to Equations for Probabilistic Characteristics 399

Knowing the law of distribution of a Poisson process, we write out the density of
process cN

pcN (t, x; T , y) =
[ y−x
c
]∑

k=0

(λ(T − t)))k
k! δ(y − x − ck)e−λ(T−t ).

As a result, we obtain the transition density of X as the convolution of densities of
three independent processes:

p(t, x; T , y) = e−λ(T−t )

b
√

2π(T − t)
∞∑
k=0

(λ(T − t)))k
k! e

− (y−x−ck−a(T−t))2
2b2(T−t) .

Now we calculate limits (3.1)–(3.2):

lim
	t→0

1

	t

ˆ

|z−x|<ε
(z − x)p(t, x; t +	t, z)dz =

[
a, ε ≤ c,

a + cλ, ε > c

lim
	t→0

1

	t

ˆ

|z−x|<ε
(z− x)2p(t, x; t +	t, z)dz =

[
b2, ε ≤ c

b2 + c2λ, ε > c

and functionG(t, x; z):

G(t, x; z) = lim
	t→0

p(t, x; t +	t, z)
	t

=
[
λδ(z − x − c), ε ≤ c,

0, ε > c.

The found limit values allow us to write the direct and backward equations for the
density of X on�:

〈f (y), p′T (t, x; T , y)〉 = 〈f (y),−ap′y(t, x; T , y)+
b2

2
p′′yy(t, x; T , y)

+λ(p(t, x; T , y − c)− p(t, x; T , y))〉.

〈f (x),−p′t (t, x; T , y)〉 = 〈f (x), ap′x(t, x; T , y)+
b2

2
p′′xx(t, x; T , y)

+λ(p(t, x + c; T , y)− p(t, x; T , y))〉.

In the considered example, since a and b are constants, we need not additional
conditions on coefficients in the backward equation.
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1 Uniformly Elliptic PDEs in Non-divergence Form

Let � ⊂ R
n be a domain with n � 2. Given 0 < λ � � < ∞, we consider the

partial differential equation in non-divergence form

Lu(x) : = Tr{A(x) ·D2u(x)}, (1.1)

where the coefficients A(·) = (aij )ij are symmetric and uniformly elliptic, that
is λ|ξ |2 � ξ3A(x) ξ � �|ξ |2 for every ξ ∈ R

n and x ∈ �. In 1979, Krylov
and Safonov proved in [10] the Harnack inequality for solutions of Lu = f with
measurable coefficients, where the function f is continuous and bounded. As a
consequence of this, the Hölder regularity for solutions of Lu = 0 followed.

One of the most important examples of this equation is the Laplacian equation
	u = 0, which arises when A(x) ≡ I . Solutions of the Laplacian equation received
the name of harmonic and have been widely studied. One of the most important
properties of harmonic functions is the so-called asymptotic mean value property.
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Namely, a function u ∈ C(�) is harmonic in � if and only if the asymptotic
expansion

−
ˆ

Bε(x)

u(ζ ) dζ = u(x)+ o(ε2) (ε→ 0) (1.2)

holds for every x ∈ �. There exists a free-error version of this property, known as
the restricted mean value property or the one radius theorem [9, 17]. It states that a
function u ∈ C(�) is harmonic in � if and only if

−
ˆ

Br(x)(x)

u(ζ ) dζ = u(x)

for each x ∈ �, where 0 < r(x) < dist(x, ∂�). On the other hand, harmonic
functions have also appeared in the context of stochastic processes such as the
Brownian motion or the random walk.

2 An Asymptotic Mean Value Property

Returning to the general case of a PDE of the form (1.1), it seems a natural question
to ask what sort of mean value properties does a solution of Lu = 0 satisfy. To
answer this question, let us first define A(λ,�) as the set of all symmetric n × n
real matrices A such that λ|ξ |2 � ξ3Aξ � �|ξ |2 for every ξ ∈ R

n. Since every
matrix A ∈ A(λ,�) is real, symmetric and positive definite, the principal square
root of A, which we denote by

√
A ∈ A(

√
λ,
√
�), is well defined. On the other

hand, each matrix A ∈ A(λ,�) determines the shape and the orientation of an
ellipsoid EA ⊂ R

n centered at the origin and given by the formula

EA : =
√
AB = {√Ay ∈ R

n : |y| < 1},

where B = B1(0) is the unit ball of Rn.
In what follows, we consider A : � → A(λ,�) a matrix-valued function with

measurable coefficients and values in A(λ,�) and we define the family of ellipsoids
parametrized by x ∈ � and given by

Ex : = EA(x) =
√
A(x)B. (2.1)

In addition, we assume that A(x) has constant determinant, so the ellipsoids Ex
have all the same measure. Furthermore, observe that the uniform ellipticity ofA(x)
implies that the inclusions B√λ ⊂ Ex ⊂ B√� hold for every x ∈ �, and thus the
maximum distortion of Ex is bounded from above by

√
�/λ.
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In the next result, we use this link between uniformly elliptic matrices and
ellipsoids, (2.1), to provide an asymptotic mean value property for classical
solutions of Lu = 0.

Proposition 2.1 Let φ ∈ C2(�). Then Lφ = 0 in � if and only if

−
ˆ

x+εEx
φ(ζ ) dζ = φ(x)+ o(ε2) (ε→ 0) (2.2)

for each x ∈ �.

Proof Let h ∈ Ex . Recalling the second order Taylor’s expansion of a twice
differentiable function φ at x ∈ � we have

φ(x + εh) = φ(x)+ ε∇φ(x)3h+ ε2

2
Tr{D2φ(x) · hh3} + o(ε2) (ε→ 0).

By the symmetry of the ellipsoid, averaging this expansion over Ex the first order
term vanishes,

−
ˆ

Ex

∇φ(x)3h dh = ∇φ(x)3
(
−
ˆ

Ex

h dh

)
= 0,

while for the second order term, by the linearity of the trace and (2.1), we obtain

−
ˆ

Ex

Tr{D2φ(x) · hh3} dh = Tr

{
D2φ(x) · −

ˆ

Ex

hh3 dh
}

= Tr

{
D2φ(x) ·√A(x)

(
−
ˆ

B

ww3 dw
)√
A(x)

}
.

= 1

n+ 2
Tr{D2φ(x) ·A(x)},

where the change of variables h = √
A(x)w has been performed in the second line.

Thus, recalling the definition of Lφ in (1.1) and performing the change of variables
ζ = x + εh we get

−
ˆ

x+εEx
φ(ζ ) dζ = φ(x)+ ε2

2(n+ 2)
Lφ(x)+ o(ε2) (ε→ 0),

so (2.2) follows after replacing Lφ(x) = 0. ��
It is worth to remark that the previous proposition is the generalization of the

asymptotic mean value characterization of harmonic functions (1.2). Analogously
to the harmonic case, we could consider free-error versions of (2.2),

−
ˆ

x+εEx
u(ζ ) dζ = u(x) (2.3)
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for each ε > 0. Unfortunately, the connection between solutions of Lu = 0 and
(2.3) is not as clear as in the harmonic case. However, there exists a relation with
stochastic process which is analogous to the link between harmonic functions and
random walks.

3 The Ellipsoid Process

In this section we briefly describe the connection between the mean value property
(2.3) and a stochastic process related to the random walk. For a more detailed
description of the process we refer the reader to [1].

Let � ⊂ R
n be a bounded domain. The ellipsoid process is a stochastic process

describing the location of a particle jumping from one position to another inside a
space-dependent ellipsoid contained in�. This stochastic process is a generalization
of the random walk arising when the ellipsoids are replaced by balls of fixed
radius. Let {x0, x1, x2, . . .} ⊂ � denote the history of the particle, i.e. the sequence
describing the successive positions of the particle at each time j = 0, 1, 2, . . .Given
any particle position xj , the next location of the particle is randomly chosen inside
the ellipsoid xj + εExj (according to a uniform probability distribution on Exj ).
This process stops the first time the particle exits� at some xτ /∈ � and the amount
F(xτ ) is collected, where F is a continuous pay-off function defined outside �.
More precisely, F ∈ C(�√�ε \ �), where �√�ε stands for the

√
�ε-extension

of �,

�√�ε : = {x ∈ R
n : dist(x,�) <

√
�ε}.

Let us denote by uε(x0) the expected pay-off of an ellipsoid process starting from
x0 ∈ �, that is

uε(x0) : = E[F(xτ ) | x0].

Then uε : �√�ε → R. Moreover, since the ellipsoid process is a Markov chain,
computing conditional probabilities using the Markov property we obtain that uε
satisfies the dynamic programming principle

uε(x) =
⎧⎨
⎩
−
ˆ

x+εEx
uε(ζ ) dζ if x ∈ �,

F(x) if x ∈ �√�ε \�,
(3.1)

which inside � coincides with (2.3).
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4 Asymptotic Regularity: the Coupling Method

We say that a function uε is asymptotically Hölder continuous if

|uε(x)− uε(y)| � C(|x − y|γ + εγ ),

where the constants C > 0 and γ ∈ (0, 1] are independent of ε. In the next
theorem we show that, under certain assumptions, the solutions uε of the dynamic
programming principle (3.1) are asymptotically Hölder continuous.

Theorem 4.1 Let � ⊂ R
n be a domain, n � 2 and 0 < λ � � <∞ such that

1 � �

λ
<
n+ 1

n− 1
.

Suppose thatA : �→ A(λ,�) is a measurable mapping with constant determinant
and B2r ⊂ � for some r > 0. If uε satisfies

uε(x) = −
ˆ

x+εEx
uε(ζ ) dζ,

then there exists γ = γ (n, λ,�) ∈ (0, 1) such that

|uε(x)− uε(y)| � C(|x − y|γ + εγ ) (4.1)

holds for every x, y ∈ Br and some constant C > 0 depending on n, λ, �, r , γ and
supB2r

|u|, but independent of ε.

The proof is based on the coupling method for asymptotic regularity developed
for different variants of tug-of-war games with noise by Luiro and Parviainen in
[11] and extended in several papers, [2, 3, 7, 14]. In turn, this method is inspired
by the Ishii-Lions method for viscosity solutions of fully nonlinear elliptic PDEs,
[8]. Moreover, for continuous time diffusion processes and the Laplacian, the
coupling method for regularity was also used by Cranston in [6] using the techniques
developed in [12].

In what follows we describe the general idea of the proof avoiding technical
details. The interested readers can find the complete and detailed proof in [1].

Proof Let uε be a function satisfying (2.3) and x, y ∈ � such that x �= y. Since
Ex = √

A(x)B for every x ∈ �, performing convenient changes of variables we
get

uε(x)− uε(y) = −
ˆ

x+εEx
uε(ζ ) dζ −−

ˆ

y+εEy
uε(ζ ) dζ

= −
ˆ

Bε

[
uε(x +

√
A(x) ζ )− uε(y +

√
A(y)Qζ)

]
dζ,
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for any orthogonal matrix Q ∈ O(n). The key idea in the proof of the asymptotic
regularity estimate (4.1) is to define a function Uε : � × � → R by Uε(x, y) =
uε(x)−uε(y) so that Uε satisfies the following 2n-dimensional mean value property,

Uε(x, y) = −
ˆ

Bε

Uε(x +
√
A(x) ζ, y +√

A(y)Qζ) dζ,

for every Q ∈ O(n). In this way, the problem of the regularity of uε becomes a
question about the absolute size of Uε(x, y). Hence, in order to show that

|Uε(x, y)| � C(|x − y|γ + εγ ), (4.2)

we need to show that the inequality

|x − y|γ > −
ˆ

Bε

∣∣x − y − (√A(x)−√
A(y)Q0)ζ

∣∣γ dζ (4.3)

holds for every x, y ∈ � with an appropriate choice of Q0 ∈ O(n). Let us define
the auxiliary function ϕ : Bε → R given by

ϕ(ζ ) = ∣∣x − y − (√A(x)−√
A(y)Q0)ζ

∣∣γ .
Since x �= y, we can fix a sufficiently small ε > 0 such that ϕ ∈ C2(Bε).
By the mean value property for superharmonic functions, it turns out that if ϕ is
superharmonic in Bε then the inequality (4.3) holds. Thus we just need to show that
	ϕ(ζ ) � 0 for every ζ ∈ Bε . Indeed, computing explicitly the Laplacian of ϕ we
can show that	ϕ(ζ ) � 0 if and only if the inequality

Tr

{(−(1− γ ) 0
0 In−1

) (
A1 + A2 − 2

√
A2Q0

√
A1

)}
� 0

holds for every A1, A2 ∈ A(λ,�). Therefore, we need to check that there exists a
matrixQ0 ∈ O(n) for which this trace is non-positive. For this purpose, we use the
inequality

max
Q∈O(n)

Tr{MQ} = Tr{
√
MM3} � n |det{M}|1/n ,

where M is any n × n real matrix, and we choose Q0 to be the corresponding
maximizer, so we get that

Tr

{(−(1− γ ) 0
0 In−1

) (
A1 + A2 − 2

√
A2Q0

√
A1

)}

� 2
[
(n− 1)�− (1− γ )λ− n(1− γ )1/nλ]



Asymptotic Regularity for a Random Walk over Ellipsoids 409

for every A1, A2 ∈ A(λ,�). Hence, ϕ is superharmonic in Bε if and only if

�

λ
<
n(1− γ )1/n + (1− γ )

n− 1
.

Furthermore, if

�

λ
<
n+ 1

n− 1
,

then we can choose small enough γ > 0 such that the condition is satisfied and thus
(4.3) holds.

Next, in order to prove (4.2), we choose large enoughC > 0 such that Uε(x, y) �
C(|x − y|γ + εγ ) for every x, y ∈ B2r \Br . Our aim is to proceed by contradiction
to show that the same inequality also holds for every x, y ∈ B2r . Therefore, let us
assume that the inequality does not hold in B2r . Then we define a positive number

K : = sup
x,y∈B2r

{Uε(x, y)− C|x − y|γ } > Cεγ .

In particular, this implies that Uε(x, y) � K + C|x − y|γ for every x, y ∈ B2r . Let
x̃, ỹ ∈ B2r the points where the supremum is attained. Then

K + C |̃x − ỹ|γ = Uε(̃x, ỹ) = −
ˆ

Bε

Uε(̃x +
√
A(̃x) ζ, ỹ +√

A(ỹ)Qζ ) dζ

� K + C−
ˆ

Bε

∣∣̃x − ỹ − (√A(̃x)−√
A(ỹ)Q)ζ

∣∣γ dζ.
Hence

|̃x − ỹ|γ � −
ˆ

Bε

∣∣̃x − ỹ − (√A(̃x)−√
A(ỹ)Q)ζ

∣∣γ dζ,
which contradicts (4.3) whenQ = Q0. Then (4.2) follows and in consequence (4.1)
holds. ��

5 Limits as ε → 0

Let {uε : ε > 0} be a collection of functions satisfying (3.1). Recalling
Theorem 4.1, since uε satisfies the asymptotic Hölder estimate (4.1) for each ε > 0,
we can define (passing to a subsequence if necessary) the limit function

u0 = lim
ε→0

uε,
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which turns out to be a viscosity solution to Lu = 0 in �, i.e.

Tr{D2u0(x) ·A(x)} = 0

holds in the viscosity sense. Therefore, this method provides Hölder estimates for
those viscosity solutions of Lu = 0 that can be constructed as the limit as ε→ 0 of
solutions of (3.1). However, Nadirashvili showed in [13] that there is not necessarily
a unique solution of Lu = 0, and thus this lack of uniqueness does not allow to
extend this estimate for every solution of the PDE. Nevertheless, uniqueness of
solutions of Lu = 0 holds if one of the following cases is satisfied:

– The dimension is n = 2 [4].

– The coefficients A(·) = (aij )ij are continuous in � [15].

– The distortion�/λ is close enough to 1 (depending on the dimension) [5, 16].

Acknowledgment Many thanks to our TEX-pert for developing this class file.
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Short-Time Asymptotics
for Game-Theoretic p-Laplacian
and Pucci Operators

Diego Berti

Abstract Let � be a domain of R
N , N ≥ 2, with non empty boundary �. In

these notes, we deal with the solution u of ut = F
(∇u,∇2u

)
in �× (0,∞), such

that u is initially zero in � and equals one on � for all positive times. Here, F is
the game-theoretic p-Laplacian	Gp or either one of the Pucci’s extremal operators
M±. In the spirit of works by Varadhan and Magnanini-Sakaguchi in the case of the
same initial-boundary problem for the heat equation, we summarize recent results
regarding the connection between the behavior for small times and the geometry of
�. In particular, we present asymptotic formulas as t → 0+ for both the values of u
and of its q-means on balls touching �.

Keywords Game-theoretic p-Laplacian · Pucci operators · Short-time
asymptotic analysis · Varadhan formulas · q-Means on balls
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1 Introduction

We consider the solution u = u(x, t) to the following initial-boundary value
problem:

ut − F
(∇u,∇2u

) = 0 in �× (0,∞), (1.1)

u = 1 on � × (0,∞), (1.2)

u = 0 on �× {0}. (1.3)
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For a given N ≥ 2, � ⊂ R
N is a domain (possibly unbounded) and � is its non

empty boundary. In what follows, F shall be the game-theoretic p-Laplacian 	Gp
or either one of the Pucci’s extremal operators M±. We remark that (1.1) shall be
satisfied according to the theory of viscosity solutions (for which we refer to e.g. [8])
while conditions (1.2)–(1.3) are meant in the classical sense, that is u is supposed to
be continuous on � × [0,∞) away from � × {0}. We also specify that in the case
that � is unbounded we consider only the bounded solution of (1.1)–(1.3).

With the purpose of understanding how the geometry of � affects the short-time
diffusion (1.1)–(1.3), we first describe well-known results obtained in the linear
case, when F = 	 is the classical Laplace operator. Varadhan, in its seminal work
[16], under the assumption that � = ∂ (RN \�), established that

lim
t→0+

4t log {u(x, t)} = −d�(x)2 for any x ∈ �, (1.4)

where with d�(x) we mean here the Euclidean distance of a point x ∈ � to �,
defined as the minimum of |x − y| among all y ∈ �.

Starting from (1.4), Magnanini and Sakaguchi investigated a more intimate link
between the short-time diffusion and the domain, in a series of papers. Here, we
only recall some of them: [9–12]. Assume that � is of class C2. Let x ∈ � be such
that there exists an unique yx ∈ � satisfying |x − yx | = d�(x) = R. A direct
consequence of [10, Theorem 4.2] is the following formula for the mean value of
u(·, t) on BR(x):

lim
t→0+

(
R2

t

)N+1
4

 

BR(x)

u(z, t) dz = cN
⎧⎨
⎩
N−1∏
j=1

[
1− Rκj (yx)

]
⎫⎬
⎭
− 1

2

, (1.5)

where cN = 2
N+1

2√
π

N
N+1

�(N/2)
�(N/4+1/4) and κ1(·), . . . , κN−1(·) are the principal curva-

tures of �.
In this paper, we shall present extensions of (1.4) and (1.5) to two important

one-homogeneous nonlinear operators. The operator	Gp is formally defined by

	Gp u =
1

p
|∇u|2−pdiv

{
|∇u|p−2∇u

}
,

or by

	Gp u =
1

p

{
	u+ (p − 2)

〈∇2u∇u,∇u〉
|∇u|2

}
.

We can suppose that p ∈ (1,∞], if we specify that for	G∞ we mean the limit of the
formal expression as p→∞. Notice that when p = 2,	G2 = 	/2. Away from the
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case p = 2,	Gp is not linear and not in divergence form. Moreover, it has (possible)

discontinuous coefficients when ∇u = 0. Nevertheless, 	Gp is one-homogeneous
for any p ∈ (1,∞], uniformly elliptic if p ∈ (1,∞) and (degenerate) elliptic when
p =∞.

As its name suggests, 	Gp arises in the context of game theory, when one
considers the limiting value for vanishing length of steps of certain two-players
games (see [13, 14]). The interest on 	Gp and on its applications has rapidly grown
in recent years. For an overview, we refer to the Ph.D. thesis of the author of these
notes [3] and references therein.

For real numbers 0 < λ ≤ �, we define M± by

M− (∇2u
)
= �

∑
λi<0

λi + λ
∑
λi>0

λi and M+ (∇2u
)
= λ

∑
λi<0

λi +�
∑
λi>0

λi,

where λi = λi
(∇2u

)
are the eigenvalues of the Hessian matrix ∇2u. Note that,

if λ = �, then M+ = M− = λ	. In the general case (0 < λ ≤ �), M± is
still uniformly elliptic while, for λ < �, it is fully-nonlinear and obviously not in
divergence form. We stress the fact that M±, as well as 	Gp , is (positively) one-
homogeneous and rotation invariant.

Pucci’s operators M± (introduced in [15]) arise in the study of stochastic control
when the diffusion coefficient is a control variable (see e.g. [2]). Furthermore, they
provide natural extremal equations for fully nonlinear operators (see [7, 8]), since
they also have the following representation:

M− (∇2u
)
= inf
A∈Aλ,�

tr
(
A∇2u

)
, M+ (∇2u

)
= sup
A∈Aλ,�

tr
(
A∇2u

)

where Aλ,� is the set of N × N symmetric matrices whose eigenvalues belong to
the interval [λ,�].

In Theorems 2.1 and 3.1 of these notes, we present the main results in extending
(1.4) and (1.5) when F is either 	Gp or M±. In Theorem 2.1, as generalization of
(1.4), we obtain that

lim
t→0+

4t log {u(x, t)} = −αd�(x)2 for any x ∈ �.

Here, we have introduced the parameter α that depends on which operator is taken
into consideration. If we denote with p′ the usual conjugate exponent of p, that is
p′ = p/(p − 1) when p ∈ (1,∞) and p′ = 1 when p = ∞, we set:

α =

⎧⎪⎪⎨
⎪⎪⎩
p′ when F = 	Gp
1
�

when F =M+
1
λ

when F =M−.
(1.6)
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To obtain the formula, we benefit from the fact that both 	Gp and M± take a
rather simple form if evaluated on radially symmetric functions. In particular, it is
worth emphasizing that 	Gp acts linearly on that class. This feature makes possible
to employ accurate barriers based on radial solutions of (1.1)–(1.3) obtained when
� is either the ball or the complement of a ball.

In Theorem 2.2, we present sharp uniform estimates on the rate of convergence
of the given Varadhan-type formula, which are instrumental to what comes next.
Nevertheless, we point out that Theorem 2.2, to the best of our knowledge,
represents a novelty also in the linear case.

Finally, we are able to generalize and extend (1.5) as follows. Let x ∈ � and
t > 0. Set 1 ≤ q ≤ ∞. The q-mean of u(·, t) on BR(x) ⊂ � is the unique real
number μ such that

‖u(·, t) − μ‖Lq(BR(x)) ≤ ‖u(·, t)− μ′‖Lq(BR(x)) for μ′ ∈ R. (1.7)

In Theorem 3.1, we provide the short-time asymptotics of q-means in the case
that BR(x) satisfies the same assumption for which (1.5) holds. Notice that if q = 2
in (1.7), we recover the mean value of u(·, t) on BR(x).

We end this introduction by noticing that a variant of these techniques (in
particular the application of barriers based on radial cases) was used by Berti and
Magnanini to obtain similar asymptotic analysis also in the case of a one-parameter
family of boundary value elliptic problems, involving again 	Gp and M± (see
[4, 6]).

2 Varadhan-Type Formulas

The next theorem summarizes [5, Theorem 2.9] and [6, Theorem 1.2 part (i)], which
concern the cases F = 	Gp and F =M±, respectively.

Theorem 2.1 (Varadhan-Type Formulas) Let � be such that � = ∂
(
R
N \�).

Let u be the solution to (1.1)–(1.3) when F is 	Gp or either one of M±.
Then, we have that

lim
t→0+

4t log {u(x, t)} = −αd�(x)2 on �. (2.1)

(Here, α is given by (1.6).)

Proof We give a sketch of the proof of (2.1), following [5] and [6]. We emphasize
here the common scheme on which the proofs of [5, Theorem 2.9] and [6, Theorem
1.2 part (i)] are based.

The identity (2.1) is plainly true if x ∈ �, since the left-hand side is zero for
each t > 0 and d�(x) = 0. For any x ∈ �, let y ∈ � be a point that realizes
|x− y| = d�(x). Call R this quantity. Since the assumption � = ∂ (RN \�) holds,
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Fig. 1 The geometrical
scheme behind the proof of
Theorem 2.1

there exists a sequence of points {zj : j ∈ N} ⊂ R
N \� approaching y as j →∞.

(See Fig. 1.) In particular, for each j ∈ N, it holds that BR(x) ⊂ � ⊂ R
N \ Bj ,

where Bj is the ball centered at zj and with radius d�(zj ).
The application of comparison and maximum principles (see [3, Theorems 1.4

and 1.8] and references therein) leads to

vj (x
′, t) ≤ u(x ′, t) ≤ w(x ′, t) for any (x ′, t) ∈ BR(x)× (0,∞),

where w and vj are the respective solutions of (1.1)–(1.3) when � = BR(x) and
� = R

N \ Bj . It follows that in particular at the point x, vj (x, t) ≤ u(x, t) ≤
w(x, t), for any t > 0. Thus,

lim sup
t→0+

4t log {w(x, t)} ≥ lim sup
t→0+

4t log {u(x, t)} ≥

lim inf
t→0+

4t log {u(x, t)} ≥ lim inf
t→0+

4t log
{
vj (x, t)

}
.

To conclude we only need to estimate both the left and the right-hand side of the
previous chain of inequalities. We claim that

lim sup
t→0+

4t log {w(x, t)} ≤ −αd�(x)2 (2.2)

and

lim inf
t→0+

4t log
{
vj (x, t)

} ≥ −α|zj − x|2. (2.3)

Passing to the limit, as j → ∞, gives that |zj − x|2 → |y − x|2 and hence the
statement is proved, since |x − y| = d�(x).

As regards (2.2), we need to consider the solution uε to the following auxiliary
boundary problem, for ε > 0:

uε − ε2F
(∇uε,∇2uε

) = 0 in BR(x),

uε = 1 on ∂BR(x).
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By employing a version of the Laplace transform in [5] and by applying the
comparison principle in [6, Lemma 4.1], it was established the following estimate
for w:

w(x, t) ≤ e−t/ε2
uε(x),

for any ε, t > 0. Since uε is radially symmetric (from the fact that F is rotation
invariant) then the Dirichlet problem can be rephrased as a problem in the context
of ordinary differential equations. This allows us to explicitly compute uε , whose
expression turns out to be given in terms of so-called modified Bessel functions. (See
[5, Lemma 2.1] and [6, Lemma 2.2].) Some manipulations, involving the values of
ε and t and the explicit asymptotic behavior of uε as ε→ 0+, give (2.2).

To obtain (2.3), we make use of the existence of a global sub-solution� of (1.1),
which takes the form, for x ′ ∈ R

N and t > 0,

�(x ′, t) = tγ e− α|x′ |2
4t .

In the case F = 	Gp it is shown in [1, Proposition 2.1] (see also [3, Proposition

2.5]) that if γ = −(N +p− 2)/(2p− 2), then� satisfies�t −F
(∇�,∇2�

) ≤ 0,
in R

N × (0,∞) and it is bounded away from the origin. The same holds for M±
with a value of γ which depends on λ and� (see [6, Lemma 4.3]). Thus, since F is
one-homogeneous and translation invariant, we can easily obtain that, for any t > 0,

vj (x, t) ≥ δj�(x − zj , t)

which ends in (2.3). Here, δj > 0 is such that δj�(x − zj , t) ≤ 1, for any t > 0.
��

With some further assumption on the regularity of �, we can provide uniform
convergence. Let ω : (0,∞)→ (0,∞) be a strictly increasing continuous function
such that ω(0+) = 0. We say that a domain � is of class C0,ω, if � is locally the
graph of a continuous function whose modulus of continuity is controlled byω. (For
detail see [5].)

We then let ψω : [0,∞)→ [0,∞) be the function defined by

ψω(σ) = inf
s≥0

√
s2 + [ω(s)− σ ]2 for σ ≥ 0.

As a consequence of the barriers shortly described in the proof of Theorem 2.1,
we obtain the following theorem. The part which concerns 	Gp is given in [5,
Theorem 2.10] while the part regarding M± in [6, Theorem 1.2 part (ii)].

Theorem 2.2 (Uniform Estimates) Let u be the solution to (1.1)–(1.3) when F is
	Gp or either one of M±.
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Then, uniformly on compact subsets of �, we have that

4t log {u(x, t)} + α d�(x)2 = O (t logψω(t)) for t → 0+.

In particular, if � is of class C2, then, uniformly on compact subsets of �,

4t log {u(x, t)} + α d�(x)2 = O (t log t) for t → 0+. (2.4)

3 Asymptotics for q-Means

Assume that� is of class C2 and that x ∈ � is such that BR(x)∩
(
R
N \�) = {yx},

for some R > 0 and yx ∈ � satisfying κj (yx) < 1
R

for j = 1, . . . , N − 1. Also, we
set

��(yx) =
N−1∏
j=1

[
1− Rkj (yx)

]
.

With the following theorem we present in a unified version the results contained
in [5, Theorem 3.5] for F = 	Gp and in [6, Theorem 5.2] when F =M±.

Theorem 3.1 (Short-Time Asymptotics for q-Means) Suppose that u is the
solution of (1.1)–(1.3) when F is 	Gp or either one of M±.

For 1 < q ≤ ∞, let μq(x, t) be the q-mean of u (·, t) on BR(x), defined as in
(1.7).

Then, for 1 < q <∞, it holds that

lim
t→0+

(
R2

t

) N+1
4(q−1)

μq(x, t) = CN,q
{
α
N+1

2 ��(yx)
}− 1

2(q−1)
, (3.1)

where

CN,q =
⎡
⎢⎣N !

´∞
0 Erfc(σ )q−1σ

N−1
2 dσ

�
(
N+1

2

)2

⎤
⎥⎦

1
q−1

.

Here, Erfc is the complementary error function, defined for σ ∈ R
N by

Erfc(σ ) = 2√
π

ˆ ∞

σ

e−s2
ds,

and �
(
N+1

2

)
is the Euler’s gamma function evaluated at N+1

2 .
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In the case q = ∞, we have:

lim
t→0+

μ∞(x, t) = 1

2
.

Proof Let v : �× (0,∞)→ R be such that

Erfc

(√
αv(x ′, t)

2
√
t

)
= u(x ′, t) for any (x ′, t) ∈ �× (0,∞).

Arguing as in [5, Corollary 2.12], after some manipulations based essentially on
(2.4) and on an integration by parts, we get that

v(·, t) = d� +O (t log t) for t → 0+,

uniformly on BR(x) ⊂ �.
Now, define η : (0,∞)→ (0,∞) by

η(t) = 1√
t

max
{
|v(x ′, t)− d�(x ′)| : x ′ ∈ BR(x)

}
for t > 0.

For any (x ′, t) ∈ BR(x)× (0,∞), it holds then that

Erfc

(√
α d�(x

′)
2
√
t

+ η(t)
)
≤ u(x ′, t) ≤ Erfc

(√
α d�(x

′)
2
√
t

− η(t)
)
, (3.2)

where η(t) = O (√
t log t

)
, as t → 0+.

With these barriers in mind, we just proceed as in [5, Theorem 3.5] (see also
[6, Theorem 5.2]). Since the q-means are monotonic with respect to the pointwise
order between functions, formulas (3.1) and the one in the case q = ∞ result
after computing them for both sides of (3.2). In the case 1 < q < ∞, the
desired asymptotics are a consequence of applications of the co-area formula and
the geometrical lemma [10, Lemma 2.1], which generates the term ��(yx). The
case q = ∞ plainly follows from the fact that the ∞-mean of a function is the
arithmetic mean of its supremum and its infimum. ��
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Geometric Properties for a Finsler
Bernoulli Exterior Problem

Chiara Bianchini

Abstract The aim of this paper is to prove convexity results for an exterior
anisotropic free boundary problem of the Bernoulli type. More precisely we recover
the results obtained in Henrot and Shahgholian (Nonlinear Anal 28(5):815–823,
1997) for the exterior problem, in the Finsler setting.
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1 Introduction

Let K be a bounded (regular) domain in R
N . The classical Bernoulli problem

consists in finding a domain� ⊃ K and a function u : � \K → R such that

⎧⎪⎪⎨
⎪⎪⎩
	u = 0 in � \K,
u = 1 on K

u = 0, |Du| = τ on ∂�,

(1.1)

where τ is a given positive constant.
Existence of a solution (�, u) has been obtained in various ways by several

authors, also in the case of some non-linear operators as governing operator (see
[12]) and more recently in the more general setting of A-harmonic PDE’s (see [1]).
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If K is convex we can ask whether this convexity property is inherited by the
unknown set �. The positive answer has been given firstly by A. Henrot and H.
Shahgholian in [11] where the authors proved the following: let K be a convex set
and assume that (�, u) is a solution to (1.1). Then � is also convex and there are
no other solutions. Then such a result has been generalized to more general classes
of operators (see [1]).

In this paper we consider the analogous problem of (1.1) in the Finsler setting,
that is in the space R

N endowed by an anisotropic norm H which belongs to the
class H:

H = {H ∈ C2,α(RN \ {O}), H 2 is uniformly convex}. (1.2)

The corresponding Finsler Bernoulli problem consists then in finding a couple
(u,�), where � ⊂ R

N containsK and u : �→ R, is such that:

⎧⎪⎪⎨
⎪⎪⎩
	Hu = 0 in � \K
u = 1 on ∂K

u = 0,H(Du) = τ on ∂�,

(1.3)

where 	Hu is the so called Finsler Laplacian associated to the norm H and is
defined as

	Hu = div(H(Du)∇ξH(Du)).

In this setting Henrot and Shahgholian’s result reads as follows.

Theorem 1.1 Let H be a norm of RN in the class (1.2), and let K be a bounded
convex subset of RN whose boundary is of class C2, with O ∈ K . If there exists a
solution (�, u) to (1.3), then � is convex, u has convex super level sets and there is
no other solution.

This result has been proved in [1] by adapting an idea of Lewis [13] and showing
that if K is convex then the superlevel sets of u are convex sets (and hence � is
convex).

In this paper we prove Theorem 1.1 by using a geometric approach. More
precisely we first prove the convexity of the set � by comparing the capacitary

potential of the ring conv
(
� \K

)
with a rearrangement of the capacitary potential

of � \K . Then a monotonicity result is proved, with respect to both data K and τ ,
which entails the uniqueness result.
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2 Notation

Let N ≥ 3 and H : RN → R be a norm in R
N , that is a nonnegative positively

homogeneous convex function; more explicitly:

• (i) H is convex;
• (ii) H(ξ) ≥ 0 for ξ ∈ R

N and H(ξ) = 0 if and only if ξ = 0;
• (iii) H(tξ) = |t|H(ξ) for ξ ∈ R

N and t ∈ R.

We indicate by H0 the dual norm of H , that is

H0(x) = sup
ξ �=0

〈x; ξ〉
H(ξ)

for x ∈ R
N . (2.1)

We denote by BH and BH0 the unitary balls in the norm H and H0 respectively; in
general, for r > 0, we set

BH (r) = {ξ ∈ R
N H(ξ) < r} = rBH , BH0(r) = {x ∈ R

N H0(x) < r} = rBH0 .

We say that a set is a Wulff shape with respect to the norm H if it is a ball in the
norm H0.

Given a smooth function u, we will use H0 to measure the norm of x ∈ R
N and

H to measure the norm of Du(x) (then H is used on the dual of RN , that coincides
however with R

N ).
Notice that by Schneider [14, Corollary 1.7.3], we have that H0 ∈ C1(RN \ {0})

if and only BH is strictly convex. Moreover, we notice that if H ∈ C2(RN \ {0})
and BH is uniformly convex (i.e. H 2 ∈ C2+(RN \ {0}), see later for the definition),
then the same holds for H0 and BH0 .

The Finsler Laplacian (associated to H ) of the function u is given by

	Hu = div
(
H(Du)∇ξH(Du)

) = (
Hξi (Du)Hξj (Du)+H(Du)Hξiξj (Du)

)
uij .

(2.2)

The Finsler Laplacian have been widely investigated in the literature and goes back
to Wulff [15], who considered it to describe the theory of crystals. Many other
authors developed related theory in several settings; in particular in the case of
overdetermined problems we mention [2–5, 7].

Thanks to the regularity and the homogeneity properties of the norm H , the
Finsler Laplacian is a strictly elliptic operator. Moreover several results which are
valid in the Euclidean case, hold true in the anisotropic case too. Here we present
only few of them.

Proposition 2.1 (Weak Comparison Principle [10]) Let E be a bounded domain
and assume that

−	Hu ≤ −	Hv in E, and u ≤ v on ∂E,
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then

u ≤ v a.e. in E.

In particular, the following maximum principle holds.

Proposition 2.2 (Maximum Principle [10]) If 	Hu = 0 in E, then

min
∂E
u ≤ u(x) ≤ max

∂E
u,

almost everywhere in E.

For two bounded nested open sets D0 ⊂ D1, we define the Finsler capacitary
potential of the ring D0 \D1 as the function u : D0 \D1 → R such that

⎧⎪⎪⎨
⎪⎪⎩
	Hu = 0 in D0 \D1 ,

u = 1 in D1 ,

u = 0 on ∂D0 .

(2.3)

In the special case of the annular Wulff ring case BH0(r2) \ BH0(r1), the Finsler
capacitary potential is the function

ur1,r2(x) =
H 2−N

0 (x)− r2−N
2

r2−N
1 − r2−N

2

. (2.4)

3 Preliminary Results

We here present some notions and results which will be useful in the proof of the
main result. We indicate by conv(E) the convex hull of the set E. Given a function
u : E → R, we define its quasi-concave envelope as the function u∗ such that for
every t ∈ R,

{x ∈ R
N : u∗(x) < t} = conv

(
{x ∈ R

N : u(x) < t}
)
. (3.1)

If �(t) denotes the sublevel set of the function u of level t , that is

�(t) = {x ∈ R
N : u(x) < t},

then the function u∗ can be equivalently defined as

u∗(x) = sup{t ∈ R : x ∈ conv
(
�(t)

)}
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and

u∗(x) =

max

{
min{u(x1), . . . , u(xN+1)} : xi ∈ E, ∃λ1, . . . λN+1 ∈ [0, 1],

N+1∑
i=1

λi = 1, x =
N+1∑
i=1

λixi

}
.

Proposition 3.1 ([9]) Let �,K be open bounded convex subsets of RN , of class
C2, such that K ⊆ �. Let u ∈ C2(� \ K) ∩ C(� \K) be such that u ≡ 0 on ∂�
and u ≡ 1 on ∂K . If |Du| > 0 in � \ K , then for every x ∈ � \ K there exist
λ1, . . . , λN ∈ [0, 1], ∑N

i=1 λi = 1 and x1, . . . , xN ∈ � \K such that

x̄ =
N∑
i=1

λxi, and u(x1) = . . . = u(xN) = u∗(x̄).

Moreover the point xi belongs to the support hyperplane of the convex set {u∗ ≥
u∗(x̄)}, for every i = 1, . . . , N . In particular for every i, Du(xi) is parallel to the
normal vector to such hyperplane and

1

|Du∗(x̄)| =
m∑
i=1

λi

|Du(xi)| .

The previous result has been generalized to a less regular situation in [6].

4 Proof of Theorem 1.1

Proof We compare the capacitary potential u∗ of the convex ring conv(�) \ K to
the quasi-concave envelopew of u.

Notice that, thanks to the Neumann condition on ∂�,� is a bounded set. Indeed,
if there exists an unbounded sequence {xn} ∈ ∂�, the comparison with the Finsler
capacitary potential of RN \ K would give a contradiction, thanks to estimates in
Theorem 3.3 of [4].

Let t be given by

t = sup{s > 0 : s conv(�) ⊂ �};

it is clear that 0 < t ≤ 1, and t = 1 if and only if � is convex. We denote by x̄ a
common point to ∂� and t conv(�).
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We consider the rescaling of the capacitary potential u∗ given by

v(x) = u∗(x
t
), for x ∈ t conv(�) \ tK .

We notice that v is the capacitary potential of t
(
conv(�) \K

)
and that

Dv(x) = 1

t
Du∗(x

t
) ,

for every x ∈ t(conv(�) \K).
By applying the comparison principle to u and v, we obtain u ≥ v in t conv(�)\

K with u(x̄) = v(x̄). Hence it holds

τ = H(Du(x̄)) ≥ H(Dv(x̄)) = 1

t
H (Du∗(ȳ)), (4.1)

where ȳ = x̄
t

and H(Du(x̄)),H(Du∗(ȳ)) denote the limsup of H(Du(x)) and
H(Du∗(y)) for x, y tending to x̄, ȳ, with x ∈ t (conv(�) \K), y ∈ conv(�) \ K ,
respectively.

Let us now consider the quasi-concave envelope w of the function u (see (3.1)
for definition). By Proposition 3.1 there exist x1, . . . , xN ∈ ∂� such that

ȳ =
N∑
i=1

λixi,

with
∑N
i=1 λi = 1 and λi ≥ 0, and where

νconv(�)(ȳ) = ν�(xi) = ν

for any i = 1, . . . , N , and

|Dw(y)| =
( N∑
i=1

λi

|Du(xi)|
)−1

.

Hence, since xi ∈ ∂�, it holds that H(ν)|Du(xi)| = τ , which entails that

H(Dw(ȳ)) = H(ν)|Dw(ȳ)| = τ.

In the last step we compare w with u∗. Notice that by Bianchini et al. [6] the
function w is a subsolution to −	Hu = 0 in a viscosity sense, that is

	Hw ≥ 0 in conv(�) \K.
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Moreover w(ȳ) = u∗(ȳ) = 0. By the viscosity comparison principle (see [8]) we
obtain that

|Dw(ȳ)| ≤ |Du∗(ȳ)|,

whereDw(ȳ) is parallel to Du∗(ȳ) and are both parallel to ν. This guarantees that

H(Du∗(ȳ)) ≥ H(Dw(ȳ)) = τ.

Thanks to (4.1) and the fact that 0 < t ≤ 1 we obtain t = 1, that is � = conv(�).
Hence the function u is the Finsler capacitary potential of the convex ring� \K

and thanks to [6] it has convex super level sets. Indeed the equation 	Hu = 0 can
be written as

∇ξH(θ) B ∇ξH(θ)+H(θ)tr(∇2
ξ H(θ)B) = 0,

where θ is the direction of the gradient at a generic point x, B is the Hessian matrix
of u at x and tr(A) is the trace of the matrix A.

��

5 Monotonicity and Uniqueness Results

Theorem 5.1 Let A,B be two convex bounded domains whose boundaries are of
class C2 and such that O ∈ A ⊆ B, let τ > 0. Assume that there exist solutions
(uA,�A), (uB,�B) to the Bernoulli problem (1.3) related to A and τ and to B and
τ , respectively. Then �A ⊆ �B .

Proof Assume by contradiction that �A �⊆ �B . Let

t = sup{s ∈ R
+ : s�A ⊆ �B};

hence 0 < t < 1 and there exists x̄ ∈ ∂�B ∩ ∂(t�A). For every x ∈ t(�A \ A) we
define the function

v(x) = uA(xt ),
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which satisfies
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

	Hp v = 0 in t(�A \A),
v = 1 on ∂(tA),

v = 0 on ∂(t�A)

H(Dv) = τ

t
on ∂(t�A).

Let U be the intersection between an open neighbourhood of x̄ and (t�A ∩ �B)
and denote by � the portion of ∂(t�A) contained into U . Hence it holds

v|� = 0 ≤ uB |�, with uB(x̄) = v(x̄) .

Moreover, since �B is tangent to t�A at x̄ then DuB(x̄) is parallel to DuA( x̄t ), and
we denote by ν their direction. By using the homogeneity ofH , we have that

τ = H(DuB(x̄)) = H(ν)|DuB(x̄)| ≥ H(ν)
|DuA( x̄t )|

t
= 1

t
H(DuA(

x̄

t
)) = τ

t
.

Hence we have that t ≥ 1, which gives a contradiction and we conclude. ��
Theorem 5.2 Let K be a bounded convex domain whose boundary is of class C2

and O ∈ K; let τA ≥ τB > 0. Assume that there exist two solutions (uA,�A)
and (uB,�B) to the Bernoulli problem (1.3) related to K and τA and to K and τB ,
respectively. Then �A ⊆ �B .

Proof Let

t = sup{s ∈ R
+ : s�A ⊆ �B};

there exists x̄ ∈ ∂�B ∩ ∂(t�A). For every x ∈ t(�A \ A) we define the function

v(x) = uA(xt ),

which satisfies
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

	Hp v = 0 in t(�A \A),
v = 1 on ∂(tA),

v = 0 on ∂(t�A)

H(Dv) = τ

t
on ∂(t�A).
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Let U be the intersection between an open neighbourhood of x̄ and (t�A ∩ �B)
and denote by � the portion of ∂(t�A) contained into U . Hence it holds

v|� = 0 ≤ uB |�, with uB(x̄) = v(x̄) .

Moreover, since �B is tangent to t�A at x̄, then DuB(x̄) is parallel to Dv(x̄); we
denote by ν their direction. Notice that by definition of the function v, also DuA( x̄t )
has direction ν. By the comparison principle it holds that |DuB(x̄)| ≥ |Dv(x̄)| and,
by using the homogeneity of H and the fact that

H(DuB(x̄)) = |DuB(x̄)|H(ν); H(Dv(x̄)) = |Dv(x̄)|H(ν),

we have that

τA ≥ τB = H(DuB(x̄)) ≥ H(Dv(x̄)) = 1

t
H(DuA(

x̄

t
)) = 1

t
τA.

Hence we have that t ≥ 1, which implies that �A ⊆ �B . ��
The monotonicity results in Theorems 5.1 and 5.2 straightforwardly imply the

uniqueness of the solution in the following theorem (and hence its proof is omitted).

Theorem 5.3 Let H be a norm of RN in the class (1.2) and let K be a bounded
convex subset of RN with boundary of class C2, τ > 0, O ∈ K . If there exists a
solution (u,�) to (1.3) then it is unique.
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for a Two-Phase Overdetermined
Problem of Serrin-Type

Lorenzo Cavallina and Toshiaki Yachimura

Abstract In this paper, we consider an overdetermined problem of Serrin-type for a
two-phase elliptic operator with piecewise constant coefficients. We show the exis-
tence of infinitely many branches of nontrivial symmetry breaking solutions which
bifurcate from any radially symmetric configuration satisfying some condition on
the coefficients.
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1 Introduction and Main Result

In this paper, we consider a bifurcation analysis of a Serrin-type overdetermined
problem for an elliptic operator with piecewise constant coefficients. First, let us
introduce the problem setting of our overdetermined problem. Let (D,�) be a
pair of sufficiently smooth bounded domains of RN (N ≥ 2) such that D ⊂ �.
Moreover, let n denote the outward unit normal vector of �. We consider the
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Fig. 1 Problem setting

following two-phase Serrin-type overdetermined problem:

⎧⎪⎪⎨
⎪⎪⎩
− div(σ∇u) = 1 in �,

u = 0 on ∂�,

∂nu = c on ∂�,

(1.1)

where c is a real constant and σ = σ(D,�) is the piecewise constant function given
by

σ(x) =
{
σc in D,

1 in � \D,

and σc is a positive constant such that σc �= 1 (Fig. 1).
We remark that, if (1.1) is solvable, then the parameter c must be equal to

c(�) = −|�|/|∂�| by integration by parts. In what follows, we will say that a pair
of domains (D,�) is a solution of problem (1.1) whenever problem (1.1) is solvable
for σ = σ(D,�). Let us define the inner problem and outer problem associated to
problem (1.1) (see [5]).

Problem 1 (Inner Problem) For a given domain � and a real number 0 < V0 <

|�|, find a domainD ⊂ D ⊂ � with volume |D| = V0, such that the pair (D,�) is
a solution of the overdetermined problem (1.1).

Problem 2 (Outer Problem) For a given domain D and a real number V0 > |D|,
find a domain� ⊃ D with volume |�| = V0, such that the pair (D,�) is a solution
of the overdetermined problem (1.1).

The case where D is empty (one-phase setting) has been studied by many
mathematicians in various situations since the pioneering work of Serrin [15], who
proved that the overdetermined problem (1.1) without the inclusionD is solvable if
and only if the domain� is a ball. We refer to [1, 2, 11, 12] and references therein.

However, whenD is not empty (two-phase setting), there are a few results for the
overdetermined problem (1.1). The paper [4] deals with the inner problem (Problem
1) of the overdetermined problem (1.1), the authors proved the local existence and
uniqueness for the inner problem near concentric balls.
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The authors, in [5], proved the following local existence and uniqueness results
for the outer problem (Problem 2) near concentric balls by perturbation arguments
by means of shape derivatives and the implicit function theorem for Banach spaces.

Theorem 1.1 Let us define

s(k) = k(N + k − 1)− (N + k − 2)(k − 1)R2−N−2k

k(N + k − 1)+ k(k − 1)R2−N−2k for k = 1, 2, . . . ,

$ = {s ∈ (0,∞) | s = s(k) for some k = 1, 2, . . .} .
(1.2)

and let BR ⊂ B1 denote concentric balls of radius R and 1 respectively. If σc /∈ $,
then for every domain D of class C2,α sufficiently close to BR in the C2,α-norm ,
there exists a domain � of class C2,α sufficiently close to B1 in the C2,α-norm such
that the outer problem (Problem 2) admits a solution for the pair (D,�).

Remark 1.2 Notice that, by the definition of s(k) in (1.2), the quantity s(k) is not
necessarily positive for all values of N , k and R. Indeed, for fixed N and R, the
quantity s(k) tends to −1 as k → +∞. In particular, this implies that the set $ is
finite.

From Theorem 1.1, problem (1.1) has a solution near concentric balls except for
σc ∈ $. Our aim in this paper is to examine the case for σc near s(m) ∈ $ in the
same situation of Theorem 1.1. In particular, our interest is the shape of the solution
of the outer problem near σc ∈ $. In what follows, we introduce some notations in
order to state the main theorem in this paper precisely (Fig. 2).

Let us take an element s(m) ∈ $ for some m ≥ 1 and let X and Y denote the
Banach spaces

X =
{
g ∈ C2,α(∂B1) :

ˆ

∂B1

g = 0

}
, Y =

{
h ∈ C1,α(∂B1) :

ˆ

∂B1

h = 0

}

endowed with their natural norms. We consider the functional " : X × R → Y

defined by

Fig. 2 The geometrical
construction used in the
definition of "(g, λ)
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"(g, λ) = {
∂ngvg − cg

}
Jτ (g). (1.3)

In what follows, we will explain the notation involved in the definition of (1.3). For
g ∈ X, let �g be the unique bounded domain whose boundary is defined as

∂�g = {x + g(x)n(x) : x ∈ ∂B1}

with outward unit normal vector denoted by ng. Moreover, let vg be the solution of
the Dirichlet boundary value problem given by the first two equations in (1.1) for
(D,�) = (BR,�g) and σc = s(m) + λ. By the definition (1.3), we notice that
"(0, λ) = 0 for any λ since the pair of concentric balls (BR,�0) is a solution of
overdetermined problem (1.1). By a slight abuse of notation, we will use ∂ng vg to
denote the function of value

∂ngvg (x + g(x)n(x)) for x ∈ ∂B1.

Finally, cg = c(�g) = −|�g|/|∂�g| and Jτ (g) denotes the tangential Jacobian of
the map x �→ x + g(x)n(x) from ∂B1 to ∂�g (see [9, Definition 5.4.2]).

Now we can present the main result in this paper.

Theorem 1.3 Let (D,�) = (BR,�g) (0 < R < 1). Also we take an element
s(m) ∈ $ for some m ≥ 1 and suppose that σc = s(m) + λ, where λ ∈ R. If we
consider the equation

"(g, λ) = 0,

then (0, 0) is a bifurcation point of the equation "(g, λ) = 0. That is, there exists
a smooth function ε �→ λ(ε) ∈ R with λ(0) = 0 such that overdetermined problem
(1.1) admits a nontrivial solution of the form (BR,�g(ε)) for σc = s(m)+ λ(ε) and
ε small (notice that, by continuity, σc = s(m) + λ(ε) > 0 if ε is small enough). If
N = 2, then the symmetry breaking solution (BR,�g(ε)) satisfies

g(ε) = ε cos(mθ)+ o(ε) in C2,α(∂�0) as ε→ 0. (1.4)

Moreover, if N ≥ 3, then there exists a spherical harmonic Ym of m-th degree, such
that the symmetry breaking solution (BR,�g(ε)) satisfies

g(ε) = εYm(θ)+ o(ε) in C2,α(∂�0) as ε→ 0. (1.5)

From Theorem 1.3, if D = BR , then the outer problem has solutions not only for
� = B1 but also for � = �g given by (1.4) and (1.5). That is, there exist branches
of symmetry breaking solutions of the outer problem emanating from the bifurcation
points σc ∈ $. This implies that the uniqueness of the outer problem does not hold
near σc ∈ $ because symmetry breaking phenomena occur. Similar results appear
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in the context of free boundary problems of a circulating flow with surface tension
[13] and a model of tumor growth [7, 8].

This paper is organized as follows. In Sect. 2, we prove Theorem 1.3 when
N = 2. This proof is based on the results obtained in [5] and the Crandall–
Rabinowitz theorem. In Sect. 3, we consider high dimensional case N ≥ 3 and
establish Theorem 1.3.

2 Proof of Theorem 1.3 for N = 2

In this section, we prove the main Theorem 1.3 when N = 2. We obtain the
existence of symmetry breaking bifurcation solutions of overdetermined problem
(1.1) applying the following version of the Crandall–Rabinowitz theorem.

Theorem 2.1 (Crandall–Rabinowitz Theorem [6]) Let X, Y be real Banach
spaces and "(x, λ) be a Cp map (p ≥ 3) of a neighborhood (0, λ0) in X × R

into Y . Suppose that

(i) "(0, λ) = 0 for all λ in a neighborhood of λ0.
(ii) There exists x0 ∈ X such that Ker ∂x"(0, λ0) is a one-dimensional space

spanned by x0.
(iii) Im ∂x"(0, λ0) is a closed subspace of Y which has codimension one.
(iv) ∂λ∂x"(0, λ0)[x0] /∈ Im ∂x"(0, λ0).

Then (0, λ0) is a bifurcation point of the equation "(x, λ) = 0 in the following
sense: In a neighborhood of (0, λ0) the set of solutions of "(x, λ) = 0 consists of
two Cp−2 smooth curves �1 and �2 which intersect only at the point (0, λ0); �1 is
the curve (0, λ) and �2 can be parametrized as follows:

�2 : (x(ε), λ(ε)) , ε : small, (x(0), λ(0)) = (0, λ0), x ′(0) = x0.

In what follows, we assume that N = 2.

Theorem 1.3, N = 2 Take an element s(m) ∈ $ for some m ≥ 1 and let " be the
map defined by (1.3). By definition, notice that "(g, λ) = 0 if and only if the pair
(BR,�g) solves (1.1) for σc = s(m) + λ. By Cavallina [3, Theorem 3.15 (iii)],
the map " is Fréchet differentiable infinitely many times in a neighborhood of the
origin in X. Moreover, by the explicit formula of its Fréchet derivative ∂x"(0, λ)
computed in [5, Theorem 3.5], we know that Ker ∂x"(0, λ) is a two dimensional
space, spanned by {cos(mθ), sin(mθ)}. As a consequence, we cannot apply the
Crandall–Rabinowitz theorem (Theorem 2.1) directly. In order to reduce the kernel
to a one dimensional space, we introduce the following spaces of even functions:

X∗ = {g ∈ X : g(θ) = g(2π − θ), θ ∈ [0, 2π)} ,
Y ∗ = {h ∈ Y : h(θ) = h(2π − θ), θ ∈ [0, 2π)} ,



438 L. Cavallina and T. Yachimura

where we identified the unit circle ∂B1 ⊂ R
2 with the interval [0, 2π). Now, we

consider the restriction"∗ of" onX∗. We claim that"∗ is a well-defined mapping

"∗ : X∗ → Y ∗.

To show this, notice that g ∈ X∗ implies that the configuration (BR,�g) is
symmetric with respect to the x-axis. Now, by the unique solvability of the Dirichlet
boundary value problem given by the first two equations in (1.1), this implies that
also vg shares the same symmetry and, thus, "∗(g, λ) = "(g, λ) ∈ Y ∗ as claimed.

We will now apply Theorem 2.1 to the map "∗. Recall that "∗(0, λ) = 0 for
any λ since the pair of concentric balls (BR,�0) is a solution of overdetermined
problem (1.1). This fact implies that (i) holds true. Let us check condition (ii). In
the proof of Theorem 3.6 in [5], we computed the Fréchet derivative ∂x"(0, λ). The
case N = 2 reads

∂x"(0, λ)[g] =
∞∑
k=1

βk(λ)
(
αeven
k cos(kθ)+ αodd

k sin(kθ)
)
, (2.1)

for

g =
∞∑
k=1

(
αeven
k cos(kθ)+ αodd

k sin(kθ)
)
,

where

βk(λ) = (k + 1)(s(m)+ λ− 1)k + (k + ks(m)+ kλ)(k − 1)R−2k

2(k + ks(m)+ kλ)R−2k + 2k(1− s(m)− λ) . (2.2)

Now, a simple computation with (1.2) at hand yields that

βm(0) = 0 and βk(0) �= 0 for k �= m.

Let x0 = cos(mθ). Notice that X∗ is the subspace of X spanned by {cos(kθ)}k≥1.
Then, combining (2.1) with the fact that βm(0) = 0 by construction, we obtain

Ker ∂x"∗(0, 0) = span{x0}.

Thus condition (ii) holds true. Moreover, ∂x"∗(0, 0)[cos(kθ)] = βk(0) cos(kθ),
where βk(0) �= 0 for k �= m. This implies that

Im ∂x"
∗(0, 0)⊕ Ker ∂x"∗(0, 0) = Y ∗.

Therefore, Im ∂x"
∗(0, 0) is codimension one and thus also condition (iii) holds

true.
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Let us finally check condition (iv). Note that

∂x"
∗(0, λ)[x0] = βm(λ) x0.

By (2.2), we can easily compute that

∂λβm(0) = {m(m+ 1) +m(m− 1)R−2m}{2(m+ms(m))R−2m + 2m(1− s(m))}
{2m(1 + s(m))R−2m + 2m(1− s(m))}2 ,

(2.3)

where we used the fact that βm(0) = 0 by construction. Since 0 < s(m) < 1 and
m ≥ 1, the right hand side of (2.3) is positive. Thus by (2.1),

∂λ∂x"
∗(0, 0)[x0] = ∂λβm(0) x0 ∈ Ker ∂x"

∗(0, 0) \ {0}.

In other words,

∂λ∂x"
∗(0, 0)[x0] /∈ Im ∂x"

∗(0, 0).

Therefore, by the Crandall–Rabinowitz theorem (Theorem 2.1), (0, 0) is a
bifurcation point of the equation "(g, λ) = 0 in the sense that there exists a C∞
curve (g(·), λ(·)) from a neighborhood of 0 ∈ R into X∗ × R, with (g(0), λ(0)) =
(0, 0) and such that, for all small ε, there exists a symmetry breaking solution of
overdetermined problem (1.1) for σc = s(m) + λ(ε), represented by (BR,�g(ε)),
with

g(ε) = ε cos(mθ)+ o(ε) as ε→ 0.

��
Remark 2.2 Theorem 1.3 ensures the existence of nontrivial solutions of (1.1) of
the form (BR,�). In particular, such solutions only partially inherit the symmetry
of the core BR . One might wonder whether nontrivial solutions of the form (D,B1)

exist for some subdomain D other than a ball. Actually this is not the case, since
Theorem 5.1 of [14] states that, if B1 \D is connected and the pair (D,B1) solves
(1.1), then D and B1 must be concentric balls (Fig. 3).

3 Proof of Theorem 1.3 for N ≥ 3

The proof of Theorem 1.3 when N ≥ 3 follows along the same lines as the
previous section. Indeed, as in the case N = 2, the Crandall–Rabinowitz theorem
cannot be applied directly because Ker ∂x"(0, 0) is not one dimensional. By the
N-dimensional analogous of (2.1) (see [5, equation (3.12)]), Ker ∂x"(0, 0) is the
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Fig. 3 Left: a symmetry-breaking bifurcating solution of (1.1) given by Theorem 1.3 (m = 6, N =
2). Right: a symmetry-breaking configuration that cannot be a solution to (1.1) in light of Theorem
5.1 of [14]

subspace of X spanned by the spherical harmonics whose degree is m. In order to
reduce the kernel to a one dimensional space, we follow the same ideas as [10] and
consider the restriction "∗ of " to the space X∗ of functions in X that are invariant
with respect to some specific group of symmetries � ⊂ O(N). Here we recall the
definition of �-invariance with respect to a subgroup � of the orthogonal group
O(N). A function g ∈ X is said to be �-invariant if

g(θ) = g(γ (θ)) for all θ ∈ ∂B1, γ ∈ �.

If, for example, we set � = Id×O(N − 1), then the space of �-invariant spherical
harmonics of any given degree k ∈ N is a one dimensional space. In particular, if
X∗ ⊂ X is the subset of �-invariant functions and "∗ the restriction of " to X∗,
then also Ker ∂x"∗(0, 0) is a one dimensional space, which can be considered to be
spanned by some spherical harmonic x0 ∈ X∗. The rest of the proof runs just as the
one in Sect. 2, by checking conditions (i)–(iv) of the Crandall–Rabinowitz theorem
applied to the map "∗.

Remark 3.1 We claim that all nontrivial solutions (BR,�g(ε)) given by Theo-
rem 1.3 share the same symmetries of the element x0 ∈ X∗, defined such that
Ker ∂x"∗(0, 0) = span{x0}. To this end, let � ⊂ O(N) be a symmetry group
such that the function x0 is �-invariant. Now, consider the further restriction "∗∗
of "∗ to the subspace X∗∗ of all �-invariant functions in X∗. Notice that, since x0
is �-invariant by hypothesis, then Ker ∂x"∗(0, 0) = Ker ∂x"∗∗(0, 0) = span{x0}.
Another application of the Crandall–Rabinowitz theorem to "∗∗ yields that g(ε) is
also �-invariant. The claim follows by the arbitrariness of �.
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Regularity Results for Nonlocal
Minimal Surfaces

Eleonora Cinti

Abstract In this note, we present some recent results in the study of nonlocal
minimal surfaces. The notion of nonlocal minimal surface was introduced by
Caffarelli, Roquejoffre, and Savin, they are boundaries of sets which minimize the
nonlocal (or fractional) perimeter. In the last years, much interest has been devoted
to the study of their regularity properties. Similarly to the classical local setting, a
crucial ingredient in the study of regularity is the classification of minimal cones.
In the nonlocal setting, only partial results are available, dealing mainly with the
low-dimensional case. We describe the main achievements in the field, focusing in
particular on the difference with respect to the classical theory and in the difficulties
which arise due to the nonlocal character of the problem.

Keywords Class file · Journal

Mathematics Subject Classification (2010) Primary 99Z99; Secondary 00A00

1 Introduction

We describe some recent results in the study of regularity properties of nonlocal, or
fractional, minimal surfaces. These geometric objects were defined by Caffarelli,
Roquejoffre, and Savin in [7], as the boundaries of sets whose characteristic
functions minimize a fractional Sobolev norm.

More precisely, in [7] the following notion of fractional perimeter was intro-
duced. Let s ∈ (0, 1). Given E a bounded subset of Rn, the fractional s-perimeter
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of E is given by

Pers (E) = cs
ˆ

E

ˆ

Rn\E
1

|x − y|n+s dx dy =
cs

2
[χE]Ws,1(Rn), (1.1)

where χE denotes the characteristic function of the set E, [ · ]Ws,1(Rn) denotes the
seminorm in the fractional Sobolev spaceWs,1, and cs is a constant depending on s
which behaves like (1− s) as s ↑ 1. To be more precise, in [7] the definition of Pers
was given in terms of the squaredWs/2,2-seminorm of χE , but it is easily seen that
their definition coincide with the one given above.

Written as in (1.1), one can better appreciate the analogy with the notion of
classical perimeter in the sense of De Giorgi, defined as

Per(E) = [χE ]BV (Rn),

where [ · ]BV (Rn) denotes the seminorm in the space BV . In (1.1) we are considering
a fractional order derivative of the characteristic function of a set and the two notions
are consistent in the sense that Pers → Per as s ↑ 1 (see e.g. [1, 9, 14]).

Roughly speaking, the s-perimeter captures the interactions between a set E and
its complement, these interactions take place in the whole R

n and are weighted by
a kernel with polynomial decay. Due to its nonlocal character, the s-perimeter has
several applications, for example in image reconstruction and nonlocal capillarity
models, see e.g. [3, 17].

A setE which is a minimizer for the fractional perimeter is called a fractional (or
nonlocal) minimal set, and its boundary is referred to as a nonlocal minimal surface.

As it happens for the classical notion of area-minimizing surfaces, if the set E is
not bounded, in order to give the notion of minimizer for the perimeter functional,
one needs to introduce a localized version of perimeter, since the perimeter of an
unbounded set E in the whole Rn could be infinite.

The localized notion of s-perimeter is the following: let � be a bounded domain
in R

n, we define the fractional s-perimeter of a measurable set E ⊂ R
n relative to

� as

Pers (E,�) :=
ˆ

E∩�

ˆ

Ec

1

|x − y|n+s dx dy +
ˆ

E\�

ˆ

�\E
1

|x − y|n+s dx dy,
(1.2)

where Ec denotes the complement of E in R
n.

The choice of the set of integration in the definition of the fractional perimeter is
the natural one which does not change the variational structure of the functional,
once we have fixed the set E outside of �. We can now give the definition of
minimizer for Pers in �.
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Definition 1.1 We say that a set E is a minimizer for the s-perimeter in � if

Pers(E,�) ≤ Pers (F,�), for all F such that E \� = F \�.

Moreover, we say that E is a minimizer for the s-perimeter in R
n, if E is a

minimizer in a ball BR , for all radii R > 0.

Said in other words, a nonlocal minimal surface in � is the boundary of a set E,
whose characteristic function minimize the Ws,1-seminorm, among all sets which
coincide with E in the complement of �.

In [7] the Euler-Lagrange equation for this functional has been derived: similarly
to the classical case, a nonlocal minimal set E must have vanishing fractional mean
curvatureHs , whereHs is given by the following expression

Hs(x) = cs lim
ε→0+

ˆ

Rn\Bε(x)
χRn\E(y)− χE(y)

|x − y|n+s dy. (1.3)

Here cs denotes again a constant depending on s which behaves like (1−s) as s ↑ 1.
The first example of a surface with zero nonlocal mean curvature is a half-space.

Other examples of sets with vanishing nonlocal mean curvature have been studied
in the recent contributions [11, 15]. In [15], the nonlocal analogue of catenoids
are constructed, but they differ from the standard catenoids since they approach a
singular cone at infinity instead of having a logarithmic growth. These surfaces are
constructed using perturbative methods, by performing small perturbation along the
normal vector to ∂E. Instead in [11] it is proven, just by an easy symmetry argument,
that the standard helicoids are surfaces with zero nonlocal mean curvature.

In [7], the study of regularity of nonlocal minimal surfaces has been started.
More precisely, Caffarelli, Roquejoffre, and Savin established density estimates, the
improvement of flatness for minimizers, a monotonicity formula, a blow-up and a
dimension reduction argument. Nevertheless, the regularity theory for minimizers of
the fractional perimeter is still widely open. In the following sections we describe
the main results and the main open questions in the field.

2 Classification of s-Minimal Cones in Low Dimensions

We start by recalling the following well known results in the regularity theory for
classical area-minimizing surfaces.

Every minimal cone in R
n is a hyperplane, whenever n < 8. The condition on

the dimension is optimal, indeed in R
8 the Simons cone defined as

C := {x ∈ R
8 | x2

1 + · · · + x2
4 = x2

5 + · · · + x2
8}

is a minimizer for the perimeter functional.
The classification of minimal cones is one of the main ingredients in both the

classification of entire minimal surfaces (that is surfaces that are minimizer of the
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perimeter functional in the whole R
n) and in the study of regularity for minimizers

of the perimeter in a bounded set �. Indeed, the classification of minimal cones
leads, on the one hand, to the classification of any entire area minimizing surfaces
via a blow-down argument. On the other hand the nonexistence of singular minimal
cones in space dimension n ≤ 7 implies, via blow-up and a dimension reduction
argument, that any minimal surface is smooth outside a singular set of Hausdorff
dimension n− 8.

Moreover, again the classification of minimal cones leads to the classification of
entire minimal graphs (the so called Bernstein problem): If E is a minimizer of the
perimeter functional and ∂E is a graph, then E is a half-space, whenever n < 9.
Note that the critical dimension for a graph to be flat is one more than the one
for a general set. The main ingredients in the proof of these results are given by
density estimates, perimeter estimates, improvement of flatness for minimizers and
a monotonicity formula.

As already mentioned in the Introduction, many of these ingredients in the
nonlocal setting were established in [7]. With these tools, Caffarelli, Roquejoffre
and Savin could reduce the study of regularity for nonlocal minimal surfaces to
the classification of nonlocal minimal cones. More precisely they proved that, if
the blow-up, around the origin, of an s-minimal set E is flat, then ∂E is C1,α in a
neighborhood of the origin (see [7, Theorem 9.4]). As a consequence of a dimension
reduction argument, they proved C1,α regularity outside a singular set of Hausdorff
dimension at most n−2 (see [7, Theorem 10.4]). The bound n−2 on the dimension
of the singular set was not optimal due to the fact that in [7] the classification of
nonlocal minimal cones was not known, not even in R

2.
Later, in [19] Savin and Valdinoci proved that in R

2 an s-minimal cone is
necessarily a half-plane. As a consequence they could improve the bound on the
Hausdorff dimension of the singular set from n − 2 to n − 3 and via a blow-down
argument they obtained the classification of any s-minimal surface in R

2.
Moreover, in [2] Barrios, Figalli, and Valdinoci showed that if E is an s-

minimal set such that ∂E ∈ C1,α , then ∂E is in fact C∞ (such a result holds in
every dimension). This is a consequence of a more general regularity result for
solutions to integro-differential equations via a bootstrap argument. In [16], Figalli
and Valdinoci addressed the fractional version of the Bernstein problem and proved
that, if there are not s-minimal singular cones in R

n, then the only entire s-minimal
graphs in R

n+1 are the hyperplanes.1

We summarize all these results in the following Theorem.

Theorem 2.1 The following facts hold:

1. Every s-minimal cone in R
2 is a hyperplane [19];

2. If E is a minimizer of the s-perimeter in the whole R
2, then E is a half-plane

[19];

1 Finally, regularity results for nonlocal minimal graphs were recently obtained by Cabré and Cozzi
in [4]
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3. If E is a minimizer of the s-perimeter in R
n and ∂E is a graph, then E is a

half-space, whenever n ≤ 3 [16];
4. If E is a minimizer of the s-perimeter, then ∂E is C∞ outside a singular set $ of

Hausdorff dimension n− 3 [2, 7, 19].

In addition, when s is close to 1, Caffarelli and Valdinoci proved that all the
regularity results that hold in the classical setting are inherited, by a compactness
argument, by s-nonlocal minimal surfaces (see [8, 9]).

Theorem 2.2 (Theorem 5 in [9]) There exists ε0 ∈ (0, 1) such that if s ≥ 1 − ε0,
then any s-minimal surfaces is C∞ outside a singular set$ of Hausdorff dimension
n− 8.

Finally, in the very recent contribution [5], Cabré, Serra and the author proved
flatness for nonlocal s-minimal cones in R

3 for s close to 1. We emphasize that in
[5], differently from [9], the proof is not based on a compactness argument and it
permits to quantify how much s must be close to 1. This last result holds not only
for cones that are minimizers for the s-perimeter, but for the more general class
of stable cones. Stability here has to be understood in the variational sense, i.e. it
corresponds to the fact that the second variation of the s-perimeter is nonnegative
(we will comment on the notion of stability in the next section). The following is
the main result in [5].

Theorem 2.3 (Theorem 1.2 in [5]) There exists s∗ ∈ (0, 1) such that for every
s ∈ (s∗, 1) the following statement holds.

Let$ ⊂ R
3 be a cone with nonempty boundary of class C2 away from 0. Assume

that $ is a stable set for the s-perimeter. Then, $ is a half-space.

The proof of this result uses two crucial ingredients: the fractional Hardy
inequality in R

2 (with the precise behavior of its sharp constant as s ↑ 1) and the
perimeter estimates for stable sets contained in [12] and that we describe in the next
Section.

3 Quantitative Flatness Results and Perimeter Estimates
for Stable Sets

We now focus on the two-dimensional result proven by Savin and Valdinoci in [19]
(see Theorem 2.1, point 1.). The proof of this result relies on the following idea:
given a minimal cone E in the whole R

n (i.e. a cone which is a minimizer in BR
for any R > 0), one considers perturbationsE+R that are small translations, in some
direction, of E inside the half ball BR/2 (and which coincide with E outside of BR).
A computation shows that the difference between the s-perimeter of E+R and the
s-perimeter of E is controlled in the following way:

Pers (E
+
R ,BR)− Pers(E,BR) ≤ CRn−2−s .
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Hence, when n = 2, this difference can be made arbitrarily small asR→∞. On the
other hand, if E was not a half-plane, it could be modified in such a way to decrease
its s-perimeter by a small but fixed amount and this leads to a contradiction. It is
clear that this argument works only in dimension n = 2 (we are using that Rn−s−2

goes to 0 as R → ∞). We emphasize that the factor Rn−s comes from an optimal
bound for the s-perimeter of minimizers. Indeed, by a comparison argument one can
show that if E is an s-minimal set in BR , then

Pers (E,BR) ≤ CRn−s ,

and this bound is optimal.
These ideas were recently used in [12] to prove a quantitative version of this two-

dimensional flatness result, where quantitative has to be understood in the following
sense.

Suppose thatE is a minimizer for Pers in a ball BR for someR large enough (and
not for all R). Is it true that E is “close” to be a half-plane in B1? Moreover, can we
give an estimate on this closeness depending on R? The following result, contained
in [12], gives an answer to these questions.

Theorem 3.1 (Theorem 1.3 in [12]) Let n = 2. Let R ≥ 2 and E be a minimizer
for the s-perimeter in the ball BR ⊂ R

2.
Then, there exists a half-plane h such that

|(E�h) ∩ B1| ≤ CR−s/2. (3.1)

Moreover, after a rotation, we have that E ∩B1 is the subgraph of a measurable
function g : (−1, 1) → (−1, 1) with oscillation osc g ≤ CR−s/2 outside a “bad”
set B ⊂ (−1, 1) with measure CR−s/2.

As mentioned above, the proof of this result is based on the technique developed
in [19] which uses perturbations given by small translations of the minimizer E
(inside the ballBR) and introducing quantitative elements which allow to keep track
of the dependence on the radius R.

The ideas developed in [12] to prove Theorem 3.1 above have also been used
to prove an optimal estimate for the classical perimeter of an s-minimal set E. Of
course, such an estimate cannot be deduced just by a comparison argument (indeed,
it is a genuine regularity estimate which improves the order of differentiability of
χE) and needs a more sophisticated argument. More interestingly, this estimate
holds true in the more general class of stable sets. Here stability has to be understood
in the variational sense, that is we require the set to be a minimizer among small
perturbations, which corresponds, for smooth objects, to the fact that the second
variation of the s-perimeter is nonnegative. For the precise notion of stability that we
use, we refer to [12, Definition 1.6] and [5, Section 2]. Once one has an estimate for
the classical perimeter of E, by a standard interpolation, one can deduce an estimate
for its s-perimeter. As already explained, for minimizers the upper bound on the
s-perimeter comes easily by comparison, but for stable sets is highly nontrivial.
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In order to explain the interest in perimeter estimates for stable objects, we recall
some known facts in the classical local setting.

Stable minimal cones (for the classical perimeter) are completely classified: they
are hyperplanes in space dimensions n ≤ 7. In R

8, the Simons cone is an example
of stable cone which is singular (i.e., the classification that we have presented in the
previous section for classical minimal surfaces holds true for stable cones). Once
one has a complete classification of stable cones, using a blow-down technique, one
could obtain the classification of any stable surface in the whole R

n. A crucial tool
needed for this argument is an optimal estimate for the perimeter of stable sets. It is
well known that any minimizer of the classical perimeter in a ball BR satisfies the
estimate

Per(E,BR) ≤ CRn−1. (3.2)

Unfortunately, an estimate like (3.2) is not known to hold for stable sets, unless
we are in dimension n = 3, 4 and we require some topological assumptions on
the set E (see [10, 13, 18]). The difficulty in proving perimeter estimates for stable
sets relies on the fact that, when using a comparison argument, we are allowed to
consider only competitors which are small perturbations of the given set E.

In dimension n > 3 the search for a perimeter estimate for stable sets is
still completely open. As explained above, having a universal bound for the
classical perimeter of embedded minimal surfaces in every dimension n > 3
would be a decisive step towards proving the following well-known and long
standing conjecture: The only stable embedded minimal (hyper)surfaces in R

n are
hyperplanes as long as the dimension of the ambient space is less than or equal to 7.

Surprisingly, in the fractional setting, the nonlocal character of the perimeter
functional gives somehow more rigidity and allows to obtain the following result
(which holds in every dimension):

Theorem 3.2 (Theorem 1.1 in [12]) Let s ∈ (0, 1), R > 0 and E be a stable set
in the ball B2R ⊂ R

n for the nonlocal s-perimeter functional. Then,

Per(E,BR) ≤ C Rn−1,

and

Pers(E,BR) ≤ CRn−s .

As a consequence of Theorem 3.2, in [12] the quantitative flatness result in R
2

was proven to hold also for stable set (and not only for minimizers).
In a similar way to what described for the classical case, once one has a complete

classification for s-minimal stable cones, the s-perimeter estimates of Theorem 3.2
would allow to classify any stable s-minimal surface (see Theorem 2.1 in [6]) . In
this respect, the difficulties in the nonlocal setting are, in some way, dual to the ones
in the local setting: in the first case, we have perimeter estimates in any dimensions
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but only the classification of stable cones in low dimensions is known; in the second
the situation is reversed, since stable cones are completely classified but perimeter
estimates are still missing in dimension n > 3.

Having in mind this picture, an interesting motivation in the study of nonlocal
minimal surfaces is whether nonlocal techniques and nonlocal results could lead to
give an answer to some important open questions in the local setting, such as, for
example, the complete classification of stable surfaces.
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A Short Survey on Overdetermined
Elliptic Problems in Unbounded Domains

Pieralberto Sicbaldi

Abstract We present some recent results about overdetermined elliptic problems
in unbounded domains.
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surfaces · Constant mean curvature surfaces · PDEs · Maximum principle
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1 Introduction

In these short notes we give an overview on the recent research line about solutions
to overdetermined elliptic problems of the following form:

⎧⎪⎪⎨
⎪⎪⎩

	u+ f (u) = 0 in �

u > 0 in �

u = 0 on ∂�
∂u
∂ν = k on ∂� ,

(1.1)

where � is a domain of class C1 (in order to give a classical sense to the Neumann
data), f is a locally Lipschitz function, k is a constant (that must be nonpositive), and
ν is the unit normal vector about ∂�. The first fact to point out is that if Problem 1.1
has a solution, then the domain � is much more regular than C1: it is in fact of
class C2,α for all α ∈ (0, 1), as shown in [21]. The case of bounded domains
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supporting solutions to Problem 1.1 has been completely solved by J. Serrin in [16]
(see also [10]): the ball is the unique such domain and any solution is radial. This
result, obtained with the moving plane method, had many applications to Physics
and Applied Mathematics (see for example the beautiful survey [18]). The case of
unbounded domains � is much more difficult. In 1997, H. Berestycki, L. Caffarelli
and L. Nirenberg in [3] proposed the following conjecture:

BCN Conjecture If Rn\� is connected, then the existence of a bounded solution
to Problem 1.1 implies that � is either a ball, a half-space, a generalized cylinder
Bk × R

n−k (Bk is a ball in R
k), or the complement of one of them.

That question was justified by the results of the same authors in [3], and some
other results concerning exterior domains, i.e. domains that are the complement of
a compact region (see Sect. 4). This conjecture motivated almost all the research
activity about overdetermined elliptic problems in unbounded domains.

2 New Nontrivial Solutions

Before 2010, the only known domains supporting solutions to Problem 1.1 were
essentially balls, the exterior of balls and the half-space. Solutions in cylinders and
in the exterior of cylinders are obviously obtained from the others, adding an empty
variable: if u(x) is the solution of Problem 1.1 in a ball B or in the exterior of a ball
R
n\B, then v(x, y) = u(x), for y ∈ R

k is a solution respectively in the cylinder
B ×R

k or the exterior of it, i.e. in (Rn\B)× R
k .

When the function f is given by f (u) = λu, Problem 1.1 represents the station-
ary condition for the functional � → λ1(�) under volume preserving variations
of the domain, where λ1(�) is the first eigenvalue of the Dirichlet Laplacian in �.
This is true also in a Riemannian manifold, replacing the Euclidean Laplacian by
the Laplace-Beltrami operator. For this reason, domains where there exists a positive
constant λ such that Problem 1.1 has a solution with f (u) = λu are called extremal
domains. The theory of extremal domains shares strong similarity with the theory
of constant mean curvature surfaces. In fact, the result by Serrin recalled before is
parallel to the well known result of Alexandrov asserting that round spheres are the
only embedded compact constant mean curvature hypersurfaces in the Euclidean
space. In [9] F. Pacard and the author proved the existence of extremal domains in
a Riemannian manifold which are perturbations of small geodesic balls centered at
nondegenerate critical points of the scalar curvature function, paralleling an earlier
result of R. Ye which provides constant mean curvature topological spheres close
to small geodesic spheres centered at nondegenerate critical points of the scalar
curvature function. The analogy with constant mean curvature surfaces has been
the key ingredient to investigate the possibility to build new nontrivial extremal
domains, and more generally nontrivial solutions to Problem 1.1 for different type
of nonlinearities f .
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2.1 Bifurcation from a Known Solution

In the Euclidean space cylinders are not the only unbounded constant mean curva-
ture surfaces. In 1841, C. Delaunay discovered the beautiful family of onduloidsDτ
in R

3, τ ∈ (0, 1], parametrized by

Xτ (θ, t) =
(
y(t) cos θ, y(t) sin θ, z(t)

)

for (θ, t) ∈ S1 × R, where the function y is the smooth solution of 4(y ′)2 = 4y2 −
(y2+τ )2 and z is the solution (up to a constant) of 2z′ = y2+τ . They are complete,
embedded, non-compact constant mean curvature surfaces invariant under rotation
about an axis and periodic in the direction of this axis. This family of surfaces can
be seen as a bifurcation of the straight cylinder in the following way. Consider the
cylinder C = S

1 × R/T Z in the torus R2 × R/T Z for some T > 0. Consider the
set of regular one variable functions v of period 1, with small C2,α-norm, and let
CTv be the perturbation of C done with respect to the function ṽ(x, T t) = v(t). If
H denotes the mean curvature, it is clear that H(CT0 ) ≡ 1 for all T > 0, and using
the classical bifurcation theory one can prove that at the point (v, T ) = (0, 2π)
the family CT0 bifurcates in a new branch of perturbed cylinders CTv solutions of
H(CTv ) ≡ 1. The classification results in the theory of constant mean curvature
surfaces allow to conclude that the cylinders CTv are elements of the family Dτ .

The same idea has been used in [17] by the author to build new nontrivial
extremal domains, which are counterexamples to the BNC conjecture. Consider the
cylinder C = B1 × R/T Z in the torus Rn × R/T Z for some T > 0, where B1
is the unit Euclidean ball. It is clear that C is a domain where Problem 1.1 can be
solved. Consider the set of regular one variable functions v of period 1, with mean
0 and small C2,α-norm, and let CTv the perturbation of C obtained perturbing ∂C by
the function ṽ(x, T t) = v(t). In CTv one can consider the first eigenfunction of the
Dirichlet Laplacian uTv (normalized to haveL2-norm equal to 1). Such a function, in
general, does not have constant Neumann data at the boundary. It is then interesting
to define the operator F given by

F(v, T ) = ∂uTv

∂νTv

∣∣∣∣
∂CTv

−
 
∂uTv

∂νTv

∣∣∣∣
∂CTv

where νTv is the unit exterior normal vector about ∂CTv . In fact, F(0, T ) = 0 for all
T > 0, and the existence of a bifurcation point in the branch {(0, T )} of solutions of
F(v, T ) = 0 would give the existence of new nontrivial extremal domains (notice
that in the new branch the function v cannot be constant, since v has mean 0). A
priori, F(v, T ) is a function defined on ∂CTv , but some easy arguments show that
it just depends on the variable t , in which it is periodic of period T and of mean
0. After rescaling we can assume that the period of F(v, T ) is 1. So, the operator
F can be seen as an operator between some subset of C2,α

m (R/Z) and C1,α
m (R/Z),

where the subscriptm denotes the fact that functions have mean 0. A big difference
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with respect to the case of constant mean curvature surfaces is that the operator
(v, T )→ H(CTv ) was local, and here the operator F is non-local. The study of the
linearized operator prove that the bifurcation theory can be applied to the equation
F(v, T ) = 0 with respect to the branch {(0, T )}{T>0} at a certain point (0, T ∗).
This new branch of solutions gives raise to a one-parameter family of unbounded
domains�s where Problem 1.1 can be solved for f (u) = λu. Their boundaries are
surfaces invariant under rotation about an axis, periodic in the direction of this axis,
and whose mean curvature is not constant. The period T ∗ depends in fact on the
dimension n, and estimations of T ∗ are given in [15].

A similar method is used in [13] to prove the existence of perturbations of the
exterior of a ball in R

n, n ≥ 2, where one can solve Problem 1.1 for some non-
linearities f . Here the new solutions bifurcates from the solution on the exterior of
a ball BR∗ for a certain radius R∗. This new domains also are counterexamples to
the BCN conjecture (in dimension 2 they are the only known counterexamples).

2.2 Perturbation of a Constant-Mean-Curvature Surface

In [5] M. Del Pino, F. Pacard and J. Wei develop a strong method to use
directly constant mean curvature surfaces to build new examples of domains where
Problem 1.1 can be solved. In their work f is supposed to satisfy the following
hypothesis:

f (0) = f (1) = 0 f (s) > 0 for s ∈ (0, 1) f ′(1) < 0

(this is the case for example for the Allen-Cahn equation). Under such hypothesis
there exists an increasing solution w to the ODE w′′ + f (w) = 0 in (0,+∞) with
w(0) = 0 and w(+∞) = 1, and then the function u(x1, x2, . . . , xn) = w(x1) is a
bounded solution of Problem 1.1 in the half-space. The main objective of their work
is to produce a new counterexample to the BCN conjecture diffeormorphic to a half-
space. They obtain it as a perturbation of the epigraph bounded by the Bombieri-
De Giorgi-Giusti graph, a very special nontrivial minimal surface, existing only in
dimension 9 (and bigger than 9, by an easy generalization), given by the graph of a
certain non-constant entire function F :

� = {(x1, . . . , x9) | x9 = F(x1, . . . , x8)} .

This surface, discovered in 1969, gave a counterexample to the Bernstein conjecture
(1914) asserting that an entire minimal graph should be a hyperplane. Then, for a
sufficiently small ε > 0 they are able to solve Problem 1.1 in an epigraph � whose
boundary lies in a O(ε)-neighborhood of ε−1�. Moreover the solution u obtained
is given by u(x) = w(z)+O(ε), where z is the inner coordinate to ∂�. This result
produces a counterexample to the BCN conjecture in the form of an epigraph, when
f is a nonlinearity of Allen-Cahn type, and it exists in dimension bigger or equal to
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9. The strategy to obtain such result is based on perturbative methods, starting from
the well known solution w in the half-space, that represents the first approximation
of the solution to Problem 1.1 (for this reason the authors need to consider a very
large dilation of the Bombieri-De Giorgi Giusti graph).

The same strategy is used by the authors to exhibit two such examples of
nontrivial solutions to Problem 1.1, in which the domain � is a non-cylindrical
domain of revolution in R

3. Both originate from constant mean curvature surfaces:
the catenoid, i.e. the minimal surface

$ = {(cosh z cos θ, cosh z sin θ, z) | θ ∈ S
1 , z ∈ R} ,

and the Delaunay surfaces Dτ introduced before. Exactly as for the perturbation
of the epigraph of Bombieri-De Giorgi-Giusti, the authors prove that for each ε
sufficiently small, there exist domains of revolution �, which lie within a O(ε)-
neighborhood of the region bounded by the surface ε−1$ (a large dilation of
the catenoid) or the surface ε−1Dτ (a large dilation of a Delaunay surface),
where Problem 1.1 is solvable. Here the nonlinearity f is asked to satisfy the
same hypothesis as before. In fact, the first approximation of the new solution of
Problem 1.1 is again the function w, and such hypothesis on f allow the existence
of w.

3 Harmonic Overdetermined Problems

Limits under scaling of sequences of constant mean curvature surfaces produce
minimal surfaces. By the strong analogy between constant mean curvature surfaces
and extremal domains, it is reasonable to expect that limits under scaling of
sequences of extremal domains behave like minimal surfaces. In fact, limits under
scaling of sequences of extremal domains are domains where there exists a solution
to

{
	u = 0 , u > 0 in �

u = 0 , ∂u
∂ν = 1 on ∂� .

(3.1)

We will call it harmonic overdetermined problem.

3.1 Catenoidal Domains

One of the most important minimal surface in R
3 (existing in fact in R

n for n ≥ 3),
is the catenoid $ defined before. The expected correspondence between minimal
surfaces and harmonic overdetermined problems led to the question if it should
exist a domain in R

n, n ≥ 2, that looks like the region inside a catenoid, where
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Problem 3.1 can be solved. In the case n = 2 such a domain has been found
explicitly by F. Hélèin, L. Hauswirth and F. Pacard in [6]. It is

� =
{
(x, y) ∈ R

2 | |y| < π

2
+ cosh x

}
.

The function u solving Problem 3.1 in � is u(F (x, y)) = cosh x cos y, where
(x, y) ∈ S := R× (−π

2 ,
π
2

)
and

F(x, y) = (x + sinh x cos y , y + cosh x sin y) .

In fact, is it easy to prove that F is a conformal diffeomorphism from S to � and
that u is harmonic and positive in �, vanishes and has constant Neumann data at the
boundary.

The existence of the same kind of domain in R
n, n ≥ 3 has been conjectured in

the same paper [6], and it has been proved by Y. Liu, K. Wang and J. Wei in [8]:
there exists a function g : [1,+∞)→ [0,+∞), with the property that

lim
r→+∞ g

′(r) rn−2 ∈ [0,+∞) ,

such that the domain

R
n\

{
(x1, . . . , xn) ∈ R

n

∣∣∣∣ xn < g(r) , r :=
√
x2

1 + · · · + x2
n−1

}

supports a solution to Problem 3.1. It is important to remark that in [7] it is proved
that this last example of domain does not exist in dimension n ≥ 3, but the proof
of such result is not correct. More precisely, Theorem 8.1 in [7] is wrong, and
Conjecture 8.2 in the same paper is disproved by [8] for any n ≥ 3.

3.2 Classification of Harmonic Overdetemined Problems
in the Plane

In [20] M. Traizet showed that the correspondence between minimal surfaces and
harmonic overdetermined problems is really deep. He establishes a one-to-one
correspondence between the following two classes of objects:

1. the set of domains � of R
2 such that the solution u to Problem 3.1 satisfies

|∇u| < 1.
2. the set of minimal bigraphs in R

3, i.e. the set of complete, embedded minimal
surfacesM in R

3 symmetric with respect to {x3 = 0} and such thatM+ := M ∩
{x3 > 0} is a graph over a certain unbounded domain �̂ of the plane {x3 = 0}.
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An extra topological hypothesis is needed: the complement of the domain � and
the complement of the domain �̂ are assumed to be non-thinning at infinity (see
Definition 1 in [20]). It is reasonable to think that this hypothesis is non required
to establish the correspondence, but this point is still an open question. The two
implications in that correspondence can be made explicit. We present here only the
way to associate to an element of the first class a minimal bigraph. We start from
a solution u of Problem 3.1 in a domain � of the plane R

2 considered as the plane
C of the complex variable z. The function g = 2uz is holomorphic, and we take
the holomorphic differential dh = 2uz dz and a point z0 ∈ ∂�. The Weierstrass
representation formula

X(z) = (x1(z), x2(z), x3(z)) = 6
ˆ z

z0

[
1

2
(g−1 − g) dh, i

2
(g−1 + g) dh, dh

]

defines locally a conformal, minimal immersion X : �→ R3. In this case it can be
proved

• that X is globally well defined in all �;
• that X(∂�) lies in the horizontal plane {x3 = 0};
• that M+

� = X(�) is the graph of a positive function defined in the unbounded
domain �̂ ⊂ {x3 = 0} defined by X̂(�), where X̂(z) = (x1(z), x2(z)), and
∂�̂ = X̂(∂�);

• that M+
� meets {x3 = 0} orthogonally, and then M+

� can be completed by
symmetry with respect to {x3 = 0} to obtain a minimal bigraphM�.

M� is the minimal bigraph associated to the initial domain �. The result in [20]
shows that the correspondence�→ M� is a bijection.

In this correspondence, the vertical minimal catenoid corresponds to the exterior
of a disk and the horizontal minimal catenoid corresponds to the Hélèin-Hauswirth-
Pacard domain. Using the well developed classification theory for minimal surfaces,
from the result of M. Traizet it follows that the only domains in R

2 where there
exists a solution to Problem 3.1 and whose boundary is done by a finite number of
components are: the half-plane, the exterior of a ball and the Hélèin-Hauswirth-
Pacard domain. An other very interesting example of domain (with an infinite
number of boundary components) where Problem 3.1 can be solved is the domain
that corresponds to the the simply periodic Scherk minimal bigraph. It can be
described in this way: for a parameter α ∈ (

0, π2
)

take the curve γ given by the
implicit equation

cos2 α cosh
( y

cosα

)
= sin2 α + cos(2α − x)

(it is a closed curve), and consider the periodic unbounded domain �α whose
boundary is made by the curve γ and all its translates of a period Tα = 2π(1+cosα)
along the x-direction. Again, using the classification theory for minimal surfaces,
from the result of M. Traizet it follows that �α is the only simply periodic domain
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in R
2 where there exists a solution to Problem 3.1 and whose boundary has a finite

number of components in the quotient (notice that by the maximum principle, if
there exists a solution to Problem 3.1 then � cannot be doubly periodic). The result
of M. Traizet classifies then all solutions of Problem 3.1 in R

2 for domains with a
finite number of boundary components, or periodic with a finite number of boundary
components in the quotient. The open problem is to check if there exist non-periodic
domains with infinite boundary components supporting solutions to Problem 3.1.

4 Rigidity Results

The main rigidity result on overdetermined elliptic problems is the Serrin’s theorem
stated in the introduction. Rigidity results for unbounded domains supporting
solutions to Problem 1.1 are much more difficult to obtain, and this is now clear
if we look at the many nontrivial solutions that have been built in the last years.
We recollect here two recent achievements about rigidity of overdetermined elliptic
problems in exterior domains and half-space type domains.

4.1 Exterior Domains

An exterior domain is the complement of a bounded region. In the case of exterior
domains, the overdetermined elliptic problem that had been considered in the past
was a slight modification of Problem 1.1:

{
	v + g(v) = 0 , 0 ≤ v < a in �
∂v
∂ν
= c , v = a > 0 on ∂� .

(4.1)

In this framework, the main research line has aimed to prove the counterpart of the
Serrin’s symmetry result, that is to prove that � is the complement of a ball. For

example under the assumptions that g(t) ≥ 0 and that t−
n+2
n−2 g(t) is nonincreasing,

A. Aftalion and J. Busca proved in [1] that if Problem 4.1 has a solution then � is
the complement of a ball. In [11] W. Reichel proved the same symmetry result but
under different assumptions: he assumes that g(t) is decreasing for small positive t
and that v → 0 at infinity. Finally, Sirakov [19] showed that the condition v < a

can be replaced by the assumption c ≥ 0. The techniques used in these cases are the
moving plane from infinity and the Kelvin transform.

With the change of functions u := a − v we have immediately Problem 1.1, but
with the extra assumptions u ≤ a. In this framework, the previous results give us a
rigidity result for Problem 1.1 in exterior domains if we are able to prove the extra
condition u ≤ a. This is the case for example when f ≡ 0 or when f is such that
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there exists L > 0 with:

f (t) > 0 for t ∈ (0, L) f (t) < 0 for t > L f (L) = 0 f ′(L) < 0 .

If f (0) = 0 then we also need to assume that f ′(0) > 0. Under such assumptions
on the nonlinearity f ,� is the complement of a ball and u is radially symmetric and
increasing. We refer to [13] for the details of the proof. We also mention that for the
case f ≡ 0, i.e. harmonic overdetermined problems, the rigidity results for exterior
problems is also proved in [7].

4.2 Half-Space Type Domains

A half-space type domain is a domain diffeomorphic to R
n+ = {(x1, . . . , xn) | xn >

0}. The most typical examples are epigraphs.
The example of nontrivial epigraph supporting a solution to Problem 1.1 given

by Del Pino, Pacard and Wei (see the previous section) shows that a classification
theory for overdetermined elliptic problems in half-space type domains can be very
difficult to be understood. Nevertheless, in dimension 2 such classification has been
almost completely understood. This fact corresponds to the following result:

Theorem 4.1 (Ros, Ruiz, and Sicbaldi) Let � ⊂ R
2 a C1 domain whose

boundary is unbounded and connected (i.e. it is diffeomorphic to a half-space).
Assume that there exists a bounded solution u to Problem 1.1 for some (locally)
Lipschitz function f : [0,+∞) → R and some non-zero constant k. Then � is a
half-plane and u is parallel, that is, u depends only on one variable.

The only two extra hypothesis here are: (1) the solution u is asked to be bounded,
(2) the constant k is not 0. The first hypothesis also appears in the BCN conjecture.
For the second one, it is not a priori clear that the case k = 0 does not occur,
and up to now it remains an open question in the classification of solutions to
overdetermined problems in R

2. The proof of Theorem 4.1, [12], is divided in
several steps, and we present here the ideas of every step. The authors start with
a bounded solution u to Problem 1.1 in a half-plane type domain � of R2 (with
k �= 0), and by contradiction they suppose that � is not a half-space.

Step 1: Boundedness of the Curvature The first step is to show that the curvature
of ∂� is bounded. This is obtained by contradiction. Suppose that there exists a
sequence of points pn ∈ ∂� such that the curvature at pn tends to infinity. Then,
a dilation of the domain � near pn and of the graph of the function u in R

3 near
(pn, 0) allows to define a sequence of domains �n and functions un converging to
a solution u∞ of Problem 3.1 in the limit domain �∞, which is a half-space type
domain with the property that at least a point of its boundary has non-zero curvature.
Making use of the classification results of [20], there exists no limit domain �∞
with such properties, leading to a contradiction. We remark that in this argument
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some uniform regularity estimates are needed. Via standard regularity for elliptic
problems, the boundedness of the curvature of ∂� implies the uniform boundedness
of the C2,α norm of the function u in �.

Step 2:�Must Contain a Half-Plane This step is also obtained by contradiction.
Assuming that � does not contain any half-space, the authors show that the moving
plane method can be applied to it to prove that the solution u must be increasing in
one variable. The boundedness of the C2,α norm of the function u in � (given in
the previous step) and some ideas of the famous proof of the De Giorgi’s conjecture
in dimension 2 allow to prove that the solution u is one-dimensional and � is a
half-space, leading to a contradiction.

Step 3: Construction of a Parallel Solution as Limit of the Initial One The
crucial ingredient in the proof of Theorem 4.1 is the existence of a divergent
sequence of points in pn ∈ ∂� such that ∂� converges to a straight line near such
sequence. In the proof of this geometric property the authors use in a strong way
the facts that the curvature of ∂� is bounded and that � contains a half-space. In
particular, the sequence of functions un(x) = u(x − pn), x ∈ �, converges to a
one-dimensional solution u∞ of Problem 1.1 in a half-space. In other words, this
step shows that the existence of the solution u in � implies the existence of a one-
dimensional solution u∞ of the same Problem 1.1 in a half-space (with the same f ).

Step 4: Comparison of the Two Solutions Using variational methods, the authors
are then able to show that the graph of the solution u∞ stays below the graph of the
initial solution u (recall that� contains a half-space). The maximum principle gives
a direct contradiction.
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Part IX
Geometries Defined by Differential Forms



Adjoint Representations of Symmetric
Groups

Mahir Bilen Can and Miles Jones

Abstract We study the restriction to the symmetric group, Sn of the adjoint
representation of GLn(C). We determine the irreducible constituents of the space of
symmetric as well as the space of skew-symmetric n× n matrices as Sn-modules.

1 Introduction

In [2], the first author and Jeff Remmel introduced the notion of a loop-augmented
rooted forest; they explained its combinatorial representation theoretic role for the
conjugation action of the symmetric group on certain subsets of the partial transfor-
mation semigroups. In this note, we present an application of this development in a
basic Lie theory context.

Let G be a Lie group, and let g denote the Lie algebra of G. The conjugation
action G ×G→ G, (g, h) �→ ghg−1, g, h ∈ G leads to a linear representation of
G on its tangent space at the identity element,

Ad : G→ Aut(g)

g �→ Adg. (1)

The representation (1), which is known as the adjoint representation of G, has a
fundamental place in the structure theory of Lie groups. It has a concrete description
whenG is a closed subgroup of GLn(C), the general linear group of n×nmatrices.
In this case, g is a Lie subalgebra of the Lie algebra of n×nmatrices, and Adg (g ∈
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G) is defined by Adg(X) = gXg−1 for X ∈ g. Now let Sn denote the symmetric
group of permutations of {1, . . . , n}. We will view Sn as a subgroup of GLn(C) by
identifying permutations π ∈ Sn with invertible n × n 0/1 matrices with at most
one 1 in each row and column. The basic representation theoretic question that we
address in the present paper is the following:

What are the irreducible constituents of the Sn-representation that is obtained from (1) by
restriction?

Surprisingly, even though the adjoint representation is at the heart of Lie theory,
to the best of our knowledge the answer to our question is missing from the
literature, at least, it is not presented in the way that we are answering it. To state
our theorem we set up the notation.

It is well-known that the finite dimensional irreducible representations of Sn are
indexed by the integer partitions of n. The Frobenius character map V �→ FV is
an assignment of symmetric functions to the finite dimensional representations of
Sn. (We will explain this in more detail in the sequel.) In particular, if V is the
irreducible representation determined by an integer partition λ, then FV is a Schur
symmetric function, denoted by sλ; if V = ⊕

Vi is a decomposition of V into
Sn-submodules, then FV =∑

FVi . Our first main result is as follows.

Theorem 1.1 Let n be an integer such that n ≥ 2. The Frobenius character of the
adjoint representation of Sn on Matn(C) is given by

FMatn(C) =

⎧⎪⎪⎨
⎪⎪⎩

2s2 + 2s1,1 if n = 2;
2s3 + 3s2,1 + s1,1,1 if n = 3;
2sn + 3sn−1,1 + sn−2,2 + sn−2,1,1 if n ≥ 4.

(2)

The space of symmetric n × n-matrices, denoted by Symn(C), is closed under
the adjoint action of the orthogonal group On(C) := {g ∈ GLn(C) : gg3 = id}.
However, Symn(C) is not closed under the adjoint action of GLn(C). Nevertheless,
since Sn is a subgroup of On(C), we see that the representation

Ad : Sn → Aut(Symn(C)) (3)

is defined. Moreover, since there is a direct sum decomposition of matrices

Matn(C) = Symn(C)⊕ Skewn(C),

where Skewn(C) is the space of n × n skew-symmetric matrices, a complementary
adjoint representation exists:

Ad : Sn → Aut(Skewn(C)). (4)
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Our second main result is about the Frobenius character map image of the
corresponding Sn representations.

Theorem 1.2 Let n be an integer such that n ≥ 2. The Frobenius character of the
adjoint representation (3) of Sn on Symn(C) is given by

FSymn(C) =

⎧⎪⎪⎨
⎪⎪⎩

2s2 + s1,1 if n = 2;
2s3 + 3s2,1 if n = 3;
2sn + 2sn−1,1 + sn−2,2 if n ≥ 4.

(5)

Corollary 1.1 Let n be an integer such that n ≥ 2. The Frobenius character of the
adjoint representation (4) of Sn on Skewn(C) is given by

FSkewn(C) =

⎧⎪⎪⎨
⎪⎪⎩
s1,1 if n = 2;
s1,1,1 if n = 3;
sn−1,1 + sn−2,1,1 if n ≥ 4.

(6)

2 Notation and Background

Let n be a positive integer. We will use the notation [n] and [n] to denote the sets
{1, . . . , n} and [n] ∪ {0}, respectively. A partition of n is a nonincreasing sequence
of positive integers λ := (λ1, . . . , λl) such that

∑l
i=1 λi = n. In this case, we will

write λ 7 n. It is well-known that the conjugacy classes in Sn are parameterized
by the partitions of n. Consequently, the irreducible characters of Sn are in 1-1
correspondence with {λ 7 n}.

2.1 Symmetric Functions and Plethysm

Let X := {x1, x2, . . . } be a set of variables that are algebraically independent over
Q. A formal power series f (X) is called a symmetric function if f is invariant under
every finite permutation of its variables. The set of all homogeneous symmetric
functions of degree n has the structure of a Q-vector space, denoted by �n. The
direct sum

⊕
n≥0�

n will be denoted by �; it forms a subring of the ring of formal
power series with variables in X. Note that dimQ�

n = |{λ 7 n}|. For our purposes,
the following vector space bases for�n will be instrumental: {pλ}λ7n, {hλ}λ7n, and
{sλ}λ7n. The first of these bases, called the power sum basis, is defined as follows:
For λ = (λ1, . . . , λl) 7 n, pλ is the product

∏
i pλi , where pλi :=

∑
x
λi
j for

i ∈ {1, . . . , l}. Likewise, hλ is the product
∏
i hλi , where hλi (i ∈ {1, . . . , l}) is

the sum of all monomials of degree λi . Finally, the Schur function basis, {sλ}λ7n
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is defined by setting sλ := det(hλi+j−i )li,j=1. In particular, for all k ≥ 1, we have
s(k) = hk . From now on, for simplifying the notation, we will denote s(k) by sk .

The Frobenius character map is the map between the class functions on Sn and
�n; it is defined by extending linearly the assignment δσ �→ 1

n! pλ, where σ ⊂ Sn
is a conjugacy class of type λ and δσ is the indicator function

δσ (x) =
{

1 if x ∈ σ,
0 otherwise.

It turns out that if χλ is the irreducible character of Sn indexed by the partition λ,
then F(χλ) = sλ. In the sequel, we will not distinguish between representations
of Sn and their corresponding characters. In particular, we will often write the
Frobenius character of an orbit to mean the image under F of the character of
the representation of Sn that is defined by the action on the orbit. If V is an
Sn-representation, then we will denote its Frobenius character by FV . For two
irreducible characters χμ and χλ indexed by partitions λ and μ, the Frobenius
character image of the “plethysm” χλ[χμ] is the plethystic substitution sλ[sμ] of the
corresponding Schur functions. Roughly speaking, the plethysm of Schur function
sλ with sμ is the symmetric function obtained from sλ by substituting the monomials
of sμ for the variables of sλ. This defines a binary operation on symmetric functions,
[·] : �×�→ � which is uniquely determined by the following three axioms:

P1. For all m,n ≥ 1, pm[pn] = pmn.
P2. For allm ≥ 1, the map g �→ pm[g], g ∈ � defines a Q-algebra homomorphism

on �.
P3. For all g ∈ �, the map h �→ h[g], h ∈ � defines a Q-algebra homomorphism

on �.

For a detailed discussion of the properties of plethysm of symmetric functions, we
recommend the article [4].

2.2 Partial Transformations and Loop Augmented Forests

Let us identify [n] with the standard basis for the vector space of n × 1 column
matrices with complex entries. We will call a nonzero n × n 0/1 matrix f with at
most one 1 in each of its columns a partial transformation on [n]. The nomenclature
is justified by viewing such a matrix as a function f : A→ [n], whereA is a subset
of [n]. The value of f on i ∈ A is determined by the matrix multiplication f · i. The
set of all partial transformations on [n], called the partial transformation semigroup
on [n], and denoted by Pn, is a semigroup with respect to matrix multiplication. The
set of all nilpotent partial transformations will be denoted by Cn. The unit group of
Pn is equal to Sn. Therefore, its conjugation action on Pn makes sense. Note that
Cn is stable under this conjugation action of Sn.
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It will be useful to view Pn as the set of incidence matrices of labeled directed
graphs. For τ ∈ Pn, the corresponding graph has a directed edge from the i-th
vertex to the j -th vertex if the (i, j)-th entry of τ is 1. Note that the underlying
graphs depend only on the Sn-conjugacy classes. A pair (τ, φ), where τ is a rooted
forest on n vertices and φ is a bijective map from [n] onto the vertex set of τ is
called a labeled rooted forest. The nilpotent partial transformations give the labeled
rooted forests. To ease our notation, we will omit writing the corresponding labeling
function despite the fact that the action of Sn does not change the underlying forest
but the labeling function only. In particular, when we write Sn · τ we actually mean
the orbit

Sn · (τ, φ) = {(τ, φ′) : φ′ = σ · φ, σ ∈ Sn}. (7)

The right hand side of (7) is an Sn-set, hence it defines a representation of Sn. More
generally, to any partial transformation τ in Pn, we associate the representation
corresponding to the orbit Sn · τ . We will call the resulting representation the
odun of τ , and denote it by o(τ). Since, o(τ) depends only on the underlying
graph, we will write StabSn(τ ) to denote the stabilizer subgroup of the pair (τ, φ).

Since o(τ) is a permutation representation of Sn, we have o(τ) = IndSnStabSn (τ )
1 =

C[Sn/StabSn(τ )]. A method for computing the Frobenius character image of o(τ)
is presented in [1].

A loop-augmented forest is a rooted forest such that there is at most one loop at
each of its roots. In Fig. 1, we depict a loop-augmented forest on 22 vertices and
four loops.

Next, we will explain how to interpret loop-augmented forests in terms of partial
functions, so, let σ be a loop-augmented forest. Then some of the roots of σ have
loops. There is still a partial function for σ , as defined in the previous paragraph
for a rooted forest. The loops in this case correspond to the “fixed points” of the
associated function. Indeed, for the loop at the i-th vertex we have a 1 at the (i, i)-
th entry of the corresponding matrix representation of the partial transformation.
Recall that the permutation action of Sn on the labels translates to the conjugation
action on the incidence matrix. By an appropriate relabeling of the vertices, the
incidence matrix of a loop-augmented rooted forest can be brought to an upper-
triangular form. Clearly, the conjugates of a nilpotent (respectively unipotent) matrix
are still nilpotent (respectively unipotent). Let U be an n×n upper triangular matrix
with the Jordan decompositionU = D +N , whereD (resp. N) is a diagonal (resp.
nilpotent) matrix. If σ is from Sn, then σ · U = σUσ−1 = σDσ−1 + σNσ−1

shows that the conjugation action on the loop-augmented forests is equivalent

Fig. 1 A loop-augmented
forest
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to the simultaneous conjugation action on the labeled rooted forests and the Sn
representation on the space of diagonal matrices. The following theorem from [2]
describes the character of the odun corresponding to a loop-augmented rooted forest.

Theorem 2.1 Let f be a partial function representing a loop-augmented forest on

n vertices. Then f is similar to a block diagonal matrix of the form

(
σ 0
0 τ

)
for

some σ ∈ Sk and τ ∈ Cn−k . Furthermore, if ν, which is a partition of k, is the
conjugacy type of σ in Sk and if the underlying rooted forest of the nilpotent partial
transformation τ has λ1 copies of the rooted tree τ1, λ2 copies of the rooted forest
τ2 and so on, then the character of o(f ) is given by χo(f ) = χν · χo(τ) = χν ·
(χ(λ1)[χo(τ1)]) · (χ(λ2)[χo(τ2)]) · · · · · (χ(λr )[χo(τr)]).

3 Proof of Theorem 1.1

Let i and j be two integers from [n]. We denote by Ei,j the n × n 0/1 matrix with
1 at its (i, j)-th entry and 0’s elsewhere. As a vector space, Matn(C) is spanned by
Ei,j ’s. In fact, {Ei,j : i, j ∈ [n]} constitute a basis,

Matn(C) =
⊕
i,j∈[n]

CEi,j . (8)

Clearly, Ei,j ’s are partial transformation matrices, so, they represent labeled loop-
augmented rooted forests. The structures of these forests depend on the indices.

(1) For i, j ∈ [n], if i �= j , then the labeled loop-augmented rooted forest
corresponding to Ei,j is as in Fig. 2.
By [1, Corollary 6.2], we see that Fo(Ei,j ) = s1 · s1 · sn−2[s1] = s2

1sn−2. Now
we apply the Pieri’s formula twice:

Fo(Ei,j ) =

⎧⎪⎪⎨
⎪⎪⎩
s2 + s1,1 if n = 2;
s3 + 2s2,1 + s1,1,1 if n = 3;
sn + 2sn−1,1 + sn−2,2 + sn−2,1,1 if n ≥ 4.

(9)

(2) Let i, j ∈ [n] be such that i = j . In this case, the labeled loop-augmented
rooted forest corresponding to Ei,i is as in Fig. 3.

Fig. 2 The basis element Ei,j as a labeled loop-augmented rooted forest
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Fig. 3 The basis element Ei,i as a labeled loop-augmented rooted forest

By Theorem 2.1, the Frobenius character of the Sn-module structure on the orbit
Sn · Ei,i is given by Fo(Ei,i ) = s1 · sn−1[s1] = s1sn−1. By the Pieri’s formula, we
have

Fo(Ei,j ) = sn + sn−1,1. (10)

Note that Ek,l ∈ Sn ·Ei,j for all k, l ∈ [n] with k �= l. Indeed, Sn acts on Ei,j by
permuting the labels on the vertices. Note also that Ek,k ∈ Sn · Ei,i for all k ∈ [n].
Therefore, in the light of direct sum (8), by combining (9) and (10), we see that the
Frobenius character of the adjoint representation of Sn on Matn(C) is as we claimed
in Theorem 1.1. This finishes the proof of our first main result. ��

4 Proofs of Theorem 1.2 and Corollary 1.1

For two distinct elements i and j from [n], we set Fi,j := Ei,j + Ej,i . A vector
space basis for Symn(C) is given by the union

{Ei,i : i = 1, . . . , n} ∪ {Fi,j : i, j ∈ [n], i �= j }. (11)

Notice that Fi,j ’s are contained in Pn. However, this time, the directed graph
corresponding to Fi,j is not a forest. See Fig. 4.

Lemma 4.1 Let i and j be two elements from [n] such that i �= j . The orbit of the
adjoint action of Sn on the matrix Fi,j is the same as the permutation action of Sn
on the set of all labelings of the vertices of the directed graph in Fig. 5. In particular,
F1,2 ∈ Sn · Fi,j .

Proof The indices i and j are distinct but arbitrary elements from [n], so, it suffices
to prove our second claim only. Also, without loss of generality we can assume that
i < j . By applying the adjoint action of the transposition (1, j) to Fi,j , we find
Ad(1,j)(Fi,j ) = F1,j . Then we apply the adjoint action of the transposition (2, j)

Fig. 4 The basis element Fi,j as a directed graph
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Fig. 5 The arrows are between the i-th and the j -th vertices

to F1,j , which gives Ad(2,j)(F1,j ) = F1,2. Therefore, we have Ad(2,j)(1,j)(Fi,j ) =
F1,2. This finishes the proof. ��

In the notation of [3], any element from (11) is a partial involution. Following our
arguments from [2] for the idempotents of Pn, next, we will compute the stabilizer
subgroup of the partial involutionFi,j . Let us mention in passing that, for all i in [n],
the matrixEi,i is already an idempotent matrix, so, we know its stabilizer subgroup.

Lemma 4.2 If i and j are two distinct elements from [n], then the odun of Fi,j
is given by o(Fi,j ) = ⊕i,j∈[n], i �=jCFi,j . The stabilizer subgroup of Fi,j in Sn is
isomorphic to the parabolic subgroup S2 × Sn−2.

Proof As we already mentioned before, the adjoint (conjugation) action of Sn on
Pn amounts to the permutation action of Sn on the labels of the associated graphs
(Lemma 4.1). Our first claim readily follows from this argument. Now without

loss of generality assume that Fi,j = F1,2 =
⎡
⎣0 1 0

1 0 0
0 0 0n−2

⎤
⎦. Clearly, the stabilizer

subgroup of Fi,j in Sn consists of the matrices of the form

[
σ1 0
0 σ2

]
, where σ1 ∈ S2

and σ2 ∈ Sn−2. This finishes the proof of our claim. ��
Proof of Theorem 1.2 It follows from Lemma 4.2 that the representation of Sn on
the orbit o(Fi,j ) ∼= Sn·F1,2 is isomorphic to IndSnS2×Sn−2

1. In particular, its Frobenius
character image is given by Fo(Fi,j ) = s2sn−2. By using the Pieri’s formula, we find
that

Fo(Fi,j ) =

⎧⎪⎪⎨
⎪⎪⎩
s2 if n = 2;
s3 + s2,1 if n = 3;
sn + sn−1,1 + sn−2,2 if n ≥ 4.

(12)

The rest of the proof follows from combining (12) with the formula (10). ��
Proof of Corollary 1.1 The Frobenius character of Matn(C) is the sum of the
Frobenius characters of Symn(C) and Skewn(C). The rest of the proof is a
consequence of Theorems 1.1 and 1.2. ��
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Examples of Equivariant Lagrangian
Mean Curvature Flow

Jason D. Lotay

Abstract We describe important examples of Lagrangian mean curvature flow
in C

2 which are invariant under a circle action. Through these examples, we see
compact and non-compact situations, long-time existence, singularities forming via
explicit models, and significant objects in Riemannian and symplectic geometry,
including the Clifford torus, Whitney sphere and Lawlor necks.

1 Introduction

Lagrangian mean curvature flow has generated major interest from several view-
points, due to its connections with Riemannian geometry (particularly calibrated
geometry), symplectic topology, gauge theory, Calabi–Yau (and, more generally,
Kähler–Einstein) manifolds and Mirror Symmetry. In particular, Lagrangian mean
curvature flow has the potential to lead to striking applications in diverse areas.

However, there are relatively few cases in which the Lagrangian mean curvature
flow is explicitly understood. An exception is the setting of equivariant Lagrangian
mean curvature flow in C

n, which was first studied in [4, 6, 7]. In particular,
understanding equivariant flows in C

2 was crucial in the ground-breaking result
by Neves [7] that any embedded Lagrangian in a Calabi–Yau 2-fold is Hamiltonian
isotopic to a Lagrangian which develops a finite-time singularity under Lagrangian
mean curvature flow.

In the case of C2 (with its standard symplectic form), which will be the focus
of this article, circle-invariant Lagrangian surfaces L ⊆ C

2 are given by curves
γ : I ⊆ R→ C as follows:

L = {(γ (s) cosφ, γ (s) sin φ) ∈ C
2 : s ∈ I, φ ∈ [0, 2π)}. (1)
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This is the heart of the advantage of studying equivariant Lagrangian mean curvature
flow, in that it reduces to a flow of curves in C. (It is worth emphasising that points
on γ define circles in the Lagrangian L in (1), except the origin which gives just a
point in L.)

Recent exciting progress has been made in obtaining a detailed understanding
of equivariant Lagrangian mean curvature flow in C

2 (and, more generally, in C
n),

namely in [3, 8–11]. We shall briefly describe the main outcomes of this work in this
article, which we organize into three cases that depend on the curve γ in C defining
our equivariant Lagrangian:

• Lagrangian tori T 2, given by embedded closed curves;
• Lagrangian spheres S2, given by immersed closed curves;
• Lagrangian cylinders S1 ×R, given by embedded open curves.

(One may also have planes R2, given by certain open curves, but these have not yet
been studied.)

The examples described here provide important results for Lagrangian mean
curvature flow, and it certainly motivates future research in the equivariant setting
to obtain further progress in our understanding of the flow.

2 Preliminaries

We begin with some fundamental notions we require to describe the examples.
If z1 = x1 + iy1, z2 = x2 + iy2 are standard coordinates on C

2, we have the
standard symplectic form given by

ω = i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) = dx1 ∧ dy1 + dx2 ∧ dy2.

One may then check that surfaces L as in (1) are Lagrangian, namely ω|L ≡ 0.
Lagrangian mean curvature flow in C

2 (and any Kähler–Einstein manifold) is the
mean curvature flow with a Lagrangian initial condition:

∂L

∂t
= H, (2)

whereH is the mean curvature vector of L.
If we take a circle-invariant Lagrangian L as in (1), then Lagrangian mean

curvature flow Lt preserves the circle-invariance, so we may write the flow (2) as a
flow of curves γt in C:

∂γ

∂t
= κ − γ⊥

|γ |2 , (3)

where κ is the curvature vector of γ with respect to the Euclidean metric on C, and
γ⊥ is the projection of γ to the normal direction to γ .
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The key to understanding any geometric flow is to study the formation of
singularities. There are two types of singularities in Lagrangian mean curvature flow
at a finite time t = T , determined by the behaviour of the second fundamental form
At of the flow Lt , which must blow-up at the singularity.

• Type I: singularities where limt↗T supLt |At |2(T − t) <∞.
• Type II: any other singularity at t = T .

The simplest examples of Type I singularities are given by self-shrinkers: these are
solutions to (2) that simply shrink by dilations under the flow.

There are also two main ways of studying these singularities via blow-up.

• Type I blow-up. For a positive sequence σi →∞ and w ∈ C
2, we define

Lis = σi(LT+σ−2
i s

−w) ∀ s ∈ [−σ 2
i T , 0).

The sequence Lis subconverges weakly (i.e. as a Brakke flow) as i → ∞, to
a limit flow L∞s in C

2 for all s < 0, which is called a Type I blow-up (or
tangent flow) at (w, T ). A Type I blow-up is a self-shrinker and it provides a
“first approximation” to the nature of the singularity.

• Type II blow-up. Suppose we have a sequence (wi, ti ) ∈ C
2 × (0, T ) such that

ti → T and σi := A(wi, ti) = sup{|At(z)| : z ∈ Lt , t ≤ ti} > 0. If

Lis = σi(Lti+σ−2
i s

−wi) ∀ s ∈ [−σ 2
i ti , 0),

then the sequenceLis subconverges as i →∞ and it will define a smooth solution
L∞s in C

2 for all s < 0, which we call a Type II blow-up. Type II blow-ups give
more refined information about the singularity formation.

Suppose Lt is a Type II blow-up. For a sequence λi →∞, we let

Lis := λ−1
i Lλ2

i s
∀s < 0,

and define the blow-down L∞s as a subsequential limit of the sequence Lis . A blow-
down of a Type II blow-up is a self-shrinker for Lagrangian mean curvature flow in
C

2 and will “approximate” the Type II blow-up. Recently, classification results have
been obtained for Type II blow-ups in Lagrangian mean curvature flow in terms of
their blow-downs [5].

3 Tori: Embedded Closed Curves

In this section we examine embedded, equivariant, Lagrangian 2-toriL in C
2 which

are defined by embedded closed curves γ in C which do not meet the origin as in
Fig. 1.
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Fig. 1 An ellipse defining an embedded Lagrangian 2-torus T 2

Example 1 (Clifford Torus/Circle) The case when γ is a circle, i.e. when a = b in
Fig. 1, corresponds to L being the well-known Clifford torus (which is Lagrangian)
in C

2. The Clifford torus is a self-shrinker for Lagrangian mean curvature flow, and
this is reflected in the fact that a circle in the plane will self-similarly shrink to a
point under the flow (3). Hence, the flow starting at the Clifford torus has a Type I
singularity.

Example 2 (Ellipses) Recently, it was shown in [3], that for any Lagrangian torus
L defined by an ellipse as in Fig. 1 with a �= b, the Lagrangian mean curvature
flow starting at L must develop a finite-time singularity which is not modelled
on the Clifford torus. Hence, the Clifford torus is unstable under Lagrangian
mean curvature flow, even under arbitrarily small Hamiltonian perturbations (which
correspond to taking variations with ab constant).

Further, it is known by work in [4, 6] that, for a < b, the Lagrangian mean
curvature flow starting at a torus defined by such an ellipse would have to develop
a Type II singularity at the origin, whose Type I blow-up is a circle-invariant
Lagrangian pair of planes defined by a pair of lines in C which meet at right angles
at the origin. The curve at the singular time will look something like the figure eight
curve in Fig. 2, and thus the Lagrangian torus will become a 2-sphere at the singular
time. We expect that this same behaviour occurs for any a �= b.

Fig. 2 A figure eight defining an immersed Lagrangian 2-sphere S2



Examples of Equivariant Lagrangian Mean Curvature Flow 479

Example 3 (Star-Shaped Curves) In [4], the authors gave conditions under which
a star-shaped curve with respect to the origin will contract to a point under the
flow (3) so that the corresponding Lagrangian mean curvature flow has a finite-
time Type I singularity. Moreover, the Type I blow-up is a Lagrangian self-shrinker
constructed in [1]. However, in C

2, the constraints on the star-shaped curve mean
that the Lagrangian tori cannot be embedded.

4 Spheres: Immersed Closed Curves

In this section we consider Lagrangian 2-spheres in C
2 (which must be immersed)

and are equivariant, so defined by curves as in Fig. 2.
The curve γ in Fig. 2 and the resulting Lagrangian L defined by γ as in (1) has

two distinct properties.

(a) The curve γ is contained in the region defined by the dashed lines, which each
make an angle of π4 with the horizontal axis, and γ meets any circle centred at
the origin in at most 4 points.

(b) The Ricci curvature of the induced metric on L satisfies Ric ≥ cr2 where c > 0
is a constant and r is the distance to the origin in C

2.

We shall describe results concerning curves satisfying each of these properties.

Example 4 (Case (a)) For curves γ as in (a), Viana [10] showed that the flow (3)
starting at γ has a finite-time singularity at the origin where the flow shrinks to a
point. The corresponding Lagrangian mean curvature flow has a Type II singularity
at the origin, whose Type I blow-up is a plane with multiplicity two (roughly, two
copies of the same plane).

Example 5 (Case (b)) For curves γ as in (b), it was shown in [8] that again the flow
(3) starting at γ has a finite-time singularity at 0, where the flow shrinks to a point.
Moreover, the Lagrangian mean curvature flow given by γ has a Type II singularity
at the origin whose Type II blow-up is the product of a Grim Reaper curve and a
real line. The Grim Reaper curve is shown in Fig. 3 and is given by

γ (t) = {− log cos y + iy ∈ C : y ∈ (−π
2 ,

π
2 )}. (4)

It is a translator for curve shortening flow, i.e. it just translates to the right along the
flow.

Fig. 3 Grim Reaper curve
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Fig. 4 A collapsing figure eight along the flow (3)

Example 6 (Whitney Sphere/Figure Eight) The figure eight in Fig. 2 defines the
well-known Whitney sphere in C

2. The flow (3) starting at this curve cannot be self-
similar as there are no Lagrangian self-shrinking spheres [2]. However, by the work
in [8, 10] it will still shrink to a point in finite time.

At the finite-time singularity the Lagrangian mean curvature flow will have a
Type II singularity whose Type I blow-up is a plane with multiplicity two, and the
Type II blow-up is the product of a Grim Reaper curve with a line. Along the flow it
deforms as in Fig. 4, “squashing” vertically faster than it does horizontally, and one
can imagine the Grim Reaper curve emerging at the extreme left (and right) points
of the curve in the limit.

5 Cylinders: Embedded Open Curves

For the final set of examples, we look at embedded non-compact curves asymptotic
to straight lines, as in Fig. 5. The behaviour of the flow crucially depends on the
angle α in Fig. 5.

Example 7 (α = π
2 : Lawlor Necks) In this case, the curve γ in Fig. 5 is a

standard hyperbola asymptotic to a pair of straight lines meeting at right angles.
The corresponding LagrangianL is minimal, i.e. it hasH = 0, and so is a stationary
point for Lagrangian mean curvature flow (2). The Lagrangian L is called a Lawlor
neck.

Recently, Su [9] considered a natural class of curves γ asymptotic to a pair of
lines with angle α = π

2 as in Fig. 5, which, in particular, are sandwiched between
hyperbolae defining Lawlor necks. Su showed that the Lagrangian mean curvature
flow starting at the Lagrangian defined by γ exists for all time and converges to a
Lawlor neck.
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Fig. 5 A non-compact arc defining an asymptotically planar Lagrangian cylinder S1 × R

Example 8 (α ∈ (0, π2 ): Self-expanders) For every α ∈ (0, π2 ), Anciaux [1] showed
that there is a dilation family of curves γ as in Fig. 5 so that the corresponding
Lagrangian is a self-expander; i.e. it simply expands by dilation under the flow (2).

Su [9] considered certain natural curves γ as in Fig. 5 for α ∈ (0, π2 ), bounded
between two curves defining self-expanders, and showed that (after rescaling)
Lagrangian mean curvature flow starting at the Lagrangian defined by γ exists for
all time and converges to an Anciaux self-expander.

Example 9 (α ∈ (π2 , π): Singularities) When α ∈ (π2 , π), it is shown in [7, 11] that
for curves γ as in Fig. 5 the flow (3) has a first finite-time singularity at the origin.
Moreover, the singularity is Type II and the Type I blow-up is a circle-invariant pair
of Lagrangian planes defined by a pair of lines in C which meet at right angles at
0. A rough picture of what happens at the finite-time singularity is given in Fig. 6.
The Lagrangian has become two tranversely intersecting copies of R2 at the singular
time.

Recently, Wood [11] has shown further that the Type I blow-up at the origin is
unique, the Type II blow-up is unique (up to scale) and given by the Lawlor neck
asymptotic to the Type I blow-up, so that the blow-down of the Type II blow-up is

Fig. 6 Singularity formation for an asymptotically planar Lagrangian cylinder
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equal to the Type I blow-up. This matches well with the classification results for
Type II blow-ups in [5].

6 Outlook

There are many further questions one may ask about general Lagrangian mean
curvature flow which may already yield an interesting answer in the equivariant
setting, motivated in part by the examples we have discussed.

• When can one relate blow-downs of Type II blow-ups to Type I blow-ups at a
finite-time singularity?

• Does the mean curvature necessarily blow-up at a finite-time singularity?
• Can one better understand the role of pseudoholomorphic curves in the formation

of singularities in Lagrangian mean curvature flow?

Answering any of these questions would be significant for further study of
Lagrangian mean curvature flow.
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Some Useful Facts on Invariant
Connections

Gonçalo Oliveira

Abstract This short note gathers a few useful results on connections invariant
under a group action. The results here reviewed have proved useful in solving several
gauge theoretical equations and may be of relevance to both mathematicians and
physicists.

1 Introduction

1.1 Context

The use of Lie group actions in geometry, analysis and physics has long been a
fashionable and fruitful tool. For example, there are difficult geometric classification
problems which admit interesting very symmetric examples which under such
symmetry assumptions can be effectively classified. In many cases, these simplified
classifications shed light on the general theory and help to shape the developments
which it then takes.

In a related but somewhat transverse direction, consider some geometric partial
differential equation (PDE), such as a gauge theoretical equation originating from
physics. These are in general difficult to solve, and in a generic geometric setting it is
hopeless to expect explicit solutions to exist. However, in very symmetric situations,
we may hope to use a Lie group symmetry to reduce these complicated equations to
simpler ones depending on less variables, and that may be solved.

This is useful, for instance, when solving gauge theoretical PDEs for connec-
tions. When the connections are invariant, such PDEs reduce to lower dimensional
equations in the orbit space. This may be a point, as is the case when the group acts
transitively in a connected space, and so the original PDEs get reduced to algebraic
equations (zero dimensional PDEs). More non-trivial examples happen when the
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orbit space is 1-dimensional in which case the original problem is reduced to ODEs
on it, and so forth. Thomas Parker’s beautiful articles [7] and [8] are some of the
earliest articles to have effectively used the techniques here reviewed in this line of
research.

These notes contain the geometric input required to understand gauge theoretical
problems under such symmetry assumptions.

1.2 Summary and Organization

This notes start in Sect. 2 by reviewing the notion of homogeneous principal G-
bundles over homogeneous spaces K/H . These are bundles over K/H equipped
with a lift of the K-action to their total space and so there is a canonical notion
of connections on these which are invariant under the K-action. Wang’s theorem,
which we review and prove in Sect. 3, classifies these invariant connections.

In Sect. 4, we clarify the relation between two natural definitions of the moduli
spaces of invariant connections modulo gauge. Namely, one can consider an action
of K on the moduli space of connections up to gauge, denoted A/G, and define
[A/G]inv as its fixed locus. Alternatively, we may find more natural/useful to instead
consider the space of invariant connections Ainv and quotient it by the action of
the invariant gauge transformations Ginv , which clearly preserves Ainv , yielding
Ainv/Ginv . We show that there is a well defined surjective map

φ : Ainv/Ginv → [A/G]inv,
which, for semisimple G, when restricted to the set of irreducible connections is
also injevctive.

Several times it is convenient to work with connections on bundles over spaces
with aK-action which may not act transitively. Then, we may consider connections
whose restriction to each K-orbit is invariant. For these two give a well defined
connection on the whole space, they must have some “restricted” behavior at the
boundary of the orbit space. There may be several approaches to this, but in
Sect. 5 we summarize an approach based on the Eschenburg-Wang analysis for
the Cauchy problem for Einstein metrics. This can be effectively employed in the
cohomogeneity-1 case and may be adapted to deal with some higher cohomogeneity
situations.

2 Principal Bundles with Connections on Homogeneous
Spaces

This section introduces the notion of homogeneous bundles over homogeneous
spaces following the nomenclature of [3]. A short summary of the content of this
section and the next already appear in an Appendix to the author’s PhD thesis [6].
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Let G be a compact Lie group. Any G-bundle E can be constructed via the
associated bundle construction from a principal G-bundle P . So let π : P → X be
a principal G-bundle. We shall focus on the case where H ⊂ K are connected Lie
groups, and X = K/H is a homogeneous space.

SoK acts transitively onX with isotropy subgroupH , which is normal inK . As
usual K acts on the left on X andG on the right on P .

Definition 2.1 A lifting of the K-action to P is an homomorphism ρ : K →
Diff(P ), such that:

• ρ covers the K action on the base, i.e.

∀ k ∈ K, π ◦ ρ(k) = k ◦ π,

where in the right hand side k ∈ Diff(X) is the diffeomorphism defined by k.
• ρ is a bundle map, i.e. commutes with rightG action on P .

Definition 2.2 A principal G-bundle π : P → X as above is called K-
homogeneous if it is equipped is a lifting ρ of the K-action. Two K-homogeneous
principal G-bundles (πi : Pi → X,ρi), for i = 1, 2, as above are said to be
isomorphic if there is a bundle isomorphism φ : P1 → P2 which intertwines the
two K-actions, i.e.

φ ◦ ρ1 = ρ2 ◦ φ.

Remark 2.3 Let H be the isotropy subgroup at x ∈ X. The restriction of the lifts
ρ|H preserve the fibre at x. Since the G action is injective and transitive along the
fibres, we obtain an homomorphism λ : H → G. Notice that this depends on the
choice of a point in the fibre above x, which we shall think as fixed from now on.
We shall call λ the isotropy homomorphism.

Moreover, the isotropy isomorphism can be used to recover the principal G-
bundle P , via the associated bundle construction

P = K ×H,λ G.

These bundles are clearly reducible, since we can embed i : K ↪→ P as a sub-
bundle, via the map k �→ i(k) = [k, 1], where 1 ∈ G is the identity.
Let F be a differentiable manifold with aG action η : G→ Diff (F ), construct the
associated bundle E = P ×G,η F with fibre F . We can naturally define a K-action
on E, via the lifting ρ to P . We shall also denote this action by ρ. Then there is an
isomorphism of homogeneous bundles

P ×G,η G ∼= K ×H,η◦λ F. (2.1)
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3 Invariant Sections and Connections

This section defines invariant sections and connections, culminating with the proof
of Wang’s theorem classifying invariant connections.

Definition 3.1 sE ∈ �(E) is said to be an invariant section under the K action on
E if for all k ∈ K

ρ(k) ◦ sE = sE ◦ k.

Proposition 3.2 There is a one to one correspondence between K-invariant sec-
tions of E and points in F fixed by the action η ◦ λ of H in F .

Proof Since E and E′ = K ×H,η◦λ F are isomorphic as homogeneous bundles
we can use the correspondence between sections of E′ and H -equivariant maps
f : K → F . Then, K-invariant sections must correspond to constant maps. The
H -equivariance condition on the map imposes that its image is a point fixed by
η ◦ λ(H). ��
Remark 3.3 In the case where F is a vector space and η ◦ λ : H → GL(F) is
a representation we can split F into irreducible components F = ⊕

i Fi . Then
invariant sections of E = K ×H,η◦λ F are given by vectors in F0 the component
corresponding to the trivial representation in which η ◦ λ acts with eigenvalue 1.

We shall now restrict to the case of the above remark, i.e. F be a vector space and
η a representation. The goal now is to define an invariant connection in a workable
and equivalent way. We shall now describe connections on associated bundles of the
form E = P ×η F . Notice that this contains the case of connections on principal
bundles as P can be seen as such an associated bundle via P = P ×idG G. A
connection on E = P ×η F is given by a 1 form in P with values in End(F ), say
B ∈ �1(P,End(F )), such that

1. For all g ∈ G,

R∗gB = Adη(g−1)B.

2. For all X ∈ g,

B
(
d
dt

∣∣
t=0pe

tX
)
= dη(X).

However, as seen in (2.1), these connections can also be described as A ∈
�1(K,End(F )) such that

1. For all h ∈ H ,

R∗hA = Adη(λ(h)−1)A.
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2. For all Y ∈ h,

A
(
d
dt

∣∣
t=0pe

tY
)
= d(η ◦ λ)(Y ).

In fact, in view of the embedding i : K ↪→ P one has A = i∗B. So we shall stick
to this later description of connections in any homogeneous principal and vector
bundles.

Definition 3.4 A connection A ∈ �1(K,End(F )) on K ×H,η◦λ F is said to be
invariant if the connection 1 form A is left invariant, i.e.

L∗kA = A,

for all k ∈ K .

In the case of homogeneous spaces Wang’s theorem classifies all invariant
connections on a homogeneous principal bundle. [3] volume II., theorem 11.5.

Theorem 3.5 (Wang’s Theorem [10]) Let P = K ×H,λ G be a principal
homogeneous G-bundle. Then K-invariant connections A on P are in one to one
correspondence with linear maps � : k→ g, such that

1. � ◦ ad(h) = ad(λ(h)) ◦�, for all h ∈ H , and
2. �|h = dλ.

The curvature of the connection can be written in terms of � as

F(X, Y ) = [�(X),�(Y )] −� [X,Y ] ,

for X,Y ∈ k extended as left invariant vector fields.

Proof GivenA ∈ �1(K, g) we can restrict it to the identity to get a map� : k→ g,
properties 1. and 2. in the theorem are obvious consequences of the conditions A
need to satisfy to be a connection. Conversely, given a map � : k → g we can
extend it as a left invariant 1-form. This will be a connection due to the properties
1. and 2. in the theorem.

To compute the curvature of an invariant connection A ∈ �1(K, g)) on left
invariant vector fields X,Y .

F(X, Y ) = dA(X, Y )+ 1

2
[A ∧A] (X, Y )

= X · (A(Y ))− A · (A(X))− A([X,Y ])+ [A(X),A(Y )]

= [A(X),A(Y )]− A([X,Y ]),

using that A(X),A(Y ) are constant. ��
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From now on we must consider Homogeneous spaces X = K/H , where H is
connected and we can find an ad-h invariant complement to h, i.e.

k = m⊕ h,

with [m, h] ⊂ m, this shall be called a reductive decomposition. Fixing a choice of
m, � is totally determined from its values in m, since � = λ∗|h + �|m. In such
a situation, with a lift of the action to the principal bundle, invariant connections
always exist and we define the canonical invariant connection to be given by
�|m = 0, i.e

A = dλ|h
Remark 3.6 Notice that according to our definition of canonical invariant connec-
tion, it is only unique once a specific complement m have been chosen.

Example 3.7 A rather special case is when the bundle P is the H -bundle K →
K/H . Pick a reductive decomposition k = m ⊕ h and let θ be the Maurer Cartan
form. This can be projected onto each m or h, denote this last one by θ |h. The action
is the left multiplication of H onto K . Hence the isotropy homomorphism λk at
k ∈ K satisfying hk = kλ(h) for h ∈ H is given by λk(h) = k−1hk. If we pick k
to be the identity, then the canonical invariant connection A is defined by taking the
left invariant extension of the projection pg into h. So for Y a left invariant vector
field, we have

A(Y ) = phθ(Y ) = ph(Y ).

In this way we can view the connection as a 1 form in K with values in h. Since it
obviously agrees with the Maurer Cartan form along the fibres, to show this really
is a connection we just need to verify the equivariance condition. Let Y ∈ TkK and
compute

(R∗hA)k (Y ) = Akh(dRhY ) = ph(dL(kh)−1dRhY )

= ph(Adh−1dLk−1Y )

= Adh−1Ak(Y ).

Moreover, this canonical invariant invariant connection on K → K/H has as
horizontal space the left translations of m.

Let P = K ×H,λ G be a principal G bundle over K/H . Notice that k and g are
two representations of H , respectively given by Ad : H → GL(k) and Ad ◦ λ.
Then, Wang’s theorem 3.5 can be phrased in the following way.
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Theorem 3.8 (Wang, Version 2) There is a one to one correspondence between
K-invariant connections on P and morphisms of H -representations � : k → g
such that�h = dλ.

The following example gives a way of constructing a special class of invariant
connections.

Example 3.9 Suppose K is simply connected and let � : k → g be a morphism
of Lie Algebras. Then for each Lie group G with Lie algebra g, we can uniquely
integrate� to a morphism �̃ : K → G of Lie groups. Define

λ : H → G,

through the composition H ↪→ K → G via �̃. Then, the map � obviously define
a morphism of H representations satisfying �|h = dλ and hence gives rise to an
invariant connection.

4 Moduli Space of Invariant Connections Modulo Gauge

Let us consider a reductive homogeneous space of the formK/H for some compact
K and and a homogeneous principalG-bundle Pλ = K ×(λ,H) G. The lift of the K
action to Pλ will be denoted by ρ(k)[k′, g] = [kk′, g] and it acts on a connection
form A ∈ �1(K, g) by ρ(k)A = L∗kA.

Definition 4.1 A gauge transformation on Pλ is a g ∈ �0(K,G) such that

g(kh) = λ(h)g(k)λ(h)−1

for all k ∈ K and h ∈ H . A gauge transformation acts on a connection via

g · A = Ad(g−1)A.

We can define the moduli space of invariant connections in two different ways.
The first and more standard one is by taking Ainv/Ginv , where Ainv are those
connections A such that ρ(k)A = A for any k ∈ K and Ginv the gauge
transformations g such that L∗kg = g for all k ∈ K , whose action can be seen to
preserve Ainv . We now take one second definition which requires some preparation.
First we consider the full moduli space of connections up to gauge A/G. Then we
define an action of K on A/G by letting k ∈ K act on a gauge equivalence class by

ρ(k)[A] = [ρ(k)A],

where A is some element in the class [A].
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Lemma 4.2 This action is well defined!

Proof Let A1, A2 ∈ [A] we need to prove that for k ∈ K , ρ(k)A1 and ρ(k)A2 are
gauge equivalent.

As A2 is gauge equivalent to A1 there is g such that g · A2 = A1 and so

ρ(k)A2 = ρ(k)g·A1 = L∗kAd(g−1)A1 = Ad(g−1◦Lk)L∗kA1 = (g−1◦Lk)·ρ(k)A1,

which is gauge equivalent to ρ(k)A1 as g−1 ◦ Lk is a gauge transformation. To
check that recall that for h ∈ H ⊂ K , R∗h(g−1 ◦ Lk) = R∗hL∗kg−1 = L∗kR∗hg−1 =
L∗kAd(λ(h−1))g−1 = Ad(λ(h−1))(g−1◦Lk) asRh andLk commute and so g−1◦Lk
satisfies the correct equivariance condition for a gauge transformation. ��

We can then define the moduli space of invariant connections in one other way,
namely

[A/G]inv = {[A] ∈ A/G | ρ(k)[A] = [A], for all k ∈ K}.

The key point is that

Proposition 4.3 The map

φ : Ainv/Ginv → [A/G]inv (4.1)

A �→ [A],

is surjective.

Proof Let [A] ∈ [A/G]inv , we need to check that there is an invariant connection
A in the gauge equivalence class of [A]. To do this we fix A ∈ [A], and define our
candidate to be

A =
ˆ

K

ρ(k)A dμK,

where dμK denotes the Haar measure on K , which recall is compact. This A is
obviously invariant and so in the image of φ, so we only have to check that it is
indeed gauge equivalent toA. Notice that as [A] ∈ [A/G]inv , for any element k ∈ K
there is a gauge transformation gk such that ρ(k)A = gk ·A. In fact, we can see that
this defines a group homomorphismK → G, and

A =
ˆ

K

ρ(k)A dμK =
(ˆ

K

gkdμK

)
· A,

which shows that A is gauge equivalent to A. ��
The previous map is not injective in general, we shall now investigate when such

happens.
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Lemma 4.4 LetG be semisimple andA1, A2 be different connections in Ainv/Ginv
such that φ(A1) = φ(A2), then A1 and A2 must be reducible.

Proof If φ(A1) = φ(A2), then A1, A2 ∈ Ainv must be gauge equivalent invariant
connections, i.e. [A1] = [A2] and so A1 = g · A2 for some gauge transformation
g /∈ Ginv . As A1, A2 are invariant we conclude that for all k ∈ K ,

A1 = L∗kA1 = L∗k(g ·A2) = (g ◦ Lk) ·A2.

Taking k to be of the form exp(tX) for X ∈ k we conclude that

dA2(dg(X)) = 0,

for all X ∈ k. Therefore, either dg(X) = 0 which cannot happen as g /∈ Ginv , or
dg(X) �= 0 and spans a nonvanishing vector sub-bundle of ker(dA2) ⊂ �(X, gP ),
which must therefore be nonzero. As G is semisimple A2 must be reducible and so
must A1. ��
Corollary 4.5 The map φ from Eq. (4.1) is surjective and restricted to the
irreducible connections also injective (for semisimple G).

5 Extending Invariant Tensors Over Singular Orbits

Consider a space X with an action of a Lie group K and a G-bundle over X
equipped with a lift of the K to its total space. Recall from Definition 3.4 this
implies it covers the K-action on X and commutes with the right G action on the
total space. A connection on such a bundle is called invariant if its restriction to any
K-orbit is invariant as in Definition 3.4. Not all of these give rise to globally well
defined smooth connections on the whole X as they must satisfy some smoothness
conditions when the K-orbits are different from the generic ones, as happens for
instance at the boundary of the orbit space.

In the case when K acts on X with cohomogeneity one, meaning that the
generic orbit of the K-action has codimension one, a possible approach is to use
the Eschenburg and Wang’s method in [2], which we review in this section. This
method was effectively used in [4], and the reader may view that as an example of
application. We should also point out that there are other ways to proceed such as
employing the techniques of [9], or in case the connections satisfy a PDE using a
suitable removable singularity result such as in [1] and [5].

Let K act with cohomogeneity-1 on X and H be the principal isotropy, i.e. the
isotropy of the generic orbits. A codimension k singular orbitQ is then of the form
Q = K/H− with H−/H ∼= Sk−1. Notice that if V = R

k , then H− acts transitively
on the spheres in V , with isotropy H . The normal bundle ofQ is then

E = K ×H− V,
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with projection πE : E → Q. Moreover, a neigbourhood of the zero section is
K-equivariantly diffeomorphic to a neighborhood of the singular orbit Q in X.
Moreover, we can suppose E is equipped with a Riemannian metric which we may
assume to be K invariant if this is compact.

Let s ∈ �0(E, T ) be a K-invariant tensor, i.e. a K-invariant section of some
K-homogeneous vector bundle T of tensors over E. In what follows let V ′ denote
the tensor representation with which T is associated, i.e. T = K ×H V ′. As s is
K-invariant andK acts on E with cohomogeneity-1, s is completely determined by
its values along the line

&v0 := {tv0, t ∈ R
+},

where v0 ∈ E is some vector in the fiber over a point p ∈ Q. Moreover, as s in K
invariant and the isotropy of any point tv0, for t �= 0 is H , the values

st = s(tv) ∈ (V ′)H−,

must be H -invariant (whereH acts via H ⊂ H−).
Eschenburg and Wang explain how to reverse this, i.e. they explain the conditions

on a family of H -invariant vectors st ∈ (V ′)H− , so that the function

s : V \{0} → V ′, s(h−(t, 0, . . . , 0)) = h− · st , (5.1)

for t ∈ R
+ and h− ∈ H−, extends over the origin. The answer is most easily

understood by considering the space W of H−-equivariant maps Sk−1 → V ′. Note
that by construction s|Sk−1 ∈ W (where s is as above). Moreover, the evaluation
map

ev : W → (V ′)H−, ev(s) = s(1, 0, . . . , 0)

is an isomorphism of vector spaces. In what follows, we shall denote by Wm the
space of those maps which are the restriction to Sk−1 of degree-m H−-equivariant
maps V → V ′.

Proposition 5.1 (Eschenburg and Wang [2]) Let st : R+0 → V ′ be smooth with
Taylor expansion

∑
i si t

i . Then, the map s in 5.1 extends smoothly over the origin
if an only if si ∈ Wi .

The following comment is crucial in easing most of the applications of this
proposition.

Remark 5.2 Notice that W = ∑+∞
i=0 Wm and is finite dimensional and that

multiplying an element inW by | · |2 increases its degree by 2. Hence we can find a
set of generator of minimal degree.
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on Spin(7)-Manifolds

Sema Salur and Eyup Yalcinkaya

Abstract A non-degenerate differential 2-form on an even dimensional manifold
M2n is called an almost-symplectic structure. A necessary condition for the exis-
tence of an almost-symplectic structure is that all odd-dimensional Stiefel-Whitney
classes ofM should vanish. In this paper, we prove that all odd-dimensional Stiefel-
Whitney classes of a smooth, closed, connected, orientable 8-manifold with spin
structure vanish. We also study the almost-symplectic structures on certain classes
of Spin(7)-manifolds.
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1 Introduction

In this paper we study geometric structures on Spin(7) manifolds. A Spin(7)-
manifold is an 8-dimensional Riemannian manifold with the holonomy group inside
the exceptional Lie group Spin(7). Manifolds with special holonomy are spaces
whose infinitesimal symmetries allow them to play a crucial role in M-theory com-
pactifications. They represent the tiny curled up dimensions hiding at every point of
spacetime. Examples of manifolds with special holonomy are 6-dimensional Calabi-
Yau manifolds, 7-dimensionalG2 manifolds and 8-dimensional Spin(7)manifolds.
Despite extensive research on Calabi-Yau manifolds, the geometric properties of
G2 and Spin(7) manifolds are not well understood. In this paper we initiate a
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program to study almost symplectic structures on Riemannian 8-manifolds with spin
structure.

In particular we prove

Theorem All the odd-dimensional Stiefel-Whitney classes of a smooth, closed,
connected, orientable 8-manifold with spin structure vanish.

Note that a manifold M with Spin(7)-structure is orientable and spin. The
theorem above implies that the obstructions for the existence of almost symplectic
(and hence almost complex) structures on a manifold with full Spin(7) holonomy
vanish as well. There are inclusions between the groups

SU(2) −→ SU(3) −→ G2 −→ Spin(7),

and

SU(2)× SU(2) −→ Sp(2) −→ SU(4) −→ Spin(7).

These are the only connected Lie subgroups of Spin(7) which can be holonomy
groups of Riemannian metrics on 8-manifolds. Hence the theorem above also holds
for 8-manifolds with reduced holonomy groups.

2 Spin(7)-Structures

In this section we review the basics of Spin(7) geometry. More on the subject can
be found in [4, 6, 8] and [13].

Let (x1, . . . , x8) be coordinates on R
8. The standard Cayley 4-form on R

8 can
be written as

�0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678

where dxijkl = dxi ∧ dxj ∧ dxk ∧ dxl .
The subgroup of GL(8,R) that preserves �0 is the group Spin(7). It is a 21-

dimensional compact, connected and simply-connected Lie group which preserves
the orientation on R

8 and the Euclidean metric g0.

Definition 2.1 A differential 4-form � on an oriented 8-manifold M is called
admissible if it can be identified with �0 through an oriented isomorphism between
TpM and R

8 for each point p ∈ M .



Almost Symplectic Structures on Spin(7)-Manifolds 497

Definition 2.2 Let A(M) denotes the space of admissible 4-forms on M . A
Spin(7)-structure on an 8-dimensional manifold M is an admissible 4-form � ∈
A(M). If M admits such structure, (M,�) is called a manifold with Spin(7)-
structure.

Each 8-manifold with a Spin(7)-structure � is canonically equipped with a
metric g. Hence, we can think of a Spin(7)-structure on M as a pair (�, g) such
that for all p ∈ M there is an isomorphism between TpM and R

8 which identifies
(�p, gp) with (�0, g0).

Existence of a Spin(7)-structure on an 8-dimensional manifoldM is equivalent
to a reduction of the structure group of the tangent bundle of M from SO(8)
to its subgroup Spin(7). The following result gives the necessary and sufficient
conditions so that the 8-manifold admits Spin(7)-structure.

Theorem 2.3 ([4, 6]) Let M be a differentiable 8-manifold. M admits a Spin(7)-
structure if and only if w1(M) = w2(M) = 0 and for appropriate choice of
orientation onM we have that

p1(M)
2 − 4p2(M)± 8χ(M) = 0.

Furthermore, if ∇� = 0, where ∇ is the Riemannian connection of g, then
Hol(M) ⊆ Spin(7), and M is called a Spin(7)-manifold. All Spin(7) manifolds
are Ricci flat.

Let (M, g,�) be a Spin(7)manifold. The action of Spin(7) on the tangent space
gives an action of Spin(7) on the spaces of differential forms, �k(M), and so the
exterior algebra splits orthogonally into components, where �kl corresponds to an
irreducible representation of Spin(7) of dimension l:

�1(M) = �1
8, �2(M) = �2

7 ⊕�2
21, �3(M) = �3

8 ⊕�3
48,

�4(M) = �4+(M)⊕�4−(M), �4+(M) = �4
1 ⊕�4

7 ⊕�4
27, �4− = �4

35

�5(M) = �5
8 ⊕�5

48 �6(M) = �6
7 ⊕�6

21, �7(M) = �7
8;

where�4±(M) are the ±-eigenspaces of ∗ on �4(M) and

�2
7 = {α ∈ �2(M)| ∗ (α ∧�) = 3α}, �2

21 = {α ∈ �2(M)| ∗ (α ∧�) = −α},

�3
8 = {∗(β ∧�)|β ∈ �1(M)}, �3

48 = {γ ∈ �3(M)|γ ∧� = 0},

�4
1 = {f�|f ∈ F(M)}

The Hodge star ∗ gives an isometry between �kl and �8−k
l .
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3 Almost Symplectic Structures and Spin(7)-Structures

In this section we show that all the odd-dimensional Stiefel-Whitney classes on a
closed, connected orientable 8-manifold with spin structure vanish.

An almost symplectic manifold M is a n-dimensional manifold (n = 2m)
with a non degenerate 2-form ω. If in addition, ω is closed then M is called a
symplectic manifold. An almost symplectic structure defines an Sp(m,R) structure.
A necessary and sufficient condition for the existence of an almost symplectic
structure on M is the reduction of the structure group of the tangent bundle to
the unitary group U(m). It is therefore necessary that all odd-dimensional Stiefel-
Whitney classes ofM to vanish [9].

For any manifold M and integer k ≥ 0, one can construct a graded linear map
Sqk : H ∗(M,Z2)→ H ∗(M,Z2) of degree k. This is called the kth Steenrod square.
One can define Stiefel-Whitney classes using both Steenrod squares and the Thom
isomorphism.

There is also a unique class νk ∈ Hk(M,Z2) such that for any x ∈
Hn−k(M,Z2), Sqk(x) = νk ∪ x. We call this class νk , the kth Wu class.

Now suppose M is a smooth, closed, connected n-dimensional manifold. Wu’s
theorem states that the total Stiefel-Whitney class of the tangent bundle of M ,
denoted by w, Steenrod squares and Wu classes are all related by the equation
w = Sq(ν), for more on the subject see [11]. This gives the following formula:

wk =
∑
i+j=k

Sqi(νj )

One can also compute the action of the Steenrod squares on the Stiefel-Whitney
classes. This is called the Wu formula:

Sqi(wj ) =
i∑
t=0

(
j + t − i − 1

t

)
wi−twj+t

for 0 ≤ i ≤ j . Thus we obtain

w1 = Sq0(ν1) = ν1,

w2 = Sq0(ν2)+ Sq1(ν1) = ν2 + ν1 ∪ ν1,

w3 = Sq0(ν3)+ Sq1(ν2) = ν3 + Sq1(ν2) = ν3 + Sq1(w2)+ Sq1(w1 ∪ w1),

w4 = Sq0(ν4)+ Sq1(ν3)+ Sq2(ν2) = ν4 + Sq1(ν3)+ ν2 ∪ ν2

w5 = Sq0(ν5)+ Sq1(ν4)+ Sq2(ν3) = ν5 + Sq1(ν4)+ Sq2(w1 ∪ w2)
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And one can write the corresponding Wu classes as polynomials in the Stiefel-
Whitney classes as follows: For simplicity, we replace the cup product symbol by
multiplication sign.

ν1 = w1,

ν2 = w2 +w2
1,

ν3 = w1w2,

ν4 = w4 +w3w1 +w2
2 +w4

1,

ν5 = w4w1 +w3w
2
1 +w2

2w1 +w2w
3
1,

In a spin manifold, w1 = w2 = 0 which imply v1 = v2 = 0 which then gives
w3 = v3. One can also see that w3 = 0 as follows: Note that by definition of Wu
classes, v3 ∪ x = Sq3(x) for all x ∈ H(n−3)(M,Z2). Then one can see that Sq3 is a
linear combination of Sq1 ◦ Sq2 and Sq2 ◦ Sq1 and Sq1 ◦ Sq1 ◦ Sq1 so that we get

v3 ∪ x = (aSq1Sq2 + bSq2Sq1 + cSq1Sq1Sq1)(x) = Sq1(y)+ Sq2(z)

for some y, z. This term is equal to v1 ∪ y + v2 ∪ z = 0. As v3 ∪ x = 0 for all x,
Poincare duality then gives v3 = 0 and hence w3 = 0.

The Wu relations also imply thatw4 = ν4. Sincew1 = 0 (asM is orientable) this
gives us w5 = Sq1(w4). Equivalently, w5 is the image of w4 under the Bockstein
map induced by

0 −→ Z2 −→ Z4 −→ Z2 −→ 0

This implies that w5 is the mod-2 reduction of the integral Stiefel-Whitney class
W5, which is the element of H 5(M,Z), that is the image of w4 under the Bockstein
map induced by

0 −→ Z −→ Z −→ Z2 −→ 0

Note also that v4 is by definition the Poincare dual to the Z2 linear map

Sq4 : H 4(M,Z2)→ H 8(M,Z2) = Z2

which implies

w4.x = v4.x = x.x

for any element x of H 4(M,Z2). In other words, w4 just represents the mod-2
intersection form.
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One can then use the Hirzebruch-Hopf theorem [7] to show thatw4 has an integer
lift and thereforew4 is in the image of H 4(M,Z) −→ H 4(M,Z2) and so W5 = 0.

The commutative diagram of short exact sequences

0 Z Z Z2 0

0 Z2 Z4 Z2 0

induces a commutative diagram of the corresponding long exact sequences and
hence implies that w5 = 0.

And finally, in order to show that w7 = 0 we use a result of W. Massey. In [10,
Thm II] it was shown that if M2m is orientable (where 2m ≡ 0 (mod 4)), then
w2m−1 = 0. Hence for an 8-manifold we obtain w7 = 0. One can read more about
the proof in [10, Section 5].

This completes the proof of the main theorem:

Theorem 3.1 All the odd-dimensional Stiefel-Whitney classes of a smooth, closed,
connected, orientable 8-manifold with spin structure vanish.

4 A Motivating Example

Next, we discuss a special class of Spin(7)manifolds that admits an almost complex
structure and show how it is related to the Spin(7)-structure.

Let (M,�) be a Spin(7) manifold (or more generally manifold with Spin(7)-
structure) admitting a non-vanishing 2-plane field � = {u, v} ∈ TM . In [12], E.
Thomas shows that the Euler characteristic χ(M) = 0 and the signature σ(M) ≡ 0
(mod 4) provides the necessary and sufficient conditions for the existence of a 2-
plane field on an 8-manifold. Now define, [u, v]⊥ = {w ∈ TM|< u,w >=<
v,w >= 0}. One can show that [u, v]⊥ carries a non-degenerate 2-form ωu,v which
is compatible with the almost complex structure Ju,v : [u, v]⊥ → [u, v]⊥ and given
by

ωu,v(w, z) = �(w, u, v, z) and Ju,v(z) = u× v × z.

Definition 4.1 Let (M,�) be a Spin(7) manifold. Then Ju,v(z) = u× v× z is the
triple cross product defined by the identity:

< Ju,v(z),w >= �(u, v, z,w). (4.1)

Theorem 4.2 Let (M,�) be a Spin(7) manifold with a non-vanishing oriented 2-
plane field. Then, Ju,v(z) = u × v × z defines an almost complex structure on M
compatible with the Spin(7) structure.
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Proof Let {u, v} ∈ TM be two vectors generating the non-vanishing oriented
2-plane field. J (z) is well defined since by Equation (1), < J(z),w >=
�(u, v, z,w).

Next, we show J 2(z) = −id . This can be done using the properties of the
Spin(7)-structure onM. Let zi , zj ∈ TM ,
Then

< u× v × (u× v × zi), zj > = �(u, v, (u × v × zi), zj )
= −�(u, v, zj , (u× v × zi))
= − < u× v × zj , u× v × zi >
= −δij

The last equality holds since the map J is orthogonal. Note that the map J only
depends on the oriented 2-plane� = {u, v}. ��

5 Interesting Questions

One major problem in the field of manifolds with special holonomy is a lack of an
existence theorem that gives necessary and sufficient conditions for a 7-dimensional
manifold to admit a G2 metric. In an earlier paper, [3], Arikan, Cho and Salur
proposed a program to study the relations between (almost) contact structures and
G2 structures. The main goal is to understand the topological obstructions for the
existence of a G2 metric on a Riemannian 7-manifold with spin structure. In that
paper, they proved the following theorem:

Theorem 5.1 Every 7-manifold with a spin structure admits an almost contact
structure.

Since every 7-manifold with spin structure admits a G2 structure this implies:

Corollary 5.2 Every manifold with G2-structure admits an almost contact struc-
ture.

As one might expect, a promising direction for future investigation is to obtain
similar results for almost complex (and hence almost symplectic) 8-manifolds with
Spin(7) structures. Understanding almost complex structures on a Spin(7) manifold
might help us to understand the properties of the Spin(7) metric. We plan to
investigate these relations in a future paper.

Also in the papers, [1, 2] and [5], it is shown that the rich geometric structures
of a G2 manifold N with 2-plane fields provide complex and symplectic structures
to certain 6-dimensional subbundles of T (N). Using the 2-plane fields, one can
introduce a mathematical definition of “mirror symmetry” for Calabi-Yau and G2
manifolds. More specifically, one can assign a G2 manifold (N, ϕ,�), with the
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calibration 3-form ϕ and an oriented 2-plane field �, a pair of parametrized tangent
bundle valued 2 and 3-forms of N . These forms can then be used to define different
complex and symplectic structures on certain 6-dimensional subbundles of T (N).
When these bundles are integrated they give mirror CY manifolds. This is one way
of explaining duality between the symplectic and complex structures on the CY
3-folds inside of a G2 manifold. Similarly, one can construct these structures and
define mirror dual Calabi Yau manifolds inside a Spin(7) manifold which admits
an almost complex structure. These topics will be also studied in a future paper.
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On Sub-Riemannian and Riemannian
Spaces Associated to a Lorentzian
Manifold

Roman Sverdlov and Dimiter Vassilev

Abstract We present a certain construction of a sub-Riemannian and Riemannian
spaces naturally associated to a Lorentzian manifold. Some additional structures
and relations between geometric properties of the corresponding spaces will be
explored. The emphasis will be on keeping the text as self-sufficient as possible
while linking various well developed fields.

1 Some Notations and Conventions

Throughout the text we let d ≥ 1 be a positive integer, which equals the space
dimension of the Lorentzian manifoldM . Latin indices will vary from 1 to d , while
Greek indices will vary from 0 to d , and we will assume a summation on repeated
indices. We will consider a Lorentzian metric g of signature (1, d) on M . In local
coordinates, g = (gαβ). We shall raise and lower indices using the metric and its
inverse g−1 = (gαβ). In particular, for a tangent vector y = yα ∂

∂xα
∈ TxM we have

yα = gαβyβ and yα = gαβyβ and its length is given by

|y|2 def= gx(y, y) = gαβ(x) yαyβ = yαyα ∈ R.

The simplest example is the case of Minkowski space whereM = R
1,d and

|y|2 = (y0)2 − (y1)2 − · · · − (yd)2.

In the general case, given a point and a normal coordinate system centered at it the
metric takes the above form at the given point.
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As usual, the Lorentzian metric induces a decomposition of the tangent vectors
at each point, which with our agreement of the signature of the metric means that a
tangent vector v ∈ TM is timelike if |v| > 0, lightlike if |v| = 0, and spacelike if
|v| < 0.

We shall assume throughout that the considered spacetime is non-compact and
time oriented, i.e., there exists a continuous timelike vector field. The future cone at
every point is the part of the timelike double cone that contains the fixed timelike
global vector field.

The authors would like to thank the referee for the careful reading and comments
of the referee.

2 Causal Set Theory

The causal order of space-time has a long history. One of the more recent
developments lead to a candidate of a framework on which a theory of quantum
gravity can be based, see [7, 11] and references therein. Causal set theory provides
a way of discretization that avoids preferred frame, [3], while preserving Lorentz
invariance as a fundamental property. Both of these underlining notions are present
in our constructions as well. Let (M, g) be a noncompact time-oriented Lorentzian
manifold. We define a point p to be in the past of a point q , p ≺ q , if there is
a smooth, future-directed timelike curve from p to q . The future I+(p) and past
I−(p) of p are defined, respectively, by

I+(p) = {q | p ≺ q} and I−(p) = {q | q ≺ p}.

(M, g) is called future (past) distinguishing if I+(p) = I+(q) (I−(p) = I−(q))
implies p = q .

To a certain extent the Lorentzian geometry of space-time can be recovered from
its causal order.

Theorem 1 ([8, 9]) Assume M is both future and past distinguishing. Then, the
causal structure determines the metric up to a conformal factor.

The modern version of Causal Set Theory began with the paper of Bombelli, Lee,
Meyer and Sorkin [4].

Definition 1 A causal set is a partially ordered set (C,≺) where ≺ is (i) acyclic;
(ii) transitive and (iii) locally finite, i.e, for all x, y ∈ C the set A(x, y) = {z | x ≺
z ≺ y} is finite.

The absence of cycles in the above definition can be replaced with irreflexivity of the
partial order. The general idea is that a causal set replaces the continuum manifold,
while the latter is regarded as an approximation of the causal set.

A causal set (C,≺) with elements given through an injection in a spacetime
(M, g) and order induced from the causal structure of the spacetime is said to be an
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embedding. The approximation is of density ρc if there exists an order preserving
injection � : C → M such that �(C) is uniformly distributed with density ρc.
Here, every spacetime region of volume V contains approximately ρcV elements of
C. This approach leads to several problems, including symmetry breaking.

The adopted approach to handle this uniformity issue has been to introduce the
concept of sprinkling, where we begin with a spacetime (M, g) and then randomly
“sprinkle” elements onto M via a Poisson process. Thus, the probability of finding
n elements in a spacetime region of volume V is PV (n) = (ρcV )

n

n! e−ρcV . The set of
events within a proper time τ0 in the future of a point p = 0 is the region between
the light cone and the hyperboloid |y|2 = (y0)2 − (y1)2 − · · · − (yd)2 ≈ τ 2

0 .

This is a non-compact region and almost surely contains infinite number of points
q directly in the future of p, i.e, p ≺ q and there is no r such that p ≺ r ≺ q .
For a causal set that is approximated, for example, by Minkowski spacetime, every
element therefore has an infinite number of nearest neighbours in its future and past
light-cones. This “non-locality” complicates the definitions of discrete version of
continuum quantities, including D’Alembertian, leading to non-convergent infinite
sums.

The sub-Riemannian and Riemannian spaces introduced in the subsequent
sections arose in our goal to remove the non-localities by modeling and discretizing
a future directed timelike sector of the tangent bundle to Lorentzian space as a (sub-
)Riemannian manifold.

3 Sub-Riemannian Space

In this section we associate a sub-Riemannian space to the considered spacetime.
For more details on the relevant definitions and results in sub-Riemannian geometry
we refer to [1, 2], and [10]. The space we shall define is a sub-bundle of the tangent
bundle. The latter and the cotangent bundle have appeared in theories of a maximal
proper acceleration seeking geometric formulation of quantum mechanics whose
early ideas can be found in [5, 6].

Definition 2 LetM be a time-oriented Lorentzian manifold. Define the phase space
manifold M to be the elements of TM consisting of all points whose tangent
component is a timelike future-oriented vector.

Definition 3 Let π : TM → M be the natural projection. For a point ξ ∈ M we
shall say that (x, y) is a normal coordinate system centered at ξ if x is a normal
coordinate system centered at π(ξ) ∈ M and y is the fiber coordinate.

Thus, locally, using normal coordinate systems centered at the corresponding point
ξ , we have

M = {ξ ∈ TM | y0 > 0, |y|2 > 0}.
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Definition 4 Let (x, y) be a normal coordinate system at the point ξ ∈M. Consider
the following forms on M defined near ξ ,

θk = ykdx0 − y0dxk.

The horizontal space at ξ is the joint kernel of the forms θk at ξ ,

Hξ = ∩dk=1Ker θ
k|ξ ⊂ TξM.

Let us observe that we obtain a (well defined) sub-bundleH of the tangent bundle of
the phase space M due to the following proposition, which also exhibits the Lorentz
invariance of the horizontal space.

Proposition 1 We have span{θ1, . . . , θd } = span{η0, η1, . . . , ηd }, where

ηα
def= dxα − yα

|y|2yβdx
β.

Furthermore, the horizontal space H is Lorentz invariant under Lorentz transfor-
mations (of the spacetime coordinates).

Proof The first claim follows from the following easily verifiable identities

ηα(
∂

∂yβ
) = 0, ηα(yβ

∂

∂xβ
) = yα − yαyβy

β

|y|2 = 0, and θk = ykη0 − y0ηk.

For the proof of the second part let x and x̃ are normal coordinates centered at
the same point p ofM , hence x = �x̃ where� is a Lorentzian matrix. Using vector
notation we have at p the identities dx = �dx̃, y = �ỹ. The invariance follows
from η = dx − 〈y,dx〉

|y|2 y, where we used the notation 〈y, dx〉 = yαdxα. ��
In fact, we are in the realm of sub-Riemannian geometry since the horizontal

vector fields and their commutators span the whole tangent space, i.e., the horizontal
space is bracket generating (completely non-holonomic).

Proposition 2 For ξ ∈M and (x, y) a normal coordinate system of M centered at
ξ we have that

Hξ = span {V = yβ ∂

∂xβ
,
∂

∂yα
}.

The horizontal space H is a rank d+2 bracket generating sub-bundle (distribution)
of TM which satisfies Hörmander’s condition of step one.
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Proof It is obvious that the right-hand side involves d+2 linearly independent vec-
tors that are annihilated by the 1-forms defining the horizontal space. Furthermore,
since we have

[V, ∂
∂yα

] = ∂

∂xα
and H[1] def= H+ [H,H] = TM,

the horizontal bundle H together with its commutator span the tangent space. ��
Physically, the vector V should be thought as a vector defining the future

direction. It can be used to define a causal structure on the sub-Riemannian and
Riemannian spaces we define.

By Chow-Rashevskii’ theorem, see [1, 2] and [10], the bracket generating
condition is sufficient for any two points of M to be connected by a horizontal
curve, i.e., a curve whose velocity lies in the horizontal direction. We note explicitly
that in our case H is not strong bracket generating due to Hξ + [ ∂

∂yα
,H]ξ ��= TξM.

Recall, [1] and [10], that strong bracket generating or fat distribution means either
of the following equivalent conditions, where ξ ∈M and w, w′ ∈ Hξ , w �= 0, with
horizontal extensionsW andW ′: (i) H+ [W,H]ξ = TξM; (ii) the curvature (Levi)
form L : H×H→ TM/H,

Lz(w,w
′) = [W,W ′]ξ mod Hξ

defines a surjective map L(w, .), i.e., the dual curvature is symplectic. In general, the
strong bracket generating property (which does not hold here) excludes the existence
of abnormal (sub-Riemannian) geodesics, see Sect. 3.1.1.

3.1 Sub-Riemannian Metrics

Let f and h be smooth positive functions on M. For 0 < b < 1, ξ = (x, y) ∈ M

and y = yα ∂
∂xα

, recalling that yα = gαβyβ , define

G = Gb(ξ) def= f (|y|)yαyβ|y|2 dx
α ⊗ dxβ + h(|y|)

(
yαyβ

|y|2 − b gαβ

)
dyα ⊗ dyβ.

Theorem 2 The above formula for G defines a positive definite and Lorentz
invariant symmetric tensor on H, i.e.,G is invariant under the transformations

(x, y) �→ (�x,�y),

where � is a Lorentz transformation with respect to the given Lorentzian metric g
onM .
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Proof The Lorentz invariance is obvious. We sketch the proof of the positivity. For
W = uα ∂

∂yα
+ aV ∈ H, where V was defined in Proposition 2, we have

G(W,W) = a2f (|y|) |y|2 + h(|y|) g(y, u)
2 − b|u|2|y|2
|y|2 ,

where u = uα ∂
∂xα

. Consider the two cases (recall |y|2 > 0), depending on u
being timelike or non-timelike. If u is timelike we have the reverse Cauchy-Schwarz
inequality (yα uα)2 ≥ |y|2|u|2, hence

G(W,W) ≥ a2f (|y|) |y|2 + h(|y|) (1− b)|u|2.

In the second case, where |u|2 ≤ 0, we use that b|u|2|y|2 ≤ 0. ��
WhenM = R

1,d is a Lorentz spacetime, then G is also invariant under translations
in x.

3.1.1 The Sub-Riemannian Distance and Geodesics

For the sake of giving some context and the possible difficulties we may encounter
we recall some known results.

As usual, we define the Carnot-Carathédory (sub-Riemannian) distance using the
arclength of “admissible” curves. For sufficiently smooth (e.g. locally rectifiable)
γ : [0, 1] → M which is horizontal, z′(τ ) ∈ Hγ (τ ), we define the Carnot-
Carathédory (sub-Riemannian) length of γ by the formula

l(γ ) =
ˆ 1

0

√
Gb(z′, z′)dτ.

For z1, z2 ∈ M the Carnot-Carathédory (sub-Riemannian) distance(abbr. CC-
distance) between the two points is

dCC(z0, z1) = inf{l(γ ) | γ (0) = z0, γ (1) = z1, γ
′(τ ) ∈ Hγ (τ )}.

As well known, the CC-distance defines a topology equivalent to the manifold
topology.A (horizontal) curve is called a minimizing CC-geodesic if it achieves
the CC-distance between its endpoints. It is called a CC-geodesic if it is locally
a minimizing CC-geodesic.

Let W0, . . . ,Wd+2 be a local orthonormal frame for the horizontal distribution
H. For θ ∈ T ∗ξ M define the Hamiltonian function

H(θ) = 1

2

(
〈θ,W0(ξ)〉2 + · · · + 〈θ,Wd+2(ξ)〉2

)
.
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H is a fiber-quadratic positive semi-definite form on T ∗M of rank d + 3 = dimH.
Recall that T ∗M has the canonical symplectic form.

The projection to M of an integral curve for the Hamiltonian vector field with
Hamiltonian H is a CC-geodesic.

In the Riemannian case this characterizes the geodesics. In the sub-Riemannian
case there could be CC-geodesics which are not the projections of integral curves
for the Hamiltonian vector field of H . Let H⊥ ⊂ T ∗M be the annihilator of the
distribution H. Let ω be the restriction to H⊥ of the canonical symplectic form
of T ∗M ⊂ T (TM). A characteristic curve for H⊥ is an absolutely continuous
nowhere vanishing curve η : [0, 1] → H⊥ whose derivative lies in the kernel of ω
whenever it exists, ω(θ ′(t),*) = 0 for all * ∈ Tθ(t)H⊥. An admissible curve γ
on M is singular if and only if it is the projection of a characteristic curve, which
depends only on the distribution, not on the sub-Riemannian metric. We note that
there is another (equivalent) definition of singular curves as the critical points of
the end-point map. It is also known that if ω is “symplectic”, i.e., has trivial kernel
then there are no characteristics (“strong bracket generating case”). However, every
CC-geodesic is a singular curve or a normal geodesics.

A sub-Riemannian metric space is complete if and only if the closed metric
balls (or all sufficiently small balls) are compact. In this case, there exists a
minimizing CC-geodesics between any two given point. This is the case when the
sub-Riemannian metricG is the restriction of a complete Riemannian metric on M.

4 The Riemannian Space

Below we shall use the notation set at the beginning of Sect. 3.1. The following
proposition is an easy corollary of the previous constructions, see in particular
Theorem 2.

Theorem 3 For a > 0, Ĝa,b
def= Gb − af gαβηα⊗ηβ defines a “Lorentz invariant”

Riemannian metric on M. Explicitly, dropping a and b in the notation,

Ĝ = f ·
(
(1+ a)yαyβ

|y|2 − agαβ
)
dxα ⊗ dxβ + h ·

(
yαyβ

|y|2 − bgαβ
)
dyα ⊗ dyβ.

The Riemannian metrics Ĝa,b are a Riemannian approximation of the sub-
Riemannian metric Gb, which in the limit a →∞ converge to the sub-Riemannian
space.
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5 Some Remarks on the Minkowski Space Case

Assume that g is the Minkowski metric on R
1,d . We note that, the horizontal

space H is invariant under Lorentz transformations and in the case of Minkowski
space also under translations in the space time variable x. The exhibited Lorentz
invariances imply

Proposition 3 Let γ (τ) = (x(τ ), y(τ )) be a smooth phase space curve, �

a Lorentz transformation of R
1,d , and γ�(τ)

def= (�x(τ),�y(τ)). If γ is a
Riemannian geodesic (for Ĝ) then γ� is also a geodesic. The same is true in the
setting of CC-geodesics.

An interesting case comes from letting f = k = const , h = l/|y|2, l = const .
With these assumptions, the Riemannian metric Ĝ is complete, hence, the sub-
Riemannian metric is complete as well. Furthermore, using vector notation and
letting 〈y, x ′〉 = yαdx

α/dτ etc., with prime denoting derivative with respect to
the parameter τ , the geodesic equations of the Riemannian metric Ĝ are

x ′′ = (a + 1)

(
a − 1

a

〈y, x ′〉〈y, y ′〉
|y|2 − 〈x ′, y ′〉

)
y

|y|2 +
1+ a
a

〈y, x ′〉
|y|2 y ′

y ′′ =
(
k(a + 1)

la
〈y, x ′〉2 − |y ′|2

)
y

|y|2 −
k(a + 1)

la
〈y, x ′〉x ′ + 2

|y| |y|
′y ′.

Proposition 4 If γ (τ) = (x(τ ), y(τ )) is a geodesic of (M, Ĝ) such that γ (0) =
(0, v) and γ ′(0) = (u,w) with v, v′ and w parallel vectors in R

1,d , then the same
condition holds throughout the definition of γ

As a corollary, we have that every timelike line in Minkowski space is locally the
projection of some geodesic of (M, Ĝ).
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The Orbit Space and Basic Forms
of a Proper Lie Groupoid

Jordan Watts

Abstract A classical result in differential geometry states that for a free and proper
Lie group action, the quotient map to the orbit space induces an isomorphism
between the de Rham complex of differential forms on the orbit space and the basic
differential forms on the original manifold. In this paper, this result is generalized
to the case of a proper Lie groupoid, in which the orbit space is equipped with
the quotient diffeological structure. As an application of this, we obtain a de Rham
theorem for the de Rham complex on the orbit space.

Keywords Diffeology · Lie groupoid · de Rham complex · Basic forms ·
Linearization

Mathematics Subject Classification (2010) 58H05,22A22

1 Introduction

Given a proper Lie group action on a smooth manifold, the Slice Theorem of
Koszul and Palais [9, 12] states that any orbit of the action has an invariant tubular
neighbourhood equivariantly diffeomorphic to a linear model about the orbit. From
this it follows that in the case of a free and proper action, the quotient map induces
an isomorphism between the complex of differential forms on the orbit space and
the complex of basic differential forms on the manifold.

Using the theory of diffeology, which generalises the theory of smooth manifolds
(see Definition 2.1), this result was extended by the author to include any compact
Lie group action (not necessarily free) [14, Chapter 3], and further to Lie group
actions for which the identity component of the Lie group acts properly by Karshon-
Watts [7]. The purpose of this note is to extend the result to proper Lie groupoids;

J. Watts (�)
Department of Mathematics, Central Michigan University, Mount Pleasant, MI, USA
e-mail: jordan.watts@cmich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Cerejeiras et al. (eds.), Current Trends in Analysis, its Applications
and Computation, Research Perspectives,
https://doi.org/10.1007/978-3-030-87502-2_52

513

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87502-2_52&domain=pdf
mailto:jordan.watts@cmich.edu
https://doi.org/10.1007/978-3-030-87502-2_52


514 J. Watts

namely, to prove Theorem 1.1 below. Denote by Bi the bicategory of Lie groupoids
with (right principal) bibundles as arrows and isomorphisms of bibundles as 2-
arrows (see [10, 11] for definitions and more details). Given a Lie groupoid G =
(G1 ⇒ G0), we define a differential form α onG0 to be basic if s∗α = t∗α, where
s and t are the source and target maps.

Theorem 1.1 Given a proper Lie groupoid G = (G1 ⇒ G0), the quotient map
G0 → G0/G1 induces an isomorphism between the diffeological de Rham complex
of the orbit space G0/G1 and the complex of basic forms on G0; moreover, this
isomorphism is natural on the full sub-bicategory of proper Lie groupoids in Bi.

The natural isomorphism in Theorem 1.1 suggests that functors should be
involved. Indeed, we show that there is a 2-functor " from Bi to the category of
diffeological spaces, sending a Lie groupoidG to its orbit spaceG0/G1, a bibundle
P : G → H to a smooth map "P : G0/G1 → H0/H1, and a 2-arrow between
bibundles to a trivial 2-arrow. If �∗basic is the (contravariant) functor sending a Lie
groupoid to its complex of basic forms, and�∗ is the functor sending a diffeological
space to its de Rham complex, then Theorem 1.1 states that when restricting to
proper groupoids, there is a natural isomorphism from�∗ ◦" to �∗basic given by the
pullback map induced by the quotient map from the base of a groupoid to its orbit
space.

The proof of Theorem 1.1 relies on the corresponding result for compact
Lie group actions (see Theorem 3.7), and a linearisation theorem for proper
Lie groupoids (see Theorem 4.1). This linearisation theorem has been developed
throughout a series of works, which include authors such as Zung, Weinstein,
Crainic-Struchiner, and del Hoyo-Fernandes [2, 3, 17–19]; for our purposes we
adopt the language of del Hoyo-Fernandes.

We obtain some immediate consequences of Theorem 1.1. It follows from the
Slice Theorem for a proper Lie group action on a manifold that the cohomology of
the basic forms is isomorphic to the singular cohomology on the orbit space. This
result was extended to proper Lie groupoids by Pflaum-Posthuma-Tang [13, Section
8]. Thus together with Theorem 1.1, we obtain a de Rham theorem for the orbit
space of a proper Lie groupoid which is intrinsic, in the sense that it only depends
on the diffeology (i.e. smooth structure) of the orbit space, and not on the original
Lie groupoid.

Corollary 1.2 Given a proper Lie groupoid G = (G1 ⇒ G0), the de Rham
cohomology of the orbit space G0/G1 is isomorphic to the singular cohomology
ofG0/G1.

Another application is a reinterpretation of Corollary 3.6 and Theorem 1.1 in
terms of exactness in the following sequence:

0 �� �∗(G0/G1)

π∗G
�� �∗(G0)

s∗−t∗
�� �∗(G1) (1.1)
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Corollary 1.3 For any Lie groupoid G = (G0 ⇒ G1), the sequence 1.1 is exact
at �∗(G0/G1). If G is proper, then the sequence is also exact at �∗(G0).

At this point it is natural for the reader to ask whether the properness condition
on a Lie groupoid in Theorem 1.1 can be relaxed. At this time, the author is not
aware of an example in which the isomorphism does not hold. Indeed, even when
the quotient has trivial topology but non-trivial diffeology, such as the 1-dimensional
irrational torus, Theorem 1.1 still holds; see [7, Example 5.11].

This paper is broken down as follows: Section 2 reviews the theory of diffeology.
Section 3 reviews and develops needed results on basic differential forms on Lie
groupoids from a categorical perspective. Section 4 reviews linearizations, and
proves Theorem 1.1.

We end this introduction with a brief survey of related ideas in the literature. For
instance, the functor " between Lie groupoids and diffeological spaces appears in
the literature already, sometimes in disguise. It follows from [6] that the restriction
of " to effective orbifolds, viewed as effective proper étale Lie groupoids, is
essentially injective on objects. There is a similar functor to (Sikorski) differential
spaces that factors through "; see [15, Theorem B] for details. The point-of-view
of stacks over manifolds is taken in [16], in which a functor sending a stack to its
underlying diffeological coarse moduli space is constructed; as differentiable stacks
are represented by Lie groupoids, this is just a stacky manifestation of the functor
" above extended to all stacks. Finally, a more detailed study of when and how a
diffeologically smooth map between orbit spaces is in the image of the functor "
appears in [8].

The author would like to thank Rui Loja Fernandes, Eugene Lerman, and Ioan
Mărcuţ for many illuminating discussions about Lie groupoids, and Yael Karshon
for her comments and encouragement to publish this note.

2 Background

It is assumed that the reader is familiar with Lie groupoids and (right principal)
bibundles between them; see [10, 11] for an exposition on these. For the purposes
of this paper, all Lie groupoids G = (G1 ⇒ G0) are assumed to be finite
dimensional, paracompact, and Hausdorff. Groupoid homomorphisms F : G→ H

are denoted using F0 : G0 → H0 for the map between bases, and F1 : G1 → H1 for
the map between arrow spaces. A more detailed exposition of diffeological spaces
appears in [5], but we give a brief review of them now.

Definition 2.1 (Diffeology) Let X be a set. A parametrisation of X is a map of
sets p : U → X where U is an open subset of some Euclidean space (no fixed
dimension). A diffeology D on X is a family of parametrisations satisfying:

1. (Covering) D contains all constant maps into X.
2. (Locality) Let p : U → X be a parametrisation, {Uα} an open cover of U , and
{pα : Uα → X} ⊆ D such that p|Uα = pα for each α. Then p ∈ D.
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3. (Smooth Compatibility) For any (p : U → X) ∈ D and any smooth
parametrisation f : V → U of U , the composition p ◦ f is in D.

A setX equipped with a diffeologyD is called a diffeological space, and is denoted
by (X,D). When the diffeology is understood, we will drop the symbol D. The
parametrisations p ∈ D are called plots. Given two diffeological spaces (X,DX)
and (Y,DY ), a map ϕ : X → Y is (diffeologically) smooth if ϕ ◦ p ∈ DY for any
plot p ∈ DX.

Diffeological spaces with smooth maps between them form a category Diffeol,
which contains the category of smooth manifolds as a full subcategory. Indeed, the
standard diffeology on M is the set of all smooth parametrisations f : U → M ,
where “smooth” is taken in the usual sense.

The usefulness of Diffeol is illustrated by the fact that it is complete and co-
complete [1, 5]. For instance, given a diffeological space X and an equivalence
relation ∼ on X with quotient map π : X → X/ ∼, the quotient comes equipped
with the quotient diffeology. This is the family of all parametrisations p : U →
X/ ∼ satisfying the condition that each point u ∈ U has an open neighbourhood
V such that p|V factors through π . As another example, given a subset Z ⊆ X,
the subset diffeology on Z consists of all plots of X whose image lies in X.
Finally, given another diffeological space Y , the product diffeology on X × Y is
the collection of all parametrisations (p1, p2) such that p1 is a plot of X and p2 is a
plot of Y .

Example 2.2 LetG be a Lie groupoid and fix x ∈ G0. The orbit O of G through x
is the set

O = {y ∈ G0 | ∃g ∈ G1 so that s(g) = x and t (g) = y}.

The subset diffeology on O gives it the structure of an immersed submanifold of
G0 (see [2, Section 1.2]). The orbit space G0/G1 ofG is the quotient ofG0 by the
equivalence relation ∼ given by: x ∼ y if x and y are in the same orbit. G0/G1
comes equipped with the quotient diffeology induced by the standard manifold
diffeology on G0; denote the quotient map by πG : G0 → G0/G1.

The fibred productG0 ×π G0 is the arrow space of the relation groupoid of ∼

{(x1, x2) ∈ G0 ×G0 | ∃g ∈ G1 such that s(g) = x1 and t (g) = x2}

whose source and target are restrictions of the first and second projection maps,
respectively, to G0. The arrow space comes equipped with the subset diffeology
induced by G0 ×G0, with respect to which the map (s, t) : G1 → G0 ×π G0 is a
smooth surjection. >
Definition 2.3 (Differential Forms) A differential k-form α on a diffeological
space X is an assignment to each plot p : U → X a differential form αp ∈ �k(U),
satisfying αp◦f = f ∗αp for any smooth parametrisation f : V → U of U . Denote
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the collection of k-forms on X by �k(X). The exterior derivative d : �k(X) →
�k+1(X) is defined plot-wise: (dα)p = d(αp).

The 0-forms of a diffeological space are exactly the smooth functions f : X →
R; the collection of all differential forms on X forms a de Rham complex
(�∗(X), d), although we will abbreviate the notation to just �∗(X); and a smooth
map ϕ : X → Y induces a pullback map f ∗ : α �→ f ∗α, which is a map of
complexes. In particular, we have a contravariant functor � sending a diffeological
space X to the complex �∗(X) and a smooth map to its corresponding pullback
map. Finally, on a manifold equipped with the standard diffeology, the diffeological
de Rham complex is exactly the standard one.

3 Basic Differential Forms and Bibundles

In this section, we collect a number of results regarding basic forms of a Lie
groupoid. After defining them and relating them to the classical notion for a Lie
group action (Lemma 3.3), we prove that pullbacks of forms from an orbit space are
basic (Corollary 3.6). We also show that there is a functor between Bi and Diffeol
(Theorem 3.8), as well as that basic forms “pullback” by bibundles to basic forms
(Proposition 3.9). These results will be needed in the sequel.

Definition 3.1 (Basic Differential Forms) Given a Lie groupoid G, a differential
form α on G0 is basic if s∗α = t∗α. Together with the standard differential, these
form a complex, denoted by �∗basic(G).

Remark 3.2 Pflaum-Posthuma-Tang define a form α ∈ �k(M) to be basic with
respect to a Lie groupoid G if ρ(X)� α = 0 for all smooth sections X of the
associated Lie algebroid to G with anchor map ρ, and if α is G-invariant [13,
Definition 8.1]. Regarding the second condition, the first condition implies that α
descends to a smooth section α̃ of the kth wedge power of the normal bundle to an
orbit, for each orbit inG0; the second condition now requires that ([s∗v]− [t∗v])� α̃
vanishes for each v ∈ TG1 (abusing notation). It is not difficult to show that this
definition is equivalent to Definition 3.1 using the standard identification of the Lie
algebroid with the pullback by the unit map of the subbundle

⋃
x∈M T (t−1(x)) ⊂

TG1; we do not need this result, however, in this paper, and so we provide no further
detail.

Recall that for a Lie group K and a K-manifold M , a differential form on M is
basic if it is K-invariant and horizontal, the latter term meaning that it vanishes on
vectors tangent to the K-orbits.
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Lemma 3.3 (Equivalence of Notions of Basicness) Let K be a Lie group and M
a K-manifold. A differential form α on M is basic with respect to the action if and
only if it is basic with respect to the action groupoidK �M := (K ×M ⇒ M).1

Proof Fix (k, x) ∈ K ×M , and a vector v ∈ T(k,x)(K ×M). Denote by k the Lie
algebra ofK . Via a left trivialisation of TK we identify T (K×M)withK×k×TM .
Under this identification, there is some ξ ∈ k and u ∈ TxM such that v = (k, ξ, u).
It follows that s∗v = u and t∗v = ξM |k·x + k∗u, where ξM is the vector field on M
induced by ξ ∈ k.

Given v1, . . . , v& ∈ T(k,x)(K × M), setting vi = (k, ξi , ui) as above, for any
&-form α onM:

s∗α(v1, . . . , vl) = α(u1, . . . , ul), (3.1)

t∗α(v1, . . . , vl ) = α
(
(ξ1)M |k·x + k∗u1, . . . , (ξl )M |k·x + k∗ul

)
. (3.2)

If follows that if α is K-invariant and horizontal, then s∗α = t∗α.
Conversely, suppose that s∗α = t∗α. Fix u1, . . . , ul ∈ TxM . Since s is a

surjective submersion, there exist for each i = 1, . . . , l vectors vi = (k, ξi, ui) ∈
K × k × TM such that s∗vi = ui . Without loss of generality, we may take ξi = 0
for each i. By Eqs. (3.1) and (3.2), it follows that α is K-invariant.

Now suppose that u1 is tangent to theK-orbit through x. There exists ζ ∈ k such
that u1 = ζM |x . Let ξ1 = −Adk(ζ ). Then

t∗v1 = −(Adk(ζ ))M |k·x + k∗u1 = 0.

By (3.1) and (3.2) we conclude that α is horizontal. The proof is complete. ��
The following is a useful tool when checking whether a differential form on the

base of a Lie groupoid is the pullback of a form on its orbit space by the quotient
map. A proof appears in [5, Article 6.38].

Proposition 3.4 (Pullbacks from a Quotient) Let X be a diffeological space
equipped with an equivalence relation∼, with quotient Y = X/∼ and quotient map
π : X→ Y . For any k and α ∈ �k(X), there exists β ∈ �k(Y ) such that π∗β = α
if and only if p∗1α = p∗2α for any plots p1, p2 : U → X such that π ◦ p1 = π ◦ p2.

Remark 3.5 Proposition 3.4 can be restated in terms of the relation groupoid as
follows. Let pri : X ×π X → X be the ith standard projection map. For any k and
α ∈ �k(X), there exists β ∈ �k(Y ) such that π∗β = α if and only if pr∗1α = pr∗2α.

We now can prove part of Theorem 1.1.

1 The statement of this lemma was communicated to the author by Eugene Lerman; however, the
proof is the author’s.
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Corollary 3.6 (Pullbacks from the Quotient Are Basic) LetG be a Lie groupoid.
The pullback map π∗G : �∗(G0/G1) → �∗(G0) is an injection with image in
�∗basic(G).

Proof Fix β ∈ �k(G0/G1) and let α = π∗Gβ. By Proposition 3.4 and Remark 3.5,
pr∗1α = pr∗2α. Thus (s, t)∗(pr∗1α − pr∗2α) = 0 (see Example 2.2), and so s∗α = t∗α.
Injectivity follows from the definition of the quotient diffeology onG0/G1. ��

In the case of a compact Lie group action, π∗G from Corollary 3.6 becomes an
isomorphism. This follows from Lemma 3.3 and [14, Theorem 3.20] (see also [7]),
stated below.

Theorem 3.7 (Group Action Case) Let K be a compact Lie group and M a
K-manifold, with quotient map π : M → M/K . The pullback map π∗ is an
isomorphism between the de Rham complexes of differential forms on M/K and
basic differential forms onM .

Sending a Lie groupoid to its diffeological orbit space constitutes a functor.

Theorem 3.8 (The Functor") There is a functor" : Bi → Diffeol sending a Lie
groupoid G to its orbit space G0/G1, a bibundle P : G → H to a unique smooth
map "P : G0/G1 → H0/H1 such that"P ◦ πG ◦ aL = πH ◦ aR , and a 2-arrow in
Bi to a trivial 2-arrow in Diffeol.

Proof Let P : G→ H a bibundle between Lie groupoids; denote the anchor maps
to G and H by aPL : P → G0 (or just aL if P is understood) and aPR : P → H0,
respectively. Fix x ∈ G0. Define "P : G0/G1 → H0/H1 by "P ([x]) = πH ◦ aR ◦
σ(x) where σ is a local section of aL about x. To show "P is well-defined, let y be
in the same orbit as x, and σ ′ a local section of aL about y. It suffices to show there
exists h ∈ H1 so that aR(σ ′(y)) = s(h) and aR(σ(x)) = t (h). Let g ∈ G1 so that
s(g) = x and t (g) = y. Then aL(g · σ(x)) = y. Since aL is a principal H -bundle,
there exists a unique h such that (g ·σ(x)) ·h = σ ′(y). Well-definedness of"P now
follows from theG-invariance of aR. The identity"P ◦πG ◦ aL = πH ◦ aR follows
from the definition of "P , and implies uniqueness.

To show that "P is smooth, through local sections of aL and local lifts of a plot
p : U → G0/G1 (which exist by definition of the quotient diffeology), one obtains
that "P ◦ p is locally a plot, and hence globally a plot by the Locality Axiom.

That a 2-arrowα : P ⇒ Q is sent to a trivial 2-arrow follows from the uniqueness
of "P and "Q and the (G-H )-equivariance of α.

Given a third Lie groupoid K = (K1 ⇒ K0) and bibundle Q : H → K , the
composition Q ◦ P is the quotient by the diagonal H -action (P ×H0 Q)/H . To
show "Q◦P = "Q ◦"P , it suffices to show

"Q ◦"P ◦ πG ◦ aPL (p) = πK ◦ aQR (q) ∀(p, q) ∈ P ×H0 Q.
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This follows from πH ◦ aPR (p) = πH ◦ aQL (q), which in turn follows from the
definition of P ×H0 Q. Thus "(P) := "P respects composition, and all other
identities are straightforward to check. ��

We now show that bibundles induce maps between complexes of basic forms,
similar to what smooth maps between manifolds do with the corresponding de Rham
complexes. Versions of this result appear in the literature; for instance, [4, 13].

Proposition 3.9 (Pullbacks of Basic Forms by Bibundles) Let P : G→ H be a
bibundle between Lie groupoids with anchor maps aL : P → G0 and aR : P → H0.
For any β ∈ �kbasic(H) there exists a unique form in �kbasic(G), denoted P ∗β,
such that a∗L(P ∗β) = a∗Rβ. In fact, �kbasic is a functor on Bi sending P to a
homomorphism of complexes P ∗ : �kbasic(H) → �kbasic(G), and a 2-arrow in Bi
to a trivial 2-arrow. In particular, a Morita equivalence induces an isomorphism
between complexes of basic forms.

Proof Fix β ∈ �kbasic(H0). The action groupoid P � H has source the action map
actH and target pr1; with respect to these we have

act∗H a∗Rβ = pr∗2s∗β = pr∗2t∗β = pr∗1a∗Rβ.

Thus a∗Rβ is basic with respect to P �H .
Since P is a principalH -bundle overG0, P �H is isomorphic as a groupoid to

P ×G0P ⇒ P . But this is the relation groupoid for the action groupoidG�P , and
so it follows that a∗Rβ is basic with respect to G � P as well. By Remark 3.5 there
exists a form α on G0 such that a∗Lα = a∗Rβ; α is unique since aL is a surjective
submersion. Similarly, pr1 : G1×G0 P → G1 is a surjective submersion, and so the
result follows from

pr∗1s∗α = pr∗2a∗Lα = pr∗2a∗Rβ = act∗G a∗Rβ = act∗G a∗Lα = pr∗1t∗α.

It follows from uniqueness and the definitions that (Q ◦ P)∗ = P ∗Q∗ for
composable bibundles P and Q, and that isomorphic bibundles yield the same
pullback map between complexes. The remaining statements are straightforward
to check. ��

4 Linearisations and Proof of Theorem 1.1

In this section we review linearisations in the context of Lie groupoids, and prove
Theorem 1.1. We follow the notation and terminology of [3]; more details can be
found in [2, Subsection 1.2].
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Fix a Lie groupoid G. A submanifold S ⊆ G0 is saturated if it is a union
of orbits of G. The restriction of G to S is denoted by GS ⇒ S. The normal
bundle ν(S) of S in G0 along with the normal bundle ν(GS) of GS in G1
form a Lie groupoid ν(GS) ⇒ ν(S) whose structure maps are induced by the
differentials of those of G. The standard bundle projections form a homomorphism
(ν(GS) ⇒ ν(S))→ (GS ⇒ S) that provides a local linear model of G about S.

A groupoid neighbourhood of GS ⇒ S is a subgroupoid U = (U1 ⇒ U0)

ofG in which U0 is an open neighbourhood of S and U1 an open neighbourhood of
GS ; it is full ifU1 = s−1(U0)∩t−1(U0). We say thatG is linearisable at a saturated
submanifold S if there exist full groupoid neighbourhoodsU of GS ⇒ S in G and
V of GS ⇒ S in ν(GS) ⇒ ν(S), and a Lie groupoid isomorphism � : V → U

whose restriction to GS is the identity. A celebrated result is the following:

Theorem 4.1 ([2], Corollary 5.13 of [3]) Proper Lie groupoids are linearisable at
each of their orbits.

We now show given an orbit O of a proper Lie groupoid G that the condition
that the de Rham complex of the orbit space of ν(GO) ⇒ ν(O) is isomorphic via
pullback of the quotient map to basic forms of ν(GO) ⇒ ν(O) is a local one.

Lemma 4.2 (Locality) Let G be a proper Lie groupoid, fix x ∈ G0, and let
O be the orbit of x. If V is a full groupoid neighbourhood of O in N :=
(ν(GO) ⇒ ν(O)) then π∗V : �∗(V0/V1) → �∗basic(V ) is an isomorphism of
complexes.

Proof Let V N be the saturation of V in N ; i.e. (V N)0 is the union of orbits of
points in V0 and (V N)1 = ν(GO)(V N)0 . By [2, Example 3.2] V and VN are Morita
equivalent. Let Gx be the stabiliser of x in G. By [2, Example 3.3], there is a
linear action of Gx on the normal space ν(O)x to O at x whose action groupoid
Gx � ν(O)x is Morita equivalent to N ; this Morita equivalence restricts to one
between the restriction W of Gx � ν(O)x to W0 := ν(O)x ∩ (V N)0 and V N .
By Proposition 3.9 and Theorem 3.8, it suffices to prove π∗W : �∗(W0/W1) →
�∗basic(W) is an isomorphism. But as Gx is a compact Lie group, this follows from
Theorem 3.7 usingGx -invariant partitions of unity onW0. ��
Proof (of Theorem 1.1) By Corollary 3.6, it is sufficient to show that the image
of π∗G is �∗basic(G). Fix α ∈ �kbasic(G). By Proposition 3.4, it suffices to show
p∗1α = p∗2α for any two plots p1, p2 : U → G0 such that πG ◦ p1 = πG ◦ p2;
fix two such plots. It further suffices to show this equality near each point u ∈
U ; fix such a point. Let O be the orbit of p1(u) (and hence p2(u) as well). By
Theorem 4.1, G is linearisable; let V = (V1 ⇒ V0) and W = (W1 ⇒ W0) be
full groupoid neighbourhoods of GO ⇒ O in ν(GO) ⇒ ν(O) and G1 ⇒ G0,
respectively, and let � : V → W be an isomorphism that fixes GO ⇒ O. Set
B := p−1

1 (W0) ∩ p−1
2 (W0) and let i : W → G be the inclusion morphism. The

pullback�∗0i∗0α is basic with respect to V .
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By Lemma 4.2, there exists β ∈ �k(V0/V1) such that π∗V β = �∗0i∗0α. By
Theorem 3.8, � descends to a diffeomorphism "� : V0/V1 → W0/W1 such that
"� ◦ πV = πW ◦ �0, from which it follows that π∗W("

−1
� )

∗β = i∗0α. Setting
qn = pn|B for n = 1, 2,

pn|∗Bα = q∗ni∗0α = q∗nπ∗W("−1
� )

∗β.

The proof now is reduced to showing that πW ◦ q1 = πW ◦ q2.
By Theorem 3.8 the inclusion i descends to a smooth map j : W0/W1 → G0/G1

such that for n = 1, 2,

j ◦ πW ◦ qn = πG ◦ i0 ◦ qn = πG ◦ pn|B.

Thus j ◦ πW ◦ q1 = j ◦ πW ◦ q2, and the proof is now reduced to showing that j is
injective.

Fix x1, x2 ∈ W such that j (πW (x1)) = j (πW(x2)). There exists g ∈ G1 such
that s(g) = x1 and t (g) = x2. Since W is full, g ∈ W1 as well, and so πW(x1) =
πW(x2). This shows that j is injective.

Naturality of the isomorphism of complexes follows from Proposition 3.9 and
Theorem 3.8. This completes the proof. ��
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Abstract In this paper, we show that simply connected, closed, spin, 7-manifolds
with a fixed non-vanishing vector field admit a second linearly independent vector
field. As a corollary, this shows that every almost contact structure on a simply
connected, closed, (almost) G2-manifold is B-compatible with the G2 structure in
the sense of (Firat Arikan et al., Asian J. Math. 17(2), 321–334 (2013)).
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1 Introduction

One major direction of research in the field ofG2 geometry is the problem of finding
the right analogue to the Calabi conjecture in Kähler geometry. One key idea in
the proof of the Calabi conjecture is the idea of “triality” where one exploits the
relationship between the Kähler form, the complex structure, and the metric to find
distinguished metrics on Kähler manifolds. The obvious analogue of the Kähler
form in the G2 case is the three form ϕ while the analogue of the complex structure
might be the cross product. However, thisG2 triality is too rigid to yield any Calabi
conjecture-like statements due to the fact that the G2-structure ϕ determines both
the metric and the cross product structure on a G2-manifold all by itself. Thus it
makes sense to consider other structures on G2-manifolds in the search for a more
flexible triality. It is a fact that G2-manifolds are always contact manifolds making
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In [1] Arikan, Cho, and Salur defined two ways in which a (co-oriented) almost-
contact structure on aG2-manifold can be compatible with theG2-structure ϕ. They
called them A- and B-compatible. In their paper, they mainly investigated the A-
compatible condition. However, they also showed that A-compatible almost contact
structures cannot exist on closed manifolds. In this paper, we reduce the problem
of the existence of B-compatible contact structures to the problem of extending a
given one-frame field to a two-frame field. More precisely, we prove:

Theorem 1.1 Given a one-frame field X on a closed, simply connected, spin, 7-
manifoldM ,M admits a one-frame field Y that is linearly independent from X.

Next, we define B-compatibility and explain the reduction to Theorem 1.1.

Definition 1.2 ([1]) A (co-oriented) almost contact structure ξ on aG2-manifold is
said to be B-compatible with theG2-structure ϕ if there exist global, non vanishing
vector fields X and Y onM such that α = ιXιY ϕ is a contact form for ξ .

Let ξ be a contact structure on a G2-manifold (M, ϕ) with contact one form
α. Suppose that there exists a global, non vanishing vector field which is linearly
independent from α# (the metric dual of α). Then there exists a unit vector field Y
which is everywhere perpendicular to α#. Also assume that α# is a unit vector field
(by normalizing it). Next, choose X = Y × α#. Then we have

ιXιY ϕ = ((Y × α#)× Y )1 = (−(Y · α#)Y + (Y · Y )α#)1 = (α#)1 = α

Therefore an almost contact structure is always B-compatible if there exists a
non vanishing, global vector field on M which is linearly independent from α#.
The question of whether a vector field has such a linearly independent partner is a
homotopy lifting problem.

In [6], Emery Thomas showed that all 7-manifolds admit two-frame fields
(X, Y ). The main difference in our theorem is we show for simply connected, spin,
7-manifolds, one can choose X to be any non-vanishing vector field. In fact, our
theorem does not necessarily apply to non simply connected manifolds. For example
if M = S1 × S6, one can take X to be the vector field generated by the obvious S1

action. Then, existence of a linearly independent vector field Y would imply that S6

has a non trivial vector field by restriction.
It is well known that topologicallyG2 structures are equivalent to spin structures

on a 7-manifold. Therefore, we have:

Corollary 1.3 Every almost contact structure on a simply connected, 7-manifold
with a G2-structure is B-compatible with theG2-structure.
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2 The Lifting Problem

In this section, M will be a closed, 7-dimensional, spin manifold and all vector
fields will be non vanishing. More details about topics in this section can be found
in [2, 7].

A manifold admits a spin structure if and only if the second Stiefel-Whitney class
of its tangent bundle,w2, vanishes. Now suppose that there exists a vector field u on
M . In this case, the structure group of the tangent bundle reduces to Spin(6). Thus
we have a map ξ fromM to BSpin(6), the classifying space of Spin(6). Therefore
the question of whether or not there is a second vector field linearly independent
from u is the same question as whether or not the map ξ lifts to BSpin(5). Notice
that there is a fibration S5 → BSpin(5)

π→ BSpin(6) where the map π is induced
by the inclusion Spin(5)→ Spin(6). Thus the problem of proving Theorem 1 can
be summed up by the following diagram:

S5 B5 B6

M

i π

ξ

where Bn = BSpin(n). To solve this problem, we consider a Postnikov resolution
of the top row which gives us the following diagram:

K(Z, 5) E K(Z2, 7)

S5 B5 B6 K(Z, 6) K(Z2, 8)

M

j

p

k

χ Sq2

ξ

(2.1)

It is convenient to give maps suggestive names based on the representability
theorem for singular cohomology. For example, χ is the map which pulls back
the fundamental class ι6 of K(Z, 6) to the euler class, χ , of B6. Similarly, Sq2

is the map which represents the class Sq2(?ι6@2) ∈ H 8(K(Z, 6);Z2) (where ?·@2 is
mod 2 reduction). Notice that there are only two nontrivial levels of our Postnikov
tower since M is a 7-manifold and therefore has trivial cohomology in dimensions
8 and above. The maps χ and k are referred to as obstructions because they are the
obstructions to lifting ξ to B5 in the following sense: If χ ◦ ξ ∼ ∗ (homotopically
trivial) then ξ lifts to a map, say, ξ ′, from M to E. Similarly if k ◦ ξ ′ ∼ ∗ then ξ ′
lifts to one level higher in the Postnikov tower but since the tower ends at k this is
enough to say that ξ lifts all the way to B5. For details of this approach, we refer



528 E. Windes and Ü. Yıldırım

the reader to [7]. A more elementary description of Postnikov towers can be found
in [3].

In this paper, we assume that the manifold is closed and simply connected and
therefore,H 6(M,Z) = 0. Hence, any map M → K(Z, 6) is homotopically trivial.
In other words, the first obstruction vanishes. Thus, it is enough to show that the
second obstruction vanishes as well. To get a hold on the secondary obstruction, we
will need to introduce several new tools.

3 Secondary Compositions and Secondary Operations

Almost all the constructions here will arise from a situation where one has a null-

homotopic composition of maps A
α→ B

β→ C, where for our purposes A,B, and
C will always be CW complexes. A pair of maps α, β along with a null homotopy
H from ∗ to β ◦α will often be referred to as a sequence with homotopy and denoted
by (α, β,H). Note that such a contracting homotopyH also defines a map from A

to PC, the pathspace of C. More details can be found in [2]. For the most part, we
follow his conventions with very minor variations. Here are the relevant definitions:

Definition 3.1 The direction reversal map of the unit interval is given by τ : I →
I, τ (t) = 1− t and the notationHτ(t, x) means H(τ(t), x).

Definition 3.2 The adjoint of a map f : I × X → Y is f 2 : X → Y I given
by f 2(x)(t) = f (x, t). The adjoint of a map f : X → Y I is g2 : I × X → Y

g2(t, x) = g(x)(t). The analogous definitions will apply to the reduced cone T0X

and the reduced suspension $X.

Definition 3.3 Given a map f : X→ Y we construct the fiber square:

Wf PY

X Y
f

called the homotopy fiber of f, whereWf = {(x, γ ) ∈ X × PY |f (x) = γ (1)}
Definition 3.4 Given a sequence with homotopy (α, β,H) a lifting of α is the map
ᾱ : A→ Wβ obtained by the naturality of pullbacks from the following data:

A A A

B C P0C

α βα H

β
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More precisely, we form a pullback from the top row of the diagram which gives
us A again. Then we also form a pullback from the bottom row of the diagram. This
gives us the spaceWβ . Since we have maps from the top row to the bottom row, you
obtain the map ᾱ : A→ Wβ

Definition 3.5 On the other hand, a colifting of β is the map β̃ : Wα → �C

obtained by the naturality of pullbacks from the following data:

A B P0B

P1C C P0C

α

Hτ
β P0β

A composition of the form ᾱ ◦ β̃ is called a secondary composition. Let C0
θ→

C1
ϕ→ C2 be a pair of maps and C2 a simply connected H -space.

Definition 3.6 Given a space X the source Sθ (X) is the set of homotopy classes of
maps ε : X → C0 such that the composition θ ◦ ε is null-homotopic. The target
T�ϕ(X) = [X,�C2]/im(�ϕ#) where �ϕ# : [X,�C1] → [X,�C2] is given by
�ϕ#(g) = �ϕ ◦ g. We will denote the image of g : X → �C2 in the target by
[[g]]. Both Sθ and T�ϕ are functors. A secondary cohomology operation is a natural
transformation * : Sθ (−) → T�ϕ(−) of these functors. Furthermore, im(�ϕ#) is
called the indeterminancy of *.

One can show that, given a sequence with homotopy, (ϕ, θ,H), and a represen-
tative ε : X → C0 of an element in Sθ (X), the value of [[ϕ̃ ◦ ε̄]] in T�ϕ(X) does
not depend on the choice of lifting, ε̄. Therefore, these secondary compositions are
invariants of the homotopy class of (ϕ, θ,H). Thus there is a well-defined, natural
transformation * : Sθ (−) → T�ϕ(−) given by the formula *(ε) = [[ϕ̃ ◦ ε̄]]
for each homotopy class of (ϕ, θ,H). In this case, * is said to be associated to
(ϕ, θ,H) and the homotopyH is referred to as a tethering.

Our strategy for approaching Theorem 1.1 will be to express the obstruction to
lifting ξ in terms of the image of a secondary operation *. Then, we will discover
that by an appropriate choice of the sequence with homotopy, this obstruction will be
zero. In general, calculating the value of secondary operations depends on knowing
the cohomology rings of all the spaces involved as well as being able to arrange the
diagrams in a favorable way. Now that we have the basic setup, we will collect the
information needed to solve the problem below:

Fact 1 The Euler class mod 2, ?χ@2 = wn where wn is the Stiefel-Whitney class
and ξ has degree n. Similarly, if ci is a Chern class, ?ci@2 = w2i .

Wu Formulas The Stiefel-Whitney classes have the following relationships over

the Steenrod algebra: Sqi(wj ) = $it=0

(
j + t − i − 1

t

)
wi−twj+1.



530 E. Windes and Ü. Yıldırım

Adem Relations For all i, j > 0 such that i < 2j , and with mod 2 binomial

coefficients, SqiSqj = $?k/2@k=0

(
j − k − 1
i − 2k

)
Sqi+j−kSqk.

Definition 3.7 A sequence of numbers I = {i1, i1, . . . , ik} is called admissible if
ij ≥ 2ij+1. The excess of I , e(I), is the measure of how close a sequence is to being
admissible. That is, e(I) = (i1 − 2i2)+ (i2 − 2i3)+ · · · + (ik−1 − 2ik)+ ik.
Fact 2 Let ιq be the fundamental class of the Eilenberg-MacLane space K(Z, q).
Then the cohomology ringH ∗(K(Z, q),Z2) is the polynomial ring with generators
SqI (ιq) where I runs through admissible sequences of excess e(I) < q and where
ik, the last entry in I is not 1. The requirement that ik > 1 comes from another
important fact: Sq1(ιq) = 0. For a recent treatment of this fact see [5].

Fact 3 There is an exceptional isomorphism between Spin(6) and SU(4). There-
fore the cohomology ring of B6 with integer coefficients is Z[c2, c3, c4].
Fact 4 All the Stiefel-Whitney classes of an orientable, 7-dimensional, compact,
spin manifold, M , are zero. It is also a fact that the first nonzero Stiefel-Whitney
class must be wi where i is a power of two. Therefore, since the manifold is
orientable and spin, w1 = w2 = w3 = 0. Also, from [4], we know that
w7 = w6 = w5 = 0. So the only Stiefel-Whitney class which might be non-zero is
w4. We can use the properties of Wu classes to show that w4 is also zero. Let vk be
the Wu classes. The facts already stated imply that v1 = v2 = v3 = 0. Let v be the
total Wu class, w the total Stiefel-Whitney class, and Sq the total Steenrod square.
Then Sq(v) = w. Also from [4] we know that vk = 0 if k > 1

2n which, in our case,
means vk = 0 for k = 4, 5, 6, and 7. Thus w = Sq(1) = 1 and we see that all the
Stiefel-Whitney classes ofM are zero.

In general, the Wu formulas give us the following:

Sq2w6 =
(

6− 2− 1
0

)
w2w6 +

(
6+ 1− 2− 1

1

)
w1w7 +

(
6+ 2− 2− 1

2

)
w0w8.

In the context we are interested in, the only non-zero Stiefel Whitney classes are
the mod 2 reductions of the generators of H ∗(BSU(4)) which are w4, w6, and w8
so Sq2w6 = 0 ⇒ Sq2 ◦ χ is homotopically trivial. These are exactly the maps
occurring in diagram (2.1). Therefore, we may fix a nullhomotopy and consider
the secondary cohomology operation associated with this homotopy. Furthermore,
the secondary compositions representing elements in the target of this operation are
exactly the ones representing the obstruction to lifting ξ . From [2, p. 61], we know
that up to homotopy, there is only one colifting and effectively only one homotopy
that we can choose. Therefore there is a unique secondary operation associated to
the composition Sq2 ◦ χ . Thus we may choose the map k above to be the colifting
S̃q2. Figuring out whether or not we can choose the composition k ◦ ξ ′ to be trivial
now amounts to figuring out whether 0 is contained in the target of this secondary
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composition or not. We analyze the composition by factoring it through the lower
line in the diagram below:

(3.1)

For simplicity, we denote (Sq2Sq1) by θ and

(
Sq2

Sq3

)
by ϕ. We have that k =

S̃q2 = ϕ̃ ◦ i. Next we will see why this diagram helps us. First of all, we will see
how it is constructed. Since B6 has the Stiefel-Whitney classw4, we can think about
starting with that map. Next, note that we can mapK(Z2, 4) toK(Z2, 6)×K(Z2, 5)
by applying Sq2, Sq1. Our motivation for doing that is the Adem relation Sq2Sq2 =
Sq3Sq1. This, combined with the fact that Sq2Sq3 maps K(Z2, 6) × K(Z2, 5) to
K(Z2, 8) ensures that the second row is still a nullhomotopy and ends at the same
space as the first row. It remains to fill in the middle map so that the right half of the
diagram commutes. We can achieve this by letting the middle map from K(Z, 6) to
K(Z2, 6)× K(Z2, 5) be reduction mod 2 on the first factor and zero on the second
factor. Then, since Sq2w4 = w6 = ?χ@2 and Sq1w4 = Sq1 ?c2@2 = 0, as Sq1 is the
Bockstein homomorphism. Thus the second square from the right commutes. The
square on the far right commutes trivially. Next, we formW as the pullback bundle
of the map (Sq2, Sq1) so its fiber is�(K(Z2, 6)×K(Z2, 5)). Commutativity of the
rest of the diagram now follows easily.

To finish up the argument, consider the map ε̄ = i◦ξ ′. Note that sincew4(M) = 0
by Fact 4, j ◦ ε̄ is also zero so we know that ε̄ factors through a map f from M to
K(Z2, 5) × K(Z2, 4). Finally, from [4], we know that Sq2 and Sq1 as maps from
H 5(M) → H 7(M) and from H 6(M) → H 7(M) are zero. Therefore, again by

commutativity, 0 =
(
Sq2

Sq3

)
◦ f = ϕ̃ ◦ ε̄ = k ◦ ξ ′ and Theorem 1.1 is proved.

4 Conclusion

Theorem 1.1 can be strengthened in a few different ways which we plan to address
in a future paper. First of all, Thomas’ result about two-frame fields applies to any
closed (4s + 3)-manifold. So one might hope that for any closed (4s + 3)-manifold
one can choose the first vector field in the two-frame field freely. Here, we have
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three conditions; simply connected, spin, 7 dimensional. We will investigate which
of these properties can be dropped so that Theorem 1.1 still applies.
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Local Existence of Solutions
to the Euler–Poisson System, Including
Densities Without Compact Support

Uwe Brauer and Lavi Karp

Abstract Local existence and uniqueness for a class of solutions for the Euler
Poisson system is shown, whose properties can be described as follows. Their
density ρ either falls off at infinity or has compact support. Their mass and the
energy functional is finite and they also include the static spherical solutions for
γ = 6

5 . The result is achieved by using weighted Sobolev spaces of fractional order
and a new non-linear estimate that allows to estimate the physical density by the
regularised non linear matter variable.
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1 Introduction

We consider the Euler–Poisson system

∂tρ + va∂aρ + ρ∂ava = 0 (1.1)
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ρ
(
∂t v

a + vb∂bva
)
+ ∂ap = −ρ∂aφ (1.2)

	φ = 4πGρ (1.3)

where G denotes the gravitational constant. Using suitable physical units we can
set G = 1. Here we have used the summation convention, for example, vk∂k :=∑3
k=1 v

k∂k , a convention we will use in the rest of the paper wherever it seems
appropriate to us. Moreover ∂aφ := δab∂bφ, and we will wherever it is convenient
denote ∂aφ by ∇φ. In this paper, we consider the barotropic equation of state

p = Kργ 1 < γ, 0 < K, (1.4)

and we study this system with initial data for the density which either has compact
support or falls off at infinity in an appropriate way. It is well known that the
usual symmetrization of the Euler equations is badly behaved in such cases. The
coefficients of the system degenerate or become unbounded when ρ approaches
zero. It was observed by Makino [11] that this difficulty can be to some extent
circumvented by using a new matter variable w in place of the density. For this
reason, we introduce the quantity

w = 2
√
Kγ

γ − 1
ρ
γ−1

2 , (1.5)

which allows treating the situation where ρ = 0. Replacing the density ρ by the
Makino variable w, the system (1.1)–(1.3) coupled with the equation of state (1.4)
takes the following form:

∂tw + va∂aw + γ − 1

2
w∂av

a = 0 (1.6)

∂tv
a + vb∂bva + γ − 1

2
w∂aw = −∂aφ (1.7)

	φ = 4πρ (1.8)

which we will sometimes denote as the Euler–Poisson–Makino system. The Euler–
Poisson system consists of a hyperbolic system of evolution equations and the
elliptic Poisson equation.

2 Main Results

We obtain local existence and uniqueness for classical solutions of the Euler–
Poisson–Makino system (1.6)–(1.8) for densities without compact support but with
a polynomial decay at infinity, and with the equation of state (1.4). The class
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of solutions we obtain has finite mass, a finite energy functional, moreover, they
contain the static spherically symmetric solutions for the adiabatic constant γ = 6

5
(see Sect. 2.1). These solutions are continuously differentiable and they are also
classical solutions of the Euler–Poisson system (1.1)–(1.3).

The Euler–Poisson–Makino system is considered in the weighted Sobolev spaces
of fractional order Hs,δ. So we first define these spaces.

Let {ψj }∞j=0 dyadic partition of unity in R
3, that is, ψj ∈ C∞0 (R3), ψj(x) ≥ 0,

supp(ψj ) ⊂ {x : 2j−2 ≤ |x| ≤ 2j+1}, ψj (x) = 1 on {x : 2j−1 ≤ |x| ≤ 2j } for
j = 1, 2, . . ., supp(ψ0) ⊂ {x : |x| ≤ 2}, ψ0(x) = 1 on {x : |x| ≤ 1} and

|∂αψj (x)| ≤ Cα2−|α|j , (2.1)

where the constant Cα does not depend on j . We denote by Hs the Sobolev spaces
with the norm given by

‖u‖2
Hs =

ˆ
(1+ |ξ |2)s |û(ξ)|2dξ,

where û is the Fourier transform of u. The scaling by a positive number ε is denoted
by fε(x) = f (εx).
Definition 2.1 (Weighted Fractional Sobolev Spaces) Let s, δ ∈ R, the weighted
Sobolev space Hs,δ is the set of all tempered distributions such that the norm

(‖u‖Hs,δ )2 =
∞∑
j=0

2(
3
2+δ)2j‖(ψju)(2j )‖2

Hs (2.2)

is finite.

The largest integer less than or equal to s is denoted by [s]. In this setting our main
result is the following.

Theorem 2.2 (Local Existence and Uniqueness of Classical Solutions to the
Euler–Poisson–Makino System) Let 1 < γ < 5

3 , − 3
2 + 2[

2
γ−1

]
−1

≤ δ < − 1
2 ,

5
2 < s if 2

γ−1 is an integer and 5
2 < s < 5

2 + 2
γ−1 −

[
2
γ−1

]
otherwise. Suppose

(w0, v
a
0 ) ∈ Hs,δ and w0 ≥ 0, then there exists a positive T which depends on the

Hs,δ-norm of the initial data and there exists and a unique solution (w, va) of the
Euler–Poisson–Makino system (1.6)–(1.8) such that

(w, va) ∈ C ([0, T ],Hs,δ) ∩ C1 ([0, T ],Hs−1,δ+1
)

and 0 ≤ w(t, ·) in [0, T ].
The proof of this theorem is outlined in Sect. 3, while the complete version can be
found in [1]. It has been common in recent years to use the term well-posedness
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as a synonym for existence and uniqueness, however well-posedness, as originally
introduced by Hadamard [7], includes the continuity of the flow map with respect
to the initial data. This, however, has been proven recently by the authors [2].

In any case, our result as stated here has a series of noteworthy corollaries which
we list below:

2.1 Properties of the Solutions

We start with static solutions of the Euler–Poisson system. Those solutions must
be spherical symmetric (see for example [9]) and they can be obtained by solving
the Lane–Emden equation [5]. The linear stability has been an open problem for a
long time, so it is interesting to see whether a class of solutions can be constructed
which include static solutions. To the best of our knowledge, this has not been
achieved for solutions with a finite radius. For γ = 6

5 there is one parameter family
(parameterized by the central density) of solutions which have finite mass but infinite
radius, and it is given by

ρ(t, x) = ρ(|x|) = a 5
2

(
a2 + |x|2

)− 5
2 ∼ |x|−5, (2.3)

where a is a positive constant see [5]. The corresponding solutions in the Makino
variable are given by

w(x, t) = a 1
4

(
a2 + |x|2

)− 1
4 ∼ |x|− 1

2 . (2.4)

Such static solutions are included in the class of solutions whose existence is
guaranteed by Theorem 2.2, as it is stated in the following corollary.

Corollary 2.3 (The Static Solutions of the Euler–Poisson System) Let γ = 6
5 ,

− 23
18 < δ < −1 and 5

2 < s. Then there exists a positive T and a unique solution
(w, va) to the Euler–Poisson–Makino system (1.6)–(1.8) such that

(w, va) ∈ C ([0, T ],Hs,δ) ∩ C1 ([0, T ],Hs−1,δ+1
)
,

and for which the initial data include the static solution w0(x) =
(
a2 + |x|2)− 1

4 .

Proof The proof is straightforward. As discussed above for γ = 6
5 , ρ is given by

equation (2.3), while w is given by Eq. (2.4). Note that (a2 + |x|2)− 1
4 ∈ Hs,δ if

δ < −1. On the other hand, the lower bound for δ in Theorem 2.2 for γ = 6
5 gives

us − 3
2 + 2

9 = − 23
18 < −1. ��
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Note that the local existence and uniqueness result is obtained in terms of

the Makino variable. Nevertheless, setting ρ(t, x) = cK,γw
2
γ−1 (t, x), cK,γ =(

2
√
Kγ

γ−1

) −2
γ−1

, we also get a classical solution to the Euler–Poisson system (1.1)–

(1.3).

Corollary 2.4 (Local Solutions of the Original Euler–Poisson System) Let 1 <
γ < 5

3 , − 3
2 + 3[

2
γ−1

] ≤ δ < − 1
2 , 5

2 < s if 2
γ−1 is an integer and 5

2 < s <

5
2+ 2

γ−1−
[

2
γ−1

]
otherwise. Suppose (ρ

2
γ−1
0 , va0 ) ∈ Hs,δ. Then there exists a positive

T and a unique C1–solution (ρ, va) to the Euler–Poisson system (1.1)–(1.3) with
the equation of state (1.4) such that

(
ρ(t, ·), va(t, ·)) ∈ L∞([0, T ],Hs,δ).

Please note that the initial data in Corollary 2.4 are given by the Makino variable w
and not by the physical quantity ρ. It is an open problem to solve the Euler–Poisson
system entirely in terms of ρ for situations in which ρ could be zero.

There exists a wide range of publications concerning the non-linear stability of
stationary solutions of the Euler-Poisson system relying on the method of energy
functionals, see for example Rein [8, 14]. Having this context in mind we turn to the
question of finite mass and finite energy functional.

Corollary 2.5 (Finite Mass and Finite Energy Functional) The solutions
obtained by Theorem 2.2 have the properties that,

1. ρ(t, ·) ∈ L1(R3), that is, they have finite mass.
2. The energy functional

E = E(ρ, va) :=
ˆ (

1

2
ρ|va |2 + Kργ

γ − 1

)
dx − 1

2

¨
ρ(t, x)ρ(t, y)

|x − y| dxdy

(2.5)

is well defined for those solutions.

2.2 The Advantages of the Hs,δ Spaces

In this section, we discuss the consequences of our main result, Theorem 2.2 and
possible applications, and compare them with previous results obtained by other
authors.

• We recall that the Euler–Poisson system (1.1)–(1.3) degenerates when the density
approaches to zero and the only known method to solve an initial value problem
in this context is to regularize the Euler equations by introducing the Makino
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variable (1.5). All the previous local existence results [3, 6, 11], including the
present paper, have used this technique. It should, however, be noted that Bezard
uses the ordinary Sobolev spaces Hs , and therefore his claim that his solutions
include static spherical solutions if γ = 6

5 is simply not correct, since the initial
data of the corresponding Makino variable do not belong to Hs .

Thus in order to include the spherically symmetric static solutions of the
Lane–Emden equation for γ = 6

5 in our class of solutions, it is necessary to
express it in terms of the Makino variable w. But from (2.4) we see that this
function does not belong to the SobolevHs space.

• To overcome the difficulty with the Makino variable Gamblin uses uniformly
locally Sobolev spaces Hs

ul spaces which were introduced by Kato. However, as
it was pointed out by Majda [10, Thm 2.1, p. 5 0], for first-order symmetric
hyperbolic systems with a given initial data u0 ∈ Hs

ul ,
3
2 + 1 < s the

corresponding solutions belong only to C
([0, T ];Hs

loc

) ∩ C1
(
[0, T ];Hs−1

loc

)
∩

L∞
([0, T ];Hs

ul

)
. Furthermore, continuity in the Hs

ul norm causes a loss of
regularity [6, Theorem 2.4]. We prove well-posedness in the Hs,δ spaces,
Theorem A.4, and circumvent these weaknesses of the uniformly locally Sobolev
spaces.

• Another benefit of the Hs,δ spaces concerns the treatment of the Poisson
equations. The Laplacian is a Fredholm operator in those spaces [4, 12], and for
certain values of δ is an isomorphism. Thus with the aid of the nonlinear power
estimate, Proposition A.3, we are able to treat both the hyperbolic and the elliptic
part in the same type of Sobolev spaces. On the contrary, the Hs

ul spaces are not
suited for the Poisson equation. To circumvent this difficulty Gamblin demanded
that the initial density ρ0 belong to W 1,p, 1 ≤ p < 3. Therefore he has two

types of initial data, namely, ρ0 ∈ W 1,p and the Makino variable ρ
γ−1

2
0 ∈ Hs

ul .
However, his initial data for the velocity va0 belongs to Hs

ul . Under these initial
conditions, Gamblin proved that for 7

2 < s <
2
γ−1 the solutions are:

(ρ, va) ∈ ∩i=1,2C
i
(
[0, T ∗];Hs ′−i

ul

)
, s′ < s, ρ ∈ L∞

(
[0, T ];W1,p ∩Hsε

ul

)
,

where sε = min{ 2
γ−1 − ε, s} if 2

γ−1 �∈ N and sε = s otherwise. Thus the density

belongs toW 1,p and falls off at infinity, while the velocity is inHs
ul and therefore

does not tend to zero. Such a class of solutions, even if it contains spherically
symmetric static solutions, does not model isolated bodies in an appropriate way.

• The uniform Sobolev spaces Hs
ul , that Gamblin used in order to include the

static solutions for γ = 6
5 are not suited for the Einstein–Euler system in an

asymptotically flat setting. Recall that in these functional spaces the Einstein
constraint equations cannot be solved, while they can be solved using the Hs,δ
spaces. The last question is important if one considers the Euler–Poisson system
as the Newtonian limit of the Einstein–Euler system.
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Oliynyk [13] proved the Newtonian limit in an asymptotically flat setting. He
showed that solutions of the Einstein-Euler system converge to solutions of the
Euler–Poisson system, under the restriction that the density has compact support.
In order to generalize his result to the case where the density only falls off in an
appropriate way one needs a functional setting that is suited for both systems.
While the weighted fractional Sobolev spaces are known to be appropriate, there
is no existence result known for the Einstein equations (plus matter fields) in an
asymptotically flat situation using the functional setting of Hs

ul spaces.

3 Structure of the Proof

The most obvious way to solve system (1.6)–(1.8) would be to apply some sort of
iteration procedure or a fixed–point argument directly to that system. But since the
system is coupled to an elliptic equation, it seemed more convenient and transparent
to split up the proof in several parts. Firstly we prove local existence and well-
posedness for a general symmetric hyperbolic system (A0 �= Id) in the weighted
Sobolev spaces.

Since the density falls off but could become zero, we will need the established
tool of regularizing the system, by introducing a new matter variable, the Makino

variable (1.5). In this setting, the power w
2
γ−1 must be estimated in the weighted

fractional norm. The estimates of the power in the Hs spaces under certain
restrictions on the power and s are known (see e.g. [15]). An essential ingredient
of our proof is a nonlinear power estimate in the weighted fractional Sobolev spaces
that preserves the regularity and improves the fall off at infinity (Proposition A.3). It
enables us to apply the known estimates for the Poisson equation (1.8) in these
spaces. We then prove the existence of solutions to the Euler–Poisson–Makino
system by using a fixed–point argument. In any case, either for the fixed–point or
for the direct iteration we are faced with the well-known fact that we have to use a
higher and a lower norm. We show boundness in the higher norm and contraction
in the lower. Under this circumstances, the existence of a fixed point in the higher
norm is well known.

Appendix A Useful Propositions

The following Proposition was proved by Kateb in the Hs spaces.

Proposition A.1 Let u ∈ Hs,δ ∩ L∞, 1 < β, 0 < s < β + 1
2 , and δ ∈ R, then

‖|u|β‖Hs,δ ≤ C(‖u‖L∞)‖u‖Hs,δ . (A.1)
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Proposition A.2 (Sobolev Embedding)

(i) If 3
2 < s and β ≤ δ + 3

2 , then ‖u‖L∞β ≤ C‖u‖Hs,δ .
(ii) Let m be a nonnegative integer,m+ 3

2 < s, and β ≤ δ + 3
2 , then

‖u‖Cmβ ≤ C‖u‖Hs,δ .

Proposition A.3 (Nonlinear Estimate of Power of Functions) Suppose that w ∈
Hs,δ, 0 ≤ w and β is a real number greater or equal 2. Then

1. If β is an integer, 3
2 < s and 2

β−1 − 3
2 ≤ δ, then

‖wβ‖Hs−1,δ+2 ≤ Cn
(‖w‖Hs,δ )β . (A.2)

2. If β �∈ N, 5
2 < s < β − [β] + 5

2 and 2
[β]−1 − 3

2 ≤ δ, then

‖wβ‖Hs−1,δ+2 ≤ Cn
(‖w‖Hs,δ )[β] . (A.3)

Theorem A.4 (Well Posedness of First Order Hyperbolic Symmetric Systems
in Hs,δ) Let 5

2 < s, − 3
2 ≤ δ, U0 ∈ Hs,δ, and F(t, ·) ∈ C([0, T 0],Hs,δ) for some

positive T 0. Then there exists a positive T ≤ T 0 and a unique solution U to the
system

{
∂tU + Aa(U)∂aU + B(U)U = F(t, x)
U(0, x) = U0(x)

, (A.4)

such that

U ∈ C([0, T ],Hs,δ) ∩ C1([0, T ],Hs−1,δ+1).
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Isometric Flows of G2-structures

Sergey Grigorian

Abstract We survey recent progress in the study of flows of isometric G2-
structures on seven-dimensional manifolds, that is, flows that preserve the metric,
while modifying the G2-structure. In particular, heat flows of isometric G2-
structures have been recently studied from several different perspectives, in partic-
ular in terms of 3-forms, octonions, vector fields, and geometric structures. We will
give an overview of each approach, the results obtained, and compare the different
perspectives.

Keywords G2-structure · Geometric flows

Mathematics Subject Classification (2010) 53C10, 53C29, 58E30, 58E15

1 Introduction

One of the most challenging problems in differential geometry is the question of
existence conditions for torsion-free G2-structures on smooth seven-dimensional
manifolds. Such G2-structures are precisely the ones that correspond to metrics
with holonomy contained in G2. One approach that has been pioneered by Robert
Bryant [4] is to considered heat-like flows ofG2-structures with the hope that under
certain conditions they may converge to a torsion-free G2-structure. A difficulty
that is encountered in such an approach is that in general, deformations of a G2-
structure also affect the corresponding metric, and so any heat equation for the
G2-structure becomes nonlinear. This is not unlike the situation for the Ricci flow,
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where the underlying geometry changes along the flow, however in the G2 case,
we have two separate but closely related objects, the G2-structure and the metric,
both of which vary along the flow. Given a Riemannian metric on a 7-manifold that
admits G2-structures, there is a family of G2-structures that correspond to it, so
a possible approach could be to separate as much as possible the deformations of
the metric from the deformations of G2-structures that preserve the metric. Indeed,
as was shown by Karigiannis [13], given a decomposition of 3-forms according to
representations ofG2, the deformations of theG2-structure 3-form that preserve the
metric are precisely the ones that lie in the seven-dimensional representation �3

7.
Bryant’s original Laplacian flow of closed G2-structures has no component in �3

7
[4], and as such is transverse to directions that preserve the metric. This allowed
for more tractable analytic properties. In contrast, a similar flow for co-closed G2-
structures that was proposed in [15] does have a component in�3

7, which, as shown
in [9], causes non-parabolicity of the flow. This suggests that the freedom of G2-
structures to move in directions that preserve the metric is some kind of degeneracy
and thus suitable gauge-fixing conditions within the metric class are needed to
address it.

These considerations show that it is necessary to have a clearer picture of G2-
structures within a fixed metric class. In [4], Bryant observed that suchG2-structures
are parametrized by sections of an RP 7-bundle, or more concretely, by pairs (a, α)
where a is a real-valued function and α is a vector field such that a2+|α|2 = 1, and
± (a, α) define the same G2-structure. If ϕ is a fixed G2-structure, then any other
G2-structure σ(a,α) (ϕ) within the same metric class is given by:

σ(a,α) (ϕ) =
(
a2 − |α|2

)
ϕ − 2aα�ψ + 2α ∧ (α�ϕ) , (1)

where ψ = ∗ϕ.
Given that the group G2 may be defined as the automorphism group of the

octonions, aG2-structure defines an octonion structure on the manifold, and in [10],
this observation was used to interpret the above pair (a, α) as a unit octonion V , and
then (1) is just the 3-form that corresponds to a modified octonion product defined
by V. Thus, a flow of isometricG2-structures can be interpreted as a flow of the unit
octonion section V. In particular, a natural heat flow of isometricG2-structures was
introduced in [10]. Given an octonionic covariant derivativeD, constructed from the
Levi-Civita connection and the torsion of the initialG2-structure ϕ, the heat flow of
isometric G2-structures is then the semilinear, parabolic equation

∂V

∂t
= 	DV + |DV |2 V (2)

with some initial condition V (0) = V0 and where 	D = −D∗D is the Laplacian
operator corresponding to D. This was obtained as the negative gradient flow of an
energy functional with respect toD. The critical points of the flow (2) correspond to
G2-structures for which the torsion tensor is divergence-free, i.e. satisfies div T = 0,
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where divergence is taken with respect to the Levi-Civita connection. This is
significant for several reasons. The divergence of torsion is precisely the term
that causes the non-parabolicity of the Laplacian flow of co-closed G2-structures
from [15] as mentioned above, and divT = 0 for closed G2-structures. Thus,
closed G2-structures are automatically critical points of (2). Secondly, T has been
interpreted in [10] as an imaginary octonion-valued 1-form, which is added to the
Levi-Civita connection to obtain the octonionic covariant derivative D, hence the
condition div T = 0 is precisely analogous to the Coulomb gauge condition in gauge
theory. This analogy makes this condition a reasonable candidate for a gauge-fixing
condition within a fixed metric class.

Soon after the introduction of the flow (2) in [10], it was further studied from
different perspectives by several authors: Bagaglini in [1]; Dwivedi, Gianniotis, and
Karigiannis in [8]; the author in [11]; Loubeau and Sá Earp in [17].

Equivalently to the flow of octonions (2), one can consider directly the evolution
of the 3-form ϕ via the equation

∂ϕ

∂t
= 2 (divT )�ψ (3)

where T is the torsion tensor that corresponds to the G2-structure 3-form at time
t . This is the way the flow was formulated in [1] and in [8] (although here we are
following [10, 11] and added a factor of 2 in (3). In [17], a more general approach
is taken and a harmonic heat flow of geometric structures is considered. In the case
of G2-structures, it is shown to reduce to (3). In this survey we will review the
above approaches to the flow of isometricG2-structures and outline the key analytic
results.

2 Isometric G2-structures

A G2-structure on a 7-manifold is defined by a smooth positive 3-form ϕ [3, 12].
This is a nowhere-vanishing 3-form that defines a Riemannian metric gϕ, such that
for any vectors u and v, the following holds

gϕ (u, v) volϕ = 1

6
(u�ϕ)∧ (v�ϕ) ∧ ϕ. (4)

At any point, the stabilizer of gϕ (along with orientation) is SO (7), whereas
the stabilizer of ϕ is G2 ⊂ SO (7). This shows that at a point, positive 3-
forms that correspond to the same metric, i.e., are isometric, are parametrized by
SO (7) /G2 ∼= RP

7 ∼= S7/Z2. Therefore, on a Riemannian manifold, metric-
compatible G2-structures are parametrized by sections of an RP

7-bundle, or
alternatively, by sections of an S7-bundle, with antipodal points identified. This is
precisely the parametrization given by (1).
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Alternatively, a G2-structure in a fixed metric class can be interpreted as a
reduction of the principal SO (7)-bundle P of orthonormal frames to a principal
G2-subbundle, and hence each such reduction corresponds to a section σ of an
SO (7) /G2-bundle N and equivalently, an SO (7)-equivariant map s : P −→
SO (7) /G2 ∼= S7/Z2. This is the picture used in [17].

We may also use theG2-structure ϕ and the metric to define the octonion bundle
OM ∼= �0 ⊕ TM on M as a rank 8 real vector bundle equipped with an octonion
product of sections given by

A ◦ϕ B = (
ab − g (α, β) , aβ + bα + α ×ϕ β

)
(5)

for any sections A = (a, α) and B = (b, β). We set the metric g = gϕ , since
we are fixing the metric, even though the G2-structure may change. Here we
define ×ϕ by g

(
α ×ϕ β, γ

) = ϕ (α, β, γ ) and given A ∈ � (OM), we write
A = (ReA, ImA) . The metric on TM is extended to OM to give the octonion inner
product 〈A,B〉 = ab + g (α, β), which is Hermitian with respect to the octonion
product. In the formula (1), the pair (a, α) can now be interpreted as a unit octonion
section.

The intrinsic torsion of a G2-structure is defined by ∇ϕ, where ∇ is the Levi-
Civita connection for the metric g that is defined by ϕ. Following [14], we have

∇aϕbcd = 2T e
a ψebcd and ∇aψbcde = −8Ta[bϕcde] (6)

where Tab is the full torsion tensor, note that an additional factor of 2 is for
convenience, and ψ = ∗ϕ is the 4-form that is the Hodge dual of ϕ with respect
to the metric g. TheG2-structure is known as torsion-free if T = 0, and in that case
∇ has holonomy contained in G2. Conversely, if ∇ has holonomy contained in G2,
then there exists a torsion-freeG2-structure within the metric class. Let V = (a, α)
be a unit octonion section, then define σV (ϕ) = σ(a,α)(ϕ), as in (1). It has been
shown in [10] that the torsion of the G2-structure ϕV = σV (ϕ) is given by

T (V ) = VT V −1 − (∇V ) V−1 (7)

where T is the torsion of ϕ, interpreted as a 1-form with values in the bundle of
imaginary octonions ImOM . If we now define an octonion covariant derivative D
on sections of OM via

DV = ∇V − V T, (8)

the expression (7) simply becomes

T (V ) = − (DV ) V −1. (9)

As shown in [10], the derivative D has other nice properties—it is metric-
compatible, and satisfies a partial product rule with respect to octonion product on
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OM , that is,D (UV ) = (∇U)V +U (DV ). Now given (9), the divergence of T (V )

can be expressed as

div T (V ) = − (	DV ) V −1 − |DV |2 . (10)

3 Energy Functional

Given that the torsion varies across G2-structures within the same metric class, an
obvious question is how to pick a representative of the class with the “best” torsion.
A reasonable way to try and characterize the best torsion is to look for critical points
of a functional. Therefore, given the set Fg of all G2-structures that are compatible
with a given metric g, and assumingM is compact, define the functional E : Fg −→
R by

E (ϕ) =
ˆ

M

∣∣∣T (ϕ)
∣∣∣2 vol, (11)

where T (ϕ) is the torsion of aG2-structure ϕ. This is the functional used by Dwivedi,
Gianniotis, and Karigiannis in [8].

As we have seen in the previous section, given a G2-structure ϕ, any other G2-
structure within the same metric class is given by σV (ϕ) for a unit octonion section
V . Therefore, the functional (11) is equivalent to the functional EO : � (SOM) −→
R given by

EO (V ) =
ˆ

M

∣∣∣T (V )∣∣∣2 vol =
ˆ

M

|DV |2 vol (12)

where we have also applied (9). Hence, in fact, the functional Eϕ is equivalent to
an energy functional with respect to the derivative D. This is the functional used in
[10, 11].

On the other hand, following the approach in [17], recall that a principal H -
subbundle of a principal G-bundle P may be characterized by an equivariant map
s : P −→G/H , or equivalently, as a section σ of the associated bundleN = P ×G
(G/H) ∼= P/H. Assuming that G is semi-simple, so that it admits a bi-invariant
metric, we may define a metric η onN, together with the corresponding Levi-Civita
connection ∇η. Moreover, given a metric g on the base manifold, we may induce a
metric on T ∗M ⊗ σ ∗TN, which is compatible with the splitting TN = VN ⊕HN
induced by ∇η. Using this metric, we may then define an energy functional E� :
� (N) −→ R on sections of N :

E� (σ ) =
ˆ

M

|dσ |2 vol . (13)
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Alternatively, suppose that moreoverG is compact, so that P is compact. Then, let
us define an energy functional on G-equivariant maps s : P −→ G/H :

EG (s) =
ˆ

P

|ds|2 volP (14)

where an induced metric on T ∗P ⊗ s∗T (G/H) is used. It is then shown in
[17], that for any section σ ∈ � (N) and its corresponding G-equivariant map
s ∈ C∞G (P,G/H) , EG (s) = c1E� (σ )+ c2 where c1 and c2 are uniform constants.

Consider the orthogonal splitting dσ = dVσ + dHσ into horizontal and vertical
parts. Since the horizontal component of the metric is given by π∗g, where π :
N −→ M is the bundle projection map, we find that for any X ∈ TM ,

∣∣dHσ (X)∣∣2 = (
π∗g

)
(dσ (X) , dσ (X)) = g ((π ◦ σ)∗X, (π ◦ σ)∗X) = g (X,X) .

Thus, the horizontal part of dσ contributes only a constant term to (13), and it is
thus sufficient to consider just the vertical component

EV� (σ ) =
ˆ

M

∣∣∣dVσ
∣∣∣2 vol . (15)

In the G2 case, Loubeau and Sá Earp show in [17] that this functional is equivalent
to (11).

Theorem 3.1 ([17]) If M is seven-dimensional, P is the SO (7)-principal bundle
of oriented orthonormal frames, and N is an associated SO (7) /G2-bundle over

M , then
∣∣dVσ ∣∣2 = 8

3

∣∣T (σ)∣∣2 where T (σ) is the torsion tensor of the G2-structure
defined by the section σ .

4 Gradient Flow

Given the functionals defined in the previous section, we may consider critical
points and negative gradient flows of the functionals. This is summarized below.

Space Functional Critical points Negative gradient flow
Fg E (ϕ) div T (ϕ) = 0 ∂ϕt

∂t
= 2 div T (ϕt )�ψt

� (SOM) EO (V ) 	DV + |DV |2 V = 0 ∂Vt
∂t
= 	DVt + |DVt |2 Vt

� (N) E� (σ ) τV (σ ) = 0 ∂σt
∂t
= τV (σt )

C∞G (P,G/H) EG (s) τH (s) = 0 ∂st
∂t
= τH (st )
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where τV (σ ) := Trg
(∇ηdVσ ) is the vertical tension field of the functional E� (σ )

and τH (s) := TrHg (∇ηds) is the horizontal tension field of the functional EG (s) .
It is proved in [20, Theorem 1] that σ ∈ � (N) is a harmonic section, i.e. a critical
point of the functional (13), if and only if the corresponding G-equivariant map
s ∈ C∞G (P,G/H) is a horizontally harmonic map, that is τH (s) = 0. In the
expression for τH (s), the trace is just over the horizontal distribution in T P. It
should be emphasized that the reason that the critical points of EG are not exactly
harmonic maps is that we are varying over only the equivariant maps, rather than
arbitrary maps. On the other hand, Wood does prove in [20, Theorem 3], that if
G/H is a normal G-homogeneous manifold and the metric on P is constructed
from any compatible metric on G, then σ is a harmonic section if and only s is a
harmonic map, that is, τ (s) := Trg (∇ηds) = 0. Crucially, these conditions are
satisfied for G = SO (7), H = G2, and P the orthonormal frame bundle on M .
Moreover, as shown in [17], given these conditions, a family σt ∈ � (N) satisfies
the harmonic section flow ∂σt

∂t
= τV (σt ) if and only if there is a corresponding

family st ∈ C∞G (P,G/H) that satisfies the harmonic map flow ∂st
∂t
= τ (st ) . Also,

Wood has shown in [19] that equivariance is preserved along the harmonic map
flow, so that if the initial condition is equivariant, then the flow will continue to be
equivariant. This shows a close relationship between harmonic map theory and the
theory of harmonic sections, and hence the flow (3) of isometric G2-structures.

On the other hand, one must be careful when applying harmonic map results.
In particular, the energy EG (s) contains a topological term that can never be
arbitrarily small, and thus standard small initial energy long-time existence results
[5] for harmonic maps cannot be applied. Similarly, while a constant map is
always harmonic, an equivariant map s : P −→ G/H can never be constant
(if H �= G). Thus existence of non-trivial harmonic equivariant maps and hence
harmonic sections is not guaranteed, as expected.

Some results from the theory of harmonic maps do carry over, at least in the
G2-case. It was shown in [8, 11] that almost monotonicity and ε-regularity results
similar to the harmonic map heat flow [5, 6, 18] hold for the flow (3).

Let px0,t0 (x, t) be the backward heat kernel on M , that is, the solution of the
backward heat equation for 0 ≤ t ≤ t0 that converges to a delta function at (x, t) =
(x0, t0). Then, given a time-dependent octonion section Vt or equivalently, a 3-form
ϕt = σV (t) (ϕ) for some fixed G2-structure ϕ, define the F -functional [11]

F (x0, t0, t) = (t0 − t)
ˆ

M

∣∣∣T (Vt ) (x)
∣∣∣2 px0,t0 (x, t) vol (x) , (16)

where T (Vt ) = − (DVt ) V −1
t is the torsion of the G2-structure ϕt . In [8], the anal-

ogous quantity is denoted by *(x0,t0) (ϕ (t)). It is then shown in both [8, Theorem
5.3] and [11, Proof of Corollary 7.2] that F satisfies an almost monotonicity formula
along the flow (2). Suppose Vt is a solution of the flow (2) for 0 ≤ t < t0 with initial
energy E (0) = E0. Then, there exists a constant C > 0, that only depends on the
background geometry, such that for any t and τ satisfying t0 − 1 ≤ τ ≤ t < t0, F
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satisfies the following relation

F (x0, t0, t) ≤ CF (x0, t0, τ )+ C (t − τ )
(
E0 + E

1
2

0

)
. (17)

In [8], the last term in (17) was C (t − τ ) (E0 + 1), which of course follows from
(17) for a different constant C. In both [8] and [11] similar versions of an ε-
regularity result is proven for F . We’ll state it as in [11].

Theorem 4.1 ([8, Theorem 5.7] and [11, Theorem 7.1]) Given E0, there exist ε >
0 and β > 0, both depending onM and β also depending on E0, such that if V is a
solution of the flow (2) onM × [0, t0) with energy bounded by E0, and if

F (x0, t0, t) ≤ ε (18)

for t ∈ [t0−β, t0), then V extends smoothly to Ux0 ×[0, t0] for some neighborhood
Ux0 of x0 with |DV | = ∣∣T (V )∣∣ bounded uniformly.

Then, Theorem 4.1 was used in [8, 11] to show long-time existence of the
isometric heat flow and convergence to a G2-structure with div T = 0 given
sufficiently small initial pointwise torsion.

Given a G2-structure 3-form ϕ, in [8] a concept of entropy was defined:

λ (ϕ, σ ) = max
(x,t)∈M×(0,σ )

{
t

ˆ

M

∣∣∣T (ϕ) (y)∣∣∣2 p(x,t) (y, 0) vol (y)

}
. (19)

This mirrors similar entropy concepts defined for the mean curvature flow, Yang-
Mills flow, and the harmonic map heat flow, in [7, 16], and [2], respectively. The
quantity λ (ϕ, σ ) is shown in [8] to be invariant under the scaling (ϕ, σ ) �→(
c3ϕ, c2σ

)
. While the same quantity could be defined for an octonion section V, if

considered as a function of V, λ would lose the scaling property for V. So in this
case, using the 3-form has an advantage. Overall, one of the key results in [8] is long
term existence and convergence of the flow (3) given sufficiently small entropy.

Theorem 4.2 ([8, Theorem 5.15]) Let ϕ0 be a G2-structure on a compact 7-
manifold M . For any δ, σ > 0, there exists ε > 0, such that if λ (ϕ0, σ ) < ε,
then the flow (3) with initial condition ϕ (0) = ϕ0 exists for all time and converges
smoothly to a G2-structure ϕ∞ that satisfies div T (ϕ∞) = 0 and

∣∣T (ϕ∞)∣∣ < δ.
Although good progress has been made on properties of the flows (2) and (3),

many questions still remain. For example, is it possible to prove long-time existence
given small initial energy, rather than entropy or pointwise torsion? If we combine
the equivariant harmonic map approach with the octonion approach, then everything
could be reformulated in terms of equivariant maps from the orthonormal frame
bundle P to S7 equipped with the octonion product. It is likely that the additional
algebraic structure could help achieve stronger results.
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spacetimes. The effects of the spatial expansion and contraction are considered.
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1 Introduction

We recall the Navier-Stokes equations in the Minkowski spacetime. Let us consider
the incompressible viscous fluid with the density ρ, the rate of the viscosity μ and
the pressure p. The Navier-Stokes equations are given by the form

⎧⎪⎨
⎪⎩

divu = 0,

∂0u
k +

n∑
j=1

uj∂j u
k + 1

ρ
∂kp − μ

ρ
	uk = 0 (1.1)

for 1 ≤ k ≤ n on [0, T )×R
n for T > 0, where x = (x0, x1, · · · , xn) ∈ R

1+n, u =
u(x) = (u1(x), · · · , un(x)) denotes the velocity vector, divu := ∑

1≤j≤n ∂juj , 	

is the Laplacian defined by	 :=∑n
j=1 ∂

2
j . By the Helmholtz projection defined by

(Hf )k := f k − ∂k 1

	
div f (1.2)
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for 1 ≤ k ≤ n and any function f = (f 1, · · · , f n), Eq. (1.1) are rewritten as

{
divu = 0,
∂0u

k + (Hf )k − μ
ρ
	uk = 0

(1.3)

for 1 ≤ k ≤ n, where we have put f k :=∑n
j=1 u

j ∂ju
k .

We consider the extension of the Navier-Stokes equations in the Minkowski
spacetime to the equations in homogeneous and isotropic spacetimes. Under the
assumption of the cosmological principle, namely, that the space is homogeneous
and isotropic, the solution of the Einstein equations with the spatial curvature 0
is given by the Friedmann-Lemaître-Robertson-Walker metric (the FLRW metric)
defined by

− c2(dτ)2 = gαβdxαdxβ = −c2(dx0)2 + a(x0)2
n∑
j=1

(dxj )2, (1.4)

where τ denotes the proper time, and a(·) is the scale-function of the space defined
by

a(x0) :=
⎧⎨
⎩
a(0)

(
1+ n(1+σ)∂0a(0)x0

2a(0)

)2/n(1+σ)
if σ �= −1,

a(0) exp
(
∂0a(0)x0

a(0)

)
if σ = −1.

(1.5)

(see [1] for the references of the Einstein equations and the FLRW metric). Put

T0 := − 2a(0)

n(1+ σ)∂0a(0)
. (1.6)

To describe the generalization of the Navier-Stokes equations (1.3) in homoge-
neous and isotropic spacetimes, we use the following convention. The Greek letters
α, β, γ, · · · run from 0 to n, and the Latin letters j, k, &, · · · run from 1 to n. We use
the Einstein rule for the sum of indices of tensors, for example, T αα :=∑n

α=0 T
α
α

and T ii := ∑n
i=1 T

i
i . We denote the speed of light by c > 0, the metric by

gαβdx
αdxβ for x = (x0, · · · , xn) ∈ R

1+n. We denote by (gαβ) the matrix whose
components are given by {gαβ }0≤α,β≤n. Put g := det(gαβ). Let (gαβ) be the inverse
matrix of (gαβ). The change of upper and lower indices is done by gαβ and gαβ , for
example, T αβ := gαγ Tγβ for any tensor Tαβ .

To derive the Navier-Stokes equations, we use a stress-energy tensors T αβ (see
Sect. 2, below). The conservation law of T αβ is expressed by ∇αT αβ = 0. We
consider the nonrelativistic limit of this conservation law. Namely,

lim
c→∞∇αT

αβ = 0. (1.7)
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We put

∂k := a−2∂k and f k := uj ∂juk

for 1 ≤ k ≤ n. We note ∂j ∂j = a−2	 and ∂k/∂&∂& = ∂k/	. Equation (1.7) yield
the Navier-Stokes equations

{
∂j u

j + n∂0a
2

2a2 = 0,

∂0u
k + (Hf )k + ∂0a

2

a2 u
k − μ

ρ
∂j ∂

juk = 0,
(1.8)

where the outline of the derivation is described in Sect. 2.
For the Cauchy problem of (1.8), we have the following results.

Proposition 1.1 The scale-function in (1.8) must satisfy

a(t) = a0

(
1+ 2a1t

a0

)1/2

. (1.9)

Namely, σ must satisfy σ = 4/n− 1 in (1.5).

When we consider the problem in the Minkowski spacetime with a0 = 1, namely
a(·) = 1, the Cauchy problem (1.8) is rewritten as

⎧⎪⎨
⎪⎩
∂jU

j = 0 on [0, T )×R
n,

∂tU
k + f (U)k + 1

ρ
∂kp̃ − μ

ρ
	Uk = 0 on [0, T )×R

n,

U(0, ·) = U0(·)
(1.10)

for 1 ≤ k ≤ n, where U = (U1, · · · , Un), U0 = (U1
0 , · · · , Un0 ) and p̃ is the

pressure for U . The following lemma shows one relation between the solutions u of
(1.8) and U of (1.10).

Proposition 1.2 Put

φ(x) := 1

2
a0a1

n∑
j=1

(xj )2 (1.11)

for x ∈ R
n. If u is the solution of (1.8), then the function U defined by

Uj(t, x) = a(t)uj
(
t,

x

a(t)

)
+ 1

a(t)
(∂jφ)

(
x

a(t)

)
(1.12)

for 1 ≤ j ≤ n is the solution of (1.10). Conversely, the function u defined by (1.12)
for the solution U of (1.10) is the solution of (1.8).
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Proposition 1.2 is a useful tool to consider the problem (1.8) since the transfor-
mation reduces it to the well-known problem (1.10) in the Minkowski spacetime.
For example, we show an application of Proposition 1.2 to the Cauchy problem of
(1.8). For any fixed r0 with 1 ≤ r0 <∞, we put

α(r) := n

2

(
1

r0
− 1

r

)

for 1 ≤ r <∞. For T > 0 and r1 with 1 ≤ r1 <∞, we set function spaces

X0 :=
{
U0 ∈

(
Lr0(Rn)

)n ; ∂jUj0 = 0
}
,

X(T ) := {U ; tα(r)U ∈ BC((0, T ),H (
Lr(Rn))n

)
,

t1/2+α(r1)∇U ∈ BC((0, T ), (H (
Lr1(Rn))n

)n)},
where U := (U1, · · · , Un) and U0 := (U1

0 , · · · , Un0 ), with the norms

‖U‖A := sup
0<t<T

tα(r)‖U(t)‖r ,

‖∇U‖A1 := sup
0<t<T

t1/2+α(r1)‖∇U(t)‖r1 ,

‖U‖X := max
{‖U‖A, ‖∇U‖A1

}

and the metric

dX(U, V ) := max
{‖U − V ‖A, ‖∇(U − V )‖A1

}
.

For the function φ defined by (1.11), we set function spaces

Y0 :=
{
a−1

0 U0(a0·)− a−2
0 ∇φ(·); U0 ∈ X0

}
,

Y (T ) :=
{
a(t)−1U(t, a(t)·)− a(t)−2∇φ(·); U ∈ X(T )

}
.

We put

T1 :=
{
∞ a1 ≥ 0,

T0 a1 < 0,

where T0 is defined by (1.6). We say that the solution u of (1.8) is global if u ∈ Y (T1)

since the space does not exist after T0 when a1 < 0.
We have the following results.
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Theorem 1.3 Let n ≥ 2. Let ρ and μ be constants with μ/ρ > 0. Let a0 > 0,
a1 ∈ R. Let us consider the Cauchy problem (1.8). Then the following results hold.

1. (Local and global solutions) For sufficiently small number ε > 0, put r0, r1 as
1/r0 = 1/r1 = 1/n− ε, and let r be a number with 0 ≤ 1/r ≤ 1/n− ε. Then
for any u0 ∈ Y0, there exists a unique solution u ∈ Y (T ) of (1.8), where T with
0 < T < T1 can be taken of the form

T =
(

C

‖U0‖(Lr0 (Rn))n
)2/nε

(1.13)

for a constant C > 0 which is independent of u0, where

U0(x) := a0u0

(
x

a0

)
+ 1

a0
∇φ

(
x

a0

)
(1.14)

and ∇φ := (∂1, · · · , ∂n)φ. Moreover, if a1 < 0 and U0 is small such that

‖U0‖(Lr0 (Rn))n ≤ CT −nε/20

holds, then T can be taken as T = T1. Namely, u is a unique global solution in
Y (T1).

2. (Global solutions) Let r0 = r1 = n, and let r be a number with 0 < 1/r < 1/n.
If ‖U0‖(Lr0 (n))n is sufficiently small, then there exists a unique global solution
u ∈ Y (T1) of (1.8).

In Theorem 1.3, we have shown the results in Lebesgue spaces corresponding
to the results in [2]. Compared with the results in [2], we obtain the small global
solution in (1) in Theorem 1.3 when the space is contracting, namely, a1 < 0.

2 Derivation of the Equations

In this section, we show the outline to derive the equations in (1.8). We show some
results on the stress-tensorPαβ with Lamé’s elastic constants λ andμ. We put ∂α :=
gαβ∂β . In the case of (1.4), we have

∂0 = − 1

c2
∂0, ∂

j = 1

a2
∂j .

When we take the nonrelativistic limit (c→∞), we naturally regard ∂0 as the zero-
operator (∂0 = 0). Let p be a function which denotes the pressure. For 0 ≤ α ≤ n,
let vα be a contravariant tensor which satisfies limc→∞ ∂jv0 = 0 for 1 ≤ j ≤ n.



560 M. Nakamura

Let Pαβ be a stress-tensor defined by

Pαβ := −pgαβ + λgαβ∇γ vγ + μ(∇αvβ +∇βvα) (2.1)

for 0 ≤ α, β ≤ n. Then we have the following results step by step.

(1) lim
c→∞ v

α∇αvβ = v0∂0v
β + vj ∂j vβ + 2v0�β0j v

j ,

(2) ∇γ vγ = ∂0a
n

an
v0 + ∂γ vγ ,

(3) lim
c→∞∇

β∇γ vγ = ∂β∂jvj ,

(4) lim
c→∞∇α∇

αvβ = ∂j ∂j vβ,

(5) lim
c→∞∇α∇

βvα = ∂β∂j vj ,

(6) lim
c→∞∇α(pg

αβ) = ∂βp,

(7) lim
c→∞∇αP

αβ = −∂βp + μ∂j∂jvβ + (μ+ λ)∂β∂jvj

for 0 ≤ β ≤ n, where we regard ∂0 as the zero-operator in the right hand side of
each equation.

By the metric (1.4), any velocity-tensor uα must satisfy the equation

−c2 = −c2(u0)2 + a(x0)2
n∑
j=1

(uj )2.

So that, u0 satisfies limc→∞ u0 = ±1. We assume

lim
c→∞ u

0 = 1 and lim
c→∞ ∂αu

0 = 0 (2.2)

for 0 ≤ α ≤ n, which means that the local time tends to the proper time in the
nonrelativistic limit. The Navier-Stokes equations in homogeneous and isotropic
spacetimes are given as follows.
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Now, let us consider the spacetime which has the metric (1.4). Let uα denote a
velocity-tensor. Assume (2.2). Let Pαβ be the stress-tensor with vα := uα. Let ρ
be a function which denotes the density of mass. Let T αβ be a stress-energy tensor
defined by

T αβ :=
(
ρ + p

c2

)
uαuβ − Pαβ (2.3)

for 0 ≤ α, β ≤ n. Then we have the following results step by step.

1. We have

lim
c→∞∇α

((
ρ + p

c2

)
uαuβ

)
= Iβ

for 0 ≤ β ≤ n, where we have put

Iβ := ∂0ρu
β + ∂j ρujuβ

+ρ
((
∂0a

n

an
+ ∂juj

)
uβ + ∂0u

β + uj∂juβ + 2�β0ju
j

)
(2.4)

and we regard u0 = 1 in the right hand side.
2. We have

lim
c→∞∇αT

αβ = Iβ + ∂βp − μ∂j∂juβ − (μ+ λ)∂β∂juj

for 0 ≤ β ≤ n, where we regard u0 = 1 and ∂0 = 0 in the right hand side. Let us
consider the nonrelativistic limits of the conservation∇αT αβ = 0 for 0 ≤ β ≤ n.
The equations

lim
c→∞∇αT

αβ = 0 (2.5)

for 0 ≤ β ≤ n are equivalent to

∂0ρ + ∂jρ uj + ρ
(
∂ju

j + ∂0a
n

an

)
= 0 (2.6)

and

ρ

(
∂0u

k + uj∂juk + ∂0a
2

a2
uk
)
+ ∂kp − μ∂j∂juk − (μ + λ)∂k∂juj = 0

(2.7)

for 1 ≤ k ≤ n.
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3. When ρ( �= 0) is a constant, Eq. (2.5) are equivalent to

∂j u
j + n∂0a

2

2a2 = 0 (2.8)

and

∂0u
k + f k + ∂0a

2

a2 u
k + 1

ρ
∂kp − μ

ρ
∂j∂

juk = 0 (2.9)

for 1 ≤ k ≤ n. Equation (2.9) is rewritten as

∂0u
k + (Hf )k + ∂0a

2

a2
uk − μ

ρ
∂j∂

juk = 0 (2.10)

for 1 ≤ k ≤ n, where (Hf )k is defined by (1.2).

Therefore, we have obtained the required equations.
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Ultra-Parabolic Kolmogorov-Type
Equation with Multiple Impulsive
Sources

Ivan Kuznetsov and Sergey Sazhenkov

Abstract Existence and uniqueness of entropy solutions of the Cauchy–Dirichlet
problem for the non-autonomous ultra-parabolic equation with partial diffusivity
and multiple impulsive sources is established. The limiting passage from the
equation incorporating a single distributed source to the multi-impulsive equation is
fulfilled, as the distributed source collapses to a parameterized multi-atomic Dirac
delta measure.
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1 Introduction

The focus of this article is centered on the well-posedness topics for the initial-
boundary value problem for the quasi-linear ultra-parabolic equation with partial
diffusivity and multiple impulsive source terms. Such equations are commonly
called Kolmogorov-type equations. Besides, they are also called impulsive equations
due to the presence of impulsive source terms. Impulsive sources involve parameter-
ized Dirac delta measures in their construction. From the physical viewpoint, they
reflect phenomena of instantaneous loading, i.e., drastic change of mass, energy,
impulse, etc. at a moment. The theory of impulsive partial differential equations
is rather new and far from complete. In the present article, we develop the results
earlier obtained in [3–5] for quasi-linear equations with autonomous coefficients
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and single impulsive source onto the cases with non-autonomous coefficients and
multiple impulsive sources, which is the novelty of this research.

2 Problem �0: The Basic Formulation

Let� be a bounded domain of spatial variables x ∈ R
d with a smooth boundary ∂�

(∂� ∈ C2). Let t ∈ [0, T ] and s ∈ [0, S] be two independent time-like variables.
Here T and S are given positive constants. Let τ1, τ2, . . . , τN ∈ (0, T ) be fixed time
moments, labeled so that 0 < τ1 < . . . < τN < T . Denote

GT,S := �× (0, T )× (0, S),  1 := �× [0, S],  2 := �× [0, T ],
�l := ∂�× [0, T ] × [0, S], �1

0 := �× {t = 0} × [0, S],
�1
T := �× {t = T } × [0, S], �1

τj
:= �× {t = τj } × [0, S] (j = 1, . . . , N),

�2
0 := �× [0, T ] × {s = 0}, �2

S := �× [0, T ] × {s = S}.

In this article, the focus of our study is centered on the following problem.

Problem �0 It is necessary to find a function u: GT,S �→ R satisfying the quasi-
linear ultra-parabolic equation

∂tu+ ∂sa(u)+ divxϕ(x, t, s, u) = divx(A(x, t, s, u)∇xu)

+
N∑
j=1

βj (x, s, u)δ(t=τj−0), (x, t, s) ∈ GT,S, (2.1a)

the initial condition with respect to time-like variable t

u|t=0 = u(1)0 (x, s), (x, s) ∈  1, (2.1b)

the initial and final conditions with respect to time-like variable s

u|s=0 ≈ u(2)0 (x, t), u|s=S ≈ u(2)S (x, t), (x, t) ∈  2, (2.1c)

and the homogeneous boundary condition

u|�l = 0. (2.1d)

In the formulation of Problem�0, we suppose that the initial and final data u(1)0 ,

u
(2)
0 , u(2)S , the nonlinear convective fluxes a and ϕ = (ϕ1, . . . , ϕd), the diffusion

matrix A and the impulsive perturbations βj are given and satisfy the conditions
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stated further. In (2.1a) and further, by δ(t=τ−0) we denote the Dirac delta measure
centered ‘on the left-hand side’ of a point t = τ in R, i.e.,

〈
δ(·=τ−0), φ

〉 = φ(τ − 0) (2.2)

for any integrable in a neighborhood of {t = τ } ⊂ R function φ having the trace at
the point t = τ from the left: φ(τ − 0) = lim

t→τ−0
φ(t).

In (2.1c) the relation sign ≈ means that u(2)0 and u(2)S may be unattained by a
solution u on some parts of the sets �2

0 and �2
S , respectively. The fact whether ≈

becomes equality (=), or not, is figured out a posteriori, i.e., after a solution of
equation (2.1a) is constructed somehow.

Conditions on u
(1)
0 &u(2)0 &u(2)S The initial and final data meet the regularity

requirements u(1)0 ∈ C2+α( 1), u(2)0 , u
(2)
S ∈ C2+α( 2) (α ∈ (0, 1)) and the

following consistency conditions: u(1)0 vanishes in a neighbourhood of ∂ 1 and u(2)0

and u(2)S vanish in a neighbourhood of ∂ 2.

Conditions on a&ϕ&A&β

(i) Matrix A = (aij (x, t, s, λ))i,j=1,...,d is symmetric and uniformly positive-
definite, i.e., aij (x, t, s, λ) = aji(x, t, s, λ) and there exists a positive

constant a∗ independent of x, t , s and λ such that
d∑

i,j=1
aij (x, t, s, λ)ξi ξj ≥

a∗|ξ |2 ∀ ξ ∈ R
d, ∀ (x, t, s, λ) ∈ GT,S ×Rλ.

Components aij meet the regularity requirement aij ∈ C2
loc(GT,S × Rλ).

(ii) Convective fluxes a and ϕ and impulsive perturbations βj (j = 1, . . . , N)
meet the regularity requirements a ∈ C2

loc(R), a(0) = 0, ϕ ∈ C2
loc(GT,S ×

Rλ)
d , ϕ(x, t, s, 0) = (0, . . . , 0), and βj ∈ C1

0 ( 
1 × Rλ).

(iii) Flux a satisfies the following genuine nonlinearity condition: the Lebesgue
measure of the set

{
λ ∈ R : ξ1 + a′(λ)ξ2 = 0

}
is zero for every fixed pair

(ξ1, ξ2) ∈ R
2 such that ξ2

1 + ξ2
2 = 1, i.e., for every fixed (ξ1, ξ2) ∈ S

1.
(iv) Flux ϕ satisfies the following growth condition: there exist constants

b1, b2 > 0 such that for all (x, t, s) ∈ GT,S and λ ∈ R the inequality
−divxϕ(x, t, s, λ)λ ≤ b1λ

2 + b2 takes place.

Remark 2.1 Note that, with u
∣∣
s=0 = u

(2)
0 and u

∣∣
s=S = u

(2)
S on  2 on the place

of (2.1c), Problem �0 becomes ill-posed. Indeed, since flux a is nonlinear and, in
general, non-monotonous, it may be impossible to equate a solution u of Problem
�0 to u(2)0 and u(2)S on the entire sets �2

0 and �2
S . Therefore, we permit that a

possible weak solution of Problem �0 may deviate from u
(2)
0 and u(2)S on �2

0 and
�2
S , respectively. Like in [4, 5], we set up a more loose non-classical condition (2.1c)

following the original ideas presented in [1, 7].
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Remark 2.2 In the formulation of Problem �0 notice that, in the sense of distribu-
tions, Eq. (2.1a) can be equivalently written with the help of identity (2.2) as the
system consisting of the equation

∂tu+ ∂sa(u)+ divxϕ(x, t, s, u) = divx(A(x, t, s, u)∇xu) in GT,S\(∪Nj=1�
1
τj
)

and the impulsive conditions (j = 1, . . . , N)

u(x, τj+0, s) = u(x, τj−0, s)+βj(x, s, u(x, τj−0, s)), (x, s) ∈  1. (2.3)

Our first aim in this article is to establish the existence and uniqueness results for
Problem�0. To this end, we revisit and extend our research originally carried out in
[2, 4, 5]. This way we introduce and study the suitable concept of entropy solutions
to Problem �0. This concept arises from the strictly parabolic regularization of
Problem�0.

3 Parabolic Regularization of Problem �0

We construct an entropy solution of Problem �0 as a limit of the family of weak
solutions uε of the following strictly parabolic model, as ε→ 0+.

Problem �ε Under Conditions on u(1)0 &u(2)0 &u(2)S and on a&ϕ&A&β, it is neces-
sary to find uε:GT,S �→ R satisfying the strictly parabolic equation

∂tuε + ∂sa(uε)+ divxϕ(x, t, s, uε) = divx(A(x, t, s, uε)∇xuε)+ ε∂2
ssuε (3.1)

in GT,S\(⋃N
j=1 �

1
τj
), the impulsive conditions (2.3) for j = 1, . . . , N , the initial

condition (2.1b), the homogeneous boundary condition (2.1d) and the (exact!) initial
and final conditions

uε|s=0 = u(2)0 (x, t), uε|s=S = u(2)S (x, t), (x, t) ∈  2. (3.2)

Here ε ∈ (0, 1] is an arbitrarily fixed small parameter.

The notion of weak solution to Problem �ε is quite standard in the theory of
parabolic problems. We notice that, in order to find a weak solution of Problem�ε ,
it is necessary and sufficient to fulfill the following N + 1 steps. On the first step,
in the subdomain � × (0, τ1) × (0, S) ⊂ GT,S , we find a weak solution uε of the
system consisting of Eq. (3.1) and conditions (2.1b), (2.1d) and (3.2). On the j -th
step (j = 2, . . . , N +1), in the subdomain�× (τj−1, τj )× (0, S) ⊂ GT,S , we find
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the weak solution uε of the system consisting of Eq. (3.1) and conditions (2.1d),
(3.2) and

uε(x, t, s)|t=τj−1 = uε(x, τj−1 − 0, s)+ βj−1(x, s, u(x, τj−1 − 0, s)), (x, s) ∈  1.

(3.3)

In the right-hand side of (3.3), uε(x, τj−1 − 0, s) is the trace on {t = τj−1 − 0} of
the weak solution uε obtained on the (j − 1)-th step.

Thus, Problem �ε is, in fact, the set of N + 1 initial boundary value problems
that should be solved successively. Each of these problems is well-posed in the class
of weak solutions due to the well-known theory of quasilinear parabolic equations
of the second order [6]. Aggregating the results of the N + 1 steps we conclude that
the following assertion holds true.

Proposition 3.1 Under Conditions on u(1)0 & u
(2)
0 &u(2)S and on a&ϕ&A&β, for

any fixed ε ∈ (0, 1] there exists the unique weak solution uε ∈ L∞(GT,S) ∩
L2(0, T ;W 1

2 ( 
1)) of Problem�ε .

Moreover, the energy estimate ‖∇xuε‖2
L2(GT,S)

+ ε‖∂suε‖2
L2(GT,S)

≤ M0 and the

maximum principle ‖uε‖L∞(GT,S) ≤ M1 hold, where constants M0 and M1 do not
depend on ε.

4 Entropy Solutions of Problem �0

The first main result of this article arises as ε → 0+ in the formulation of the
Problem �ε . Similarly to [2, Theorem 1] and [5, Theorem 3.1 (assertion 2)], we
establish the following theorem.

Theorem 4.1

(1) (Convergence result.) There exist a subsequence
εk −→

k→∞ 0+ and a limiting function u ∈ L∞(GT,S) ∩ L2((0, T ) ×
(0, S); oW 1

2(�)) such that the sequence of weak solutions uεk of Problems
�εk converges to u strongly in L1(GT,S), as k → ∞. In other words, the
family of weak solutions {uε}ε∈(0,1] of Problem �ε is relatively compact in
L1(GT,S), as ε→ 0+.

(2) (Existence of entropy solutions.) Function u = lim
k→∞ uεk serves as an entropy

solution of Problem�0 in the sense of Definition 4.2 formulated below.
(3) (Uniqueness of entropy solutions.) Let, in addition to Conditions on

a&ϕ&A&β, the convective flux ϕ and the diffusion matrix A be autonomous,
i.e., be independent of x, t and s explicitly. Then the entropy solution of Problem
�0 is unique.
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Definition 4.2 Function u ∈ L∞(GT,S)∩L2((0, T )× (0, S); oW 1
2 (�)) is called an

entropy solution to Problem�0, if it satisfies the entropy inequality

∂tη(u)+ ∂sqa(u)+ divxqϕ(x, t, s, u) − Divxqϕ(x, t, s, u)

+ (Divxϕ(x, t, s, u))η
′(u)− divx(A(x, t, s, u)∇xη(u)) ≤

− η′′(u)|A1/2(x, t, s, u)∇xu|2 in GT,S\(∪Nj=1�
1
τj
), (4.1a)

the maximum principle ‖u‖L∞(GT,S) ≤ M1, the initial condition (2.1b) (in the trace

sense) and the impulsive conditions (2.3), possesses the strong traces utr,(2)
0 and

u
tr,(2)
S on the planes �2

0 and �2
S , respectively, and satisfies the following two entropy

boundary conditions:

qa(u
tr,(2)
0 (x, t))− qa(u(2)0 (x, t))

− η′(u(2)0 (x, t))(a(u
tr,(2)
0 (x, t)) − a(u(2)0 (x, t))) ≤ 0, (x, t) ∈  2,

(4.1b)

qa(u
tr,(2)
S (x, t))− qa(u(2)S (x, t))
− η′(u(2)S (x, t))(a(utr,(2)

S (x, t)) − a(u(2)S (x, t))) ≥ 0, (x, t) ∈  2.

(4.1c)

In (4.1a), (4.1b) and (4.1c), η ∈ C2(R) is an arbitrary convex test-function:
η′′(z) ≥ 0 ∀ z ∈ R, and (η, qa, qϕ) is the convex entropy—entropy flux triple
such that qϕ(x, t, s, z) =

´ z
0 η

′(z̃)∂z̃ϕ(x, t, s, z̃) dz̃ and qa(z) =
´ z

0 a
′(z̃)η′(z̃) dz̃,

∀ z ∈ R.

In (4.1a) the differential operator Divx is defined by the formula

Divxψ(x, t, s, u) = (divxψ(x, t, s, z))|z=u(x,t,s) ∀ψ ∈ C1(GT,S ×Rz)
d .

In particular, operators Divx and divx relate through the identity

divxψ(x, t, s, u) = Divxψ(x, t, s, u) + ∂uψ(x, t, s, u) · ∇xu.

Entropy inequality (4.1a) is understood in the sense of distributions. Entropy
boundary conditions (4.1b) and (4.1c) are understood a.e. in  2, and impulsive
conditions (2.3) are understood a.e. in  1.
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5 Problem �0 as a Singular Limit Model Arising due
to the Collapse of a Distributed Source

In this section let us consider the following Cauchy–Dirichlet problem for Eq. (2.1a)
incorporating the distributed source term instead of the multiple impulsive ones.

Problem �γ It is necessary to find a function u: GT,S �→ R satisfying the quasi-
linear ultra-parabolic equation

∂tu+ ∂sa(u)+ divxϕ(x, t, s, u) = divx(A(x, t, s, u)∇xu)+ Zγ (x, t, s, u),

(x, t, s) ∈ GT,S,

the initial and final conditions (2.1b) and (2.1c) and the homogeneous boundary
condition (2.1d).

We suppose that the initial and final data are given and satisfy Conditions on
u
(1)
0 &u(2)0 &u(2)S ; and the diffusion matrix A, convective fluxes a and ϕ and the

source term Zγ are given and satisfy the following requirements.

Conditions on a&ϕ&A&Zγ

(i) Matrix A = (aij )i,j=1,...,d and fluxes a and ϕ satisfy all requirements in items
(i)–(iii) of Conditions on a&ϕ&A&β.

(ii) Zγ belongs to the space L∞(0, T ;Cloc( 
1 ×R)).

(iii) Flux ϕ and source Zγ satisfy the following growth condition: there exist

constants b(1)γ , b(2)γ > 0 such that for all (x, t, s) ∈ GT,S and λ ∈ R the

inequality (Zγ (x, t, s) − divxϕ(x, t, s, λ))λ ≤ b(1)γ λ
2 + b(2)γ takes place.

We remark that label γ is dumb so far.
For Problem �γ the notion of entropy solutions is introduced quite analogously

to [5, Definition 3.4] with several necessary natural modifications. The following
results on well-posedness of Problem�γ take place.

Proposition 5.1

(1) (Existence of entropy solutions.) Under Conditions on u(1)0 &u(2)0 &u(2)S and on
a&ϕ&A&Zγ there exists at least one entropy solution to Problem�γ .

(2) (Uniqueness of entropy solutions.) Let, in addition to Conditions on
a&ϕ&A&Zγ , the convective flux ϕ and the diffusion matrix A be autonomous,
i.e., be independent of x, t and s explicitly. Then the entropy solution of Problem
�γ is unique.

Proof In order to justify the proposition, it is sufficient to keep track of the proof of
Theorem 3.1 in [5] and fulfill necessary natural changes in it. ��
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Now suppose that the source term has the specific form

Zγ (x, t, s, λ) =
N∑
j=1

Kγj (t; τj )βj (x, s, λ), (5.1)

where γ = (γ1, γ2, . . . , γN) is multi-index, γj (j = 1, 2, . . . , N) are small positive
parameters, βj are given smooth functions satisfying the requirements of item (ii)
of Conditions on a&ϕ&A&β, τj are given fixed moments of time labeled so that
0 < τ1 < . . . < τN < T , andKγj are given by the formula

Kγj (t; τj ) = 1(t≤τj )
2

γj
ω

(
t − τj
γj

)
(γj > 0), (5.2a)

where ω: R �→ R
+ is a standard regularizing kernel having the properties

ω ∈ C∞0 (R), ω(−t) = ω(t) ∀ t ∈ R, suppω ⊂ [−1, 1],
ˆ

R

ω(t) dt = 1.

(5.2b)

For each j = 1, . . . , N , functionKγj = Kγj (t; τj ) is a weak
 approximation of the
Dirac delta-function δ(t=τj−0). Indeed, from (5.2) we easily deduce that

Kγj (·; τj ) −→
γj→0+ δ(t=τj−0) weakly
 in M(R), (5.3)

where M(R) is the space of Radon measures on R: M(R) = (C0(R))
∗.

Remark 5.2 Analogously to [5, Remark 1.5], we have that the function Zγ of
the form (5.1) meets the requirements of items (ii) and (iii) of Conditions on
a&ϕ&A&Zγ for all small fixed γj > 0. This implies that Proposition 5.1 holds
true for such source terms Zγ .

Let us denote by uγ = uγ (x, t, s) the entropy solution of Problem �γ

incorporating the source term of the form (5.1). In view of the limiting relation (5.3),
there arises a question whether the family {uγ } converges to an entropy solution u∗
of Problem �0. The answer to this question is positive. It constitutes the second
main result of this article and reads as follows.

Theorem 5.3 (Convergence Result) Let the source term Zγ in Problem �γ be
given by (5.1), where functions Kγj satisfy demands (5.2) and functions βj satisfy
the requirements of item (ii) of Conditions on a&ϕ&A&β. Let the convective fluxes
a and ϕ and the diffusion matrix A satisfy Conditions on a&ϕ&A&βj and the
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additional demands

max
λ∈R

|a′(λ)| ≤M2, max
GT,S×Rλ

|∂λϕ(x, t, s, λ)| ≤ M2,

max
GT,S×Rλ

|∂λA(x, t, s, λ)| ≤ M2, M2 = const < +∞.

Then there exist a subsequence {uγ (k)}k∈N (γ (k) −→
k→∞ (0, . . . , 0)) of entropy

solutions to Problem �γ (k) and a limiting function u∗ ∈ L∞(GT,S) ∩ L2((0, T ) ×
(0, S); oW 1

2 (�)) such that

uγ (k) −→
k→∞ u∗ strongly in L1(GT,S)

and weakly in L2((0, T )× (0, S); oW 1
2 (�)).

(5.4)

Furthermore, u∗ is an entropy solution of Problem�0 in the sense of Definition 4.2.

Addition to Theorem 5.3 Let hypotheses of Theorem 5.3 hold and, additionally, ϕ
and A be autonomous, i.e., be independent of x, t and s explicitly. Then the limiting
relations (5.4) hold true for the whole family {uγ } as γj → 0+ (j = 1, . . . , N),
i.e., for any subsequence γ (k) −→

k→∞ (0, . . . , 0).

Proof In order to establish Theorem 5.3, it is sufficient to keep track of the proof
of assertion 1 in Theorem 9.1 in [5] and fulfill necessary natural changes in this
proof. Addition to Theorem 5.3 holds true thanks to the uniqueness result in
Theorem 4.1. ��
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On a Sylvester Equation over a Division
Ring

Vladimir Bolotnikov

Abstract The matrix Sylvester equation AX − BX = C is considered over a
division ring. In the case where A and B are Jordan blocks, the solvability criterion
is given along with the description of all solutions.

1 Introduction

Given complex matrices A ∈ C
n×n, B ∈ C

m×m and C ∈ C
n×m, the Sylvester

equation

AX −XB = C (1.1)

can be equivalently written in the formGx = c whereG = Im ⊗A− B3 ⊗ In and
x, c are the columns constructed from the entries of X = [xij ] and C = [cij ] by

x = Col1≤i≤n
(
Col1≤i≤mxij

)
, c = Col1≤i≤n

(
Col1≤i≤mcij

)
.

In this way, the consistency criterion and the description of all solutions of the
Sylvester equation (1.1) reduce to the standard questions concerning the equation
Gx = c. In particular, (1.1) has a unique solution X (corresponding to the column
x = G−1c) if and only ifG is invertible or, equivalently, if and only if the spectrums
of A and B are disjoint. For more explicit formulas for solutions of (1.1) (in terms
of A, B and C rather than their entries) can be found in the survey [6].

In the case Eq. (1.1) is considered over a division ring F, even its scalar version
is non-trivial. It has been settled in [3] and [4] (see also [2], [5, Section 6]). Here,
we consider the matrix equation (1.1) with A and B being algebraic Jordan blocks.
The regular (determinate) case is presented in Sect. 3 along with the formula for
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the unique solution. The singular case is discussed in Sect. 4, where we present the
solvability criterion and the parametrization of all solutions in case the equation is
solvable.

2 Background

Given a division ring F with the center ZF, we denote by F[z] the ring of
polynomials in one formal variable z which commutes with coefficients from F.
The center of F[z] is formed by polynomials with coefficients in ZF (central
polynomials); in other words, ZF[z] = ZF[z].

Left and right evaluations of an f ∈ F[z] at α ∈ F can be defined as the
remainders of f when divided by ρα(z) = z − α on the left and on the right,
respectively. As is easily verified, for any α ∈ F and f ∈ F[z],

f (z) = f e�(α)+ ρα · (Lαf ) = f er (α)+ (Rαf )(z) · ρα (ρα(z) := z− α),
(2.1)

where f e�(α) and f er (α) are left and right evaluations of f at α:

f e�(α) =
m∑
j=0

αjfj and f er (α) =
m∑
j=0

fjα
j if f (z) =

m∑
j=0

zjfj , (2.2)

and where Lαf and Rαf are the polynomials given by

(Lαf )(z) =
m−1∑
i+j=0

αifi+j+1z
j , (Rαf )(z) =

m−1∑
i+j=0

zjfi+j+1α
i . (2.3)

For g ∈ ZF[z], we simply write g(α), as in this case, ge�(α) = ger (α) for any
α ∈ F. Also, we see from (2.3) that Lαg = Rαg for any g ∈ ZF[z] and α ∈ F.

Remark 2.1 The objects introduced in (2.2), (2.3) are related as follows:

α · (Lαf )er (β)− (Lαf )er (β) · β = f e�(α)− f er (β), (2.4)

for any α, β ∈ F and f ∈ F[z].
Indeed, evaluating the first equality in (2.1) at z = β on the right gives

f er (β) = f e�(α)+ (Lαf )er (β) · β − α · (Lαf )er (β)

which is equivalent to (2.4). To keep notation compact, we will use notation

f ·X := f (z)⊗X, (fX)er (β) := [
(f xi,j )

er (β)
]

(2.5)
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for f ∈ F[z], X = [xi,j ] ∈ F
n×m and β ∈ F. Also, we will write f ′ for the formal

derivative of f ∈ F[z]. Upon differentiating equalities (2.1) we get

f ′ = Lαf + ρα · (Lαf )′ = Rαf + (Rαf )′ · ρα. (2.6)

Given α ∈ F, we let [α] = {hαh−1 : h ∈ F\{0}} to denote its similarity (conjugacy)
class. An element α ∈ F is called algebraic (over ZF) if it is annihilated by some
central polynomial. In this case, all such polynomials form a two-sided ideal of F[z]
whose generator (the monic central polynomial of the least degree that vanishes at
α) μα is called the minimal central polynomial of α. Observe that

μα = ρα · (Lαμα) = (Lαμα) · ρα, μ′α(α) �= 0. (2.7)

Indeed, the equalities follow from (2.1) since μα(α) = 0 and μα ∈ ZF[z], while
the last relation holds since μ′α ∈ ZF[z] and deg μ′α < deg μα . We also recall that
μα(β) = 0 if and only if β ∈ [α] and μα = μβ for all β ∈ [α].

3 The Regular Case

We extend evaluation functionals (2.2) to square matrices using the standard
polynomial calculus. Then we have the following result.

Lemma 3.1 Given A ∈ F
n×n and B ∈ F

m×m, let us assume that there is a central
polynomial p(z) = zκ + pκ−1z

κ−1 + . . .+ p0 (pj ∈ ZF) such that p(A) = 0 and
p(B) is invertible. Then for any C ∈ F

n×m Eq. (1.1) has a unique solution given by
the formula

X = −
κ∑
i=1

pj

j−1∑
i=0

AiCBj−i−1 · p(B)−1. (3.1)

Proof Since p ∈ ZF[z] and p(A) = 0, we have for any X ∈ F
n×k ,

κ∑
j=1

pj

j−1∑
i=0

Ai(AX − XB)Bj−i−1 =
κ∑
j=0

pj (A
jX −XBj )

= p(A)X −Xp(B) = −Xp(B). (3.2)

If X satisfies (1.1), we replace AX − XB on the left side by C and see that X (on
the right side) is uniquely defined from (3.2) by the formula (3.1). To verify that X
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of the form (3.1) satisfies (1.1), we use the computation as above but with C instead
of X:

κ∑
j=1

pj

j−1∑
i=0

(Ai+1CBj−i−1 − AiCBj−i ) = −Cp(B).

If X is defined as in (3.1), the expression on the left side of the latter equality can
be written as AXp(B) − Xp(B)B. Since the matrices B and p(B) commute, we
therefore, have

AXp(B)−XBp(B) = −Cp(B),

which is equivalent to (1.1), since p(B) is invertible. ��
We next consider the particular case where A and B are Jordan blocks.

Corollary 3.2 Let α ∈ F be algebraic. Then the Sylvester equation

AX −XB = C, A =
⎡
⎣
α 0 ... 0
1 α ··· 0
...
. . .
. ..
...

0 ... 1 α

⎤
⎦ , B =

⎡
⎣
β 1 ... 0
...
. . .
.. .
...

0 ... β 1
0 ... 0 β

⎤
⎦ (3.3)

has a unique solution for any C ∈ F
n×m if and only if β �∈ [α].

Proof If μα ∈ ZF[z] is the minimal polynomial of α, then for A and B as in (3.3),
we have μnα(A) = 0, while μnα(B) is an upper triangular matrix with μnα(β) on
the main diagonal. If β �∈ [α], then μα(β) �= 0 and therefore, μnα(B) is invertible.
Hence, the “if” part of the statement follows from Lemma 3.1 with p = μnα . For the
“only if” part, see Remark 4.6 below. ��

4 The Singular Case

We now consider Eq. (3.3) with algebraic α ∼ β. Our goal is to establish
necessary and sufficient conditions for the equation to have a solution (see part
(1) in Theorem 4.2 below) and to describe all solutions if these conditions are
met. Since the equation is linear, it suffices to construct a particular solution (see
part (2) in Theorem 4.2) and to describe all solutions to the homogeneous equation
AX − XB = 0 (see Theorem 4.4). We start with several preliminary results.

Lemma 4.1 Let α ∈ F be algebraic with the minimal polynomial μα .

1. If the equality αy − yβ = γ holds for some β, y, γ ∈ F, then

(Lαμαy)
er (β) = yμ′α(β)+ ((Lαμαγ )′)er (β), (4.1)
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2. If u = ((Lαμα)′y)er (β), then

αu− uβ = (Lαμαy)er (β)− yμ′α(β). (4.2)

3. If v = (Lαμαy)er (β) and β ∼ α, then αv − vβ = 0.

Proof It follows from (2.2) that for all f, g ∈ F[z] and β ∈ F,

(fg)er (α) =
∑

fkg
er (β)βk = (

f · ger (β)
)er
(β). (4.3)

To prove part (1), we apply (4.3) to f = (Lαμα)′ and g = ραy; taking into account
that (ραy)

er (β) = yβ − αy = −γ (by the assumption) we get

((Lαμα)
′ραy)er (β) = −((Lαμα)′γ )er (β). (4.4)

On the other hand, differentiating the second representation in (2.7) gives

μ′α = Lαμα + (Lαμα)′ρα.

Multiplying this identity by y on the right and then evaluating the resulting identity
at β on the right we get

yμ′α(β) = (μ′αy)er (β) = (Lαμαy)er (β)+ ((Lαμα)′ραy)er (β),

which, due to (4.4), is equivalent to (4.1). To prove part (2) we invoke part (1)
according to which the expression on the right side of (4.2) equals ((Lαμα)

′γ )er (β)

with γ = αy − yβ. We transform it using (4.3) and the definition of u as follows:

((Lαμα)
′(αy − yβ))er (β) = −((Lαμα)′ · (ραy)er (β))er (β)

= −((Lαμα)′ · ραy)er (β)

= −(ρα · (Lαμα)′y)er (β)

= −(ρα · ((Lαμα)′y)er (β))er (β)

= −(ραu)er (β) = αu− uβ,

which completes the proof of part (2). The last part follows by letting f = μαy in
(2.4), due to equalities μα(α) = μα(β) = 0. ��
For the rest of the section, we will assume (without much loss of generality) that
n ≥ m. Making use of the entries ci,j of the matrix C = [ci,j ] on the right side of
the Sylvester equation (3.3), we next introduce the elements �k,j ∈ F for all

(k, j) such that 1 ≤ k < n, 1 ≤ j < m, k + j ≤ n, (4.5)
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by the double recursion

�k,j = (Lαμα · (�k+1,j−1 + ck+1,j ))
er (β) · (μ′α(β))−1

− ((Lαμα)′ · (�k,j−1 − �k−1,j + ck,j ))er (β) · (μ′α(β))−1 (4.6)

with the initial conditions

�0,j = �k,0 = 0 for all k, j ≥ 1. (4.7)

Theorem 4.2 Let �k,j be defined as in (4.6), (4.7). If Eq. (3.3) has a solution X =
[xi,j ], then necessarily, xk,j = �k,j for all (k, j) as in (4.5), and

(Lαμα · (�1,j−1 + c1,j ))
er (β) = 0 for j = 1, . . . ,m. (4.8)

Conversely, if conditions (4.8) are satisfied, then

	k,j := α�k,j − �k,jβ + �k−1,j − �k,j−1 − ck,j = 0 (4.9)

for all (k, j) as in (4.5).

Proof Let us introduce the Jordan block Fk = Jk(0) =
[
δi,j+1

]k
i,j=1, where δi,j is

the Kronecker symbol, so that A and B in (3.3) can be written as

A = αIn + Fn and B = βIm + F3m . (4.10)

Making use of (4.10), we can write (3.3) in the “polynomial” form as

− (ρα · In − Fn)X + X(ρβ · Im − F3m ) = C, (4.11)

and multiply both parts of the latter equality by the two-diagonal matrix

G = (Lαμα) · In − (Lαμα)′ · Fn. (4.12)

on the left. Due to equalities (2.7) and (2.6) (with f = μα), we get

(−μα · In + μ′α · Fn − (Lαμα)′ · F 2
n )X +GX(ρβ · Im − F3m ) = GC. (4.13)

Recall that μα(β) = 0 (since β ∼ α) and μα,μ
′
α ∈ ZF[z]. Therefore we have

(μαX)
er (β) = Xμα(β) = 0 and (μ′αX)er (β) = Xμ′α(β).
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Taking this into account along with equality ρβ(β) = 0, we evaluate both parts in
(4.13) at β on the right:

FnXμ′α(β)− ((Lαμα)′F 2
nX)

er (β)− (GXF3m )er (β) = (GC)er (β).

Substituting (4.12) into the latter equality gives

FnXμ′α(β)− ((Lαμα)XF3m )er (β))− ((Lαμα)′(F 2
nX − FnXF3m ))er (β)

= ((Lαμα)C)er (β)− ((Lαμα)′FnC)er (β),

which can be written, as the evaluation functionals are additive, as

FnXμ′α(β) = ((Lαμα) · (XF3m + C))er (β))

− ((Lαμα)′ · (FnXF3m − F 2
nX + FnC))er (β). (4.14)

Writing the n×m matrices in (4.14) explicitly as

FnX =
⎡
⎣

0 ... 0
x11 ... x1m

...
...

xn−1,1 ... xn−1,m

⎤
⎦ , XF3m + C =

[ c11 x11+c12 ... x1,m−1+c1,m

...
...

...
cn1 xn1+cn,2 ... xn,m−1+cn,m

]
,

FnXF
3
m − F 2

nX + FnC

=
⎡
⎢⎣

0 0 ... 0
c11 x11+c12 ... x1,m−1+c1,m

c21−x11 x21−x12+c22 ... x2,m−1−x1,m+c2,m

...
...

...
cn−1,1−xn−2,1 xn−1,1−xn−2,2+cn−1,2 ... xn−1,m−1−xn−2,m+cn−1,m

⎤
⎥⎦

we see that upon letting

x−1,j = x0,j = xk,0 = 0 for all k, j ≥ 1, (4.15)

the entries of the latter matrices can be written more uniformly as

[FnX]k,j = xk−1,j ,
[
XF3m + C

]
k,j

= xk,j−1 + ckj ,
[
FnXF

3
m − F 2

nX + FnC
]
k,j

= xk−1,j−1 − xk−2,j + ck−1,j

for k = 1, . . . , n and j = 1, . . . ,m. Plugging the latter formulas into (4.14) and
recalling (2.5), we write the matrix equality (4.14) entry-wise as

xk,jμ
′
α(β) = (Lαμα · (xk+1,j−1 + ck+1,j ))

er (β)

− ((Lαμα)′ · (xk,j−1 − xk−1,j + ck,j ))er (β) (4.16)
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for 0 ≤ k < n and 1 ≤ j ≤ m. Due to (4.15), letting k = 0 in (4.16) gives

(Lαμα · (x1,j−1 + c1,j ))
er (β) = 0 for j = 1, . . . ,m. (4.17)

For k ≥ 1 and j = 1, . . . ,m, relations (4.16) along with the initial conditions
x0,j = xk,0 = 0 in (4.15) recursively determine xk,j for all indices (k, j) as in (4.5).
Since the recursion formula (4.16) and the initial conditions (4.7) for �k,j are the
same as the ones for xk,j , we conclude that xk,j = �k,j for all (k, j) as in (4.5).
In particular, x1,j = �1,j for all j = 1, . . . ,m and therefore, conditions (4.8) hold,
due to (4.17).

For the converse statement, we first verify that the formula

	k,j = (Lαμα · (�k−1,j − �k,j−1 − ck,j ))er (β) · (μ′α(β))−1, (4.18)

holds for all indices (k, j) as in (4.5). To this end, we first multiply both sides in (4.6)
by α on the left, then by β on the right and then take the difference of the resulting
equalities. By invoking part (2) in Lemma 4.1 with y = �k,j−1 −�k−1,j + ck,j and
part (3) with y = �k−1,j + ck+1,j and recalling that β commutes with μ′α(β) (since
μ′α ∈ ZF[z]), we arrive at

α�k,j − �k,jβ = −(Lαμα · (�k,j−1 − �k−1,j + ck,j ))er (β) · (μ′α(β))−1

+ �k,j−1 − �k−1,j + ck,j ,

which being substituted into the right side of (4.9) implies (4.18).
Let us now assume that equalities (4.8) hold. Letting k = 1 in (4.18) and making

use of initial conditions (4.7), we get

	1,j = −(Lαμα · (�1,j−1+ c1,j ))
er (β) · (μ′α(β))−1 = 0 (1 ≤ j ≤ m) (4.19)

where the rightmost equality in (4.19) are justified by (4.8). To proceed by induction,
let us assume that	k,j = 0 for some (k, j) such that j ≤ m and k+ j < n. Writing
(4.9) equivalently as

α�k,j − �k,jβ = �k,j−1 − �k−1,j + ck,j ,

we apply part (1) in Lemma 4.1 to y = �k,j and γ = �k,j−1−�k−1,j+ck,j arriving
at

(Lαμα�k,j )
er (β) = �k,jμ′α(β)+ ((Lαμα)′ · (�k,j−1 − �k−1,j + ck,j ))er (β)

= (Lαμα · (�k+1,j−1 + ck+1,j ))
er (β),
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where the second equality follows from (4.6). Thus,

(Lαμα · (�k,j − �k+1,j−1 − ck+1,j ))
er (β) = 0,

which together with formula (4.18) (with k + 1 instead of k) implies

	k+1,j = (Lαμα · (�k,j − �k+1,j−1 − ck+1,j ))
er (β) · (μ′α(β))−1 = 0.

This proves the implication 	k,j = 0 ⇒ 	k+1,j = 0 which together with
equalities (4.19) as the induction basis completes the proof of (4.9) by the induction
argument. ��
Remark 4.3 Let us observe that the element �k,j produced by the recursion (4.6),
(4.7) within the index range (4.5), is independent of the elements ci,& with & > j or
i+ & > k+ j + 1. In other words, the closed formula for �k,j may contain only the
entries ci,& from the j leftmost columns and above the (k + j)-th counter-diagonal
of C.

Theorem 4.4 Given a matrix C = [ck,j ] ∈ F
n×m (n ≥ m) and algebraic elements

α ∼ β, let �k,j be defined by (4.6), (4.7) for all (k, j) as in (4.5).

1. Equation (3.3) has a solution if and only if equalities (4.8) hold.
2. If this is the case, a particular solution X to Eq. (3.3) can be constructed as

follows: pick any cn+i,j (i, j = 1, . . . ,m) and apply the recursion (4.6), (4.7) to
the extended set {ci,j } to produce �k,j for all

(k, j) such that 1 ≤ k < n+m, 1 ≤ j < m, k + j ≤ n+m. (4.20)

Then the matrix X = [
�k,j

] ∈ F
n×m solves Eq. (3.3).

Proof The necessity of conditions (4.8) was confirmed in Theorem 4.2. Conversely,
assuming (4.8) to be in force, let us use the entries ci,j of the matrix C along
with the arbitrarily chosen elements cn+i,j (i, j = 1, . . . ,m) to produce via the
recursion (4.6), (4.7) the elements �k,j for all (k, j) as in (4.20). By Remark 4.3,
these elements are independent of cn+i,j for i + j > m + 1, whereas the elements
�1,1, . . . �1,m−1 in conditions (4.8) (and hence, the conditions themselves) do not
depend on the chosen cn+i,j at all.

We now apply the converse statement in Theorem 4.2 to the extended set {�k,j :
1 ≤ j < m, k + j ≤ n + m} by just keeping m the same and replacing n by
n+m. Since the requisite conditions (4.8) are satisfied, we conclude that equalities
(4.9) hold for all (k, j) as in (4.20). In particular, they hold for all k = 1, . . . , n and
j = 1, . . . ,m. Thus,

α�k,j + �k−1,j − �k,j β − �k,j−1 = ck,j for 1 ≤ k ≤ n; 1 ≤ j ≤ m,

which means that the matrix X = [
�k,j

] ∈ F
n×m satisfies (3.3). ��
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We next consider the homogeneous Sylvester equation

AX = XB, A =
⎡
⎣
α 0 ... 0
1 α ··· 0
...
. . .
. . .
...

0 ... 1 α

⎤
⎦ , B =

⎡
⎣
β 1 ... 0
...
. . .
.. .
...

0 ... β 1
0 ... 0 β

⎤
⎦ . (4.21)

Theorem 4.5 Given n ≥ m ≥ 1 and algebraic elements α ∼ β ∈ F, a matrix
X ∈ F

n×m solves (4.21) if and only if it is of the Hankel form

X = [
γi+j−1

] : γ& = 0 (& ≤ n− 1) and αγ& = γ&β (& ≥ n). (4.22)

Proof The fact that any matrix X as in (4.22) satisfies (4.21) is verified directly by
comparing the corresponding entries in matrices AX and XB.

Conversely, let us assume that X satisfies (4.21) (i.e., (3.3) with C = 0). Then it
follows by (the proof of) Theorem 4.2 that, under the conventions (4.15), the entries
of X also satisfy equalities (4.16) with ck,j = ck,j+1 = 0:

xk,jμ
′
α(β) = (Lαμαxk+1,j−1)

er (β)−((Lαμα)′ ·(xk,j−1−xk−1,j ))
er (β) (4.23)

for 1 ≤ j ≤ m and 1 ≤ k ≤ n − 1. Again by Theorem 4.2, all the entries above
the n-th counter-diagonal (i.e., xk,j with k + j ≤ n) in any solution X to (4.21) are
determined uniquely. Since the zero matrix is a solution of (4.21), it now follows
that

xk,j = 0 for all 0 ≤ j ≤ m; k + j ≤ n. (4.24)

Taking (4.24) into account, we equate the corresponding entries (on and below the
n-th counter-diagonal) in the matrix equality AX = BX to get

αxk,j+xk−1,j = xk,jβ+xk,j−1 (1 ≤ j ≤ m; n+1 ≤ k+j ≤ n+m). (4.25)

Assuming that for some & ≤ n, all entries xi,j with i+j = & are equal to each other,
which can be written equivalently as

xk−1,j = xk,j−1 = γ&−1, whenever k + j = &+ 1. (4.26)

we will show that the entries in the next counter-diagonal ofX are also equal to each
other, i.e.,

xk,j = xk+1,j−1 = γ&, whenever k + j = &+ 1. (4.27)

Indeed, on account of (4.26), we have from (4.23) and (4.25)

xk,jμ
′
α(β) = (Lαμαxk+1,j−1)

er (β) and αxk,j = xk,jβ, (4.28)
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whenever k + j = &+ 1. In particular, αxk+1,j−1 = xk+1,j−1β and therefore, part
(1) in Lemma 4.1 applies to γ = 0 and y = xk+1,j−1 and leads us to

(Lαμαxk+1,j−1)
er (β) = xk+1,j−1 · μ′α(β).

Combining the latter equality with the first equality in (4.28) and cancelling
μ′α(β) �= 0 we arrive at (4.27). It now follows from the second relation in (4.28)
that αγ& = γ&β. Since the entries on the (n − 1)-th counter-diagonal of X are
equal (to zero, by (4.24)), we may use the induction argument to justify the Hankel
structure (4.22) of X. ��

Throughout this section, we assumed that n ≥ m. The case n ≤ m can be handled
similarly: multiplying both sides in (4.11) by G̃ = (Rβμα) · Im − (Rβμα)′ · F3m on
the right and then evaluating the resulting identity at α on the left, eventually lead
us to n conditions (similar to those in (4.8)) given in terms of left evaluations at α
(rather than right evaluations at β) that turn out to be necessary and sufficient for
the singular equation (3.3) to have a solution. As for Theorem 4.5, it still holds true
for n ≤ m once we replace n by m in (4.22). Combining both cases we conclude
thatX ∈ F

n×m satisfies (4.21) if and only it is of Hankel structure with all non-zero
entries in it last min(m, n) counter-diagonals and intertwining α and β.

Remark 4.6 By Theorems 4.4 and 4.5, whenever algebraic α and β are similar,
Eq. (3.3) either has infinitely many solutions or has no solution. This justifies the
“only if” part in Corollary 3.2.

Being specified to the case n = m = 1, Corollary 3.2 and Theorem 4.4 recover the
results in [3, 4] concerning the scalar Sylvester equation

αx − xβ = γ, α, β, γ ∈ F (4.29)

with an algebraic α. More directly, writing (4.29) in the form ραx − xρβ = −γ
(see (4.11)), multiplying both sides by Lαμα on the left and evaluating the resulting
identity at β on the right, we get

xμα(β) = −(Lαμαγ )er (β), (4.30)

which in case β �∼ α, implies the formula x = −(Lαμαγ )er (β) · (μα(β))−1 (more
compact than (3.1)) for the unique solution to Eq. (4.29).

If α ∼ β (i.e., μα(β) = 0) then (4.30) implies
(
Lαμαγ

)er (β) = 0. The
latter condition is identical to that in (4.8) (with j = 1 and γ = c11) and
hence, is necessary and sufficient for Eq. (4.29) to have a solution. The formula
x = −((Lαμα)′γ )er (β) for a particular solution follows from (4.16) (for k = j = 1
and with c11 = γ and c12 = 0).
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The case where α and β are both transcendental is less clear at the moment.
Even with α �∼ β, Eq. (4.29) may have no solutions; see [1]. We are not aware of
solvability or uniqueness criteria for this case.
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Hypercomplex Iterated Function Systems

Peter Massopust

Abstract We introduce the novel concept of hypercomplex iterated function system
(IFS) on the complete metrizable space (Akn+1, d) and define its hypercomplex
attractor. Systems of hypercomplex function systems arising from hypercomplex
IFSs and their backward trajectories are also introduced and it is shown that the
attractors of such backward trajectories possess different local (fractal) shapes.

1 Preliminaries and Notation

This paper intends to merge two areas of mathematics: Clifford Algebra and
Analysis and Fractal Geometry. The former has a long successful history of
extending concepts from classical analysis and function theory to a noncommutative
division algebra setting and the latter has developed into an area of bourgeoning
research over the last few decades. Attractors of so-called iterated function systems
(IFSs) are fractal sets in the sense given first by B. Mandelbrot [1]. Fractals
generated by IFSs have the following significant approximation property, called the
Collage Theorem[2]: Every nonempty compact subset of a complete metric space
can be approximated arbitrarily close (in the sense of the Hausdorff metric) by the
attractor of an IFS, that is, by a fractal set. (For the precise mathematical statement,
we refer to [2].) This property has important and fundamental implications in image
compression and image analysis; cf. for instance, [3]. Moreover, it has initiated
the construction of fractal functions and fractal surfaces and their application to
approximation and interpolation theory. A collection of related results can be found
in, e.g., [4]. This monograph also provides the fundamental result by D. Hardin
[5], namely, that every continuous compactly supported and refinable function, i.e.,
every wavelet, is a piecewise fractal function.
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Here, we initiate the inclusion of fractal techniques into the Clifford setting. The
non-commutativity generates more intricate fractal patterns. The structure of this
paper is as follows. After a short and terse introduction to Clifford algebras and
IFSs, we define hypercomplex IFSs and their attractors. The final section extends
these concepts to systems of function systems as defined in [6].

1.1 A Brief Introduction to Clifford Algebras

In this section, we give a terse introduction to the concept of Clifford algebra,
mainly, to set notation and terminology, and refer the reader to, for instance, [7–9].
To this end, denote by {e1, . . . , en} the canonical basis of the Euclidean vector space
R
n. The real Clifford algebraC&(n) generated by R

n is defined by the multiplication
rules eiej + ej ei = −2δij , i, j ∈ {1, . . . , n} =: Nn, where δij is the Kronecker
symbol. The dimension of C&(n) regarded as a real vector space is 2n.

An element x ∈ C&(n) can be represented in the form x =∑
A

xAeA with xA ∈ R

and {eA : A ⊆ Nn}, where eA := ei1ei2 · · · eim , 1 ≤ i1 < · · · < im ≤ n, and
e∅ =: e0 := 1. A conjugation on Clifford numbers is defined by x := ∑

A

xAeA

where eA := eim · · · ei1 with ei := −ei for i ∈ Nn, and e0 := e0 = 1. The Clifford

norm of the Clifford number x =∑
A

xAeA is |x| :=
√∑
A

|xA|2.

An important subspace of C&(n) is the space of hypercomplex numbers or

paravectors. These are Clifford numbers of the form x = x0+
n∑
i=1
xiei . The subspace

of hypercomplex numbers is denoted by An+1 := span R{e0, e1, . . . , en} = R⊕R
n.

Given a Clifford number x ∈ C&(n), we assign to x its hypercomplex or paravector

part by means of the mapping π : C&(n)→ An+1, x �→ x0 +
n∑
i=1
xiei .

Note that each hypercomplex number x can be identified with an element
(x0, x1, . . . , xn) =: (x0, x) ∈ R × R

n. For many applications in Clifford theory,
one therefore identifies An+1 with R

n+1.
The scalar part, Sc, and vector part, Vec, of a hypercomplex number An+1 ( x =

x0 +
n∑
i=1
xiei is given by x0 and x =

n∑
i=1
xiei , respectively.

The conjugate x of the hypercomplex number x = s + x is the hypercomplex
number x = s − x. The Clifford norm of x ∈ An+1 is given by |x| = √

xx =√
s2 + |x|2 =

√
s2 +

n∑
i=1
x2
i .
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We denote by Mk(An+1) the right module of k × k-matrices over An+1. Every
elementH = (Hij ) ofMk(An+1) induces a right linear transformationL : Akn+1 →
C&(n)k via L(x) = Hx defined by L(x)i =

k∑
j=1

Hijxj , Hij ∈ An+1. To obtain an

endomorphism L : Akn+1 → A
k
n+1, we set L(x)i := π(L(x)i), i = 1, . . . , k. In this

case, we write L = π ◦ L. For example, if n := 3 (the case of real quaternions)
L : Ak4 → A

k
4 and thus L = L.

A function f : An+1 → An+1 is called a hypercomplex or paravector-
valued function. Any such function is of the form f (x0 + x) = f0(x0, |x|) +
ω(x)f1(x0, |x|), where f0, f1 : R × R

n → R and ω(x) := x
|x| ∈ S

n with S
n

denoting the unit sphere in R
n. For some properties of hypercomplex functions, see,

for instance[10].

1.2 Iterated Function Systems and Their Attractors

Let (X, d) be a complete metrizable space with metric d . For a map f : X → X,
we define the Lipschitz constant associated with f by

Lip(f ) = sup
x,y∈X,x �=y

d
(
f (x), f (y)

)
d(x, y)

.

A map f is said to be Lipschitz if Lip(f ) < +∞ and a contraction if Lip(f ) < 1.

Definition 1.1 Let (X, d) be a complete metrizable space and let F be a finite set of
contractions on X. Then the pair (X,F) is called an iterated function system (IFS)
on X.

With the finite set of contractions F on X, one associates a set-valued operator,
again denoted by F , acting on the hyperspace H (X) of nonempty compact subsets
of X endowed with the Hausdorff-Pompeiu metric dH by

F(E) :=
⋃
f∈F

f (E), E ∈H (X).

The Hausdorff-Pompeiu metric dH is defined by

dH (S1, S2) := max{d(S1, S2), d(S2, S1)},

where d(S1, S2) := sup
x∈S1

d(x, S2) := sup
x∈S1

inf
y∈S2

d(x, y).
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The completeness of (X, d) implies that the set-valued operator F is contractive
on the complete metrizable space (H (X), dH ) with Lipschitz constant LipF =
max{Lip(f ) : f ∈ F}. Therefore, by the Banach Fixed Point Theorem, F has
a unique fixed point in H (X). This fixed point if called the attractor of or the
fractal (set) generated by the IFS (X,F). The attractor or fractal F satisfies the
self-referential equation

F = F(F ) =
⋃
f∈F

f (F ), (1.1)

i.e., F is made up of a finite number of images of itself. Equation (1.1) reflects the
fractal nature of F showing that it is as an object of immense geometric complexity.

The proof of the Banach Fixed Point Theorem also shows that the fractalF can be
iteratively obtained via the following procedure: Choose an arbitrary F0 ∈ H (X)

and set

Fn := F(Fn−1), n ∈ N. (1.2)

Then F = lim
n→∞Fn, where the limit is taken in the Hausdorff-Pompeiu metric dH .

In Fig. 1, two examples of fractal sets are displayed. For more details about
IFSs and fractals and their properties, we refer the interested reader to the large
literature on these topics and list only two references [2, 4] pertaining to the present
exhibition.

Fig. 1 Left: A fractal set inX := [0, 1]2 generated by the maps f1(x, y) := ( 1
2x,

1
2y), f2(x, y) :=

( 1
2 (x+1), 1

2y), and f3(x, y) := ( 1
2 (x+ 1

2 ),
3
4y+

√
3

4 ). Right: The graph of a fractal function inX :=
[0, 1]×[0, 3] generated by the maps f1(x, y) := ( 1

2x, x+ 3
4y) and f2(x, y) := ( 1

2 (x+1), x2+ 3
4y)
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2 Hypercomplex IFSs

Let k ∈ N and consider the set Akn+1 :=
k×
i=1

An+1. We represent elements ξ ∈ A
k
n+1

as column vectors. The hypercomplex conjugate ∗ of ξ ∈ A
k
n+1 is defined by

⎛
⎜⎝
ξ1
...

ξk

⎞
⎟⎠
∗

:= (
ξ1 · · · ξk

)
.

Similarly, for any matrix H = (Hij ) over An+1, we define (Hij )∗ := (Hji). The
norm of ξ ∈ A

k
n+1 is defined to be

‖ξ‖ := √
ξ∗ξ =

√√√√ k∑
i=1

|ξi |2. (2.1)

Then (Akn+1, d) is a complete metrizable space with metric d(ξ, η) := ‖ξ − η‖.
We define a norm onMk(An+1) as follows. For H ∈ Mk(An+1), set

|||H ||| := sup

{‖Hξ‖
‖ξ‖ : 0 �= ξ ∈ A

k
n+1

}
.

Definition 2.1 Let k ∈ N and let F := {f1, . . . , fm} be a finite collection of
contractive hypercomplex functions on A

k
n+1. Then the pair (Akn+1,F) is called

a hypercomplex IFS (on A
k
n+1).

Definition 2.2 Let k ∈ N. An element F ∈ H (Akn+1) is called a hypercomplex
attractor of or the hypercomplex fractal (set) generated by the hypercomplex IFS
(Akn+1,F) if F satisfies the self-referential equation

F = F(F ) =
m⋃
i=1

fi(F ). (2.2)

Note that by the Banach Fixed Point Theorem F as defined above is unique.

Remark 2.3 Although the point sets A
k
n+1 and (Rn+1)k are isomorphic under an

obvious bijection, the difference in the non-commutative algebraic structure yields
a broader class of attractors. (See the examples below.)

As an example of a hypercomplex IFS, we consider right linear maps Li :
A
k
n+1 → C&(n)k and define right affine maps by

Ai(ξ) := Li(ξ)+ bi = Hiξ + bi,
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with Hi ∈ Mk(An+1) and bi ∈ A
k
n+1, i ∈ Nm. The right affine maps Ai generate

hypercomplex functions fi via

fi(ξ) := π(Li(ξ))+ bi. (2.3)

It follows immediately from the definition of contraction applied to A
k
n+1, that each

fi is contractive provided that h := max{|||Hi ||| : i ∈ Nm} < 1. The unique
fractal generated by the hypercomplex IFS (Akn+1,F) is then given by the nonempty
compact subset F ⊂ A

k
n+1 satisfying

F =
⋃
i∈Nm

π(Li(F ))+ bi.

Example Let n := 3 and k := 2. Then A4 can be identified with the noncommuta-
tive associative division algebra H of quaternions with e0 = 1, eiej +ej ei = −2δij ,
and eiej = εijkek , i, j, k = 1, 2, 3. Here, εijk denotes the Levi-Cività symbol. We
note that H ·H = H and therefore π(Li) = Li .

On H
2 we consider the three affine mappings

fi(ξ, η) :=
(
q 0
0 q

)(
ξ

η

)
+ bi,

with b1 := 0, b2 :=
(

1− q
0

)
, b3 :=

( 1
2 (1− q)

1− q
)

, and q := 0.3e0 − 0.1e1 +
0.4e2−0.2e3. Note that |q| = √

0.3 < 1. Hence, the quaternionic IFS (H2,F) with
F = {f1, f2, f3}, possesses a unique attractor F ∈H (H2).

In Fig. 2, some projections of the attractor F onto subspaces of H2 are displayed.

3 Systems of Hypercomplex Function Systems

Employing the setting first introduced in [6], then generalized in [11], and finally
applied to non-stationary IFSs in [12], we will replace the single set-valued map F
in a hypercomplex IFS by a sequence of function systems consisting of different
families F in order to define an iterative process {Fn}n∈N with initial F0 ∈
H (Akn+1) as in (1.2).

To this end, consider the complete metrizable space (Akn+1, d) and let {T&}&∈N be
a sequence of transformations on A

k
n+1, i.e., T& : Akn+1 → A

k
n+1.

Definition 3.1 A subset I of Akn+1 is called a hypercomplex invariant set of the
sequence {T&}&∈N if

∀ & ∈ N ∀ x ∈ I : T&(x) ∈ I .



Hypercomplex Iterated Function Systems 595

Fig. 2 Left: The projection of F onto the e0 − e1-plane. Middle: The projection of F onto the
e1 − e3-plane. Right: The projection of F onto the hyperplane spanned by {e0, e1, e2}

A criterion for obtaining a hypercomplex invariant domain for a sequence
{T&}&∈N of transformations on a complete metrizable space is the following which
first appeared in [6]. We will state the result for our setting.

Proposition 3.2 Let {T&}&∈N be a sequence of transformations on the complete
metrizable space (Akn+1, d). Assume that there exists an x0 ∈ A

k
n+1 such that for

all x ∈ A
k
n+1

d(T&(x), x0) ≤ s d(x, x0)+M, (3.1)

for some s ∈ [0, 1) andM > 0. Then any ball Br(x0) := {x ∈ A
k
n+1 : |x− x0| < r}

with radius r > M/(1 − s) is a hypercomplex invariant set for {T&}&∈N.

Proof The proof of this statement follows directly from [6, Lemma 3.7] and [6,
Remark 3.8]. ��

In case the transformations T& are maps of the form (2.3) then condition (3.1) is
satisfied with x0 = 0, M := sup

&∈N
‖b&‖ < ∞, and any H& with sup

&∈N
|||H&||| =: s < 1.

For, if we choose x0 := 0,

d(T&(x), 0) = ‖T&(x)‖ = ‖H&x + b&‖ ≤ ‖H&x‖ + ‖b&‖
≤ |||H&||| · ‖x‖ + ‖b&‖.
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Hence, every ball centered at the origin of Akn+1 of radius greater thanM/(1− s) is
a hypercomplex invariant set for {T&}&∈N.

Now suppose that {F&}&∈N is a sequence of set-valued maps F& : H (Akn+1)→
H (Akn+1) defined by

F&(F0) :=
n&⋃
i=1

fi,&(F0), F0 ∈H (Akn+1), (3.2)

where F& = {fi,& : i ∈ Nn&} is a family of hypercomplex contractions constituting
a hypercomplex IFS on the complete metrizable space (Akn+1, d). Setting si,& :=
Lip(fi,&), we obtain that Lip(F&) = max{si,& : i ∈ Nn&} < 1.

The following definition is taken from [6, Section 4] using our setting with X =
A
k
n+1.

Definition 3.3 Let F0 ∈H (Akn+1). For any & ∈ N, the sequence

"&(F0) := F1 ◦ F2 ◦ · · · ◦ F&(F0) (3.3)

is called the backward trajectory of F0.

Backward trajectories converge under rather mild conditions and their limits
generate new types of fractal sets. For more details, we refer the interested reader to
[6, 11, 12].

The next theorem summarizes the convergence result for backward trajectories.

Theorem 3.4 Let {F&}&∈N be a family of set-valued maps of the form (3.2) whose
elements are collections F& = {fi,& : i ∈ Nn&} of hypercomplex contractions con-
stituting hypercomplex IFSs on the complete metrizable space (Akn+1, d). Suppose
that

(i) there exists a nonempty closed hypercomplex invariant set I ⊆ A
k
n+1 for {fi,&},

i ∈ Nn& , & ∈ N,
(ii) and

∞∑
&=1

&∏
j=1

Lip(Fj ) <∞. (3.4)

Then the backward trajectories {"&(F0)} converge for any initial F0 ⊆ I to a
unique hypercomplex attractor F ⊆ I .

Proof The proof can be found in [6]. Note that, as the proof only involves point sets
and moduli of numbers, it immediately applies to the hypercomplex setting. ��
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Example Here, we take n := 3 and k := 1 and write H for A1
4. Define a family

{F&}&∈N of set-valued epimorphism on H whose members are as follows:

F& :=
{
F1, 10(j − 1) < & ≤ 10j − 5,

F2, 10j − 5 < & ≤ 10j,
j ∈ N,

where

F1 := {q1x, q1x + 1− q1},
F2 := {0.7q̂2xq̂2 + 0.1, 0.7q̂2xq̂2 − 0.1},

with q1 := 0.75e0, 1 := e0+ e1 + e2+ e3, and q̂2 :=
√

10
3 (0.3e0− 0.1e1+ 0.4e2−

0.2e3).
Figure 3 displays the projection of the attractor F of the backward trajectory

{"&}&∈N onto the e0 − e1-plane at two different levels.
This example shows that hypercomplex attractors generated by backwards

trajectories exhibit more flexibility in their shapes and that a proper choice of IFSs
reveals different local behavior. This is due to the fact that in the sequence

F1 ◦ F2 ◦ · · ·F&−1 ◦ F&(F0), F0 ∈H (Akn+1),

the global shape of the hypercomplex attractor is determined by the initial maps
F1 ◦ F2 ◦ · · · whereas the local shape is determined by the terminal maps F&−1 ◦
F& ◦ · · · . In addition, the non-commutative algebraic structure of H yields a broader
class of attractors than in the case R4.

Fig. 3 The projection of the attractor F of the backward trajectory {"}k∈N onto the e0 − e1-plane
at two different levels. The attractor is smooth at one level (left) and fractal at another (right)
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Compactness of Localization Operators
on Modulation Spaces of ω-Tempered
Distributions

Chiara Boiti and Antonino De Martino

Abstract We give sufficient conditions for compactness of localization operators
on modulation spaces Mp,q

mλ (R
d) of ω-tempered distributions whose short-time

Fourier transform is in the weighted mixed space Lp,qmλ for mλ(x) = eλω(x).

In this paper we study some properties of localization operators, which are pseudo-
differential operators of time-frequency analysis suitable for applications to the
reconstruction of signals, because they allow to recover a filtered version of
the original signal. To introduce the problem, let us recall the translation and
modulation operators

Txf (y) = f (y − x), Mξf (y) = eiy·ξf (y), x, y ∈ R
d ,

and, for a window function ψ ∈ L2(Rd ), the short-time Fourier transform (briefly
STFT) of a function f ∈ L2(Rd)

Vψf (z) = 〈f,MξTxψ〉 =
ˆ

Rd

f (y)ψ(y − x)e−iy·ξ dy, z = (x, ξ) ∈ R
2d .

With respect to the inversion formula for the STFT (see [13, Cor. 3.2.3])

f = 1

(2π)d〈γ,ψ〉
ˆ

R2d
Vψf (x, ξ)MξTxγ dxdξ,
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which gives a reconstruction of the signal f , the localization operator, as defined in
(0.2), modifies Vψf (x, ξ) by multiplying it by a suitable a(x, ξ) before reconstruct-
ing the signal, so that a filtered version of the original signal f is recovered.

Another important operator in time-frequency analysis that we shall need in the
following is the cross-Wigner transform defined, for f, g ∈ L2(Rd ), by

Wig(f, g)(x, ξ) =
ˆ

Rd

f
(
x + t

2

)
g
(
x − t

2

)
e−iξ ·t dt x, ξ ∈ R

d .

The Wigner transform of f is then defined by Wig f := Wig(f, f ).
The above Fourier integral operators, with standard generalizations to more

general spaces of functions or distributions, have been largely investigated in time-
frequency analysis. In particular, results about boundedness or compactness related
to the subject of this paper can be found, for instance, in [1, 7, 10–12, 16, 17].

Inspired by Cordero and Gröchenig [7] and Fernández and Galbis [10], our aim
in this paper is to study boundedness of localization operators on modulation spaces
in the setting of ω-tempered distributions, for a weight functionsω defined as below:

Definition 0.1 A non-quasianalytic subadditive weight function is a continuous
increasing function ω : [0,+∞)→ [0,+∞) satisfying the following properties:

(α) ω(t1 + t2) ≤ ω(t1)+ ω(t2), ∀t1, t2 ≥ 0;
(β)

´ +∞
1

ω(t)

t2
dt < +∞;

(γ ) ∃A ∈ R, B > 0 s.t ω(t) ≥ A+ B log(1+ t), ∀t ≥ 0;
(δ) ϕω(t) := ω(et ) is convex.

We then consider ω(ξ) := ω(|ξ |) for ξ ∈ C
d .

Definition 0.2 The space Sω(Rd) is defined as the set of all u ∈ L1(Rd) such that
u, û ∈ C∞(Rd) and

(i) ∀λ > 0, α ∈ N
d
0 : supx∈Rd eλω(x)|Dαu(x)| < +∞,

(ii) ∀λ > 0, α ∈ N
d
0 : supξ∈Rd eλω(ξ)|Dαû(ξ)| < +∞,

where N0 := N ∪ {0}.
Note that for ω(t) = log(1 + t) we obtain the classical Schwartz class S(Rd ),

while in general Sω(Rd ) ⊆ S(Rd). For more details about the spaces Sω(Rd) we
refer to [3–6]. In particular, we can define on Sω(Rd) different equivalent systems
of seminorms that make Sω(Rd) a Fréchet nuclear space. It is also an algebra under
multiplication and convolution.

The corresponding strong dual space is denoted by S ′ω(Rd) and its elements are
calledω-tempered distributions. Moreover,S ′(Rd) ⊆ S ′ω(Rd ) and the Fourier trans-
form, the short-time Fourier transform and the Wigner transform are continuous
from Sω(Rd) to Sω(Rd ) and from S ′ω(Rd ) to S ′ω(Rd).
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The “right” function spaces in time-frequency analysis to work with the STFT
are the so-called modulation spaces, introduced by H. Feichtinger in [9]. In this
context, we consider the weight mλ(z) := eλω(z), for λ ∈ R, and define Lp,qmλ (R

2d)

as the space of measurable functions f on R
2d such that

‖f ‖Lp,qmλ :=
ˆ

Rd

( ˆ

Rd

|f (x, ξ)|pmλ(x, ξ)p dx
) q
p dξ

) 1
q

< +∞,

for 1 ≤ p, q < +∞, with standard changes if p (or q) is +∞. We define then, for
1 ≤ p, q ≤ +∞, the modulation space

Mp,q
mλ (R

d) := {f ∈ S ′ω(Rd) : Vϕf ∈ Lp,qmλ (R2d)},

which is independent of the window function ϕ ∈ Sω(Rd ) \ {0} and is a Banach
space with norm ‖f ‖Mp,q

mλ
:= ‖Vϕf ‖Lp,qmλ (see [4]). Moreover, for 1 ≤ p, q < +∞,

the space Sω(Rd) is a dense subspace of Mp,q
mλ by Boiti et al. [4, Prop. 3.9]. We shall

denote Mp
mλ(R

d) = Mp,p
mλ (R

d ) and Mp,q(Rd) = Mp,q
m0 (R

d ).
As in [13, Thm. 12.2.2] if p1 ≤ p2, q1 ≤ q2, and λ ≤ μ then Mp1,q1

mμ ⊆ Mp2,q2
mλ

with continuous inclusion (see [8, Lemma 2.3.16]). Set

mλ,1(x) := mλ(x, 0), mλ,2(ξ) := mλ(0, ξ),
vλ(z) = e|λ|ω(z), vλ,1(x) := vλ(x, 0), vλ,2(ξ) := vλ(0, ξ),

and prove the following generalization of [7, Prop. 2.4]:

Proposition 0.3 Let 1 ≤ p, q, r, t, t ′ ≤ +∞ such that 1
p
+ 1
q
−1 = 1

r
and 1

t
+ 1
t ′ =

1. Then, for all λ,μ ∈ R and 1 ≤ s ≤ +∞,

Mp,st
mλ,1⊗mμ,2(R

d) ∗M q,st ′
vλ,1⊗vλ,2m−μ,2(R

d) ↪→ M r,s
mλ
(Rd)

and ‖f ∗ g‖Mr,s
mλ
≤ ‖f ‖Mp,st

mλ,1⊗mμ,2
‖g‖

M q,st ′
vλ,1⊗vλ,2m−μ,2

. (0.1)

Proof For the Gaussian function g0(x) = e−π |x|2 ∈ Sω(Rd) consider on Mr,s
mλ

the modulation norm with respect to the window function g(x) := g0 ∗ g0(x) =
2−d/2e− π

2 |x|2 ∈ Sω(Rd). Since mλ(x, ξ) ≤ mλ(x, 0)vλ(0, ξ) and g0(−x) = g0(x),
by Gröchenig [13, Lemma 3.1.1], Young and Hölder inequalities:

‖f ∗ h‖Mr,s
mλ
= ‖Vg(f ∗ h)‖Lr,smλ =

( ˆ

Rd

(ˆ
Rd

|Vg(f ∗ h)|rmrλ(x, ξ) dx
) s
r

dξ

) 1
s

≤
( ˆ

Rd

( ˆ

Rd

|(f ∗Mξg0) ∗ (h ∗Mξg0)(x)|rmλ(x, 0)r dx
) s
r

vsλ(0, ξ) dξ

) 1
s
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=
( ˆ

Rd

‖(f ∗Mξg0) ∗ (h ∗Mξg0)‖sLrmλ,1 v
s
λ(0, ξ) dξ

) 1
s

≤
( ˆ

Rd

‖f ∗Mξg0‖sLpmλ,1‖h ∗Mξg0‖sLqvλ,1 v
s
λ(0, ξ) dξ

) 1
s

=
( ˆ

Rd

‖Vg0f ‖sLpmλ,1m
s
μ(0, ξ)‖Vg0h‖sLqvλ,1m

s−μ(0, ξ)vsλ(0, ξ) dξ
) 1
s

≤ ‖f ‖Mp,st
mλ,1⊗mμ,2

‖h‖
Mq,st ′
vλ,1⊗vλ,2m−μ,2

.

��
Given two window functions ψ, γ ∈ Sω(Rd ) \ {0} and a symbol a ∈ S ′ω(R2d),

the corresponding localization operator Laψ,γ is defined, for f ∈ Sω(Rd ), by

Laψ,γ f = V ∗γ (a · Vψf ) =
ˆ

R2d
a(x, ξ)Vψf (x, ξ)MξTxγ dxdξ, (0.2)

where V ∗γ is the adjoint of Vγ . As in [2, Lemma 2.4] we have that Laψ,γ is a Weyl

operator La
w

with symbol aw = a ∗Wig(γ,ψ):

La
w

f := 1

(2π)d

ˆ

R2d
âw(ξ, u)e−iξ ·uT−uMξf dudξ. (0.3)

Moreover, if f, g ∈ Sω(Rd) then by definition of adjoint operator we can write

〈Laψ,γ f, g〉 = 〈a · Vψf, Vγ g〉 = 〈a, Vψf Vγ g〉,

and, similarly as in [13, Thm. 14.5.2] (see also [8, Teo. 2.3.21]), we have, for aw ∈
M∞,1
mμ (R

2d) with μ ≥ 0,

‖Lawf ‖Mp,q
mλ
= ‖Laψ,γ f ‖Mp,q

mλ
≤ ‖aw‖M∞,1

mμ
‖f ‖Mp,q

mλ
, (0.4)

for all f ∈ Mp,q
mλ and λ ∈ R.

Theorem 0.4 Let ψ, γ ∈ Sω(Rd ) \ {0} and a ∈ M∞
mλ
(R2d) for some λ ≥ 0. Then

Laψ,γ is bounded from Mp,q
mλ (R

d) to Mp,q
mλ (R

d), for 1 ≤ p, q < +∞, and

‖Laψ,γ ‖op ≤ ‖a‖M∞
m−λ,2‖ψ‖M1

vλ
‖γ ‖Mp

mλ
.

Proof By definition Vψ : Mp,q
mλ → L

p,q
mλ (R

2d) and, by Boiti et al. [4, Prop. 3.7],
V ∗γ : Lp,qmλ (R2d)→ Mp,q

mλ (R
d). Let f ∈ Mp,q

mλ (R
d). To prove that Laψ,γ f = V ∗γ (a ·

Vψf ) ∈ Mp,q
mλ , it is then enough to show that a ·Vψf ∈ Lp,qmλ (R2d). By the inversion
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formula [4, Prop. 3.7], given two window functions�," ∈ Sω(R2d)with 〈�,"〉 �=
0, we have, for z = (z1, z2) ∈ R

2d ×R
2d ,

( ˆ

Rd

(ˆ
Rd

|a(x, ξ)|p|Vψf (x, ξ)|pepλω(x,ξ) dx
) q
p

dξ

) 1
q

≤ 1

(2π)d
1

|〈�,"〉|
( ˆ

Rd

( ˆ

Rd

( ˆ

R4d
|V"a(z)|p|Mz2Tz1�(x, ξ)|pdz

)

·|Vψf (x, ξ)|pepλω(x,ξ)dx
) q
p

dξ

) 1
q

≤ 1

(2π)d
1

|〈�,"〉|
( ˆ

Rd

(ˆ
Rd

(ˆ
R4d

(|V"a(z)|eλω(z))p|Mz2Tz1�(x, ξ)|pdz
)

·|Vψf (x, ξ)|pepλω(x,ξ)dx
) q
p

dξ

) 1
q

≤ C‖V"a‖L∞mλ · ‖Vψf ‖Lp,qmλ = C‖a‖M∞
mλ
· ‖f ‖Mp,q

mλ
,

for some C > 0. Therefore a · Vψf ∈ Lp,qmλ (R2d) and Laψ,γ f ∈ Mp,q
mλ (R

d).

To prove that Laψ.γ is bounded, consider g ∈ Sω(Rd) and set " = Wig(g, g) ∈
Sω(R2d). For ξ = (ξ1, ξ2) ∈ R

2d , we set ξ̃ = (ξ2,−ξ1). By Cordero and Gröchenig
[7, Lemma 2.2]

‖Wig(γ,ψ)‖
M1,p
mλ,2

= ‖V" Wig(γ,ψ)‖
L

1,p
mλ,2

=
(ˆ

R2d

(ˆ
R2d

∣∣∣Vgψ
(
z+ ξ̃

2

)
Vgγ

(
z− ξ̃

2

)∣∣∣ dz)pmpλ,2(ξ) dξ
) 1
p
.

By the change of variables z+ ξ̃
2 = z̃ and [4, formula (3.12)] we obtain (cf. also

[7, Prop. 2.5]):

‖Wig(γ,ψ)‖
M1,p
mλ,2

=
( ˆ

R2d

(ˆ
R2d

|Vgψ(z̃)||Vgγ (z̃− ξ̃ )| dz̃
)p
m
p

λ,2(ξ) dξ

) 1
p

.

=
( ˆ

R2d
(|Vgψ(z̃)| ∗ |Vgγ (−z̃)|)p(ξ̃ ) mpλ,2(ξ̃ ) dξ̃

) 1
p

≤ ‖Vgψ‖L1
vλ
‖Vgγ ‖Lpmλ = ‖ψ‖M1

vλ
‖γ ‖Mp

mλ
. (0.5)
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Therefore Wig(γ,ψ) ∈ M1
mλ,2

(R2d) and hence, from Proposition 0.3 (with p =
t = r = +∞, q = s = t ′ = 1, λ = 0 and μ = −λ), we have that M∞

m−λ,2 ∗M1
mλ,2

⊆
M∞,1, so that aw = a ∗Wig(γ,ψ) ∈ M∞,1 and by (0.4) with μ = 0

‖Laψ,γ ‖op ≤ ‖aw‖M∞,1 .

From (0.1) and (0.5) we finally have

‖Laψ,γ ‖op ≤ ‖a ∗Wig(γ,ψ)‖M∞,1 ≤ ‖a‖M∞
m−λ,2‖Wig(γ,ψ)‖M1

mλ,2

≤ ‖a‖M∞
m−λ,2‖ψ‖M1

vλ
‖γ ‖Mp

mλ
.

��
A boundedness result analogous to that of Theorem 0.4 is proved, with different

techniques, in [16] under further restrictions on the symbol a(x, ξ) and without
estimates on the norm of Laψ,γ .

Set now

M0,1
mλ
(Rd ) = {f ∈ M∞,1

mλ
(Rd ) : lim|x|→∞‖Vgf (x, .)‖L1

mλ
eλω(x) = 0}

and prove the following compactness result (cf. also [1, Prop. 2.3] and [12, Thm.
3.22]):

Theorem 0.5 If aw ∈ M0,1
mλ (R

2d) for some λ ≥ 0, then La
w

is a compact mapping
of Mp,q

mλ (R
d ) into itself, for 1 ≤ p, q < +∞.

Proof The operator La
w

maps Mp,q
mλ (R

d ) into itself by (0.4). To prove that La
w

is
compact we first assume aw ∈ Sω(R2d). From (0.3)

La
w

f (y) = 1

(2π)d

ˆ

R2d
âw(ξ, u)e−iξ ·ueiξ ·(y+u)f (y + u) du dξ

= 1

(2π)d

ˆ

R2d
âw(ξ, x − y)eiξ ·yf (x) dx dξ

=
ˆ

Rd

k(x, y)f (x) dx, (0.6)

with kernel k(x, y) = 1
(2π)d

´
Rd
âw(ξ, x − y)eiξ ·ydξ . Note that k(x, y) ∈ Sω(R2d)

because it is the inverse Fourier transform (with respect to the first variable) of the
translation (with respect to the second variable) of âw ∈ Sω(R2d).
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Now, let φ ∈ Sω(Rd) and α0, β0 > 0 such that {φjl}j,l∈Zd = {Mβ0lTα0jφ}j,l∈Zd
is a tight Gabor frame for L2(Rd) (see [13, Def. 5.1.1] for the definition). Then
{�jlmn}j,l,m,n∈Zd = {φjl(x)φmn(y)}j,l,m,n∈Zd is a tight Gabor frame for L2(R2d).
Since k ∈ Sω(R2d) we have that 〈k,�jlmn〉 = Vφk(α0j, α0m,β0l, β0n) ∈ &1 and
(see [4, Lemma 3.15])

k =
∑

j,l,m,n∈Zd
〈k,�jlmn〉�jlmn.

Therefore from (0.6)

La
w

f =
∑

j,l,m,n∈Zd
〈k,�jlmn〉〈φjl , f 〉φmn,

with 〈k,�jlmn〉 ∈ &1, (φjl)j,l∈Zd equicontinuous in Mp′,q ′
m−λ = (Mp,q

mλ )
∗ and

(φmn)m,n∈Zd bounded in
⋃
n∈N n{f ∈ Mp,q

mλ : ‖f ‖Mp,q
mλ

< 1}, so that La
w

is a

nuclear operator from Mp,q
mλ to Mp,q

mλ (see [15, §17.3]). From [15, §17.3, Cor. 4] we
thus have that La

w
is compact.

Let us finally consider the general case a ∈ M0,1
mλ (R

2d). By Boiti et al. [4, Prop.
3.9] there exist an ∈ Sω(R2d) converging to a in M∞,1

mλ and hence, by (0.4)

‖Law − Lawn ‖Mp,q
mλ

→Mp,q
mλ

≤ ‖a − an‖M∞,1
mλ

→ 0.

Since the set of compact operators is closed we have that La
w

is compact on
Mp,q
mλ (R

d ). ��
We have the following generalization of [10, Lemma 3.4] and [11, Prop. 5.2]:

Lemma 0.6 Let g0 ∈ Sω(Rd ) and a ∈ M∞
mλ
(Rd ), with λ ≥ 0, such that

lim|x|→+∞ sup
|ξ |≤R

|Vg0a(x, ξ)|eλω(x,ξ) = 0, ∀R > 0. (0.7)

Then a ∗H ∈ M0,1
mλ (R

d ) for any H ∈ Sω(Rd ).

Proof The case λ = 0 has been proved in [10, Lemma 3.4]. Let λ > 0. Since
g0 ∈ Sω(Rd ) and H ∈ Sω(Rd), by Gröchenig and Zimmermann [14, Thm. 2.7]
we have that Vg0H ∈ Sω(R2d) and hence, for a fixed & > 0 (to be chosen later
depending on λ), there exists cλ > 0 such that

|Vg0H(x, ξ)| ≤ cλe−3&λω(x)e−3&λω(ξ), ∀x, ξ ∈ R
d .
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Now, as in the proof of Proposition 0.3, for g = g0 ∗ g0, we have that |Vg(a ∗
H)(·, ξ)| = |Vg0a(·, ξ) ∗ Vg0H(·, ξ)|. Since ω is increasing and subadditive we
have

|Vg(a ∗H)(x, ξ)| ≤
ˆ

Rd

|Vg0a(x − y, ξ)||Vg0H(y, ξ)|dy

≤ cλe−3&λω(ξ)
ˆ

Rd

|Vg0a(x − y, ξ)|e−3&λω(y)dy

= cλe−3&λω(ξ)
ˆ

Rd

|Vg0a(x − y, ξ)|e−3&λω(y) eλω(x−y,ξ)e−λω(x−y,ξ)dy

≤ cλe−3&λω(ξ)e−λω(x)
ˆ

Rd

|Vg0a(x − y, ξ)|eλω(x−y,ξ)e−(3&−1)λω(y)dy.

Since a ∈ M∞
mλ
(Rd) we have that

eλω(x)+2&λω(ξ)|Vg(a ∗H)(x, ξ)|

≤ cλe
−&λω(ξ)

ˆ

Rd

|Vga(x − y, ξ)|eλω(x−y,ξ)e−(3&−1)λω(y)dy (0.8)

≤ cλe
−&λω(ξ)‖a‖M∞

mλ

ˆ

Rd

e−(3&−1)λω(y)dy < +∞, (0.9)

if & > 1
3 + d

3Bλ , where B is the constant of condition (γ ) in Definition 0.1. Since
lim|ξ |→+∞ ω(ξ) = +∞, from (0.9) we have that for all ε > 0 there exists R1 > 0
such that

eλω(x)+2&λω(ξ)|Vg(a ∗H)(x, ξ)| < ε, ∀x, ξ ∈ R
d, |ξ | ≥ R1. (0.10)

We now choose δ > 0 small enough so that

δ

(
1+ cλ

ˆ

Rd

e−(3&−1)λω(y)
)
dy ≤ ε. (0.11)

From the hypothesis (0.7) we can choose R2 > 0 sufficiently large so that

sup
|ξ |≤R1

|Vg0a(x, ξ)|eλω(x,ξ) < δ, |x| ≥ R2, (0.12)

ˆ

|y|>R2

e−(3&−1)λω(y) dy <
δ

cλe−&λω(ξ)‖a‖M∞
mλ

, |ξ | ≤ R1. (0.13)
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Therefore for |x| ≥ 2R2, |y| ≤ R2 (so that |x − y| ≥ R2) and |ξ | ≤ R1, by (0.8),
(0.9), (0.13), (0.12) and (0.11):

eλω(x)+2&λω(ξ)|Vg(a ∗H)(x, ξ)|

≤ cλe
−&λω(ξ)‖a‖M∞

mλ

ˆ

|y|>R2

e−(3&−1)λω(y)dy

+cλe−&λω(ξ)
ˆ

|y|≤R2

|Vg0a(x − y, ξ)|eλω(x−y,ξ)e−(3&−1)λω(y)dy

< δ + cλδ
ˆ

Rd

e−(3&−1)λω(y)dy ≤ ε.

The above estimate, together with (0.10), gives

eλω(x)
ˆ

Rd

|Vg(a ∗H)(x, ξ)|eλω(ξ)dξ ≤ ε
ˆ

Rd

e−(2&−1)λω(ξ)dξ, |x| ≥ 2R2.

Choosing now & > 1
2 + d

2Bλ >
1
3 + d

3Bλ so that e−(2&−1)λω(ξ) ∈ L1(Rd), we finally
obtain

lim|x|→∞ e
λω(x)‖Vg(a ∗H)(x, .)‖L1

mλ
= 0.

��
Theorem 0.7 Let ψ, γ ∈ Sω(Rd), g0 ∈ Sω(R2d) and a ∈ M∞

mλ
(R2d) satisfying

(0.7), for some λ ≥ 0. Then Laψ,γ : Mp,q
mλ (R

d) → Mp,q
mλ (R

d) is compact, for 1 ≤
p, q < +∞.

Proof Set H := W(γ,ψ) ∈ Sω(R2d). Since a ∈ M∞
mλ
(R2d), by Lemma 0.6

we have that aw = a ∗ H ∈ M0,1
mλ (R

2d) and hence Laψ,γ = La
w

is compact by
Theorem 0.5. ��
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Lifespan Estimates for a Special
Quasilinear Time-Dependent Damped
Wave Equation

Giovanni Girardi and Sandra Lucente

Abstract In this paper we consider a quasilinear Cauchy problem for the scale
invariant damped wave equation

vtt −	v + μ

(1+ t)vt +
μ

2

(μ
2
− 1

) v

(1+ t)2 =
∣∣∣∣ μ

2(1+ t)v + vt
∣∣∣∣
p

,

with μ ≥ 0, v = v(t, x) and x ∈ R
n. The particular structure of the nonlinear

term, guarantees a blow up result and a lifespan estimate, assuming radial initial
data having slow decay. In particular the range of admissible exponents p depends
on μ, n and the rate of the initial data decay.

Keywords Scale invariant damped wave · Slow decay · Lifespan
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1 Introduction

Let us consider the scale invariant damped wave equation

vtt (t, x)−	v(t, x)+ μ

(1+ t) vt (t, x)+
μ

2

(μ
2
− 1

) v(t, x)
(1+ t)2 = G, (1.1)
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where x ∈ R
n, t ≥ 0, μ ≥ 0. We want to choose a special nonlinear term G,

depending on vt such that blow-up or global existence results can be established by
means of a natural transformation that acts on the linear part of the equation.

In [1] the scale invariant damped wave operator is rewritten as

utt −	u+ μ

1+ t ut +
μ(μ− 2)

4(1+ t)2 u = ∂(μ),t∂(μ),tu−	u

where

∂(μ),t := ∂t + μ

2(1+ t)
is a covariant time-derivative. It follows that the meaningful nonlinear term is

G := G(t, v, vt ) :=
∣∣∣∣
(
∂t + μ

2(1+ t)
)
v

∣∣∣∣
p

with p > 1. (1.2)

The aim of this paper is to prove a blow up result for the solution of (1.1), withG as
in (1.2), under a slow decay condition on radial initial data. The case G = G(v) =
|v|p is considered in [2].

We will prove the following result.

Theorem 1.1 Let n ≥ 2 and ε > 0. Consider the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩
vtt −	v + μ

(1+t )vt + μ
2

(μ
2 − 1

)
v

(1+t )2 =
∣∣∣ μ

2(1+t )v + vt
∣∣∣p ,

v(0, x) = 0,

vt (0, x) = εg(x),
(1.3)

with g a radial smooth function such that

g(|x|) ≥ M

(1+ |x|)h+1,
with − 1 < h <

1

p − 1
− 1− μ

2
, (1.4)

for some M > 0. If 1 < p < 1 + 2/μ, then the maximal solution v : [0, T (ε)) ×
R
n → R of (1.3) blows up in finite time. Moreover, the lifespan satisfies

T (ε) ≤ Cε− 2(p−1)
2−(μ+2h+2)(p−1) ,

with C > 0, independent of ε.

Remark 1.2 Let us recall that pF (d) = 1 + 2/d is the Fujita type exponent that
plays a crucial role in the semilinear damped wave equations, i.e. G = |u|p. For
summarizing the long literature on this subject see [3]. By using this notation we
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can say that our result requires

1 < p < min{pF (μ), pF (2+ 2h+ μ)} .

This means a candidate to a critical curve appears. It is still necessary to prove the
global existence for p greater than this value.

Remark 1.3 We remark that the range of admissible h in (1.4) is not empty due to
our assumption 1 < p < pF (μ).

Remark 1.4 We underline that no assumption on the support of the initial data has
been required in this theorem.

Remark 1.5 For μ = 0 our result corresponds to Theorem 1.2 in [4].

2 Rewriting the Main Theorem

Let

u(t, x) = (1+ t) μ2 v(t, x) .

We see that

∂(μ),tv = (1+ t)−
μ
2 ut .

This means that (1.3) reduces to the following nonlinear wave equation with
polynomial potential:

⎧⎪⎪⎨
⎪⎪⎩
utt −	u = (1+ t)−μ

2 (p−1)|ut |p, t ≥ 0, x ∈ R
n,

u(0, x) = 0,

ut (0, x) = εg(x), x ∈ R
n.

In particular, we consider a radial initial datum, i.e. g(x) = g(|x|) and hence radial
solutions. Thus, we can rewrite our problem in the following form

⎧⎪⎪⎨
⎪⎪⎩
utt − urr − n−1

r
ur = (1+ t)−μ

2 (p−1)|ut |p, (t, r) ∈ [0,∞)2,
u(0, r) = 0,

ut (0, r) = εg(r) .
(2.1)

Theorem 1.1 will be a consequence of the following one, proved in the next section.
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Theorem 2.1 Let n ≥ 2 and 1 < p < pF (μ). Assume that there existsM > 0 such
that for any r ∈ [0,∞) it holds

g(r) ≥ M

(1+ r)h+1,
with − 1 < h <

1

p − 1
− 1− μ

2
. (2.2)

Given ε > 0, the lifespan T (ε) of classical solutions to (2.1) satisfies

T (ε) ≤ Cε− 2(p−1)
2−(μ+2h+2)(p−1) , (2.3)

with C > 0, independent of ε.

3 Proof of Theorem 2.1

In order to prove that if u = u(t, x) is a solution to (2.1), with g satisfying (2.2),
then u blows up in finite time even for small ε, we will use the crucial Lemma 2.5
and Lemma 2.6 in [4], that for our nonlinear terms gives the following.

Lemma 3.1 Let n ≥ 2 and m = [n/2]. Let u0 = u0(r, t) be a solution to the free
linear Cauchy problem associated to (2.1), that is

⎧⎪⎪⎨
⎪⎪⎩
u0
t t − u0

rr − n−1
r
u0
r = 0, (t, r) ∈ [0,∞)2,

u0(0, r) = 0,

u0
t (0, r) = εg(r) .

If u = u(t, r) is a solution to (2.1), then there exists a constant δm > 0 such that

u(t, r) ≥ εu0(t, r)+ 1

8rm

ˆ t

0
dτ

ˆ r+t+τ

r−t+τ
λm(1+ τ )−μ

2 (p−1)|ut (τ, λ)|pdλ,

u0(t, r) ≥ 1

8rm

ˆ r+t

r−t
λmg(λ)dλ,

for any

r − t > 2t

δm
.

Let us fix δ > 0 a suitable small constant; for any dimension n ≥ 2 and m =
[n/2] we consider δm introduced in Lemma 3.1 and we define the set $δ such that

$δ =
{
(t, r) ∈ (0,∞)2 : r − t ≥ max

{
2

δm
t, δ

}}
. (3.1)
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Then, by Lemma 3.1 we get for each (t, r) ∈ $δ,

u(t, r) ≥ εu0(t, r) ≥ ε

8rm

ˆ r+t

r−t
λmg(λ)dλ

≥ Mε

8rm

ˆ r+t

r−t
λm(1+ λ)−(h+1)dλ .

Then, (3.1) implies that

u(t, r) ≥ Mε

8rm

(
1+ δ
δ

)−(h+1) ˆ r+t

r−t
λm−(h+1)dλ

≥ Mε

8rm

(
1+ δ
δ

)−(h+1)

(r + t)−(h+1)
ˆ r+t

r−t
λmdλ.

≥ Mε

8rm

(
1+ δ
δ

)−(h+1) 2t (r − t)m
(r + t)(h+1) .

Hence, since (t, r) ∈ $δ we obtain

u(t, r) ≥ C0t
m+1

rm(r + t)(h+1)
for (t, r) ∈ $δ, (3.2)

where we set

C0 := ε 2m−2M

δmm

(
δ

1+ δ
)h+1

> 0. (3.3)

Let us suppose now that there exist a, b, and C, positive constants such that u(t, r)
satisfies the following estimate

u(t, r) ≥ Cta

rm(r + t)b for (t, r) ∈ $δ. (3.4)

In particular, from (3.2) and (3.3), the estimate (3.4) is true with a = m + 1, b =
h+ 1, C = C0. By Lemma 3.1 we have

u(t, r) ≥ 1

8rm

ˆ t

0
dτ

ˆ r+t−τ

r−t+τ
λm

(1+ τ )μ2 (p−1)
|ut (τ, λ)|pdλ .
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Exchanging the order of the integrals, we get

u(t, r) ≥ 1

8rm

ˆ r

r−t
dλ

ˆ λ−(r−t )

0

λm

(1+ τ )μ2 (p−1)
|ut (τ, λ)|pdτ

+ 1

8rm

ˆ r+t

r

dλ

ˆ r+t−λ

0

λm

(1+ τ )μ2 (p−1)
|ut (τ, λ)|pdτ. (3.5)

We neglect the first term. By applying the Hölder inequality, since we are assuming
u(0, λ) = 0, we find

|u(r + t − λ, λ)|p =
∣∣∣∣
ˆ r+t−λ

0
ut (τ, λ) dτ

∣∣∣∣
p

≤
(ˆ r+t−λ

0
(1+ τ )μ2 dτ

)p−1 ˆ r+t−λ

0

|ut (τ, λ)|p
(1+ τ )μ2 (p−1)

dτ

≤ (1+ r + t − λ)( μ2 +1)(p−1)
ˆ r+t−λ

0

|ut (τ, λ)|p
(1+ τ )μ2 (p−1)

dτ.

This means that

ˆ r+t−λ

0

|ut (τ, λ)|p
(1+ τ )μ2 (p−1)

dτ ≥ (1+r+ t−λ)−( μ2 +1)(p−1)|u(r+ t−λ, λ)|p (3.6)

Hence, by (3.5) and (3.6) for any (t, r) ∈ $δ we get

u(t, r) ≥ 1

8rm

ˆ r+t

r

λm(1+ r + t − λ)−( μ2 +1)(p−1)|u(r + t − λ, λ)|p dλ. (3.7)

Being λ ≥ r , then (r + t − λ, λ) ∈ $δ . By (3.7), applying estimate (3.4) we find

u(t, r) ≥ Cp

8rm(r + t)bp
ˆ r+t

r

λm(1−p)(1+ r + t − λ)−( μ2 +1)(p−1)(r + t − λ)ap dλ .

While searching a finite lifespan of a solution, it is not restrictive to assume t > 1.
On the other hand (t, r) ∈ $δ , hence λ ≥ r ≥ t + δ > 1. We deduce that

u(t, r) ≥ Cp

8rm(r + t)bp+(m+μ
2 +1)(p−1)

ˆ r+t

r

(r + t − λ)ap dλ

= Cptpa+1

8(pa + 1)rm(r + t)bp+(m+μ
2 +1)(p−1)

.
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Hence, we conclude

u(t, r) ≥ C∗ta∗

rm(r + t)b∗ for (t, r) ∈ $δ (3.8)

where

a∗ = pa + 1, b∗ = pb +
(
m+ μ

2
+ 1

)
(p − 1), C∗ = Cp

8(pa + 1)
.

Let us define the sequences {ak}, {bk}, {Ck}

ak+1 = pak + 1, a1 = m+ 1,

bk+1 = pbk +
(
m+ μ

2
+ 1

)
(p − 1), b1 = h+ 1,

Ck+1 = C
p

k

8(pak + 1)
= C

p

k

8ak+1
, C1 = C0,

where k ∈ N, k ≥ 1 and C0 given by (3.3). Hence, we have

ak+1 = pk
(
m+ 1+ 1

p − 1

)
− 1

p − 1
, (3.9)

bk+1 = pk
(
h+m+ μ

2
+ 2

)
−
(
m+ μ

2
+ 1

)
, (3.10)

Ck+1 ≥ H C
p
k

pk
(3.11)

for some constant H = H(p,μ,m) > 0 independent of k. Thanks to inequality
(3.11) we get

Ck+1 ≥ exp
(
pk

(
log(C0)− Sp(k)

))
, (3.12)

Sp(k) = $kj=0dj , dj = j log(p)− logH

pj
, d0 = 0. (3.13)

We remark that for j sufficiently large dj is positive, and moreover dj+1/dj → 1/p
as j →∞; thus, the ratio criterion on series with positive terms allows to conclude
that there exists Sp,H positive such that the sequence Sp(k)→ Sp,H and for large k
it holds Sp(k) ≤ Sp,H . It follows that

Ck+1 ≥ exp(pk(logC0 − Sp,H )). (3.14)
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Thus, we proceeded as for deducing (3.8) from (3.4). By using estimates (3.9),
(3.10) and (3.14), for any k ∈ N we get

u(t, r) ≥ (r + t)m+μ
2 +1

rmt
1
p−1

exp(pkJ (t, r)), (3.15)

where we set

J (t, r) := log(C0)−Sp,H +
(
m+1+ 1

p − 1

)
log(t)−

(
h+m+ μ

2
+2

)
log(r+ t).

Suppose that there exists (t0, r0) ∈ $δ such that J (t0, r0) > 0; then, by (3.15) we
would conclude that the solution blows up in finite time, in fact

u(t0, r0)→∞ for k→∞.

By our definition of J (t, r), we find J (t0, r0) > 0 if and only if

( 1

p − 1
− h− 1− μ

2

)
log(t0) > log

(eSp,H
C0

(
2+ r0 − t0

t0

)h+m+μ
2 +2)

.

In particular, for
(
t0, t0 +max{ 2t0

δm
, δ}

)
∈ $δ it is enough to prove that

( 1

p − 1
− h− 1− μ

2

)
log(t0) > log

(eSp,H
C0

(
2+ 2

δm

)h+m+μ
2 +2)

.

Therefore, such point (t0, r0) ∈ $δ exists for any h > 0 such that

h <
1

p − 1
− 1− μ

2
,

i.e., our decay condition (2.2) is satisfied. Under this latter assumption on h the
coefficient in the left side is positive and by using (3.3) we find that J (t0, r0) > 0
once we have

t0 > Cε
−
(

1
p−1−h−1−μ

2

)−1

, (3.16)

where

C =
(eSp,H δmm

2m−2M

(1+ δ
δ

)h+1(
2+ 2

δm

)1+h+m) 1
1
p−1−h−1−μ2 ,

which is positive. As a consequence of (3.16) we get the lifespan estimate (2.3) and
we conclude the proof of Theorem 2.1.
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On a Criterion for Log-Convex Decay
in Non-selfadjoint Dynamics

Jon Johnsen

Abstract The short-time and global behaviour are studied for autonomous linear
evolution equations defined by generators of uniformly bounded holomorphic
semigroups in a Hilbert space. A general criterion for log-convexity in time of the
norm of the solution is treated. Strict decrease and differentiability at the initial time
results, with a derivative controlled by the lower bound of the negative generator,
which is proved strictly accretive with equal numerical and spectral abscissas.

Keywords Log-convex decay · Non-selfadjoint · Hyponormal ·
Strictly accretive operators · Short-time behaviour

1 Introduction

The subjects here are the global and the short-time behaviour of the solutions to the
Cauchy problem of an autonomous linear evolution equation, with data u0 �= 0,

∂tu+ Au = 0 for t > 0, u(0) = u0 in H. (1.1)

In case the generator −A is non-selfadjoint, this is particularly interesting. “Non-
self-adjoint operators is an old, sophisticated and highly developed subject” to quote
the recent treatise of Sjöstrand [17]; also the exposition of Helffer [5, Ch. 13] on
their pseudo-spectral theory could be mentioned; or [18].

Logarithmically convex decay of the solutions was seemingly first studied in the
paper [8]. This is given a more concise exposition here, with additional examples.

The main purpose below, however, is to improve the results in [8] by adding
in Section 2 a much sharper necessary condition on A for the log-convex decay,
leading to the improved Theorem 7 below.
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It is assumed that A is an accretive operator with domain D(A) in a complex
Hilbert space H , with norm | · | and inner product (· | ·), and that −A generates a
uniformly bounded, holomorphicC0-semigroup e−zA for z in an open sector having
the form $δ = { z ∈ C | −δ < arg z < δ }. Focus is here on the “height” function

h(t) = |e−tAu0|. (1.2)

This was shown in [8] to be a log-convex function, that is, for 0 ≤ r ≤ s ≤ t <∞
∣∣e−sAu0

∣∣ ≤ ∣∣e−rAu0
∣∣1− s−r

t−r
∣∣e−tAu0

∣∣ s−rt−r , (1.3)

if and only if the possibly non-normal generator −A has the special property that
for every x ∈ D(A2),

2
(

Re(Ax | x))2 ≤ Re(A2x | x)|x|2 + |Ax|2|x|2. (1.4)

The present paper and [8] grew out of the author’s joint work [1, 2] on the inverse
heat equation and its well-posedness under the Dirichlet condition. But the main
parts also apply to solutions of the similar Neumann problem studied in [9–11].

To elucidate the importance of (1.3), hence of (1.4), two remarks are made.

1◦ The log-convexity in (1.3) implies that the solutions u of (1.1) have important
global properties in common with those of the heat equation (the case A = −	
in H = L2(�) for a bounded domain � ⊂ R

n). Namely, for (1.1) it holds, cf.
(1.2),

(i) h(t) is strictly positive,
(ii) h(t) is strictly decreasing,
(iii) h(t) is strictly convex.

Here the strict decrease and strict convexity combine to a noteworthy and precise
dynamical property. For example, even if A has eigenvalues in C \ R, they do
not give rise to oscillations in the size of the solution e−tAu0—this is ruled out
by strict convexity, which thus can be seen as a stiffness in the decay of h(t).

In addition, (1.1) also shares the short-time behaviour with the heat equation,
for in terms of the numerical range ν(A) = {

(Ax | x) ∣∣ x ∈ D(A), |x| = 1
}

and its lower bound m(A) = inf Re ν(A), the onset of decay of the height
h ∈ C∞( ]0,∞[ ) ∩ C([0,∞[ ) is constrained by the properties:

(iv) h(t) is right differentiable at t = 0, with
(v) h′(0) ≤ −m(A) < 0 for |u0| = 1, though
(vi) h′(0) = −Re(Au0 | u0) whenever u0 ∈ D(A), |u0| = 1.

For the considered A, (iv)–(vi) follow from log-convexity; cf. the below
Theorem 3.4.

More generally, one could try to work with the A that merely have strictly
convex height functions, but this class is not easy to characterise. One may
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therefore view (1.4) as a very large class of (possibly non-normal) generators
having the described dynamical properties in common with the selfadjoint cases.

2◦ Secondly, the operators satisfying (1.4) may be seen to comprise the A that are
selfadjoint, A∗ = A, or normal, A∗A = AA∗. But as observed in [1], one only
needs the following two half-way houses,

D(A) ⊂ D(A∗), |Ax| ≥ |A∗x| for every x ∈ D(A). (1.5)

This property is hyponormality for unbounded operators, as studied by Janas [7].
Clearly A is normal if and only if both A, A∗ are hyponormal, so this operator
class is quite general. As symmetric operators have a full inclusion A ⊂ A∗,
they are also encompassed by the hyponormal class. But there is more:

Example Truly hyponormal operators are easily exemplified: for the advection-
diffusion operatorsA±u = −u′′ ± u′ in L2(α, β), for α < β in R, it is classical that
the minimal realisation A±min has the domain D(A±min) = H 2

0 (α, β) because of the
ellipticity (cf. [4, Thm. 6.24]). The maximal realisation has D(A±max) = H 2(α, β),
for when f = −u′′ ± u′ holds for u, f ∈ L2, then −u′ ± u ∈ L2 as primitives of f ,
so u′ ∈ L2; hence u′′ ∈ L2. Via the formal adjoints A∓ this gives (cf. [4, Lem. 4.3])

D(A±min) � D(A
∓
max) = D((A±min)

∗). (1.6)

Partial integration for u ∈ H 2(α, β) yields ‖ − u′′ ± u′‖2 = ‖u′′‖2 + ‖u′‖2 ∓
(|u′(β)|2 − |u′(α)|2), where the last two terms vanish for u ∈ D(A±min), so
that ‖A±minu‖ = ‖(A±min)

∗u‖. Hence the A±min are nonnormal, but nonetheless
hyponormal.

That every hyponormal operator A in H necessarily satisfies the log-convexity
condition (1.4) is recalled from [8] for the reader’s convenience: the inclusion
D(A) ⊂ D(A∗) gives at once for x ∈ D(A2) that

2(Re(Ax | x))2 ≤ 1

2
|(A+ A∗)x|2|x|2 ≤ (|Ax|2 + Re(A2x | x))|x|2, (1.7)

for in the last step the inequality in (1.5) gives, because D(A2) ⊂ D(A) ⊂ D(A∗),
that

|(A+ A∗)x|2 = |Ax|2 + |A∗x|2 + 2 Re(Ax |A∗x) ≤ 2|Ax|2 + 2 Re(A2x | x).
(1.8)

It is noteworthy, though, that whilst hyponormality expresses a certain interrelation-
ship between A and its adjoint, criterion (1.4) instead involves A and its square A2.
In addition it was exemplified in [8] that (1.4) is unfulfilled for certain explicitly
given A ∈ B(H), even for some symmetric n× n-matrices, n ≥ 2.

Moreover, the mixed Dirichlet–Neumann and Dirichlet–Robin realisations A+DN
and A−DR, respectively, are variational and elliptic, so they generate holomorphic
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semigroups in L2(α, β). But none of them are hyponormal, cf. Example 3 below.
This delicate situation around the A± should motivate the present analysis of the
generators that have log-convex decay. It is envisaged that (1.4) can give interesting
examples when A is a suitable realisation of a partial differential operator.

In the above discussion of log-convexity of h(t), its importance for the dynamics
of (1.1) was explained in (i)–(vi) via the more general strict convexity. So it is natural
to pose the question: does log-convexity have advantages in itself? At least it gives
rise to the (perhaps new) proof technique used in the next section.

2 A New Necessary Condition for Log-Convex Decay

The reader is assumed familiar with semigroup theory, for which [3, 15] could be
references; the simpler Hilbert space case is exposed e.g. in [4, Ch. 14].

It is recalled that there is a bijection between the C0-semigroups e−tA in B(H)

that are uniformly bounded, i.e. ‖e−tA‖ ≤ M for t ≥ 0, and holomorphic in $δ ⊂
C for δ ∈ ]0, π2 [ , and the densely defined, closed operators A in H satisfying a
resolvent estimate |λ|∥∥(A+ λI)−1

∥∥ ≤ C for all λ ∈ {0} ∪$δ+π/2.
It is classical that, since σ(A) ⊂ { z ∈ C | Re z ≥ ε } for some ε > 0, there

is a bound ‖e−tA‖ ≤ Mηe
−tη for t ≥ 0, 0 < η < ε. This yields the crude decay

estimate

h(t) ≤Mηe−tη|u0|. (2.1)

Here η is restricted by 0 ≤ η < σ(A), using the spectral abscissa of A,

σ(A) = inf Re σ(A). (2.2)

The below analyses all rely on the recent result that such semigroups consist of
injections, which, mentioned for precision, holds without the uniform boundedness:

Lemma 2.1 ([9] and [10]) If −A generates a holomorphic semigroup e−zA in
B(X) for some complex Banach space X, and e−zA is holomorphic in the open
sector $δ ⊂ C given by | arg z| < δ for some δ > 0, then e−zA is injective on X for
each such z.

The injectivity is clearly equivalent to the geometric property that two solutions
e−tAv and e−tAw to the differential equation u′ + Au = 0 cannot have any points
of confluence in X for t > 0 when v �= w. One obvious consequence of this is its
backward uniqueness: u(T ) = 0 implies u(t) = 0 for 0 ≤ t ≤ T .

Lemma 2.1 is also important because it allows a calculation of h′(t), h′′(t), using
differential calculus in Banach spaces as exposed in e.g. [6, Ch. 1] or [13]. This
uses that u(t) = e−tAu0 �= 0 for all t > 0 when u0 �= 0, cf. Lemma 2.1, whence
h(t) > 0:
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As the inner product on H , despite its sesquilinearity, is differentiable on the
induced real vector space HR with derivative (· | y) + (x | ·) at (x, y) ∈ HR ⊕ HR,
which applies to the composite map between open sets R+ → (HR \ {0})⊕ (HR \
{0}) → R+ → R+ given by t �→ √

(u(t) | u(t)), the Chain Rule for real Banach
spaces gives

h′(t) = (u′ | u)+ (u | u′)
2
√
(u | u) = −Re(Au | u)

|u| ; (2.3)

h′′(t) = (A2u | u)+ 2(Au |Au)+ (u |A2u)

2|u| − (Re(Au | u))2
|u|3 . (2.4)

The second line follows from the first, since u′′ = (e−tAu0)
′′ = A2e−tAu0 = A2u.

When A satisfies (1.4), the short-time behaviour at t = 0 is via the information
on h′(0) in (iv)–(vi) specifically controlled by ν(A), and not by its spectrum σ(A).
Moreover, the proofs in [8] also gave that h′(0) = infh′ < 0, which when combined
with (vi) shows thatA is a bit better than accretive (m(A) ≥ 0) because its numerical
range is contained in the open right half-plane, ν(A) ⊂ { z ∈ C | Re z > 0 }.
It seems useful to call A a positively accretive operator, when it has this property
(milder than strict accretivity [12]), and it was shown in [8] that (1.4) implies this.

But there is a significantly sharper necessary condition, which is given already
now because of the novelty. Its proof exploits the log-convexity directly:

Proposition 2.2 If the generatorA has log-convex height functions h(t) on [0,∞[
for every u0 �= 0 and the one-sided derivative h′(0) exists and fulfils that
h′(0) = −Re(Au0 | u0) when u0 ∈ D(A) satisfies |u0| = 1, then A is strictly
accretive and

m(A) = σ (A) > 0. (2.5)

Proof The log-convexity means that the continuous function logh(t) is convex on
[0,∞[ , so it is classical that its graph lies entirely above each of its half-tangents.
Applying this at t = 0 for u0 ∈ D(A), |u0| = 1, and invoking (2.1), one finds that

logh(0)+ t h
′(0)
h(0)

≤ logh(t) ≤ logMη − tη for t > 0. (2.6)

Indeed, h(t) extends to t < 0 in a C1-fashion along its (half-)tangent at t = 0, after
which the Chain Rule applies to logh(t). (Differentiability of h(t) holds for t > 0
by (2.3), for t ≤ 0 by construction.)

Now, the above inequalities being valid for all t > 0, the graphs of the two first
order polynomials cannot intersect, so their slopes fulfil h′(0) ≤ −η (as h(0) =
|u0| = 1). Hence −h′(0) ≥ σ (A), as the spectral abscissa is the supremum of the
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possible η; cf. (2.1) ff. The assumption on h′(0) in the statement now gives that for
any u0 ∈ D(A) having |u0| = 1,

Re(Au0 | u0) ≥ σ (A). (2.7)

This entails the inequalitym(A) ≥ σ(A), hence strict accretivity since σ(A) > 0.
However, the strict inequality m(A) > σ(A) is impossible, for it would imply

that ν(A) is contained in the closed half-plane �m(A) = { z | Re z ≥ m(A) } and
that C \ �m(A) = { z | Re z < m(A) } contains some λ ∈ σ(A) as well as R− in
the resolvent set ρ(A); but then σ(A) and ρ(A) intersect the same connectedness
component of C \ ν(A), contradicting [15, Thm. 1.3.9]. Hence m(A) = σ(A) as
claimed. �

3 Main Results

For the reader’s sake, some basics are recalled: a positive function f : R→ [0,∞[
is log-convex if log f (t) is convex, or more precisely, for all r ≤ t in R and for
0 < θ < 1,

f ((1− θ)r + θt) ≤ f (r)1−θf (t)θ . (3.1)

Note, though, that tθ and t1−θ do not require their continuous extensions to t = 0
when we take f = h below, for since e−tA is holomorphic, h(t) > 0 or equivalently
e−tAu0 �= 0 holds for t ≥ 0 by Lemma 2.1.

For the intermediate point s = (1−θ)r+θt an exercise yields θ = (s−r)/(t−r),
so log-convexity therefore means that, for 0 ≤ r < s < t ,

f (s) ≤ f (r)1− s−r
t−r f (t)

s−r
t−r . (3.2)

This leads to (1.3) for the semigroup. ThereA is just a positive scalar if dimH = 1,
so (1.3) is then an identity. For dimH > 1, the possible validity of (1.3) is by no
means obvious to discuss for the operator function e−tA in B(H).

Log-convexity is stronger than strict convexity for non-constant functions:

Lemma 3.1 If f : I → [0,∞[ is log-convex on an interval or halfline I ⊂ R, then
f is convex—and if f is not constant in any subinterval, then f is strictly convex
on I .

Proof Convexity on I follows from Young’s inequality for the dual exponents 1/θ
and 1/(1− θ):

f ((1− θ)r + θt) ≤ f (r)1−θf (t)θ ≤ (1− θ)f (r)+ θf (t). (3.3)
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In case f (r) �= f (t), the last inequality will be strict, as equality holds in Young’s
inequality if and only if the numerators are identical (cf. [14, p. 14]). This yields
strict convexity in this case.

If there is a common value C = f (r) = f (t) for some r < t in I , there is by
assumption a u ∈ ]r, t[ so that f (u) �= f (r), and because of the convexity of f this
entails that f (u) < f (r) = f (t): when r < s ≤ u one may write s = (1−θ)r+θu
and s = (1− ω)r + ωt for suitable θ, ω ∈ ]0, 1[ , so clearly

f (s) ≤ (1− θ)f (r)+ θf (u)
< (1− θ)f (r)+ θf (t) = C = (1− ω)f (r)+ ωf (t); (3.4)

similarly for u ≤ s < t; so f is strictly convex. �
As examples it is noted that whilst et is log-convex, f (t) = et − 1 is not log-

convex as (log f )′′ < 0. However, when f : I →]0,∞[ is log-convex, so is the
stretched function defined for a < b in I as

fa,b(t) =

⎧⎪⎪⎨
⎪⎪⎩
f (t) for t < a,

f (a) for a ≤ t < b,
f (t − b) for b ≤ t .

(3.5)

This follows from the geometrically obvious fact that the convexity of log f survives
the stretching. Since fa,b clearly is not strictly convex, the last assumption of
Lemma 3.1 is necessary. Moreover, a small exercise yields, cf. [8],

Lemma 3.2 If f : [0,∞[→ R+ is convex and f (t) → 0 for t → ∞, then f is
strictly monotone decreasing.

By now it is obvious that if a height function h(t) is log-convex on [0,∞[ for
some u0 �= 0, it fulfils the first assumption in Lemma 3.2 by the convexity statement
in Lemma 3.1, and the second assumption holds because of (2.1). Therefore
such h(t) is necessarily strictly decreasing on [0,∞[—hence non-constant in any
subinterval, and by Lemma 3.1 therefore strictly convex.

That h(t) > 0 allows an analysis of its log-convexity using a characterisation of
the log-convexC2-functions as the set of solutions to a differential inequality:

Lemma 3.3 If f ∈ C([0,∞[ ,R+) is C2 for t > 0, the following are equivalent:

(I) f ′(t)2 ≤ f (t)f ′′(t) holds whenever 0 < t <∞.
(II) f (t) is log-convex on the open halfline ]0,∞[ , cf. (3.2).

In the affirmative case f (t) is log-convex also on the closed halfline [0,∞[ .

Proof By the assumptions F(t) = log f (t) is defined for t ≥ 0 and C2 for t > 0
and

F ′′(t) =
(f ′(t)
f (t)

)′ = f ′′(t)f (t)− f ′(t)2
f (t)2

. (3.6)
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Hence (I) is equivalent to F ′′(t) ≥ 0 for t > 0, which is the criterion for the C2-
function F to be convex for t > 0; which is a paraphase of the condition (II) for
log-convexity of the positive function f (t) for t > 0.

Letting r → 0+ for fixed s < t , the continuity of f (r) and of, say
exp( t−s

t−r log f (r)), yields that (3.2) is valid for 0 = r < s < t . So f is log-convex
on [0,∞[ . �

The formulation of the lemma was inspired by the discussion of convexity
notions in [14]. Whilst f in C2 is convex if and only if f ′′ ≥ 0, this positivity
is clearly fulfilled if f satisfies (I), as f (t) > 0 is assumed—but the positivity then
holds in a qualified way, equivalent to log-convexity, since (I) ⇐⇒ (II).

The differential inequality in (I) of Lemma 3.3 is straightforwardly seen to
amount to the following for h(t), cf. (2.3)–(2.4),

2(Re(Au | u))2 ≤ (
Re(A2u | u)+ |Au|2)|u|2. (3.7)

Clearly this is fulfilled for every t > 0 whenA fulfils (1.4) above, for u(t) = e−tAu0
belongs to the subspaceD(An) ⊂ D(A2) for every n ≥ 2, and all u0 ∈ H , when the
semigroup is holomorphic. Moreover, the continuity of h(t) and of its derivatives h′,
h′′ given above show that h ∈ C2 for t > 0. So according to Lemma 3.3, condition
(1.4) implies that h(t) = |e−tAu0| is log-convex on the closed half-line [0,∞[ .

Conversely, when the height function h(t) is log-convex for each u0 �= 0, then
the generator −A fulfils (1.4). Indeed, h then fulfils (I) above by the log-convexity,
hence (3.7) holds. Especially it is seen by insertion of an arbitrary u0 ∈ D(A2) in
(3.7) and commutation of A and A2 with the semigroup that

2(Re(e−tAAu0 | e−tAu0))
2 ≤

(
Re(e−tAA2u0 | e−tAu0)+ |e−tAAu0|2

)
|e−tAu0|2.

(3.8)

By passing to the limit for t → 0+ it follows by continuity that (1.4) holds for
x = u0.

Consequently (1.4) characterises the generators −A of uniformly bounded,
analytic semigroups having log-convex height functions for all non-trivial initial
data.

The above discussion now allows the following sharpening of [8, Thm. 2.5]:

Theorem 3.4 When −A denotes a generator of a uniformly bounded, holomorphic
C0-semigroup e−tA in a complex Hilbert space H , then the following are equiva-
lent:

(I) 2
(

Re(Ax | x))2 ≤ Re(A2x | x)|x|2 + |Ax|2|x|2 for every x ∈ D(A2).
(II) h(t) = |e−tAu0| is log-convex for every u0 �= 0, that is,

∣∣e−sAu0
∣∣ ≤ ∣∣e−rAu0

∣∣ t−st−r
∣∣e−tAu0

∣∣ s−rt−r . (3.9)

whenever 0 ≤ r < s < t ,
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In the affirmative case, h(t) is for u0 �= 0 strictly positive, strictly decreasing and
strictly convex on the closed halfline [0,∞[ and moreover differentiable from the
right at t = 0, with a derivative in [−∞, 0[ , which for |u0| = 1 satisfies

h′(0) = inf
t>0
h′(t) ≤ −m(A) < 0; (3.10)

and if u0 ∈ D(A) with |u0| = 1, then h ∈ C1([0,∞[ ,R)⋂C∞(R+,R) and

h′(0) = −Re(Au0 | u0). (3.11)

Furthermore σ (A) = m(A) > 0 holds, in particular such A are strictly accretive.

Proof That (I) ⇐⇒ (II) was seen in the considerations after Lemma 3.3. The strict
positivity was derived after Lemma 2.1, strict decrease and strict convexity after
Lemma 3.2.

Convexity of h entails h′′(t) ≥ 0 for t > 0, so h′(t) is increasing on R+
and limt→0+ h′(t) = inft>0 h

′ exists in [−∞, 0[ , as h′ < 0. By the Mean Value
Theorem, some t ′ ∈ ]0, t[ fulfils

(h(t)− h(0))/t = h′(t ′) < 0. (3.12)

Therefore h(t) is (extended) differentiable from the right at t = 0, with h′(0) =
infh′. Since the strong continuity and strict decrease of h gives |e−tAu0| ↗ 1 for
t → 0+, an application of (2.3) yields

h′(0) = infh′ ≤ lim sup
t→0+

h′(t) ≤ lim sup
t→0+

(−m(A)|e−tAu0|) ≤ −m(A). (3.13)

In case u0 ∈ D(A) and |u0| = 1, one can exploit that h′(0) = limt→0+ h
′(t)

by commuting A with e−tA in (2.3), which in the limit gives, because of the strong
continuity at t = 0 and the continuity of inner products,

h′(0) = lim
t→0+

−Re(e−tAAu0 | e−tAu0) = −Re(Au0 | u0). (3.14)

In addition, it is seen that h′(0) is a real number for u0 ∈ D(A), so h ∈
C1([0,∞[ ,R) for such u0. For general u0 ∈ H it follows from the Chain Rule
that h ∈ C∞(R+,R).

Finally, the last line of the statement results from Proposition 2.2. �
The conclusions of the theorem apply in particular to every hyponormal genera-

tor −A, cf. the account in (1.7) that such A always satisfy the criterion (1.4).



630 J. Johnsen

It is instructive to review condition (1.4) in case the generator A is variational.
That is, for some Hilbert space V ⊂ H algebraically, topologically and densely and
some sesquilinear form a : V × V → C, which is V -bounded and V -elliptic in the
sense that (with ‖ · ‖ denoting the norm in V ) for some C0 > 0

Re a(u, u) ≥ C0‖u‖2 for all u ∈ V, (3.15)

it holds for A that (Au | v) = a(u, v) for all u ∈ D(A) and v ∈ V . Lax–Milgram’s
lemma on the properties of A is exposed in [4, Ch. 12] and [5, Ch. 3]. It is classical
that −A generates a holomorphic semigroup e−tA in B(H); an explicit proof is e.g.
given in [1, Lem. 4].

For such A, the log-convexity criterion (1.4) can be stated for V -elliptic
variational A as a comparison of sesquilinear forms, cf. [8],

(
Re a(u, u)

)2 ≤ Re
(
aRe(Au, u)

)
(u | u) for u ∈ D(A2). (3.16)

Example To see that variational operators need not be hyponormal, one may take
H = L2(α, β), with norm ‖f ‖0 = (

´ β
α
|f (x)|2 dx)1/2, for reals α < β and let

V = { v ∈ H 1(α, β) | u(α) = 0 } be a subspace of the first Sobolev space with
norm given by ‖f ‖2

1 =
´ β
α (|f (x)|2 + |f ′(x)|2) dx and the sequilinear forms

a(u, v) =
ˆ β

α

u′(x)v′(x)+ u′(x)v(x) dx. (3.17)

This is clearly V -bounded, and also V -elliptic: partial integration gives
Re a(u, u) = ‖u′‖2

0 + 1
2 |u(β)|2, and Re a(u, u) ≥ C0‖u‖2

1 follows for all u ∈ V
and e.g. C0 = min( 1

2 , (β − α)−2) by ignoring the last term and using Poincaré’s
inequality (its standard proof, e.g. [4, Thm. 4.29], applies to V ).

The induced A+DN acts in the distribution space D ′(α, β) of Schwartz [16] as
A+DNu = −u′′ +u′, which is the advection-diffusion operator with a mixed Dirichlet
and Neumann condition,

D(A+DN) =
{
u ∈ H 2(α, β)

∣∣ u(α) = 0, u′(β) = 0
}
. (3.18)

(The Dirichlet realisation of u′ − u′′ has been studied at length; cf. [18, Ch. 12].)
As (A+DN)

∗ is induced by a(v, u), one finds similarly (A+DN)
∗u = −u′′ − u′ =

A−DRu with the domain characterised by a mixed Dirichlet and Robin condition,

D((A+DN)
∗) = D(A−DR) =

{
u ∈ H 2(α, β)

∣∣ u(α) = 0, u′(β)+ u(β) = 0
}
.

(3.19)
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As both D(A+DN) and D((A+DN)
∗) contain functions outside their intersection, (1.5)

shows that neither A+DN nor (A+DN)
∗ = A−DR is hyponormal. This is part of the

motivation for the study of condition (1.4).
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A Uniform Resolvent Estimate
for a Helmholtz Equation with Some
Large Perturbations in An Exterior
Domain

Hideo Nakazawa

Abstract We derive a uniform resolvent estimate for a stationary dissipative
wave equation without smallness conditions. Existing results required a smallness
condition for the coefficient of the dissipation. This paper removes the assumption
of the smallness. Our proof is based on an energy estimate for stationary problems.

Keywords Uniform resolvent estimate · Large perturbation · Helmholtz
equation · Energy-dependent potential · Dissipative wave equation
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1 Introduction and Result

Several results on uniform resolvent estimates for Helmholtz or stationary
Schrödinger equations have been obtained so far by many authors since Kato-
Yajima [1] and Watanabe [12]. In particular, some uniform resolvent estimates
have been proved in Mochizuki [4] and Mochizuki–Nakazawa [6] for a stationary
Schrödinger equation in a magnetic field in an exterior domain under some
smallness conditions. In this paper, we see that even without smallness condition
for the perturbation term, a uniform resolvent estimate for the stationary problem
of the wave equation with an energy-dependent potential as perturbation term can
be derived. The key point of the proof is the use of a suitable inequality derived
in Nakazawa [10], which is an energy type estimate of solutions for stationary
problems.
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Let � ⊆ R
N (N ≥ 3) be an exterior domain outside the bounded star-shaped

obstacle O with smooth boundary

� = R
N \O, O ⊂ R

N

(O may be the empty set). We consider the following Helmholtz equations with
energy-dependent potentials

{(−	− iκb(x)− κ2
)
u(x) = f (x), (κ ∈ C), x ∈ �,

u(x) = 0, x ∈ ∂�,
(1.1)

where we assume that the function b(x) is a non-negative smooth function, f (x)
belongs to a subset of L2(�), and κ ∈ C. This equation is the stationary problem of
the following dissipative wave equations

⎧⎪⎪⎨
⎪⎪⎩

wtt −	w + b(x)wt = f (x)e−iκt , (x, t) ∈ �× (0,∞),
w(x, 0) = u(x), wt (x, 0) = −iκu(x), x ∈ �,
w(x, t) = 0, x ∈ ∂�

(1.2)

obtained by setting w(x, t) = e−iκt u(x). In the study of the asymptotic behavior of
solutions and the scattering theory for (1.2), stationary methods in scattering theory
often play an important role [2, 3, 5–7, 9]. In particular, it is pointed out in [8] that
the uniform resolvent estimate in complex upper-half plane for (1.1) is useful for
proving the principle of limiting amplitude for (1.2). In this process, we need to
assume a smallness condition for the function b(x). However, in [2], the principle
of limiting amplitude is obtained without such a smallness condition. The authors
of [2] studied the initial value problem in R

3 by using the explicit formula of the
fundamental solution of the Helmholtz equation in R

3.
This paper aims to remove the smallness conditions for b(x) to derive the uniform

resolvent estimate for (1.1) in the complex upper-half plane for any N ≥ 3. In the
followings, r = |x|, and the space Ck(X) denotes the set of all k times continuously
differentiable functions defined on a set X. We put

ur = x

r
· ∇u, D±

r = ur +
N − 1

2r
u∓ iκu (±Cκ ≥ 0). (1.3)

The result is given as followings

Theorem 1.1 Assume that the space dimensionN satisfiesN ≥ 3, and the function
b(x) ∈ C(�) satisfies

0 ≤ b(x) ≤ b1(1+ r)− 3
2−b2, x ∈ � (1.4)
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for some positive constants b1 and b2. Let u ∈ C2(�) a solution of (1.1) with
Cκ ≥ 0. Then it holds that

|κ |2
ˆ

�

(1+ r)−1−δ|u(x)|2dx +
ˆ

�

{1+ (Cκ)r} ∣∣D+
r u(x)

∣∣2 dx

+
ˆ

�

|u(x)|2
r2 dx ≤ C

ˆ

�

(1+ r)1+max {1,δ}|f (x)|2dx

for some δ > 0, where C > 0 is independent of κ .

Remark 1.2 A similar proof is available for the usual stationary Schrödinger
equation. The details will be published elsewhere.

Remark 1.3 In [2], the function b(x) satisfies

0 ≤ b(x) ≤ b0r
−3−δ

for some positive (non-small) b0 and δ and large r < 1. Our result cover b2 ≤ 3

2
+δ.

At the end of this section, our paper is organized as follows. In Sect. 2, some
inequalities are derived. These play a fundamental role in the proof of Theorem 1.1.
In Sect. 3, Theorem 1.1 is proved under a smallness assumption on b1. In Sect. 4,
another inequality is derived, which works for proving Theorem 1.1 without
smallness. The mechanism is explained in the final section.

2 Some Inequalities

In this section, let u = u(x) be a solution of (1.1).

Lemma 2.1 Assume κ satisfies Cκ ≥ 0. Let two functions ϕ = ϕ(r) andψ = ψ(r)
are both non-negative smooth functions satisfying

ϕ(·) ∈ L1([0,∞);R+)

and

ψr ≤ ψ

r
.

Put

g(r) =
ˆ ∞

r

ϕ(s)ds.
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For any small positive ε1 and ε2, it holds that

|κ |2
ˆ

�

{
(1− ε1)ϕ + bψ

2

}
|u(x)|2dx +

ˆ

�

(
ϕ − bψ

2

) ∣∣∣∣ur + N − 1

2r
u

∣∣∣∣
2

dx

+
ˆ

�

{
ψr

2
+ C(κ)ψ +

(
bψ

2
− ϕ

)
− ε2

}
|D+
r u|2dx +

ˆ

�

WN |u|2dx (2.1)

≤ 2

ε1

ˆ

�

g2ϕ−1|f |2dx + 1

4ε2

ˆ

�

ψ2|f |2dx, (Cκ ≥ 0) ,

where

WN = − (N − 1)(N − 3)

8

(
ψ

r2

)
r

+ C(κ) (N − 1)(N − 3)

4r2 ψ.

Proof We shall state only the outline of the proof of Lemma 2.1. See [9] for details.
A first identity is obtained from (BR = {x ∈ � | |x| < R}, R > 0)

ˆ ∞

0
ϕ(r)× 6

{ˆ
BR

(eq.(1.1))×
(
iκu

)
dx

}
dr, (2.2)

where iκu denotes the complex conjugate of iκu. Put v = eρu and h = eρf to lead
to a second inequality, where

ρ = iκr + N − 1

2r
log r.

Then v solves

−	v + 2ρrvr + b̃v = h, (2.3)

where

b̃ = −iκb+ (N − 1)(N − 3)

4r2 .

Then we can derive

6
{ˆ

�

(eq.(2.3))× vrψdx
}
. (2.4)

Combining these two identities (2.2) and (2.4) with a Young type inequality, we
obtain the desired results. ��
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Next, let us explain some Hardy type inequalities related to the operator D±
r in

(1.3).

Lemma 2.2 ([7, 10, 11]) Let � = R
N or � = R

N \ O (The assumption that
the obstacle is star-shaped is unnecessary). Assume that N ≥ 1, v ∈ C∞0 (�),
(0 ≤)φ(r) ∈ C1([0,∞)), h(r) ∈ C1([0,∞)). Then it holds that

ˆ

�

φ|D±
r v|2dx ≥ ±C(k)

ˆ

�

2φh|v|2dx +
ˆ

�

�φ,h|v|2dx, (±Ck ≥ 0), (2.5)

where

�φ,h(r) = −
{
(φh)r + φh2

}
.

Remark 2.3 This inequality was first derived in [4], where it is not given in this
form.

Taking

h(r) = 1

2r
, φ(r) = 1

in (2.5), we have easily obtain

Corollary 2.4 Let� be under the same hypotheses of Lemma 2.2. Let v ∈ C∞0 (�).
It holds that

ˆ

�

|D±
r v(x)|2dx ≥

ˆ

�

|v(x)|2
4r2 dx + {±C(κ)}

ˆ

�

|v(x)|2
r

dx (±Cκ ≥ 0).

Remark 2.5 This inequality is used as an aid to derive the uniform estimate

ˆ

�

|u(x)|2
r2 dx ≤ C

ˆ

�

(1+ r)1+max {1, δ}|f (x)|2dx.

3 Proof of Theorem 1.1 Under the Smallness Condition

We choose

ϕ(r) = (1+ r)−1−δ, ψ(r) = ψ0r + ψ1 − ψ2(1+ r)−δ1 ,

where δ > 0, δ1 ∈ (0, 1), ψ0 ≥ ψ1 > ψ2 > 0. Consider the case

(i) ϕ − bψ

2
≥ 0.
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This essentially corresponds to the case

0 ≤ b(x) ≤ b0(1+ r)−2−δ with small b0 > 0.

In this case, the second term in the left-hand side of (2.1) in Lemma 2.1 is non-
negative and the third term of (2.1) may be negative in general. However, for δ1 ≥
2

ψ1
, paying attention to the smallness of the function b(x), we obtain the following

estimate for the coefficient function of |D+
r u|2 in the third term in the left-hand-side

of (2.1) in Lemma 2.1:

{
ψr

2
+ C(κ)ψ +

(
bψ

2
− ϕ

)
− ε2

}
≥ C {1+ C(κ)}

for some constant C > 0 independent of κ . BeingWN ≥ C

r2 for another C > 0, we

conclude the desired result. �

4 Another Inequality

This section describes another inequality related to operator D±
r in (1.3). This is

useful for estimating terms that can be negative if the function b(x) is large.

Proposition 4.1 ([10]) Let � = R
N or � = R

N \ O (the assumption that the
obstacle is star-shaped is unnecessary). Assume that N ≥ 1, v ∈ C1(�), and two
functionsm = m(x) and n = n(x) satisfy m+ n ≥ 0,m+ n �≡ 0. Then it holds that

|k|2
ˆ

�

mn

m+ n |v|
2dx ≤

ˆ

�

m
∣∣D±
r v

∣∣2 dx +
ˆ

�

n

∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

dx.

Proof The following two relations

26(∓iκv · vr) = ∣∣D±
r v

∣∣2 −
∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

− |κ |2|v|2 − (±C(κ)) N − 1

r
|v|2,

D±
r v

(
vr + N − 1

2r
v

)
=
∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

+∓iκvvr +
(
∓iκ

)N − 1

2r
|v|2
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allow the following calculation:

0 ≤
∣∣∣∣ m√
m+ nD

±
r v +

n√
m+ n

(
vr + N − 1

2r
v

)∣∣∣∣
2

= m2

m+ n
∣∣D±
r v

∣∣2 + n2

m+ n
∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

+26
{
mn

m+ nD
±
r v

(
vr + N − 1

2r
v

)}

= m2

m+ n |D
±
r v|2 +

n2

m+ n
∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

+ 2mn

m+ n
∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

+ mn

m+ n26
(
∓iκvvr

)
+ 26

(
∓iκ

)N − 1

2r
|v|2 mn

m+ n

= m ∣∣D±
r v

∣∣2 + n
∣∣∣∣vr + N − 1

2r
v

∣∣∣∣
2

− mn

m+ n |κ |
2|v|2.

Integration over� gives the desired inequality. ��

5 Proof of Theorem 1.1 Without the Smallness Condition

Let us treat the case

(ii) ϕ − bψ

2
≤ 0

with ϕ and ψ given in Sect. 3. Choose the two functionsm and n in Proposition 4.1
for a sufficiently small positive ε3 as follows:

m = (1− ε3)
ψr

2
+
(
bψ

2
− ϕ

)
, n = ϕ − bψ

2
.

Then we find that m + n = (1 − ε3)
ψr

2
≥ 0 and m + n �≡ 0 hold. Therefore by

Lemma 2.1 and Proposition 4.1, being
ˆ
WN |u|2dx ≥ 0, for any ε4 ∈ (0, 1), we

have

|κ |2
ˆ

�

{ε4ϕ +G(M)} |u|2dx +
ˆ

�

{
ε3
ψr

2
− ε2 + C(κ)ψ

}
|D+
r u|2dx

≤ C(ε1, ε2)

ˆ

�

(
g2

ϕ
+ ψ2

)
|f |2dx
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for some positive C(ε1, ε2), where

G(M) = (1− ε1 − ε4)ϕ +M + mn

m+ n, M ≡ bψ

2
.

Thus, if G(M) ≥ 0 and ε3
ψr

2
− ε2 ≥ ∃C > 0, we obtain Theorem 1.1.

Now, we find that

G(M) ≥ 0 ⇔M2 − 2ϕM + ϕ2 − (1− ε3)(2− ε1 − ε4)ψrϕ

2
≤ 0.

That is equivalent to

ϕ ≤ M ≤ ϕ +√D′, (5.1)

where

D′ = (1− ε3)(2− ε1 − ε4)ψrϕ

2
≥ 0.

Next, the assumption (1.4) in Theorem 1.1 implies (ii) once δ ≥ b2 − 1

2
. Let us

prove the second inequality in (5.1)

M ≤ ϕ +√D′ ⇔ b ≤ 2

ψ

(
ϕ +

√
(1− ε3)(2− ε1 − ε4)ψrϕ

2

)
.

If we choose εj (j = 1, 3, 4) as 0 < ε1 + ε4 < 1, choose ψ0 as

0 < ψ0 ≤ 2(1− ε3)(2− ε1 − ε4)

b2
1

,

and choose δ and δ1 as 0 < δ1 ≤ δ ≤ 2b2, we then have

b ≤ 2

ψ

√
(1− ε3)(2− ε1 − ε4)ψrϕ

2
⇔M ≤ √

D′ ⇒ M ≤ ϕ +√
D′

by (1.4) to obtain (5.1) and consequently (ii). Finally choose ε2 as

0 < ε2 ≤ ε3ψ0

3
,
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we then have

ε3
ψr

2
− ε2 ≥ ε2

2
> 0.

The proof of Theorem 1.1 is now completed by combining the inequality obtained
in the above discussion with the one in Corollary 2.4 (see Remark 2.5). �
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A Survey on the Time-Frequency
Analysis on the Half Real Line

Yun-Zhang Li

Abstract During past more than 30 years, the time-frequency analysis on L2(R)

such as wavelet and Gabor analysis has been extensively studied, but the time-
frequency analysis on L2(R+) has not, where L2(R+) is the space of square
integrable functions on the half real line R+. It is because R is a group under
addition, while R+ is not. This leads to L2(R+) admitting no nontrivial shift-
invariant system. The present article gives a survey on the time-frequency analysis
onL2(R+). It only focuses main ideas instead of concrete results. Readers may refer
to listed references for details.

Keywords Frame · Time-frequency · Wavelet analysis · Gabor analysis ·
Dilation-and-modulation system

Mathematics Subject Classification (2010) Primary 42C40; Secondary 42C15

1 Introduction

A central part of harmonic analysis deals with functions on groups and ways
to decompose such functions in terms of either series representations or integral
representations of certain “basic functions". Structured basic functions are important
in mathematics and engineering. Wavelet and Gabor frames are such basic functions
representing square integrable functions on R which is a locally compact abelian
group under addition and the usual topology. The study of frames on general
locally compact abelian groups has appeared in several publications including
[2, 3, 5, 6, 12, 15, 16, 18]. And the study of wavelet and Gabor frames for L2(R)
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has seen great achievements during past more than 30 years, but the study of the
time-frequency analysis for L2(R+) has not.

This article gives a survey of the study of structured frames for L2(R+) with
R+ = [0, ∞) or (0, ∞). In practice, the time variable cannot be negative. The
space L2(R+) models the causal signal space, but it is not closed under the Fourier
transform since the Fourier transform of a compactly supported nonzero function in
L2(R+) lies outside this space. Also it admits no nontrivial shift-invariant system
since R+ is not a group under addition. This leads to the fact that L2(R+) cannot
admit wavelet and Gabor frames. Therefore, the time-frequency analysis forL2(R+)
is essentially different from that for L2(R).

The rest of this article is organized as follows. Section 2 focuses on Walsh series-
based wavelet analysis in L2(R+), and Sect. 3 on a kind of dilation-and-modulation
systems in L2(R+). Herein, we only state main ideas instead of details. Readers
may refer to listed references for details.

2 Walsh Series-Based Wavelet Analysis in L2(R+)

with R+ = [0, ∞)

Note that L2(R+) can be considered as a subspace of L2(R) consisting of all
functions in L2(R) vanishing outside R+. There have been many papers on
“wavelet" frames in L2(R+). Also due to R+ being not a group under addition,
such frames do not have complete affine structure, and include boundary and interior
ones. And boundary ones are related to inhomogeneous refinement equations. For
details, we refer to [4, 7, 17, 19, 29] and references therein. Walsh series-based
wavelet analysis for L2(R+) is similar to that for L2(R), and is based on a new
addition operation on R+ which makes R+ a group under it. Let us recall the ideas
on Walsh series-based wavelet analysis from [1, 8–11, 24, 27, 28, 32] and references
therein.

Let p be a integer greater than 1. We denote by Z+ and N the set of
nonnegative integers and the set of positive integers respectively, and by Np the
set of {0, 1, · · · , p − 1}. Define the addition ⊕ and subtractionD on Np by

x ⊕ y = (x + y)(mod p) =
{
x + y, x + y < p;
x + y − p, x + y ≥ p,

and

x D y = (x − y)(mod p) =
{
x − y, x ≥ y;
x − y + p, x < y
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for x, y ∈ Np, respectively. Given x ∈ R+, we denote by [x] its integer part, and by
{x} its fraction part. Then x has following unique representation:

x =
∞∑
j=1

x−jpj−1 +
∞∑
j=1

xjp
−j = [x] + {x}, (2.1)

where xj , x−j ∈ Np for j ∈ N, and x−j = [pj−1x](modp), xj = [pjx](modp).
For y, ω ∈ R+, we define yj , y−j and ωj , ω−j similarly. Define the addition⊕ and
subtraction D on R+ by

x ⊕ y =
∞∑
j=1

(
x−j ⊕ y−j

)
pj−1 +

∞∑
j=1

(
xj ⊕ yj

)
p−j (2.2)

and

x D y =
∞∑
j=1

(
x−j D y−j

)
pj−1 +

∞∑
j=1

(
xj D yj

)
p−j (2.3)

for x, y ∈ R+, respectively. It is easy to check that R+ and Z+ are groups under
“⊕", and that the inverse operation of “⊕” is “D”. Define the dilation operator Dλ
and the translation operator Tx on L2(R+) with λ > 1 and x ∈ R+ by

Dλf (·) = λ 1
2 f (λ·) and Txf (·) = f (· D x) for f ∈ L2(R+), (2.4)

respectively, and write fj,k = Dpj Tkf for j ∈ Z and k ∈ Z+. Readers refer to
[1, 8–11, 27, 28, 32] for basic properties of ⊕, Dλ and Tx . Now let us define the
affine systems in L2(R+). Given a finite subset " of L2(R+), the affine system
X(") generated by " is defined by

X(") = {
ψj,k : j ∈ Z, k ∈ Z+, ψ ∈ "} . (2.5)

Similarly to the cases inL2(R),X(") is called a Walsh p-adic wavelet basis (Walsh
p-adic wavelet frame) forL2(R+) if it is an orthonormal basis (a frame) forL2(R+).
Walsh p-adic wavelet Riesz basis and Walsh p-adic wavelet Parseval frame can be
defined similarly.

It is well known that wavelet bases and wavelet frames for L2(R) may be char-
acterized in Fourier transform domain, and that the (generalized) multiresolution
analysis ((G)MRA for simplicity) is an important tool to construct wavelets (wavelet
frames). For Walsh p-adic wavelet bases (frames) in L2(R+), a theory parallel to
wavelet bases (frames) in L2(R) holds. It is based on the Walsh p-adic Fourier
transform defined on L2(R+).
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Define

χ(x, ω) = e
2πi
p

∞∑
j=1
(xjω−j+x−j ωj )

for x, ω ∈ R+. (2.6)

Then the system {χ(k, ·)}k∈Z+ is an orthonormal basis forL2[0, 1]. For z ∈ l2(Z+),
its Walsh p-adic Fourier series is defined by

z̃(·) =
∞∑
k=0

z(k)χ(k, ·). (2.7)

The Walsh p-adic Fourier transform on L1(R+) and L2(R+) are defined by

f̃ (·) =
ˆ

R+
f (x)χ(x, ·)dx for f ∈ L1(R+) (2.8)

and

f̃ (·) = lim
a→+∞

ˆ a

0
f (x)χ(x, ·)dx for f ∈ L2(R+), (2.9)

respectively, where the limit is in L2(R+) norm. Similarly to the usual Fourier
transform, (2.7) and (2.9) define unitary operators from l2(Z+) onto L2[0, 1] and
from L2(R+) onto itself, respectively. We refer to [13, 25] for basics of the Walsh
p-adic Fourier series (transform).

It is well known that MRAs and GMRAs are determined by refinable functions,
and that a refinable function is determined by its symbol. In L2(R+), Walsh p-
refinable functions may be defined similarly. A function ϕ ∈ L2(R+) is said to be
Walsh p-refinable if

ϕ(·) = p
∑
k∈Z+

α(k)ϕ(p · Dk), (2.10)

equivalently,

ϕ̃(·) = α̃(p−1·)ϕ̃(p−1·) (2.11)

for some sequence α = {α(k)}k∈Z+ ∈ l2(Z+), where α̃ is called the symbol of
ϕ. Given ϕ satisfying (2.10), define the sequence {Vj }j∈Z of closed subspaces of
L2(R+) by

Vj = span
{
ϕj,k : j ∈ Z, k ∈ Z+

}
for j ∈ Z. (2.12)
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Then {Vj }j∈Z is a GMRA for L2(R+), and is an MRA for L2(R+) if we make
suitable restriction on ϕ. Using the (G)MRA structure, we may construct Walsh
p-adic wavelet bases (frames), and derive the corresponding extension principles.
Readers refer to [1, 8–11, 24, 27, 28, 32] and references therein for details.

3 MD-Frame Theory in L2(R+) with R+ = (0, ∞)

Affine systems in Sect. 2 are based on the fact that [0, ∞) is a group under “⊕".
Observe that R is a group under addition, and that a Gabor system in L2(R) has the
form

{e2πimb·ψ(· − na) : m, n ∈ Z} (3.1)

which is the shift-and-modulation version of fixed function ψ ∈ L2(R) with
modulation factors being periodic with respect to addition. So it is strongly
dependent on the additive group structure of R. On the other hand, R+ = (0, ∞)
is a group under multiplication although it is not a group under addition. This
motivates us to consider multiplication-based time-frequency analysis in L2(R+).
In this section, we focus on a class of dilation-and-modulation system frames in
L2(R+) based on multiplication.

In what follows, unless specified, a and b are two constants greater than 1. A
measurable function h defined on R+ is said to be b-dilation periodic if h(b·) = h(·)
on R+. Define the sequence {�m}m∈Z of b-dilation periodic functions by

�m(·) = 1√
b − 1

e
2πim·
b−1 on [1, b) for each m ∈ Z. (3.2)

For a nonempty finite subset " of L2(R+), we define the dilation-and-modulation
system (MD-system) in L2(R+) generated by " as

MD(", a, b) = {
�mDajψ : m, j ∈ Z, ψ ∈ " }

, (3.3)

where Dajψ(·) = a
j
2ψ(aj ·). In particular, we write MD(", a, b) =

MD(ψ, a, b) if " is a singleton {ψ}. Our goal is to study the frame properties of
MD-systems of the form (3.3). Before proceeding, the following two facts should
be clarified:

• The factor �m in (3.3) is essentially different from the factor e2πimb· in Gabor
system (3.1).

Given a constant c > 1,

e2πimbc·

e2πimb· = e2πimb(c−1)·.
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It cannot be a constant function if m �= 0. Thus e2πimb· with m �= 0 cannot be
c-dilation periodic for each c > 1. However,�m in (3.3) is b-dilation periodic.

• A MD-frame for L2(R+) cannot be derived from an affine system inH 2(R) via
Fourier transform.

Wavelet frames for the Hardy space H 2(R) were studied in [14], [26], [30],
where

H 2(R) = {f ∈ L2(R) : f̂ (·) = 0 a.e. on (−∞, 0)},

the Fourier transform of a function f ∈ L1(R) ∩ L2(R) is defined by

f̂ (ξ) =
ˆ

R

f (x)e−2πixξdx

and extended to L2(R) by the Plancherel theorem. Obviously,L2(R+) is the Fourier
transform of H 2(R). But a MD-system of the form (3.3) is essentially different
from the Fourier transform version

{a j2 e−2πiajbm·ψ̂(aj ·) : m, j ∈ Z} (3.4)

of an arbitrary affine system {a j2ψ(aj · −bm) : m, j ∈ Z} in H 2(R). It is because
e−2πiajbm· in (3.4) is 1

ajb
Z-periodic with respect to addition, and the period varies

with j , while �m in (3.3) is b-dilation periodic, and it is unrelated to j .
It is well known that Fourier transform plays a significant role in time-frequency

analysis for L2(R). But it cannot be used in time-frequency analysis for L2(R+)
since L2(R+) is not closed under Fourier transform. For doing time-frequency
analysis for L2(R+), we introduce *β transform with β > 1 based on the dilation
operation.

Definition 3.1 Given a constant β > 1, define*β : L2(R+)→ L2
loc(R+ ×R) by

*βf (x, ξ) =
∑
l∈Z
β
l
2 f (βlx)e−2πilξ (3.5)

for f ∈ L2(R+) and a.e. (x, ξ) ∈ R+ × R.

Remark 3.2

(i) *β is well-defined since

ˆ βj+1

βj

∑
l∈Z
βl |f (βlx)|2dx = ‖f ‖2

L2(R+) <∞ for j ∈ Z and f ∈ L2(R+).
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(ii) By [22, Lemma 2.3],*β has the quasi-periodicity:

*βf (β
jx, ξ +m) = β− j

2 e2πijξ*βf (x, ξ) for f ∈ L2(R+), m,

j ∈ Z and a.e. (x, ξ) ∈ R+ ×R,

and*β is a unitary operator from L2(R+) onto L2([1, β)× [0, 1)).

The works on MD-system frames may be summarized as follows. Readers refer
to [20–23, 31] for details.

Case 1 a = b.
In this case, write MD(", a, b) = MD(", a) for simplicity. Frames of the

form MD(", a) and dual frame pairs of the form (MD(", a), MD(�, a))
were characterized using the *a-transform (take β = a in *β); given a
frame MD(", a), a *a-transform expression of � was obtained such that
(MD(", a), MD(�, a)) is a pair of dual frames; frames of the form MD(", a)
with " being a set of characteristic functions were studied. On the other hand,
frame properties of vector-valued MD-systems were considered.

Case 2 logb a = p
q

with p and q being coprime positive integers.
In this case, bp = aq . Write β = bp. Completeness and frame characterization

of MD(ψ, a, b)withψ ∈ L2(R+)were presented in terms of*β-transform-based
matrix-valued functions. A density result was also obtained, which reads as

Theorem 3.3 For a, b > 1 with logb a being a rational number, the following are
equivalent:

(i) logb a ≤ 1.
(ii) There exists ψ ∈ L2(R+) such that MD(ψ, a, b) is complete in L2(R+).

(iii) There exists ψ ∈ L2(R+) such that MD(ψ, a, b) is a frame for L2(R+).

Acknowledgement This work was supported by National Natural Science Foundation of China
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Some Notes on the Inequalities
for Parseval Generalized Continuous
Frames

Dengfeng Li and Lingge Liu

Abstract In this short article, we establish some new inequalities for Parseval
generalized continuous frames and give another proof of existing two inequalities
for Parseval generalized continuous frames.

Keywords Frame · Generalized continuous frame · Parseval generalized
continuous frame

Mathematics Subject Classification (2010) Primary 42C15

1 Introduction

Hilbert spaces are the natural framework for mathematical version of many areas
of physics, quantum mechanics and image analysis. Often the main problem is to
decompose an arbitray element in terms of simpler basic elements. Then what are
these simpler basic elements and how efficient are they? The natural choice for
these basic elements is an orthonormal basis of the Hilbert space of the problem.
But orthonormal bases are difficult to work with because they decompose every
element in a unique way. This lack of flexibility was not welcomed by practitioners
in the field. Thus a more flexible alternative was formally introduced by Duffin and
Schaeffer [1] in 1952 for studying some deep problems in nonharmonic Fourier
series. This alternative is called a frame (discrete frame). Discrete frames, which
are redundant sets of elements that provide robust, stable and usually non-unique
representations of every element in underlying Hilbert space, have been a focus
of study in the last three decades in applications where redundancy plays a useful

D. Li (�)
School of Mathematics and Physics, Wuhan Textile University, Wuhan, PR China

L. Liu
School of Mathematics and Statistics, Henan University, Kaifeng, PR China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Cerejeiras et al. (eds.), Current Trends in Analysis, its Applications
and Computation, Research Perspectives,
https://doi.org/10.1007/978-3-030-87502-2_65

653

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87502-2_65&domain=pdf
https://doi.org/10.1007/978-3-030-87502-2_65


654 D. Li and L. Liu

and vital role, e.g., signal and image processing [2], neural network [3], digital
communication [4, 5] and so on.

With the in-depth study of discrete frame theory, discrete frames have been
extended to various more general forms, such as continuous frame, generalized
frame and others. In particular, the concept of generalized continuous frames on
the basis of continuous frame and generalized frame was proposed in [6]. Let H
and V be complex Hilbert spaces, (�, μ) be a measure space with positive radon
measure μ, {Vω : ω ∈ �} be a sequence of closed subspaces of V and B(H,Vω) be
the collection of all bounded linear operators from H into Vω. The definition of a
generalized continuous frame is as follows.

Definition 1.1 A sequence F ≡ {�ω ∈ B(H,Vω) : ω ∈ �} is called a generalized
continuous frame for H with respect to {Vω : ω ∈ �}, if
(1) F is weakly-measurable, i.e., for any f ∈ H, ω → �ω(f ) is a measurable
function on �;
(2) there exist two positive constants A and B such that

A‖f ‖2 ≤
ˆ

�

‖�ωf ‖2dμ(ω) ≤ B‖f ‖2, ∀ f ∈ H, (1.1)

where A and B are called the lower and the upper generalized continuous frame
bounds, respectively. If only the right-hand inequality of (1.1) holds, then we call
{�ω : ω ∈ �} a generalized continuous Bessel sequence for H with respect to
{Vω : ω ∈ �}. We call {�ω : ω ∈ �} an A-tight generalized continuous frame if
A = B. Moreover, if A = B = 1, {�ω : ω ∈ �} is called a Parseval generalized
continuous frame.

Remark 1.2 If Vω = C for all ω ∈ �, then �ω is a bounded linear functional
from H to C, thereby, by the Riesz representation theorem, there exists gω ∈ H
such that �ω(f ) = 〈f, gω〉 for all f ∈ H. Therefore, in the case, the generalized
continuous frame is just the continuous frame [7–9]. If � is a countable set and μ
is a counting measure, then the generalized continuous frame is just the generalized
frame in [10].

In the study of efficient algorithms for signal reconstruction, some equalities
and inequalities for Parseval discrete frames are found in [11, 12]. Afterwards, the
results related to these equalities and inequalities are obtained in [13, 14], and the
equalities and inequalities related to generalized frames are also established [15, 16].
In particular, the following equalities and inequalities of generalized continuous
frames are presented in [17].
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If {�ω : ω ∈ �} is a Parseval generalized continuous frame for H with respect
to {Vω : ω ∈ �}, then for all f ∈ H, and �1 ⊂ � and �c1 = � \�1,

ˆ

�1

‖�ωf ‖2dμ(ω)+
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

=
ˆ

�c1

‖�ωf ‖2dμ(ω)

+
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

, (1.2)

and

3

4
‖f ‖2 ≤

ˆ

�1

‖�ωf ‖2dμ(ω)+
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

≤ ‖f ‖2, (1.3)

where �∗ω is the adjoint operator of �ω. In the discrete case, (1.2) and (1.3) are in
the following form:

∑
k∈J

|〈x, xk〉|2 +
∥∥∥∥∥∥
∑
k∈Jc

〈x, xk〉xk
∥∥∥∥∥∥

2

=
∑
k∈Jc

|〈x, xk〉|2 +
∥∥∥∥∥∥
∑
k∈J
〈x, xk〉xk

∥∥∥∥∥∥
2

,

and

3

4
‖x‖2 ≤

∑
k∈J

|〈x, xk〉|2 +
∥∥∥∥∥∥
∑
k∈Jc

〈x, xk〉xk
∥∥∥∥∥∥

2

≤ ‖x‖2,

respectively, where {xk}k∈N is a Parseval frame for H, that is, ‖x‖2 =
∑
k∈N

|〈x, xk〉|2

for all x ∈ H, where N is a countable set, and J ⊂ N, Jc = N \ J.
The objective of this short article is twofold. One is to establish new inequalities

for Parseval generalized continuous frames based on the equality (1.2), the other is
to give another proof of inequalities (1.3).

The organization of this article is as follows. Section 2 lists the auxiliary lemmas
used in the proof of main results, and the main results and their proofs will be given
in the last section.

2 Two Auxiliary Lemmas

In order to prove main results, we need two auxiliary conclusions which are listed
in this section.
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Lemma 2.1 ([18]) Suppose that T is a bounded linear operator on H. If T is
positive, then T is self-adjoint and there exists a unique bounded self-adjoint
operator V such that T = V 2. Moreover, if T is invertible, then V is also invertible.

Lemma 2.2 ([19]) Suppose that S and T are bounded self-adjoint positive
operators. If ST = T S, then ST is positive.

In addition, the following operators S�1 and S�c1 are also needed in the proof
of main results. Let {�ω : ω ∈ �} is a generalized continuous frame for H with
respect to {Vω : ω ∈ �}. For any �1 ⊂ �, set �c1 = �\�1. If the operators S�1

and S�c1 are defined by

S�1f =
ˆ

�1

�∗ω�ωf dμ(ω), S�c1
f =

ˆ

�c1

�∗ω�ωf dμ(ω),

then it is easy to verify that S�1 and S�c1 are well defined, bounded linear and
positive.

3 Main Results and their Proofs

It is obvious to see that for all f ∈ H, (1.2) can be written as

ˆ

�1

‖�ωf ‖2dμ(ω)−
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

=
ˆ

�c1

‖�ωf ‖2dμ(ω)

−
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

. (3.1)

It follows from the definitions of S�1 and S�c1 that for all f ∈ H, (3.1) can be
rewritten as

ˆ

�1

‖�ωf ‖2dμ(ω)−
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

= 〈S�1f, f 〉 − 〈S�1f, S�1f 〉

= 〈(S�1 − S2
�1
)f, f 〉. (3.2)

Now, main results and their proofs are stated as follows.

Theorem 3.1 Suppose that {�ω : ω ∈ �} is a Parseval generalized continuous
frame for H with respect to {Vω : ω ∈ �}. Then for all f ∈ H, we have

0 ≤
ˆ

�1

‖�ωf ‖2dμ(ω)−
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

≤ 1

4
‖f ‖2. (3.3)
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Proof Since S�1 and S�c1
are bounded positive operators, by Lemma 2.1 , S�1

and S�c1
are self-adjoint, thereby S�1 − 1

2 I are also self-adjoint, where I is the
identity operator on H. Employing (3.2) yields that

ˆ

�1

‖�ωf ‖2dμ(ω)−
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

=〈(S�1 − S2
�1
)f, f 〉

=
〈(
I

4
−
(
S�1 −

I

2

)2
)
f, f

〉

=1

4
‖f ‖2 −

∥∥∥∥
(
S�1 −

I

2

)
f

∥∥∥∥
2

≤1

4
‖f ‖2.

Note that {�ω : ω ∈ �} is a Parseval generalized continuous frame, thus S�1 +
S�c1

= I . It derives from S�1S�c1
= S�c1

S�1 and Lemma 2.2 that S�1S�c1
is a

positive operator. Therefore by (3.2),

ˆ

�1

‖�ωf ‖2dμ(ω)−
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

= 〈S�1 (I − S�1)f, f 〉

= 〈S�1S�c1
f, f 〉 ≥ 0.

So (3.3) holds. The proof is completed. ��
Corollary 3.2 Suppose that {�ω : ω ∈ �} is a Parseval generalized continuous
frame for H with respect to {Vω : ω ∈ �}. Then for all f ∈ H, we have

1

2
‖f ‖2 ≤

∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2

+
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

≤ ‖f ‖2. (3.4)

Proof Employing both (3.1) and (3.3), for all f ∈ H, we have

0 ≤
ˆ

�c1

‖�ωf ‖2dμ(ω)−
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

≤ 1

4
‖f ‖2. (3.5)
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Combining (3.3) with (3.5), we obtain

0 ≤
ˆ

�c1

‖�ωf ‖2dμ(ω)+
ˆ

�1

‖�ωf ‖2dμ(ω)

−
⎛
⎝
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

+
∥∥∥∥
ˆ

�1

�∗ω�ωf dμ(ω)
∥∥∥∥

2
⎞
⎠

≤1

2
‖f ‖2. (3.6)

Since {�ω : ω ∈ �} is a Parseval generalized continuous frame, we have

f ∈ H,
ˆ

�c1

‖�ωf ‖2dμ(ω)+
ˆ

�1

‖�ωf ‖2dμ(ω) = ‖f ‖2,

this and (3.6) imply that (3.4) holds. The proof is ended. ��
The inequalities (1.3) have been obtained in [17]. Here we give another proof of

these inequalities. For completeness, we describe them in the form of a theorem as
follows.

Theorem 3.3 Suppose that {�ω : ω ∈ �} is a Parseval generalized continuous
frame for H with respect to {Vω : ω ∈ �}. Then for all f ∈ H, (1.3) holds, namely

3

4
‖f ‖2 ≤

ˆ

�1

‖�ωf ‖2dμ(ω)+
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

≤ ‖f ‖2.

Proof Since S�1S�c1
is a positive operator, it follows from S�1S�c1

= S�c1 − S2
�c1

that 〈S2
�c1
f, f 〉 ≤ 〈S�c1f, f 〉. So

∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

≤
ˆ

�c1

‖�ωf ‖2dμ(ω).

Because {�ω : ω ∈ �} is a Parseval generalized continuous frame, we get

ˆ

�1

‖�ωf ‖2dμ(ω)+
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

≤
ˆ

�1

‖�ωf ‖2dμ(ω)

+
ˆ

�c1

‖�ωf ‖2dμ(ω) = ‖f ‖2.
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On the other hand, for all f ∈ H, we have

ˆ

�1

‖�ωf ‖2dμ(ω)+
∥∥∥∥∥
ˆ

�c1

�∗ω�ωf dμ(ω)
∥∥∥∥∥

2

=〈S�1f, f 〉 + 〈S�c1f, S�c1f 〉

=〈(I − S�c1 + S2
�c1
)f, f 〉

=3

4
‖f ‖2 +

∥∥∥∥
(
S�c1

− 1

2
I

)
f

∥∥∥∥
2

≥3

4
‖f ‖2.

So (1.3) is true. This completes the proof. ��
Remark 3.4 It is easy to see that the inequality (3.4) can be also proved with (3.3)
and the inequality in Theorem 3.3.
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Centering Projection Methods
for Wavelet Feasibility Problems

Neil D. Dizon, Jeffrey A. Hogan, and Scott B. Lindstrom

Abstract We revisit the feasibility approach to the construction of compactly
supported smooth orthogonal wavelets on the line. We highlight its flexibility and
illustrate how symmetry and cardinality properties are easily embedded in the
design criteria. We solve the resulting wavelet feasibility problems using recently
introduced centering methods, and we compare performance. Solutions admit real-
valued compactly supported smooth orthogonal scaling functions and wavelets with
near symmetry and near cardinality properties.
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Circumcentering
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1 Wavelet Construction as a Feasibility Problem

Wavelets are traditionally constructed through multiresolution analysis (MRA)
which was introduced by Mallat [17] and Meyer [18]. Following MRA, Daubechies
derived the first known examples of compactly supported smooth wavelets with
orthonormal shifts [7, 8]. While these wavelets have been demonstrably use-
ful in many signal processing applications, symmetry and cardinality properties
are also often desired. It is known that symmetry is incompatible with real-
valuedness, orthogonality, smoothness and compact support [8, Theorem 8.1.4].
In the same way, the cardinality property cannot be imposed together with all
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of compact support, continuity, and orthogonal shifts [20]. Recognizing these
theoretical obstructions, we relax perfect symmetry or cardinality and impose only
near symmetry or near cardinality. A construction technique that readily accounts
for these design criteria and that easily extends to higher dimensions is preferable.

Wavelet construction has been recently formulated as a feasibility problem orig-
inally aimed at generating compactly supported smooth wavelets with orthonormal
shifts [12–14]. This approach handily accounts for other design criteria and allows
for construction of non-tensorial wavelets in higher dimensions.

Outline and Contributions In the remainder of this section, we recall one
reformulation of wavelet construction as a feasibility problem. In Sect. 2, we
recall the two centering methods we will compare: a generically proper variant
of circumcentering reflections method (CRM) [1, 3–5] and a new method due
to Lindstrom [15]. Section 3 contains our principal contribution: an experimental
comparison of 2-stage global-then-local search methods, first introduced in [10],
that combine the Douglas–Rachford method together with centering methods. This
is the first such comparison for a feasibility problem, and also the first for a
nonconvex problem. The results shed light on the algorithms more generally, while
offering a path forward for wavelet feasibility problems specifically.

MRA Conditions and Wavelet Properties The traditional approach to the con-
struction of wavelet orthonormal bases is based on MRA. For a more detailed
discussion of the concepts that follow, refer to [8, 9, 12–14]. Henceforth, f̂ denotes
the Fourier transform of a function f ∈ L2(R,C), A is the conjugate of A and
denotes elementwise conjugation when A is a matrix, A[j, k] is the (j, k)-entry of
a matrix A, ‖A‖ is the Frobenius norm of the matrix A, and cl(S) is the closure of a
set S.

Definition 1.1 A multiresolution analysis for L2(R,C) consists of a sequence of
closed subspaces {Vj }j∈Z of L2(R,C) and a scaling function ϕ ∈ V0 such that the
following conditions hold:

(i) the spaces Vj are nested, i.e., Vj ⊂ Vj+1 for all j ∈ Z,

(ii) cl
(⋃

j∈Z Vj
)
= L2(R,C) and

⋂
j∈Z Vj = {0},

(iii) f (·) ∈ V0 if and only if f (· − k) ∈ V0 for all k ∈ Z,
(iv) f (·) ∈ Vj if and only if f (2(·)) ∈ Vj+1 for all j ∈ Z, and
(v) {ϕ(· − k)}k∈Z forms an orthonormal basis for V0.

If ϕ arises from an MRA, then we may write 1
2ϕ

(
x
2

) = ∑
k∈Z hkϕ(x − k) with

{hk}k∈Z ∈ &2(Z). Taking the Fourier transforms of both sides of this equation, we
obtain the scaling equation in the Fourier domain given by ϕ̂(2ξ) = H(ξ)ϕ̂(ξ)

where H(ξ) = ∑
k hke

−2πikξ is the scaling filter. Moreover, we can find a wavelet
function ψ ∈ V1 \ V0 satisfying 1

2ψ
(
x
2

) = ∑
k∈Z gkϕ(x − k) where {gk}k∈Z ∈

&2(Z). Taking the Fourier transforms of both sides of this equation, one obtains
ψ̂(2ξ) = G(ξ)ϕ̂(ξ) where G(ξ) = ∑

k gke
−2πikξ is the wavelet filter. If ϕ has

orthonormal shifts and
{
ψj,k := 2−j/2ψ(2−j x − k)}

j,k∈Z forms an orthonormal
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basis for L2(R,C), then the wavelet matrix

U(ξ) :=
[

H(ξ) G(ξ)

H
(
ξ + 1

2

)
G
(
ξ + 1

2

)
]

(1.1)

is unitary for almost every ξ ∈ R and H(0) = 1. This definition introduces a
consistency condition that U(ξ + 1

2 ) = JU(ξ) where J is the row-swap matrix.
The effectiveness of a wavelet orthonormal basis

{
ψj,k

}
j,k∈Z lies in its efficient

analysis and synthesis of signals. To allow for speedy and accurate computation
of the wavelet coefficients, we desire compact support. The scaling function and
wavelet are compactly supported on the interval [0,M − 1] if and only if we
can write H(ξ) = ∑M−1

k=0 hke
2πikξ and G(ξ) = ∑M−1

k=0 gke
2πikξ as trigonometric

polynomials of degreeM−1 [12, 14]. Thus, we are able to write the wavelet matrix
in the form

U(ξ) =
M−1∑
k=0

Ake
2πikξ where Ak =

[
hk gk

(−1)khk (−1)kgk

]
.

Additionally, if ψ has D continuous and bounded derivatives, then this allows
for better approximation using relatively fewer wavelet coefficients. Consequently,
H , G and U satisfy

dkH(ξ)

dξk

∣∣∣∣
ξ= 1

2

= 0 ⇐⇒ dkG(ξ)

dξk

∣∣∣∣
ξ=0

= 0 ⇐⇒
(
dkU(ξ)

dξk

∣∣∣∣
ξ=0

)
[1, 2] = 0

for all k ∈ {0, 1, . . . ,D}, where the differentiation of the matrix is interpreted
element-wise [8, 12, 14].

Furthermore, symmetry is another design criterion that we want ϕ and ψ to
possess. It is known that symmetric filters applied to image processing can deal
better with boundaries than asymmetric ones. A scaling function ϕ is symmetric
about x = P ∈ (0,M − 1) if and only if H(ξ) = e4πiP ξH(−ξ). If K =
diag(−1, 1) ∈ C

2×2, then the symmetry condition can be written in terms of
the wavelet matrix as U(ξ) = e4πiP ξKU(ξ)K [9]. Note that when the scaling
function is symmetric, the associated wavelet is either symmetric or anti-symmetric
depending on the length of support. For conciseness, we simply say that the wavelet
is symmetric.

On the other hand, cardinality is also often sought in certain applications. A
scaling function ϕ is cardinal at P ∈ Z if ϕ(k) = δkP for all k ∈ Z, where δ is the
Kronecker delta. A cardinal ϕ admits a reconstruction formula for recovery of any
function in V0 from its integer samples. A necessary condition for ϕ to be cardinal
at P ∈ Z is H(ξ)+ (−1)PH(ξ + 1

2 ) = e2πiP ξ [9]. Note that cardinality is desired
only for the scaling function. For brevity in describing our wavelets, any mention of
cardinal wavelet means that the associated scaling function is cardinal.
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If we further want to guarantee that ϕ and ψ are real-valued, we impose the
condition that H(ξ) = H(−ξ) and G(ξ) = G(−ξ) which is equivalent to U(ξ) =
U(−ξ) [9, 12].

At this point we see that wavelet construction may be reduced to generating a
matrix U(ξ) satisfying the above conditions.

Discretization by Uniform Sampling Since a trigonometric polynomial of degree
M − 1 is determined byM points, we discretize U(ξ) by a uniform sampling atM
points in { j

M
}M−1
j=0 ⊆ [0, 1). By denoting each sample point by Uj = U(

j
M
), we

form an ensemble U := (U0, U1, . . . , UM−1) ∈ (C2×2)M . The coefficient matrices
Ak are computed from an ensemble through an invertible M-point discrete Fourier
transform FM : (C2×2)M → (C2×2)M : U �→ A := (A0, . . . , AM−1) where

Ak = (FMU)k = 1

M

M−1∑
j=0

Uje
−2πijk/M, for k ∈ {0, 1, . . . ,M − 1} . (1.2)

The discretized version of the consistency condition requires Uj+M
2
= JUj for

every j ∈ {0, 1, . . . ,M − 1}. For U(ξ) to be unitary almost everywhere, we need
to enforce U(ξ) to be unitary at 2M samples. Given the sample points in U , the
other set of M samples may be computed to form another ensemble using Ũ :=
F−1
M χMFM(U), where (χM)j = eπij/M for j = {0, 1, . . . ,M − 1}. Moreover,

the regularity condition is imposed by forcing (
∑M−1
j=0 j

&Aj)[1, 2] = 0 for all & ∈
{0, 1, . . . ,D} where

M−1∑
j=0

j&Aj = 1

M

M−1∑
k=0

α&kUk and α&k = 1

M

M−1∑
j=0

j&e−2πikj/M .

For the symmetry condition, we require Uj = e4πiPj/MKUM−jK for all j ∈
{1, . . . , M2 }. Cardinality is imposed by forcing Uj [1, 1] + (−1)PUj+M

2
[1, 1] =

e2πiPj/M , and the real-valuedness condition requires Uj = UM−j for j ∈
{1, . . . , M2 }.
The Wavelet Feasibility Problem The feasibility problem is to find a point in the
intersection of a finite number of constraint sets. To reformulate wavelet construc-
tion as a feasibility problem, we treat the wavelet properties as constraints imposed
on the discrete version of the wavelet matrix U(ξ). We denote the collection of
ensembles in (C2×2)M that satisfies the consistency condition by (C2×2)MJ , and the
collection of all 2-by-2 unitary matrices by U(2). For an even integer M ≥ 4 and
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D = M−2
2 (unless otherwise specified), we define B1, B2, B3, B4, B

(S)
5 , B

(C)
5 ⊆

(C2×2)MJ as follows.

B1 :=
{
U : U0 =

(
1 0
0 z

)
, |z| = 1, Uj ∈ U(2), j ∈ {0, 1, . . . , M2 }

}
,

B2 :=
{
U : (FMχM(FM)−1(U))j ∈ U(2), j ∈ {0, 1, . . . , M2 }

}
,

B3 :=
{
U :

(∑M−1
j=0 α&kUk

)
[1, 2] = 0, 0 ≤ & ≤ D

}
,

B4 :=
{
U : Uj = UM−j , j ∈ {1, 2, . . . , M2 }

}
,

B
(S)
5 :=

{
U : ‖Uj − e2πiPj/MKUM−jK‖ < γ, j ∈ {1, 2, . . . ,M/2}

}

B
(C)
5 :=

{
U :

∣∣∣Uj [1, 1] + (−1)P U
j+M

2
[1, 1] − e2πiPj/M

∣∣∣ < γ, j ∈ {1, 2, . . . , M2 }
}
.

Note thatB1 andB2 are nonconvex constraint sets that correspond to the unitarity
condition at 2M sample points. The subspaces B3 and B4 are constraint sets for
regularity and real-valuedness, respectively. Moreover, B(S)5 and B(C)5 are convex
sets that promote near symmetry and near cardinality properties, respectively.
Notice the introduction of a small positive number γ in the definition of B(S)5 and

B
(C)
5 to get around the theoretical obstructions for obtaining perfect symmetry and

cardinality [9]. In summary, we have the following feasibility problems.

Problem 1.2 (Nearly Symmetric Wavelets) The feasibility problem for construct-
ing compactly supported real-valued smooth nearly symmetric orthogonal wavelets
is to find an ensemble U ∈⋂4

k=1 Bk ∩ B(S)5 ⊆ (C2×2)MJ .

Problem 1.3 (Nearly Cardinal Wavelets) The feasibility problem for constructing
compactly supported real-valued smooth nearly cardinal orthogonal wavelets is to
find an ensemble U ∈⋂4

k=1 Bk ∩ B(C)5 ⊆ (C2×2)MJ .

2 Centering Methods for Feasibility Problems

The original works that solved wavelet feasibility problems for compactly supported
smooth orthogonal wavelets employed the Douglas–Rachford (DR) algorithm
[11, 16] to solve Pierra’s product space reformulation [19] of the feasibility
problem. The method demonstrated surprising robustness in this context [6, 12–14].
Convergence plots frequently feature the tell-tale characteristics of local spiraling
during convergence; such features are described in [15]. The spiraling is associated
with longer runs for numerical implementations [12] and presents an opportunity to
accelerate convergence [15].
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In this section, we recall the DR operator, the generalized circumcentered
reflections method operator (GCRM) [4, 10] and the new centering operator LT
introduced by Lindstrom in [15]. We expect the two centering methods to accelerate
convergence to feasible solutions.

Let H be a real Hilbert space with induced norm ‖ · ‖. For a closed subset C of
H, we define the operator PC : H → C by PC(x) = argminz∈C‖z − x‖; it is a
selector for the closest point projection for C. Its associated reflector is defined as
RV := 2PV − Id where Id is the identity map. Given three points x, y, z ∈ H, we
denote C(x, y, z) to be their circumcenter, which is equidistant to the given points
and lies on the affine subspace they define. The circumcenter exists whenever x, y, z
are not simultaneously distinct and colinear; for more on existence and formulae for
computation, see [1, 2].

Definition 2.1 Let V andW be nonempty subsets of H.

1. The DR operator for V andW is defined as T (x) := x − PV (x)+ PWRV (x).
2. The circumcentering reflections method operator is defined as CRM(x) :=
C(x,RV (x), RWRV (x)). For history and properties, see [3–5].

3. The GCRM operator is defined as

CV,W (x) :=
{
T (x) if x,RV x,RWRV x are colinear;

CRM(x) otherwise.

4. The centering operator LT from [15] is defined as:

LT (x) :=
{
C (x, 2T (x)− x, πT (x)) if x, 2T (x)− x, πT (x) are not colinear;

T 2(x) otherwise.

where πT (x) = 2
(
T 2(x)− T (x))+ 2Pspan(T 2(x)−T (x)(T (x)− x)+ x.

Lindstrom discovered that for some prototypical feasibility problems for which
Lyapunov functions are known, CRM returns the minimizer of a quadratic surrogate
for the local Lyapunov function [15]. Lindstrom showed that LT ’s lack of depen-
dence on subproblems (in our case, reflections) allows it to recapture this property
in settings where CRM may not, such as for the primal-dual implementation of
ADMM/Douglas–Rachford for basis pursuit. In our setting, this possible improve-
ment in stability carries the computational cost that one application of LT requires
two applications of the pair of projections PV and PW , instead of just one pair for
CRM.

For numerical implementations, we set up a 2-stage DR-GCRM and a 2-stage
DR-LT . In stage 1, we exploit the greater global robustness of DR to find local
basins of attraction to feasible points, and thereafter, in stage 2, we apply centering
methods to obviate local spiraling thereto. It has already been shown experimentally
that this approach consistently outperforms a full run of DR in the context of solving
wavelet feasibility problems [10]. In the next section, we use GCRM and LT as
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the local methods of 2-stage global-then-local search algorithms, in order to solve
Problems 1.2 and 1.3.

3 Numerical Results

We use a product space technique similar to those employed in [10, 12–14] to
convert our many-set feasibility problems into 2-set problems amenable to solution
by the methods described above.

Problem 1.2: The constraints for obtaining nearly symmetric wavelets are

V := B1 × B2 × (B3 ∩ B4)× B(S)5 ⊆
(
(C2×2)MJ

)4
,

W :=
{
(Uj )4j=1 ∈

(
(C2×2)MJ

)4 : U1 = U2 = U3 = U4

}
.

Problem 1.3: The constraints for obtaining nearly cardinal wavelets are

V := B1 × B2 × (B3 ∩ B4)× B(C)5 ⊆
(
(C2×2)MJ

)4
,

W :=
{
(Uj )4j=1 ∈

(
(C2×2)MJ

)4 : U1 = U2 = U3 = U4

}
.

The projection of a 4-tuple of ensembles onto W is obtained by averaging the
4 ensembles. Notice that the set V and its projection PV are different for the two
problems, though this should create no confusion because we will only discuss one
problem at a time. We have PV = PB1 ×PB2 × (PB3PB4)×PB(η)5

, where η is C or S

respectively for the two problems. Because PB3(B4) ⊂ B4 and B4 is a subspace, the
identity PB3PB4 = PB3∩B4 admits the constraint-reduction reformulation we have
used; see [6].

In what follows, we solve Problems 1.2 and 1.3 with M = 6,D = 1 and
γ = 0.5. We compare the performance of 2-stage DR-GCRM with 2-stage DR-
LT . We initialize at 100 random ensembles that satisfy the consistency condition.
Throughout, we let {xn}n∈N be the sequence of iterates generated by the projection
algorithm under consideration. We fix a tolerance ε := 10−9 and use the stopping
criterion εn := ‖PV PW(xn) − PW (xn)‖ < ε, whereupon PW (xn) is a feasible
point. In implementing a 2-stage method, we first run DR until the gap distance
εn reaches a 10−2 threshold; thereafter we switch to applying GCRM or LT . We
declare a particular run to have solved the feasibility problem whenever it attains
the threshold of ε within 20,000 iterations. We provide statistics on the number of
iterations needed, which is our main performance measure. We do not report the
number of iterates required for εn to obtain the threshold 10−2, because it is the
same for both 2-stage algorithms. We only report the number of iterates needed
thereafter. Examples of scaling functions derived from solutions of the wavelet
feasibility problems are shown in Fig. 1.
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Fig. 1 Scaling functions plotted by employing the cascade algorithm on filters generated from the
feasible ensembles solved in Problems 1.2 and 1.3, respectively

Table 1 Performance during stage 2 of a 2-stage search

When solved by all

Algorithm Cases solved Solved by all Wins Q1 Mean Q3 Median

Problem 1 DR 51 51 0 194 211 215 201

GCRM 51 51 13 36 28 40 38

LT 51 51 38 29 36 39 33

Problem 2 DR 96 79 0 176 182 186 185

GCRM 79 79 22 31 33 35 33

LT 96 79 57 28 32 33 31

Table 1 summarizes the numerical results. LT solved every problem DR solved.
For Problem 1.3, GCRM was less stable than LT , which is consistent with
what one might expect, given that LT is constructed to retain the property of
minimizing a surrogate Lyapunov function in situations where GCRM’s dependence
on subproblems may cause instability [15]. Interestingly, for Problem 1.2, GCRM
also solved every problem DR solved. When both algorithms converged, LT and
GCRM performed quite similarly, which is what one would expect if both methods
are constructing, from their respective sampling points, relatively similar quadratic
surrogates for the underlying Lyapunov function. However, one should remember
that computing a single centering step of LT requires computing twice the number
of projection substeps that are needed by a single step of GCRM.

4 Conclusion

We have shown how the symmetry and cardinality constraints are readily accounted
for in the feasibility approach to wavelet construction. Numerical results also shed
light on local behaviour of LT and GCRM. We speculate that both are viable
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heuristics that may be applied to deal with wavelet feasibility problems for higher
dimensional constructions, and we suggest this as the next step of research.
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Some Topics on the Gabor Wavelet
Transformation

Keiko Fujita

Abstract We studied the Gabor wavelet transform of analytic functionals on the
sphere in general dimension. Then we studied the Gabor wavelet transformation
on the two-dimensional sphere and its inverse transformation. In this note, we
review our previous results and we consider the relationship among the Fourier
transformation, the windowed Fourier transformation whose windows function is
given by a Gaussian function, and the Gabor wavelet transformation on the two-
dimensional unit sphere.

Keywords Gabor wavelet transformation
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1 Introduction

In [4], we call the windowed Fourier transformation whose windows function is the
Gaussian function by the ”Gabor transformation". We studied the Gabor transform
and the Gabor wavelet transform of analytic functional on the sphere in general
dimension. Then, in [5], we constructed the inverse Gabor wavelet transformation
concretely in the two dimensional sphere by using our results in [1]. Further in [6]
we treated some examples of the Gabor wavelet transform.

In this note, to understand the Gabor wavelet transformation on the sphere, we
compare the images of a harmonic polynomial under the Fourier transformation,
under the windowed Fourier transformation and under the Gabor wavelet transfor-
mation on the two-dimensional unit sphere. Note that we call the Gabor wavelet
transformation the Gabor transformation in [2, 4] and [5].
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2 Gabor Wavelet Transformation

2.1 Fourier Transformation on the Sphere

Let S2 be the unit sphere in R3, that is,

S2 = {(x1, x2, x3) ∈ R3; x2
1 + x2

2 + x2
3 = 1}.

For z = (z1, z2, z3) ∈ C3 and w = (w1, w2, w3) ∈ C3, we set

z ·w = z1w1 + z2w2 + z3w3, z2 = z · z.

For an integrable function f on S2, we define the Fourier transform of f by

(Ff )(w) =
ˆ

S2
e−ix·wf (x)d�x, (1)

where d� is the normalized invariant measure on S2. Note that vol(S2) = 4π .
For the square integrable functions f and g on S2, we define a sesquilinear form

(f, g)S2 by

(f, g)S2 ≡
ˆ

S2
f (x)g(x)d�x.

Then ( · , · )S2 gives an inner product and we denote by L2(S2) the space of square
integrable functions on S2 with the inner product (· , · )S2 , and the norm ‖ · ‖S2 of f
is given by ‖f ‖S2 = √

(f, f )S2 .

2.2 The Gaussian Function on the Sphere

We consider the Gaussian function on the sphere. For b > 0, put

fy(x) = 1

b
exp(−(x − y)2/(2b2)), y ∈ R3.

For x, y ∈ S2,

fy(x) = 1

b
exp(−(1− x · y)/b2).
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For fixed y ∈ S2, let θ be the angle between x and y. Then

fy(x) = fy(θ) = 1

b
exp(−(1− cos θ)/b2).

For a sufficiently small b > 0 and fixed y ∈ S2 the Gaussian function fy(x) looks
like the Delta function with peak at y.

2.3 Windowed Fourier Transformation on the Sphere

Let b ∈ R\{0} and putwb(x) = 1
b

exp(−x2/(2b2)). For f ∈ L2(S2) and ω, τ ∈ C3,
we define the windowed Fourier transformation WbF with the window function
wb(x) by

WbF : f �→ (WbFf )(τ, ω) =
ˆ

S2
e−ix·ωwb(x − τ )f (x)d�x

= 1

b
e
−1−τ2

2b2

ˆ

S2
e−ix·(ω+iτ/b2)f (x)d�x

= 1

b
e
−1−τ2

2b2

ˆ

S2
e−ix·ωex·τ/b2

f (x)d�x

= 1

b
e
− 1+τ2

2b2 (Ff )(ω + iτ/b2) = 1

b
e
− 1+τ2

2b2 (Fg)(ω), (2)

where g(x) = ex·τ/b2
f (x). Note that we take b = 1 in our previous papers.

2.4 Gabor Wavelet Transformation on the Sphere

Let ω0 ∈ R3 \ {0} be fixed. Put

Gω0(x) = e−x
2/2e−ix·ω0 .

For f ∈ L2(S2) and a ∈ R+ = {x : x > 0}, we define the Gabor wavelet
transformation Gω0 by

Gω0 : f �→ (Gω0f )(τ, a) =
1

a

ˆ

S2
Gω0

(
x − τ
a

)
f (x)d�x (3)

= 1

a

ˆ

S2
e−i

x−τ
a ·ω0e−

1
2 (

x−τ
a )

2
f (x)d�x
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= 1

a
e
− 1+τ2

2a2 eiτ ·
ω0
a

ˆ

S2
e−ix·

ω0
a e

x·τ
a2 f (x)d�x

= 1

a
e
− 1+τ2

2a2 eiτ ·
ω0
a

ˆ

S2
e
−ix·( ω0

a +i τa2 )f (x)d�x

= e
− 1+τ2

2a2 eiτ ·
ω0
a

a
(Ff )

(ω0

a
+ i τ
a2

)
= e

− 1+τ2

2a2 eiτ ·
ω0
a

a
(Fg)

(ω0

a

)
,(4)

where g(x) = exp(x · τ/a2)f (x).
By (1), (2) and (4), if we can construct the inverse mapping of the Fourier

transformation, we can find the inverse mappings of the windowed Fourier transfor-
mation, and of the Gabor wavelet transformation. We will treat the inverse mapping
in Sect. 5.

3 Spherical Harmonics Expansion

To consider the images of (1), (2) and (4), we recall some notations.
Let Pk,2(t) be the Legendre polynomial of degree k and of dimension 3:

Pk,2(t) =
(−1

2

)2 1

k!
dk

dtk
(1− t2)k =

[k/2]∑
l=0

(−1)l
�(k − l + 1/2)

l!(k − 2l)!√π (2t)
k−2l .

We define the extended Legendre polynomial by

Pk,2(z,w) = (
√
z2)k(

√
w2)kPk,2

(
z√
z2
· w√
w2

)
, z,w ∈ C3.

Note that Pk,2(z,w) = Pk,2(w, z) and

	zPk,2(z,w) ≡ ( ∂2

∂z2
1
+ ∂2

∂z2
2
+ ∂2

∂z2
3
)Pk,2(z,w) = 0. Let

Jν(t) =
(
t

2

)ν ∞∑
l=0

1

l!�(ν + l + 1)

(
it

2

)2l

, ν �= −1,−2, · · · ,

be the Bessel function of order ν. We put

J̃ν(t) = �(ν + 1)

(
t

2

)−ν
Jν(t) =

∞∑
l=0

�(ν + 1)

l!�(ν + l + 1)

(
it

2

)2l

, j̃k(t) = J̃k+1/2(t).

(5)
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By (5), we have j̃k(0) = 0 and j̃k(−t) = j̃k(t). When ν > 0, |J̃ν(t)| ≤ e|t | for t ∈ C
and 0 < cos t < |J̃ν(t)| for−π

2 < t <
π
2 . Further we know that limν→∞ J̃ν(t) = 1

for t ∈ C and ν > 0. (See Lemma 5.13 in [7]).
Then by using the extended Legendre polynomials and the modified Bessel

functions, the exponential function is represented as follows;

exp(z ·w) =
∞∑
k=0

√
πN(k, 2)

2k+1�(k + 3
2 )
j̃k(i

√
z2
√
w2)Pk,2(z,w), (6)

where N(k, 2) = 2k + 1. Note that j̃k(−t) = j̃k(t). For η, ζ ∈ C3, we know

ˆ

S2
exp(ix · η) exp(x · ζ )d�x =

∞∑
k=0

πN(k, 2)

22k+2�(k + 3
2 )

2
j̃k(

√
η2)j̃k(i

√
ζ 2)Pk,2(η, ζ )

= j̃0

(
i

√
(ζ + iη)2

)
.

For this calculation see [5] and [7], for example. By (5), we note that

j̃0(t) =
√
π

2

∞∑
l=0

1

l!�(3/2+ l)
(
it

2

)2l

.

For t ∈ R, the graph of j̃ 0(t) is as follows:
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4 Expansion Formula

For f ∈ L2(S2), define

fk(x) = N(k, 2)
ˆ

S2
f (ω)Pk,2(x, ω)d�ω,

then we have

f (x) =
∞∑
k=0

fk(x),

in the sense of L2(S2). Since	xPk,2(ω, x) = 0,	xfk(x) = 0. That is, f ∈ L2(S2)

can be represented by the infinite sum of harmonic functions.
Therefore, we consider the images of fz(x) = Pk,2(x, z), z ∈ R3 under the

Fourier transformation, the windowed Fourier transformation and the Gabor wavelet
transformation. We recall Pk,2(z,w) = Pk,2(w, z). By (6), we have

(Ffz)(ω) =
ˆ

S2

∞∑
l=0

√
πN(l, 2)

2l+1�(l + 3
2 )
j̃l(i

√
ω2)Pl,2(x, ω), Pk,2(x, z)d�x

= Ckj̃k(i
√
ω2)Pk,2(ω, z),

where we put

Ck =
√
π

2k+1�(k + 3
2 )
.

By (2),

(WbFfz)(τ, ω) = 1

b
e
− 1+τ2

2b2 (Ffz)(ω + iτ/b2)

= 1

b
e
− 1+τ2

2b2 Ckj̃k

(
i

√
(ω + iτ/b2)2

)
Pk,2(ω + iτ/b2, z),

and by (4),

(Gω0fz)(τ, a) =
1

a
e
− 1+τ2

2a2 eiτ ·
ω0
a (Ffz)

(ω0

a
+ i τ
a2

)

= 1

a
e
− 1+τ2

2a2 eiτ ·
ω0
a Ckj̃k

(
i

√
(
ω0

a
+ i τ
a2 )

2

)
Pk,2

(ω0

a
+ i τ
a2 , z

)
.
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Thus for f ∈ L2(S2), puting C̃k = CkN(k, 2), cb,τ,ω = ω + i τb2 ,

cω0,τ,a = ω0
a
+ i τ

a2 , we have

(Ff )(ω) =
∞∑
k=0

C̃k j̃k(i
√
ω2)

ˆ

S2
f (z)Pk,2(ω, z)d�z, (7)

(WbFf )(τ, ω) = 1

b
e
− 1+τ2

2b2

∞∑
k=0

C̃kj̃k

(
i

√
c2
b,τ,ω

) ˆ

S2
f (z)Pk,2

(
cb,τ,ω, z

)
d�z,

(8)

(Gω0f )(τ, a) =
e
− 1+τ2

2a2 eiτ ·
ω0
a

a

∞∑
k=0

C̃kj̃k

(
i

√
c2
ω0,τ,a

)ˆ
S2
f (z)Pk,2

(
cω0,τ,a, z

)
d�z.

(9)

By (7), (8), and (9), for f ∈ L2(S2) we have

(Ff )(ω) = 1

b
e
− 1+τ2

2b2 (WbFf )(0, ω), (W1Ff )(τ, ω0) = eiτ ·ω0(Gω0f )(τ, 1).

5 Inverse Gabor Wavelet Transformation

In [3], we treated the inverse Gabor wavelet transformation as follows. See [3] for
the details.

For z,w ∈ C3, put

E(z,w) =
∞∑
k=0

ik

2kk!j̃k(
√
z2
√
w2)

Pk,2(z,w).

For 0 < s <∞, let

Kν(s) = K−ν(s) =
ˆ ∞

0
exp(−s cosh t) cosh νtdt,

be the modified Bessel function. Put

ρ(s) = a0s
1/2K−1/2(s)+ a1s

3/2K1/2(s) =
(
a0s

1/2 + a1s
3/2

)
K1/2(s),
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where the constants a0, a1 are defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0

ˆ ∞

0
s3/2K1/2(s)ds + a1

ˆ ∞

0
s5/2K1/2(s)ds = 1,

a0

ˆ ∞

0
s7/2K1/2(s)ds + a1

ˆ ∞

0
s9/2K1/2(s)ds = 18.

In [1] we define a measure dμ on R3 by

ˆ

R3
f (x)dμ(x) =

ˆ ∞

0

ˆ

S2
f (sω)d�(ω)sρ(s)ds.

For z ∈ S2, the mapping

F �→
ˆ

R3
E(z, x)F (x)dμ(x)

gives the inverse mapping of the Fourier transformation defined by (1). By (3),
Gω0f (τ, a) represented by using the Fourier transform as allows:

Gω0f (τ, a) = a−1eiτ ·ω0/ae
− 1+τ2

2a2 (Ff )
(
aω0 + iτ
a2

)
.

Since

ae−iτ ·ω0/ae
1+τ2

2a2 (Gω0f )(τ, a) = (Ff )
(
aω0 + iτ
a2

)

is a function in y = (aω0 + iτ )/a2 ∈ C3.
Let Ff (τ, a) ∈ {F(τ, a) = Gω0f (τ, a); f ∈ L2(S2)}, and fix a > 0.

Put y = (aω0 + iτ )/a2, then the mapping

F(τ, a) �→
ˆ

R3
E(x, y)ae−iτ ·ω0/ae

1+τ2

2a2 F(τ, a)dμ(y),

gives an inverse mapping of the Gabor transformation defined by (3).
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Frames and Multirate Perfect
Reconstruction Filter Banks in Multiple
Dimensions

Kensuke Fujinoki

Abstract We give a brief introduction to multidimensional theory for multirate
signal processing and frames of Hilbert spaces. We highlight some important
relations between filter banks in a multirate system and frames for a sequence space.
Constructions of multidimensional wavelet frames with the lifting scheme are also
discussed.

Keywords Frames · Wavelets · Filter banks · Lifting scheme

Mathematics Subject Classification (2010) Primary 42C15; Secondary 42C40

1 Introduction

The theories of frames and signal processing are closely related. A frame was first
introduced as a mathematical tool for nonharmonic Fourier analysis by Duffin and
Schaeffer in 1952 [12] and was later revived by Daubechies et al. in 1986 [10],
where they connected the concept of frames with time-frequency analysis and signal
processing. Frames having specific structures, such as a Gabor frame [21] and a
wavelet frame, have become important tools in both theories and applications in
various areas of applied mathematics and signal processing. For more details on
links between frames and signal processing including time-frequency analysis, see
[3, 4, 9, 16, 17].

In this brief note, we survey some important relations between frames and signal
processing from the point of view of multirate filter banks in arbitrary dimensions.
We begin with a short introduction of frames in a Hilbert space. Quick tutorials
on frame theory are also presented in [5, 15]. Then, we present some significant
relations between multirate filter banks and frames including wavelets. Finally,
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in addition, relations with the lifting scheme [27, 28] in multiple dimensions are
discussed. Our general references are [1, 6, 29] for frames and multirate filter banks
in multiple dimensions.

2 Frames

Definition 1 (Frame) Let J be a countable index set. A sequence of elements
{fj }j∈J in a separable Hilbert space H is called a frame for H if there exist constants
0 < A≤B <∞ such that

A‖f ‖2 ≤
∑
j∈J

|〈f, fj 〉|2 ≤ B‖f ‖2, (2.1)

for all f ∈ H.

Here, 〈·, ·〉 and ‖·‖ denote the inner product and norm on H, respectively. Constants
A and B are referred to as frame bounds. When A = B, {fj }j∈J is called a tight
frame, and when A = B = 1, {fj }j∈J is called a Parseval frame. The inequality
(2.1) is referred to as the frame condition or the frame inequality.

In the case of a Parseval frame, the frame inequality becomes

∑
j∈J

|〈f, fj 〉|2 = ‖f ‖2,

and any f ∈ H can be represented as a linear combination of {fj }j∈J:

f =
∑
j∈J

〈f, fj 〉 fj , (2.2)

which is called the frame decomposition or frame expansion. Unlike the case of a
basis, the representation (2.2) is not unique; i.e., the frame coefficients {〈f, fj 〉}j∈J
for the superposition in (2.2) are not uniquely determined. The representation and
frame coefficients are unique for every f ∈ H if and only if {fj }j∈J is a Riesz
basis, and every Riesz basis is a frame. A frame that is not a Riesz basis is said to
be overcomplete or redundant.

If {fj }j∈J is a frame but not a Riesz basis, then there exist other frames {f̃j }j∈J
such that

f =
∑
j∈J

〈f, f̃j 〉 fj =
∑
j∈J

〈
f, fj

〉
f̃j ,

for all f ∈ H, where {f̃j }j∈J is called a dual frame of {fj }j∈J, and {fj , f̃j }j∈J is a
dual pair of frames for H.
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3 Multirate Filter Banks and Frames

LetM∈Zd×d be a d-dimensional matrix. We assume that det M �= 0, and that all of
the eigenvalues λi ofM satisfy |λi | > 1. A set LAT (M) := {Mn : n ∈ Z

d } is said
to be a d-dimensional lattice generated by M . The matrix M is called a sampling
matrix because a discrete signal {xn}n∈Zd is obtained from a function f (x) defined
on R

d using the sampling matrixM as xn = f (Mn).
A filter bank is a collection of filters that consists of analysis filters for the

decomposition of an input signal and synthesis filters for the reconstruction of
an original signal. A filter bank is usually implemented by combinations of
downsampling and upsampling for efficient computations.

In this note, we deal with N-channel critically sampled filter banks, where
N = | det M|, and a signal is downsampled by means of M . Suppose that two sets
of sequences {hm,n}n∈Zd ,0≤m≤N−1 and {h̃m,n}n∈Zd ,0≤m≤N−1 are collections of anal-
ysis filters and synthesis filters, respectively. Each filter has a finite impulse response
(FIR) and belongs to &1(Zd ) := {

x = {xn}n∈Zd : xn ∈ C,
∑
n∈Zd |xn| <∞}

. For a
signal x ∈ &2(Zd), outputs of the analysis filters are represented by filtering, which
is a discrete convolution with the input signal:

ym,n =
∑
k∈Zd

xk hm,n−k, 0 ≤ m ≤ N − 1,

where h denotes the complex conjugate of h. The output signals {ym,n}n∈Zd ,0≤m≤N−1
are then downsampled byM . This operation is written as y̆m,n = (↓ M)ym,n,where
(↓ M)xn := xMn, n ∈ Z

d .

In order to recover the original signal from {y̆m,n}n∈Zd ,0≤m≤N−1, we need to
upsample these signals by ym,n = (↑ M) y̆m,n, where

(↑ M)xn :=
{
xM−1n, n ∈ LAT (M),
0, otherwise.

Then, we apply the synthesis filters to the upsampled signals as follows:

xn =
N−1∑
m=0

∑
k∈Zd

ym,k h̃m,n−k.

Definition 3.1 (Perfect Reconstruction Filter) An N-channel filter bank is said
to have the perfect reconstruction property if the output signal of the filter bank is
exactly the same as the input signal. In this case, filters {hm,n}n∈Zd ,0≤m≤N−1 and
{h̃m,n}n∈Zd ,0≤m≤N−1 in the filter bank are called perfect reconstruction filters.
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Perfect reconstruction filters are also called biorthogonal filters, and, in particular,
for the case in which hm = h̃m for 0 ≤ m ≤ N−1, these filters are called orthogonal
filters.

We denote the Fourier transform for f ∈ L1(Rd ) by f̂ (ξ) = ´
Rd
f (x) e−2πiξ ·x

dx. For x ∈ &1(Zd ), we define the discrete-time Fourier transform as

X(ξ) =
∑
n∈Zd

xn e
−2πiξ ·n, ξ ∈ R

d . (3.1)

As in (3.1), we write a filter in lower case and its discrete-time Fourier transform in
upper case. In terms of perfect reconstruction filters, the following two theorems are
known.

Theorem 3.2 Filters h0, . . . , hN−1 ∈ &1(Zd) and h̃0, . . . , h̃N−1 ∈ &1(Zd ) are
perfect reconstruction filters if and only if their discrete-time Fourier transforms
satisfy

N−1∑
m=0

H̃m(ξ)Hm(ξ) = | det M|, (3.2)

N−1∑
m=0

H̃m(ξ)Hm(ξ + (MT )
−1
ν) = 0, ν ∈ �(MT )\{0}, (3.3)

where �(M) := {
Mx : x ∈ [0, 1)d} ∩ Z

d andMT is the transposed matrix ofM .

Theorem 3.3 Let h0, . . . , hN−1 ∈ &1(Zd) and h̃0, . . . , h̃N−1 ∈ &1(Zd ) be perfect
reconstruction FIR filters that satisfy (3.2) and (3.3). Then, two collections of filters

{
hm,n−Mk : n ∈ Z

d
}
k∈Zd ,0≤m≤N−1

and
{
h̃m,n−Mk : n ∈ Z

d
}
k∈Zd ,0≤m≤N−1

form a dual pair of frames for &2(Zd ).

We hereinafter assume that {hn, h̃n}n∈Zd denotes a pair of analysis and synthesis
low-pass (LP) filters and that {gm,n, g̃m,n}n∈Zd ,1≤m≤N−1, where N = | det M|,
denotes a pair of analysis and synthesis high-pass (HP) filters, all of which are per-
fect reconstruction FIR filters. We present some examples related to Theorems 3.2
and 3.3.

Example Let d = 1 and M = 2. In this case, we have two analysis filters
{hn, gn}n∈Z and two synthesis filters {h̃n, g̃n}n∈Z. The perfect reconstruction prop-
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erty simply becomes H̃ (ξ)H(ξ) + G̃(ξ)G(ξ) = 2 and H̃ (ξ)H(ξ + 1/2) +
G̃(ξ)G(ξ + 1/2) = 0. This two-channel critically sampled filter bank, which
decomposes a signal into its LP and HP bands, is a typical example of a multirate
filter bank, which is often used in practice, such as in audio coding applications.

If hn = h̃n and gn = g̃n, then the perfect reconstruction filter bank is called an
orthogonal filter bank. In particular, for the case in which a half-band condition

|H(ξ)|2 + |H(ξ + 1/2)|2 = 2

holds for the LP filter and the HP filter is defined by G(ξ) = ae−2πi(2p+1)ξ

H (ξ + 1/2), |a| = 1, p ∈ Z, so that the alias cancellation condition (3.3) is
satisfied, these filters are called conjugate mirror filters [20, 25].

Theorem 3.3 implies that the set of filters {hn−2k : n ∈ Z}k∈Z ∪ {gn−2k : n ∈
Z}k∈Z forms an orthogonal basis for &2(Z), which is a nonredundant tight frame
with a frame bound A = 2. In addition, the conjugate mirror filter is closely related
to the discrete wavelet transform, which cascades two-channel critically sampled
filter banks with conjugate mirror filters to divide the frequency domain into octave
bands.

Example Let d = 2 and a sampling matrix be M =
(

2 0
0 2

)
= 2Id . This natural

extension of Example 1 is often used for image processing because the standard
digital image is sampled on a square lattice. There exist four filters (N = det M =
4), which satisfy the perfect reconstruction property:

H̃ (ξ)H(ξ)+
3∑

m=1

G̃m(ξ)Gm(ξ) = 4,

H̃ (ξ)H(ξ + ν/2)+
3∑

m=1

G̃m(ξ)Gm(ξ + ν/2) = 0, ν ∈ �(MT ) \ {ν0},

where �(MT ) = {
νi ∈ Z

2 : i = 0, 1, 2, 3
}

with ν0 = (0, 0)T , ν1 = (0, 1)T , ν2 =
(1, 0)T , and ν3 = (1, 1)T . This case, in which the two-dimensional square lattice is
downsampled byM = 2Id , is a special case of Durand [13] and Yin and Daubechies
[33].

Assume that a set of perfect reconstruction FIR filters {h, gm, h̃, g̃m}1≤m≤N−1 ⊂
&1(Zd ) satisfies

H(0) = H̃ (0) = Gm((MT )−1νm) = G̃m((MT )−1νm) = | det M|1/2
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and

H((MT )−1νm) = H̃ ((MT )−1νm) = Gm(0) = G̃m(0) = 0.

Such filters are called biorthogonal wavelet filters [8]. Then, two sets {hn−Mk}k∈Zd∪{
gm,n−Mk

}
k∈Zd ,1≤m≤N−1 and

{
h̃n−Mk

}
k∈Zd ∪

{
g̃m,n−Mk

}
k∈Zd ,1≤m≤N−1 form not

only dual frames for &2(Zd) but also biorthogonal bases for &2(Zd).
Using these filters with certain conditions, functions ψ1, . . . , ψN−1 ∈

L2(Rd) and ψ̃1, . . . , ψ̃N−1 ∈ L2(Rd), which are called biorthogonal wavelets,
are generated. In this case, two systems {ψj,k,m}j∈Z,k∈Zd ,1≤m≤N−1 and
{ψ̃j,k,m}j∈Z,k∈Zd,1≤m≤N−1 defined by

ψj,k,m(x) = | det M|j/2ψm(Mjx − k), ψ̃j,k,m(x) = | det M|j/2ψ̃m(Mjx − k)

form biorthogonal bases for L2(Rd ). With the biorthogonal wavelet bases, any f ∈
L2(Rd) can be represented as the wavelet expansion:

f =
∑
j∈Z

∑
k∈Zd

∑
1≤m≤N−1

〈f, ψ̃j,k,m〉ψj,k,m =
∑
j∈Z

∑
k∈Zd

∑
1≤m≤N−1

〈f,ψj,k,m〉 ψ̃j,k,m.

For more details on relations between wavelets and filter banks, including signal
processing applications, see [19, 26, 30–32].

Note that if the systems {ψj,k,m}j∈Z,k∈Zd,1≤m≤N−1 and {ψ̃j,k,m}j∈Z,k∈Zd ,
1≤m≤N−1 are overcomplete, e.g., N > | det M|, then they cannot form
biorthogonal bases, but become wavelet frames if the frame equality holds. In
the case of wavelet frames, frame coefficients {〈f, ψ̃j,k,m〉}j∈Z,k∈Zd ,1≤m≤N−1 or
{〈f,ψj,k,m〉}j∈Z,k∈Zd ,1≤m≤N−1 are not uniquely determined. Thus, there exist
several representations of f , as mentioned in Sect. 2.

In order to construct a wavelet frame, the following result, the unitary extension
principle, by Ron and Shen [22, 23] is well known.

Theorem 3.4 (Unitary Extension Principle) Let ψ0 ∈ L2(Rd ). Assume that the
following two conditions hold:

1. There exists a bounded measurable 1-periodic function H0 ∈ L∞(Td ) such that

ψ̂0(ξ) = H0((M
T )−1ξ) ψ̂0((M

T )−1ξ).

2. limξ→0 ψ̂0(ξ) = 1.

Let H1, . . . , HN−1 ∈ L∞(Td ) and define ψ1, . . . , ψN−1 ∈ L2(Rd) by

ψ̂m(ξ) = Hm((MT )−1ξ) ψ̂0((M
T )−1ξ), 1 ≤ m ≤ N − 1.
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If

N−1∑
m=0

|Hm(ξ)|2 = 1,

N−1∑
m=0

Hm(ξ)Hm(ξ + (MT )
−1
ν) = 0, ν ∈ �(MT )\{0}

hold for a.e. ξ ∈ T
d , then the system {ψj,k,m}j∈Z,k∈Zd ,1≤m≤N−1 forms a tight

wavelet frame for L2(Rd) with a frame bound A = 1.

Remark 3.5 The unitary extension principle can also be extended in order to con-
struct a dual pair of wavelet frames by introducing dual functions ψ̃0, . . . , ψ̃N−1 ∈
L2(Rd) and H̃0, . . . , H̃N−1 ∈ L∞(Td).

Several wavelet frames have been constructed using the unitary extension
principle, such as spline-based wavelet frames [2, 18, 22, 24], which are used for
signal processing applications. A more flexible concept than the unitary extension
principle, the oblique extension principle, was also proposed by Chui et al. [7] and
Daubechies et al. [11] independently.

4 Lifting Scheme

In this section, we show relations with the lifting scheme [27, 28] and multirate
filter banks as well as frames, as described above. The original lifting scheme
is introduced in one dimension and gives an elementary modification of perfect
reconstruction filters without losing the perfect reconstruction property.

Definition 4.1 (Lifting Scheme) Let d = 1 and M = 2. Given filters h, g, h̃, g̃ ∈
&1(Z), modifications of filters h̃ and g by a filter l ∈ &1(Z) defined as

H̃ l(ξ) = H̃ (ξ)+ G̃(ξ) L(2ξ), Gl(ξ) = G(ξ)−H(ξ)L(2ξ) (4.1)

are called lifting, and modifications of filters h and g̃ by a filter l̃ ∈ &1(Z) defined as

Hl̃(ξ) = H(ξ)+G(ξ) L̃(2ξ), G̃l̃(ξ) = G̃(ξ)− H̃ (ξ) L̃(2ξ) (4.2)

are called dual lifting.

If a set of filters {hn, gn, h̃n, g̃n}n∈Z has the perfect reconstruction property,
then a new set {hn, gln, h̃ln, g̃n}n∈Z generated by the lifting (4.1) also has the
perfect reconstruction property. The same holds for the dual lifting (4.2) for

{hl̃n, gn, h̃n, g̃l̃n}n∈Z. In particular, if the filter L(ξ) or L̃(ξ) is a trigonomet-



688 K. Fujinoki

ric polynomial, the resulting perfect reconstruction filters {hn, gln, h̃ln, g̃n}n∈Z or

{hl̃n, gn, h̃n, g̃l̃n}n∈Z are all FIR filters.
Next, we consider the lifting scheme in our multidimensional setting.

Theorem 4.2 Let {h, gm, h̃, g̃m}1≤m≤N−1 ⊂ &1(Zd ) be a set of perfect reconstruc-
tion FIR filters, and let {Lm}1≤m≤N−1 be a collection of trigonometric polynomials.

(i) A new set {h, glm, h̃l, g̃m}1≤m≤N−1 given by

H̃ l(ξ) = H̃ (ξ)+
N−1∑
m=1

G̃m(ξ) Lm(MT ξ),

Glm(ξ) = Gm(ξ)−H(ξ)Lm(MT ξ), 1 ≤ m ≤ N − 1

is a set of perfect reconstruction FIR filters.
(ii) The set

{
hn−Mk : n ∈ Z

d
}
k∈Zd ∪

{
glm,n−Mk : n ∈ Z

d
}
k∈Zd ,1≤m≤N−1

is a frame for &2(Zd), and the set

{
h̃ln−Mk : n ∈ Z

d
}
k∈Zd ∪

{
g̃m,n−Mk : n ∈ Z

d
}
k∈Zd ,1≤m≤N−1

is its dual frame.

Proof The proof for the item (i) for d = 2 and M = 2Id has been shown by the
author in [14], where a matrix representation of the lifting is considered, and we can
use the same technique in this general case.

Once the prefect reconstruction property is guaranteed by the item (i), taking into
account Theorem 3.3 proves the claim of the item (ii). ��

Due to the properties of the lifting scheme, we have similar results, as follows.

Corollary 4.3 Let {h, gm, h̃, g̃m}1≤m≤N−1 ⊂ &1(Zd ) be a set of perfect reconstruc-
tion FIR filters, and let {L̃m}1≤m≤N−1 be a collection of trigonometric polynomials.

Then, a new set {hl̃, gm, h̃, g̃l̃m}1≤m≤N−1 given by

Hl̃(ξ) = H(ξ)+
N−1∑
m=1

Gm(ξ) L̃m(M
T ξ),

G̃ l̃
m(ξ) = G̃m(ξ)− H̃ (ξ) L̃m(MT ξ), 1 ≤ m ≤ N − 1
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is a set of perfect reconstruction FIR filters, and the two sets
{
hl̃n−Mk

}
k∈Zd ∪{

gm,n−Mk
}
k∈Zd ,1≤m≤N−1 and

{
h̃n−Mk

}
k∈Zd ∪

{
g̃l̃m,n−Mk

}
k∈Zd ,1≤m≤N−1

form a

dual pair of frames for &2(Zd ).
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16. J. Kovačević, A. Chebira, Life beyond bases: the advent of frames (part I). IEEE Signal Process.

Mag. 24, 86–104 (2007)
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Deficiencies of Holomorphic Curves
for Linear Systems in Projective
Manifolds

Yoshihiro Aihara

Abstract In this note we shall give theorems on deficiencies of holomorphic curves
f : X → M , where X is a finite sheeted analytic covering space over C and M
is a projective manifold. We first give an inequality of second main theorem type
and a defect relation for f that generalizes the results in Aihara (Tohoku Math
J 58:287–315, 2012). By making use of this defect relation, we give theorems on
the structure of the set of deficient divisors of f . We also discuss methods for
constructing holomorphic curves with deficient divisors.
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1 Introduction

The aim of this note is twofold. The first is to give generalizaition of the structure
theorem for the set of deficient divisors in [1]. Let M be a projective algebraic
manifold and L→ M an ample line bundle. We denote by |L| the complete linear
system ofL and let� ⊆ |L| be a linear system. In the previous paper [1], we studied
properties of the deficiencies of a holomorphic curve f : C → M as functions on
linear systems and gave the structure theorem for the set

Df = {D ∈ � ; δf (D) > δf (B�)}

of deficient divisors. For definitions, see Sect. 2. In the proof of the structure theorem
for Df , we used an inequality of the second main theorem type and a defect relation
for f and �. In this note, we will generalize these to the case where holomorphic
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curves defined on finite sheeted analytic covering spaces over C. The second is to
give methods for constructing holomorphic curves with deficient divisors. Details
will be published elsewhere.

2 Preliminaries

We recall some known facts on Nevanlinna theory for holomorphic curves. For
details, see [5] and [6].

Let 3 : X → C be a finite analytic (ramified) covering space over C and let
s0 be its sheet number, that is, X is a one dimensional complex analytic space and
3 : X → C is a proper surjective holomorphic mapping with discrete fibers. Let
z be the natural coordinate in C, and set

X(r) = 3−1 ({z ∈ C; |z| < r}) and C(r) = 3−1 ({z ∈ C; |z| = r}) .

For a (1,1)-current ϕ of order zero on X we set

N(r, ϕ) = 1

s0

ˆ r

1
〈ϕ, χX(t)〉 dt

t
,

where χX(r) denotes the characteristic function of X(r).
Let M be a compact complex manifold and let L→ M be a line bundle over

M . We denote by �(M, L) the space of all holomorphic sections of L → M

and by |L| = P(�(M, L)) the complete linear system of L. Denote by || · || a
hermitian fiber metric in L and by ω its Chern form. Let f : X → M be a
holomorphic curve. We set

Tf (r, L) = N(r, f ∗ω)

and call it the characteristic function of f with respect to L. If

lim inf
r→+∞

Tf (r, L)

log r
= +∞,

then f is said to be transcendental. We define the order ρf of f : X→ M by

ρf = lim sup
r→+∞

log Tf (r, L)

log r
.
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We notice that the definition of ρf is independent of a choice of positive line
bundles L → M . Let D = (σ ) ∈ |L| with ||σ || ≤ 1 on M . Assume that
f (X) is not contained in Supp D. We define the proximity function of D by

mf (r, D) = 1

s0

ˆ

C(r)

log

(
1

||σ(f (z))||
)
dθ

2π
.

Then we have the following first main theorem for holomorphic curvesX→ M .

Theorem 2.1 (First Main Theorem) Let L→ M be a line bundle over M and
f : X→ M a non-constant holomorphic curve. Then

Tf (r, L) = N(r, f ∗D)+mf (r, D)+O(1)

for D ∈ |L| with f (X) �⊆ Supp D, where O(1) stands for a bounded term as
r →+∞.

Let f and D be as above. We define Nevanlinna’s deficiency δf (D) by

δf (D) = lim inf
r→+∞

mf (r, D)

Tf (r, L)
.

It is clear that 0 ≤ δf (D) ≤ 1. Then we have a defect function δf defined on |L|.
If δf (D) > 0, then D is called a deficient divisor in the sense of Nevanlinna.

Next, we recall some basic facts in value distribution theory for coherent ideal
sheaves (cf. [6, Chapter 2]). Let f : X → M be a holomorphic curve and I a
coherent ideal sheaf of the structure sheaf OM of M . Let U = {Uj } be a finite
open covering of M with a partition of unity {ηj } subordinate to U . We can
assume that there exist finitely many sections σjk ∈ �(Uj , I) such that every stalk
Ip over p ∈ Uj is generated by germs (σj1)p, . . . , (σjlj )p. Set

dI(p) =
⎛
⎝∑

j

ηj (p)

lj∑
k=1

∣∣σjk(p)∣∣2
⎞
⎠

1/2

.

We may assume that dI(p) ≤ 1 for all p ∈ M. Set

φI(p) = − log dI(p)

and call it the proximity potential for I. It is easy to verify that φI is well-
defined up to addition by a bounded continuous function on M . We now define the
proximity function mf (r, I) of f for I, or equivalently, for the complex analytic
subspace (may be non-reduced)

Y = (Supp (OM/I), OM/I)
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by

mf (r, I) = 1

s0

ˆ

C(r)

φI(f (z))
dθ

2π
,

provided that f (X) is not contained in SuppY . For z0 ∈ f−1(Supp Y ), we can
choose an open neighborhood U of z0 and a positive integer ν such that

f ∗I = ((z− z0)
ν) on U.

Then we see

log dI(f (z)) = ν log |z− z0| + hU(z) for z ∈ U,

where hU is a C∞-function on U . Thus we have the counting function N(r, f ∗I)
as above. Moreover, we set

ωI,f = −ddchU on U,

where dc = (
√−1/4π)(∂ − ∂). We obtain a well-defined smooth (1, 1)-form

ωI,f on X. Define the characteristic function Tf (r, I) of f for I by

Tf (r, I) = 1

s0

ˆ r

1

dt

t

ˆ

X(t)

ωI,f .

We have the first main theorem in value distribution theory for coherent ideal
sheaves:

Theorem 2.2 (First Main Theorem) Let f : X→ M and I be as above. Then

Tf (r, I) = N(r, f ∗I)+mf (r, I)+O(1).

Let L → M be an ample line bundle and W ⊆ �(M, L) a subspace with
dimW ≥ 2. Set � = P(W). The base locus Bs� of � is defined by

Bs� =
⋂
D∈�

SuppD.

We define a coherent ideal sheaf I0 in the following way. For each p ∈ M , the
stalk I0,p is generated by all germs (σ )p for σ ∈ W . Then I0 defines the base
locus of � as a complex analytic subspace B�, that is,

B� = (Supp (OM/I0), OM/I0).
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Hence Bs� = Supp (OM/I0). We define the deficiency of B� for f by

δf (B�) = lim inf
r→+∞

mf (r, I0)

Tf (r, L)
.

Set

Df = {D ∈ �; δf (D) > δf (B�)}.

We call Df the set of deficient divisors in �.
By making use of the generalized Crofton’s formula due to R. Kobayashi ([6,

Theorem 2.4.12]), we have the following proposition ([1, Proposition 4.1]).

Proposition 2.3 The set Df is a null set in the sense of the Lebesgue measure on
�. In particular δf (D) = δf (B�) for almost all D ∈ �.

This proposition plays an important role in what follows.

3 Inequality of the Second Main Theorem Type

We will give an inequality of the second main theorem type for a holomorphic curve
f : X→ M that generalizes Theorem 3.1 in [1]. For simplicity, we assume that f is
of finite type. LetW ⊆ �(M, L) be a linear subspace with dimW = l0+1 ≥ 2 and
set � = P(W). We call � a linear system included in |L|. Let D1, . . . ,Dq be
divisors in � such that Dj = (σj ) for σj ∈ W . We first give a definition of
subgeneral position. Set Q = {1, . . . , q} and take a basis {ψ0, . . . , ψl0} of W .
We write

σj =
l0∑
k=0

cjkψk (cjk ∈ C)

for each j ∈ Q. For a subset R ⊆ Q, we define a matrix AR by AR =
(cjk)j∈R,0≤k≤l0.

Definition 3.1 Let N ≥ l0 and q ≥ N + 1. We say that D1, . . . ,Dq are in
N-subgeneral position in � if

rank AR = l0 + 1 for every subset R ⊆ Q with #R = N + 1.

If they are in l0-subgeneral position, we simply say that they are in general position.
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Note that the above definition is different than the usual one (cf. [6, p. 114])
Let �� : M → P(W∗) be a natural meromorphic mapping, where W∗ is the

dual of W . Then we have the linearly non-degenerate holomorphic curve

F� = �� ◦ f : X→ P(W∗).

We let W(F�) denote the Wronskian of F�.

Definition 3.2 If ρf < +∞, then f is said to be of finite type.

Set

κ(X,�;N) = 2N − l0 + 1+ (s0 − 1)l0(2N − l0 + 1).

By making use of the methods in [1] and [4], we have an inequality of the second
main theorem type as follows.

Theorem 3.3 Let f : X→ M be a transcendental holomorphic curve that is non-
degenerate with respect to �. Let D1, . . . ,Dq ∈ � be divisors in N-subgeneral
position with q > κ(X,�;N). Assume that f is of finite type. Then

(q − κ(X,�;N)) (Tf (r, L)−mf (r, I0)) ≤
q∑
j=1

N(r, f ∗Dj )+ Ef (r)

as r →+∞, where

Ef (r) = −κ(X,�;N)N(r, f ∗I0)−
(
N

l0

)
N(r, W(F�)0)+ o(Tf (r, L)).

In order to get a defect relation from Theorem 3.3, we define a constant
ηf (B�) by

ηf (B�) = lim inf
r→+∞

Ef (r)

Tf (r, L)
.

It is clear that ηf (B�) ≤ 0. Now, by Theorem 3.3, we have a defect relation.

Theorem 3.4 Let �, f and D1, . . . ,Dq be as in Theorem 3. Then

q∑
j=1

(δf (Dj )− δf (B�)) ≤ (1− δf (B�))κ(X,�)+ ηf (B�).
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4 Structure Theorems for the Set of Deficient Divisors

In this section we give theorems on the structure of the set of deficient divisors. Let
L → M be an ample line bundle and f : C → M a transcendental holomorphic
curve of finite type. Let� ⊆ |L| be a linear system. Let

Df = {D ∈ � ; δf (D) > δf (B�)}.

By making use of the above defect relation, we have the structure theorem for the
set Df (see [1, §5]).

Theorem 4.1 The set Df of deficient divisors is a union of at most countably
many linear systems included in �. The set of values of deficiency of f is at
most a countable subset {ei} of [0, 1]. For each ei , there exist linear systems
�1(ei), . . . ,�s(ei) included in � such that ei = δf (B�j (ei)) for j = 1, . . . , s.

By Theorem 5, there exists a family {�j } of at most countably many linear
systems in � such that Df =⋃

j �j . Define Lf = {�j } ∪ {�}. We call Lf the
fundamental family of linear systems for f . Then we have the following.

Proposition 4.2 If δf (D) > δf (B�) for a divisor D in �, then there exists a
linear system �(D) ∈ Lf such that

δf (D) = δf (B�(D)).

5 Methods for Constructing Holomorphic Curves
with Deficiencies

In this section we consider the case where M = Pn(C) and L = OPn(d). The
existence of f : X → Pn(C) with D �= ∅ is a delicate matter. In fact, S. Mori [3]
showed that a family

{f ∈ Hol(C,Pn(C); δf (H) = 0 for all H ∈ |OPn(1)|}

of holomprphic curves is dense in Hol(C,Pn(C)) with respect to a certain kind
of topology. However, for any � ⊆ |OPn(d)|, there exists an algebraically non-
degenerate holomorphic curve f : C → Pn(C) with Df �= ∅. In fact, we have the
following theorem [2, Theorem 3.2].

Theorem 5.1 Let D ∈ |OPn(d)|. There exists a constant λ(D) with 0 < λ(D) ≤ d
depending only on D that satisfies the following property: Let α be a positive real
constant such that

0 < α ≤ λ(D)

d
.



698 Y. Aihara

Then there exists an algebraically non-degenerate holomorphic curve f : C →
Pn(C) such that

δf (D) = α.

We will generalize the above theorem for holomorphic curves defined on X.

Theorem 5.2 Let D ∈ � ⊆ |OPn(d)|. Then there exists a finite sheeted analytic
covering space 3 : X → C and an algebraically non-degenerate transcendental
holomorphic curve f : X→ C with ρf = 0 such that Df �= ∅. Furthermore, there
exists a family {�j } of finitely many linear systems such that

Df =
⋃
j

�j .

The set of values of δf is a finite set {ej } with

δf (B�j ) ≤ ej ≤
μ(�j )

d
.

Here μ(�j ) are constants depending only on �j with 0 < μ(�j) ≤ d .

Remark 5.3 In the case where X is an affine algebraic variety, there always exists
an algebraically non-degenerate transcendental holomorphic curve that satisfies the
above propeties.

The proofs of the above theorems are based on Valiron’s theorem on algebroid
functions of order zero (see [7]). Hence the resulting holomorphic curves are of
order zero.

In the case where d = 1 and X = C, we can construct holomorphic curves with
Df �= ∅ by another way (cf. [1, §6]). By using exponential curves

f (z) = (exp a0z, . . . , exp anz) (a0, . . . , an ∈ C),

we can construct holomorphic curves C → Pn(C) with Df �= ∅. We denote by
Cf the circumference of the convex polygon spanned by the set {a0, . . . , an}. If the
convex polygon reduces to the segment with the end points with aj and ak, then
we see Cf = 2|aj − ak|. Let H be a hyperplane in Pn(C) defined by

H : L(z) =
n∑
j=0

αjζj = 0 (α0, . . . , αn ∈ C),

where ζ = (ζ0 : . . . : ζn) is a homogeneous coordinate system in Pn(C). We define
the set JH of index by JH = {j ; αj �= 0}. Let Cf (H) be the circumference of
the convex polygon spanned by the set {aj ; j ∈ JH }. Then we have the following
lemma.
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Lemma 5.4 Let f and H be as above. Then

Tf (r,OPn(1)) = Cf
2π
r +O(1).

and the deficiency of f for H is given by

δf (H) = 1− Cf (H)
Cf

.

Furthermore, the constant Cf (H) depends only on f and JH .

By making use of this lemma, we have the following theorem.

Theorem 5.5 Let � ⊆ |OPn(1)|. Then there is a transcendental holomorphic
curve f : C → Pn(C) non-degenerate with respect to � such that the set of
values of δf is a finite set {ej } with 0 < ej < 1. Furthermore, there are finitely
many linear systems {�j } included in � such that

δf (H) = ej for all H ∈ �j \ (
⋃
k

�jk ),

where {�jk } are linear systems included in �j .
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