
Chapter 14
Pharmacological Role of Glutamate
Transporters in Substance Use Disorders

Gerald A. Deehan Jr, Robert A. Waeiss, Tiebing Liang, Zachary A. Rodd,
Youssef Sari, Richard L. Bell, and Sheketha R. Hauser

Abstract Substance use disorders (SUD) represent a public health crisis worldwide.
The development of effective pharmacotherapeutics to treat drug abuse and addic-
tion requires the identification of targetable neurobiological mechanisms. As the
primary excitatory neurotransmitter in the brain glutamate possesses a significant
role in plasticity, learning, and memory, and represents a promising neurotransmitter
of focus for intervention in the etiology of SUDs. Chronic drug exposure induces
lasting neuroadaptations in the glutamatergic system specifically within the
mesocorticolimbic (MCL) reward pathway which is posited to generate maladaptive
deficits in behavioral-control, thus contributing to the addictive cycle. Maintaining
the strict control of glutamate release and clearance is required for homeostasis as
well as the prevention of neurotoxicity and oxidative stress. There are five excitatory
amino acid transporters (EAATs) and three vesicular glutamate transporters. These
function to preserve homeostatic levels of glutamate under normal physiological
conditions. This review aims to highlight and summarize the preclinical evidence for
dysregulation of glutamate transport following drug exposure. Additionally, alter-
ations in glutamate transporters, with an emphasis on glutamate transporter
1 (EAAT2 encodes by SLC1A2) and its role in the development of detrimental

Gerald A. Deehan Jr and Robert A. Waeiss contributed equally with all other contributors.

G. A. Deehan Jr
Department of Psychology, East Tennessee State University, Johnson City, TN, USA

R. A. Waeiss · Z. A. Rodd · R. L. Bell (*) · S. R. Hauser (*)
Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA

Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine,
Indianapolis, IN, USA
e-mail: ribell@iupui.edu; shhauser@iupui.edu

T. Liang
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

Y. Sari
Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of
Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA

© Springer Nature Switzerland AG 2022
Z. M. Pavlovic (ed.), Glutamate and Neuropsychiatric Disorders,
https://doi.org/10.1007/978-3-030-87480-3_14

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87480-3_14&domain=pdf
mailto:ribell@iupui.edu
mailto:shhauser@iupui.edu
https://doi.org/10.1007/978-3-030-87480-3_14#DOI


drug-seeking behaviors, as well as current glutamate transporter-associated treat-
ments being investigated are discussed.

Keywords Substance Use Disorder (SUD) · Glutamate · Excitatory amino acid
transporters (EAAT) · Vesicular glutamate transporter (vGluT) · Ceftriaxone ·
n-acetylcysteine (NAC)

14.1 Introduction

Glutamic acid is a polar amino acid often found in an electrically charged state
within the human body. The ionized form, glutamate, is the most abundant as well as
the primary excitatory neurotransmitter in the mammalian central nervous system
(CNS). Glutamate is directly involved in a number of biological functions including
energy metabolism, cellular differentiation, protein synthesis, and synaptogenesis
through activation of its distinct receptor subtypes or cellular uptake (Zhou and
Danbolt 2014). Glutamate also serves as a precursor for GABA synthesis via
glutamate decarboxylase (GAD) or is transferred into the TCA/Krebs Cycle as
α-ketoglutarate following metabolism by glutamate dehydrogenase (Rowley et al.
2012; Bell et al. 2016b). Decades of research have demonstrated that glutamate
neurotransmission is fundamental to the cellular and molecular mechanisms of
synaptic plasticity and subsequent learning and memory (Kauer and Malenka
2007). Importantly, drug-induced pathological neuroadaptations to the
glutamatergic system has been found to contribute significantly to the development
of substance use disorders (SUDs) and other addictions (Kalivas 2009; Bell et al.
2016a; Kalivas and Volkow 2016; Scofield et al. 2016; Alasmari et al. 2018a, b).
SUDs are characterized by reduced behavioral flexibility in response to drug rein-
forcement, which has been proposed to stem from enhanced drug-seeking behavior
with simultaneous decreases in responses to non-drug stimuli (i.e., fixation; Volkow
et al. 2019). Thus, integration of known changes that occur within the glutamatergic
system, as well as opposing mechanisms that moderate glutamatergic signaling,
following chronic drug exposure is necessary to construct accurate global models of
the addiction process (Siggins et al. 2003; Basavarajappa et al. 2008; Leriche et al.
2008; Nam et al. 2012; Koob 2013; Tabakoff and Hoffman 2013). Therefore, the
goal herein is to explore the mechanisms that regulate glutamate uptake and transport
within the mesocorticolimbic reward neurocircuitry as it pertains to SUDs (Koob
et al. 2014; Rao et al. 2015).
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14.2 Glutamate & Reward Neurocircuitry

To process reward, the brain utilizes complex neurocircuitry that encompasses
several nuclei, projections, and neuromodulators to integrate and evaluate responses
to rewarding stimuli and direct motivational behavior accordingly. A well-
established projection within this circuitry is the mesolimbic dopamine
(DA) pathway (Fig. 14.1). This “reward” pathway originates in the ventral tegmental
area (VTA) and projects to the nucleus accumbens (Acb) (Di Chiara and Imperato
1988; Volkow et al. 2019). A consistent observation throughout the literature is that
addictive substances produce a significant elevation in DA levels within the
mesolimbic pathway, thereby exerting a modulatory role on reward processing
(Di Chiara and Imperato 1988; Volkow and Morales 2015). Currently, the more
predominant view is that the net effect of an organism’s exposure to rewarding/
reinforcing stimuli is processed through both the direct and indirect actions of a drug
on numerous nuclei within the CNS (Volkow et al. 2019). Neurocircuitry that
functions to mediate behavioral and cognitive processes including decision making,
learning, memory, emotion, and sensory processing is widespread and has been
implicated to also have a role in reward processing (Bell et al. 2013; Floresco 2015;
Rao et al. 2015; Koob and Volkow 2016). For instance, modulation of reward
behavior by serotonin (5-HT) and norepinephrine (NE) can be traced to the dorsal
(DR) as well as median (MR) raphe nuclei and the locus coeruleus (LC), respectively
(Cools et al. 2011; Lisieski et al. 2019). Inhibitory influence by γ-amino butyric acid
(GABA), the principal inhibitory neurotransmitter in the CNS, is released from
medium spiny neurons (MSN) and interneurons throughout the reward
neurocircuitry (Morales and Margolis 2017; Seo et al. 2016; Yang et al. 2018).
Modulatory actions via glutamate is ubiquitous and occurs at several levels of
reward processing (cf., Floresco et al. 2001, 2003; Bell et al. 2012, 2013, 2016b,
2017, 2019; Morales and Margolis 2017). Moreover, it has become increasingly
clear that interactions between DAergic and glutamatergic systems within the
“reward” neurocircuit play a major role in addiction (Schmidt and Reith 2005).
Thus, glutamate plays an integral role in reward/reinforcement processing that
mediates addiction.

The mesocorticolimbic (MCL) system encompasses several cortical and limbic
brain structures with several projections which have been strongly implicated in
addiction. Central to this system is the VTA which is primarily composed of DA
neurons that project to the Acb (mesolimbic) and the prefrontal cortex (PFC;
mesocortical) and, to a lesser extent, the amygdala (Amyg) and hippocampus
(HPC; extended Amyg; McBride 2002; Morales and Margolis 2017). Activity in
both pathways is heavily modulated by glutamatergic signaling which, under normal
circumstances, maintains a state of glutamate homeostasis (Scofield et al. 2016).
Structures including the PFC, basolateral amygdala (BLA), HPC, and
paraventricular nucleus of the thalamus (PVN) provide glutamate innervation to
the MCL and act to modulate neural activity associated with reward as well as
reinforcement (Fig. 14.1; Wassum and Izquierdo 2015; Cooper et al. 2017; Bossong
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et al. 2018; Otis et al. 2019). The Acb is divided into the shell (AcbSh) and core
(AcbCo) subregions which receive glutamatergic innervation from the infralimbic
(IL) and prelimbic (PL) regions of the medial mPFC, respectively (Kelley 1999;
McBride et al. 1999) and exhibit opposing influence on motivated behavior associ-
ated with reward (i.e., PL!AcbC ¼ go; IL!AcbSh¼ stop; Peters et al. 2009; Gass
and Chandler 2013; Gourley and Taylor 2016). Thus, the Acb represents an impor-
tant point of convergence for reward signaling that is heavily influenced by
MCL-associated glutamate projections (Fig. 14.1; Di Chiara and Imperato 1988;
Floresco 2015; Scofield et al. 2016).

14.3 Glutamate Regulation & Trafficking

Glutamate synthesis and metabolism is cyclical in nature. The metabolic, diffusion,
transport, and catabolic processes significantly contribute to the maintenance of
glutamate homeostasis and the prevention of neuronal excitotoxicity that can result
from excessive synaptic glutamate and subsequent overactivation of glutamate
receptors. The concentration of glutamate is strictly controlled, with basal levels
varying considerably across nuclei and neurocircuits. Intracellular glutamate con-
centration is the greatest within synaptic vesicles where it can reach 100 mM
(Hayashi 2018). Other intracellular glutamate levels are estimated to be near
2 mM, while extracellular levels are in the low micromolar range. Glutamate in
the synaptic cleft is maintained at an even lower level at less than 20 nM during
resting conditions which can briefly exceed 1 mM following action potential medi-
ated release (Moussawi et al. 2011; Hayashi 2018; Mahmoud et al. 2019). Glutamate
returns to resting levels within milliseconds through both diffusion and transport.
The subregional differences in concentration gradients within the CNS indicate the
importance of maintaining normal physiological levels both temporally and spatially
as well as its potential role in neuropsychiatric diseases (Kalivas 2009; Bell et al.
2016a; Spencer et al. 2016).

In contrast to many neurotransmitters that rely heavily on neuronal uptake,
glutamate uptake regulation is highly dependent upon glial cells (i.e., astrocytes).
Glial regulation occurs via active transport of glutamate from the synapse into
surrounding astrocytes that is then converted into glutamine by glutamine synthetase
(GS; Fig. 14.2; Danbolt 2001; Zhou and Danbolt 2014; Logica et al. 2016). Next, the
newly synthesized glutamine is shuttled from astrocytes back to neurons via gluta-
mine transporters (GlnT) found in the plasma membrane of both cell types
(Fig. 14.2). Specifically, GlnTs are members of the sodium-coupled neutral amino
acid transporter (SNAT) family and utilize the electrochemical gradient across
membranes to transport against concentration gradient. These include SNAT3
(SLC38A3) and SNAT5 (SLC38A5), which move glutamine out of the glial cell
and into the peri-synapse where concentrations range from 200 to 800 μM (Bröer
and Brookes 2001; Pochini et al. 2014). Glutamine is then transported into the
excitatory presynaptic compartment at concentrations up to 20 mM through
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SNAT1 (SLC38A1), SNAT2 (SLC38A2), and/or SNAT7 (SLC38A7; Chaudhry et al.
2002a, b). Importantly, glutamine can be moved in and out of the synaptic space
without inducing neurotoxic cascades (Deitmer et al. 2003; Pochini et al. 2014; Zhou
and Danbolt 2014; Rao et al. 2015). This metabolic/catabolic sequence is particu-
larly advantageous in that it reduces excessive synaptic glutamate levels which can
produce neuroadaptations associated with SUDs and neurotoxicity (Aschner et al.
2007; Lan et al. 2014). Glutaminase then converts intraneuronal glutamine into
glutamate (Rowley et al. 2012), which is packaged into secretory vesicles by
vesicular glutamate transporters (vGluT) in preparation for exocytosis. These
include vGluT1 (SLC17A7), vGluT2 (SLC17A6), and vGluT3 (SLC17A8;
Table 14.1; Bellocchio et al. 2000; Takamori et al. 2000a, b).

There is a significant potential for excessive glutamate in the synapse to induce
overactivation of receptors leading to excitotoxicity and neuronal death. Thus,
efficient glutamate uptake and transport from the synapse and surrounding area is
essential to prevent cell death (Danbolt 2001; Rao et al. 2015; Bell et al. 2016a;

Table 14.1 Summary of glutamate transporters

Excitatory Amino Acid Transporters (EAAT)

Human Rodent Gene CNS distribution Cell type
Subcellular
localization

EAAT1 GLAST SLC1A3 cerebral cortex, cer-
ebellum, spinal cord

Astrocytes,
oligodendrocytes

perisynaptic

EAAT2 GLT-1 SLC1A2 whole brain, cere-
bellum, spinal cord,
retina

astrocytes, neurons perisynaptic,
presynaptic

EAAT3 EAAC1 SLC1A1 hippocampus, stria-
tum, cerebellum

predominantly neu-
rons, some glia

postsynaptic,
cell soma,
dendrites

EAAT4 EAAT4 SLC1A6 cerebellum Purkinje cells postsynaptic,
dendrites

EAAT5 EAAT5 SLC1A7 retina bipolar cells,
photoreceptors

presynaptic

Vesicular Glutamate Transporters (vGluT)

vGluT1 vGluT1 SLC17A7 cerebral cortex, cer-
ebellum, spinal cord

glutamatergic neu-
rons, astrocytes

synaptic vesi-
cles, axon
terminals

vGluT2 vGluT2 SLC17A6 ventral tegmental
area, basolateral
amygdala, nucleus
accumbens, brain
stem

glutamatergic neu-
rons, dopaminergic
neurons

synaptic vesi-
cles, axon
terminals

vGluT3 vGluT3 SLC17A8 hippocampus,
nucleus accumbens,
dorsal striatum,
olfactory tubercle,
medial raphe nuclei

serotonergic neurons,
acetylcholinergic neu-
rons, GABA interneu-
rons, glutamatergic
neurons, and
astrocytes

synaptic vesi-
cles, cell
soma, den-
drites, glial
endfeet
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Mahmoud et al. 2019; Zhang et al. 2019). There are five transporters that regulate
extracellular glutamate levels and these are part of the solute carrier 1 (SLC1A)
family. These transporters are excitatory amino acid transporters (i.e., EAAT1,
EAAT2, EAAT3, EAAT4, and EAAT5) and correspond to human genes SLC1A3,
SLC1A2, SLC1A1, SLC1A6, and SLC1A7, respectively (Table 14.1). The rodent
homologues are referred to as glutamate aspartate transporter (GLAST; Slc1a3),
glutamate transporter 1 (GLT-1; Slc1a2), excitatory amino acid carrier 1 (EAAC1;
Slc1a1), EAAT4 (Slc1a6), and EAAT5 (Slc2a7; Wadiche et al. 1995; Arriza et al.
1997; Tanaka 2000). Similar to GlnTs, EAAT makes use of electrochemical gradi-
ents to transport glutamate against its concentration gradient. This occurs through
cotransport of one H+ and three Na+ ions along with the glutamate molecule while
exporting a single K+ ion (Grewer et al. 2008).

Glycine and glycine transport are also critical when exploring the prototypical
excitatory synapse. The N-methyl-D-aspartate receptor (NMDAR) contains subunits
with a co-agonist glycine binding site that potentiates glutamate signaling as well as
priming the receptor for internalization (Nong et al. 2003). Glycine transporter
1 (GlyT1) encoded by SLC6A9 is principally localized on glia, while GlyT2
(SLC6A5) is neuronally expressed at excitatory synapses. Additionally, there has
been increased interest in the efficacy of N-acetylcysteine to treat neuropsychiatric
disorders. It is therefore equally important to recognize the significance of the
cystine–glutamate exchanger (xCT; Slc7a11) and its effects on reversing neuronal
damage induced by excitotoxicity and/or oxidative stress (Lewerenz et al. 2013).
The xCT is commonly localized on astroglial cells and functions to exchange
extracellular cystine for intracellular glutamate at a one-to-one ratio (Watts et al.
2014). Glutamate is released in the exchange of cystine and binds at the presynaptic
mGluR2/3, thereby blocking synaptic glutamate release (Javitt et al. 2011; Moran
et al. 2005) and acting as a regulatory mechanism of glutamate homeostasis. Next,
cystine can be converted into cysteine, which is used to synthesize glutathione as
well as other proteins. Glutathione is a key antioxidant and functions to prevent or
reverse neuronal injury induced by excessive levels of glutamate and free radicals
(Patten et al. 2013).

14.4 Vesicular Glutamate Transporters

The vesicular glutamate transporters (vGluTs) are highly expressed in neurons
throughout the CNS with vGluT1 and vGluT2 more commonly found in
glutamatergic cells (Table 14.1). Specifically, vGluT1 localization is generally
widespread and found in the HPC, Amyg, Acb, PFC, cerebellum, and spinal cord.
Expression of vGluT2 is more limited and is localized to the BLA, Acb, and VTA.
On the other hand, vGluT3 is found primarily in non-glutamatergic cells (e.g.,
serotonergic, glial, GABAergic, cholinergic) of the Acb, olfactory tubercle, HPC,
and MRN (Wang et al. 2019; Zhang et al. 2019). Relative to EAATs, vGluTs display
100–1000-fold less affinity for glutamate (Shigeri et al. 2004). Importantly, vGluTs
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have a micromolar affinity for glutamate but do not transport aspartate, glutamine, or
GABA. The function of vGluTs is known to be dependent upon a vesicular proton
electrochemical gradient that is produced by ATPase activity. The transporters also
have a biphasic interaction with Cl-, where low concentrations initiate uptake while
higher concentrations have an inhibitory action on transporter function (Shigeri et al.
2004).

Alterations in vGluT1 have been associated with schizophrenia, addiction,
Alzheimer’s disease, and epilepsy (Alonso-Nanclares and De Felipe 2005; East-
wood and Harrison 2005; Mark et al. 2007; van der Hel et al. 2009). For example,
vGluT1 mRNA was increased five-fold in the DRN of rats following peri-adolescent
binge like alcohol drinking. This change was coupled with a significant reduction in
both vGluT2 and vGluT3 mRNA expression levels (McClintick et al. 2015). Addi-
tionally, following exposure to methamphetamine there was a significant and long-
lasting increase in vGluT1 mRNA and protein levels in the striatum (Mark et al.
2007). Knackstedt and colleagues (2009, 2010) reported a reduction in vGluT1
expression in the AcbCo following self-administration of cocaine or nicotine. Due
to the distinct regional and cellular expression of vGluT isoforms, these proteins are
often used as markers to delineate specific neuronal subpopulations. The deletion of
vGluT2 induced prenatal or neonatal mortality and an almost complete loss of
glutamate activity in the thalamus, but not in the HPC (Moechars et al. 2006).
Activation of vGluT2 expressing DA neurons in the VTA enhanced learning of a
conditioned place preference as well as reinforcing instrumental behavior (Wang
et al. 2015). Repeated deprivations from alcohol reduced vGluT2 in the AcbSh
(Zhou et al. 2006). The involvement of vGluT3 is involved in fear, stress, hearing, as
well as stimulant-induced locomotor activity (Ryu et al. 2017; Balazsfi et al. 2018; Li
et al. 2018; Mansouri-Guilani et al. 2019; Sakae et al. 2019). Collectively, these
findings provide evidence that vGluTs may play an important role in addiction
behaviors.

14.5 Plasma Membrane Glutamate Transporters

Glutamate transporters are located throughout the brain. EAAT1, or GLAST, is
located both on the plasma membrane and the mitochondrial membrane of glial cells
(i.e., astrocytes, microglia, and oligodendrocytes). EAAT2 (GLT-1) is located on
astrocytes, microglia, oligodendrocytes and on axon terminals (e.g., CA3 of the
HPC) and represents the primary transporter that removes more than 90% of
glutamate from the synapse, which is necessary to prevent excitotoxicity and
promote normal physiological function (Danbolt 2001). EAAT3, encoded by
SLC1A1, is located on neurons, specifically dendrites and axon terminals. Like the
predominantly glial transporters, EAAT3 removes excess glutamate from the syn-
apse but also transports aspartate and cysteine. A SLC1A1 polymorphism is present
in a subpopulation of individuals with obsessive-compulsive disorder (Stewart et al.
2013). In addition, there is some evidence that amphetamine leads to internalization
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of EAAT3 and this may coincide with internalization of the DA transporter as well
(Underhill et al. 2014). EAAT4 is expressed predominantly in the cerebellum
transporting both glutamate and aspartate concurrent with the transport of chloride
ions (Fairman et al. 1995), as well as in spinal cord, forebrain, and astrocyte
(Hu et al. 2003). In addition, the xCT (SLC7A11), a chloride-dependent, sodium-
independent transporter is located primarily on astrocytes (Bridges et al. 2001; Lin
et al. 2016). While the xCT is present throughout the brain, there is especially high
expression in the BLA and PFC of the MCL (Bridges et al. 2012). Finally, the
EAAT5 is found only in the retina (Table 14.1). For more information, there are
additional reports that expand on the mechanisms of glutamate transport (Rothstein
et al. 1994; Lehre et al. 1995; Wadiche et al. 1995; Arriza et al. 1997; Tanaka 2000;
Danbolt 2001; Huggett et al. 2002; Beschorner et al. 2007; Bellesi and Conti 2010;
Reissner and Kalivas 2010; Carbone et al. 2012; Karki et al. 2015; Bell et al. 2016a;
Spencer et al. 2016; Mazaud et al. 2019).

14.6 Upregulating Glutamate Transporters
and the Treatment of SUDs

Substantial evidence suggests that the development of substance dependence
involves changes in many aspects of glutamate homeostasis. Glutamate transmission
is heavily regulated by the glutamate transporters described in this review. Impor-
tantly, GLT-1 is considered the primary glutamate transporter in the brain that
regulates up to 90% of extracellular glutamate. Concurrently, xCT regulates gluta-
mate uptake through the exchange of extracellular cystine for intracellular glutamate
(Bannai and Ishii 1982; Bannai 1984; Sari 2013). Modulation of glutamate transport
through upregulation of GLT-1 is a promising avenue to treat dependence on drugs
of abuse, including ethanol and cocaine (Rao et al. 2015; Spencer and Kalivas 2017;
Alasmari et al. 2018a, b). Discussed here are the effects of medications, known to
upregulate GLT-1, on the attenuation of drug-seeking behaviors. An emphasis on the
use of β-lactam antibiotics, particularly ceftriaxone and N-acetylcysteine, as GLT-1
upregulators to attenuate drug-seeking behaviors is of particular interest.

14.7 Ceftriaxone and Ethanol

The expression of GLT-1 and its function can be upregulated by FDA-approved
β-lactam antibiotics, which increase glutamate uptake (Rothstein et al. 2005; Spen-
cer and Kalivas 2017). Ceftriaxone is a beta-lactam antibiotic that is known to
increase glutamate reuptake through the upregulation of glial GLT-1 expression
and/or function (Rothstein et al. 2005). Ceftriaxone decreases ethanol consumption
and ethanol preference over water in alcohol-preferring (P) rats (Sari et al. 2011,
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2013b; Rao and Sari 2014; Das et al. 2015) and outbred rats (Stennett et al. 2017).
These decreases in ethanol intake are associated with normalization (i.e., reversal of
ethanol-induced decreases) of GLT-1 and/or xCT protein levels in the Acb and/or
PFC (Sari et al. 2011, 2013a, 2013b; Rao and Sari 2014; Das et al. 2015). Ceftriax-
one attenuated ethanol-induced increases in extracellular glutamate in the Acb in
male P rats (Das et al. 2015), an effect that is likely mediated through upregulation of
GLT-1. In contrast, Stennett et al. (2017) found that ethanol intake in Sprague-
Dawley rats did not alter GLT-1 and xCT protein levels, which suggests that there
might be dysfunction of these transporters without alteration of their expression.
However, Sprague-Dawley rats consume much less ethanol than Wistars, Long-
Evans, and selectively bred alcohol-preferring rat lines (cf., Bell et al. 2014) possibly
leading to a floor-effect in the Stennett et al.’ (2017) study. It is important to note that
the expression of GLT-1 was not affected in the PFC and Acb in P rats that were
experiencing relapse-like ethanol behavior (Qrunfleh et al. 2013). However, ceftri-
axone treatment upregulated GLT-1 in these brain regions and attenuated relapse-
like ethanol-seeking behavior, which suggests that restoring dysfunctional GLT-1 is
critical in the attenuation of ethanol seeking (Qrunfleh et al. 2013). Other studies
confirmed the efficacy of ceftriaxone on reducing relapse-like ethanol-seeking
behaviors (Abulseoud et al. 2014; Alhaddad et al. 2014b; Rao and Sari 2014) and
alleviating ethanol withdrawal symptoms in male P rats (Abulseoud et al. 2014), and
this effect was associated with an upregulation of GLT-1 and xCT in the Acb, PFC,
and/or whole striatum (i.e., Acb, caudate, and putamen; Abulseoud et al. 2014;
Alhaddad et al. 2014b) and specific upregulation of GLT-1 isoforms (GLT-1a and
GLT-1b; Alhaddad et al. 2014a). Additionally, pretreatment with ceftriaxone during
acquisition of ethanol drinking reduces the maintenance of ethanol intake in female
adolescent and adult P rats, with a greater effect in adult rats (Sari et al. 2013a).

14.8 Ceftriaxone and Psychostimulants

Ceftriaxone appears to be more effective in reducing cocaine-seeking behaviors than
cocaine self-administration itself (Sari et al. 2009; Sondheimer and Knackstedt 2011;
Roberts-Wolfe and Kalivas 2015). Ceftriaxone attenuated cocaine-primed, context-
induced, or other cue-induced reinstatement of cocaine-seeking behaviors (Sari et al.
2009; Knackstedt et al. 2010; Roberts-Wolfe and Kalivas 2015; LaCrosse et al.
2016; Bechard et al. 2018; Bechard and Knackstedt 2019). Ceftriaxone-induced
attenuation of cocaine-seeking is associated with normalization (i.e., reversal of
cocaine-induced reductions) of GLT-1 and/or xCT expression in the Acb (Kalivas
2009; Sari et al. 2009; Knackstedt et al. 2010; Sondheimer and Knackstedt 2011;
LaCrosse et al. 2016; Spencer and Kalivas 2017; Bechard et al. 2018).

Importantly, ceftriaxone has also been found to attenuate reinstatement to meth-
amphetamine seeking behavior in conditioned place preference paradigm
(Abulseoud et al. 2012), possibly through overexpression of GLT-1. For instance,
overexpression of GLT-1 in Acb using gene transfer technology blocked
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methamphetamine reinstatement in conditioned place preference (Fujio et al. 2005).
It is important to note that exposure to methamphetamine can lead to increase of
glutamate release in the Acb and PFC (Ito et al. 2006; Labarca et al. 1995; Shoblock
et al. 2003; Stephans and Yamamoto 1995; Xue et al. 1996). These studies would
suggest that upregulation of GLT-1 with ceftriaxone is critical to the regulation of
glutamate uptake and subsequent attenuation of the reinstatement of methamphet-
amine seeking behavior. Acute repeated exposure to high dose of methamphetamine
of 10 mg/kg, i.p., every 2 h � 4/day downregulated the expression of GLT-1 in the
dorsal striatum, medial PFC and Acb (Alshehri et al. 2017; Althobaiti et al. 2016b).
Importantly, ceftriaxone attenuated the effects of methamphetamine-induced GLT-1
downregulation in these brain regions (Alshehri et al. 2017; Althobaiti et al. 2016b)
as well as methamphetamine-induced alterations in tissue content of several neuro-
transmitters, including glutamate (Althobaiti et al. 2016a).

14.9 Ceftriaxone and Other SUDs

As with ethanol, cocaine, and methamphetamine, chronic nicotine exposure
downregulated astrocytic GLT-1 and xCT within the Acb and/or VTA (Knackstedt
et al. 2009; Gipson et al. 2013; Spencer and Kalivas 2017). However, ceftriaxone
had no effect on the development of a nicotine conditioned place preference in mice
(Alajaji et al. 2013), but did attenuate nicotine-induced reinstatement in conditioned
placed preference paradigm (Alajaji et al. 2013; Philogene-Khalid et al. 2017) and
reversed nicotine withdrawal signs (Alajaji et al. 2013). In rats, ceftriaxone reduced
oral nicotine-sucrose and nicotine-ethanol intake by P rats, which was concurrent
with normalization of GLT-1 expression levels in the Acb and PFC (Sari et al. 2016).
Overexpression of GLT-1 in the Acb reduced morphine conditioned place prefer-
ence but did not affect somatic signs of naloxone-precipitated morphine withdrawal
(Fujio et al. 2005). Administration of ceftriaxone also attenuated the development of
tolerance to the anti-nociceptive effect of morphine and reduced naloxone- or
naltrexone-precipitated morphine withdrawal in mice and rats (Rawls et al. 2010;
Habibi-Asl et al. 2014; Medrano et al. 2015). Moreover, morphine-induced condi-
tioned place preference and morphine-associated locomotor sensitization were atten-
uated by ceftriaxone treatment (Schroeder et al. 2014). Shen et al. (2014) reported
that heroin self-administration impaired functional glutamate uptake and decreased
GLT-1 expression in the Acb. These authors also reported that ceftriaxone reduced
cue-induced reinstatement of heroin seeking (Shen et al. 2014). In addition, ceftri-
axone treatment attenuated morphine-induced hyperthermia (Rawls et al. 2007). A
more recent study showed that ceftriaxone attenuated the reinstatement of
hydrocodone-induced conditioned place preference and normalized a
hydrocodone-induced reduction of xCT expression in the Acb (Alshehri et al. 2018).
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14.10 Other Upregulators of GLT-1 and SUDs

Administration of the β-lactam antibiotics amoxicillin, Augmentin (amoxicillin/
clavulanate; Goodwani et al. 2015; Hakami et al. 2016), and ampicillin (Alasmari
et al. 2015; Rao et al. 2015) attenuates ethanol intake in male P rats. Similar to
ceftriaxone, systemic administration of Augmentin and amoxicillin upregulated/
normalized xCT and GLT-1 levels in the Acb and/or PFC (Alasmari et al. 2015;
Goodwani et al. 2015; Hakami et al. 2016, 2017). A recent report by Hammad et al.
(2017) examined the effects of the β-lactam antibiotic ampicillin/sulbactam on
cocaine reinstatement by male P rats. These authors found that cocaine-primed
reinstatement downregulated GLT-1 and xCT in the AcbSh and AcbCo, but not
the dorsal medial PFC (dmPFC; Hammad et al. 2017). Ampicillin/sulbactam
reduced cocaine-induced reinstatement in a conditioned place preference paradigm
while normalizing the expression of GLT-1 and xCT in the AcbSh, AcbCo, and
dorsal mPFC as well as mGluR1 levels in the AcbCo, although there was a decrease
in locomotor activity following treatment (Hammad et al. 2017). Importantly,
ampicillin/sulbactam attenuated cocaine-induced ethanol deprivation effects, and
this effect was associated with upregulation of GLT-1 and xCT expression in the
AcbSh and AcbCo as well as dmPFC (Hammad and Sari 2020).

Cefazolin and cefoperazone, both β-lactam antibiotics, decreased ethanol but not
sucrose intake (Rao et al. 2015; Alasmari et al. 2016). Cefazolin and cefoperazone
both upregulate GLT-1 and its isoforms (GLT-1a and GLT-1b) in the Acb and PFC
(Rao et al. 2015; Alasmari et al. 2016). Regarding xCT, cefazolin increased expres-
sion in both the Acb and PFC, while cefoperazone only upregulated xCT expression
in the Acb (Alasmari et al. 2016). Clavulanic acid, a β-lactamase inhibitor,
upregulates GLT-1 in the Acb (Kim et al. 2016). Clavulanic acid decreased ethanol
intake at a dose that was approximately 30-fold lower than ceftriaxone in P rats
(Hakami and Sari 2017; Althobaiti et al. 2019). This effect was associated with
restored expression of GLT-1 and xCT in Acb (Hakami and Sari 2017; Althobaiti
et al. 2019) and increased the expression of mGlu2/3R in the AcbSh and mPFC
(Althobaiti et al. 2019). In addition, clavulanic acid blocked the reinstatement of
methamphetamine-induced condition place preference (Althobaiti et al. 2019) and
this effect was associated with restoration of GLT-1 and xCT levels in the AcbSh,
but not in the AcbCo. In Mice, clavulanic acid produced significantly lower break-
points for cocaine maintained on a progressive ratio schedule of reinforcement (Kim
et al. 2016). Clavulanic acid also attenuated reinstatement to morphine in rats tested
using the conditioned place preference paradigm (Schroeder et al. 2014).

Other non-antibiotic drugs have been tested in male P rats and found to attenuate
ethanol intake, an effect associated with upregulation/activation of GLT-1. Among
these synthetic drugs, 3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-
dioxopentyl)-2-pyrrolidinecarboxylate (GPI-1046), an analog of FK506, and (R)-
(�)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153). GPI-1046 treatment reduced
ethanol intake in P male rats and upregulated the expression of GLT-1 levels in
key central reward brain regions (i.e., Acb and PFC; Sari and Sreemantula 2012).
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MS-153 treatment also reduced ethanol intake and attenuated an ethanol-induced
reduction in the expression of GLT-1 in the Acb, Amyg, and HPC (Aal-Aaboda et al.
2015; Alhaddad et al. 2014b).

14.11 N-acetylcysteine

N-acetylcysteine (NAC) is an FDA-approved treatment for paracetamol (acetamin-
ophen) overdose. NAC is oxidized into cystine leading to increase in availability of
cystine for the astroglial xCT (Nocito Echevarria et al. 2017). Increased levels of
cystine lead to an enhancement of glutamate exchange by astroglial cells resulting in
elevated concentrations of glutamate within the extrasynaptic space, increased
synthesis of glutathione (GSH) in astrocytes, and restoration of downregulated
GLT-1 expression (Berk et al. 2013; Brown et al. 2013; Nocito Echevarria et al.
2017). We suggest that the restoration of GLT-1 is associated with decrease in
extracellular glutamate concentrations in the brain and increases in the exchange
of cystine and glutamate thereby leading to increases in the biosynthesis of GSH.
This is an important process to reduce oxidative stress, which might be caused with
chronic exposure to drugs of abuse. Substantial research has shown that NAC has
antioxidant, anti-inflammatory, and neuroprotective properties (cf., Santus et al.
2014; Shahripour et al. 2014; Bhatti et al. 2017; Markoutsa and Xu 2017; Pei
et al. 2018).

14.12 N-acetylcysteine and Ethanol

Oral administration of NAC reduced ethanol intake, relapse drinking, and relapse-
associated blood ethanol concentrations in the Wistar derived University of Chile
Bibulous (UChB) alcohol-preferring rats (Quintanilla et al. 2016, 2018; Israel et al.
2019). Additionally, NAC fully abolished increased levels of oxidative stress and the
neuroinflammation induced by chronic ethanol intake by UChB rats (Quintanilla
et al. 2018). NAC administration in an ethanol-dependent animal model reduced
ethanol-intake, operant ethanol-self-administration, ethanol break-point (i.e., pro-
gressive ratio), ethanol-seeking behavior, and relapse-like ethanol-seeking behavior
(Lebourgeois et al. 2019). Moreover, NAC prevented stress-potentiated ethanol
intake and abolished conditioned stress-induced reinstatement of ethanol-seeking
behavior in outbred rats (Garcia-Keller et al. 2019).
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14.13 N-acetylcysteine and Cocaine

NAC appears to have limited effects on cocaine self-administration as it failed to
alter cocaine self-administration in rats (Murray et al. 2012; Frankowska et al. 2014)
or non-human primates (Kangas et al. 2019). Nevertheless, it appears to be intri-
cately involved in drug learning as others have reported that NAC prevented
cocaine-primed (Baker et al. 2003; Amen et al. 2011; Frankowska et al. 2014),
and cue-induced (Reichel et al. 2011; Murray et al. 2012; Frankowska et al. 2014;
Reissner et al. 2015) as well as stress-induced (Garcia-Keller et al. 2019), reinstate-
ment of cocaine-seeking in rats but not in non-human primates (Kangas et al. 2019).
NAC has also been found to facilitate extinction of drug-lever responding in rats
(LaRowe and Kalivas 2010) and non-human primates (Kangas et al. 2019). In
addition, Murray et al. (2012) reported that NAC was able to attenuate both early
and late stages of acquisition and maintenance of cue-induced cocaine-seeking
behavior. Intra-accumbal NAC attenuated cue-induced cocaine-seeking behavior
and cue-cocaine primed reinstatement of cocaine-seeking behavior, which was
enhanced by the mGluR5 antagonist MTEP (Kupchik et al. 2012). NAC restored
the expression of GLT-1, but not xCT, in MCL subregions, which was critically
important for the ability of NAC to suppress cue-induced reinstatement of cocaine-
seeking behavior (Reissner et al. 2015; Ducret et al. 2016). Another study reported
that NAC prevented the loss of control observed with chronic cocaine self-
administration (Madayag et al. 2007). However, in other work acute, chronic, and
progressive-ratio cocaine self-administration was not affected by NAC, although
NAC did facilitate punishment-induced extinction (Ducret et al. 2016). The discrep-
ancy between these studies may be due to differences in cocaine training history, the
dose of cocaine used, or timing of NAC administration prior to drug availability or
exposure among other experimental procedures.

14.14 N-acetylcysteine and Other SUDs

Acute administration of NAC can decrease nicotine self-administration without
altering food self-administration, whereas chronic administration lasting 14 days
had a non-specific attenuating effect on both nicotine and food self-administration
(Ramirez-Niño et al. 2013). Furthermore, acute NAC attenuated cue-induced rein-
statement of nicotine-seeking behaviors (Ramirez-Niño et al. 2013). Subchronic
NAC administration for five days produced mixed results on cue-induced nicotine-
seeking. One study found that this regimen of NAC exposure reduced cue-induced
nicotine-seeking in male Sprague-Dawley rats but not female rats regardless of
estrous cycle phase (Goenaga et al. 2020), while another study found that 5 days
of NAC treatment did not alter cue-induced nicotine-seeking in male Sprague-
Dawley rats (Powell et al. 2019). These results suggest that there may be sex specific
effects of NAC with regard to nicotine craving/relapse behaviors (Goenaga et al.
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2020) although the studies did possess differences in experimental procedures which
may have affected the results.

Chronic administration of NAC for 14–15 days has consistently inhibited
cue-induced nicotine-seeking behavior (Ramirez-Niño et al. 2013; Moro et al.
2019; Namba et al. 2019; Powell et al. 2019; Goenaga et al. 2020). In addition,
Moro et al. (2019) indicated that chronic administration of NAC has long-lasting
effects for up to 50 days post-treatment(Moro et al. 2019). Interestingly, Moro et al.
(2019) observed that NAC administration during abstinence in the home cage failed
to reduce cue-induced reinstatement, but administration during experimental
cue-exposure therapy or during extinction sessions attenuated cue-induced seeking.
This suggests pairing NAC treatment with experimental cue-exposure therapy or
extinction sessions may increase the effectiveness of NAC to prevent relapse (Moro
et al. 2019). These authors also reported that seven days post experimental
cue-exposure therapy was associated with a lower expression of GLT-1 as well as
higher expression of GluN2B in the AcbSh of nicotine self-administering rats, which
was normalized by NAC treatment (Moro et al. 2019). Fifty days after NAC
treatment there was a steep increase in mGluR2 levels in both the AcbSh and
AcbCo, as well as normalization of xCT expression in the AcbCo, and normalization
of GLT-1 expression in the AcbSh suggesting that NAC treatment can induce long-
term increases in glutamate uptake (Moro et al. 2019).

Namba et al. (2019) found that NAC normalized GLT-1 expression in the AcbCo,
reduced tumor necrosis factor-alpha (TNFα) expression in the AcbCo, and
suppressed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tor to NMDA current ratios, which again suggests NAC acts to restore glutamate
homeostasis and attenuate inflammatory response induced by cue-induced nicotine-
seeking following nicotine self-administration. Bowers et al. (2016) indicated that
NAC reduced the development of a nicotine conditioned place preference, nicotine
somatic withdrawal signs, hyperalgesia, while inducing a conditioned place aversion
in mice. However, it did not alter palatable food conditioned place preference,
anxiety-like behavior, or motoric capacity. In alcohol-preferring UChB rats, oral
administration of NAC reduced oral nicotine intake and fully suppressed the rein-
statement of a nicotine conditioned place preference (Quintanilla et al. 2018).
Moreover, NAC administration fully abolished increased oxidative stress and the
neuroinflammatory markers induced by nicotine (Quintanilla et al. 2018). Clinical
studies have shown that smokers treated with NAC reported a reduction in the
number of cigarettes smoked (Knackstedt et al. 2009; McClure et al. 2015) and
rated the first cigarette after an abstinence period as less rewarding (Schmaal et al.
2011). However, these effects were limited because NAC did not have any signif-
icant effects on craving (Knackstedt et al. 2009; Schmaal et al. 2011), withdrawal
symptoms (Knackstedt et al. 2009; Schmaal et al. 2011), or breath carbon monoxide
levels, which is a biomarker for smoking abstinence (Knackstedt et al. 2009).
Furthermore, the majority of smokers did not maintain abstinence (Knackstedt
et al. 2009; McClure et al. 2015). In contrast, a more recent study reported NAC
treatment reduced craving, helped participants to maintain abstinence, and positively
affected dysregulated corticostriatal connectivity (Froeliger et al. 2015). Thus, NAC
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may act to alter reward processing thereby helping smokers to maintain abstinence
immediately following cessation of smoking (Froeliger et al. 2015). Taken together,
these findings suggest that NAC may have some efficacy in relapse prevention with
regard to smoking.

There have been several clinical studies examining the efficacy of NAC in
cocaine-using as well as -dependent subjects. In actively using cocaine-dependent
individuals NAC did not alter cocaine use (LaRowe et al. 2013), however, there was
evidence that it helped maintain abstinence in individuals who had already achieved
abstinence (LaRowe et al. 2013). A more recent study found that cocaine use and
problems (Drug Use Disorder Identification Test) were decreased with NAC treat-
ment (Schulte et al. 2018). Lower cocaine-positive urine scores in the NAC group
supported these findings (Schulte et al. 2018). Levi Bolin et al. (2017) indicated that
NAC treatment significantly attenuated the reinforcing effects of cocaine. However,
NAC has had mixed results on psychostimulant craving. It has been shown to reduce
cocaine craving (Amen et al. 2011), although others did not find similar effects on
craving or self-reported abstinence (Schulte et al. 2018). Also, NAC did not have an
effect on cocaine cue-reactivity-associated neural correlates (Schulte et al. 2019).
Nevertheless, others have found that NAC suppresses methamphetamine-craving
(Mousavi et al. 2015). In early work, the administration of NAC, during extinction,
inhibited cue-induced and heroin-primed reinstatement of heroin-seeking with long-
lasting effects up to 40 days post-treatment (Zhou and Kalivas 2008). These findings
suggest that repeated NAC administration may have therapeutic potential in enhanc-
ing abstinence and reducing drug-seeking behaviors and -craving.

14.15 Conclusions

SUDs are characterized by a long-lasting vulnerability to relapse across drug classes.
Prolonged neuropathological changes to the glutamatergic system, within the MCL
described above, appear to contribute to the addicted state through glutamate
dysregulation. The significance of glutamate in learning and memory implicates
the magnitude of its role in initiating and promoting addiction, Alzheimer’s disease,
posttraumatic stress disorder (PTSD), and other psychiatric conditions. The impact
of glutamate transport and maintaining homeostasis to avoid neurotoxicity and
damage from oxidative stress necessitates additional investigation of EAATs and
vGluTs. Further research into the distinct neuroadaptations that result from gluta-
mate dysregulation could provide information needed to develop more effective
pharmacotherapeutics to treat addiction. Preclinical research has begun to explore
the potential of glutamate transporters as therapeutic targets through NAC and
cefazolin. Importantly, continued examination of the mechanisms behind the altered
MCL and response to rewarding stimuli following chronic drug exposure may also
support the development of pharmacotherapies for individuals with a dual-diagnosis
of an SUD comorbid with another psychiatric disorder.
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