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“Alle Ding sind Gift und nichts ohn’ Gift;
allein die Dosis macht, das ein Ding kein
Gift ist.”
“All things are poison, and nothing is
without poison; the dosage alone makes it,
so a thing is not a poison.”
—Paracelsus

“Die Dosierung macht das Gift: Von der
Glutamat-vermittelten Exzitotoxizität zur
Glutamat-vermittelten Neuroplastizität.”
“The Dosage Makes the Poison: from
Glutamate-mediated Neurotoxicity to
Glutamate-mediated Neuroplasticity.”
—Zoran M. Pavlovic



Foreword

The brain and neuropsychopathology continue to be the source of enduring mystery
and limitless exploration. Through advances in technology, our quest to probe the
brain’s capabilities has enabled us to reduce this complex organ to a finite list of
molecules and cell types. Yet, it continues to be the seat of seemingly infinite
possibilities. The fact that it works well at all, let alone most of the time in most of
us through its circuit redundancy and functional checkpoints, is perhaps the most
unfathomable mystery that it holds. Glutamate and Neuropsychiatric Disorders:
Current and Emerging Treatments offers a broad and deep exploration of one aspect
of the cosmos that is the brain. Glutamate is the stuff of thoughts and memories,
excitatory and elating. Yet, in excess, it is devastating in its effects. This simplistic
view of glutamate as the primary excitatory neurotransmitter belies the constellation
of interactions in which it has been implicated across wide-ranging neuropsychiatric
syndromes, disorders, and symptoms. This thoughtfully curated collection cata-
logues a compendium of receptors, a host of mechanisms, and the complex connec-
tions glutamate co-experiences with its fellow synaptic travelers.

This book arrives in the context of a rapid expansion of our technological ability
to identify targets, craft molecules, and measure human behaviors and activities with
micrometer accuracy through tools powered by machine learning and artificial
intelligence. With such tools available the traditional dualities of mind–body,
mind–brain, and psychology–neurology now seem as ever-eclipsing Venn diagrams.
Glutamate, as we know it, could arguably be the prototypical neurotransmitter that
brings the disciplines of neurology and psychology to peak obscuration.

For the psychiatrist, this text offers new insights into anxiety, stress, and impulse
control disorders, and new targets for mood and psychotic disorders. For neurolo-
gists herein are implications for multiple sclerosis, migraine, and the other side of the
learning and memory coin: dementia. How one molecule and its contingent of
transporters impact such far-reaching diagnoses and symptom domains is perhaps
no mystery in the end. As with the worlds beyond our sight, our tools have just
begun to uncover that which was there all along, waiting for discovery. This
collection of works from these intrepid researchers reads as a discovery lab’s
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ambitious “to do list” and the work has only just begun. And the potential impact on
human brain health—human health—from future treatments is as inspiring as the
task is daunting. Space was never our final frontier. The mind is. And glutamate
could be a master key to unlock many of its mysteries.

Otsuka Pharmaceutical Development &
Commercialization, Princeton, NJ, USA

Julie Adams, MD, MPH
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Foreword

As a clinician, my daily work is helping patients suffering from different kinds of
neuropsychiatric disorders to overcome the disease and get back to their everyday
lives. As we all know, the current pharmaceutical treatments for those disorders
could be helpful but not good enough. For example, using antidepressants could help
more than two-thirds of unipolar depression patients achieve “remission,” but there
are still abundant patients who could be qualified as “treatment-resistant.” Which
kind of treatments could better help our patients? This is a vitally important question
for both clinicians and researchers.

One year ago, I suddenly received a letter from Dr. Zoran M Pavlovic from
Serbia. He introduced his excellent work in that warm greeting letter, the book
entitled Modulators of Glutamatergic Signaling as Potential Treatments for Neuro-
psychiatric Disorders. Upon his introduction, I realized that the book’s first edition
received excellent reviews by leading psychiatrists and psychopharmacologists from
both academia and industry. At the end of his letter, he invited me to participate in
the Book Proposal Review for the second edition.

Why me? A young Chinese psychiatrist without being directly involved in
glutamatergic research? I have been thinking of this for a long time until one day,
I joined a live symposium at the European Congress of Psychiatry to discuss the
treatment of depression. I suddenly realized that it is not about the background or
personal resume. It is about the integration of academics, just as “when east meets
west.” The world needs us to be more deeply involved together to overcome the
great challenge in the age of brain science.

Glutamate is the most diffused amino acid in the brain throughout the human life
span, which is involved widely in neuronal growth and differentiation, synaptic
plasticity, learning and memory consolidation, arousal, and behavior. The current
book, entitled Glutamate and Neuropsychiatric Disorders: Current and Emerging
Treatments, contains 20 chapters written by more than 30 eminent psychiatrists and
neurologists from Europe, the USA, Australia, and Southern America. In this book,
readers could catch the most recent preclinical and clinical evidence about gluta-
mate, the potential mechanism, and emerging treatments in various neuropsychiatric
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disorders, including chronic stress, chronic pain, migraine, epilepsy, amyotrophic
lateral sclerosis/motor neuron disease (ALS/MND), multiple sclerosis (MS), ische-
mic stroke (IS), Parkinson’s disease (PD), Alzheimer dementia (AD), attention
deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), schizo-
phrenia, bipolar disorder (BD), major depressive disorder (MDD), posttraumatic
stress disorder (PTSD), anxiety disorders and obsessive-compulsive disorder
(OCD), and substance use disorders (SUD).

Last but not least, congratulations to all the editors on their success in assembling
such academic work! It is my great pleasure to welcome this book and wish it a wide
distribution and recognition.

Shanghai Mental Health Center,
Shanghai Jiao Tong University School
of Medicine, Shanghai, China

Jun Chen, MD, PhD

x Foreword



Foreword

Regulation of glutamate reminds me of the role of a lion tamer at the circus. Too
much glutamate neurotransmission can have deadly consequences to neural cir-
cuitry, and too little glutamate signaling can be profoundly dulling. Because gluta-
mate is the single most common excitatory neurotransmitter in the human CNS, it
plays a foundational role in a number of brain circuits implicated in the pathophys-
iology of mental and neurological disorders. Under normal circumstances, activity-
dependent, bidirectional control of glutamatergic synaptic function is thought to
contribute to many forms of experience-determined plasticity, including important
elements of cognition such as learning and memory. Consequently, there is
burgeoning interest in glutamatergic targets for the treatment of a variety of psychi-
atric, neuropsychiatric, and neurological syndromes. This has resulted in the com-
mercialization of new treatments, most recently esketamine nasal spray for
treatment-resistant depression in adults and for depressive symptoms in adults
with major depressive disorder with acute suicidal ideation or behavior. In the case
of schizophrenia, attempts are ongoing in Phase III clinical trials to address the
cognitive impairment associated with this disorder by tweaking the ionotropic
N-methyl-d-aspartate (NMDA) glutamate receptor. In neurology and neuropsychi-
atry, amantadine, an NMDA receptor inhibitor, has been noted to ameliorate both
hypo- and hyperdopaminergic states.

In this volume, Dr. Pavlovic has curated an overview of these and other clinically
relevant issues that will help readers contextualize the practical and research impli-
cations of glutamatergic signaling for both current treatment and future drug devel-
opment. An impressive array of experts (including Dr. Pavlovic) serve up reviews
about the overarching role glutamate has in the stress response: in neurological
disorders such as amyotrophic lateral sclerosis, motor neuron disease, multiple
sclerosis, Parkinson’s disease, ischemic stroke, migraine, epilepsy, and pain man-
agement; neuropsychiatric disorders such as Alzheimer dementia; childhood-onset
disorders such as attention deficit/hyperactivity disorder and autism spectrum disor-
der; and psychiatric illnesses such as bipolar disorder, major depressive disorder,
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posttraumatic stress disorder, anxiety, obsessive-compulsive disorder, substance use
disorders, and schizophrenia.

Taming glutamate requires knowledge of both metabotropic and ionotropic
receptors, and not only NMDA receptors, but also the “companion” ampakine and
kainate receptors that operate in tandem with NMDA receptor, and the recognition of
the role of co-agonists such as glycine and D-serine. All of these can be subject to
pharmacological manipulation. As you will see in the following pages, it is not only
about glutamatergic neurons, but also about gamma-aminobutyric acid interneurons,
astrocytes, microglia, and oligodendrocytes. How all of this can ultimately regulate
the monoamines (notably dopamine, serotonin, and norepinephrine), as well as other
“downstream” neurotransmitters, holds the key to a better understanding of CNS
disease and potential treatments.

New York Medical College, Valhalla,
NY, USA

Leslie Citrome, MD, MPH
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Foreword

Dr. Pavlovic and the authors he has assembled are to be congratulated for taking on a
Herculean task to produce the book, Glutamate and Neuropsychiatric Disorders:
Current and Emerging Treatments. Glutamate richly deserves such a comprehensive
treatment, and readers will have a wealth of information on this ubiquitous and
complex neurotransmitter which has been implicated in so many different conditions.

To put my comments in perspective, it might be useful to give some background
on me. I went to medical school to understand the relationship between the brain and
human behavior and have been fortunate to spend 40 years in academic medical
career doing just that particularly in the area of new psychiatric drug development. I
did two fellowships in anatomical pathology with a focus on neuropathology,
followed by a general medicine-psychiatry internship, and a psychiatry residency
with an emphasis on neurobiology.

It is that perspective that I think this multi-authored text under the guidance of
Dr. Pavlovic will be an aid to healthcare professionals from many different special-
ties as well as basic researchers and student interested in understanding how one
transmitter may play a role in such otherwise disparate conditions from autism
spectrum disorder to Alzheimer’s disease—the former presenting early in life and
the latter relatively late in life.

The book covers a wide range of disorders some of which might be considered
more neurological, others more psychiatric, and still others more general medical. It
is to Dr. Pavlovic to have been able to bring so many authors together to produce
such an encyclopedic text.

In thinking about this foreword, I reviewed the topics and regrouped them into the
following table to illustrate the breadth of the book. The classic neuropathology
refers to conditions in which gross or histopathological or other laboratory findings
(e.g., electroencephalography) have established. Nonclassical neuropathy refers to
conditions where such findings are not as well established, but instead more bio-
chemical or functional features are either established or proposed.

This book explains how specific dysregulation of the major excitatory neuro-
transmitter in the brain, glutamate, could play a role in the pathophysiology of all
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these conditions and hence why it can be a focus for effective therapeutic interven-
tion in these otherwise disparate illnesses.

It will be a valuable resource for all of those interested in understanding this
neurotransmitter and the pathobiologies underlying these illnesses.

Classic Neuropathology

Ischemic Stroke
Andrés Da Silva Candal

Alzheimer’s Dementia
Markku Kurkinen

Amyotrophic Lateral Sclerosis (ALS)
Andrea Diana

Multiple Sclerosis
Anna Pittaluga

Parkinson’s Disease
Fabrizio Gardoni

Epilepsy
lberto E. Musto

Nonclassical Neuropathology

Listed usually under Neurology

Migraine
Anna Andreou

Listed usually under Psychiatry

Bipolar Disorder
Kostas N. Fountoulakis

Schizophrenia
Luis F. Callado

Posttraumatic Stress Disorder (PTSD)
Maurizio Popoli

Impulsive Aggression
Alan R. Felthous

Substance Use Disorders (SUD)
Richard L. Bell

Anxiety Disorders
Zuleide M. Ignacio

Listed under both

Chronic Stress
Zoran M Pavlovic

Autism Spectrum Disorder (ASD)
Carla Sogos

Attention Deficit Hyperactivity Disorder (ADHD)
Greg A. Gerhardt

Listed usually under General Medical

Chronic Pain
Kathleen Holton

University of Kansas School of
Medicine, Wichita, KS, USA
27 May 2021

Sheldon Preskorn, MD
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Preface

My “Glutamate Journey”

Introduction

Reflecting on my 25-year long, as I call it, “glutamate-based” career, even today, I
vividly remember the lovely sunny day on May 5, 1994, when my father Milan
taught me how to tie a tie and get ready for my first day of work at ICN Yugoslavia.
The pharmaceutical company Galenika located in Zemun, in the vicinity of Bel-
grade, had been recently bought by a California-based ICN Pharmaceuticals founded
and chaired by a Serbian-born American businessman Mr. Milan Panic, a biochemist
and a former Yugoslavian national champion in cycling. The first meeting was with
my line manager, who told me that my “startup” assignment would be to intensify a
promotional campaign for the first-ever CNS blockbuster Prozac (Fluoxetine), which
was recently in-licensed from Eli Lilly. Due to the initial reluctance of Serbian
psychiatrists to administer an SSRI antidepressant for the first time, especially to
their hospitalized patients with severe depression, I decided, together with two key
opinion leaders, Professor Ivana Timotijevic, MD, and Professor Vladimir R
Paunovic, MD, to conduct a small open-label clinical study, to compare antidepres-
sant effects of fluoxetine, between outpatients and inpatients, with a clinical diag-
nosis of major depressive disorder (MDD). The study was a major success, as it
showed beneficial antidepressant effects of Flunirin (fluoxetine’s brand name in
Serbia) on both patient populations, and in addition, in comparison to the tricyclic
and tetracyclic antidepressants (standards of care at that time), had fewer adverse
events and more rapid onset of action. As I thought that study results might be
interesting to present at an international conference, I compiled the essential data
from the clinical study report and created my first poster, with study data published
in the Abstract Book of the International College of Neuropsychopharmacology
(CINP) Congress that took place in Melbourne, Australia, in 1995. A year later,
Flunirin was the most prescribed antidepressant in Serbia and Montenegro. My next
assignment was to coordinate a neurology project together with my colleagues from
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F. Hoffmann-La Roche, related to the introduction of a sustained-release version of
levodopa benserazide combination drug Madopar HBS, which just got EU approval
for the treatment of night-time problems in patients with Parkinson’s disease (PD), to
the Serbian market. A key opinion leader for PD, Associate Professor Vladimir S
Kostic, MD, Chief of Department for Movement Disorders at the Institute of
Neurology in Belgrade, was at that time attending his advanced training at Professor
Serge Przedborski MD’s Lab at the Columbia University Motor Neuron Center in
New York, who pioneered the investigation of molecular mechanisms of neuronal
death in the MPTP model of PD. Our daily phone conversations usually started at
5 AM ECT, 11 AM Belgrade time, when we discussed various aspects of PD night-
time symptoms, both disease and treatment related. These 15- to 30-minute consul-
tations were extremely helpful for boosting my expertise in PD necessary for
upcoming promotional activities, including setting up a local post-marketing clinical
study.

Booklet on glutamate role and Lamotrigine treatment of seizures in Rett
syndrome, 3rd European Congress of Epileptology—Poland (1998)

In August 1996, I got a fantastic opportunity to move from a mid-size to a top-five
big pharma company, GlaxoWellcome (GW) plc, now GSK, as a Medical and
Regulatory Officer at their Representative Office in Belgrade. That was the time
and place where my “romance” with glutamate and glutamatergic treatments began.
It turned out that my first “GW baby” was lamotrigine, a phenyltriazine synthesized
at Wellcome Laboratories in the UK in the early 1980s in response to an unmet need
for an antiepileptic drug with an improved safety profile and broader therapeutic
efficacy. I still recall that I was puzzled by its unique mechanism of action, as it was
the first anticonvulsant demonstrating effects on glutamate neurotransmission. At
that time, Lamictal (lamotrigine’s brand name) was solely indicated for patients with
treatment-resistant epilepsy (TRE). A couple of weeks after I joined GW, word of
mouth led to one of the most prominent child epileptologist, Associate Professor
Nebojsa Jovic, MD, inviting me to his office to supply him with the latest scientific
publications on lamotrigine because he was very keen to begin treating his pediatric
and adolescent patients with refractory seizures with lamotrigine. He was especially
interested in administering Lamictal to several of his young female patients with Rett
syndrome (RS) and poorly controlled seizures on standard antiepileptic drugs, as it
was observed that children with RS exhibited high levels of glutamate in the
cerebrospinal fluid (CSF). At that time, there was only one case report published
by Uldall et al. in Neuropediatrics journal from 1993 about the use of lamotrigine in
this rare and severe neurodevelopment disease, so I strongly suggested to Professor
Jovic to closely monitor the safety of his patients as several cases of lamotrigine-
induced Steven-Johnson syndrome were already reported in adults with TRE. We
also discussed which instruments would be most appropriate for capturing treatment
effects in addition to the EEG analysis. Once the clinical trial was completed, I
submitted a study report to my colleagues at GW headquarters in Greenford,
UK. They immediately proposed to publish the study results as a booklet and
distribute it to the epileptologists during ILAE (International League against Epi-
lepsy), 3rd European Congress of Epileptology in Warsaw, Poland, in 1998. It was a
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brilliant idea, as the booklet was “sold out” during the first day of the conference. On
top of that, after the meeting, other GW offices worldwide asked for my permission
to use it when locally promoting Lamictal for TRE.

Poster presentation on Lamotrigine use in a treatment-resistant patient with
bipolar disorder at XXIst CINP Congress—Scotland (1998)

At that time, I did not know that my love at first sight with lamotrigine would end
up in a long-term relationship with total commitment from both sides. Still, the next
Rendez-Vous came just after the conference in Warsaw, as GW initiated a Phase III
study on lamotrigine use in bipolar disorder (BD). At that time, GW had limited
experience with clinical trials in psychiatry, so they looked for the CRAs with
psychiatric expertise and recruited several prominent psychiatrists in the UK and
the USA to coordinate a very ambitious clinical development program. The trials
included patients with bipolar depression, bipolar mania, and the “rapid cycling”
variant of BD. Although I was thrilled to be a part of the most extensive global
placebo-controlled studies ever done in BD, I was particularly excited to be involved
in a rapid cycling study, as it was one of the first (if not “the” first) FDA- and
EMA-approved psychiatric study, which used the electronic case report forms
(eCRFs), which allowed me to monitor patient data via an Internet cable connection,
by using my laptop at the office, without the need to visit Professor Miroslava
Jasovic-Gasic (MD) in person. As a final-year resident in psychiatry, I also spent a
certain amount of time at the Institute of Mental Health. One day I examined and
took anamnesis of a patient with BD who was intolerant to side effects of lithium,
experiencing a full-blown depressive episode. I consulted with my senior colleague
Professor Timotijevic on how to proceed with a treatment-resistant patient, and we
agreed that the best solution would be to add lamotrigine to his ongoing antidepres-
sant regimen. Surprisingly for both of us, adding lamotrigine reduced his depressive
symptoms after only 2–3 weeks of treatment. Excited by the rapid and clinically
significant effects of lamotrigine, and with great enthusiasm, I reached out to my GW
colleague based in Research Triangle Park in North Carolina, in the USA, Gary
Evoniuk, PhD, a Director of Medical Communications at that time, who helped me
in transforming raw patient data into succinct and visually attractive poster presen-
tation for the upcoming CINP Meeting in Glasgow. I was very flattered when the
external coordinator for the Lamictal in Bipolar Disorder Study Project, Professor
Joseph R Calabrese, MD, from Case Western Reserve University School of Medi-
cine, came to me during the poster session and praised the way we managed a
difficult-to-treat bipolar patient. Interestingly, this was the first European case report
ever published, just a year after Professor Gary Sachs, MD, at the Department of
Psychiatry, Massachusetts General Hospital in Boston, reported about positive
results of using lamotrigine in his case series study with treatment-resistant bipolar
patients.

Publication of case reports of my patients with impulsive aggression and
alcohol use disorder treated with Lamotrigine—Serbia (2008–2010)

Once I completed my residency and got my board certification in psychiatry in
2002, I started my private practice a couple of months later. My first patient was
diagnosed with the most severe disorganized, difficult-to-treat type of schizophrenia,
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refusing to take medications due to a high level of extrapyramidal symptoms (EPS)
he was experiencing while on haloperidol. His parents were also very concerned
about his physical aggression bursts, mainly toward those closest to him. I decided to
switch him to a second-generation antipsychotic risperidone at maximum dosage,
which immediately reduced his EPS symptoms. In contrast, I noted no improve-
ments in symptoms related to his impulsive aggression. My next step was to add
clozapine to his ongoing antipsychotic regimen. Still, I did not observe any signif-
icant changes in his aggression levels measured by the Overt Aggression Scale.
Coming back from one of my house calls, I suddenly remembered that one of my
colleagues administered valproate to his autoaggressive patient with borderline
personality disorder (BPD). When I came home, I immediately started browsing
PubMed. I noticed the article by Professor Eric Hollander, MD, reporting that
divalproex was superior to placebo in reducing impulsive aggression in patients
with borderline personality disorder (BPD). According to him, pretreatment trait
impulsivity symptoms and state aggression symptoms predicted a favorable
response to divalproex relative to placebo. I also found two clinical studies demon-
strating the anti-aggressive properties of lamotrigine. The first one by Beran and
Gibson, with intellectually challenged patients, was published in 1998, and the
second by Tritt et al. from 2005, showing that lamotrigine reduced aggression in
female patients with BPD. Moreover, I found several preclinical animal studies
conducted with other compounds with glutamatergic properties. One of them was
from 1982 by Miczek and Tyler about the effects of phencyclidine on aggressive
behavior in mice, the other one by Takahashi reporting on the effects of ketamine in
animal models of aggression from 1984, and the most recent one from 1992 by Lu
et al. regarding the role of glutamate NMDA receptors in aggression. This compi-
lation of evidence-based data encouraged me to start with lamotrigine treatment, and
once my patient was maintained on a dosage of 200 mg/day for several weeks, I
observed his aggression begin to diminish. This case report was published as the
Letter to the Editor in the Journal of Clinical Psychopharmacology, which ranked as
a top 5 psychopharmacology journal with an impact factor of almost 6.0 in 2008 (for
comparison purposes, a psychopharmacology journal with the highest impact factor
in 2019 was Neuropsychopharmacology, the official journal of the American Col-
lege of Neuropsychopharmacology (ACNP) with an impact factor of 6.7). It was the
first article that appeared in a medical journal reporting about the anti-aggressive
properties of lamotrigine in a patient with a most severe type of schizophrenia.
Moreover, Professor Leslie Citrome (MD) and others quoted my findings in their
chapter “Understanding and Managing Violence in Schizophrenia” published in the
Second Edition of the book Comprehensive Care of Schizophrenia: A Textbook of
Clinical Management, Edited by Professor Jeffrey A. Lieberman, MD, and Professor
Robin M. Murray, MD. Going to a private psychiatric practice in case you suffer
from a substance use disorder (SUD) in Belgrade is much more comfortable and less
stigmatized, and according to my patients, has additional benefits, as I was spending
more time with them, allowing me to do motivational interviewing, and the simple
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cognitive-behavioral interventions during the session. I still remember one of my
older patients, with chronic drinking problems and heavy binge-drinking episodes,
who did not want to go to the hospital for detoxification while being desperate due to
her inability to cope with alcohol craving, which was incredibly intense for her in the
morning before going to work. Although I did not have too much experience with
SUD patients, I decided to accept the challenge, especially as she was my first client
with alcohol use issues. I was pretty much disappointed when I found out that my
colleagues were mainly prescribing Antabuse (disulfiram), a drug still used as
aversion therapy in alcoholic patients. Although it was a drug with a fascinating
history, discovered in 1881, and primarily used to accelerate the manufacturing
process of rubber, and the first drug for the treatment of alcohol use disorder
(AUD) approved by the Food and Drug Administration (FDA) in 1949, I was very
skeptical about its use in my patient, due to hepatotoxicity, neurological side effects,
and lack of consistent information about its optimal dosage. While searching the
literature for more information about novel compounds for this indication, I stum-
bled upon topiramate, an antiepileptic drug with GABA-ergic and glutamatergic
properties, tested in several placebo-controlled clinical trials coordinated by Profes-
sor Bankole Johnson, MD, from the University of Maryland School of Medicine.
The results from these trials, published in 2004 and 2007, reported clinically
significant improvements in patients’ quality of life receiving topiramate. Moreover,
treatment responders experienced reductions in the severity of addiction symptoms
and frequency of heavy drinking episodes. The investigators also noted better overall
psychosocial functioning in topiramate patients, mainly due to reduced binge drink-
ing. However, both studies showed several limitations. Firstly, their aim was not to
measure the intensity of withdrawal symptoms. Secondly, the trials’ duration was
only 14 weeks; therefore, they were not designed to capture topiramate’s effects in
preventing future relapses. This initial information about the successful use of an
antiepileptic with glutamatergic properties in patients with alcohol dependence
reminded me of another well-known drug used in AUD, acamprosate, a weak
NMDA antagonist, which also interacts with a group one (I) metabotropic glutamate
receptor type 5 (mGluR5). This drug was tested for the first time in alcohol-
dependent patients in 1984, in a study by Hillemand et al. and then a year later in
similar research by Lhuintre. Both investigators were impressed about its unique
anti-craving properties, manifested as a decrease in “liking, wanting, urges, desires,
need, intention or compulsive drinking, which are usually present during ethanol
withdrawal in alcoholics.” These unique findings led them to suggest that
acamprosate might be considered in preventing relapse in patients with chronic
drinking problems. Another study, this time in animals, by Olive and al. published
in 2002, reported a reduction of the rewarding effects of alcohol with acamprosate,
possibly by attenuating the ethanol-induced increase in dopamine levels in the
nucleus accumbens (NAc) of rats. Unfortunately, my enthusiasm for prescribing
acamprosate to my patient waned quickly, as it turned out that the drug was not
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available in Serbia at that time. Therefore, I moved on with my literature search and
found a paper by Rubio et al. from 2006, who noted that lamotrigine might be a
treatment option for BD comorbid with AUD. Just a year later, in an animal study,
Vangeliene et al. concluded the following: “The ability of Lamotrigine to reduce
alcohol-seeking as well as relapse-like drinking behavior provides further support
for the proposed involvement of glutamatergic and dopaminergic systems in alcohol
craving and relapse, hence suggesting a good rationale for pharmacological inter-
vention that may reduce craving and relapse in alcohol-dependent patients.” Another
seminal article on lamotrigine use in AUD was written by Krupitsky, who compared
the effects of glutamatergic treatments (lamotrigine, topiramate, and memantine) to
diazepam, and placebo, in ethanol detoxification of patients with AUD. He reported
the positive effects of lamotrigine similar to those observed with traditional benzo-
diazepines but with fewer side effects. The authors also noted superior effects of
lamotrigine over memantine and topiramate in reducing observer-rated and self-
rated alcohol withdrawal severity. Moreover, they suggested that the observed
between-treatment difference might reflect an advantage of lamotrigine which
mainly inhibits glutamate release, over pharmacologic strategies that target individ-
ual glutamate receptors, like topiramate and memantine. Boosted by these initial
findings of successful use of lamotrigine in AUD, I decided to give it a try; however,
instead of administering a dose of 100 mg/day of lamotrigine like Krupitsky, I aimed
for a maximum recommended dosage of lamotrigine when given as monotherapy to
patients with TRE which was 200 mg/day. Another significant difference between
my approach and the one of Krupitsky was that he tested the effects of lamotrigine
monotherapy on alcohol withdrawal symptoms, while I added lamotrigine to a
standard detoxification protocol, up-titrating it to the optimal dose of 200 mg/day,
and then slowly tapered down and eventually discontinued “Benzos.” This method
proved to be an excellent strategy, as there was no increase in withdrawal symptoms
while switching from benzodiazepine to lamotrigine. In contrast, I was hesitant
about continuing the administration of lamotrigine to my patient as there was not
enough information supporting long-term treatment of AUD with antiepileptic
drugs. Still, I decided to follow the recommendation of Professor Johnson that
people who are alcohol dependent “require continuous, and possibly lifetime phar-
macological treatment, in the same manner as the provision of insulin to a diabetic is
essential.” Moreover, as she was my first patient using lamotrigine for relapse
prevention, I kept in touch with her by phone and was very satisfied as she reported
total abstinence from alcohol for the following 3 years. I described this patient in a
case report published in the Journal of Neuropsychiatry and Clinical Neurosciences,
the official journal of the American Neuropsychiatric Association, postulating that
specific advantages of lamotrigine in comparison to other similar drugs might stem
not only from its marked anti-craving properties but also due to its effects on
decreasing depressive symptoms, often occurring during alcohol withdrawal, and
usually serving as relapse triggers.
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History of glutamate discovery, a mini-review on glutamate and glutamatergic
drugs, and medical monitoring of the MDD study with Declogurant—Germany
(2011–2012)

After a decade of working in my private practice, I got a job offer to relocate to
Germany, the country where glutamic acid was discovered by the German chemist
Karl Heinrich Ritthausen in 1866, who, while working with wheat proteins, isolated
it by treating wheat gluten with sulfuric acid. While preparing a preface for my first
book, I learned that even sponges that do not have a nervous system use glutamate
for cell-to-cell signaling. Moreover, they too possess metabotropic glutamate recep-
tors, so that the application of glutamate to a sponge can trigger a whole-body
response that sponges use to rid themselves of contaminants. The excitatory effects
of glutamate on neuronal cells were discovered by Japanese scientist T. Hayashi in
1952, who found that injections of glutamate into the cerebral ventricles of dogs
could cause seizures; however, he firmly rebuffed any notions that glutamate might
be considered an “excitatory transmitter.” By the end of the 1950s, there was a
consensus that glutamate strongly excites many central neurons but was unlikely to
be a synaptic transmitter. One of the most common reasons for skepticism was the
universality of glutamate’s excitatory effects in the CNS, which seemed inconsistent
with the specificity expected of a neurotransmitter. The first scientist who identified
glutamate as a primary excitatory neurotransmitter was a neurophysiologist Profes-
sor Kresimir Krnjevic, PhD, born in 1927 in Zagreb, at that time, the Kingdom of
Serbs, Croats, and Slovenes, who formally retired fromMcGill University in 1999 as
a Professor of Physiology and died in Montreal, Canada, in 2021. While working at
today’s Babraham Institute, in Babraham, Cambridge, in the UK, during the early
1960s, in one of his iontophoretic experiments looking for transmitter-like actions of
various substances, he noted that L-glutamate intensely excited virtually all neurons
in the cerebral (and cerebellar) cortex of anesthetized cats. He informed the UK
Physiological Society about his finding in September 1961. At that time, Professor
Krnjevic probably did not recall Paracelsus’ quote that it is the dose that only
differentiates the poison from the drug. Later he briefly mentioned in one of his
interviews that one aspect of glutamate’s action, which later proved to be of great
clinical importance, completely eluded him: its “excitotoxic” effect. Indeed,
according to Professor Krnjevic, glutamate lacked any harmful effect: neurons
could be excited either repeatedly or continually for many minutes without causing
any apparent harm, which seemed in keeping with its proposed role as a physiolog-
ical transmitter. He also remembered that he was stunned when in 1969, Professor
John Olney, MD, a psychiatrist who coined the term “excitotoxicity,” published a
paper in the journal Science demonstrating that the ingestion of monosodium
glutamate (MSG) caused neuronal degeneration. Fortunately, a series of discoveries
during the 1970s resolved most of these doubts, and by 1980, the compelling nature
of the evidence related to glutamate function as an excitatory neurotransmitter was
almost universally recognized. The next stop on my “glutamate journey” was the
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University City of Mannheim, the second-largest town in the German state of Baden-
Württemberg, with approximately 300,000 inhabitants, located around eighty kilo-
meters from Frankfurt. My first assignment in a global Contract Research Organi-
zation PRA Health Sciences was to support my colleagues from F. Hoffmann-La
Roche conducting a Phase II randomized trial with a mGluR2/3 negative allosteric
modulator RO4995819 (Declogurant) as adjunctive therapy in patients with MDD
having inadequate response to ongoing antidepressant treatment. This engagement
was an incentive for me to write a mini-review article titled Glutamate: leader in
contemporary translational neuropsychopharmacology research for Translational
Biomedicine, an open-access journal.

Lecture on glutamate, cocaine use disorder, lamotrigine
and session co-chairing at the 2nd International Conference and Exhibition

on Addiction Research & Therapy
Las Vegas, USA (2013)
Once I got encouraging results on using lamotrigine in AUD, I decided to ask my

22-year-old patient with a cocaine use disorder (CUD) who suffered from several
relapses and was on the verge of dropping out from the university whether he would
be interested in using it. Once his parents also gave consent, I prescribed him
lamotrigine. The rationale behind my decision was not just because of my positive
experiences with lamotrigine in treating patients with AUD, as I also consulted
various scientific literature sources before making the final call. To my surprise, one
of the first articles about the role of glutamate neurotransmission in CUD was
published by Professor Peter W Kalivas (PhD) and others in 1999. In one of his
subsequent articles from 2003 titled: “Prefrontal Glutamate Release into Nucleus
Accumbens Mediates Cocaine Induced Reinstatement of Drug-Seeking Behavior,”
he concluded that “pharmacological modulation of glutamate release may prove an
effective target for selectively treating craving for drugs of abuse.” This hypothesis
was later confirmed by Schmidt and others in 2010, saying that glutamate release in
the NAc of cocaine-experienced rats promoted reinstatement of cocaine-seeking
behavior. After treating several of my SUD patients with lamotrigine, I concluded
that lessening of subsyndromal depressive symptoms, which are frequently present
in individuals with CUD, further contributed to the overall beneficial effects of
lamotrigine in reducing drug-seeking, cue-induced reinstatement of addictive behav-
iors, and preventing relapses. The case report about the use of lamotrigine in my
patient with CUD was published in 2011, and a year later, in a comprehensive
review, Olive and Kalivas quoted both of my articles on SUD and suggested that
based on the currently available findings, lamotrigine may be of clinical benefit in
the treatment of addiction in AUD and CUD. In 2013, I was invited to an Interna-
tional Conference on Addiction in Las Vegas, Nevada, to speak about glutamate and
glutamatergic treatment role in patients with CUD, which gave me the opportunity to
meet in person with Professor Foster M Olive, PhD, from Arizona State University
and ask him to present his work on the role of metabotropic glutamate receptors in
SUD in my forthcoming book Modulators of Glutamate Signaling as Potential
Treatments of Neuropsychiatric Disorders, which he gladly accepted. Another
insight about lamotrigine’s potential MOA in treating CUD came up while I was
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preparing the preface for this book, as I found the interview that Professor Kalivas
gave to the Science Daily in August 2018 about his preclinical study on the role of
BDNF in preventing cocaine relapse in rats, saying: “An important aspect of this
study is that while others have shown that BDNF is important for establishing the
state of addiction, we found that it can also be used to reverse addiction.” He then
added, “This exemplifies that the primary effect of BDNF is to promote changes in
the brain and that this capacity to change the brain contributes to how people get
addicted, but also can be harnessed to remove brain pathologies such as drug
addiction.” Moreover, Li et al. reported about the interplay between lamotrigine
and BDNF, suggesting that BDNF signaling mediated antidepressant properties of
lamotrigine and that chronic lamotrigine treatment upregulated frontal and hippo-
campal BDNF levels and restored stress-induced downregulation of BDNF in
animal experiments. Another compelling piece of evidence observed in the same
study was that pharmacological inhibition of BDNF signaling completely abolished
the antidepressant effect of lamotrigine. These recent developments might further
contribute to the origins of lamotrigine’s superiority over other glutamatergic
modalities tested for SUDs.

Certificate for Co-chairing the session on addiction during the conference in Las Vagas (2013)
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Lecture on glutamate and role of glutamatergic drugs in treating impulsive
aggression, at the Department of Psychiatry, Tianjin Medical University—China
(2013)

In February 2013, through one of my LinkedIn contacts, I got in touch with
Professor Jie Li, MD, a psychiatrist working at Tianjin University of Medicine
Mental Health Centre, who kindly invited me to give a lecture on glutamate’s role
and neuropsychopharmacological treatment of impulsive aggression, which coin-
cided with the publication of a review article on a similar topic in the Journal of
Clinical Psychopharmacology, which I wrote together with Professor Gabriella
Gobbi, MD, and her lab team members Drs. Stefano Comai and Michael Tau, at
McGill University in Montreal, Canada. Interestingly, McGill University was also
the institution where Professor Krnjevic, who established the glutamate role as a
neurotransmitter, spent most of his scientific career. Once I arrived at Beijing airport,
I was greeted by Professor Li’s students, and since then, until I embarked on my
return flight to Frankfurt, I have experienced generosity and kindness from another
dimension. Professor Li and her three students helped me learn as much as possible
about China, its history, and its citizens’ everyday lives during my short stay. Being
a big fan of Chinese food and glutamate as a neurotransmitter, I was always intrigued
about the story of “Chinese Restaurant Syndrome,” which goes back to a discovery
of fifth taste by Dr. Kikunae Ikeda (1864–1936), a Japanese chemist and Tokyo
Imperial University Professor of Chemistry who, in 1908, uncovered the chemical
basis of a taste he named “umami” meaning “essence of deliciousness” in Japanese,
and is considered as fifth taste or savoriness, along with sweet, bitter, sour, and salty
basic tastes. The story says that in 1907, while he was eating dinner with his family,
Professor Ikeda noticed that his soup was more delicious than usual; after stirring a
few times, he realized the difference was the umami flavor from kombu, a species of
brown macroalgae.

From that day on, Professor Ikeda continued studying the chemical composition
of kelp and eventually isolated brown crystals of glutamic acid (glutamate).
Dr. Ikeda then partnered with the businessman Saburosuke Suzuki and in 1908
established a company, Ajinomoto Co., Inc., developing a process for MSG’s mass
production by 1909. Professor Ikeda also studied other foods to see if they contained
umami and confirmed that glutamate was responsible for part of the flavor of meat,
seaweed, and tomatoes. He believed that humans developed a taste for glutamate
because it signaled the presence of proteins. Soon, umami became a key element in
culinary arts, as the Chefs realized that it kept the tastiness of dishes even though salt
concentration and meal fat content was reduced. Scientists have found that humans
have specific taste receptor cells for umami bundled in clusters called taste buds in
the oral cavity, containing T1R1–T1R3 G-protein-coupled receptors. Interestingly,
T1R binds free glutamate when food enters the mouth eliciting the umami taste that
is very much appreciated in savory dishes.
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Photo from the Dean’s office at Tianjin Medical University, Tianjin, China (2013)

FIRST BOOK: “Modulators of Glutamatergic Signaling as Potential Treat-
ments for Neuropsychiatric Disorders” Heidelberg, Germany (2015)

When I started to work from my home office in Mannheim for Worldwide
Clinical Trials, as a Manager in the Psychometric Assessment Department, respon-
sible for overseeing European Psychiatry and Neurology projects, I noticed that
without the need for commuting to the office, I had a couple more hours during the
day, so I decided to embark on the project related to my first book on glutamate and
glutamatergic treatments. I still remember a colleague from the US Headquarters in
Philadelphia, who was the first to know about my plan, immediately expressing his
sincere concern by saying: “Man, you are going to get burnout syndrome.”Although
it was not easy to coordinate contributors’ efforts dispersed in different time zones,
the book was finalized in June of 2015, during my stay in Heidelberg. It contained
seven chapters, written by authors from Canada, Australia, the USA, Belgium, and
Serbia. Moreover, it was the first book ever published on glutamate and
glutamatergic treatments, which contained the most current information about
major psychiatric and neurological diseases in one place. The book received excel-
lent reviews from world-renowned academics and industry colleagues.
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Front cover of the Book “Modulators of Glutamatergic Signaling as Potential Treatments for
Neuropsychiatric Disorders” (2015)

What Inspired Me to Write This Book?

My motivation to write this and the previous book stems from several personal and
professional reasons.
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Why Psychopharmacology and Glutamate?

My mother, Nadezda, was a big proponent of my decision to specialize in psychi-
atry. In the same way, my father, Milan, a pharmacist, who worked his whole life in
the Serbian pharmaceutical company Galenika, supported my decision to start my
career in pharmaceuticals. I sincerely enjoyed my work in the pharma industry as a
pharmaceutical physician and quickly became more and more fascinated with
neuropsychopharmacology. Unfortunately, my honeymoon with the CNS medica-
tions was over as soon as I stepped into my private psychiatric practice, as I was
immediately confronted with the occurrence of adverse events and lack of response
to available psychotropic drugs in some of my patients. These firsthand experiences
facilitated my decision to administer glutamatergic treatments that were not yet
tested in double-blind placebo-controlled clinical trials to my difficult-to-treat
patients. Therefore, both manuscripts are also a way of expressing my sincere
gratitude to patients and their families for trusting and supporting me throughout
my “glutamate” journey.

Finally, I am optimistic that the book will foster future drug development
initiatives, leading to the discovery of novel efficacious and safe glutamatergic
treatments that will enable people with significant mental health and neurological
disabilities to lead meaningful, decent, and happy lives.

Why the Book on Psychiatric and Neurological Disorders?

Personal reasons probably relate to my early and late-life experiences with my
closest family members as my grandfather suffered fromMDD, and my grandmother
died from AD. Moreover, although trained in psychiatry, from the beginning of my
career, I was always involved in parallel in neurology projects on Alzheimer’s and
frontotemporal dementia, PD, restless legs syndrome, primary headaches, and
chronic pain. Furthermore, the first glutamatergic drug that I “got acquainted with”
was lamotrigine in 1998, which was then solely administered to neurological
patients with treatment-resistant epilepsy and by coincidence tested at the same
time for a psychiatric indication, namely BD.

Why Is This Book Important, and Why Is It Unusual?

This book provides scientists and healthcare professionals with up-to-date and
comprehensive yet practical information on glutamate-related neurobiology of
major neuropsychiatric disorders and glutamatergic drugs by mixing contemporary
scientific streams and clinical practice in a balanced and forward-looking way. The
manuscript is also unique as it contains crucial information about glutamate neuro-
transmission and glutamate-based modalities for the most prevalent psychiatric and
neurological disorders in one place. Authors have used their expertise to identify the
most current seminal publications enriching them with their own preclinical and
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clinical insights when discussing their chapter topics. Each chapter presents a
concise overview of the most critical aspects of an illness and its treatment, with
an additional emphasis on giving practical tools to prospective readers, so they could
easily comprehend and quickly learn complex neuroscientific principles and treat-
ment strategies. Written by more than 30 key opinion leaders from Italy, Spain, UK,
the USA, Brazil, Australia, and Serbia, this book aims to bring professional and
cultural diversity, hopefully contributing to the manuscript’s originality.

What Is New to This Edition?

My first book on glutamate and glutamatergic treatments was published in 2015. It
has seven chapters and around two hundred pages. The one that you are currently
holding in your hands or browsing as the ebook on your laptop or smartphone has
20 chapters and has been streamlined to keep pace with significant developments
that have taken place in the fields of neuroscience, clinical psychiatry, and neurology
related to glutamate and glutamatergic treatment in the last 5 years. Other improve-
ments include adding the Suggested Reading section, which provides high-level
resources not cited in the chapter of vital importance for the topic discussed.
Moreover, the visual aspect and concept of the book dramatically changed, with
the inclusion of the numerous color and black and white figures (some of them were
created explicitly for this book edition and published for the first time) to reinforce
and visually present the main concepts learned from the written text.

Which Audience Would Benefit the Most from This Book?

The primary beneficiaries would be neurology and psychiatry specialists and resi-
dents, neuroscientists, neuropharmacologists, pharmaceutical industry, and clinical
research organization professionals, academicians, students, and clinicians working
with psychiatric and neurological patients with comorbidities such as cardiologists,
pulmonologists, and endocrinologists. This book will also appeal to psychiatry and
neurology subspecialists and clinicians working in neuroscience labs seeking an
easy-to-understand yet comprehensive overview of contemporary evidence-based
clinical insights backed by basic science (preclinical) research evidence.

Major Developments Related to Glutamate and Glutamatergic
Treatments Since the First Book Is Published

(2015–2021)

Below is the list of main scientific, clinical, and drug development breakthroughs
that occurred after the publication of my first book in 2015 till today:
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• More profound understanding of the glutamatergic system and neuroinflammation
interplay in the etiopathogenesis of MDD and neurodegenerative disorders such as
AD and PD

• Comprehensive identification of downstream pathways of glutamate-related
neuroplasticity

• Initial evidence about the role of glutamatergic neurotransmission in the mediation
of beneficial effects of sitting meditation, mindful movement, and yoga practices
for treating and preventing various psychiatric and neurological disorders

• Approval of the first rapid-acting antidepressant (RAAD) with a novel mecha-
nism of action, ketamine, for patients with treatment-resistant MDD

• First clinical findings regarding the role of glutamatergic neurotransmission in
mediating treatment effects of psychedelics like psilocybin and MDMA

• Increased knowledge about the Neurobiology of Consciousness, including the
role of glutamatergic neurotransmission in maintaining a “cellular” consciousness

• Discovery of glutamatergic neurotransmission mechanisms underlying the devel-
opment of the newly introduced behavioral addictions such as Internet addiction
and problematic smartphone use

Five-Year Prediction About Future Directions in the Field
of Glutamate and Glutamatergic Treatments

(2021–2026)

Below is my list of major scientific and pharmaceutical developments related to
glutamatergic neurotransmission and glutamate-based therapeutics that I predict to
occur in the next 5 years:

• Significant advancements in the early detection of abnormalities in glutamatergic
neurotransmission enabling healthcare professionals to diagnose psychiatric and
neurological diseases during the asymptomatic stage and initiate treatment as
early as possible
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• Increased pharma and biotech investments in discovery and development of
prophylactic glutamatergic modalities to prevent major psychiatric and neuro-
logical disorders such as MDD and AD

• Introduction of gene therapies for rare neurological disorders with abnormalities
in glutamate neurotransmission such as Machado–Joseph disease and Rett
syndrome

• Complete identification of glutamate-related biomarkers and complex biological
signatures for major neuropsychiatric disorders

• Improvement of crisis management and intervention practices due to availability
of fast-acting ketamine-like glutamatergic drugs that will prevent the occurrence
of PTSD, anxiety, and depression in healthy individuals affected by natural
catastrophes or pandemics

• Increased investigation and knowledge about the role of glutamate in the neuro-
biology of loneliness (social isolation) and social distancing

• More intensive research on glutamatergic biomarkers of resilience, mental
toughness, hardiness, and stress susceptibility

• Proactive use of glutamatergic resilience promoting interventions by individuals
with increased vulnerability to stress

• Qualitative and quantitative increase of community studies of novel glutamate-
based behavioral and other lifestyle interventions aiming to decrease the inci-
dence of stress-related disorders

• Increased number of double-blind placebo-controlled clinical trials in the field of
nutraceuticals, adaptogens, and plant-based foods with glutamatergic properties
for the treatment and prevention of stress-related and neurodegenerative disorders

• More regular use of stress management and burnout prevention techniques
affecting glutamatergic neurotransmission such as mindfulness meditation and
yoga in the occupational settings, including both office and home-based working
environments

I sincerely hope that this book will inspire you to broaden your personal and
professional horizons while helping you to efficiently apply the acquired knowledge
in your preclinical and clinical daily practices so you could make a difference in
other people’s lives.

Enjoy the book and let us meet again in 5 years.
Yours,

Belgrade, Serbia Zoran M. Pavlovic, MD
June 6, 2021
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Chapter 1
Treatments Against Glutamatergic
Excitotoxicity in Ischemic Stroke

Andrés Da Silva-Candal, Maria-Perez-Mato, and Jose Castillo

Abstract Brain ischemia is the second cause of death and the first cause of
disability in developed countries. Given its high prevalence, there are different
therapeutic strategies based on recanalization, neurorepair, and neuroprotection of
the tissue. Neuroprotection includes all therapies aimed at reducing cell death after
an ischemic process during the acute phase of stroke. The different neuroprotective
drugs are classified according to their mechanism of action, being the modulation of
the glutamatergic system one of the main targets of neuroprotection. Glutamate is the
main neurotransmitter in the central nervous system, where it plays a key role in both
development and function. In the brain, glutamate is compartmentalized intracellu-
larly into neurons and astrocytes; and only a small fraction of it extracellularly.
During cerebral ischemia, an energy failure occurs that causes an increase in
extracellular glutamate, which induces pathogenic mechanisms, leading to
neuroexcitotoxicity. In order to mitigate the deleterious effects of excitotoxicity,
neuroprotective drugs have been developed to block the postsynaptic and presynap-
tic receptors of glutamate. These treatments have not shown efficacy in human
clinical trials, so the search for new therapeutic strategies is urgent. In line with
this, blood/brain glutamate grabbing is well recognized as a novel and protective
strategy to reduce the excitotoxic effect of glutamate extracellular excess that
accumulates in the brain following an ischemic stroke. Based on this blood/gluta-
mate-grabbing mechanism, the following strategies have been tested: oxaloacetate,
glutamate-oxaloacetate transaminase, pyruvate, hemodialysis and peritoneal dialy-
sis, blood glutamate EAAT2-cell grabbing therapy, and riboflavin.
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Keywords Glutamate · Stroke · Excitotoxicity

1.1 Historical Perspective/Introduction

Stroke is a cerebrovascular disease resulting from the disturbance of normal cerebral
blood flow, which causes a transient or permanent deficit in the function of one or
more parts of the brain. The disturbance of normal cerebral blood flow induces
metabolic and cellular changes that can lead to cell death and the disruption of the
nervous system. The World Health Organization (WHO) has defined stroke as a
rapid clinical development of focal signs of impaired brain function of no apparent
origin other than vascular (“The World Health Organization MONICA Project
(monitoring trends and determinants in cardiovascular disease): a major international
collaboration. WHO MONICA Project Principal Investigators,” 1988).

Ischemic stroke is the most common type of stroke and represents about the 80%
of all stroke cases (Adams Jr. et al. 1993; Arias-Rivas et al. 2012; Del Zoppo et al.
2009; Rodríguez-Yáñez et al. 2008).

In the case of cerebral infarction and attending to the etiology, different ischemic
stroke subtypes can be divided (Adams Jr. et al. 1993):

• Atherothrombotic infarction: (~20%) usually caused by medium-sized or large
infarcts with cortical, subcortical, carotid, or vertebrobasilar topography, in
patients with one or more cerebrovascular risk factors. The presence of clinically
generalized atherosclerosis, or demonstration of occlusion or stenosis (>50%
occlusion or <50% plus two or more vascular risk factors) in cerebral arteries,
with an established correlation with the patient’s clinic is essential.

• Lacunar infarction or small vessel disease: represents ~25% of ischemic
strokes, and is characterized by small infarcts (<15 mm in diameter), located in
the distribution territory of the penetrating arterioles. Although
microatheromatosis and lipohyalinosis of the penetrating arterioles are the most
frequent pathological substrate in lacunar infarcts, other less frequent potential
causes are cardiac embolism, arterial embolism, infectious arthritis, or
prothrombotic state.

• Cardioembolic infarction: corresponds to ~20% of ischemic strokes, medium
(1.5–3 cm of diameter) or large (>3 cm of diameter) sized infarcts, with symp-
toms frequently starting during awakening. It is mandatory the presence of a
demonstrated embolic origin, and the absence of significant concomitant arterial
occlusion or stenosis.

• Infarction of undetermined etiology: (~30%) brain infarcts of medium or large
size with more than two potential etiologies or unknown origin.

• Unusual causes (~5%).

Within focal cerebral ischemia, a distinction can be made between transient
ischemic attack (TIA) and cerebral infarction. TIA is defined as focal or monocular
cerebral dysfunction with symptoms lasting less than 1 h; the origin is a vascular
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insufficiency caused by an arterial thrombus or embolism, associated with arterial,
cardiac, or hematologic disease (Sorensen and Ay 2011). Patients with TIA are at
increased risk for subsequent major stroke and other vascular events, mainly coro-
nary, and the outcome for each individual is highly variable. Cerebral infarction is
defined as injury caused by intense or prolonged ischemia, resulting in irreversible
cell loss and neuronal deterioration.

1.2 Biochemistry of Cerebral Ischemia

The acute obstruction of a brain artery induces an instantaneous reduction of blood
flow in the corresponding irrigation area (focal ischemia). However, the interruption
of the blood supply is not homogeneous and may vary according to the occluded
vessel, collaterals, or occlusion type (Castillo 2000).

Within the infarct region two regions can be distinguished: the ischemic core,
which is the portion of tissue closest to the affected blood vessel and where ischemia
becomes severe, and the so-called penumbra, where the reduction in blood flow is
less severe, due to the blood supply from the collateral arteries of the neighboring
non-ischemic tissue (Back 1998). Therefore, the severity of stroke will depend on
the level of arterial occlusion and the duration of blood flow decrease, making time a
very important parameter in this pathology (Fransen et al. 2016). After occlusion and
the onset of cerebral ischemia, a series of short- and long-term molecular events will
occur. Initially there is an energy failure related to the interruption of oxidative
phosphorylation processes and a decrease in adenosine tri-phosphate (ATP)
production.

This in turn leads to a failure of the sodium-potassium-ATPase pumps and other
ATP-dependent pumps causing the cessation of the transmembrane ionic gradients;
this is a key process in the pathophysiological mechanisms of ischemic stroke, with
special relevance to cell death in the ischemic core. A few minutes after vascular
occlusion (Astrup et al. 1977), neurons and glial cells suffer an extreme depolariza-
tion due to the entrance of sodium, chloride, calcium, and water into the cytoplasm
(Hansen 1985) and in addition, potassium leaves the cell, inducing a sudden
increment of its extracellular levels (Blank Jr. and Kirshner 1977). The energetic
failure and the associated ionic changes originate an increment in glutamate, a
hyperexcitability of N-methyl-D-aspartate glutamatergic (NMDA) receptors
(NMDAr), and of α-amino-3-hydroxy-5-methyl-4-isoxazol propionic acid
(AMPA) receptors (AMPArs), which enhances the initial increase of intracellular
calcium (Choi 1987; Choi and Rothman 1990; White et al. 2000) (Fig. 1.1. Self-
created image created with Creative commons license).

The intracellular calcium increase does not depend only on the activation of
glutamate receptors, but also on the stimulation of voltage-dependent calcium
channels. Hyperexcitability causes a depolarization phase at the periphery of the
infarct, which raises the energy cost as the membrane attempts to repolarize (Back
1998; Choi 1992; Schiene et al. 1996). Calcium increment, together with acidosis
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and peri-infarct depolarization, contributes to initiate the damage. These molecular
events are followed by processes of inflammation and apoptotic cell death that
contributes to increment the lesion (Banasiak et al. 2000; White et al. 2000). The
generation of free radicals occurs during ischemia, and in particular during arterial
reperfusion. Free radicals are highly reactive species that are produced in the initial
and final phases of cerebral ischemia, following different pathophysiological mech-
anisms. First, reactive oxygen species are produced by arachidonic acid
(AA) metabolism and neuronal nitric oxide (NO) synthase (nNOS) activity. During
the intermediate stages, oxygen free radicals are contributed by the infiltration of
neutrophils into the ischemic zone. In later stages, they are produced by the synthesis
and subsequent activation of inducible NO synthase (iNOS) and cyclooxygenase-2
(COX-2) enzymes (Grandati et al. 1997; Nogawa et al. 1997).

Ischemic cell death, however, can take place in two different ways. The most
common is necrosis (McDonald and Windebank 2000), which is the result of the
acute energetic failure, mainly located in the core region of the lesion zone, and is
characterized by both morphological changes and, ultimately, by cell lysis, which
also triggers inflammatory events (Jander et al. 1995). On a different side, apoptotic
or programmed cell death, in the region surrounding the core, can be observed when
energy-dependent intracellular mechanisms are activated leading to cell damage
(Banasiak et al. 2000; Rami et al. 2000).

Fig. 1.1 Main molecular events after ischemic stroke that lead to cell death and secondary damage

4 A. Da Silva-Candal et al.



1.3 Glutamatergic System

Glutamate is the main excitatory amino acid in the mammalian central nervous
system. Glutamate plays a key role in cognition, memory, learning, and synapsis.
Also, glutamate has a signaling role in endocrine cells as well as in peripheral organs
and tissues (Moriyama et al. 2000).

The brain contains a large amount of glutamate, 5–15 mM per kg wet weight,
depending on the region (Schousboe 1981), which is mostly distributed in the
cellular interior and a tiny portion is in the extracellular space (Boyko et al. 2014).
Intracellular glutamate is found in two compartments located in astrocytes and
neurons. Astrocytic glutamate is contained in a small pool, which is metabolized
to glutamine. In neurons, glutamate is divided in two pools: one in the neuronal soma
and dendrites and another in the nerve terminals (vesicles).

During the neurotransmission process, glutamate plays an essential role. The
glutamate released by the presynaptic neuron activates the postsynaptic neuron. In
addition to neurons, astrocytes are also involved in neurotransmission processes and
play a key role in the process of extracellular glutamate uptake. Therefore, it should
be noted that glutamate is subject to significant regulation (Cooper et al. 1979;
Cooper and Plum 1987; Martinez-Hernandez et al. 1977).

Brain glutamate synthesis occurs mainly through the following pathways:

(a) Glutamate-glutamine cycle
(b) Synthesis in neurons and astrocytes from glucose
(c) Synthesis inside neurons from lactate delivered from astrocytes

Brain glutamate participates in the glutamate-glutamine cycle, but cannot be fully
regenerated through this route because glutamate can be oxidized; due to this,
glutamate from food does not reach the brain, since it does not cross the blood-
brain barrier, making de novo synthesis of glutamate in the brain necessary.

In this regard, it is known that the main substrate for glutamate synthesis is
glucose, which is uptaken through GLUT1 and GLUT3 receptors in astrocytes and
neurons, respectively (Zou et al. 2010). Through glycolysis, glucose is phosphory-
lated and pyruvate is generated, which is converted to Acetyl-CoA in the inner
mitochondrial membrane. Acetyl-CoA enters the tricarboxylic acid cycle (TCA
cycle) and provides α-ketoglutarate (α-KG) as the carbon backbone of glutamate.
Neurons can also synthesize glutamate from lactate produced by lactic fermentation
in astrocytes. Once synthesized, glutamate is loaded into synaptic vesicles via
VGLUTs. In response to neuronal activity, the vesicles, upon interaction with
soluble N-ethylmaleimide factor binding protein receptors (SNAREs), fuse with
the plasma membrane of presynaptic neurons and release their contents into the
extracellular space. Glutamate binds to ionotropic (iGluR) or metabotropic (mGluR)
receptors on postsynaptic neurons. In addition to the mentioned receptors, there are
specific glutamate transporters called EAATs, which play an essential role in the
uptake and maintenance of extracellular glutamate concentrations (Zou et al. 2010;
Goncalves et al. 2018).
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EAATs are found in astrocytes (EAAT1 and EAAT2) and neurons (EAAT3)
(Westbrook 1993). EAATs are antiporters that transport one glutamate molecule
along with three Na+ and one H+ molecule, while exporting one K+ molecule
(Beretta et al. 2003; Zerangue and Kavanaugh 1996). Glutamate taken up by
astrocytes enters the glutamate-glutamine cycle and is converted to glutamine by
the action of the enzyme glutamine synthetase (a specific enzyme of astrocytes and
oligodendrocytes). This glutamine is released from astrocytes via the N-system
glutamine transporter (SN1) and reaches neurons via system A transporter (SAT1).
Here, glutamine is converted to glutamate via phosphate-activated glutaminase
(Fremeau et al. 2004). Astrocytic glutamate that is not converted to glutamine is
degraded to α-KG and enters the TCA cycle.

In addition to the involvement of astrocytes and neurons in extracellular gluta-
mate uptake, many studies indicate that endothelial cells (ECs) play a key role in the
maintenance of extracellular glutamate concentration. The presence of EAATs in the
abluminal membrane of brain ECs and their ability to uptake and accumulate
glutamate have been described. Glutamate accumulated in the ECs can undergo
different processes, from its transport into the bloodstream to its metabolization
(Zerangue and Kavanaugh 1996). In vivo studies show that glutamate can be
transported into the bloodstream via a facilitatory glutamate transporter XG- present
in the luminal membrane (Oldendorf and Szabo 1976). In addition, glutamate can be
metabolized in ECmitochondria, where it is converted to α-KG. From there, α-KG is
converted to pyruvate, which can be converted to lactate in the cytosol and
transported via MCT-1 on the luminal membrane into the blood (Cederberg et al.
2014). Endothelial cells, via transporters located in the abluminal membrane, are
able to uptake glutamine from the extracellular space. Glutamine is hydrolyzed to
glutamate and NH4+ by glutaminase present in the cytoplasm of ECs
(Hawkins 2009).

The main pathways of glutamate synthesis and metabolization are represented in
Fig. 1.2. Image adapted from Castillo et al. and created with Servier Medical Art.

1.4 Molecular Components of the Glutamate
Neurotransmitter System as Potential Drug Targets:
Receptors and Transporters

Glutamatergic neurotransmission serves as excitatory relay stations between presyn-
aptic nerve terminals and postsynaptic dendritic. The glutamatergic synapse plays a
crucial role in a wide range of normal physiological functions and involves a series
of transporters and receptors.
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1.4.1 Glutamate Transporters

1.4.1.1 Excitatory Amino Acid Transporters (EAATs)

EAATs are polypeptides of 500–600 amino acid residues and transporters consisting
of six to eight putative transmembrane domains, one or two re-entrant loops and
cytoplasmic N- and C-termini (Shigeri et al. 2004). To date, five subtypes (EAAT1-
5) have been described, with amino acid homology of 50–60%. The main function of
EAATs is the transport of glutamate from the extracellular space across the plasmatic
membrane. This involves the co-transport of glutamate and three Na+ and one H+

ion, which causes a conformational change of the transporter and the subsequent
release of the charge into the cell cytoplasm. Subsequently, a K+ ion binds to the
EAAT transporter, and returns to its original conformation with the subsequent
release of K+ ion (Krzyzanowska et al. 2014).

EAATs (1–3) are mainly expressed in the central nervous system (CNS), while
EAAT4 and EAAT5 are in the cerebellum and retina, respectively (Krzyzanowska
et al. 2014). EAAT1 and EAAT2 are found in astrocyte membranes, with the highest
densities of both in the membrane of astrocytes overlooking the neuropil. EAAT1 is
predominantly expressed in astrocytes, while EAAT2 is mostly expressed in astro-
cytes, but has also been identified (about 10%) in hippocampal nerve terminals.
EAAT3 is selective for neurons, mainly in dendrites and cell bodies, and its

Fig. 1.2 Main routes of glutamate synthesis and metabolization
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expression levels are lower than the detected levels of EAAT2 (Zhou and Danbolt
2000). In addition to the localization described above, different studies indicate that
EAATs are present in the endothelial cells of the blood-brain barrier (Cederberg
et al. 2014), where they participate in the cellular mechanism for brain glutamate
efflux (Castillo et al. 2016).

The main function of EAATs is to regulate the extracellular concentration of
glutamate and to maintain it at low physiological levels to avoid its deleterious
effects. After releasing into the synaptic cleft, glutamate is rapidly uptaken via
EAATs (1–3) into glial cells and neurons. EAAT2 is primarily responsible for
more than 90% of the total glutamate uptake (Maragakis et al. 2004). The function
of EAAT4 is to regulate neuronal excitability through regulation of neuronal depo-
larization (Krzyzanowska et al. 2014). EAAT5 mediates the light response of
depolarizing bipolar cells (DBC) in dark-adapted mouse retina (Tse et al. 2014).

The regulation of extracellular glutamate levels is essential for the maintenance of
normal brain function. Deficiencies in this process are linked to several neurological
diseases, such as cerebral ischemia, Alzheimer’s disease, Huntington’s disease, and
amyotrophic lateral sclerosis. Given that the EAAT2 transporter is the main regulator
of the homeostasis of glutamate levels in the brain, proper expression and regulation
of EAAT2 is critical for maintaining extracellular glutamate levels and the survival
of neurons. The critical role of EAAT2 in the regulation of glutamate in different
diseases suggests that this transporter can be used as a target for the development of
new molecules capable of regulating its function, both in vitro and in vivo, with
ultimate applications in humans. In this regard, β-lactam antibiotics have been
identified as transcriptional activators of EAAT2. Studies with β-lactams showed
that they are able to facilitate glutamate uptake by astrocytes providing neuronal
protection. This finding suggests that these drugs have potential applications as
therapeutic agents to limit and prevent glutamate excitotoxicity. For this reason,
further study of the mechanism (s) underlying EAAT2 transcriptional activation may
help in the discovery of new drugs to improve the prognosis of diseases with a
glutamate excitotoxic component (Kim et al. 2011).

1.4.1.2 Vesicular Glutamate Transporters (VGLUSTs)

VGLUTs are responsible for transport of glutamate into the synaptic vesicles. The
vesicular uptake is dependent on a proton gradient that they create by hydrolyzing
ATP with H+-ATPase. This enables the flow of H+ into the interior of the synaptic
vesicle making it more acidic and generating a pH gradient across the vesicle
membrane (Krzyzanowska et al. 2014).

The vesicular glutamate transporters are polypeptides consisting of about
600 amino acid residues. Three subtypes of VGLUTs (1, 2, and 3) have been
identified and appear to share more than 70% homology. The transmembrane
topology of VGLUTs is thought to consist of 8–10 putative transmembrane
domains. A highly conserved glycosylation site between transmembrane domains
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1 and 2, and numerous consensus sequences for phosphorylation by various protein
kinases are also predicted (Shigeri et al. 2004).

The isoforms VGLUT1 and VGLUT2 are expressed mainly in glutamatergic
neurons and their expression in CNS seems to be largely complementary with only a
limited overlap. VGLUT1 is localized in the neocortex, hippocampus, and
amygdale. VGLUT2 can be observed in olfactory bulb, cerebral cortex, dentate
gyrus, thalamus, and hypothalamus. VGLUT3 is localized in a limited number of
glutamatergic neurons in multiple brain regions: neocortex, hippocampus, olfactory
bulb, hypothalamus, substantia nigra. Additionally, VGLUT3 has been found in
hippocampal and cortical GABAergic neurons (Krzyzanowska et al. 2014).

1.4.1.3 The Glutamate-Cystine Exchanger (xCT)

Glutamine-cystine exchangers (xCT) act as a cystine transporter that uses the
transmembrane gradient of glutamate as driving force. It is a heterooligomer
consisting of two different subunits: the 4F2hc surface antigen (slc3a2), the xCT
protein (slc7a11). xCT does play a role in glutathione production and has been
suggested to be a major source of extracellular glutamate. Although the distribution
of xCT in the brain has not yet been definitively determined, the available data
suggest its levels are low (Zhou and Danbolt 2000).

1.4.1.4 Intracellular Glutamate Carriers

When glutamate enters the cytoplasm, it may undergo further redistribution to
mitochondria through mitochondrial glutamate transport. There are in fact in the
mitochondria four different carriers, AGC1, AGC2, GC1, and GC2 (Zhou and
Danbolt 2000) that serve for glutamate translocation.

1.4.2 Glutamate Receptors

Receptors can be divided into two broad categorizations, ionotropic and
metabotropic receptors; Ionotropic glutamate receptors are ion channels that flux
cations (Ca2+, Na+) while metabotropic receptors, on the other hand, activate or
inhibit second messenger systems via interactions with cognate G-proteins.

1.4.2.1 Ionotropic Glutamate Receptors

Three classes of ionotropic glutamate receptors have been identified: N-methyl-D-
aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid
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(AMPA), and kainate (KA). Ionotropic glutamate receptors form tetrameric com-
plexes of individual/heteromeric subunits.

• NMDA Receptors: NMDA receptors have been reported to have a high affinity
for glutamate. Three families of NMDA receptor subunits have been identified:
NR1, NR2AD, and NR3A-B, which are expressed in different brain areas. In this
regard, NR1 expression is known to be of vital importance in the brain, as it is
involved in neurodevelopmental pathways. Previous studies have shown that
NR1 knockout mice die shortly after birth due to respiratory failure. NR2A
expression is localized in the neocortex and hippocampus, while NR2B is
localized in the forebrain. However, NR2C and NR2D are mainly expressed in
the cerebellum and diencephalon. NR3A is predominantly located in the neocor-
tex and its function is linked to the regulation of neurodevelopment. In contrast,
NR3B is expressed in the brainstem and alpha motor neurons of the spinal cord.
Recent research places NR3B in the cerebellum and hippocampus.

NMDA receptors are tightly regulated in the mammalian brain and are the only
receptors that require co-agonists for activation. At least six sites have been
described as binding sites for the following NMDA receptor ligands: short-
chain dicarboxylic amino acids (glutamate, aspartate), polyamines, and cations
(Mg2+, Zn2+, and H+) that regulate ion channel opening. Glutamate and several
competitive NMDA receptor antagonists such as D-2-amino-5-
phosphonopentanoic acid (D-AP5) and 3-(2-carboxypiperazin-4-yl)1-propeni-1-
phosphonic acid (2R-CPPene) bind to the NR2 subunit of the tetrameric receptor
complex. Extracellular Mg2+ acts as a voltage-dependent “pore blocker” and
prevents cation efflux. Zn2+, a divalent cation, acts as an allosteric modulator of
glutamate receptors across synaptic vesicles. Hydrogen ions (H+) also act as
allosteric modulators of glutamate receptors. H+, at physiological pH, reduces
the frequency of channel opening due to H+ binding to NR2B. Polyamines have a
pH-dependent receptor modulatory role. The function of polyamines (spermine,
spermidine) in binding to the channel is to unblock it and thus increase cation flux
(Niciu et al. 2012).

• AMPA/Kainate Receptors: AMPA/Kainate receptors are widely distributed in
the mammalian CNS and are responsible for mediating the glutamate binding-
dependent excitatory response. AMPA receptors are composed of GluR1-4 sub-
units and kainate receptors of GluR5-7 and KA1-2 subunits. GluRs differ from
other amino acid and monoaminergic neurotransmitter receptors in that they
contain a longer extracellular N-terminus than usual. Glutamate release at the
synaptic cleft elicits excitatory postsynaptic potentials (EPSPs). AMPA receptors
mediate a rapid rise and decay of the current, while NMDA receptor activation
provides a more sustained phase of depolarization that can last for several
hundred milliseconds. The binding of glutamate to NMDA/AMPA receptors
explains the pharmacokinetic differences: prolonged receptor activation results
in slower dissociation of agonist and receptor.

The synthesis of AMPA receptors occurs in the soma and their translocation to
the cell membrane occurs via the secretory pathway, which involves multiple
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steps of membrane sorting and cytoskeletal transport proteins. The transport of
AMPA receptors to the cell surface and their involvement in the synapse is
regulated by two mechanisms: exocytic and endocytic trafficking and recycling,
respectively, in the secretory pathway and membrane diffusion from
extrasynaptic to postsynaptic locations. Several studies have proposed that traf-
ficking and surface diffusion of AMPA receptors plays an essential role in
learning and memory. Other regulators of AMPA receptor expression are stress
hormones, which promote inducing and suppressing mechanisms of synaptic
plasticity and cognition. The regulation of ionotropic glutamatergic neurotrans-
mission is very complex, due to the wide molecular variability that regulates this
process at the transcriptional and post-transcriptional level (Niciu et al. 2012).

1.4.2.2 Metabotropic Glutamate Receptors

Metabotropic receptors have a very different mechanism of action with respect to
ionotropic glutamate receptors, which are dependent on cation efflux metabotropic
glutamate receptors and exert their function through the recruitment and activation of
intracellular trimeric G-proteins and downstream signal transduction pathways.
Metabotropic glutamate receptors, like all G protein-coupled receptors, are seven
transmembrane domain receptors with a particularly long intracellular C-terminal
and extracellular N-terminal, a feature similar to AMPA receptors. Metabotropic
receptors are primarily expressed in perisynaptic and extrasynaptic areas of neurons
and glial cells. The function of these receptors is related to the modulation of
synaptic activity and plasticity. Eight types of metabotropic glutamate receptors
(mGLuR1-8) have been described: group I (mGluR1 and mGluR5), group II
(mGluR2 and mGluR3), and group III (mGluR4-8). This division is made on the
basis of amino acid homology, agonist binding, and activated signal transduction
cascades. Group I receptors exert their action through two pathways: phospholipase
C via inositol-1,4,5-trisphosphate (IP3) to release Ca2+ from intracellular stores and
diacylglycerol (DAG) to stimulate protein kinase C. Group II and group III
metabotropic receptors are coupled to inhibitory G-proteins (Gi) that decrease
intracellular cyclic adenosine monophosphate (cAMP) through inhibition of the
adenylyl cyclase/protein kinase A pathway (Niciu et al. 2012).

Glutamate, with different degrees of affinity, binds to metabotropic receptors and
triggers their activation. Studies have shown that postsynaptic activation of
metabotropic receptors modulates ion channel activity, which is dependent on the
signal transduction cascade (Niciu et al. 2012). Metabotropic receptors located on
presynaptic membranes decrease both excitatory glutamatergic and inhibitory
GABAergic neurotransmission. Although the specific mechanism mediating pre-
synaptic modulation is unclear, most studies suggest that metabotropic glutamate
receptors elicit their effects through modulation of presynaptic voltage-dependent
Ca2+ channels. Currently, many research efforts are focusing on the development of
positive and negative modulators of presynaptic group II and III metabotropic
receptors, with the aim of using them in neuropsychiatric diseases. There are also
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other strategies focused on modulating the activity of group I metabotropic receptors
(Niciu et al. 2012).

1.5 Current Clinical Treatments

Nowadays, in clinical practice there are two major approaches in the acute treatment
of ischemic stroke, both based on the recanalization of the occluded vessel in order to
reperfuse the tissue area affected, pharmacological or mechanical (thrombectomy)
thrombolysis, which are the strategies that report higher benefits for the patient, in
terms of neurological outcome. The only authorized thrombolytic treatment for the
use in the brain is the recombinant tissue plasminogen activator or rt-PA, and
enzyme involve in the clot degradation of the occluded vessel. The thrombectomy
is a technique which allows the extraction of the thrombus by a mechanical device.
Both therapies have pushed for the creation of stroke units inside hospitals, which
have improved the management of stroke patients together with a better control of
the prognostic factors. Nevertheless, a low number of stroke patients are currently
treated by these procedures in most developed countries. Such reduced numbers may
be due to different factors, including the narrow therapeutic window and the high
risks of hemorrhage transformation. Although the main objective after recanalization
is the regulation of prognostic factors as: oxygen, arterial tension, temperature, or
glycemic levels, current neuroprotective strategies are required to work at both
stages, by widening the therapeutic window and by reducing the associated risk
factors (Adams et al. 2007; Dirks et al. 2011; Donnan et al. 2011; Lees et al. 2010;
Wahlgren et al. 2007). The therapeutic window associated with intravenous throm-
bolytic treatment is 4.5 h. The extension of this window would be possible by
selecting candidate patients with a large penumbral area (area of the brain suscep-
tible of damage if it is not resolved within the first 12–24 h (Rodriguez-Yáñez et al.
2011).

Neuroprotection is a term that conglomerates a variety of strategies focused on
reducing cell death after an ischemic event, without affecting tissue reperfusion. So
far, several compounds have been proposed to block the pathway leading to
ischemia-induced cell death at different steps of the ischemic cascade. Most of
these compounds have shown positive effects in experimental studies, although
unfortunately none of them have shown beneficial effect in clinical trials (Gladstone
et al. 2002; Kaur et al. 2013).

1.5.1 Glutamate Receptors Modulation

As previously explained, glutamate is the major excitatory CNS neurotransmitter,
also capable of inducing excitotoxic neural injury in the setting of cerebral ischemia
and other disorders. Glutamate and related excitatory amino acids interact with
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several receptor-classes, which are relevant in neuroprotection. These include the
NMDA and AMPA receptors (Ginsberg 2009).

It has been demonstrated that the modulation of NMDA receptors as well as their
blockade by means of antagonists reduces infarct size and neurological deficit in
animal models of focal cerebral ischemia. However, its clinical use has presented
several side effects, especially cardiovascular and psychiatric effects. The NMDA
receptors are heterotetramers composed by two GluN1 subunits and two GluN2
subunits. This GluN2 can be divided into GluN2 A, B C, or D, as well as GluN3A
and GluN3B. The anatomical distribution of these receptors is heterogeneous and
entails some variability in the treatments targeting glutamate receptors. Due to the
importance of the excitotoxicity mediated by these receptors, the first treatments
developed were focused on the blockade by means of different mechanisms. One of
the first approaches for NMDA blockade was the use of Dizocilpine; this treatment
showed promising results in preclinical stages, however histological alterations
observed in rats prevented its passage to clinical trials (Olney et al. 1989). Selfotel,
a competitive antagonist of NMDA receptors showed improvement of outcome and
no significant increase of mortality in a phase III study, but a high incidence of
psychiatric adverse effects conditioned its withdrawal from clinical phases. Like-
wise, Dextromethorphan and its metabolites Dextrorphan and Aptiganel were
discontinued by an unfavorable risk-benefit balance and numerous side effects.
Eliprodil reduces the action of glutamate by interfering with the sensor polyamine
site on the NMDA receptor but showed no difference with placebo. WithGavestinel,
antagonist of the NMDA glycine receptor, two large phase III trials were planned
and completed and both were neutral: showed excellent tolerance but no efficacy (Jia
et al. 2015). Magnesium sulfate has been also tested as a non-competitive inhibitor
on glutamate receptors, but its clinical efficacy has not been demonstrated so far
(Muir et al. 2004; Singh et al. 2012).

On the other hand, several AMPA antagonists showed neuroprotective efficacy in
preclinical studies of both focal and global cerebral ischemia (Ginsberg 2009). In
patients, YM872, an AMPA antagonist, was subjected to a dose-escalation study
showing good tolerance in young and elder patients (Akins and Atkinson 2002).
Other antagonists like ZK200775 worsened the neurological condition in patients
with acute ischemic stroke.

Continuing with this line, a secondary approximation has been the blockage of
the calcium channels involved in the excitotoxic cascade initiated with glutamate.

1.5.2 Calcium Blockers

Calcium plays an important role in stroke pathophysiology. The blockage of calcium
channels stops neuronal calcium intake, hence reducing cell death. An example of
this family of compounds is Nimodipine, a is highly lipophilic molecule able to cross
the blood-brain barrier, and reach brain and cerebrospinal fluid. Over 250 animal
studies of nimodipine in cerebral ischemia have been published, but only 10 of these
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studies reported a positive outcome (Kaur et al. 2013). However, none of the
members of this family of compounds have demonstrated a clear neuroprotective
activity on clinical trials; furthermore, highest doses of these treatments are related
with a bad outcome (Zhang et al. 2012).

1.5.3 Other Downstream Modulations of Glutamate
Receptors

The activation of NMDA and AMPA receptors after glutamatergic overstimulation
is accompanied by heterogeneous signals that lead to the generation of secondary
damage and promote cell death. Different points of these signaling pathways have
been chosen as the main therapeutic targets in ischemic stroke. The overactivation of
the NMDA receptors leads to an increase in the expression of the nNOS enzyme that
generates an increase in NO. NO reacts with superoxide free radicals to form the
highly reactive oxidant peroxynitrite (Radi et al. 1991). This may lead to protein
oxidation, lipid peroxidation or DNA damage that increases cell death (Lipton et al.
1993). One of the protagonists in the increase of NO is the postsynaptic density-95
protein (PSD95) linked to NMDA receptors GluN2B and to the enzyme nNOS,
respectively (Kornau et al. 1995). The existence of this union between receptor and
NO allows the development of treatments that block the intermediate signaling by
slowing down the associated oxidative stress. The NA-1 peptide stands out, which
decouples the union between the receiver and PSD95 preventing the signalization
process from continuing. Favorable results in preclinical studies with non-human
primates promoted the development of a proof of concept clinical trial in humans
(Cook et al. 2012). This study enrolled one hundred and eighty-five patients who
randomly received either NA-1 or saline control. NA-1 treatment reduced the
number and volume of strokes by all MRI criteria and improved neurological
outcome. A very similar approach is the one developed by the peptides ZL006 and
IC87201 which, in this case, interrupt the signaling between PSD95 and nNOS. The
use of this molecules have only been validated in preclinical studies, showing a
diminution of the ischemic injury and granting a better specify with no affection of
the normal nNOS activity in neurons.

Apoptosis is another of the pathways studied in brain neuroprotection. Damaged
cells initiate a signaling process that ends with the programmed death of neurons
increasing secondary damage. Many of these processes are dependent on intracel-
lular Ca2, one of the consequences of overstimulation of NMDA receptors. One of
these apoptotic effectors is death-associated protein kinase 1 (DAPK1) (Bialik and
Kimchi 2006; Wang et al. 2017). The cell death-inducing activation of DAPK1
largely depends on its intrinsic kinase activity (Cohen et al. 1997). Under ischemic
conditions the overactivation of GluN2B NMDAR leads to excessive Ca2+ influx
into the cell and activates the calmodulin and the calcineurin phosphatase (CaN),
which in turn dephosphorylate and activate DAPK1 promoting neuronal loss.
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Various treatments have been developed to interrupt this signaling pathway, such as
the peptide Tat-GluN2BCT1292–1304 in order to uncouple the DAPK1 from the
glutamate receptor, decreasing the Ca + 2 influx and increasing cell survival
(McQueen et al. 2017; Tu et al. 2010). On the other side, DAPK1 has been told to
modulate p53 activation leading to a pro-apoptotic signaling cascade. In this regard,
an interfering peptide Tat-p53DM241–281 was constructed to disrupt the interaction
between DAPK1 and p53, showing reduction of infarct volume with a long thera-
peutic window in preclinical models of ischemic stroke (Wang et al. 2014).

1.6 Future Developments and Perspectives Related
to Glutamate Modulating Drugs

High glutamate concentration at the synaptic cleft is rapidly (up to 1000 fold)
reduced by the action of glutamate transporters present on both nerve terminal and
surrounding astrocytes to prevent glutamate excitotoxicity (Danbolt 2001). There is
an unfavorable gradient between brain (1–10μM) and blood (40–60μM) glutamate
concentration into the EC (O’Kane et al. 1999); when endothelial glutamate con-
centration becomes higher than the blood glutamate concentration, glutamate is
transported into the blood by a mechanism that facilitates blood excretion of
glutamate from the brain. The presence of EAATs in the blood-brain barrier and
their ability to accumulate large intracellular glutamate concentrations started the
hypothesis that lowering blood glutamate levels could increase the concentration
gradient from endothelium to blood and thereby increase the elimination of gluta-
mate from the brain; this is known as the blood glutamate-grabbing hypothesis
(Fig. 1.3). To demonstrate this glutamate-grabbing hypothesis, the blood resident
enzyme glutamate-oxaloacetate transaminase (GOT), which transforms glutamate
into α-ketoglutarate and aspartate in the presence of oxaloacetate, was used. This
enzyme when oxaloacetate is artificially increased shifts the equilibrium of the
reaction to the right side, thereby decreasing glutamate levels in blood. In this
sense, Gottlied et al. (2003) demonstrated that when radioactive glutamate was

Fig. 1.3 Basis of treatment with glutamate grabbers. The treatment decreases the systemic levels of
glutamate increasing the washing of glutamate excess generated after cerebral ischemia decreasing
the associated damage
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injected into the lateral ventricles in experimental animals the oxaloacetate induced a
decrease in blood glutamate levels followed by an increase of the diffusion of
radioactive brain glutamate into the blood. Similar effects were observed in other
studies using two microdialysis probes, one infusing and the other collecting gluta-
mate; oxaloacetate treatment reduced the rate of radioactive glutamate collection by
the second probe.

Alternatively, malate pretreatment, a GOT blocker, has also demonstrated inhi-
bition of the oxaloacetate-dependent lowering of blood glutamate, confirming that
the effect of oxaloacetate on blood glutamate levels was mediated by blood gluta-
mate lowering.

These studies inspired several investigations of the effects of blood glutamate
grabbing during pathological conditions such as ischemia, subarachnoid hemor-
rhage, closed head injury, traumatic brain injury, and paraoxon intoxication. The
studies utilized different approaches to reduce blood glutamate levels. All these
studies came to the same general conclusion: lowering blood glutamate levels
decreases the morbidity of the disease states, for instance, through better recovery,
better neuron survival, or smaller stroke volumes (Cederberg et al. 2014). The blood
glutamate grabbers show potential for the development of novel, effective, and safe
therapeutic agents. Whereas NMDAr antagonists were ineffective or potentially
harmful, blood glutamate grabbers do not act on glutamate receptors nor do they
interfere with normal cellular signaling processes. Their action is only in the blood,
and they accelerate a physiological mechanism of removing glutamate only from
areas in which glutamate is pathologically elevated (Boyko et al. 2014). Based on
mechanism of blood glutamate grabbing, the following strategies have been tested:

1.6.1 Oxaloacetate (OxAc)

The first studies showing the neuroprotective effect of OxAc on cerebral ischemia
were observed in rats subjected to photothrombotic lesions. This effect was later
corroborated in a model of ischemia induced by transient middle cerebral artery
occlusion (MCAO). In this study, different doses of OxAc were used to evaluate the
effect of OxAc on blood glutamate depletion. Following STAIR criteria, an intra-
venous bolus injection of OxAc (effective dose used of 3.5 mg/100 g, animal weight)
was administered 90 min after occlusion, which resulted in a decrease in blood
glutamate levels, followed by a reduction in infarct volume and edema after ische-
mia. These effects were correlated with reduced motor deficits. Spectroscopic
analysis determined that the increase in brain glutamate observed in control animals
after MCAO was reduced in those animals treated with OxAc, confirming that the
neuroprotective effect was associated with decreased brain glutamate levels
(Campos et al. 2011a, b). Other studies on models of cerebral ischemia showed
that OxAc-induced reduction in blood glutamate levels was inhibited in the presence
of excess serum glutamate or when administered in combination with malate (a GOT
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inhibitor), effectively demonstrating its serum glutamate scavenger action (Castillo
et al. 2016; Teichberg et al. 2009).

In addition to the protective effects of OxAc related to glutamate reduction, other
protective mechanisms have been proposed. In this regard, it is known that this
molecule is involved in energy metabolism and provides antioxidant protection to
cells under stress, such as hydrogen peroxide, so it has been suggested that the
protective role of OxAc is also associated with mechanisms other than serum
glutamate reduction.

Regarding the use of OxAc as a treatment for serum glutamate uptake in cerebral
ischemia, the main limitation is associated with the high doses that are likely to be
necessary in patients to obtain the same effects as those observed in experimental
animals. In this regard, OxAc has already been used in humans and no toxicity
has been reported. In particular, a study published in the 1960s used OxAc
(200–1000 mg a day in three divided doses administered orally) to treat diabetic
patients, and reported no effect on liver function or blood levels of acetone
and cholesterol at the doses administered. Therefore, we can conclude that, to
date, there are no studies describing evidence of toxicity from the use of OxAc
(Yoshikawa 1968).

1.6.2 Glutamate-Oxaloacetate Transaminase (GOT)

Clinical studies have shown that patients with a good prognosis have lower gluta-
mate levels and higher GOT levels in blood samples collected on admission.
Therefore, a significant inverse correlation between GOT and glutamate levels was
described. Increased blood GOT levels are related to a good functional prognosis
and reduced infarct volume. These results support the idea that GOT could metab-
olize blood glutamate and increase the glutamate concentration gradient from the
brain parenchyma to the circulation (Campos et al. 2011a, b).

In view of the above, GOT is postulated as a potential blood glutamate scavenger
agent. In this regard, a study was carried out using recombinant human GOT1
(rGOT1) in the rat model of transient MCAO. The results showed that administration
of GOT induced a reduction in serum and brain glutamate levels, leading to a
reduction in infarct volume and an improvement in sensorimotor deficits. In this
study, the optimal dose of rGOT required for maximal blood glutamate reduction
was tested in a dose-response assay. These experiments showed that a dose of
12.88 mg per 100 g (animal weight) was the most appropriate. To determine whether
the effect of the enzyme could be potentiated by OxAc (co-substrate of the enzyme
reaction), the rGOT1 dose (12.88 mg/100 g) was administered with a non-effective
dose of OxAc (1.5 mg/100 g); it was observed that the protective effect of rGOT1
was increased with this new strategy, indicating that co-administration of rGOT1 and
OxAc may be the most effective therapy for serum glutamate uptake. The adminis-
tration of an endogenous serum enzyme such as GOT1 as a new protective treatment
in cerebral ischemia is a promising strategy, since there will be no toxic effects from
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rGOT1 administration in humans, as levels of this enzyme vary among healthy
human subjects (7–45 U/l), and it has been shown to increase >10-fold in patients
with liver damage (Perez-Mato et al. 2019).

The main hypothesis to explain the observed therapeutic effect of the OxAc and
GOT combination may be due to the fact that the endogenous OxAc concentration
may become a limiting factor of the enzymatic reaction when GOT activity increases
after treatment. Therefore, treatments based on the combined administration of
rGOT1 supplemented with a low concentration of OxAc lead to a rapid and
sustained reduction in serum glutamate concentration. This makes them the optimal
combination to achieve the maximum protective effect in ischemia, as the low dose
of OxAc is sufficient to increase the glutamate binding activity of rGOT1, which
reduces the potential complications associated with a high dose of this molecule, as
previously described (Castillo et al. 2016).

1.6.3 Pyruvate

The use of an enzymatic approach involved in glutamatergic metabolism, as previ-
ously described, opens a new range of possibilities for the glutamate grabbing
treatment of ischemic stroke. Similar to the mechanism of action of oxaloacetate,
pyruvate has also been described as an effective drug capable of reducing blood
glutamate levels. Pyruvate induces an activation of the blood resident enzyme
glutamate-pyruvate transaminase (GPT); this enzyme catalyzes the reversible reac-
tion of pyruvate and glutamate to alanine and a-ketoglutarate. Thus, when an
ischemic event occurs with the consequent increase in serum glutamatergic levels,
the administration of pyruvate as a treatment shifts the equilibrium of the reaction to
the opposite side, transforming the excess glutamate and pyruvate administered into
a decrease in serum levels. Similar to previous studies with GOT, GPT levels were
associated with lower levels of blood glutamate, better functional outcome, reduced
infarct volume, and lower percentages of early neurological deterioration, although
this association was stronger for GOT than GPT levels (Boyko et al. 2011; Castillo
et al. 2016; Zlotnik et al. 2007).

1.6.4 Hemodialysis and Peritoneal Dialysis

Another potential beneficial use of serum glutamate depletion is based on a
non-pharmacological approach, blood and peritoneal dialysis. This method applies
the principles of diffusion and osmosis across the membrane to establish fluid and
electrolyte balance in patients with pathologies as acute renal failure and end-stage
renal disease. In this regard it has been demonstrated patients with end-stage renal
failure undergoing hemodialysis showed higher blood glutamate concentrations
compared to healthy controls. During hemodialysis (especially in the first hour),
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glutamate concentrations decreased regardless of filter pore size, blood flow rate, or
sex (Brotfain et al. 2018). Similarly, peritoneal dialysis caused a decrease in blood
glutamate with a corresponding increase in glutamate in the dialysis solution
(Rogachev et al. 2012). In preclinical research in a rat model of stroke, the reduction
in blood glutamate levels observed with peritoneal dialysis was associated with a
decrease in infarct area.

The development of an extracorporeal technique opens new ways in stroke
treatment. Likewise, a non-pharmacological therapeutic approach suggests an
advantage due to the lack of important side effects, as may be the case with other
drugs, and which in many cases would limit translationality from basic to clinical
research. Through an alternative pathway, these studies provided that blood gluta-
mate reduction is an effective protective therapy strategy and can also be used as
supporting evidence that hemodialysis and peritoneal dialysis can be an additional
efficacious modality to reduce blood glutamate concentration, as demonstrated in
preclinical studies (Godino Mdel et al. 2013). This hypothesis is subjecting to phase
IIa clinical trial (EudraCT Number: 2012-000791-42). (EudraCT Number: 2012-
000791-42) (Castillo et al. 2016; Rogachev et al. 2012).

1.6.5 Blood Glutamate EAAT2-Cell Grabbing Therapy

In addition to the therapies previously described, a study that has recently been
published proposed a new strategy based on the induction of the expression of the
EAAT2 transporter in mesenchymal stem cells (MSCs). Both the EAAT2 transporter
and the MSCs have key roles in cerebral ischemia: the EAAT2 transporter plays a
fundamental role in glutamate reuptake and homeostasis of the same, and MSCs are
considered the most promising candidates for stem cell therapy against ischemic
stroke owing to their intrinsic capability to secrete growth factors and immunomod-
ulatory cytokines. With this in mind, the combination of the EAAT2 transporter and
MSCs allowed the development of a cell-based glutamate-grabbing therapy for
systemic administration, combining the intrinsic properties of these cells with the
excitotoxic protection (Perez-Mato et al. 2019).

In order to carry out this study, EAAT2-encoding cDNA was expressed into
MSCs by electroporation. EAAT2 expression and functionality were evaluated by
in vitro assays. Blood glutamate-grabbing activity was tested in healthy and ische-
mic rat models treated with 3 � 106 and 9 � 106 cells/animal. In addition, reduction
of infarction volume and functional recovery were evaluated in ischemic animals.
The results showed that the expression of EAAT2 in MSCs conferred the expected
glutamate-grabbing activity in vitro and in vivo studies. Unexpectedly, both cell
doses of non-transfected MSCs induced higher protection than transfected EAAT2–

MSCs by another mechanism independent of the glutamate-grabbing capacity
(Perez-Mato et al. 2019).

The interpretation of these results led them to think that the transfection technique
used could be altering some of the anti-inflammatory capacities, which had not been
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previously studied, associated with MSCs. In order to study this, the authors
evaluated the secretion of IL-6, the main pro-inflammatory molecule, in
electroporated MSCs. The results showed that the transfection process triggered
the release of IL-6 in MSCs and that animals treated with transfected EAAT2-MSCs
had higher IL-6 levels than animals treated with non-transfected MSCs. Although
the transfection procedure most likely interferes with some of the intrinsic protective
mechanisms of mesenchymal cells, the results showed that the induced expression of
EAAT2 in cells represents a novel alternative to mitigate the excitotoxic effects of
glutamate and paves the way to combine this strategy with current cell therapies for
cerebral ischemia.

1.6.6 Riboflavin as a New Glutamate Grabber: Preclinical
and Clinical Validation

As previously described, the efficacy of glutamate grabbers has been widely dem-
onstrated through various strategies and approaches. However, the nature of some of
these approaches limits their clinical translationality, and it is imperative to demon-
strate the efficacy of this strategy in humans. For this purpose, a recent work
analyzed, chemically and pharmacologically, 1120 diverse compounds (ca. 90%
being FDA approved drugs) from the Prestwick Chemical Library (PCL) (http://
prestwickchemical.com/prestwick-chemical-library.&html) regarding their capacity
as glutamate grabbers in a high throughput screening (HTS). The hit with the best
results was riboflavin. Riboflavin or vitamin B2 is a component of water-soluble
vitamins; its supplement is authorized for use in patients and secondary effects have
not been reported. This compound was subjected to a dose-response study in healthy
animals. An effective dose of 1 mg/kg was established, significantly reducing plasma
levels of glutamate at 30 min after intravenous administration. This compound
demonstrated a reduction of infarct volumes in animal model MCAO accompanied
by a systemic reduction of glutamate levels. As possible treatment in hyperacute
stages prior to identification by image of the hemorrhagic or ischemic nature of the
stroke, the drug was administered to rats subjected to an intracerebral hemorrhage
model showing no worsening of the volume of hemorrhage or a greater functional
impairment compared to the control saline group. These results led to a randomized,
double-blind phase IIb clinical trial with stroke patients. A total of 50 patients were
randomized to one of two study arms: the control group (placebo) and the experi-
mental group [20 mg of riboflavin (vitamin B2 Streuli®)]. Decrease in glutamate
concentrations was significantly greater ( p < 0.029) in the treated group. Compar-
ative analysis of the percentage improvement of the NIHSS score at discharge was
slightly higher in the riboflavin-treated group compared to the placebo group
(33.7 � 43.7 vs. 48.9 � 42.4%, p ¼ 0.050). This translational study represents the
first human demonstration of the efficacy of blood glutamate grabbers in the
treatment of patients with stroke, paving the way for the development of a promising
novel protective therapy (da Silva-Candal et al. 2018).
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Chapter 2
Definitions and Concepts of Stress

Luana M. Manosso, Claudia R. Gasparini, Gislaine Z. Réus,
and Zoran M. Pavlovic

Abstract Stress is a complex phenomenon that silently rises and contributes to
mental health disorders and chronic health conditions, decreasing work productivity,
reducing our quality of life, and increasing our medical expenditures exponentially.
Although a certain amount of stress is positive and beneficial for performance, such
as “eustress,” chronic stress experienced for an extended time overwhelms the
body’s coping mechanisms. We begin our chapter by briefly mentioning historical
milestones related to stress research, followed by the definitions of stress. We then
discuss the most recent epidemiological data related to stress prevalence and inci-
dence, followed by a short description of the different types of stress across the
lifespan. The following sections are dedicated to Burnout Syndrome, Stress-induced
Exhaustion Disorder, and other types of stress-related experiences typical for our
modern societies, such as Financial Stress and Stress due to Mental Illness Stigma-
tization. Finally, we conclude our chapter with the latest information on Caregiver
Stress and Secondary Traumatic Stress.
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2.1 History of Stress

Stress has received increased attention and recognition from the medical community
due to its pervasive effects on the health of the human population. Although a
universal definition of stress does not exist, the word “stress” has made its way
into many disciplines ranging from physiology to medicine, chemistry, endocrinol-
ogy, neurosciences, epidemiology, psychiatry, epigenetics, and psychology,
reflecting the multidimensionality and composite nature of the concept (Le Moal
2007; Robinson 2018). For instance, possible meanings include “reaction” (physi-
ology), “negatively perceived factor or situation” (psychology), or “environmental
factors affecting the cell or organ or body” (biology) (Bienertova-Vasku et al. 2020).
We will then discuss the contributions of Hans Selye, Claude Bernard, Walter
Cannon, Sir William Osler, Yerkes and Dodson, Richard Lazarus, and Bruce S
McEwen to the modern concept of stress that we know today.

Hans Selye (1907–1982) was an Austrian-born Hungarian scientist who trained
as a medical doctor and is cited as the “father of stress” because he conducted
experiments in lab rats and patients whereby he demonstrated the existence of
biological stress, a nonspecific response of an organism to stressors (Robinson
2018). Selye was the first to introduce the term “stress” into the medical lexicon, a
word he borrowed from physics where the original use of the term was to refer to the
force that produces strain on a certain composite material (i.e., bending a piece of
metal until it snaps, occurs because of the force, or stress, exerted on it) (Tan and Yip
2018).

Selye’s experiments in rats led him to propose his theory of general adaptive
syndrome (GAS) in 1936, known today as “stress response,” which follows three
stages: alarm reaction, resistance, and exhaustion. In the first stage, the body’s initial
symptoms due to stress are experienced; in the second stage, the body produces a
response to adapt to the stressor. In the final stage, exhaustion and death ensue
because long-term adaptation to the stressor cannot be sustained (Selyes 1956).
Moreover, Selye proposed that stress plays a role in every disease and that inability
to cope or adapt to stressors can produce “diseases of adaptation,” including gastric
ulcers, high blood pressure, and heart attacks (Godoy et al. 2018). Selye’s key
message was that the prolonged effect of stress alters the internal equilibrium of
physiological systems and leads to pathology (Le Moal 2007). In 1974, Selye
expanded his theory by categorizing stress into four distinct subgroups based on
the type of stressor and stress manifestation: good stress (eustress), bad stress
(distress), over-stress (hyperstress), and under-stress (hypostress) (Selye 1974). He
coined the term “eustress” from the Greek word root “eu-” which means “good”
(as in “euphoria”), while the term “distress” stems from the Latin, “dis-” (as in
“dissonance” or “disagreement”). Furthermore, eustress is a state manifested by
feelings of excitement, fulfillment, meaning, satisfaction, and well-being and a
perception of a stressor as positive and challenging. In contrast, distress is associated
with a sense of suffering and decreased quality of life (Selye 1975; Le Fevre et al.
2006).
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Selye is also acknowledged for his contributions to elucidating the hypothalamic-
pituitary-adrenal (HPA) axis and its role in chronic stress. The HPA axis is pivotal to
understanding the neurobiology of the stress response and the elaborate communi-
cation network that orchestrates the stress response, including hormones, neuro-
transmitters, chemicals associated with the immune system, and other molecular
signaling mechanisms (Kumar et al. 2013).

The French physiologist Claude Bernard (1813–1878) is credited with develop-
ing the theory of the “milieu intérieur,” translated as “the internal environment”
(Rom and Reznick 2015). Among Bernard’s several contributions to medicine, his
approach on how organisms maintain internal stability, i.e., “the self-regulation of
vital processes,” is considered significant to the evolution of stress research (Bernard
1872).

Walter Cannon (1871–1945), nearly 50 years later, expanded on Bernard’s work
and coined the term “homeostasis.” Cannon proposed two ways to maintain homeo-
stasis: through the sense organs and the negative feedback of the autonomic nervous
system. These discoveries laid the foundation for what has come to be understood as
homeostatic mechanisms, a cornerstone of stress research (Cannon 1932). Moreover,
Walter Cannon introduced specific psychological aspects of stress by formulating
the “fight or flight” model of the stress response (Cannon 1932).

Sir William Osler (1849–1919), a Canadian doctor, is recognized for his patient-
centered approach to medicine and the use of algorithmic analysis of symptoms to
diagnose the disease and a method to generate symptoms through testing (Robinson
2018; John 2013).

Yerkes and Dodson are known for developing the “Yerkes–Dodson Law”, which
describes that a certain level of arousal is necessary for optimal performance. The
law follows the inverted-U shape, indicating that either insufficient or excessive
arousal leads to poor performance (Robinson 2018).

In 1984, Lazarus and Folkman explained stress by way of the “transactional
theory of stress and coping” (TTSC), which they described as “a product of a
transaction between a person (including cognitive, physiological, affective, psycho-
logical, and neurological functions) and his or hers complex environment” (Walinga
2014).

The most prominent contemporary researcher on stress neurobiology was Bruce
S. McEwen (1938-2020), an American neuroendocrinologist whose research activ-
ity focused on studying mechanisms underlying individual responses to stress. He
coined the term “allostatic load,” which refers to “the wear and tear on the body”
induced by stress exposure in vulnerable subjects, as opposed to “allostasis,” which
instead defines the adaptive processes that maintain homeostasis.

2.2 Definitions of Stress

Stress is typically defined as a condition where physical, mental, or emotional strain
or inner tension causes restlessness, worry, and lack of sleep (Wiegner et al. 2015).
Moreover, stress is considered a type of psychological pain. It proves beneficial in
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the short term and small quantities, as it can improve performance and plays a
significant role in motivation, adaptation, and reaction to environmental stimuli
(Dhabhar 2018).

Animals adapt physiologically and psychologically to stress by turning on a wide
array of cognitive, affective, behavioral, and physiological responses collectively
referred to as the “stress response” (Guilliams 2015). The psychological aspects of
stress response include heightened awareness, enhanced cognitive performance, and
euphoric mood states (Guilliams 2015), which could only increase to a certain extent
as according to the Yerkes–Dodson law, any further rise in stressor intensity or
stress-induced activities would have detrimental effects resulting in animal exhaus-
tion (Yerkes and Dodson 1908). The physiological adaptations manifest through
increased sympathetic nervous system activation, accompanied by an enhanced
release of stress hormones cortisol and adrenaline, associated with the “fight or
flight” response (Guilliams 2015). For example, in a gazelle being chased by a tiger,
the fight or flight response is an automatic reaction that prepares the gazelle to fight
or flee from the tiger, which is a stressful event. The fight or flight response evolved
to deal with mainly immediate threats (Sapolsky 1994). This “adaptive stress
response” is regulated by neuronal and endocrine systems known as the HPA axis
(Guilliams 2015), which is responsible for reestablishing homeostasis via the secre-
tion of glucocorticoids, steroid hormones produced by the adrenal glands (Boudreau
et al. 2011).

The stress response can also be activated without the presence of actual threat
through anticipation of physical or psychological insults, due to, for example,
“negative future fiction,” which occurs when one worries about worst-case scenarios
and crafts up obstacles about events one anticipate may happen yet did not happen
(Sapolsky 1994). Unfortunately, or instead, fortunately, the stress response did not
evolve to accommodate the cognitive worrying mind, which creates stress by
worrying about “what if I get chased by a tiger tomorrow?”

During stressful events, the adrenal glands release adrenaline and cortisol, speed
up the heart rate, slow digestion, and shunt blood flow to major muscle groups,
giving the body a burst of energy and strength to either stay and fight the predator or
flee it (Guilliams 2015). For the body to turn on this emergency response, it needs to
shut down other activities such as feeding, digestion, growth, reproduction, and
immunity. This adaptive stress response is helpful in the short term to overcome the
stressful event; however, if it is constantly switched on and cortisol is continuously
high, this state of repeated stress becomes known as chronic stress (Lupien et al.
2018).

Chronic stress can lead to long-term changes in HPA activity, including persistent
elevations in basal glucocorticoids, abnormal responses to subsequent stressors, and
impaired HPA axis feedback regulation (Herman et al. 2016). The psychological
effects of reviewing the past and rehearsing future events decrease memory perfor-
mance and raise cortisol levels, resulting in morphological brain changes such as
reduced hippocampal (HIPP) volume (Kim et al. 2015). Although the fight or flight
response is essential to survival, when it is continuously present, it results in an
increased risk of developing specific neuropsychiatric disorders, causing remodeling
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of brain structures and impairing immune, digestive, cardiovascular, sleep, and
reproductive system functions (Musazzi et al. 2011; Tsigos et al. 2020).

Chronic stress causes the body to remain in a constant state of alertness, despite
being in no danger, thus depleting the body and mind of energy and leading to a loss
of motivation while increasing the likelihood of physical disorders such as cardio-
vascular diseases, high blood pressure, and diabetes (Seiler et al. 2019). In addition,
acute and chronic stress can also accelerate aging, disease occurrence and lead to
early mortality. Chronic stress can occur at any point in life (i.e., prenatal, early, and
late-life) and be induced by various circumstances (i.e., psychosocial, social isola-
tion, social-defeat, environmental, etc.) (Sheth et al. 2017). Moreover, it is consid-
ered the “black plague” of modern human society, with as many as 90% of
physicians’ visits occurring due to stress-related health complaints (Nerurkar et al.
2013). In general, stress can be triggered by a range of endogenous and extrinsic
factors, usually following the “NUTS” mnemonic (Hogan 2013).

NUTS:

• Novelty: new situation
• Unpredictability: a situation you had no way of knowing would occur
• Threat to the ego: a situation that makes you feel your competence has been

questioned
• Sense of Control: a situation that gives you the feeling to have little or no control

2.3 Stress Epidemiology

Our review of recent publications about the epidemiology of stress-related disorders
showed the preponderance of studies on posttraumatic stress disorder (PTSD)
(Gradus 2017). Studies in the USA reported its lifetime prevalence of about
6.8–7.8% (Kessler et al. 1995, 2005). In other countries, such as Germany
(Perkonigg et al. 2000) and Australia (Creamer et al. 2001), the prevalence of
lifetime PTSD was estimated to be lower (1.3% and 1.33%, respectively). Newly
available data from the World Health Organization (WHO) on the prevalence of
mental disorders suggest a higher prevalence of PTSD. The WHO estimated that
age-standardized prevalence for PTSD was 15.3% (9.9–23.5%) (Charlson et al.
2019). PTSD is more common among women than men in the general population
(Gradus 2017). Along the same lines, a meta-analysis investigating the prevalence of
PTSD in women during pregnancy and after birth showed that the prevalence of
PTSD was 3.3% and 4.0%, respectively (Yildiz et al. 2017).

Another group showing high levels of stress is healthcare professionals. In a
cohort of Australian nurses, the prevalence rate of stress was 41.2%, with job
dissatisfaction as the most significant predictor of a higher risk for developing
symptoms of depression and stress (Maharaj et al. 2019). A multicenter survey of
anesthesiologists and nurses that work in intensive care units demonstrated that both
groups experienced medium stress levels. Interestingly, nurses showed significantly
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higher stress levels than physicians, with women showing higher levels of stress than
men (Kwiatosz-Muc et al. 2018). Finally, a systematic review and meta-analysis of
Brazilian medical students reported that the prevalence of stress was 49.9% (Pacheco
et al. 2017).

Several recent epidemiological studies report the continuous increase in stress-
related psychological symptoms in the last two decades. For instance, a nationally
representative survey from the USA has shown that between 2008 and 2017, the
proportion of young adults (18–25 years old) that experienced severe psychological
distress in the last 30 days increased by 71% (Twenge et al. 2019). In 2020, due to
the COVID-19 crisis, psychological distress was reported more frequently than
before the pandemic. A recent meta-analysis demonstrated the prevalence of stress
symptoms in 29.6% of survey participants. The same study also noted anxiety
symptoms in 31.9% and depressive symptoms in 33.7% of the analyzed sample
(Salari et al. 2020), probably induced or aggravated by highly stressful circum-
stances due to the ongoing pandemic. Finally, a population-based COVID-19 study
with individuals living in the USA found that younger age, female gender, and
caregiver status increased risk for stressor exposure and a degree of an event’s
stressfulness (Park et al. 2020).

2.4 Eustress

According to Hans Selye, eustress or “good stress” refers to a psychological
response to a stressor that is interpreted as having positive implications on one’s
well-being (Selye 1974). Thus, eustress is beneficial for enhancing motivation and
performance. Still, once the peak performance level is achieved, it starts declining
and is associated with an individual’s distress (Benson and Allen 1980).

Positive stress at work is the psychological state with a mindful focus on
challenges present in the organizational environment (Quick et al. 2013). Experi-
ences of eustress lead to increased concentration and a form of arousal that enhances
attention on the task (Hargrove et al. 2013). Eustress is a positive psychological
response to various interpersonal, physical, job role demands, and workplace poli-
cies. It increases work performance, overall health, and subjective well-being
(Hargrove et al. 2013; Simmons and Nelson 2001; Nelson and Cooper 2007).

The brain is the central organ responsible for regulating stress response and
adaptation to the stressor. That is why, as soon as it perceives a stimulus as stressful,
physiological and behavioral stress responses are triggered, resulting in the HPA
axis activation (Esch and Stefano 2010). Once activated, it starts releasing
corticotropin-releasing hormone (CRH), which stimulates the anterior pituitary
(AP) to secrete adrenocorticotropic hormone (ACTH), which in turn induces a
release of cortisol from the adrenal cortex into the bloodstream (Sapolsky et al.
2000). The HPA axis is vital for normal physiological functions and the regulation of
other systems. For example, cortisol is essential to mobilizing energy resources to
provide “fuel” for the body. It also inhibits immune system functioning and has a
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permissive effect, allowing other physiological systems to function effectively.
Moreover, the HPA axis activation is associated with critical cognitive and affective
processes and is thought to significantly impact health and disease occurrence and
progression (Dickerson and Kemeny 2004).

Interestingly, in a clinical experiment, Akinola et al. demonstrated that cortisol
increase was positively related to the performance of participants who were told to
view anxiety as beneficial for negotiation performance (appraisal group). In contrast,
cortisol increase was negatively associated with negotiation performance of partic-
ipants given no instructions on appraising their anxiety (control group) (Akinola
et al. 2016).

Eustress is also closely related to the concept of flow (Csíkszentmihályi 2008).
During the “state of flow” time suspends, individuals lose themselves in the activity
while perceiving great control over work tasks, accompanied by a deep sense of
enjoyment and creativity associated with peak performance (Hargrove et al. 2013).
After evaluating brain scans of individuals experiencing flow, Daniel Goleman, a
world-renowned psychologist, noted intensive activation of the left prefrontal area,
which contains the circuitry that lights up when positive emotions are active. He also
suggested that brain chemistry changes such as increased dopamine levels might also
accompany flow states, benefiting both mood and performance (Goleman 2011).

Stress produces a string of phenotypic trajectories, depending on environmental
stimuli intensity, type, and duration. Moreover, depending on the specific evaluation
time point(s), the reactions to stressors might manifest either as eustress or distress.
An example of this phenomenon is a reaction to a common stressor in academic life,
for instance, examination or homework deadline. The situation usually develops as
follows: upon hearing about a new tight deadline, many students experience dis-
comfort or even anxiety and decrease in day-day performance (distress); close to the
deadline, they frequently report a sense of increased motivation and productivity
(eustress), and following the deadline, they are feeling exhausted, and experience
decline in everyday performance (distress). Importantly, defining eustress simply by
peak performance may be too simplistic, as psychostimulants such as methamphet-
amine or cocaine can also have similar effects but, in the long run, are very
detrimental for psychological and physical health (Bienertova-Vasku et al. 2020).
Finally, most neuroscientists prefer to consider eustress as an adaptation process,
labeling eustress a type of stress that increases an organism’s adaptive capacity to a
specific life situation (Kupriyanov and Zhdanov 2014).

2.5 Early Life Stress

Early life stress is any form of severe trauma such as physical, emotional, sexual
abuse or negligence, parental loss, or exposure to natural disaster experienced during
prenatal life, first months of life, early and late childhood, or adolescence (Enoch
2011; Allen and Dwivedi 2020; Agorastos et al. 2019). It predisposes individuals to
develop various psychiatric disorders, mainly anxiety disorders and major
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depressive disorder (MDD) (Juruena et al. 2020; Łosiak et al. 2019). Along the same
lines, a meta-analysis by Nanni et al. reported that childhood maltreatment was
associated with an elevated risk of developing recurrent and persistent depressive
episodes, including a lack of response to antidepressant treatment (Nanni et al.
2012). Early life stress is also a predictor of co-occurring alcohol use disorder and
PTSD (Lee et al. 2018). The severity of childhood maltreatment is positively
correlated with inferior quality of life in adulthood (Enoch 2011).

The severity of childhood trauma experience also contributes to increased HPA
axis activity (Nikkheslat et al. 2020). Males with depression and early life stress
exhibit enhanced inflammatory responsiveness to psychosocial stress, indicating a
possible link between depression, early life stress, and adverse health outcomes
associated with systematic inflammation (Pace et al. 2006).

Animal studies complement human cross-sectional and longitudinal studies that
are helping us to understand the effects of early life stress (Marco et al. 2015). For
instance, maternal deprivation or maternal separation protocols are widely used to
study the consequences of early life stress (Réus et al. 2011; El Khoury et al. 2006;
Vetulani 2013; Lee et al. 2007). Like humans, maternal deprivation in rodents
induces depressive-like behavior, anhedonia, anxiety, and cognitive impairment
(Marco et al. 2013, 2015; Réus et al. 2011; Ahmad et al. 2018). Multiple studies
using maternal deprivation protocols also showed increased inflammation (systemic
and neuroinflammation) and oxidative stress (Réus et al. 2015, 2017), co-occurring
with changes in brain neurotrophins (Réus et al. 2011), various neurotransmitters
(Marco et al. 2015; Lee et al. 2007), and gut-microbiota (Rincel et al. 2019).
Maternal deprivation effects vary according to the developmental stages and sex.
For example, it was noted that depressive behaviors occur typically in adulthood,
while inflammation and microglial activation predominate in early life, including
infancy and adolescence (Giridharan et al. 2019; Réus et al. 2019).

Numerous studies also indicated that epigenetic mechanisms might be involved
in the consequences of early life stress (Torres-Berrío et al. 2019; Heim and Binder
2012; Li et al. 2020a; Murgatroyd et al. 2009). A review by Allen and Dwivedi
showed that microRNAs could also play a role in the maladaptive processes asso-
ciated with early life stress, both at adolescent and adult age (Allen and Dwivedi
2020).

Finally, not all children exposed to maltreatment develop psychopathology,
indicating that resilience and other mediating factors such as the gene–environment
interactions also play a significant role in modulating individual stress responses
(Enoch 2011).

2.6 Acute Stress

Acute stress is a state in which homeostasis is threatened by immediate adverse
extrinsic or intrinsic forces (stressors) and is associated with a physiological
response designed to meet the instant challenge (Esch and Stefano 2010).
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In response to stress, the cells of the paraventricular nucleus of the hypothalamus
secrete CRH, which acts on the AP, activating ACTH release. The ACTH is then
secreted into the bloodstream, stimulating the release of glucocorticoids from the
adrenal gland cortex.

Glucocorticoids play a principal role in energy metabolism, growth processes,
immune and brain functions underlying behavioral adaptation. They exercise a
negative feedback loop at the hypothalamus and pituitary gland levels to shut
down CRF and ACTH (Carrasco and Van De Kar 2003; Xiong and Zhang 2012).
Although short-term increases in cortisol can be adaptive, preparing the body to
respond to a stressor, prolonged cortisol elevation can have harmful effects on the
brain, behavior, and cognition (see the subsection on “chronic stress”) (Dickerson
and Kemeny 2004; Lupien et al. 2009).

CRH also acts as a neurotransmitter or neuromodulator in the amygdala (AMG),
dorsal raphe nucleus (DRN), HIPP, and locus coeruleus (LC), integrating the brain
responses to stress. For example, CRH increases noradrenergic neurotransmission in
the LC, followed by decreased neurovegetative functions, such as eating and
sleeping (Carrasco and Van De Kar 2003).

Specific physiological changes associated with the response to acute stress
generate the fight or flight response, which includes: (a) mobilization of energy to
maintain brain perfusion rates and use of glucose; (b) increased brain and muscle
function; (c) enhanced attention on the perceived threat; (d) increased cardiovascular
output and respiration, and redistribution of blood flow, increasing the delivery of
nutritious substances and energy to the brain and muscles; (e) modulation of immune
function; (f) inhibition of reproductive physiology and sexual behavior; and
(g) decreased feeding and appetite (Carrasco and Van De Kar 2003; McCarty 2016).

When acute stress is very intense and traumatic, for example, in threatened death,
serious injury, or sexual violation, acute stress disorder (ASD) may develop, causing
clinically significant distress or impairment in social, occupational, or other impor-
tant areas of functioning with a duration of 3 days to 1 month following exposure to
the traumatic event (American Psychiatric Association 2013).

2.7 Chronic Stress

Chronic stressors usually permeate people’s life, and unlike acute stress, the person
exposed to chronic stressful conditions either does not know whether or when the
challenge will end (Segerstrom and Miller 2004). Chronic stress can take many
different forms and is often characterized by variability in duration and intensity
(Rohleder 2019). Acute stress is considered primarily as a form of adaptation to
ongoing circumstances. Usually, it does not have long-term consequences as chronic
stress, which is heavily implicated in causing ill-health conditions, including major
psychiatric disorders (Menard et al. 2017), poor overall mental health (Cattaneo and
Riva 2016), gastrointestinal disorders (Alonso et al. 2008), cardiovascular disease
(Yao et al. 2019), and cancer (Dai et al. 2020).
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Chronic stress results in hypersecretion of adrenal glucocorticoids and sustained
activation of the central and peripheral sympathetic systems. During the state of
chronic stress, the negative feedback loop through which cortisol regulates the
ongoing release of CRF breaks down, and despite the glucocorticoid receptor
downregulation, the release of CRF continues without cessation. Finally, the rise
in the plasma cortisol concentration in chronic stress is further enhanced by releasing
arginine-vasopressin (AVP) from the hypothalamus (Leonard 2005; Aguilera 1994).

Another consequence of chronic stress is a dysregulation of the immune system
as both chronic external stressors and stress hormones act to up-regulate the expres-
sion of stress-related pro-inflammatory genes, thereby increasing the release of
pro-inflammatory cells and the production of pro-inflammatory cytokines, such as
interleukin-1 (IL-1) IL-6, and tumor necrosis factor α (TNF-α) (Cohen et al. 2012).
Besides glucocorticoids, the sympathetic nervous system and its main neurotrans-
mitter norepinephrine and neuropeptide Y are also involved in regulating the
immune function and inflammatory processes during the stress response (Dai et al.
2020; Liu et al. 2017a).

In addition to peripheral inflammation, inflammation in the brain, namely
“neuroinflammation”, has also been found in individuals experiencing chronic
stress. Peripheral cytokines can penetrate the central nervous system (CNS) through
the circumventricular organs (CVOs), brain structures located around the third and
fourth ventricles, characterized by the lack of a blood-brain barrier, increasing
microglial activation (Munhoz et al. 2008; Calcia et al. 2016; Miller et al. 2009;
Kaufmann et al. 2017) (see Fig. 2.1).

Stressful events are often followed by alterations in oxidative/nitrosative cellular
pathways in the brain in response to inflammatory mediators (Munhoz et al. 2008).
These changes can trigger neurodegenerative diseases, major psychiatric disorders,
and other adverse health conditions, such as cerebral ischemia (Wang and Michaelis
2010; Salim 2017). Moreover, central, peripheral inflammation and oxidative stress
can impact the functioning of the brain and other body organs, thus increasing the
risk for the development of multiple systemic illnesses (Yao et al. 2019; Ambrósio
et al. 2018; Carrier 2017; Cobley et al. 2018).

Fig. 2.1 The figure presents a simplified mechanism explaining how early exposure to stressors is
priming microglia, leading to neuroinflammation and increased risk for developing stress-related
disorders (from Calcia et al. 2016)
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Depending on its intensity or duration, stress can also trigger molecular (e.g.,
decreased neurotrophic factors and increased glutamate excitotoxicity), cellular
(e.g., reduced neurogenesis and synaptic plasticity), or tissue (e.g., decreased HIPP
volume and neuronal function) alterations that can predispose an individual to the
development of psychiatric and neurological disorders (Duric and Duman 2013).
Moreover, stress can induce cognitive, emotional processing, and behavioral deficits
by affecting glutamate release, transmission, and metabolism in cortical and limbic
brain areas (Popoli et al. 2012). It can also alter lipid metabolism and glycemic
control and affect diverse hormonal systems, impacting mental and physical health
through several mechanisms simultaneously (Yao et al. 2019; Scott et al. 2012).

2.8 Chronic Stress and Gender Differences

The mechanisms to cope with stressors differ between males and females (Bale and
Epperson 2015). Differences in gonadal steroids are primarily driving sex-specific
responses to physical or psychological threats (Oyola and Handa 2017)

As reviewed by Oyola and Handa (Oyola and Handa 2017), significant sex
differences related to the HPA axis reactivity are that: (a) females reportedly have
more prominent paraventricular nucleus AVP neurons than males; (b) the release of
CRH triggers a more pronounced ACTH response in female than in male rats;
(c) glucocorticoid increases following a stressor are higher and remain elevated for
a longer time in female rats; (d) the corticosteroid-binding globulin (CBG—a protein
that controls the glucocorticoid bioavailability in the plasma) is higher in female than
in male rats, and (e) the estrogens regulate negative feedback at multiple sites.
Moreover, the fluctuations in gonadal hormones in females have also been shown
to modulate how females react to stress (Oyola and Handa 2017).

Furthermore, sex differences in the neuropeptide Y system seem to be involved in
the stress response modulation. As recently reviewed by Nahvi et al. the female
gender has lower neuropeptide Y levels and fewer neuropeptide Y-expressing cells
than males, making them more susceptible to stressors (Nahvi and Sabban 2020).
Several clinical studies related neuropeptide Y with individual resilience to stress,
with its lower levels associated more often with the presence of stress-related
disorders (Sah et al. 2009, 2014). In their set of preclinical studies, Monch et al.
reported significant effects of chronic stress on the medial prefrontal cortex (mPFC)
and HIPP neuronal architecture in adult males, compared to a few neurobiological
changes found in adult female rodents (Moench et al. 2019). Finally, the sex-specific
neuroimmune effects of stress also significantly contribute to stress response and
resilience (Bekhbat and Neigh 2018).

A clinical study analyzing electroencephalography (EEG—reflects correlated
synaptic activity caused by post-synaptic potentials of cortical neurons) and func-
tional magnetic resonance imaging (fMRI—uses changes in blood flow as indices of
activity in the brain) revealed sex differences between individual subject responses.
Women mainly showed faster frontal cortical EEG responses to negative stimuli.
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Moreover, LC was more activated in women than in men during stressful events
(Bangasser et al. 2018). An additional difference between the two genders frequently
reported by neuroscientists is the men’s typical fight or flight and women’s “tend and
befriend” behavioral response following exposure to the same stressful situations
(Verma et al. 2012; McEwen 2017).

Similarly, in animal experiments, male and female rodents appear to be differen-
tially affected by the chronic mild stress model, depending on their behavioral,
physiological, and neurobiological indices being measured (Franceschelli et al.
2014). For example, the chronic stress paradigm impaired learning and memory
processes more in males than female mice. In contrast, chronic stress increased
depressive-like behavior more in females than males (Franceschelli et al. 2014;
Luine et al. 2017; Sachs et al. 2014). The relationship between levels of gonadal
hormones and psychological states is further evidenced by the fact that more than
half of women with MDD experienced increased severity of depressive symptoms
during the premenstrual phase of their regular menstrual cycle (Altemus et al. 2014).

Finally, elevated stress hormones can also negatively impact the reproductive
neuroendocrine axis by affecting the levels of circulating gonadal hormones, thus
compromising the overall reproductive function (Rivier and Rivest 1991; Whirledge
and Cidlowski 2010).

2.9 Chronic Stress in Elderly

Brain regions that undergo the most rapid decline due to aging are also highly
susceptible to the effects of stress hormones. The AMG, FC, and HIPP seem to be
the most affected ones (Lupien et al. 2009). Liu et al. reported a positive correlation
between the intensity of perceived stress and the severity of depression in the elderly,
so the more significant was the perception of stress, the more severe were the
depressive symptoms (Liu et al. 2017b). Moreover, a cross-sectional study with
ninety elderly stroke survivors showed that a higher perception of stress was
positively correlated with a degree of patient’s dependence on others in daily
functioning (dos Santos et al. 2015). Mills et al. reported that high levels of chronic
stress were associated with increased plasma norepinephrine concentration in spou-
sal caregivers of Alzheimer’s disease (AD) patients (Mills et al. 1997). Another
study in elderly caregivers with chronic pain conditions found a positive association
between the severity of perceived stress symptoms and the number of different pain
relief medications used (Terassi et al. 2020).

Stress can also negatively affect cognitive health in the elderly. For instance,
Sroykham andWongsawat showed that delayed recall was positively correlated with
salivary cortisol levels (Sroykham and Wongsawat 2019). Along the same lines,
higher plasma cortisol levels in the elderly with AD were associated with a more
rapid increase in symptoms and more severe deterioration in performance on neu-
ropsychological tests assessing temporal lobe functions (Csernansky et al. 2006).
Similarly, Ennis et al. reported that cortisol dysregulation was a significant predictor
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of risk for AD development occurring on average 2.9 years before AD onset (Ennis
et al. 2017). Premature aging and dementia in individuals with PTSD are frequently
associated with chronic re-experiencing of traumatic stress symptoms (Jakel 2018).

Due to several recent global economic crises, insufficient income, and increased
longevity, the number of elderly workers is steadily growing. It was noted that older
employees are more susceptible to adverse effects of chronic occupational stress than
their middle-aged colleagues, mainly due to several concomitant chronic diseases
(Ha and Kim 2019).

A cross-sectional study by Kumar et al. of elderly living in rural areas of Thailand
showed that chronic stress was significantly associated with comorbid alcohol use
disorder and a higher incidence of chronic illnesses (Kumar et al. 2020). Another
study conducted among older women in four U.S. communities, followed from 1999
to 2007, reported that the women experiencing high-stress levels had greater mor-
tality risk than those in the low-stress group but only during the first 3 years of
follow-up (Fredman et al. 2010). Interestingly, in the study of elderly aged 65 years
or older, when looking at the association between social connectedness, such as
helping others, stressful events, and mortality risk, Poulin et al. observed a positive
correlation between the number of stressful events and mortality risk, only in
participants who did not help other people. No such association was found in
those compassionate to others who lived longer and reported better overall health
status. Based on these findings, the researchers strongly suggested that helping
others might serve as a stress buffer with additional psychosocial benefits that
promote good health and increase overall well-being and longevity (Poulin et al.
2013).

2.10 Chronic Stress and Aging

During adulthood, the brain regions that undergo the most rapid decline are at the
same time the most susceptible to the effects of stress hormones. Accumulation of
stress increases allostatic load and might result in a specific stress-related disorder or
presents as nonspecific chronic stress symptomatology (Lupien et al. 2009). A
longitudinal study by Lupien et al. found that participants with chronically elevated
cortisol levels had morphological changes in the brain structures, such as decreased
HIPP (Lupien et al. 1998). A preclinical study showed that chronic stress alters the
expression levels of longevity-related genes in the rat HIPP, suggesting that chronic
stress might serve as the accelerator of HIPP biological aging (Sánchez-Hidalgo
et al. 2016). Aging-related changes in rodents mimic hallmarks of chronic stress
effects observed in the human population, manifested as immune system
dysregulation, cognitive decline, and decreased synaptic plasticity, occurring pri-
marily in stress-susceptible regions (Barrientos et al. 2012; Novais et al. 2017).

Aging is also associated with an enhanced HPA axis responsiveness manifested
by continuously elevated cortisol levels (Raskind et al. 1994; Woods et al. 2006;
Moffat et al. 2020). In the elderly, a significant positive correlation between
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low-grade inflammation (evaluated by C-reactive protein levels) and urinary cortisol
level was observed (Martocchia et al. 2020). This type of low-grade inflammation
called “inflamm-aging” is a hallmark of the aging process and increases the risk for
multimorbidity, physical and cognitive disability, and frailty (Bektas et al. 2018).
Inflamm-aging derives from several interdependent factors: mitochondrial dysfunc-
tion, dysregulation of the immune system, hormonal changes, epigenetic modifica-
tions, and other abnormalities (Fougère et al. 2017; Franceschi et al. 2007). Aging is
also accompanied by progressive immune system functional deficiencies, called
“immunosenescence,” which increases the risk for infection and compromises
wound healing (Heffner 2011). Moreover, the immunological function is affected
by dehydroepiandrosterone (DHEA), another biomarker of chronic stress secreted
by the adrenal cortex in response to CRH and ACTH stimulation with opposing
effects on the immune system when compared to cortisol. With aging, DHEA
secretion in response to ACTH stimulation decreases while the cortisol/DHEA
ratio increases (Heffner 2011).

Preclinical data have also identified the negative impact of aging-induced gonadal
hormone changes on genes involved in a stress response modulation. The conse-
quences of this interaction mainly manifest as alterations in morphology and neuro-
chemistry within specific brain regions, critical for executive functions, learning,
memory, and stress regulation (Bale and Epperson 2015).

2.11 Financial Stress

From a financial institution perspective, “financial stress” (FS) is always present to a
degree somewhere in the financial system, and according to Illing and Liu, is
intensified during, for instance, an economic crisis when either expected financial
loss, an increased risk (a higher probability of loss) or uncertainty (reduced confi-
dence about the possibility of loss) rises (Illing and Liu 2006). On a personal level,
FS is usually considered as the inability to meet one’s financial obligations, causing
psychological or emotional reactions such as worry, or a sense of scarcity, accom-
panied by the physiological aspects of the stress response (Northern et al. 2010). For
example, a research study by Andrews andWilding showed that financial difficulties
could increase anxiety, depression and affect academic performance in British
students (Andrews and Wilding 2004). A similar study indicated that FS is wide-
spread among students, with 71% of the participants feeling stressed due to personal
economic issues (Heckman et al. 2014). In older adults, financial strain is also very
often associated with depression (Krause 1987). In contrast, people with higher
financial self-efficacy (i.e., those who manage their money well) and greater opti-
mism about their financial future are significantly less likely to report experiencing
FS (Heckman et al. 2014).

Research has also investigated the impact of FS on people with certain illnesses.
For example, a study of arthritis patients found that financial stressors significantly
affected the physical and emotional well-being of the participants (Skinner et al.
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2004). Similarly, FS due to a recent diagnosis of cancer is highly correlated with
increased risk of adverse psychological outcomes like depression and anxiety
(measured by Depression Anxiety Stress Scales-21) (Sharp et al. 2013) and low
health-related quality of life (measured by QLQ-C30—a quality of life questionnaire
used by the European Organization for Research and Treatment of Cancer) (Sharp
et al. 2018). Moreover, following the admission to the intensive care unit due to
critical illness prevalence of FS was high, especially in females, and was associated
with anxiety, depression, and decreased overall mental health (Khandelwal et al.
2018). A study by Khandelwal et al. also suggested a complex interplay between
critical illness, the need for high-intensity care, family situation, and patient’s FS
(Khandelwal et al. 2020).

A recent population-based study in the USA observed that during the COVID-19
pandemic, individuals who reported financial strain appear to be at increased risk for
stressor exposure. Of the stressors experienced, the most stressful were those related
to the loss of job security or income, risk of a loved one’s illness, loss of
job/education, and lack of access to information (Park et al. 2020).

2.12 Chronic Stress and Burnout

The term “burnout” was introduced by Freudenberger in 1974 when he observed a
loss of motivation and reduced commitment among volunteers at a mental health
clinic (Freudenberger 1974). However, this concept did not get too much attention
until 1981 when Christina Maslach and Susan E. Jackson developed the “Maslach
Burnout Inventory,” which is still the most widely used instrument to measure this
occupational phenomenon (Maslach and Jackson 1981). According to Maslach,
burnout is defined as a prolonged response to chronic emotional and interpersonal
stressors on the job. It is manifested by emotional exhaustion (feeling tired and
powerless to provide more support to others), depersonalization (showing a disen-
gaged, cynical, cold, and unsympathetic attitude toward colleagues), and reduced
personal accomplishment (decline in feelings of competence and performance at
work) (Maslach et al. 2001).

“Burnout syndrome” (BOS) occurs predominantly in people who work in posts
that involve frequent and intense contact with people. Several studies demonstrated
that BOS presents a significant problem among healthcare workers, especially nurses
and physicians (Friganović et al. 2019; De La Fuente-Solana et al. 2019; Bridgeman
et al. 2018; Rotenstein et al. 2018). A systematic review and meta-analysis by
Rodrigues et al. also reported its high prevalence among medical residents
(35.7%), which was significantly higher among surgical/emergency medicine resi-
dents than in other clinical specialties (Rodrigues et al. 2018). Although numerous
adverse job characteristics could induce BOS, increased workload, low staffing
levels, long shifts, and low job control are the most commonly reported (Dall’Ora
et al. 2020).
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Several consequences to workers’ mental and physical well-being are related to
BOS, including physical and psychosomatic problems. According to the recent
systematic review, BOS was a significant predictor of type 2 diabetes, coronary
heart disease, musculoskeletal pain, prolonged fatigue, headache, gastrointestinal
issues, respiratory problems, severe injuries, and mortality below the age of 45 years.
Depression, anxiety, and insomnia were the most frequently reported psychological
symptoms (Salvagioni et al. 2017), while cognitive impairments have been observed
in people with chronic BOS (Sandström et al. 2005). Finally, a recent meta-analysis
of observational studies identified BOS as one of the most significant predictors of
sickness absence (Duijts et al. 2007), while a decrease in burnout symptoms was
associated with less absenteeism due to illness (Borritz et al. 2006).

2.13 Stress-Induced Exhaustion Disorder

Long-term chronic stress can lead to a state of exhaustion with the character of an
illness, which is associated with changes in brain structure and function (Wallensten
et al. 2019; Blix et al. 2013; Savic et al. 2018). When discussing workplace stress,
some countries, like Sweden, mainly describe the occurrence of a “stress-induced
exhaustion disorder” (SED) or “exhaustion disorder” (ED), which presents as
mental exhaustion induced by a long-lasting period of high intensity of stress
without sufficient recovery. The primary reason for including SED in the Interna-
tional Classification of Diseases, Tenth Revision, Swedish Version (ICD-10-SE)
was to capture the symptomatology of “clinical burnout,” i.e., the sequelae of
chronic stress without recovery (Wallensten et al. 2019). In contrast, BOS is
recognized as an occupational phenomenon, not a disease.

Typical symptoms of SED are reduced mental energy, lack of endurance, and
increased time needed for recovery after mental effort frequently accompanied by
somatic symptoms (Wallensten et al. 2019). A clinical study with people experienc-
ing ED showed that almost all individuals (98%) reported at least one somatic
symptom, while 45% reported six symptoms or more. Nausea, flatulence, or indi-
gestion were the most frequently reported somatic symptoms (67%), followed by
headaches (65%) and dizziness (57%) (Glise et al. 2014).

Morphological changes in the brain were also observed in individuals with SED,
with the frontostriatal circuits (rostral PFC, the posterior parietal cortex, and the
striatum) primarily affected. The same study demonstrated that employees with
high-stress levels needed to recruit additional cognitive resources to uphold task
performance (Gavelin et al. 2017). This finding aligns with scientific knowledge
regarding the crucial role of the striatum in working memory processing, serving as a
gating mechanism that regulates the updating of working memory representations in
the PFC (O’Reilly 2006). Accordingly, following stress rehabilitation (the interven-
tion consisted of twenty-two group sessions and two individual meetings with the
group therapist for 24 weeks), the striatal activity decreased due to reduced stress
levels (Gavelin et al. 2017).
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An MRI clinical study in patients with SED demonstrated that changes in brain
regions critical for stress processing were dynamically correlated with the degree of
perceived stress, highlighting a possible causal link. In addition, the morphological
abnormalities were more pronounced in women, so the authors suggested that they
might represent the biological substrate underlying increased female vulnerability to
stress-related psychiatric disorders (Savic et al. 2018).

Biochemical alterations are also frequently noted in people with SED. For
instance, several studies reported that women with SED had significantly higher
plasma levels of vascular endothelial growth factor (VEGF) and epidermal growth
factor (EGF) compared to healthy controls (Wallensten et al. 2016; Nowacka et al.
2015; Luger et al. 1988).

2.14 Occupational Stress

“Occupational” or “work-related stress” is determined by several factors such as
lack of resources and equipment, inadequate management style, poor job design,
lack of vocational and soft skills, and negative employee interactions. It most often
occurs when the job demands do not match or exceed the employee’s capabilities,
resources, or needs, or when the knowledge or abilities of an individual worker or
group are not matched or aligned with the company’s expectations. Nowadays,
occupational stress (OS) is generally acknowledged as a global phenomenon with
immense health and economic consequences (International Labour Organization
2016).

OS is a significant health problem for both employees and organizations and can
lead to BOS, illness, and increased employee turnover, presenteeism, and absentee-
ism (Nowrouzi et al. 2015). Moreover, workers with high levels of OS tend to have
lower work engagement (Cordioli et al. 2019). High levels of OS are also associated
with poor mental health outcomes (Fortes et al. 2020).

Morphological and volumetric changes in the brain are observed in people with
high levels of OS. For example, a clinical study by Blix et al. reported that people
experiencing symptoms of workplace stress exhibited reductions in the gray matter
volumes of the ACC and dorsolateral PFC. Moreover, their caudate and putamen
volumes were also reduced (Blix et al. 2013) (see Fig. 2.2). A similar study by Savic
et al. showed that OS caused selective volumetric changes in subcortical regions
(Savic 2015).

Occupational stress can also induce alterations in other organ systems. For
instance, a systematic review by Järvelin-Pasanen (Järvelin-Pasanen et al. 2019)
reported on the positive correlation between heightened occupational stress and
lowered heart rate variability due to reduced parasympathetic activation (Järvelin-
Pasanen et al. 2019). Furthermore, in a study by Chandola et al. employees chron-
ically exposed to workplace stressors (arbitrarily defined as three or more significant
workplace stressor exposures) were more than twice as likely to have metabolic
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syndrome than those who did not experience substantial work-related stress
(Chandola et al. 2006).

Due to the omnipresence of diverse occupational stressors in contemporary
working environments, implementing evidence-based stress management practices
that will prevent suffering and increase employee well-being is a must, according to
Quick and Henderson, experts on workplace stress prevention (Quick and Hender-
son 2016).

2.15 Caregiver Stress

“Caregiver stress” is usually defined as the unequal exchange of assistance among
people who stand in close relationships, resulting in the caregiver (Llanque et al.
2016) emotional and physical stress. A prospective cohort study conducted in older
women in four U.S. communities, followed from 1999 to 2007, showed that
caregivers were more stressed than non-caregivers (Fredman et al. 2010).

Caregiver (di)stress is primarily associated with the caregiving of people with
chronic illnesses, like cancer (Gaugler et al. 2008; Kim et al. 2006), schizophrenia
(Caqueo-Urízar et al. 2009; Stanley et al. 2017), and neurodegenerative diseases
(Zwerling et al. 2016; Gilhooly et al. 2016; Krishnan et al. 2017). For instance, a
study by Ferrara et al. with AD patients reported that the severity of memory
problems associated with behavioral and psychological symptoms such as aggres-
sion and hallucinations was highly predictive of caregiver distress (Ferrara et al.
2008). Caregivers of children with neurodevelopmental disorders also experience
significant stress, especially those taking care of children with autism spectrum
disorders (ASD) (Duarte et al. 2005; Baker-Ericzén et al. 2005). For instance,
parents of children with ASD experienced consistently higher stress levels during
their children’s early development than parents of children with non-ASD develop-
mental concerns (DesChamps et al. 2020). As in AD informal caregivers, higher

Fig. 2.2 The figure presents the gray matter (GM) volumetric changes of stress-susceptible brain
structures (i.e., HIPP, caudate, and putamen), showing that stressed subjects exhibited significant
reductions in the GM volumes of the ACC and the dorsolateral PFC in comparison with unstressed
controls (from Blix et al. 2013)
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levels of parental distress were associated with the increased severity of ASD
symptomatology.

Caregiving often results in chronic stress, compromising the caregiver’s physical
and psychological health integrity (Schulz and Sherwood 2008). For example, a
study with primary caregivers of elderly relatives with dementing illnesses showed
that higher stress levels were correlated with poorer self-reported health, increased
unhealthy behaviors, and greater use of health care services (Son et al. 2007). Along
the same lines, a recent review demonstrated that worsening of informal caregiver’s
health led to the early nursing home placement of demented family members (Etters
et al. 2008).

Caregivers of people with dementia have also shown increased levels of anxiety
(Cooper et al. 2007) and depressive symptoms (Covinsky et al. 2003; Bin et al.
2015). A high prevalence of depression was also observed among caregivers of
cancer patients (Mei et al. 2018).

Chronic stress and perceived loneliness of dementia caregivers also disrupt their
neuroendocrine and neuroimmunological systems (Kovaleva et al. 2018), inducing a
chronic systemic low-grade inflammation and increasing pro-inflammatory cytokine
levels, ultimately leading to higher illness risk (Von Känel et al. 2006; Gouin et al.
2012; Mausbach et al. 2011; Kiecolt-Glaser et al. 2011). Along the same lines,
caregivers experiencing increased stress have a higher risk for cardiovascular disease
(Haley et al. 2010; Roepke et al. 2012; Mausbach et al. 2010) and higher mortality
rates (Schulz and Beach 1999).

2.16 Secondary Exposure to Trauma (Secondary
Traumatic Stress and Vicarious Traumatization)

McCann and Pearlman were the first to introduce the concept of “vicarious trauma-
tization” (VT) in the nineties, which they noted in individuals who regularly worked
with victims of traumatic events, manifested primarily by significant changes in a
professional’s core beliefs about themselves, others, and the world in general, due to
their chronic empathic engagement (Collins and Long 2003). In addition, VT can
impact a personal life, such as relationships with family and friends (Bober and
Regehr 2006; Baird and Kracen 2006). Previously called “compassion fatigue,”
“secondary traumatic stress” (STS) refers to secondary or indirect exposure to
trauma and is a set of psychological symptoms that typically mimic PTSD or ASD
acquired due to exposure to individuals suffering from the effects of severe trauma. It
is the consequence of engaging in an empathic relationship with an individual
suffering from a traumatic experience and bearing witness to the intense or horrific
experiences of that particular person’s trauma.

STS and VT have been continuously reported in mental health professionals (e.g.,
psychiatrists, nurses, therapists), child protection workers, clergy, social workers,
humanitarian aid workers, and workplace lay trauma counselors exposed chronically
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to people suffering from trauma (Beck 2011; Sinclair and Hamill 2007; Shah et al.
2007; McNeillie and Rose 2020). VT symptoms typically manifest as apathy,
exhaustion, irritability, cynicism, disillusionment, and altered cognitive schemas
related to personal safety, trust, power, and intimacy (Isobel and Angus-Leppan
2018; Pross 2006). Interestingly, scientists studying the neurobiology of empathy
discovered a group of neurons they named “mirror” neurons (neurons that mirror the
behavior of the other person, for instance, during a conversation or socializing, as
though the observer were itself acting) in the premotor cortex, the supplementary
motor area, the primary somatosensory cortex, and the inferior parietal cortex, and
postulated that they might be a causative factor leading to the increased occurrence
of vicarious trauma among the professional groups mentioned before (Isobel and
Angus-Leppan 2018). A survey involving 214 general public participants and 526
nurses (i.e., 234 front-line nurses and 292 non-front-line nurses) evaluating VT
(using a mobile phone app-based questionnaire) caused by the COVID-19 pandemic
showed that both groups of nurses suffered. However, surprisingly, the VT of non-
front-line nurses was more severe than those of front-line nurses (Li et al. 2020b).
The authors explained that this might occur due to their lack of working experience
and poorer psychological coping capabilities when compared to front-line nurses.
Moreover, they suggested that while the VT of front-line nurses stemmed only from
empathizing with patients infected with the COVID-19, non-front-line nurses,
besides feeling compassion for their patients, were also bearing the worry and
sympathy for their front-line colleagues (Li et al. 2020b).

The previous history of personal and professional trauma, individual perception
of being adequately trained for working with traumatized people, supervision of peer
workers, the opportunity for consultation with colleagues, availability of social
support, adequate self-care, sufficient leisure time, and enough engagement in
other activities which are promoting psychological resiliency, are some of the factors
that may affect VT’s severity (Jordan 2010). For example, in their study about VT in
social workers, Michalopoulos and Aparicio noted that higher levels of social
support might serve as a protective factor against vicarious traumatization of social
workers without a history of trauma but not of those who already experienced trauma
(Michalopoulos and Aparicio 2012). Finally, a meta-synthesis study by Cohen and
Collens found that increased stress levels in professionals working with trauma (in
the context of secondary trauma) can be successfully managed through diverse
organizational and personal interventions aimed to enhance individual coping strat-
egies (Cohen and Collens 2013).

2.17 Mental Health Stigma and Stress

“Stigma” may be defined as a process involving labeling, stereotyping, separation,
prejudice, and discrimination in a context in which social, economic, or political
power is exercised to the detriment of members of a social group (Link and Phelan
2001). Noteworthy, stigma and discrimination are prevalent among individuals with
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neuropsychiatric conditions (Bipeta et al. 2020; Kaushik et al. 2016; Kinson et al.
2018).

A mental health stigma is linked to a wide range of adverse consequences in
stigmatized people, affecting their social, psychological, and physical health capac-
ities. They include but are not limited to unemployment, housing problems, poor
social adjustment, decreased self-esteem, and lower self-efficacy, poor interpersonal
relationships with family and friends, and poor physical health (increased risk of
obesity, unhealthy eating habits, and risky sexual behaviors) (Sickel et al. 2014;
Rüsch et al. 2005; Forchuk et al. 2006; Perlick et al. 2001). A systematic review by
Clement et al. also demonstrated that mental health stigma has a small- to a
moderate-sized negative effect on help-seeking (Clement et al. 2015). Moreover, a
study by Corrigan et al. on the impact of mental health stigma on healthcare
providers reported that primary health care practitioners who endorsed stigmatizing
characteristics of the patient were more likely to believe that one would not adhere to
the prescribed treatment and hence, were less likely to refer one to a specialist or
provide a refill of one’s prescription (Corrigan et al. 2014).

Numerous studies demonstrated the interaction between mental health stigma and
personal distress. For instance, Masuda et al. showed a significant positive correla-
tion between mental health stigma and psychological distress (Masuda et al. 2009).
In contrast, a study with young adult college students who endorsed having a past or
current mental health diagnosis showed only a modest relation between levels of
distress associated with prodromal psychotic symptoms and self-stigmatization.
Interestingly, there was a more significant relationship between the intensity of
distress derived from prodromal symptoms and self-stigma in students with low
social support (measured by Friendships subscale of the Lubben Social Network
Scale-Revised) than those with average and high social support (Denenny et al.
2015). The authors concluded that support from classmates and friends might act as a
buffer of self-stigmatization-induced distress.

Mental illness stigma is also a potent source of distress in families of patients with
mental disorders. A study with adult relatives of individuals with mental illness
revealed that stigma was uniquely associated with caregiver distress, problems with
empowerment, and difficulties in family functioning (Muralidharan et al. 2016).

Mental health stigmatization can also be detrimental for those individuals who
stigmatize other people due to their mental health problems. For instance, Masuda
et al. found that the course/origin component of stigma (marked by pessimistic views
toward the cause, treatment prognosis, and recovery from a mental disorder) was
associated with the psychological distress of the stigmatizer (Masuda and Latzman
2011).
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2.18 Stress Vulnerability and Its Role
in the Pathophysiology of Neuropsychiatric Disorders

The anatomical and functional connectivity of the brain is an essential determinant of
the degree of stress resilience or vulnerability in an individual (Franklin et al. 2012).
Brain circuitry can be remodeled by stressful experiences, causing functionally
relevant morphological changes of the dendritic arbor, spine, and synapse within
the AMG, HIPP, and PFC, and resulting in cognitive, emotional, and behavioral
deficits (McEwen and Morrison 2013). Moreover, environmental challenges can
precipitate psychiatric and neurological disorders in susceptible individuals (Zannas
and West 2014).

Determining why certain people succumb to stress while others become stress-
resilient is fundamental for understanding the neurobiology of stress susceptibility
and resilience and is crucial for the successful development of effective treatments
for stress-related disorders (Franklin et al. 2012). For instance, a study by Gilbertson
et al. (2002) showed that a smaller HIPP volume might be a pre-existing condition
that increases vulnerability to PTSD upon exposure to a traumatic event (Gilbertson
et al. 2002). Similarly, other studies demonstrated that differences in HIPP volume
might render individuals more or less vulnerable to adverse effects of stress on
cognition and overall mental well-being (Lupien et al. 2018; Frodl et al. 2002; Narr
et al. 2004).

Another significant factor related to increased stress vulnerability is early life
adversity (such as poor parental care and physical abuse) (Lupien et al. 2018).
Although the precise molecular mechanisms underlying these processes have not
yet been fully elucidated, the initial evidence points to the HPA axis and its impact
on brain morphology, functioning, and connectivity between regions involved in
regulating the stress response (Lupien et al. 2018).

Genetic variations within the HPA axis (e.g., corticosteroid receptor polymor-
phisms), monoaminergic (e.g., dopamine D2 long receptor deficiency), and
neurotrophic systems (e.g., variants of BDNF such as Val66Met polymorphism)
could also be implicated and contribute to the increased stress vulnerability leading
to the development of stress-related disorders (Shioda et al. 2019; Yu et al. 2012;
DeRijk and de Kloet 2008; Hosang et al. 2014).

Epigenetic changes induced by gene–environment interactions exhibit a signifi-
cant impact on stress responsiveness (Franklin et al. 2012). As reviewed by Zannas
and West (Zannas and West 2014), specific environmental stressors can cause long-
lasting epigenetic modifications (especially in genes relevant to the regulation of the
HPA axis), carrying the potential to shape individuals’ magnitude of stress
responses. The same researchers also emphasized that these epigenetic variations
might then be transferred and inherited by future generations, ultimately affecting
their stress responses (Portela and Esteller 2010).

A study by Allen and Dwivedi published in 2020 showed that microRNAs could
play a role in the maladaptive processes associated with early life adversities,
ultimately leading to increased susceptibility of adolescents and adults to chronic
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stress and stress-related disorders (Allen and Dwivedi 2020). Although the exact
mechanism is still not completely clear, they suggested that observed microRNA
changes might negatively affect various signaling systems regulating the stress
response (Allen and Dwivedi 2020).

Menard et al. also emphasized the role of the innate and adaptive immune system
in stress susceptibility, resilience, and coping. The researchers pointed out that
pro-inflammatory cytokine signaling, peripheral monocyte infiltration, and
microglial activation are significantly involved in the modulation of stress vulnera-
bility (Ménard et al. 2017).

Although recent investigations made significant advancements in identifying
biological substrates underlying the stress response, there are still numerous
undetermined genetic and environmental factors that might be held accountable
for inter-individual differences in reaction to stressful stimuli (Franklin et al. 2012).

2.19 Allostatic Load Index and Psychometric Stress
Assessment

“Allostatic load” (AL) is defined as the “wear and tear” on the brain and body when
primary mediators of “allostasis” (e.g., cortisol, adrenalin, cytokines) exert their
noxious toll due to exposure to chronic stress conditions (Lupien et al. 2018; Picard
et al. 2014).

According to McEwen, who coined the term, there are three types of physiolog-
ical responses contributing to increased AL: (1) frequent stress/frequent activation of
allostatic systems; (2) a failure to shut off allostatic activity after stress; and (3) inad-
equate response of allostatic systems leading to elevated activity of other, counter-
regulated allostatic systems following stress exposure (McEwen 1998).

The “Allostatic Load Index” (ALI) quantifies the AL. The original index was
based on ten physiological or physical measurements: 12-h urinary cortisol, adren-
alin, and noradrenalin output; serum dehydroepiandrosterone sulfate (DHEAS),
high-density lipoprotein (HDL) and HDL to total cholesterol ratio; plasma
glycosylated hemoglobin; aggregate systolic and diastolic blood pressures; and
waist-to-hip-ratio (Seeman et al. 1997). The original index score ranged from 0 to
10, with higher values indicating higher physiological strain and lower values
indicating better adaptation to stress (Seeman et al. 2001). Moreover, the distribu-
tions for each biomarker were determined from observed data and divided into
quartiles. Accordingly, observations in the high-risk quartile are scored as 1, while
those in all other quartiles are scored as 0 (Edes et al. 2018). However, alternative
criteria for calculating AL were also examined. One such alternative, using a stricter
criterion, was based on a sum of the number of parameters for which the subject fell
into the top (or bottom) 10% of the distribution (i.e., the group at highest “risk”).
Another way of measuring it is to use an average of z-scores (how many standard
deviations below or above the mean is a raw score) for each parameter. This
approach showed the most robust effects (McEwen 2000).
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A higher ALI score is typically associated with numerous antecedents (e.g.,
socioeconomic disadvantage, workplace stress, maladaptive personality traits, life-
style behaviors, genetic polymorphisms) and health-related consequences (e.g.,
cardiovascular disease, obesity, hypertension, diabetes, cognitive decline, psychiat-
ric symptoms, physical/mobility limitations, mortality, and other). Moreover, it
represents a valuable tool that might help public and organizational health pro-
fessionals to deepen their insights into the pernicious effects of chronic stress
(Lupien et al. 2018; Edes et al. 2018; Juster et al. 2010).

Several psychometric instruments have been validated for assessing symptoms of
stress, including the Perceived Stress Scale (PSS), which is one of the most popular
tools for measuring the severity of psychological stress (Lee 2012).
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Chapter 3
Role of Glutamatergic Neurotransmission
in the Pathophysiology of Stress-Related
Disorders and Chronic Stress Response

Gislaine Z. Réus, Helena M. Abelaira, Laurence D. Coutellier,
Luana M. Manosso, and Zoran M. Pavlovic

Abstract We begin this chapter with findings pointing out the interaction between
exposure to stressful events and the occurrence of major psychiatric and neurological
diseases, including Depression, Schizophrenia, and Neurodegenerative Disorders.
The following sections present the impact of chronic stress on the glutamatergic
system, ionotropic and metabotropic glutamate receptors, and excitatory amino acid
transporters. The chapter continues with a description of animal models of chronic
stress such as Chronic Mild and Restraint Stress, Chronic Social Defeat Stress,
Chronic Subordinate Colony Housing, and Rat Cumulative Allostatic Load Measure
developed to mimic the pathophysiology of human stress-related disorders. Their
application in the translational development of glutamatergic treatments for psychi-
atric and neurological chronic stress-induced diseases is also discussed. The follow-
ing section is dedicated to the impact of chronic stress on gene expression and
epigenetic modifications in glutamatergic neuronal networks, followed by the part
on stress-induced glutamate effects leading to oxidative and nitrosative neuronal
stress and excitotoxicity. We conclude the chapter with the latest preclinical and
clinical research insights on glutamate interactions with other neurotransmitters
relevant to human stress response, such as serotonin, corticosteroids, GABA,
and BDNF.
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3.1 Role of Glutamatergic Neurotransmission
in the Pathophysiology of Stress-Related Disorders

3.1.1 Major Depressive Disorder

Major depressive disorder (MDD) is the most common mood disorder and a leading
global cause of psychosocial disability (James et al. 2018). It is associated with
depressive mood, general disinterest, psychomotor and vegetative symptoms, and
cognitive impairment (American Psychiatric Association 2013). Genetic factors,
combined with environmental influences such as stressful events, play significant
roles in its onset (Cattaneo and Riva 2016; Krishnan and Nestler 2008).

Excitatory amino acids such as glutamate mediate both adaptive and harmful
effects of stressors on the brain (Nasca et al. 2015a). Moreover, acute stress increases
glucocorticoids, induces glutamate release, and affects glutamate receptors, gluta-
mate clearance, and metabolism (Popoli et al. 2012). Multiple studies suggested that
long-term augmentation of extracellular glutamate can lead to neuronal injury or
death through the mechanism of glutamate-induced excitotoxicity (Olney and De
Gubareff 1978; Olney et al. 1980).

Stress is affecting glutamate neurotransmission in region-specific ways. Numer-
ous studies have reported enhanced chronic stress-related glutamate release and
glutamate receptor expression, associated with reduced glutamate uptake/metabo-
lism in the hippocampus (HIPP) (Sun et al. 2015; De Vasconcellos-Bittencourt et al.
2011). For instance, a study that directly compared stress-resilient to stress-
susceptible mice displaying depressive-like behaviors indicated that enhanced
HIPP glutamate expression was unique to depression-susceptible mice (Sun et al.
2015). Other studies showed a reduced chronic stress-related glutamate receptor
expression in the medial prefrontal cortex (mPFC), which according to the authors,
might represent a potential protective mechanism against excessive glutamate sig-
naling and excitotoxicity in this brain region (Jett et al. 2017; Yuen et al. 2012).

Changes in glutamate receptors have also been observed in chronic stress-induced
animal depression models. Several studies using animal models of depression
reported that the chronic stress effects on dendritic remodeling were blocked by
N-methyl-D-aspartate (NMDA) receptor antagonists (Popoli et al. 2012).
Concerning changes in metabotropic glutamate receptors (mGluR) due to chronic
stress conditions, Nasca et al. (2015b) identified mGluR2 as one of the biomarkers of
stress susceptibility.

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic
receptors are also involved in stress-induced depression pathophysiology (Faye
et al. 2018). For instance, Freudenberg et al. (2015) reported changes in AMPAR
gene expression, especially those regulating synthesis of the GluR1 subunit proteins.
Studies have shown that the non-specific deletion of the GluR1-containing
AMPARs in forebrain neurons reduced immobility in the forced swimming and
tail suspension tests while increasing the time animals spent in the open arms in the
elevated plus-maze test (model used to assess anxiety-related behavior in rodents).

66 G. Z. Réus et al.



Increased animal entries in the center during the open field test model and the light
compartment during the light-dark box test (another paradigm for assessing anxiety-
related behavior in rodents) were also observed. Altogether, these findings strongly
indicate AMPARs role in reducing depressive and anxiety symptoms (Fitzgerald
et al. 2010; Maksimovic et al. 2014).

3.1.2 Anxiety Disorders

Anxiety disorders are among the most prevalent and disabling mental health ill-
nesses (Erickson et al. 2009). They usually begin during childhood, resulting in
significant suffering and disability, mainly due to their chronic and recurrent lifetime
course (Kalin 2020). Anxiety disorders typically manifest as excessive fear and an
increase in avoidance behaviors, often in response to a specific object or situation
and usually in the absence of an actual danger (Shin and Liberzon 2010). Several
interrelated limbic structures represent the anatomic core of fear and anxiety,
consisting of specific nuclei of the amygdaloid complex, the septo-HIPP system,
the periaqueductal gray matter, and certain areas within the hypothalamus (Deutch
and Charney 1996). These brain structures serve to evaluate the extent to which
environmental situations are threatening to the individual. At the same time, they
contribute to establishing the appropriate patterns of behaviors associated with
personal defense mechanisms (Millan 2003).

Several lines of evidence suggest that glutamatergic neurotransmission within the
limbic system plays a pivotal role in the pathogenesis of anxiety disorders (Garakani
et al. 2006; Vaquero-Lorenzo et al. 2009). Studies have consistently indicated that
acute glutamate receptor-mediated activation, by either GABA disinhibition or CRF
excitation, induces long-term synaptic plasticity and increases the excitability of
basolateral amygdala (BLA) neurons (Sajdyk and Gehlert 2000; Shekhar et al.
2003). Lowery-Gionta et al. (2018) demonstrated that chronic stress dysregulated
the BLA-PFC circuit by altering presynaptic glutamate release from BLA projec-
tions, suggesting this interaction as a potential mechanism of stress-induced anxiety.
An interplay between the brain-derived neurotrophic factor (BDNF) and glutamate
release in the pathophysiology of stress-induced anxiety was suggested by Chiba
et al. (2012). They showed that BDNF-induced glutamate release was attenuated by
exposure to chronic restraint stress, an animal model typically associated with stress-
induced anxiety.

3.1.3 Substance Use Disorders

Substance use disorders (SUD) are predominantly chronic disorders characterized by
a compulsion to use lawful or illegal substances, loss of control over their consump-
tion, and continuous abuse despite adverse somatic and psychological consequences
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(Cadet and Bisagno 2013). Chronic substance use is associated with
neuroadaptations in brain reward pathways, which produce secondary psychiatric
symptoms during acute and protracted drug-withdrawal states (McEwen 2000).
These alterations primarily involve glutamatergic neuronal networks and manifest
as increased emotional distress (Koob and Le Moal 1997; Sinha 2001), intensive
craving symptoms, cognitive deficits, and maladaptive behaviors such as increased
drug-seeking and extended substance use (Abé et al. 2013; Ernst and Chang 2008;
O’Neill et al. 2015).

Animal models of stress and substance abuse reveal that previous exposure to
stress increases the susceptibility of animals to the behavioral effects of
psychostimulants and opioids and promotes drug self-administration (Esparza
et al. 2012; Garcia-Keller et al. 2013). Studies have consistently suggested that
regions with glutamatergic projections to the nucleus accumbens (NAc), such as
the PFC, amygdala (AMG), and HIPP, may contribute to the effects of stress on
behaviors related to substance use (Belujon and Grace 2011; Bagot et al. 2015).
Kalivas (2007) reported that drug-seeking behaviors might be associated with a
significant release of presynaptic glutamate from the PFC projections to the NAc,
resulting in upregulation of postsynaptic AMPARs and downregulation of presyn-
aptic mGluR2/3. Moreover, brain imaging studies using magnetic resonance spec-
troscopy to compare addicted individuals with controls have reported lower brain
glutamate or Glx (glutamate+glutamine) levels in the mPFC and posterior cingulate
cortex (PCC) (Zhang and Volkow 2019).

Studies in animal models of stress-related drug-seeking/use involve a complex
interplay between several neurotransmitter systems. For instance, the effects of
footshock stress on cocaine responding depended on glutamate release from dorsal
PFC to NAc core projections (McFarland et al. 2004) and corticotropin-release
factor signaling from the ventral tegmental area (VTA) (Wang et al. 2005; Williams
et al. 2014), ultimately leading to an increase in the dopamine neurotransmission
within NAc (Wise 2009). Along the same lines, Campioni et al. (2009) demonstrated
that cold-water forced-swim stress altered the AMPAR/NMDAR ratio in the NAc
shell, an effect that was reversed with the glucocorticoid receptor antagonist RU486.
Moreover, noradrenergic signaling via alpha2 and beta2 receptors located in the
dorsal bed nucleus of the stria terminalis was found to modulate glutamate trans-
mission via alpha2-adrenergic receptors (Egli et al. 2005).

Taking into account all aforementioned findings, we agree with the suggestion
provided by Greenwald that a direct pharmacological approach to the treatment of
stress-related substance use by solely modulating the glutamatergic system might be
challenging, as the significant interaction between glutamate and other neurotrans-
mitters must be taken into account when designing future effective treatments for
SUD (Greenwald 2018) (see Fig. 3.1).
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3.1.4 Somatization Disorders

Somatization disorders (SD) are characterized by chronic, medically unexplained,
treatment-resistant symptoms, usually induced by severe or prolonged psychological
distress. They are often associated with chronic physical pain, fatigue, and a sense of
discomfort (Lipowski 1988). Symptoms are typically multiple and vague and may
refer to single or several body systems, such as the cardiopulmonary, gastrointesti-
nal, genitourinary, and musculoskeletal (Servan-Schreiber et al. 2000). Like other
psychiatric conditions, somatization disorders result from the interplay between
genetic factors, life events, and demographic variables such as ethnicity, education,
and sex (Kirmayer and Young 1998).

It is widely acknowledged that stressful life events might precipitate a specific SD
(Mai 2004). Craig et al. (1994) showed that during 38 weeks before the onset of
symptoms, somatizers were more likely to have experienced at least one stressful

Fig. 3.1 Major neurochemical pathways integrating and underlying stress-potentiated drug-seek-
ing/use behaviors. Glutamatergic neuronal pathways from the mPFC to other brain regions impli-
cated in drug reward and addiction are highlighted in green [from Greenwald (2018)]
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event. Moreover, studies have consistently reported that SD may be triggered by a
traumatic childhood experience such as maternal deprivation, suggesting that both
adverse relationships with significant others during childhood and personality traits
might predispose an individual to develop SD during adolescence or adulthood
(Henker et al. 2019; Lehmkuhl 2013).

There are currently only a few studies reporting on the involvement of the
glutamatergic system in the pathophysiology of SD. One of these is a study by
Fayed et al. (2012), which demonstrated a significant increase in the levels of Glx, a
combined measure of glutamate (Glu) and glutamine (Gln), in fibromyalgia and, to a
lesser extent, in SD, compared with controls. Other studies have shown that the
changes in Gln levels in the posterior insula (Harris et al. 2009), left HIPP (Valdés
et al. 2010), and anterior cingulate cortex (ACC) (Mullins et al. 2005) were highly
correlated with the perceived intensity of pain (Fayed et al. 2012). Moreover,
glutamate has also been implicated in chronic pain sensitization and potentiation
(Dickenson et al. 2002).

Finally, Peterlik et al. (2017a) demonstrated that exposure to a chronic psycho-
social stressor led to inhibition of mGluR5, suggesting that this receptor could be
involved in the pathophysiology of SD and might be considered a potential target
when developing novel glutamate-based treatments for these increasingly prevalent
disorders.

3.1.5 Post-traumatic Stress Disorder

Post-traumatic stress disorder (PTSD) is a chronic, debilitating psychiatric disorder
that can develop after exposure to highly stressful and traumatic experiences
(Friedman et al. 2007; Hollifield et al. 2002). Several neuroimaging studies showed
functional and structural anatomical changes in patients with PTSD, mainly in the
prefrontal subregions such as ACC, orbitofrontal, and subcallosal cortex (Lanius
et al. 2002), and their afferent and efferent glutamatergic projections (Moghaddam
2002). Alterations in glutamate neurotransmission have also been implicated in
morphological gray matter changes, mainly caused by significant elevations in
extrasynaptic glutamate due to excessive glial loss, leading eventually to
glutamate-induced excitotoxicity (Kassem et al. 2013).

Studies have shown that HIPP atrophy plays a significant role in the neurobiology
of PTSD (McEwen 2007; Woon et al. 2010) and might be partly caused by stress-
induced glutamate excitotoxicity, leading to neuronal injury and loss, manifested as
re-experiencing of traumatic events, and deficits in memory and attention (Rosso
et al. 2017). Rosso et al. (2017) reported that both glutamate and the neuron marker
N-acetyl aspartate (NAA) were significantly increased in the right HIPP of PTSD
patients compared to controls. They also noted that these changes proportionally
correlated with the severity of re-experiencing symptoms (Rosso et al. 2017).

Concerning mGluR role in PTSD, several studies demonstrated that mGluR5
activity underlies stress-induced fear conditioning (Tronson et al. 2010) and that
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antagonism of mGluR5 blocks the acquisition and expression of a conditioned fear
response (Schulz et al. 2001). Multiple findings from acute stress and PTSD studies
strongly emphasize the importance of mGluR5 and glucocorticoid system interac-
tions in the neurobiology of both acute stress disorder (ASD) and PTSD. Interest-
ingly, while the results from the acute stress studies showed a decrease in the number
of mGluR5 and upregulation of the glucocorticoid system, upregulation of mGluR5
and reduction in glucocorticoid signaling was noted in individuals with PTSD
(Holmes et al. 2017).

Finally, several studies observed a significant association between glutamate
decarboxylase 1 (GAD1) gene polymorphisms (the gene encoding enzyme for
catalyzing the production of gamma-aminobutyric acid from L-glutamic acid) and
increased severity of PTSD symptoms in combat Veterans, implying that this
association may represent a shared genetic risk factor (Haxhibeqiri et al. 2019;
Bountress et al. 2017).

3.1.6 Schizophrenia

Schizophrenia is a complex multifactorial disorder that manifests through positive,
negative, and cognitive symptoms. It is hypothesized that it develops due to the
interaction between genetics and environmental stressors (Mizrahi et al. 2014).
Initial insights on the implication of glutamate and NMDAR in the neurobiology
of schizophrenia stem from the similarity between symptoms observed in individuals
during the acute schizophrenic episode and psychosis induced by Phencyclidine
(PCP), a non-competitive NMDAR antagonist (Toriumi et al. 2016).

Dickenson et al. (2002) reported that stress-induced changes in the glutamatergic
neurotransmission might be involved in the pathogenesis of schizophrenia. Multiple
studies have shown that the region most commonly affected is the HIPP, which
exhibits reduced NMDAR expression in individuals with schizophrenia (Beneyto
et al. 2007; Vrajová et al. 2010). Moreover, Réus et al. (2017) reported on the
adverse effects of Ketamine, an antagonist of NMDAR, which increased the levels
of oxidative stress in an animal model of schizophrenia.

Studies have also shown a relationship between AMPARs activity and symptoms
of schizophrenia. AMPARs are responsible for fast glutamate transmission, neuronal
circuit remodeling, and higher-order cognitive functions such as learning and mem-
ory. Lin and Lane demonstrated that abnormalities in AMPAR trafficking might
contribute to cognitive impairments observed in patients with schizophrenia (Lin and
Lane 2019).

A study by Fell et al. (2008) was one of the first to report on the role of mGluR2 in
the downregulation of excessive dopamine release in an animal model of schizo-
phrenia. Similarly, Patil et al. demonstrated that an mGluR2/3 agonist, which down-
regulates disinhibited glutamate release, exhibited antipsychotic properties (Patil
et al. 2007).
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Several neuroimaging studies also demonstrated that the glutamate levels in the
ACC were higher in patients with schizophrenia when compared with healthy
individuals (Demjaha et al. 2014; Mouchlianitis et al. 2016). However, other studies
found no difference in glutamate concentrations between chronic schizophrenia
patients and control subjects (Bustillo et al. 2011; Kraguljac et al. 2012). Studies
have also linked alterations in glutamate/glutamine levels to the development of
schizophrenia (Egerton et al. 2012; Kumar et al. 2020). Along the same lines,
Kraguljac et al. (2012) showed higher medial-frontal glutamate/glutamine levels in
high-risk subjects, while Egerton et al. (2012) found higher levels of glutamate and
Glx (a combined measure of glutamate and glutamine) in the ACC of symptomatic
patients with schizophrenia compared to those in remission.

3.1.7 Neurodegenerative Disorders

Neurodegenerative disorders are illnesses caused by progressive loss of neurons,
which contrasts with static neuronal death in severe metabolic disorders and intox-
ication (Grimm and Eckert 2017).

Multiple studies have reported the negative impact of stress on the aging process
and progressions of neurodegenerative diseases, such as Alzheimer’s disease
(AD) and Parkinson’s disease (PD) (Pardon and Rattray 2008; Peña-Bautista et al.
2020). Concerning AD, Tsolaki et al. (2010) noted that most patients with AD
typically present with a history of multiple stressful events, such as problems due
to lack of money, or the death of a spouse or a partner, before the onset of dementia.
The same applies to PD, as stressful life events, such as divorce, death of a child, or
long-term unemployment, may precipitate its development (Hemmerle et al. 2012).
Gibberd and Simmonds (1980) demonstrated that prisoners of war had a much
higher incident rate of PD development, 35 years after release from prison, than
controls. Along the same lines, emotional stress can transiently increase motor
symptoms in patients with PD (Macht et al. 2007).

Studies have shown that early-life stress can also increase the vulnerability to
neurodegenerative disorders, leading to alterations in neuronal morphology and
dysregulation of neurotransmitters systems (Desplats et al. 2020). For instance,
Barros et al. (2006) reported that specifically adult males born to stressed mothers
showed a reduction in dendritic arborization, while Berger et al. (2002) demon-
strated that the same changes were accompanied by an increase in ionotropic and
metabotropic glutamate receptors in specific brain structures, such as the frontal
cortex (FC), HIPP, and striatum. An increased concentration of vesicular glutamate
transporters type 1 (vGluT1) has also been observed in the FC and HIPP of
prenatally stressed rats (Adrover et al. 2015).

Considering PD, Castro and Zigmond (2001) reported on the effects of glutamate
on substantia nigra pars compacta of laboratory animals, resulting in the increased
striatal release of dopamine during stress exposure and enhanced vulnerability of
neurons to future neurotoxic events within the nigrostriatal pathway. In humans,
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Mironova et al. (2018) showed that the concentration of serum glutamate in PD
patients was higher than in healthy subjects, while Mellone et al. (2015) noted that
the number of GluN2A subunits and GluN2A/GluN2B subunit ratio of NMDARs
were increased in PD patients in comparison to controls.

In conclusion, the results of these and other studies strongly support the role of
chronic stress in the initiation and progression of major neurodegenerative disorders
such as AD and PD.

3.1.8 Suicidality

Suicide is a significant public health concern and a leading cause of death in most
societies, claiming the lives of over 800,000 individuals annually (World Health
Organization 2017). It is the second leading cause of death among the youth
population and the seventeenth leading cause of death overall (Bernstein et al.
2013). Moreover, it is a complex and heterogeneous phenomenon associated with
multiple factors, such as individual psychopathology, personality traits, early-life
adversity, and chronic stressful life events (Lutz et al. 2017).

A growing body of evidence suggests an involvement of the glutamatergic
neurotransmitter system in suicidal behavior (Bernstein et al. 2013), serving as a
mediator between suicidal vulnerability and external stressors (Courtet et al. 2016).
The stress-induced suicide hypothesis is based on the notion that a systemic low
inflammatory state induced by chronic stress promotes HPA axis dysregulation and
activates the kynurenine pathway that degrades the tryptophan, thus increasing
neuroactive excitotoxic metabolite quinolinic acid (Courtet et al. 2016; Schwarcz
et al. 2012). Subsequently, through activation of NMDAR containing the combina-
tion of NR1 + NR2A and the NR1 + NR2B subunits, quinolinic acid induces
neurotoxicity of neurons located within the HIPP, striatum, and neocortex (Prado
De Carvalho et al. 1996). Guillemin (2012) has shown that quinolinic acid increased
glutamate release from neurons, inhibited its uptake by astrocytes, and reduced the
activity of astroglial glutamine synthetase.

Concerning mGluRs, Sequeira et al. (2009) reported a decrease in mGluR3
receptors in the PFC of people who died by suicide than healthy subjects. An
increase in mGluR1, 2, and 3 receptor gene expression was noted in the ACC of
suicidal patients with depression, while ionotropic glutamate receptor kainate type
subunit 1 (GRIK1) gene expression was significantly enhanced in suicide completers
compared to controls, especially if present in the region of the ACC (Zhao et al.
2018). As for AMPARs, upregulation in the caudate (Thomas Noga et al. 1997) and
lower AMPA GRIA3 gene expression in the PFC (Sequeira et al. 2009) were the
main findings of suicidal behavior.

In contrast, several studies found no differences between suicide victims and
controls regarding glutamate levels in forebrain areas and neocortical tissues (Korpi
et al. 1988; Palmer et al. 1994). In contrast, alterations in the glutamate-glutamine
cycle were observed by Sequeira et al. (Sequeira et al. 2009). The authors noted a
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significant downregulation of the glutamine synthetase (an enzyme involved in
several metabolic pathways in the brain, including the glutamine-glutamate-GABA
cycle and brain ammonia detoxification) in areas of PFC and HIPP of depressed
patients with suicidal tendencies. Glutamine synthetase (GS) was also significantly
less expressed in patients with schizophrenia, who died from suicide compared to
those who died from other causes (Kim et al. 2007). Finally, Kim et al. (2007)
demonstrated that GS expressed in glial cells was increased in the mediodorsal
thalamus, dorsolateral prefrontal, and orbitofrontal cortex of suicide victims with
schizophrenia, suggesting that cerebral GS deficit might serve as an indicator of a
future suicidal behavior (Jimenez-Trevino et al. 2020).

3.1.9 Chronic Physical Health Conditions

The prevalence of chronic diseases is increasing exponentially, advancing globally
and pervading all socioeconomic classes (Petersen 2000). According to the latest
report by the World Health Organization (WHO) (World Health Organization 2017),
the most prevalent chronic diseases like cardiovascular diseases, cancer, chronic
obstructive pulmonary disease, and type two diabetes mellitus (T2DM) are sharing
similar and preventable biological risk factors, notably high blood pressure,
increased levels of blood cholesterol and glucose, and obesity. An unhealthy diet,
poor nutrition, physical inactivity, smoking, excessive alcohol use, and psychosocial
stress are considered the most significant behavioral risk factors (Hathaway 2018).
Recently, several epidemiological studies have demonstrated that constant life
pressure typical for modern societies is one of the most important contributors to
the onset of a specific chronic disease, such as T2DM and various cardiovascular
diseases (Krantz et al. 2000; Paradies 2006).

It is common knowledge that stressful events may affect the onset and overall
metabolic control in patients with DM (Mishra et al. 2020). Moreover, stress-related
factors, such as stressful events at work, traumatic life experiences, depression, and
other mental health problems, can independently be responsible for developing DM
(Kelly and Ismail 2015).

Glutamatergic neurotransmission plays a critical role in human cortical synaptic
plasticity, learning, and memory (Huang et al. 2007) and is often affected in type one
(T1DM) and T2DM (Trudeau et al. 2004). Experiments in non-obese diabetic mice
suggested that upregulation of NMDAR is associated with the early stages of DM
(Trudeau et al. 2004). Andersen et al. (2017) demonstrated a specific HIPP impair-
ment in glutamate and glutamine metabolism in one of the most widely used T2DM
mouse models (db/db mouse). Liu et al. (2019a) showed that higher levels of
glutamate and lower levels of glutamine in plasma were associated with an increased
risk of T2DM. Along the same lines, Fried et al. (2019) observed that disruption of
glutamine metabolism occurs already in prediabetic individuals, manifested by
lower levels of glutamine and a lower glutamine/glutamate ratio in cortical regions.
Finally, a study by Wiegers et al. (2019) reported that glutamate levels were higher
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in the brains of participants with T1DM compared to non-diabetic controls and
suggested that glutamate might potentially serve as an early biomarker of
hyperglycemia-induced cerebral complications of T1DM (Wiegers et al. 2019)
(see Fig. 3.2).

Altogether, these findings strongly indicate that glucose intolerance in the early
stage of disease might be related to a disruption of glutamine metabolism and
glutamatergic neurotransmission.

In conclusion, while results from past and recent epidemiological studies did
establish a more or less direct relationship between chronic stress and occurrence of
major somatic illnesses, future investigations will need to shift focus toward iden-
tifying interactions between neuronal networks implicated in the neurobiology of
chronic stress on one side, and affected body organs on the other side, thus paving
the way for replacement of current symptomatic treatment interventions, with much
more effective and sophisticated modalities that will prevent the onset of chronic
physical health conditions.

3.2 Role of Glutamatergic Neurotransmission in Chronic
Stress Response

3.2.1 Role of NMDAR, AMPAR, and mGluRs
in the Pathophysiology of Chronic Stress

Chronic stress is associated with mental health conditions such as anxiety and
depression, which are increasingly prevalent and dramatically impact global health
and the economy (De Kloet et al. 2005). Several neurotransmitter systems are

Fig. 3.2 Cerebral glutamate
levels in participants with
T1DM and non-diabetic
(ND) controls. Cerebral
glutamate levels were
significantly higher
( p < 0.01 T1DM vs. ND
controls) in individuals with
T1DM than ND controls.
Group means are depicted in
black circles; impaired
awareness of hypoglycemia
(IAH); normal awareness of
hypoglycemia (NAH) [from
Wiegers et al. (2019)]
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implicated in the pathophysiology of the human stress response; one of them is
glutamatergic. The neurotransmitter glutamate exerts its effects through cell surface
receptors. In mammals, four families of glutamate receptors have been identified:
(1) α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA); (2) kainate
or kainic acid receptors (KARs); (3) N-methyl-D-aspartate (NMDA); and
(4) metabotropic receptors (mGluR), which are coupled to the G- protein (classified
1–8).

Research studies have consistently shown the involvement of glutamatergic
receptors, including ionotropic (iGluR), AMPAR and NMDAR, and mGluR, in
the neurobiology of animal models of chronic stress. While most studies previously
focused on the role of iGluR on the chronic stress response, recently, the scientific
community’s attention shifted toward mGluR. For instance, a study by Peterlik et al.
reported downregulation of mGluR7 in the PFC after exposure to chronic psycho-
social stressors induced by subordinate colony housing during 19 days. They also
demonstrated that mGluR7 deficiency reduced behavioral symptoms of anxiety and
immune system changes caused by chronic stress (Peterlik et al. 2017b). The same
research group showed that the blockage of mGluR5 mitigated maladaptive chronic
stress consequences (Peterlik et al. 2017a). Others also investigated mGluR role in
the regulation of synaptic plasticity during chronic exposure to stressful situations.
Indeed, Li et al. recently reported that behavioral alterations due to chronic stress
were associated with an upregulation of the Homer1 (Homer1 is a postsynaptic
scaffolding protein located in the postsynaptic density, which prominently links
group one (I) mGluRs to its downstream targets)-mGluR5 signaling pathway
(Li et al. 2019; De Bartolomeis and Tomasetti 2012). Interestingly, Sengupta and
Chattarji (Sengupta et al. 2016) demonstrated that repeated chronic exposure to
stress, rather than a single stressful experience, is required to induce HIPP changes
mediated by mGluRs.

The interplay between external stress and illicit substance use is a well-
established phenomenon. Indeed, a study demonstrated that GluA2 knock-in mice
(mice with a mutation of K882 within the intracellular C terminus of the GluA2
subunit of the AMPAR) exhibited an increased stress response following cocaine
self-administration (Ellis et al. 2017). Along the same lines, the disruption of GluA2
phosphorylation increased the vulnerability of mice to stress-induced reinstatement
of cocaine-seeking and cocaine-conditioned reward behaviors (Ellis et al. 2017).

Multiple studies have shown that glutamate receptor modulators could positively
affect behavioral, physiological, and molecular changes induced by chronic stress
(Mishra et al. 2021; Réus et al. 2012). For example, Memantine, an antagonist of
NMDAR approved for AD treatment, exerted an antidepressant-like effect by
preventing HIPP mitochondrial dysfunction and stress-induced memory impairment
in the rats subjected to chronic unpredictable stress (CUS) (Mishra et al. 2021).
Along the same lines, Réus et al. (2012) demonstrated that Memantine reversed
anhedonia and the increase of adrenal gland weight induced by chronic mild stress
(CMS), normalized corticosterone levels, and increased BDNF levels in the PFC.
Classical antidepressants can also restore a decrease in 2A and 2B subunits of the
NMDAR within the FC induced by CMS (Martín-Hernández et al. 2019). Ketamine,
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an NMDAR antagonist with antidepressant properties, has also proven effective in
abolishing chronic stress responses in laboratory animals. Indeed, in rats submitted
to CMS, subanesthetic Ketamine doses reversed behavioral changes regulated by the
hypothalamic-pituitary-adrenal (HPA) axis and promoted antioxidant effects in
chronically stressed rats (Maciel et al. 2018; Garcia et al. 2009). Pałucha-Poniewiera
et al. (2021) reported that administration of an mGluR2/3 receptor antagonist,
LY341495, induced similar antidepressant-like effects in the CUS model. Moreover,
its combination with Ketamine showed synergistic effects, probably due to sharing
of a similar mechanism of action, through the activation of mammalian target of
rapamycin (mTOR) pathway (Pałucha-Poniewiera et al. 2021). Finally, in a study by
Blien et al., administration of another amino acid, methionine, usually decreased in
patients with depression, resulted in increased animal resilience to chronic stress and
rescued social avoidance behaviors through an epigenetic mechanism involving
histone methylation of cortical NMDAR (Bilen et al. 2020).

3.2.2 Role of Excitatory Amino Acid Transporters in Chronic
Stress

Excitatory amino acid transporters (EAATs) encompass a class of five transporters
EAAT1, EAAT2, EAAT3, EAAT4, and EAAT5 (Malik and Willnow 2019),
expressed in neurons and glial cells. EAATs, like glutamate receptors, play an
essential role in regulating synaptic plasticity and neurotransmission. Together
with ionotropic and metabotropic receptors, they are considered molecular targets
for developing novel glutamatergic treatments for central nervous system (CNS)
disorders (Bunch et al. 2009). As transmembrane proteins, they continuously recycle
glutamate released into the synapse back into presynaptic neurons, thus preventing
neurotoxicity and the death of neurons and enabling their undisrupted activity and
survival (Malik and Willnow 2019). EAAT1 and EAAT2 are the most extensively
studied glutamate transporters. Their dysfunction is linked to the etiologies of
numerous psychiatric disorders, including schizophrenia (Parkin et al. 2018; Spencer
and Kalivas 2017; O’Donovan et al. 2017).

The role of EAATs in the neurobiology of chronic stress has been consistently
reported. For instance, in an animal experiment, rats subjected to CMS had a lower
expression of EAAT1 and EAAT4 in the FC, which was restored after the treatment
with antidepressant drugs (Martín-Hernández et al. 2019). Along the same lines,
increased EAAT2 mRNA and protein expression in the HIPP was found in rats
subjected to chronic restraint stress; however, their subsequent treatment with an
antidepressant Tianeptine completely reversed the changes (Reagan et al. 2004).
Fontella et al. (2004) demonstrated that repeated restraint stress for 40 days aug-
mented neuronal presynaptic glutamate uptake and basal and K+-stimulated gluta-
mate release when measured 24 h after the last stress session. In rats with an anxious
phenotype subjected to CMS, a decrease in EAAT1 expression in the HIPP was also
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noted (Réus et al. 2015a). Administration of subanesthetic doses of Ketamine to rats
exposed to CUS upregulated the expression of EAAT2 and EAAT3, reduced the
concentration of extracellular glutamate in the HIPP, and decreased depressive-like
behaviors (Zhu et al. 2017). Using the same animal model, Yu et al. (2019) showed
that downregulated astroglial EAAT2 inhibited synaptic plasticity in the dentate
gyrus of the HIPP simply by reducing glutamate metabolism. A study in mice
exposed to CUS revealed lower protein levels of EAAT1 and EAAT2 in the PFC
(Liu et al. 2019b). Interestingly, these changes were entirely restored following
treatment with an SSRI antidepressant Fluoxetine and Xiaoyaosan (a Chinese herbal
formula with potential antidepressant properties) (Fig. 3.3) (Liu et al. 2019b).

3.2.3 Glutamate Role in Animal Models of Chronic
Stress-Induced Depression

3.2.3.1 Glutamate Role in Chronic Mild Stress Animal Model

Mental disorders (e.g., depression, anxiety) are often triggered by exposure to
stressful events. Therefore, to gain insights into their etiology, several animal models
relying on exposure to stress have been developed. These paradigms typically lead to
changes in emotional behaviors reminiscent of a depressive or anxious phenotype,
including anhedonia, despair, fear, lack of motivation, or social anxiety.
Glutamatergic alterations have been observed in human studies of various stress-
related disorders and behaviors, including depression, panic disorder, PTSD, and
trait anxiety. Some of these findings have been reproduced in rodent models of
stress-induced emotional disturbances (see Page and Coutellier (2019) for a review),
and proteomic analyses combining animal models of depression and post-mortem
tissue specimens obtained from depressed patients altogether support the appropri-
ateness of animal models to study chronic stress-induced psychiatric disorders
(Carboni et al. 2016). Even though certain controversies regarding the use of
behavioral tests in rodents to assess, for instance, their level of “depressive” behavior
(Reardon 2019), have recently emerged, most findings based on rodent models of
stress still support their translational value. The effects of acute stress on glutamate
neurotransmission have been well documented, specifically in brain regions regu-
lating mood and emotions like the PFC and the HIPP. Experimental evidence from
animal studies mainly supports a rapid increase in glutamate release in response to
acute stress (see Popoli et al. (2012) for a review).

In comparison, the effects of chronic mild stress (CMS) on glutamatergic neuro-
transmission are less clear. Still, several research studies suggest an opposite impact
than that observed after exposure to acute stress models (Musazzi et al. 2015). In
addition, differences in chronic stress protocols contribute to variability in results;
other factors such as age at exposure to stress and sex also explain differences in
findings.
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CMS and Glutamate Neurobiology

The most common rats and mice CMS paradigm is the chronic unpredictable mild
stress (CUMS) protocol. CUMS is widely used in adult rodent models to induce
anxiety- and depressive-like phenotype and assess the physiological and neurochem-
ical correlates of these behavioral changes. This paradigm consists of daily exposure
to alternating mild stressors over several weeks. It consistently results in weight loss,

Fig. 3.3 Effects of chronic stress on the glutamatergic system. Chronic stress increases glutamate
(Glu) neurotransmission, decreases the concentration of EAAT in the astrocytes, and leads to
excessive microglial activation followed by the release of cytokines and other inflammatory
mediators. These mechanisms mediated by iGluR and mGluRs further increase reactive oxygen
(ROS) and nitrogen species (RNS), promote mitochondrial dysfunctions and decrease BDNF. In
contrast, NMDA antagonists, Ketamine and Memantine, and mGluRs modulators (LY341495 and
LY487379) reduce oxidative stress and increase BDNF levels, promoting neuronal synaptic
plasticity changes leading to sustained antidepressant effects. Images were extracted from the
Biorender app
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anhedonia, disrupted sleep patterns, reduced locomotor activity, and decreased
motivation, all reminiscent of various aspects of depression (Willner 2017).
Metabolomic analyses identified that the metabolites altered by CUMS are mainly
involved in the glutamine-glutamate metabolic system (Ni et al. 2008; Xu et al.
2020). These findings were additionally verified by direct measures of glutamate/
glutamine levels in the HIPP and PFC (using 1H magnetic resonance spectroscopy
or high-performance liquid chromatography-mass spectrometry analysis). Gluta-
mate levels are primarily increased by CUMS, while glutamine levels are decreased
(Chen et al. 2019a; Ding et al. 2017). The increase in glutamate is likely due to
abnormal glial functions (Banasr et al. 2010) and reduced reuptake of glutamate,
evidenced by reduced EAAT 1 and 2 (Liu et al. 2019b; Ding et al. 2017). Altogether,
the main findings point toward increased glutamatergic signaling induced by CUMS
through an increase in glutamate release and a reduction in synaptic clearance (Hill
et al. 2012) (see Fig. 3.4).

CUMS-induced changes at the level of glutamatergic postsynaptic receptors are
less clear. For example, in the PFC, CUMS reduced levels of GluN2B subunits of
NMDAR (Guo et al. 2016). Jiang et al. observed a decrease of GluN2A subunits in
the HIPP (Jiang et al. 2019), while another group reported opposite results
(Calabrese et al. 2012). The whole HIPP vs. ventral HIPP level of analysis might
explain this discrepancy in findings. GluN1 and GluN2B subunits are consistently
found to be increased in the HIPP after CUMS exposure (Jiang et al. 2019; Calabrese
et al. 2012), while a lack of phosphorylation of the GluN2B subunit in the HIPP after
CUMS has been related to the cognitive deficits observed after CUMS (Calabrese
et al. 2017).

Changes in AMPARs have also been studied in the HIPP. The AMPAR GluR1
subunit is decreased by CUMS (Gao et al. 2017; Xiao et al. 2019), while AMPAR
GluR2 and GluR3 are increased (Lin et al. 2018a).

CMS and Drug Treatment

Pharmacological interventions targeting glutamatergic transmission further validate
the role of CMS-induced changes on glutamatergic receptors expression and their
contribution to CMS-induced depressive- and anxiety-like behaviors. Activation of
AMPARs using an AMPAR potentiator, or drugs that reverse the decrease in GluR1
expression induced by CUMS, reversed some aspects of depressive-like behaviors in
mice (e.g., weight loss, immobility in the forced-swim test) (Xiao et al. 2019; Farley
et al. 2010). Similarly, drugs that normalize NMDAR GluN2B subunit levels in the
PFC (the selective SIRT2 inhibitor 33i, or YY21) have also demonstrated antide-
pressant effects (Guo et al. 2016; Erburu et al. 2017).

Studies using NMDAR antagonists strongly support a disrupted glutamatergic
transmission in CMS-induced emotional deficits. For instance, Memantine admin-
istration reversed CMS-induced anhedonia, adrenal gland hypertrophy, and an
increase in corticosterone levels (Réus et al. 2012). Along the same lines, Ketamine,
the latest FDA-approved treatment for severe, treatment-resistant depression,
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represents the main proof-of-concept of glutamate involvement in CMS-induced
impairment in affective disorders. Several preclinical animal studies support the
rapid antidepressant properties of this drug: mice and rats exposed to CUMS and
treated with a single dose of Ketamine displayed attenuated depressive- and anxiety-
like behaviors, lasting up to 8 days post-injection. These behavioral changes
paralleled with the restoration of the CUMS-induced decrease in frequency and
amplitude of excitatory synaptic currents (EPSCs) in the PFC, including the nor-
malization of glutamate release in the HIPP (Li et al. 2011; Ma et al. 2013; Tornese
et al. 2019) (see Fig. 3.5). Unfortunately, the psychedelic side effects and high-
addiction potential associated with Ketamine limit its clinical use.

Other glutamatergic targets have also been validated for their antidepressant
properties. In that sense, antagonism of the mGluR 2/3 produced rapid and

Fig. 3.4 Accumulating evidence suggests that chronic stress significantly affects glial cell function.
Several studies have demonstrated decreases in the glial fibrillary acid protein (GFAP) expression
and the number of GFAP-expressing glial cells in the HIPP and PFC following exposure to chronic
stress. Chronic stress may also impair the ability of microglia to effectively clear synaptic glutamate
(Glu) through glial EAATs. This impairment may lead to Glu spillover, ultimately increasing
activation of extrasynaptic glutamate receptors and resulting in excitotoxicity. This paradigm has
been proposed to occur in several neurodegenerative disorders and possibly after exposure to
chronic stress. Finally, chronic stress may decrease flux rates through the glutamate-glutamine
(Gln) cycle, resulting in reduced glutamate metabolism; vGluT, vesicular glutamate transporter
[from Popoli et al. (2012)]
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long-lasting (up to 10 days) anti-anhedonia effects in CUMS-exposed rats (Dwyer
et al. 2013). At the same time, an mGluR5 negative allosteric modulation combined
with a decreased expression of the mGluR7 rescued HPA axis abnormalities and
anxiety-like behaviors induced by chronic subordinate colony housing, another
animal paradigm used to assess the effects of chronic stress (Peterlik et al. 2017a, b).

Other pharmacological targets have also been tested to rescue depressive- and
anxiety-like behaviors in CMS rodent models. Downstream effects of those com-
pounds involve changes in the glutamatergic system, although not always,
suggesting that variations in glutamatergic transmission do not solely drive emo-
tional deficits. For instance, serotonin-selective reuptake inhibitors (SSRI) antide-
pressants, affecting primarily serotonergic transmission, like Fluoxetine or
Escitalopram, rescued anhedonic, despair, and anxiety-like behaviors in
CMS-exposed rodents (Mutlu et al. 2012; Binnetoglul 2019; Dong et al. 2015),
and corrected the decrease in glutamate reuptake time in the HIPP (Binnetoglul
2019). Similarly, taurine, an amino acid with antidepressant-like effects, inhibited
anhedonia and anxiety-like behaviors in rats exposed to CUMS by simultaneously
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Fig. 3.5 Chronic unpredictable stress (CUS) exposure decreases spine density in PFC layer V
pyramidal cells: rapid reversal by Ketamine. Animals were exposed to CUS for 21 days and then
received Ketamine injections (10 mg/kg, intraperitoneal). Twenty-four hours later, slices of the PFC
were prepared for whole-cell recordings, followed by neurobiotin labeling and post hoc two-photon
microscopy image of the neurobiotin-labeled layer V pyramidal cells. Representative images are
shown of high magnification Z-stack projections of distal and proximal segments of the layer five
(V) pyramidal cell apical tuft dendrites (scale: 5 μm). The density of spines was analyzed using
Neurolucida Explorer (version 9; MBF Bioscience, Williston, Vermont), and the results are the
mean� SEM (�12 cells from four rats in each group; *p< 0.05; **p< 0.01, analysis of variance).
CUS decreased spine density of both distal and proximal segments of the apical tuft. This deficit
was entirely reversed by Ketamine treatment (bar graphs to the right of images) [from Li et al.
(2011)]
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affecting HIPP glutamate, brain monoamines, corticosterone, and neurotrophic
factor levels (Wu et al. 2017).

In contrast, Mirtazapine, a noradrenergic and serotonergic agonist, reversed
CMS-induced anhedonia and GABA deficits in the NAc in rats, without reference
to potential modulation of the glutamatergic system (Kamal 2013).

CUMS vs. Other Stress Models

CUMS paradigm is the central paradigm used in preclinical research to decipher the
underlying causes and mechanisms of stress-induced emotional dysregulations. Its
uniqueness is mainly ascribed to the “unpredictability” of the stressors used in the
protocol, which is believed to play a significant role in its effects on the brain and
behaviors. Predictable chronic stress studies further support this observation (e.g.,
5-min daily restraint over a prolonged period), revealing that such exposures provide
resilience to subsequent stressful exposures (Suo et al. 2013; Dang et al. 2019).
However, researchers also reported similarities between the CMS and chronic
restraint stress (CRS) effects on glutamatergic neurotransmissions, such as reduced
glutamatergic transmission in the central AMG (Grillo et al. 2015). Changes in
expression of the NMDAR and AMPAR subunits in the HIPP were observed in both
models (Pacheco et al. 2017). Other researchers indicated that the specific nature of
chronic stress and type of stressor could also drive behavioral and biological changes
between the two models. For instance, metabolic bioinformatic analysis of the HIPP
showed that physical stress (like learned helplessness or CUMS) is associated with
changes in lipid and glutamate metabolism. In contrast, psychological stress (like
chronic restraint or social defeat stress) mainly affects cell signaling, cellular prolif-
eration, and neurodevelopmental changes (Liu et al. 2018).

Limitations of CMS Studies

From the studies reported here, it is evident that glutamatergic transmission is
susceptible to chronic stress and drives some of the effects of chronic stress on
emotional impairments. However, the complexity of these changes makes it chal-
lenging to find pharmacotherapeutic approaches that can consistently and reliably
help in reducing symptoms of stress-related disorders like depression or anxiety. We
described above that CUMS alters glutamatergic transmission differently in the PFC
and HIPP, two brain regions directly involved in mood regulation. Other brain
regions are also implicated in emotion regulation but have been, in comparison,
poorly studied. For instance, diminished glutamatergic transmission in the ventral
part of the periaqueductal gray following a learned helplessness paradigm was
associated with despair and anhedonia in rats (Ho et al. 2018); increased transcrip-
tion of the glutamate receptor 1 (GluR1) in the lateral habenula following CUMS
was found to regulate depressive-like behaviors (Shen et al. 2019). These critical
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findings reveal the need to expand our investigation of stress-induced changes in
glutamatergic signaling to other brain regions.

The complexity of changes in glutamatergic signaling in response to chronic
stress is further complicated by other factors, including sex and age at stress
exposure. Sex is not a variable commonly included in preclinical research despite
the well-known increased risk and prevalence of stress-induced mood disorders in
women. Studies that used both males and females in their design consistently reveal
sex-specific effects. Exposure to CUMS increases glutamatergic transmission onto
GABAergic cells in the PFC of female mice but decreases GluN2B expression only
in the male PFC (Shepard and Coutellier 2018). Using the chronic social defeat
stress (CSDS) paradigm, Rappeneau et al. (2016) showed that a depressive pheno-
type is more associated with disruption of glutamatergic transmission in the females’
PFC-striatal network. These findings highlight the importance of studying the effects
of chronic stress on glutamatergic signaling and emotional impairments in both
males and females to capture sex-specific effects that could inform scientists when
developing personalized therapeutic strategies.

Finally, age at stress exposure also plays a vital role in glutamatergic transmis-
sion. For instance, mGluR1, 2/3, and 5 are particularly sensitive to prenatal chronic
stress (Lin et al. 2018b; Wang et al. 2015; Buonaguro et al. 2020), leading to
decreased glutamate release in the ventral HIPP due to reduced levels of synaptic
vesicle-related proteins (Marrocco et al. 2012, 2014).

Future Directions of CMS Studies

Finding safe and efficacious treatments for stress-related disorders like anxiety and
depression must remain a priority for the scientific community. Exposure to stress is
the leading risk factor to these psychiatric disorders providing a way to mimic their
etiology in animal models. Unfortunately, stress is not a unified concept, and its
effects on the brain and behaviors can vary not only by the stress procedure itself but
also by the biological characteristics of the subject exposed to the stress (e.g., sex,
age, estrus cycle for females, the strain of mice) (Mozhui et al. 2010; McWhirt et al.
2019). Inadequate translation from animal to human studies and FDA approval of
drugs reveals significant limitations and weaknesses in our current models. The
increased complexity of depression or anxiety pathophysiology is also likely to
contribute to overall difficulties when translating animal trial results into humans.
One way of accommodating all presented challenges, including validation of stress
paradigms across sex, age, and models by scientific community members, might be
achieved by adopting similar standards among research laboratories involved in
preclinical animal studies on chronic stress and stress-related disorders.
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3.2.3.2 Glutamate Role in Chronic Restraint Stress Animal Model

Chronic restraint stress (CRS) has been widely used to induce stress-related behavior
and morphological and hormonal changes in rodent brain areas such as the HIPP,
amygdala, PFC, and NAc (Kvetňanský and Mikulaj 1970; Buynitsky and Mostofsky
2009; Qiao et al. 2016). This animal model consists of keeping the animals in a
cylindrical or semi-cylindrical tube with ventilation holes for 120–180 min (Padovan
and Guimarães 2000; Campos et al. 2010, 2013). Seewoo et al. (2020) recently used
magnetic resonance imaging (MRI) to validate this model for the study of depres-
sion. They found that rats subjected to CRS showed hypoconnectivity within the
salience and interoceptive neuronal networks and hyperconnectivity of several brain
regions, including the cingulate cortex. Moreover, proton magnetic resonance spec-
troscopy revealed reduced HIPP volume and decreased sensorimotor cortical gluta-
mate, glutamine, and combined glutamate-glutamine levels (Seewoo et al. 2020).

Studies have used CRS to investigate the role of glutamate in certain stress-
related psychiatric disorders, such as depression and anxiety. Indeed, Li et al. (2020)
demonstrated that an initial increase in glutamate levels is essential in developing
depressive-like behavior in the CRS model. Interestingly, Sodium Valproate (a drug
that increases GABA levels in the CNS and blocks voltage-gated ion channels) and
Lamotrigine (a drug that selectively binds to sodium channels, stabilizing presyn-
aptic neuronal membranes and inhibiting glutamate release), but not Fluoxetine,
reversed the decrease in dendritic spines associated with depressive behavior
induced by CRS (Li et al. 2020). Liu et al. demonstrated that CRS increased anxiety
in stressed mice by augmenting the prefrontal excitatory transmission from
dorsomedial PFC to the BLA (Liu et al. 2020). In contrast, optogenetic stimulation
of light-sensitive proteins in the neuronal cell membrane within the same pathways
normalized glutamate release and reversed anxiety-like behavior induced by CRS
(Liu et al. 2020).

Both acute restraint stress and CRS in mice induce anxiety-like behaviors, which
are accompanied by downregulation of the ionotropic glutamatergic receptor sub-
units, such as NR2A subunit of NMDAR, and GluR1, GluR2 AMPAR subunits, but
also by a decrease in vesicular glutamate transporters 2 (VGLUT2) concentration, in
the HIPP (Zhang et al. 2019). A recent study discovered that LY487379, an mGluR2
positive allosteric modulator, reversed depressive-like behavior and electrophysio-
logical profile changes in the dentate gyrus, occurring due to glutamatergic trans-
mission alterations induced by CRS (Mango et al. 2019). Dygalo et al. used the same
model and showed that stress-induced anhedonia, a prominent symptom of depres-
sion, manifests due to changes in expression of multiple genes involved in
glutamatergic neurotransmission located in the midbrain and HIPP (Dygalo et al.
2020). Other groups also looked into the interaction between chronic ethanol use and
response to CRS. For instance, Marty et al. demonstrated that chronic intermittent
ethanol exposure dysregulated rat responses to CRS due to increased GluN2B
subunit-dependent NMDAR function (Marty et al. 2020). Along the same lines,
Carzoli et al., in their experiments, used adolescent mice, which are, as human
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adolescents, more sensitive to chronic ethanol exposure. They primarily noted long-
lasting changes in the postsynaptic neuroplasticity mediated by NMDAR in the bed
nucleus of the stria terminalis. According to the authors, those changes due to early
alcohol use may set the tone for increased stress-induced drinking “slips” during
adulthood (Carzoli et al. 2019).

3.2.3.3 Glutamate Role in Chronic Social Defeat Stress Animal Model

Chronic social defeat stress (CSDS) is a standard stress model occurring in rodents
and is often used in preclinical research of chronic stress and stress-related disorders
(Beery and Kaufer 2015). In addition, this animal model is relevant for studying the
effects of psychosocial stressors (similar to those in humans), usually associated with
low socioeconomic status and a sense of powerlessness (Lowry and Jin 2020).
Chronic social defeat protocol consists of placing an “intruder” mouse of one strain
into the cage of an aggressive “resident” mouse of a different strain (e.g., C57BL/6
intruder vs. CD-1 resident) (Toyoda 2017). The resident mouse naturally attacks the
intruder one or more times, after which the two mice are separated by a transparent
screen so that visual and auditory threats can continue until the intruder is returned to
its home cage. The paradigm is repeated for a week or more, typically resulting in the
expression of depressive-like behavior, anhedonia, and changes in the HPA axis
activity in subordinated mice (Venzala et al. 2012; Golden et al. 2011).

Mice susceptible to the above-presented protocol typically exhibit low
extrasynaptic NMDARs within the HIPP (Tse et al. 2019). Along the same lines,
susceptible but not resilient rats subjected to the CSDS paradigm displayed a
decrease in the number of the ventral nucleus of dorsal raphe (DRv) glutamatergic
neurons containing vesicular glutamate transporter type 3 (VGLUT3) in their syn-
aptic terminals (Prakash et al. 2020). Other studies also suggested the importance of
mGluRs in mediating CSDS response. For instance, knockout mice lacking mGluR2
were found to be resilient to developing corticosterone-induced escape deficits and
CSDS-induced anhedonia (Highland et al. 2019). Wagner et al. (2015) investigated
the role of Homer1 (a postsynaptic scaffolding protein that links mGluR5 to down-
stream targets) and mGluR5 in the context of the CSDS model. They demonstrated
that Homer1/mGluR5 activity moderated animal vulnerability to chronic social
stress. The same authors showed that CSDS-induced behavioral alterations could
be partially reversed by chronic treatment with an mGluR5 inverse agonist CTEP
(2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)
ethynyl)pyridine). Finally, Jiang et al. (2020) revealed that mGluR5-dependent long-
term potentiation (LTP) is involved in developing depressive-like behaviors in the
mice model of CSDS-induced depression.

Another study investigated the differences between exposure to the social
stressors used in the CSDS protocol and environmental stressors applied in the
CMS model of chronic animal stress. The main findings were that mice exposed to
CMS displayed mainly depressive-like behavior, anhedonia, and memory impair-
ment. In contrast, those exposed to SDS showed stress-induced anhedonia,
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hyperactivity, social avoidance, and anxiety (Venzala et al. 2013). In addition, the
CMS model mainly disrupted excitatory-inhibitory neurotransmission balance in the
PFC and brainstem while CSDS primarily reduced dopamine transmission within
the same brain regions (Venzala et al. 2013). Finally, Liu et al. (2018) compared
CMS and CSDS protocols through bioinformatics-driven analysis. They found that
the effects of the CMS were mainly associated with disruptions in lipid and gluta-
mate metabolism. In contrast, CSDS was more affecting cell signaling, cellular
proliferation, and neuronal development, suggesting that exposure to different
external stressors leads to stressor-specific neuronal molecular changes.

The most important limitation of the CSDS paradigm is that it poses significant
difficulties for application in female rodents and therefore cannot be used as a
universal animal model for understanding the neurobiology of human stress-related
disorders, such as anxiety and major depressive disorder, as both of them are more
commonly occurring in women than men.

3.2.3.4 Glutamate Role in Chronic Subordinate Colony Housing
Animal Model

Chronic subordinate colony housing (CSC) is an adequate rodent model of chronic
psychosocial stress. Animals exposed to this model have reduced body weight gain,
increased adrenal weight and corticosterone levels, intestinal immune activation,
long-lasting anxiety-like behavior (Nyuyki et al. 2012; Langgartner et al. 2015), and
PTSD-like symptoms (Reber et al. 2016). This animal model mimics the type of
health-compromising and disease-promoting stressors that humans potentially face
every day. It is based on the innate drive of male mice to establish a hierarchical
order within their colony. The largest male will emerge as dominant and force the
remaining mice into a subordinate position by repeated aggressive attacks and
threats, especially during the first hour of establishing social hierarchies (Reber
and Neumann 2008; Masis-Calvo et al. 2018). Data available in the literature,
although still scarce, point to the role of glutamatergic neurotransmission in this
model of chronic social stress (Peterlik et al. 2015). Indeed, Peterlik et al. (2017b)
used CSC for 19 days to investigate whether central mGluR7 is altered upon chronic
psychosocial stressor exposure and if genetic ablation of mGluR7 interferes with the
multitude of chronic stress-induced alterations. The primary study finding was that
CSC induced downregulation of mGluR7 mRNA expression in the PFC. When the
same protocol was applied to the mGluR7 deficient mice, they were less vulnerable
to CSC-induced stress, evidenced by their reduced physiological and immunological
responses (Peterlik et al. 2017b). In addition, Peterlik et al. reported on mGluR5 role
in mediating chronic psychosocial stress consequences in mice (Peterlik et al.
2017a). They demonstrated that mGluR5-deficient mice expressed less vulnerability
to the CSC protocol (Peterlik et al. 2017a). They also showed that chronic treatment
of mice with CTEP, an inverse mGluR5 agonist, prevented the occurrence of adverse
hormonal and immunological consequences caused by CSC (Peterlik et al. 2017a).
Finally, they suggested the inverse agonism of CTEP on CSC-induced upregulation
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of mGluR5 in the HIPP as a potential mechanism relevant for its stress-protective
effects (Peterlik et al. 2017a).

3.2.3.5 Glutamate Role in Rat Cumulative Allostatic Load Measure
Animal Model

Stressful situations experienced throughout life impact the physiology of the meta-
bolic, immune, and neuroendocrine systems (McEwen and Stellar 1993). Once the
stress starts to become chronic or recurrent, it is even more difficult for an organism
to maintain allostasis and reduce “allostatic load” (AL) resulting from repeated
environmental challenges (McEwen and Stellar 1993; McCreary et al. 2019). To
assess the burden of chronic stress in preclinical animal translational research more
precisely, McCreary et. (2019) recently introduced the “rat cumulative allostatic
load measure” (rCALM). The new translational assessment contains twelve bio-
markers most commonly related to stress physiology and behavior noted in rat and
mouse preclinical research studies. Interestingly, the authors suggested that rCALM
might also serve as a valuable tool for measuring the therapeutic benefit of lifestyle
interventions aiming to reduce AL (McCreary et al. 2019).

The role of glutamate neurotransmission in AL has recently gained a lot of
attention among scientific community members. Coplan et al. studied the impact
of maternal response to AL during infant rearing on the neurobiological measures of
the grown offspring. They found that mothers exposed to allostatic overload during
infant rearing showed increased levels of CRF in cerebrospinal fluid (CSF), which
was correlated with a proportional increase of CSF glutamate levels. Moreover, high
maternal CSF glutamate levels were associated with serotonin-metabolism alter-
ations in young adolescent offspring, manifested as a persistent increase in CSF
5-hydroxyindoleacetic acid (5-HIAA) concentrations (Coplan et al. 2018).

3.2.4 Glutamate Role in Oxidative and Nitrosative Cellular
Stress

Under normal physiological conditions, glutamate is essential in regulating and
modulating memory, learning, mood, and neuroplasticity. However, when in excess,
it is associated with neurotoxicity resulting in pathological processes manifested as
deficits in cognition and decreased mood. Noteworthy, glutamate-induced neuro-
toxicity occurs due to extracellular glutamate accumulation, causing an increase of
intracellular Ca2+, resulting in the excessive production of reactive oxygen species
(ROS) generated by mitochondrial dysfunction and reduction of cellular antioxidant
capacity (Schinder et al. 1996; Stanciu et al. 2000).

ROS and reactive nitrogen species (RNS) act as messengers, regulating pathways
involved in cell survival and cell death. ROS and RNS are continuously removed by
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endogenous antioxidant enzymes, such as glutathione, catalase, and superoxide
dismutase (Locatelli et al. 2003). When ROS and RNS are present in excess in the
cell, their concentrations exceed the cell’s antioxidant capacity and lead to a condi-
tion called oxidative stress (Sies 1997). Oxidative stress is associated with
microglial-mediated inflammation and the release of inflammatory mediators
(Leszek et al. 2016). This kind of microglial activation results in an oxidative
burst, which releases ROS, including superoxide anion (O2

�), hydrogen peroxide
(H2O2), the highly reactive hydroxyl radical (HO), and RNS such as nitric oxide
(NO), which could also be increased through NMDAR activated NO synthesis
(Tufekci et al. 2012; Garthwaite et al. 1989). Activated microglia and monocyte-
derived macrophages can induce glutamate excitotoxicity by extruding glutamate
into the extrasynaptic space in exchange for cystine via the cystine/glutamate
exchanger (Xc)–transporter (Kigerl et al. 2012) (see Fig. 3.1). Finally, the enhanced
immune response increases glutamate-like molecule quinolinic acid, which over-
excites astrocyte’s NMDARs, restrains glutamine synthetase (GS), a critical enzyme
in the glutamate-glutamine cycle in astrocytes keeping the stable glutamate level,
thus promoting glutamate release into extracellular space (Guillemin 2012; Chen
et al. 2019b).

In neurodegenerative diseases such as AD, oxidative stress is associated with
cellular death mediated by the glutamatergic system (Findley et al. 2019). Indeed,
soluble amyloid-beta (Aβ) stimulates an excessive ROS generation from continu-
ously activated NMDAR, leading to oxidative damage and synaptic impairment
(De Felice et al. 2007; Shelat et al. 2008). Furthermore, the increased production of
ROS and RNS and the reduction of antioxidant substances lead to neuronal cell
death in AD (Farooqui and Farooqui 2009; Melo et al. 2011).

Similarly, PD pathogenesis is associated with oxidative stress, inflammation, and
gut dysbiosis (Chen et al. 2019b). Moreover, rats exposed to the CMS protocol, an
animal model of chronic stress, combined with the 6-hydroxydopamine (6-OHDA)
model of PD, showed depressive-like behavior along with oxidative damage and
reduced antioxidant capacity in the PFC, HIPP, and striatum (Tuon et al. 2021).

Glutamatergic modulators are also capable of influencing oxidative stress param-
eters. Ketamine, for instance, potentiates oxidative stress and influences
schizophrenia-like behaviors and inflammation in response to lipopolysaccharide
(LPS) exposure in early life (Réus et al. 2017). However, when administered in
subanesthetic doses associated with antidepressant-like effects, Ketamine seems to
exert antioxidant properties. For example, in a study by Réus et al. (2015b), a single
dose of Ketamine reversed neuronal changes in adult rats caused by oxidative stress
due to early-life stressor exposure (maternal deprivation). When combined with
electroconvulsive therapy (ECT), Ketamine protected rats against oxidative damage
and the immunological response induced by ECT (Gonçalves et al. 2021). Another
NMDA antagonist, Memantine, exerted similar antidepressant properties, restored
increased neuronal nitric oxide synthase (nNOS) expression, NO levels, and super-
oxide dismutase (SOD) activity, decreased mitochondrial enzymes activity induced
by chronic stress, and upregulated stress-responsive BDNF signaling (Mishra et al.
2021) (see Fig. 3.1).
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3.2.5 Glutamate Interactions with Other Neurotransmitters
Relevant to Stress Response

3.2.5.1 Gamma-Aminobutyric Acid

Changes in glutamate as the primary excitatory and gamma-aminobutyric acid
(GABA) as the central inhibitory neurotransmitter metabolism may significantly
affect cortical excitability (Petroff 2002). Moreover, glutamate is the metabolic
precursor of GABA, which can be recycled through the tricarboxylic acid cycle to
synthesize glutamate (Petroff 2002; Bak et al. 2006).

In contrast to the mature brain, GABA shows excitatory properties in the devel-
oping brain, leading to cell membrane depolarization, increasing cytoplasmic cal-
cium, and triggering the action potential. In young neurons, glutamate can inhibit the
excitatory actions of GABA at both presynaptic and postsynaptic sites, so there is no
runaway excitation in the developing brain (Kendell et al. 2005).

Interestingly, the interaction between GABA and glutamate in a mature brain is
varying between brain regions. For example, the AMPA and NMDA-receptor
agonist infusions increased extracellular concentrations of GABA in the striatum
and the NAc (Mora et al. 2008). However, MK-801 (an NMDAR antagonist)
decreased the activity of GABAergic interneurons, resulting in an increase in
pyramidal neuron excitability in the PFC (Cohen et al. 2015).

Finally, GABA and glutamate imbalances are highly contributing to the devel-
opment of several major mental illnesses, including autism spectrum disorders
(ASD) (El-Ansary and Al-Ayadhi 2014), MDD (Kendell et al. 2005), epilepsy
(Bozzi et al. 2018), and schizophrenia (Carlsson et al. 2001).

3.2.5.2 Corticosteroids

The secretion of glucocorticoids (cortisol in humans and corticosterone in rodents) is
a typical endocrine response to stress-induced HPA axis activation (Sapolsky et al.
2000). As reviewed by Popoli et al. (2012), acute and chronic stressors trigger the
release of glucocorticoids, affecting glutamate neurotransmission in the PFC and the
HIPP in region-specific ways. For example, acute stress or corticosterone treatment
increased AMPAR and NMDAR responses to a similar extent in the PFC. In
contrast, they selectively enhanced AMPAR-mediated currents in CA1 neurons of
the HIPP. Glucocorticoids might also be responsible for mediating the effects of
stress on EAAT2 regulation (Popoli et al. 2012). A preclinical study by Zschocke
et al. (2005) showed that synthetic (dexamethasone) and natural glucocorticoids
promote glutamate uptake in cortical astrocytes by activating the transcription and
subsequent translation of the glial glutamate transporter-1 (GLT-1) gene (Zschocke
et al. 2005).

Several studies reported on the effects of glutamate on corticosteroid levels.
Indeed, Réus et al. (2012) demonstrated that Memantine normalized increased
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corticosterone levels induced by CMS. Ketamine showed similar effects and
reversed corticosterone-induced adverse changes, such as depressive-like behavior
and dysregulated neurotransmission in the DRN (Sowa et al. 2019; Camargo et al.
2020; Koike et al. 2013).

3.2.5.3 Serotonin

Serotonin (5-hydroxytryptamine) is a neurotransmitter that modulates various phys-
iological functions in the brain (e.g., stress response, food intake, mood, pain, sleep-
wakefulness, etc.) and is implicated in the etiology of several mental illnesses,
including stress-related diseases such as MDD and anxiety disorders (Sodhi and
Sanders-Bush 2004; Hamon and Blier 2013; O’Mahony et al. 2015).

The link between serotonin and depression has been described for the first time
during the 1960s under the name “serotonin hypothesis” (Cowen and Browning
2015). This hypothesis initially proposed that deregulation of serotonin pathways
and low levels of serotonin were the leading causes of depression (Cowen and
Browning 2015). “Tryptophan depletion” studies further supported this assumption
by showing mood alterations in certain people when the serotonin precursor, amino
acid tryptophan, is reduced (Cowen and Browning 2015). Practical application of
this theory in pharmaceutical drug development led to the discovery of selective
serotonin reuptake inhibitors (SSRIs), currently the most prescribed class of
antidepressants.

Low 5-HT1B receptor binding in limbic brain regions is a typical finding noted in
patients with MDD. A recent positron emission tomography (PET) study conducted
by Tiger et al. (2020) demonstrated that the reduction of depressive symptoms after
Ketamine treatment correlated inversely with the level of 5-HT1B receptor binding
in the ventral striatum at the baseline visit. An increased (although not statistically
significant) number of 5-HT1B receptors (expressed by increased 5-HT1B receptor
binding) in HIPP of 30 patients with SSRI-resistant depression compared to those on
placebo was also observed (Tiger et al. 2020). Other studies also suggested the
importance of 5-HT1B receptors in Ketamine antidepressant mechanism of action
(Murrough et al. 2011; Tiger et al. 2016; Yamamoto et al. 2013).

In their recent review of Ketamine preclinical studies, Pham and Gardier
suggested another mechanism leading to increased serotonin concentrations in the
synaptic cleft, occurring through serotonin reuptake inhibition. Indeed, they noted
that Ketamine binds to the selective 5-HT transporter (SERT), although with a much
weaker affinity when compared with the SSRIs. According to the same authors,
Ketamine also shows an affinity to other serotonergic receptors, including 5-HT1,
5-HT2, 5-HT3, and 5-HT7 (Pham and Gardier 2019).

Wang et al. (2019) reported about the Dual Serotonin-Glutamate Neurons within
the DRN providing significant input to VTA, a region widely implicated in the
brain’s drug and natural reward circuitry. These serotonergic neurons also
coexpressed vesicular glutamate transporter 3 (a transporter responsible for the
accumulation of glutamate into synaptic vesicles), suggesting their role in increasing
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mesoaccumbenal dopamine, thus affecting various reward-related processes. Several
authors demonstrated that 5-HT2A receptors and mGluR2 could also assemble into a
functional heteromeric complex and modulate each other’s functions which might be
a potential mechanism mediating the effects of hallucinogens and certain antipsy-
chotics (Shah and González-Maeso 2019; González-Maeso et al. 2008).

Two tryptophan catabolites, kynurenic and quinolinic acid, released via the
“kynurenine” metabolic pathway, were noted to influence the NMDAR activity
(e.g., kynurenic acid is an NMDAR antagonist while quinolinic acid acts as an
NMDAR agonist with potential depressogenic properties) (O’Mahony et al. 2015).
Moreover, increased quinolinic acid levels led to elevated concentrations of gluta-
mate in the striatum and the cortex (Müller and Schwarz 2007).

3.2.5.4 Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is one of the most studied brain
neurotrophins, significantly impacting neuronal survival, growth, synapse plasticity,
and neurotransmitter release (Giacobbo et al. 2019; Bramham and Messaoudi 2005).

It is synthesized, stored, and released by glutamatergic neurons. BDNF binds to
tyrosine kinase receptors (TrkB), potentiating excitatory synapses via pre-and post-
synaptic mechanisms and increasing glutamate release (Bramham and Messaoudi
2005). In addition, it induces the expression of genes coding the synthesis of various
regulators of synaptic activity and synaptic vesicle proteins, such as vesicular
glutamate transporters (Leal et al. 2014).

The most significant role of the BDNF is to protect neurons against glutamate
excitotoxicity (Almeida et al. 2005). Although the exact mechanism of this physi-
ological function is still not clear, Gaidin et al. demonstrated that BDNF induced
neuroprotective effects on the neurons and astrocytes by inhibiting Ca2+ intracellular
signaling and reducing proapoptotic proteins and inflammatory cytokine expression
(Gaidin et al. 2020). Antioxidant defense system (Mattson et al. 1995) and ERK
(extracellular-signal-regulated kinase) and PI3-K (phosphatidylinositol 3-kinase)
signaling pathways have been reported as BDNF’s downstream cellular cascades
(Almeida et al. 2005).

The interplay between BDNF and drugs with NMDAR antagonistic properties
has been recently established. Indeed, Ketamine increased the phosphorylation
(activation) of HIPP TrkB and induced a rapid increase in total BDNF protein levels
(Zanos and Gould 2018). However, Ketamine failed to exert antidepressant actions
in mice with BDNF gene knockdown, suggesting that BDNF signaling is necessary
for its antidepressant actions (Autry et al. 2011; Lepack et al. 2015). Administration
of another NMDAR antagonist, Memantine, also increased BDNF levels in the PFC
of chronically stressed rats (Réus et al. 2012).

The interaction between chronic stress, glutamate, and BDNF is most evident in
major psychiatric and neurodegenerative disorders. Indeed, environmental factors
such as chronic stress (Esch et al. 2002; Hammen 2005), glutamate-induced neuro-
toxicity (Sanacora et al. 2012; Lewerenz and Maher 2015), and decreased BDNF
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expression in the HIPP and PFC are involved in their initiation and progression
(Giacobbo et al. 2019; Bath et al. 2013; Duman and Monteggia 2006).

3.2.6 Stress-Induced Changes in Gene Expression
and Epigenetic Modifications of the Glutamatergic
System

The role of stress in gene expression and epigenetic modifications is well established
(McEwen et al. 2015). Moreover, epigenetic changes such as DNA methylation,
histone modification, and nucleosome positioning explain how stressors interact
with the genome, leading to alterations in DNA structure, gene expression, and
behavioral patterns (Turecki and Meaney 2016; Park et al. 2019; Portela and Esteller
2010).

Several authors reported on the interactions between stress, glutamatergic neuro-
transmission, and gene expression. For instance, two research groups demonstrated
the impact of prenatal restraint stress on reducing glutamate release in the ventral
HIPP of laboratory animals. The changes presented reduced expression and func-
tionality of mGluR1 and mGluR5 in males and mGluR 2/3 in males and females
(Zuena et al. 2008; Maccari et al. 2014). Another study showed that prenatal restraint
stress (PRS) decreased mGluR2 and mGluR3 receptor mRNA and protein levels in
the FC, manifested at birth and persisting in adulthood. Nasca et al. reported that the
same type of stress decreased the gene transcription of the presynaptic mGluR2
receptor (which, once activated, reduces glutamate release) in the HIPP (Nasca et al.
2015a).

Evidence about the interaction between stress, glutamate neurotransmission, and
epigenetic modifications was also provided by Matrisciano et al. (2018), who found
that mice subjected to PRS showed epigenetic changes in mGluR2/3 (Matrisciano
et al. 2018), while Cao et al. (2016) demonstrated that stress-induced histone
modification modulated mGluR2/3 expression in the spinal cord (Cao et al. 2016).

3.2.7 Stress Effects on Microglia–Glutamate Interactions

Microglia play a pivotal role in the normal development and regulation of structural
and functional processes of the brain, from individual synapses to neural circuits and
behaviors. They are responsible for eliminating microbes, dead cells, redundant
synapses, protein aggregates, and other particulate and soluble antigens that may
endanger the brain (Reus et al. 2017; Colonna and Butovsky 2017; Helmut et al.
2011; Schafer and Stevens 2015). Microglia also exhibits neuroprotective effects
mediated by stimulation of neurotrophin release, glutamate uptake, and sequestering
of neurotoxic substances (Colonna and Butovsky 2017; Block and Hong 2005). In
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contrast, uncontrolled and over-activated microglia typically reacts by excessive
release of pro-inflammatory substances resulting in neuroinflammation and neuro-
toxicity (Colonna and Butovsky 2017; Block et al. 2007).

Various external and internal stressors might activate and sensitize microglia to
increased immunological reactivity (Frank et al. 2007). Tynan et al. (2010) demon-
strated that chronic stress altered the density and morphology of microglia in a subset
of stress-responsive brain regions (Tynan et al. 2010). Takatsuru et al. showed that
exposure to early-life stress increases microglia motility in adulthood (Takatsuru
et al. 2015).

While in a resting or “surveillance state”, microglia express neither glutamate
receptors nor transporters. In contrast, upon activation, microglia release large
amounts of glutamate (Barger et al. 2007), with glutamate receptors and transporters
appearing on their surfaces (Haroon et al. 2017). Microglial cells express both iGluR
and mGluR. Moreover, activation of a particular glutamate receptor is followed by a
release of a specific cytokine. For instance, potentiation of AMPAR transmission
inhibited the further release of tumor necrosis factor-alpha (TNF-α) from microglial
cells. In contrast, activation of mGluR2 showed the opposite effects resulting in
increased microglia-mediated neurotoxicity (Colonna and Butovsky 2017; Helmut
et al. 2011). Takeuchi et al. demonstrated that cytokine TNF-α could also directly
induce excessive glutamate release from activated microglia in an autocrine signal-
ing manner by upregulating microglial glutaminase (the enzyme that converts
glutamine to glutamate) (Takeuchi et al. 2006). Finally, agonists of group three
(III) mGluR receptors reduced microglial reactivity, suggesting that activation of
these receptors can protect neurons against microglia-mediated neurotoxicity
(Taylor et al. 2003).
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Chapter 4
Current Glutamatergic Treatments
and Future Directions for Glutamate-Based
Management of Chronic Stress
and Stress-Related Disorders

Laurence D. Coutellier, Laura Musazzi, and Zoran M. Pavlovic

Abstract The recent Food and Drug Administration and European Medicine
Agency regulatory approval of intranasal (S)-Ketamine for the treatment-resistant
depression in adults and its quick introduction in everyday psychiatric practice might
be considered as a second revolution in the field of neuropsychopharmacology after
the first one, which started over 50 years ago with the discovery of the monoamin-
ergic antidepressants. This chapter will present the critical antidepressant features of
Ketamine, including its putative mechanisms of action and other Ketamine-like
glutamatergic drugs in development for the treatment of chronic stress-related
psychiatric disorders. First, a detailed picture of NMDA-dependent and independent
glutamatergic mechanisms mediating Ketamine effects will be given. The following
section will be dedicated to an in-depth description of cellular and molecular
mechanisms which have been suggested to underlie the fast antidepressant properties
of Ketamine. Alternative investigational therapeutic uses of Ketamine (besides as an
antidepressant) will then be presented, followed by the description of other
glutamatergic drugs which received significant attention for their potential antide-
pressant effects.

The following part will be dedicated to limitations related to Ketamine use.
Finally, we will share our insights and provide recommendations on the future
perspectives in the prevention and early management of chronic stress and stress-
related disorders, focusing on glutamate-based aspects of proposed interventions.
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4.1 Current Glutamatergic Treatments for Chronic Stress
and Stress-Related Disorders

Major depressive disorder (MDD) has been historically treated with monoaminergic
antidepressants that increase monoaminergic neurotransmission in the human brain.
This approach has been moderately effective in helping depressed patients: first,
these compounds need several weeks to improve the depressive symptoms. Then,
many patients are considered treatment-resistant. Last, these drugs are also associ-
ated with frequent side effects (Neis et al. 2016). These findings strongly point out an
urgent need to develop fast-acting antidepressants with better efficacy and fewer side
effects.

Along the same lines, during the last few decades, the scientific community’s
interests regarding the potential antidepressant properties of the anesthetic drug
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, showed signif-
icant growth. Ketamine is well-known as one of the safest anesthetic agents,
approved by the FDA for anesthetic use in 1970, exhibiting NMDAR antagonistic
properties reported for the first time in 1983 (Wei et al. 2020a). It was noted that the
anesthetic effects of Ketamine are driven mainly by disrupting connectivity between
and within resting-state consciousness networks, particularly frontoparietal connec-
tivity (Bonhomme et al. 2016). The first report of the antidepressant action of (R, S)-
Ketamine in animal models was published in 1975 (Sofia and Harakal 1975). But
this is not before 2000 that its antidepressant effect was also confirmed in human
studies (Berman et al. 2000), together with its dissociative and psychotomimetic
adverse events and risk for abuse (Shin and Kim 2020).

Ketamine improves depressive symptoms within 24 h after receiving the first
dose, helps patients that are otherwise treatment-resistant (Murrough et al. 2013),
and has long-lasting properties (efficacy over 15 days) (Singh et al. 2016). Current
research aims at fully understanding the mechanisms of action of Ketamine to
potentially develop novel compounds that would be similarly fast-acting and long-
lasting but without the side effects.

Still, our current knowledge on the Ketamine mechanism of action leading to its
fast and significant reduction in depressive symptoms is modest and is mainly
derived from rodent models of depression. These preclinical paradigms are typically
based on exposure to stressful events since stress-induced effects on neural plasticity
and memory are critical for depression pathogenesis (Wang et al. 2015). Moreover,
exposure to chronic unpredictable mild stress, chronic social defeat stress, or the
development of learned helplessness leads to structural, neuronal, physiological, and
molecular changes in the rodent brain that are reminiscent of what is observed in the
brain of depressed patients. These changes include prefrontal and hippocampal
(HIPP) volume reduction, HPA axis dysregulation, inflammation, oxidative stress,
neurotransmitter disturbances (Belleau et al. 2019; Khan et al. 2020a), and large-
scale functional alterations such as network-wide glutamate functional
hyperconnectivity (McGirr et al. 2017).
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Antidepressant properties of candidate compounds such as Ketamine are typi-
cally tested in behavioral assays that are believed to inform on specific behavioral
abnormalities seen in MDD. These animal models include the forced swim test
(FST) as a measure of despair, the novelty-suppressed feeding (NSF) test as a
measure of anxiety (a common comorbid condition to MDD), and the sucrose
preference test (SPT) as a measure of anhedonia. Noteworthy, FST is sensitive to
the protracted effects of Ketamine up to 1 week after an acute injection, the anxiety
level is reduced in the NSF test after a single dose of Ketamine, and chronic stress-
induced anhedonic behaviors are usually rescued by Ketamine up to 8 days after the
injection (Browne and Lucki 2013). Others have shown that Ketamine can also
promote cognitive function in rodent chronic stress models of depression, with a
single subanesthetic dose of Ketamine restoring cognitive flexibility by enhancing
plasticity in the ventral HIPP-PFC pathway (Jett et al. 2015). While the gap between
preclinical models and clinical situations exists and is well recognized by the
scientific community, those models are necessary to decipher the mechanisms of
action of potential antidepressant compounds and inform future directions that
should be taken to develop drugs that are safe and effective.

4.1.1 Mechanisms of Action of Ketamine in Chronic Stress

4.1.1.1 Ketamine Effects on NMDAR-Independent Glutamate
Neurotransmission

Although Ketamine has been shown to act as an antagonist of the GluN2B subunit of
the NMDAR (Jie et al. 2018), several studies have demonstrated that its antidepres-
sant effects also require the activation of α-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) (Aleksandrova et al. 2017; Chou
and Peng 2018; Duman et al. 2019; Elhussiny et al. 2021; Yang et al. 2018a). This
finding led to the hypothesis that the initial increase in synaptic glutamate neuro-
transmission following Ketamine administration preferentially activates AMPARs,
promoting synthesis and release of brain-derived neurotrophic factor (BDNF). The
contribution of AMPARs to Ketamine antidepressant properties has been further
supported in a study by Gilbert et al. who used magnetoencephalography (MEG
is a functional neuroimaging technique for mapping brain activity by recording
magnetic fields produced by electrical currents occurring naturally in the brain,
using very sensitive magnetometers) analysis together with dynamic causal model-
ing (an approach that uses a biologically informed model to make inferences about
the activity of neuronal networks generating MEG responses) to investigate
AMPAR- and NMDAR-mediated connectivity changes following Ketamine admin-
istration in subjects with treatment-resistant MDD and healthy controls. Their main
finding was that the effects of the Ketamine-induced AMPAR neurotransmission
lasted much longer (i.e., up to 11 days post-infusion) than those achieved via
NMDAR receptors and suggested that AMPAR activation might be critical in
mediating Ketamine long-term antidepressant effects (Gilbert et al. 2018).
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Several researchers have also discussed the importance of the mGluR5 signaling
during the initial rise in glutamate levels following Ketamine administration. Keta-
mine reduced mGluR5 availability via a rapid receptor internalization mechanism
for at least 24 h post-treatment in vivo in humans, which correlated with its
antidepressant properties (Delorenzo et al. 2015; Esterlis et al. 2018a). These
findings appear counterintuitive as rodent models of MDD and postmortem human
studies report decreased mGluR5 expression (Shin et al. 2015), and mice lacking
this receptor display depressive-like behaviors and failed to induce delta-FosB
expression in the nucleus accumbens (NAc), a marker of stress resilience (Esterlis
et al. 2018b). But due to the close localization between mGluR5 and NMDAR on the
cell surface, drugs that target mGluR5 may indirectly bring about a therapeutic effect
through NMDAR modulation (Esterlis et al. 2018b).

4.1.1.2 Ketamine Effects on Gamma Aminobutyric Acid
Neurotransmission

Antagonism of NMDAR is necessary for inducing a transient surge in presynaptic
glutamate release resulting in increased cortical pyramidal cell excitation within the
PFC, a brain region playing a critical role in emotion regulation (Abdallah et al.
2018a). Along the same lines, a pilot proton magnetic resonance spectroscopy in
depressed patients showed that in addition to an acute increase in Glx (combined
glutamate + glutamine measure), Ketamine increased gamma aminobutyric acid
(GABA) levels in the medial PFC (mPFC) (Milak et al. 2016). However, this
preliminary finding was not replicated in a follow-up study (Milak et al. 2020).

Further investigations supported these initial findings. For instance, magnetic
resonance spectroscopic imaging (MRSI is a noninvasive imaging method that
provides spectroscopic information which could be used to infer further information
about cellular activity such as metabolic information) in healthy human subjects
showed that Ketamine decreased HIPP GABA+/total Creatinine ratio 2 h post-
infusion, without changing Glx (glutamate + glutamine) levels, meaning that Keta-
mine effects on GABA transmission were not mediated via glutamatergic mecha-
nisms (Silberbauer et al. 2020). In the same way, in rodent models, Ketamine
induced an acute, transient suppression of prefrontal GABAergic neurons through
antagonism at the GluN2B subunit of NMDAR (Li et al. 2011; Gerhard et al. 2020),
restoring the excitatory/inhibitory balance altered by chronic stress exposure (Ghosal
et al. 2017, 2020) (see Fig. 4.1).

Specific sub-population of GABA neurons in the PFC might drive the rapid
antidepressant effects of Ketamine, such as somatostatin- and parvalbumin-
expressing interneurons (Gerhard et al. 2020). Ketamine increases the activity of
parvalbumin-expressing GABA interneurons sufficiently to protect dendritic spines
against the effects of stress (Ng et al. 2018). Moreover, targeting NMDAR of fast-
spiking GABA interneurons by Ketamine was noted in the HIPP of adult male rats,
leading to disinhibition of pyramidal cells. Interestingly, the exact mechanism was
reported for Rapastinel (a glycine site NMDAR partial agonist) and Scopolamine
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(an antagonist of the muscarinic acetylcholine receptor) (Widman and McMahon
2018).

It is worth mentioning that changes in PFC and HIPP interneurons activity by
Ketamine directly affect the overall activity of brain circuits and likely restore the
balance between excitation and inhibition that is often impaired in MDD and rodent
models of depression. This disinhibition hypothesis of Ketamine explains the burst
of glutamate observed, which triggers the second phase stimulating AMPARs,
which causes depolarization and activation of voltage-dependent Ca2+ channels
(VDCC), inducing release of BDNF and stimulation of TrkB and Akt pathway,
which then activates mTORC1 signaling, leading to the increased synthesis of
proteins that are required for synapse maturation and formation, necessary for the
antidepressant effects of Ketamine.

4.1.1.3 Ketamine Effects on Dopamine Neurotransmission

Other researchers have emphasized the potential modulation of dopaminergic trans-
mission by Ketamine. Anhedonia and despair, two symptoms of MDD, are attrib-
uted to abnormal functioning of the ventral tegmental area (VTA)-nucleus
accumbens (NAc) pathway. Addiction, an often comorbid condition in MDD, is
also associated with abnormal functioning of the NAc, which is also found to be

Fig. 4.1 Schematic representation of ketamine-mediated disinhibition of mPFC pyramidal neurons
via inhibition of GABAergic interneurons (GIs) underlying Ketamine Disinhibition Hypothesis.
Ketamine triggers a burst of glutamate that is thought to occur via inhibition of the GIs (primarily
those from the low threshold spiking group with the highest basal firing rates); NMDARs drive the
tonic firing of these GIs, and the active, open-channel state allows Ketamine to enter and block
NMDA channel activity of the interneurons. This results in Ketamine-induced glutamate burst
stimulating AMPARs, which causes depolarization and activation of voltage-dependent Ca2+

channels (VDCC), leading to release of BDNF and stimulation of TrkB and Akt pathway, which
then activates mTORC1 signaling, leading to the increased synthesis of proteins that are required for
synapse maturation and formation (i.e., GluA1 and PSD95) (from Gosal et al. 2017)
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altered in rodent models of depression, including in the social defeat stress paradigm
(Xu et al. 2020). In rodent models, rats exposed to chronic stress have less active
dopaminergic (DA) cells in the VTA (Rincón-Cortés and Grace 2017, 2020) and
displayed NAc hypertrophy (Abdallah et al. 2017), findings similar to those
observed in patients with MDD [656]. Ketamine increased the number of active
DA cells in the VTA of rats (Rincón-Cortés and Grace 2017, 2020) and moderately
reduced NAc volume in MDD patients (Abdallah et al. 2017). These data strongly
indicate that some of the antidepressant effects of Ketamine might be driven via
changes in dopaminergic transmission, at the level of VTA-dopamine neurons and
through D2 and D3, but not D1 receptors (Blum et al. 2019; Chang et al. 2020),
leading to an increase in extracellular dopamine in the NAc (Witkin et al. 2016).
Imaging studies in remitted, treatment-free depressed patients strongly support a
significant effect of Ketamine on brain regions involved in reward response (such as
NAc) at 2 h post-infusion, an effect independent of changes in depressive symptoms
(Kotoula et al. 2020).

The above findings contradict other studies that failed to show Ketamine direct
effects on mesolimbic DA neurotransmission. For instance, Can et al.’s study in
mice reported that Ketamine did not alter the magnitude or kinetics of evoked DA
release in the NAc, and concluded that in vivo changes in DA neurotransmission
following Ketamine administration observed in similar studies are likely indirect
(Can et al. 2016). Another preclinical research study in mice showed that one day
after injection, Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK)
altered the function of AMPARs and synaptic plasticity in VTA-NAc circuits.
Ketamine also induced long-term depression in VTA-dopaminergic neurons,
which might lead to decreased dopaminergic modulation of the NAc (Yao et al.
2018). The discrepancy in results between these two and other previously mentioned
animal studies might be at least partially explained by differences in Ketamine
concentrations or by the fact that the last two preclinical experiments administered
Ketamine to non-stressed animals rather than those exposed to chronic stress animal
paradigms already showing deficiencies in dopaminergic neurotransmission within
reward-related neuronal circuits. These preclinical findings perfectly translate to
those from human studies as several clinical trials demonstrated the opposite effects
of acute administration of Ketamine on healthy people and those observed in patients
with MDD.

In addition to restoring anhedonic and reward-related behaviors in depressed
subjects by increasing activity of the VTA-dopaminergic neurons, Ketamine could
also contribute to rescuing other behavioral domains (e.g., aversive learning) by
directly modulating synaptic structural plasticity in the PFC (Wu et al. 2020).
Indeed, others reported an increase in dopamine levels in different brain regions
after acute Ketamine administration in rodents, including the cortex and striatum
(Kokkinou et al. 2018). For instance, Lally et al. demonstrated that Ketamine
induced an increase in regional cerebral metabolic rate of glucose (rCMRGlu), a
marker of glucose metabolism) in the dorsal anterior cingulate cortex (dACC) of
depressed patients (Lally et al. 2015). This mechanism might serve as an explanation
of Ketamine ability to reduce anhedonia rapidly.
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4.1.1.4 Ketamine Effects on 5-HT Neurotransmission

The impact of Ketamine on 5-HT (serotonin) neurotransmission has also attracted
neuroscientists’ attention. Several studies showed that Ketamine causes a robust
increase in extracellular serotonin in brain regions regulating emotions, including the
PFC and the HIPP. Interestingly, the mechanisms leading to increased serotonergic
neurotransmission vary between the two Ketamine enantiomers. In a study by Ago
et al. (R)-Ketamine strongly activated the prefrontal serotonergic system through
AMPA receptor-independent mechanism, while (S)-Ketamine induced serotonin
and dopamine release in an AMPA receptor-dependent way (Ago et al. 2019).
Sowa et al. demonstrated that a single dose of Ketamine restored a chronic
corticosterone-induced imbalance between the excitatory and inhibitory neurotrans-
mission within the dorsal raphe nucleus (DRN) of rats, the primary source of 5-HT
forebrain projections (Sowa et al. 2019).

Others reported that Ketamine increased serotonin release in the PFC of control
mice via stimulation of prefrontal AMPARs (Nishitani et al. 2014; Araki et al. 2014).
Fukumoto et al. suggested that the activation of serotonergic neurons through a
similar mechanism in the DRN might play a critical role in Ketamine antidepressant
effects (Fukumoto et al. 2016). This finding is further supported by experiments
showing that in 5-HT depleted rats, the effects of Ketamine on stress-induced
immobility in the forced swim test are significantly diminished (Gigliucci et al.
2013). Recent work suggests that Ketamine additionally inhibits 5-HT clearance in
the HIPP via a serotonin transporter (SERT)- and plasma membrane monoamine
transporter-(PMAT) dependent mechanism. Indeed, studies in SERT and PMAT
knockout mice showed the absence of Ketamine antidepressant effects (Bowman
et al. 2020). Other researchers emphasized that stimulation of a 5-HT1A receptor in
the PFC and subsequent activation of the Akt/mTORC1 signaling also contributes to
the sustained antidepressant effects of Ketamine (Fukumoto et al. 2018).

Another research avenue pursued to elucidate the role of 5-HT in Ketamine
antidepressant effects focuses on tryptophan (Trp) metabolism. Interestingly, in
two rodent models of depression, Ketamine administration did not affect quinolinic
acid plasma concentrations (a metabolite produced via the kynurenine metabolic
pathway, found to be increased in depressed patients), while a chronic Fluoxetine
administration decreased quinolinic acid plasma levels (Eskelund et al. 2017). In
contrast, a pharmacometabolomics study by Rotroff et al. in patients with TRD
showed that both Ketamine and (S)-Ketamine altered metabolites related to trypto-
phan metabolism (for example, indole-3-acetate and methionine). Interestingly, the
only metabolic signature associated with response to treatment was kynurenine
(KYN)/tryptophan (TRP) ratio, indicating that the amount of TRP was increased
relative to KYN in subjects with a more significant decrease in depressive symptoms
(Rotroff et al. 2016). These findings were further supported by Moaddel et al. who
demonstrated that MDD patients responding to Ketamine present lower KYN levels
and KYN/TRP ratios than nonresponders and suggested these two metabolic param-
eters as potential biomarkers predicting response to Ketamine (Moaddel et al. 2018).
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4.1.1.5 Ketamine Effects on Endocannabinoid System
Neurotransmission

It has been suggested that the endocannabinoid system (ES) could also be one of the
Ketamine targets involved in the mediation of its antidepressant effects. This
hypothesis is supported by the finding that Naltrexone, a non-selective opioid
receptor antagonist, blocked the anti-suicidality effects of Ketamine in depressed
patients (Williams et al. 2019). A preclinical study in the congenitally learned
helpless rat model of depression demonstrated that Naltrexone abolished the antide-
pressant effects of Ketamine on the cellular hyperactivity observed in the lateral
habenula and rat immobility during the FST (Klein et al. 2020). In contrast, another
recent, small study showed that pretreatment with Naltrexone did not attenuate the
antidepressant effects of Ketamine in patients with MDD (Yoon et al. 2019).
Differences between the two studies regarding the route of administration of the
compounds and timing of endpoints could explain the observed discrepancies and
the potential lack of translational value of rodent data to human studies. In conclu-
sion, further research studies are still warranted to determine the potential role of the
ES in the antidepressant effects of Ketamine.

Altogether, main findings from animal models of depression strongly suggest that
Ketamine mode of action underlying its rapid antidepressant effects might involve a
cascade of events, including the inhibition of NMDARs of GABAergic interneurons
followed by increased release (burst) of glutamate and activation of postsynaptic
AMPARs. The resulting AMPAR activation leads to enhanced BDNF expression,
triggering the mTOR and other downstream intracellular signaling pathways, thus
rapidly reversing the atrophy of PFC neurons and restoring PFC disconnectivity
caused by chronic stress. However, it is necessary to point out that the effects of
Ketamine vary by brain region, circuit, and neuronal type (for instance,
pyramidal vs. GABAergic neurons) and differ between Ketamine enantiomers (see
Fig. 4.2). A more profound understanding of Ketamine interplay with other

Fig. 4.2 This figure represents the proposed cellular mechanisms of Ketamine enantiomers and
metabolites antidepressant actions (from Yang et al. 2019)
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neurotransmitter systems might also be necessary for the complete elucidation of its
complex mechanism of action.

4.1.2 Ketamine Newly Investigated Mechanisms of Action

Despite extensive preclinical and clinical research efforts in the last few decades, the
exact mechanism of Ketamine antidepressant action remains elusive. In this section,
we will focus on those recently discovered and deserving further investigation:

(a) Disruption of circadian rhythm and sleep pattern is frequently described in
patients with MDD.

Studies have reported that patients with MDD have an abnormal expression
of circadian clock genes in their ACC (Li et al. 2013). Ketamine enhanced rapid
eye movement sleep (Zhuo et al. 2019), and recent work in mice showed that
Ketamine induced modification in the expression of genes related to the circa-
dian clock, which could contribute to its antidepressant effects (Orozco-Solis
et al. 2017). Those preliminary findings deserve more attention to fully under-
stand the role of circadian rhythm on the antidepressant effects of Ketamine, a
question that is being addressed in a recently designed clinical trial (Zhuo et al.
2019).

(b) Research avenues that target the gut-brain axis.
Ketamine influence on gut health and its link with mental health and central

nervous functions is gaining interest. In particular, Ketamine seems to restore a
healthy gut microbiome in mice exposed to chronic stress (Getachew et al. 2018;
Qu et al. 2017; Yang et al. 2017).

(c) Another area gaining massive attention from neuroscientists over the last two
decades, and experiencing exponential growth of supporting scientific evidence,
is related to the role of inflammation in MDD etiopathogenesis, which has been
well characterized in subsets of depressed patients.

Several studies reported normalization of reactive microglia and increased
levels of inflammatory cytokines, including IL-6 in the PFC and HIPP, induced
by chronic stress in rodents following Ketamine administration (Tan et al. 2017;
Zhang et al. 2020a). Zhang et al. demonstrated that microglia depletion blocked
the antidepressant effects of (R)-Ketamine. In the same study, normalization of
microglial recombinant transforming growth factor (TGF-β1) signaling in the
PFC and the HIPP of chronic social defeat stress susceptible mice by (R)-
Ketamine was associated with its rapid and sustained antidepressant effects
(Zhang et al. 2020a). Along the same lines, the involvement of heightened
IL-6 levels in the development of a depressive phenotype has been consistently
supported by the observation that IL-6 deficient mice are resistant to a
depressive-like phenotype after exposure to stress (Monje et al. 2011; Ting
et al. 2020) and that treatment with IL-6 antibodies improved depressive symp-
toms in patients with rheumatoid arthritis (Sun et al. 2017). Recent work also
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indicated that a subset of patients with treatment-resistant depression displayed
additional peripheral inflammation, marked by elevated IL-6 and upregulated
chemokines, which were both reduced following Ketamine treatment. Interest-
ingly, among all inflammatory biomarkers analyzed during the study, only
fibroblast growth factor two (FGF-2), was found to predict the Ketamine
response suggesting that patients with low levels of FGF-2 may be more likely
to respond to Ketamine therapy. On the other hand, it is worth mentioning that
the levels of inflammatory biomarkers returned to baseline by 24 h after Keta-
mine infusion and that their decrease did not correlate with clinical response.
(Kiraly et al. 2017).

Other authors suggested that Ketamine effects are also mediated through
priming of monocytes in an NMDAR- and mTOR signaling-dependent manner,
thus initiating an anti-inflammatory cascade of events (Nowak et al. 2019).
Similarly, in a cell model of MDD, where PC12 cells (type of catecholamine
cells that synthesize, store, and release norepinephrine and dopamine) were
treated with corticosterone, Ketamine reduced inflammation, increased viability,
decreased the apoptosis of the cells, and increased levels of Krebs cycle enzymes
(Zhang et al. 2020b). Finally, in a study by Park et al. Ketamine reduced levels of
soluble tumor necrosis factor receptor 1 (sTNFR1), an inflammatory marker
found to be correlated with the severity of depression. However, as in the study
mentioned before, these changes did not correlate with the extent of patients’
clinical improvement, so definitive conclusions about the relationship between
Ketamine antidepressant effects and proinflammatory cytokines could not be
drawn (Park et al. 2017).

(d) Chronic stress is leading to oxidative damages of cells.
Oxidative stress is associated with free radicals that contribute to the pathol-

ogy of several diseases, including MDD. Some reports indicate that MDD can
increase reactive oxygen species (ROS) generation, leading to oxidative damage
in limbic brain regions. In a study that used the chronic unpredictable mild stress
(CUMS) model of depression, Ketamine was found to reverse the stress-induced
increase in malondialdehyde (MDA), a widely used marker of oxidative lipid
injury caused by environmental stress, in the PFC, but not in the amygdala
(AMG) and HIPP (Maciel et al. 2018).

(e) Mitochondrial abnormalities have been implicated in the pathobiology of mood
disorders.

Recent advances in metabolomics have allowed scientists to identify path-
ways significantly altered by Ketamine without a priori hypothesis. For instance,
2 h after an injection of Ketamine in mice, several HIPP metabolites relevant for
mitochondria functioning were significantly changed, showing that a single
injection of Ketamine might impact the main energy metabolism pathways
(Weckmann et al. 2014).

122 L. D. Coutellier et al.



4.1.3 Ketamine Effects on Functional and Structural
Connectivity-Related Biomarkers in Chronic
Stress-Induced Animal Models of Depression and MDD
Patients

4.1.3.1 Ketamine Effects on Functional Connectivity-Related
Biomarkers

Aside from gross structural changes, the main clinical biomarkers of depression
relate more specifically to prefrontal excitability, connectivity, synaptic strength, and
changes in neurotrophic factors like BDNF. That is why the latest studies conducted
to identify the neuronal pathways modified by Ketamine started incorporating novel
imaging techniques such as functional magnetic resonance (fMRI) in their protocols.
For instance, Maltbie et al. demonstrated that Ketamine exerted robust and consis-
tent effects at the whole-brain level, primarily increasing functional connectivity in
executive control neuronal circuits (Maltbie et al. 2017). Another fMRI study
reported a surge in the global prefrontal connectivity during Ketamine infusion,
with sustained effects for at least 24 h post-infusion in MDD patients (Abdallah et al.
2018b). Moreover, Grimm et al. found increased PFC-HIPP coupling in healthy
humans and rats (Grimm et al. 2015).

In the same way, functional connectivity between the default-mode network
(DMN) and ACC, insula, posterior cingulate cortex (PCC), NAc, and the PFC was
enhanced by Ketamine in healthy subjects (Fleming et al. 2019). Magnetoenceph-
alography and electroencephalography studies in human subjects suggested that
synaptic potentiation via enhanced cortical excitability and increased neuronal
plasticity contribute to Ketamine antidepressant effects (Cornwell et al. 2012;
Duncan et al. 2013). Along the same lines, a recent 7T-fMRI study showed that
Ketamine might indirectly affect the functional connectivity of neuronal networks
through BDNF. Woelfer et al. demonstrated that increased BDNF blood levels
correlated with decreased functional connectivity between DMN regions usually
increased in MDD patients and associated with a ruminative cognitive style. As
suggested by the authors, this Ketamine-induced change in functional connectivity
may reflect enhanced synaptic plasticity, mediated by increased BDNF levels
(Woelfer et al. 2020).

Studies in rodent models of depression have mainly supported findings from
human studies mentioned above. For instance, subanesthetic doses of Ketamine
increased activation of the mPFC, HIPP, and cortico-limbic regions, as shown in
pharmacological magnetic resonance imaging (phMRI) in awake rats (Chin et al.
2011). Using in vivo imaging in iGluSnFR (genetically encoded fluorescent gluta-
mate indicators that enable visualization of neurotransmitter release and diffusion in
intact tissue)-expressing mice, McGirr et al. showed that chronic social defeat stress-
induced glutamate functional hyperconnectivity was reduced 24 h after Ketamine
treatment (McGirr et al. 2017).
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Animal studies also demonstrated significant differences in Ketamine antidepres-
sant effects between a single and multiple-dose administration. For instance, Gass
et al. showed that Ketamine induced rapid topological modifications in cognitive,
sensory, emotional, and reward-related circuitry of rats selectively bred to display a
depressed, negative cognitive state (so-called “negative cognitive (NC) model”, which
is one of the most robust and well-validated animal models of treatment-resistant
depression), so that 48 h post-injection, the “depressed” rats still experienced normal-
ization in functional connectivity of habenula, midline thalamus, and HIPP (Gass et al.
2019). In contrast, in a multiple-dose study using the above paradigm, the same author
reported that Ketamine reduced prefrontal connectivity in the NC rat strain, a finding
typically observed in patients with MDD (Gass et al. 2020).

4.1.3.2 Ketamine Effects on Structural Connectivity-Related
Biomarkers

Depression has often been associated with gross structural changes in the brain,
including neuronal atrophy and loss of synaptic connections. Thanks to access to
sophisticated imaging techniques, the effect of Ketamine on those changes in defined
brain regions can be systematically analyzed in human subjects. Several areas
involved in the regulation of emotions have been investigated after treatment with
Ketamine. For instance, volumetric changes of the left AMG and the right HIPP after
six infusions of Ketamine in patients diagnosed with MDD (Zhou et al. 2020).
Moreover, Abdallah et al. showed that small HIPP size was associated with the rapid
antidepressant effects of Ketamine (Abdallah et al. 2015a). In the same way, a single
infusion of Ketamine normalized enlarged NAc volume in MDD patients (Abdallah
et al. 2017).

To assess Ketamine effects on synaptic integrity and plasticity, neuroscientists are
predominantly using animal models, as they enable them to perform a finer scale of
analysis compared to human in vivo studies. For instance, rodent stress models of
depression (e.g., using chronic mild stress or social defeat stress model) display
overall synaptic depression in the PFC and HIPP as seen in depressed patients (Abe
et al. 2019; Abdallah et al. 2015b). Furthermore, most findings reported that
Ketamine leads to changes in dendritic spines in the PFC and HIPP. For example,
Ketamine induced a long-lasting (up to 2 weeks) increase in spine density, mainly
due to elevated spine formation rate rather than a reduced rate of spine elimination
(Phoumthipphavong et al. 2016), and inhibited stress-induced spine loss in rodent
models of depression (Ng et al. 2018; Tornese et al. 2019; Ardalan et al. 2017; Zhang
et al. 2019). Importantly, changes in spines induced by Ketamine seem to be
essential for its sustained antidepressant effects (lasting 2–7 days post-treatment in
mice exposed to chronic stress). Indeed, the rapid behavioral effects of Ketamine on
stressed mice precede changes in spine formation (Moda-Sava et al. 2019).

It is worth mentioning that Ketamine-induced synaptogenesis is also associated
with dynamic vascular plasticity changes such as microvascular elongation. These
changes in vascularization might directly support increased neuronal metabolism
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induced by neuroplasticity by more intensively transporting oxygen and nutrients to
newly generated neurons and synapses (Ardalan et al. 2017).

Multiple studies demonstrated that these neuronal and vascular structural changes
are accompanied by functional changes, including increased long-term potentiation
(LTP) (Aleksandrova et al. 2020; Sattar et al. 2018), decreased hyperpolarization-
activated cyclic nucleotide-gated channel expression in dorsal CA1 neurons of the
HIPP (Kim and Johnston 2020), and increased spike frequency of individual neurons
of the ventromedial PFC (Abe et al. 2019).

A crucial avenue related to Ketamine research pursued by neuroscientists con-
cerns the intracellular mechanisms by which Ketamine restores synaptic integrity in
the rodent brain following exposure to chronic stress. The two primary signaling
pathways underlying the rapid antidepressant actions of Ketamine that have been
consistently investigated are the BDNF/TrkB- and mTOR-dependent pathways.
Both are directly implicated in synaptic dysfunctions observed in depression and
chronic stress rodent models, whereby stress-related synaptic deficits are precipitated
by a reduction in BDNF and by inhibition of mTORC1 (Abdallah et al. 2015b;
Chandran et al. 2013; Colucci-D’amato et al. 2020).

Ketamine induces the rapid release of BDNF, which binds to the TrkB receptor,
mediating its neurotrophic and neuroplastic effects (Liu et al. 2016; Duman et al.
2021; Zhang et al. 2018a). This mechanism of action was further confirmed in
BDNF and TrKB knockout mice that failed to display antidepressive-like behaviors
in response to Ketamine injection (Autry et al. 2011) and also in a rat model of
chronic unpredictable mild stress (CUMS) where the use of ANA-12, a TrkB
antagonist, blocked the antidepressant effects of Ketamine (Sun et al. 2016).
Anderzhanova et al. also demonstrated that the presence of the stress-responsive
glucocorticoid receptor co-chaperone FK506 binding protein 51 (FKBP51) in the
PFC is necessary for (S)-Ketamine to induce the secretion of mature BDNF and for
exhibiting its acute antidepressant effects (Anderzhanova et al. 2020). Moreover, in
FKBP51 knockout mice, acute antidepressant treatment failed to show an effect,
further corroborating the previous reports (Gassen et al. 2014). These preclinical
findings are supported by human studies showing that levels of FKBP51 (Gassen
et al. 2014) can predict treatment response in depressed patients. Other researchers
showed that the rapid antidepressant effects of Ketamine, driven by increased BDNF
translation, are dependent on inhibition of eukaryotic elongation factor 2 kinase
(eEF2K), which is sufficient to elicit an antidepressant response in mice (Autry et al.
2011). The sustained effects of Ketamine are also mediated by BDNF/TrkB signal-
ing. In the study by Ma et al. Ketamine accelerated the maturation of neural
progenitor cells in the HIPP, a mechanism that requires TrKB activation (Ma et al.
2017).

In the same way, Ketamine recovered HIPP levels of the protein p11 (a member
of the S100 EF-hand protein family that generally modulates cellular target proteins
in response to intracellular Ca2+ signals) in rats exposed to CUMS. This finding was
further supported by Sun et al. who demonstrated that the knockdown of p11 in the
rat HIPP led to depressive-like behaviors that were not improved by Ketamine (Sun
et al. 2016). Besides BDNF, other growth factors have been implicated in the
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antidepressant effects of Ketamine, including vascular endothelial growth factor
(VEGF), insulin-like growth factor 2 (IGF2), and transforming growth factor
(TGF)-β (Zhang et al. 2020a; Duman et al. 2021; Deyama et al. 2019; Grieco et al.
2017; Grossert et al. 2019; Jiang et al. 2019).

All data mentioned before strongly support the hypothesis that the neurotrophic
response associated with Ketamine treatment plays a significant role in its rapid and
sustained antidepressant effects (Deyama and Duman 2020).

4.1.4 Other Downstream Pathways Related to Ketamine
Antidepressant Effects

mTORC1—In 2010, Duman’s group demonstrated that Ketamine rapidly activated
the mammalian target of rapamycin (mTOR) in the PFC, increasing the numbers of
synaptic proteins and the number and function of new spines and that inhibiting
mTOR (using, for instance, Rapamycin) blocked synaptogenesis and the antidepres-
sant properties of Ketamine (Li et al. 2010; Holubova et al. 2016). These preclinical
findings highlighted for the first time the involvement of the mTOR signaling
pathway in the antidepressant effects of Ketamine. Moreover, Ketamine-induced
inhibition of NMDARs initiated a cascade of molecular events, including decreased
nitric oxide synthesis, ultimately leading to enhanced mTOR signaling (Harraz and
Snyder 2017). It is worth mentioning that the pathway downstream of mTOR
involves inhibition of eukaryotic initiation factor 4E-binding protein (4E-BP),
which is responsible for inducing HIPP synaptic plasticity associated with its
antidepressant effects observed at the behavioral level in mouse models (Aguilar-
Valles et al. 2021). Interestingly the cellular mechanisms of action of two Ketamine
enantiomers seem to be different. While the antidepressant effects of (S)-Ketamine
are dependent on the mTOR signaling pathway, those of (R)-Ketamine rely on the
ERK pathway (Yang et al. 2018b) and its long-lasting effect on sustained activation
of BDNF/TrkB cascade (Hashimoto 2020).

In contrast, a recent study by Abdallah et al. (2020) in depressed patients did not
replicate preclinical findings as a single dose of Rapamycin pretreatment failed to
block antidepressant action of Ketamine, apparently extending Ketamine antidepres-
sant effectiveness, in some patients. The authors hypothesized that the synergistic
effects of Rapamycin noted in humans might occur due to its specific anti-
inflammatory and autophagic effects, which are protecting and promoting
neuroplastic changes induced by Ketamine. Preclinical studies additionally empha-
sized that the effects of Rapamycin (and therefore of mTORC1 signaling) on
emotional behaviors might be task-dependent (Holubova et al. 2016). Altogether,
these clinical and preclinical studies highlight the need for more intensive investi-
gation of the exact role of mTOR in depression pathology.

The complete cellular and molecular mechanisms underlying the antidepressant
effects of Ketamine are still under investigation, and other potential contributors
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have been recently identified. For instance, glycogen synthase kinase-3 (GSK3)
seems to play an integral role in the rapid antidepressant effect of Ketamine (Costi
et al. 2015). Ketamine inhibited GSK3 in a mouse model of learned helplessness,
while high doses of Lithium, a GSK3 inhibitor, produced antidepressant effects
(Beurel et al. 2011). Similarly, others reported that pretreatment with Lithium of
mice exposed to chronic stress potentiated the antidepressant, synaptogenic, and
electrophysiological effects of Ketamine (Liu et al. 2013) and decreased the oxida-
tive stress associated with Ketamine use (Chiu et al. 2015). Iadarola et al. demon-
strated that the inhibition of GSK3 by Ketamine is mediated by serine
phosphorylation in an Ak thymoma/protein kinase B-dependent pathway (Iadarola
et al. 2015).

Other potential mechanisms of Ketamine action include those that might be
similar to the effects of reelin (a large secreted extracellular matrix glycoprotein
that modulates synaptic plasticity by enhancing the induction and maintenance of
LTP), as Ketamine was able to rescue the deficits of reelin in a rat model of chronic
exposure to corticosterone (Johnston et al. 2020). Other potential downstream
pathways include the JAK2/STAT3 signaling pathway (Patton et al. 2017) and the
Protein kinase Mζ (Yan et al. 2018).

In conclusion, evidence from humans and rodent models of depression supports
the idea that Ketamine antidepressant effects derive from promoting synaptic plas-
ticity and synaptogenesis in brain regions that regulate emotions. Although the
complete mechanisms by which Ketamine exerts those effects are still under inves-
tigation, they likely involve suppression of resting NMDAR activity leading to
inhibition of eEF2 kinase and subsequent dephosphorylation of eEF2 followed by
augmentation of BDNF synthesis, activating the mTORC1 pathway to promote
synaptogenesis (Henderson 2016).

4.1.5 Ketamine Administration to Prevent Stress-Induced
Depressive Symptoms

Recent work in rodents has suggested that using Ketamine preemptively can reduce
stress-induced depressive symptoms. Administration of Ketamine 1 week before
exposure to stress prevented the occurrence of behavioral deficits relevant to a
depressive phenotype in various models of chronic stress in rats and mice. This
includes absence of despair or anhedonic behaviors after chronic social defeat
(Brachman et al. 2016; Mastrodonato et al. 2018), learned helplessness (Brachman
et al. 2016), chronic corticosterone treatment (Brachman et al. 2016; Chen et al.
2020), chronic unpredictable stress (Krzystyniak et al. 2019; Okine et al. 2020),
contextual fear conditioning (CFC) (Chen et al. 2020; McGowan et al. 2017, 2018),
or inescapable tail shock (Amat et al. 2016; Dolzani et al. 2018). The effects of
prophylactic Ketamine on promoting stress resilience could be mediated by changes
in synaptic plasticity and neuronal activity in brain regions highly involved in
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emotion regulation. For instance, Ketamine increased the formation of dendritic
spines in the PFC and CA3 area of the HIPP (Krzystyniak et al. 2019) and increased
ΔFosB expression, a neuronal marker associated with resilience to stress, in the
ventral dentate gyrus and ventral CA3 region of the HIPP in mice exposed to chronic
social defeat stress (Mastrodonato et al. 2018). Other researchers demonstrated that
Ketamine might modulate stress resilience through changes in 5-HT transmission
(Amat et al. 2016; Dolzani et al. 2018). This idea is supported by Chen et al. (2020),
who reported that 5-HT4 receptor agonists exerted a similar effect on resilience as
Ketamine when given prophylactically. Other components of glutamatergic signal-
ing exhibited similar stress resilience-inducing properties. For instance, reducing
mGlu2R activity prior to inescapable shock stress in mice prevented the develop-
ment of escape deficits (Highland et al. 2019).

It is worth mentioning that the prophylactic effects of Ketamine seem to depend
on several parameters such as the timing of injection vs. the stress exposure, the
dose, and sex. McGowan reported that preventive treatment with Ketamine admin-
istered 1 month or 1 h before the foot-shock paradigm had no effect on conditioned
contextual freezing behaviors in mice, suggesting a time window of 1 week as
optimal prophylaxis time (McGowan et al. 2017). Moreover, prophylactic Ketamine
consistently protected males from stress-induced emotional dysregulations. In con-
trast, inconsistent findings in females (Okine et al. 2020; Dolzani et al. 2018) deserve
further investigations. Most importantly, the beneficial effects of Ketamine are noted
only in stressed animals, as several research groups reported that control rodents do
not exhibit the same changes after Ketamine treatment. This finding might suggest
that Ketamine is primarily interacting with stress-induced changes in the brain to
promote resilience.

4.1.6 Ketamine Use for Other Stress-Related Disorders

Based on the positive results shown by Ketamine for the treatment of MDD, its
potential therapeutic effects in other psychiatric conditions have been continuously
investigated.

Several reports in rodents indicate that subanesthetic doses of Ketamine can help
in treating certain aspects of morphine and amphetamine addiction. For instance,
mice treated with Ketamine failed to develop a conditioned place preference for
morphine (McKendrick et al. 2020). Along the same lines, amphetamine-induced
BDNF expression changes in the NAc and HIPP were rescued by Ketamine in rats
(Fuller et al. 2015). However, due to the small number of studies, it remains
challenging to draw any definite conclusions on using Ketamine for substance use
disorders.

On the contrary, a significant amount of research has been conducted to evaluate
the potential benefits of Ketamine in treating fear-related behaviors and post-
traumatic stress disorder (PTSD). Studies in rodent models of PTSD and fear
indicate that Ketamine alleviated fear generalization and promoted fear extinction

128 L. D. Coutellier et al.



(Asim et al. 2020; Girgenti et al. 2017; Wei et al. 2020b). According to the authors,
those effects were probably mediated by Ketamine effects on synaptic plasticity and
functional connectivity, likely through a BDNF-dependent pathway within the
HIPP, basolateral amygdala (BLA), and PFC (Asim et al. 2020; Krystal et al.
2017; Pradhan et al. 2016; Zhang et al. 2015). It is worth mentioning that significant
discrepancies between preclinical studies have been observed, which could be
explained mainly by individual variability in susceptibility to stress-related disor-
ders, route, dose, and timing of Ketamine administration (Choi et al. 2020). While
data from clinical trials in this field are still scarce, they are however promising. For
instance, a small randomized clinical trial by Feder et al. showed a significant
reduction in PTSD symptom severity in patients one day after the single-dose
intravenous Ketamine infusion (Feder et al. 2014).

In conclusion, the overall evidence points toward a solid therapeutic potential of
Ketamine in the context of PTSD, but also for other anxiety disorders, including
obsessive-compulsive, generalized anxiety, and social anxiety disorder (Taylor et al.
2018).

4.1.7 Comparative Analysis of Ketamine vs. Ketamine-Like
Drugs and Other Glutamatergic Compounds

Before Ketamine introduction, depressed patients were most often prescribed
monoamine-based antidepressants. In a comparative study in mice, using the chronic
social defeat stress model, Bagot et al. demonstrated that both Ketamine and the
monoaminergic antidepressant Imipramine mainly exerted their antidepressant
effects by regulating the expression of genes modulating resilience mechanisms in
the PFC (Bagot et al. 2017). However, significant differences in target engagement
between these two drugs were also noted, with Ketamine regulating gene expression
within the NAc and Imipramine acting primarily on the HIPP.

The benefits of a recent FDA and EMA regulatory approval of Ketamine for
indication of treatment-resistant MDD (TRD) are twofold. Firstly, a glimpse of hope
has been given to all TRD patients that there is an antidepressant to help them
overcome cumbersome symptoms and regain a positive mood quickly, and at the
same time assure long-term mental well-being and quality of life. The second benefit
pertains to the mental health professionals as their antidepressant armamentarium
was enriched with an innovative, highly effective treatment modality with rapid
onset of action, which could reverse brain changes induced by depression, including
those in the difficult-to-treat subgroup of patients. Although promoted as the most
significant breakthrough in depression treatment in half a century, Ketamine use in
humans is severely limited, mainly due to safety issues related to its sedative,
dissociative, and psychotomimetic properties, including a high risk for abuse and
dependence, and possible neurotoxicity (Shin and Kim 2020). Moreover, others
have reported that Ketamine can exert opposite effects when given to non-stressed
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healthy individuals mimicking a stress-like response by increasing the stress hor-
mone cortisol levels, affecting essential physiological and psychological functions
(Khalili-Mahani et al. 2015a, b). Chronic use and abuse of Ketamine in Ketamine-
dependent individuals has also been associated with white matter abnormalities in
frontal and temporoparietal cortices (Liao et al. 2010) and neuronal projections
between the caudate nucleus and PFC (Edward Roberts et al. 2014). Indeed these
anatomical changes were associated with spatial memory impairments and altered
HIPP activation in the same population (Morgan et al. 2014). These findings are
supported by preclinical data showing that prolonged exposure to Ketamine deteri-
orates spatial memory in rats. However, these results were observed only in control,
non-stressed rats, while stressed rats benefited from chronic Ketamine use
(Trofimiuk et al. 2019; Yang et al. 2018c). All the limitations mentioned above led
scientists and clinicians to investigate and develop alternative, safer treatment
modalities that would mimic Ketamine fast-acting and sustained antidepressant
properties.

Armed with the knowledge that Ketamine mainly exerts its antidepressant effects
through modulation of glutamatergic neurotransmission, the researchers initially
started developing similar glutamate-based compounds. The first clinical trials
with Ketamine already noted differences between (R)-Ketamine and (S)-Ketamine
isomers. For instance, although both enantiomers share a downstream pathway
through the activation of mTORC1 signaling, (S)-Ketamine has a higher affinity
for the NMDAR and is believed to be responsible for the abuse-related effects of
Ketamine. While (S)-Ketamine activates the AMPAR and is metabolized to (S)-
norKetamine (Yang et al. 2019), (R)-Ketamine is more potent, exerting long-lasting
antidepressant effects, and shows a better side effect profile, at least when used at a
low dose (e.g., 20 mg/kg in mice) (Chang et al. 2019; Yang et al. 2015; Zanos and
Gould 2018; Zanos et al. 2019a). Furthermore, it also activates AMPARs and
promotes MEK-ERK and BDNF-TrkB signaling (Yang et al. 2019). (R)-Ketamine
is metabolized to (2R,6R)-hydroxynorketamine (HNK) in the liver, and subse-
quently, as (2R,6R)-HNK crosses the blood-brain barrier (Zhang et al. 2018b). It
is currently thought that (R)-Ketamine main antidepressant properties are mediated
by the same metabolite (Elmer et al. 2020; Hillhouse et al. 2019; Hashimoto 2019),
although this claim was recently questioned, as Zhang et al. (2018b) demonstrated in
a mouse model of CSDS that (2R,6R)-HNK is not necessary for (R)-Ketamine
antidepressant action. Other research groups continued to investigate the mecha-
nisms of action underlying (2R,6R)-HNK antidepressant properties and reported that
(2R,6R)-HNK inhibited synaptic NMDARs, triggering a cascade of intracellular
events that could explain the long-lasting antidepressant effects seen with Ketamine
(Zanos et al. 2016; Suzuki et al. 2017). Along the same lines, a recent study by Zanos
et al. also indicated that the mechanisms underlying the antidepressant effects of
(2R,6R)-HNK converge with mGlu2 receptor signaling (Zanos et al. 2019b), while
others reported that some of its downstream intracellular effects involve BDNF
(in the PFC) (Fukumoto et al. 2019) and glucocorticoid receptor signaling (Herzog
et al. 2020). Different pathways related to (2R,6R)-HNK implicate signal transducer
and activator of transcription 3 (STAT3), a protein involved in immune response,
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and its interaction with eukaryotic elongation factor 2 (EEF2), a protein responsible
for synaptic plasticity and memory consolidation, resulting in the augmentation of
BDNF expression and promotion of postsynaptic density protein 95 (PSD95) and
synapsin I (SYN1) synthesis (Ho et al. 2019). Interestingly, some researchers
reported that antidepressant-relevant concentrations of (2R,6R)-HNK were insuffi-
cient to block NMDARs, suggesting that direct inhibition of NMDARs did not
contribute to its antidepressant effects (Lumsden et al. 2019). Indeed, Riggs et al.
demonstrated that (2R,6R)-HNK led to presynaptic potentiation in the HIPP of rats
that did not require NMDAR activation and was not impeded by NMDAR inhibitors
(Riggs et al. 2020). Altogether, currently available data indicate that therapeutic
approaches based on (2R,6R)-HNK might be as efficient as those with Ketamine in
terms of rapid and sustained antidepressant effects but would be associated with
fewer adverse events (Chaki 2017).

Other NMDAR antagonists have been evaluated for their effects in MDD and
compared to Ketamine. For instance, the low trapping non-selective NMDA channel
blocker Lanicemine (AZD6765) was shown to exert rapid antidepressant effects in
patients with TRD. Unfortunately, these effects were short-lived (Zarate et al. 2013).
Lanicemine also increased prefrontal global connectivity 24 h post-treatment in
depressed patients; noteworthy, the extent of the increase was not as significant as
the one observed after Ketamine infusion (Abdallah et al. 2018b). Similar to
Ketamine, psychotomimetic effects were also observed following Lanicemine
administration (Sanacora et al. 2014), and a recent double-blind placebo-controlled
clinical trial using 15 intravenous infusions of 50 mg or 100 mg of Lanicemine over
12 weeks in patients with MDD and a history of inadequate response to antidepres-
sants by Sanacora et al. failed to show the statistically significant difference when
compared to placebo (Sanacora et al. 2017).

Another NMDAR antagonist, MK-801, induced antidepressant effects in mice,
but its effects did not persist beyond 3 h post-treatment (Autry et al. 2011).
Moreover, administration of CP-101,606, an NR2B-selective NMDAR antagonist,
was associated with psychotomimetic side effects similar to those observed with
Ketamine (Preskorn et al. 2008).

Another promising glutamatergic compound tested in human clinical trials is
Rapastinel (also known as GLYX-13), a partial agonist to the glycine site of the
NMDAR. Initial clinical trials reported that GLYX-13 simultaneously enhanced the
magnitude of LTP of synaptic transmission while reducing long-term depression
(LTD) in Schaffer collateral-CA1 synapses in rat HIPP slices, suggesting its unique
pro-cognitive properties for the first time in 2008 (Lei et al. 2008). Subsequent
animal studies showed its long-lasting antidepressant effects in rats, associated with
dendritic spine morphology and long-term synaptic plasticity changes (Burgdorf
et al. 2015; Donello et al. 2018; Moskal et al. 2014). These findings were partially
replicated in a mouse model of social defeat stress, showing rapid antidepressant
effects of Rapastinel similar to R-Ketamine. On the other hand, (R)-Ketamine
produced longer-lasting antidepressant effects than Rapastinel in a comparative
study (Yang et al. 2016).
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A proof of concept study by Preskorn et al. in patients with MDD nonresponsive
to a previous antidepressant, showed Rapastinel decreasing depressive symptoms
within hours of treatment, with effects sustained for up to 7 days (Preskorn et al.
2015). It was suggested that antidepressant properties of GLYX-13 are mediated by
activation of voltage-dependent calcium channels, the release of BDNF and stimu-
lation of TrkB in the PFC and HIPP (Yang et al. 2016; Kato et al. 2018), and
activation of the mTORC1 pathway in the PFC (Liu et al. 2017). The scientific
explanation about the lack of psychotomimetic side effects associated with
Rapastinel use when compared to Ketamine, according to Li et al. may be related
to their differences pertaining to Rapastinel’s lack of affinity for 5-HT2A receptors
(Liu et al. 2017). However, recent studies with psychedelics suggested a completely
different role for the 5-HT2A receptors in mediating neuroplasticity effects of
hallucinogenic drugs (Ly et al. 2018).

Finally, another glutamatergic compound with antidepressant effects is nitrous
oxide (N2O), a non-competitive NMDAR antagonist, which psychotropic properties
were described for the first time during the last years of the eighteenth century by
Humphry Davy. N2O proved to be clinically effective in lifting reactive but not
endogenous depression in a psychiatric study in 1928 by Dr. Julius Zador, a
Hungarian psychiatrist working at the Greifswald University in Germany. More
recently, in a proof-of-concept trial published in 2014, Nagele et al. reported that
N2O reduced depressive symptoms in treatment-resistant depressed patients in a
double-blind, placebo-controlled, cross-over study. The N2O showed rapid antide-
pressant effects, sustained for at least 24 h up to 1 week, with 20% of patients
classified as treatment responders and 15% who achieved remission (Nagele et al.
2015). Aside from targeting NMDARs, the antidepressant mechanisms of action of
N2O could also involve inhibition of low voltage-activated calcium channels and
two-pore-domain potassium channel (TREK-1) (Kalmoe et al. 2020).

However, the exact impact of the N2O on brain circuits remains elusive. For
instance, in the HIPP of rats, N2O disinhibited population spike firing (Nagashima
et al. 2005), an effect similar to the one observed with Ketamine in the cortex
(Zorumski et al. 2015). In human brains, electro-encephalographic recordings
revealed that the N2O dampened functional connectivity in superficial parietal layers
(Kuhlmann et al. 2013). Altogether, there is an overall lack of consistent information
on the exact effects of the N2O on the functional connectivity of neuronal networks
in the depressed brain (Zorumski et al. 2015). While relatively safe, chronic use of
the N2O can lead to neurological damages, potentially limiting its use as an
established treatment for depression.

Other treatment modalities increasing glutamatergic transmission by facilitating
its reuptake by glial cells have also been assessed for their potential antidepressant
effects. For instance, Riluzole, an FDA-approved drug for treating amyotrophic
lateral sclerosis, is one of these compounds. Indeed, Riluzole reversed the
depressive-like phenotype (helplessness and anhedonia) and glial dysfunction in
rats exposed to CUMS (Banasr et al. 2010), similarly to Ketamine, by upregulating
the expression of Na+-dependent excitatory amino acid transporters (EAATs) in
chronically stressed rats (Zhu et al. 2017). These studies further highlight the
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importance of glial cells in the neurobiology of MDD, underlining their therapeutic
potential for successfully managing mood disorders.

Other glutamatergic compounds targeting a different set of glutamate receptors
have also been tested to treat stress-related disorders such as depression. For
instance, mGluR2/3 antagonists showed Ketamine-like rapid and sustained antide-
pressant properties in rodent models (Dwyer et al. 2013). These effects are thought to
be mediated by synaptogenesis in the PFC and HIPP and/or modulation of the
serotonergic system (Chaki and Fukumoto 2019; Dong et al. 2017). Moreover,
combining antagonists of the mGluR2/3 receptors with (2R,6R)-HNK led to syner-
gistic effects characterized by anti-depressive-like behaviors in mice and increased
cortical EEG gamma-oscillations (or “rhythms,” suggested as one of the potential
biomarkers of MDD) (Zanos et al. 2019b). Other pharmacological approaches
looked further into targeting the GluN2B subunit of the NMDARs directly since it
has been shown that this subunit is necessary for mediating the antidepressant effects
of Ketamine. For instance, Ro 25-6981, a selective negative allosteric modulator of
GluN2B, showed rapid and sustained antidepressant properties that could be par-
tially mediated by its inhibitory effect on monoamine reuptake (Talbot et al. 2016).
For comparison, a GluN2A receptor antagonist, NVP-AAM077, also led to antide-
pressant effects in rats, but unfortunately, they did not persist and entirely
disappeared 7 days post-treatment (Gordillo-Salas et al. 2018). Other compounds
with less specific NMDAR antagonist properties, like Methadone, produced rapid
antidepressant effects through the same downstream mTORC1-dependent mecha-
nism in the PFC as Ketamine (Fogaça et al. 2019). Finally, chronic AMPA treat-
ment, including AMPA-Ketamine combination, was associated with antidepressant
effects and increased markers of HIPP neurogenesis and synaptogenesis in the
Wistar Kyoto rat (Akinfiresoye and Tizabi 2013), an animal model extensively
used to assess the efficacy of antidepressants.

Targeting the mTOR signaling cascade with other compounds also efficiently
rescued depressive-like phenotype. For instance, Yueju (a Chinese medicinal herb)
improved anhedonic behaviors and increased body weight in chronically stressed
mice (Tang et al. 2015), while Scopolamine, a non-selective muscarinic acetylcho-
line receptor (mAchR) antagonist, increased mTORC1 signaling in the PFC of mice
and reduced immobility time in the FST (Voleti et al. 2013). These additional
findings further demonstrate the importance of the mTORC1 signaling pathway in
inducing rapid and sustained antidepressant effects.

Interestingly, other researchers have suggested that the antidepressant effects of
both Ketamine and Scopolamine could also be mediated by small conductance
calcium-activated potassium channels, revealing a potential target for developing
novel therapeutics for MDD (Bambico et al. 2020).

Finally, neuroscientists have recently started to pursue other research avenues
investigating, for instance, the role of the GABAergic system in depression. As such,
negative allosteric modulators of the α5-containing GABAA receptors displayed
similar effects as Ketamine in rodent models of chronic stress, primarily replicating
its fast-acting properties at the behavioral and synaptic levels (Fischell et al. 2015;
Xiong et al. 2018).
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4.1.8 Limitations of Current Knowledge on Ketamine Use
in MDD

Our current knowledge on the mechanisms of action of Ketamine and its short- and
long-term effects is still incomplete and often subject to inconsistencies (Polis et al.
2019). These limitations are due to various factors that will be discussed here.

First and foremost, the vast majority of what we know on Ketamine effects on
neuronal circuits and cellular mechanisms involved in emotional regulation is based
on preclinical models that rarely recapitulate all aspects of depression (Ramaker and
Dulawa 2017). Moreover, rodent models often fail to include sex as a biological
variable. This limitation is of particular importance for two reasons: (1) females are
more sensitive to stress-induced changes in emotional behaviors. This increased
stress vulnerability at the behavioral level noted in animal models parallels nicely
with human data showing an increased risk for stress-related disorders in women and
is also evidenced by female-specific changes in gene expression in the PFC follow-
ing stress exposure in mice (Barko et al. 2019); (2) there is a lack of studies reporting
sex-specific effects of Ketamine. Furthermore, the increased sensitivity of females to
Ketamine deserves to be investigated in depth to fully grasp the importance of sex
hormones on Ketamine antidepressant properties, including the associated risk for
abuse in the female population (Saland et al. 2017; Wright et al. 2019).

Another significant limitation is that most of the work conducted in rodent models
is based on a single, acute dose of Ketamine. In contrast, in the human depressed
population, the administration of multiple doses is a necessity. A study conducted in
rats in 2017 showed that long-term treatment with Ketamine failed to induce
antidepressant effects in chronically stressed rats (Jiang et al. 2017). In contrast,
Borsoi et al. showed that mice exposed to daily Ketamine for 14 days displayed a
reduction in the immobility time in the FST compared to controls (Borsoi et al.
2021). This inconsistency in findings emphasizes the importance of further investi-
gation related to repeated exposure to Ketamine regimen and the possibility of
interference with its sustained antidepressant properties. Another critical factor that
might be related to the discrepancy related to short- and long-term effects of
Ketamine found in previously mentioned animal studies is that Jiang’s study
(Jiang et al. 2017) was conducted in stressed rodents, while Borsoi’s research
(Borsoi et al. 2021) was done in non-stressed control mice. The differences observed
in those two preclinical studies are in alignment with human studies as it has been
reported that the effects of Ketamine are opposite between depressed
patients vs. healthy controls (Nugent et al. 2019). Indeed, an fMRI study further
supported this finding showing that Ketamine effects on activation of specific brain
regions during emotionally valenced attentional processing in MDD
patients vs. healthy controls are diametrically opposite (Reed et al. 2018). In
conclusion, the use of control non-stressed animals (and by extension of healthy
control human subjects) to elucidate antidepressant mechanisms of action of Keta-
mine is highly controversial as it does not necessarily reflect what would happen in
the depressed brain (Fitzgerald et al. 2019).
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Altogether, the discovery of the antidepressant properties of Ketamine gave hope
to the millions of individuals affected by depression. The fast-acting and sustained
effects make Ketamine a unique and probably the most efficient contemporary
approach for TRD. In addition, the study of its mechanisms of action confirmed
the importance of glutamatergic transmission, neurotrophic factors, and synaptic
plasticity in the neuropathology of depression (Pereira and Hiroaki-Sato 2018).
Unfortunately, the severe side effects associated with Ketamine use significantly
limit its widespread administration. For instance, although the U.S. Food and Drug
Administration approved in 2019 Esketamine nasal spray for TRD, it remains only
available through a restricted distribution system under a Risk Evaluation and
Mitigation Strategy (REMS) because of its sedative and dissociative effects. How-
ever, it needs to be emphasized that an even more significant benefit of Ketamine
introduction in the field of human psychopharmacology is that it led to the discovery
of new Ketamine-like compounds that are currently being tested in difficult-to-treat
depressive patients. Hopefully, these new initiatives from both academia and indus-
try members will pave the way for developing and introducing novel, more sophis-
ticated antidepressant agents expressing similar efficacy levels associated with much
more benign safety profiles.

4.2 Future Directions for Glutamate-Based Management
of Chronic Stress and Stress-Related Disorders

Chronic stress exerts widespread actions in the central nervous system (CNS),
ranging from the regulation of gene transcription, cellular signaling, synaptic struc-
ture, and neurotransmission to cognition, emotion, and behavior (de Kloet et al.
2005; McEwen et al. 2015). Maladaptive plasticity in stress-vulnerable subjects, in
turn, increases the risk of developing major psychiatric and neurodegenerative
diseases. However, while chronic exposure to adverse experiences may direct the
stress response toward negative health outcomes, proadaptive interventions can
re-shape brain circuits, redirecting illness-related trajectories to those associated
with enhanced mental and physical well-being (McEwen and Akil 2020).

This section presents strategies that would increase the understanding of the
pathophysiological processes underlying (mal)adaptive stress responses, helping
us develop interventions that will mitigate the effects of chronic stress and prevent
stress-related disorders.
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4.2.1 Improving the Utility and Translation of Animal Models
of Chronic Stress-Induced Disorders

Studies in laboratory animals are essential to allow mechanistic insights into the
association between chronic stress and systemic diseases. Ideally, animal models
should mimic the natural course of diseases and induce similar stress responses as
seen in humans, but, unfortunately, each model of stress suffers from its own
limitations (Czéh et al. 2016; Wang et al. 2017; Planchez et al. 2019).

Different nervous and humoral system regions are activated depending on the
type, duration, and intensity of stressors. The personality traits and attitudes towards
stress also strongly influence pathophysiological responses to stress. Moreover,
some symptoms of psychiatric diseases, such as the feeling of guilt, suicidal
thoughts, the inability to cope with financial distress, or the loss of a loved one,
are not possible to replicate in animals. Overall, this complexity presents many
challenges in creating suitable animal models of stress, making the interpretation of
animal experiments largely presumptive.

A main confounding factor is that animals and humans have a unique ability to
adapt to chronic stresses, thus diminishing the magnitude of adverse reactions over
time. In this context, mimicking closely the naturalistic conditions associated with
human living and MDD, the unavoidable and unpredictable nature of the stress
regimen plays a crucial role in the preclinical modeling of depression (Willner and
Mitchell 2002). However, this increases the complexity of the model (difficulty in
performing the experiments, which demand substantial work, space, and time) and
the risk of losing reliability if not significantly increasing the number of animals
included in the study.

While no single animal model presents the ideal system for assessing depressive
behavior, different paradigms have advantages over others for studying specific
aspects of the disease. For example, the chronic social defeat model has the advan-
tage of addressing core and common symptoms of depression such as long-term
anhedonia and helplessness and other clinical aspects highly comorbid with major
depression such as anxiety and social avoidance (Patel et al. 2019). However, social
defeat is mainly limited to adult male animals and might be difficult to be translated
to all strains. On the other hand, chronic mild stress overcomes the issue related to
stress prediction and can be applied to both males and females from several different
strains. Still, its major drawbacks are that it is laborious and time-consuming
(Willner 2005).

Studying resilience is also essential for understanding what causes stress suscep-
tibility (McEwen 2016). Thus, models that include this aspect can significantly
benefit us in understanding the consequences of chronic stress. More comprehensive
studies of chronic stress may need to use several strains, multiple testing models,
cross-compare genetic and epigenetic expressions and activity, and always collab-
orate with human data, including both ex vivo and postmortem tissues (Willner
2016).
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4.2.2 The Heritable Aspect of Environmental Stress

The epigenome (the term derived from the Greek word “epi”, which means “above”
the genome) is critical for establishing and maintaining cell identity. At the same
time, epigenetic changes are also involved in regulating numerous cellular functions,
including adaptation to external changes and chronic stress response (Torres-Berrío
et al. 2019).

The idea that epigenetic inheritance can be affected by environmental factors in
the absence of DNA mutagenesis and that the resulting changes can propagate to
subsequent generations via the germline has been a matter of considerable debate.
However, converging compelling evidence suggests that the long-term molecular
and functional consequences of chronic stress exposure, together with the associated
behavioral phenotype, can be transferable to offspring via epigenetic mechanisms
(Bohacek and Mansuy 2015; Zucchi et al. 2012; Jawaid et al. 2018). Importantly,
such effects are not limited to the first generation but may be transmitted to a second
or several subsequent generations, thus resulting in transgenerational epigenetic
inheritance of maladaptive responses to environmental stress, which could poten-
tially affect the risk of developing stress-related systemic disorders.

In humans, the best evidence for transgenerational inheritance induced by envi-
ronmental factors relates to the effects of diet and food availability in early life. For
example, gestational famine has been associated with a higher risk of obesity,
glucose intolerance, and coronary heart disease in adulthood (Lumey et al. 2011).
Considering that transgenerational human studies are complex because of the time
scales involved and the influence of genetic, social, and cultural factors, animal
studies have been undertaken to elucidate the underlying mechanisms. Indeed, many
preclinical studies have shown that different early-life environmental stressors may
impact health and disease risk in subsequent generations, with mechanisms involv-
ing alterations in DNA methylation, histone modifications, and small RNAs
(Bohacek and Mansuy 2015; Zucchi et al. 2012; Jawaid et al. 2018). These changes
occur despite the extensive epigenetic reprogramming occurring in the mammalian
germline to ensure the totipotency of the zygote through both the maternal and
paternal lines (Fig. 4.3). Importantly, transgenerational inheritance involves alter-
ations in the germline epigenome, thus ensuring the transmission of effects across
generations.

Understanding how the effects exerted by chronic stress in one individual may
affect subsequent generations may significantly improve successive generations’
health prospects and quality of life.

4.2.3 Biomarkers in Stress-Related Disorders

Ongoing research on animal models of stress and the study of clinical outcomes in
chronically stressed individuals promise to improve our understanding of trajectories
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of a stress response. Moreover, identifying molecular and systemic mediators asso-
ciated with (patho-)physiological stress response can help determine biomarkers
(proteins, enzymes, hormones, chemicals, metabolites, genes, or by-products),
which may have the potential to be used as effective clinical tools. Indeed, a large
body of research has focused on searching for diagnostic biomarkers as indicators
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Fig. 4.3 Inheritance of an epigenetic memory caused by stress exposure produces phenotypes in
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for physiological and pathological processes underlying chronic stress response and
predictive biomarkers giving us the information about pharmacological response to
therapeutic intervention for stress-related disorders (Dhama et al. 2019).

Classical stress markers comprise endocrine changes, especially in hormones
such as cortisol and epinephrine. Other potential biomarkers include thermal stress
markers, such as heat shock proteins (HSPs), innate immune markers, such as acute
phase proteins (APPs), oxidative stress markers, and chemical secretions within
saliva and urine. However, the reaction to environmental stressors differs substan-
tially between individuals, and the stress response cannot be considered universal.
Therefore, although various critical molecular signatures have been identified in
association with stress-related disorders, identifying the best and most reliable
biomarker(s) is crucial because the most promising markers need to be highly
correlated with the specific pathophysiological aspects of the clinical condition
(Dhama et al. 2019; McEwen 2015). However, due to the complexity of the
human body functioning, it would be necessary to consider multiple parameters,
possibly covering at the same time potent mediators of the cardiovascular, CNS,
hepatic and nephrological disorders, energy dissipation, and anti-oxidative defense,
to identify clusters of biomarkers associated with stress vulnerability and onset of
different diseases.

The first attempt toward combining such data may involve metabolic modeling
studies, which potentially give perspective about multisystem involvement and
widespread disturbance in various biomarkers associated with protective and stress
pathways (Dhama et al. 2019). From this perspective, the accurate evaluation of
stress markers available through non-invasive methods from saliva, urine, tears, and
feces will be a critical part of measuring the stress response in humans, thus requiring
the inclusion of a wide range of (patho)physiological parameters. Present quantita-
tion methods based on immunological, chromatographic, and mass spectrophoto-
metric assessments, despite some variability, can produce reliable results. However,
further scientific and technical advances are necessary to make possible profiling of
the markers in each biological sample, providing a broader chance to identify
optimal and specific biomarkers of stress-related disorders.

4.2.4 Preventive Nutritional and Behavioral Strategies
to Counteract the Effects of Chronic Stress

The relationship between dietary constituents, nutrition, inflammation, and oxidative
stress has been well established and plays a significant role in response to chronic
stress (Ramos-Lopez et al. 2021). Dietary and nutritional ingredients known to exert
anti-inflammatory and antioxidant properties include omega-3 fatty acids,
vitamin A, vitamin C, E, and phytochemicals, such as polyphenols and carotenoids.
Moreover, plant-based food consumption has been associated with additional health
benefits, including anti-inflammatory properties obtained through short-chain fatty
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acids, metabolic compounds produced during the fermentation process of carbohy-
drates (dietary fiber), and vegetal proteins by human intestinal microbiota. Such anti-
inflammatory compounds could play an essential role in maintaining overall homeo-
stasis disrupted by inflammation and oxidative stress, both before and during chronic
stress exposure (Marx et al. 2017; Sarris 2019).

In contrast, high fat/high-calorie diets and excessive fructose consumption con-
tribute to increasing inflammation (Tan and Norhaizan 2019). Similarly, conditions
such as obesity and diabetes are associated with adipose tissue dysfunction and
low-grade systemic inflammation (Luppino et al. 2010; Milaneschi et al. 2019). All
these factors contribute to the development of cardiovascular disorders and diabetes
and increase the risk of infections and susceptibility to chronic stress. Accordingly,
many pathways connect exposure to stressful conditions and obesity, including HPA
axis activation, changes in feeding behavior, reward processing, microbiome, and
cognitive performance.

Physical activity also substantially impacts redox homeostasis, and regular phys-
ical exercise reduces the body’s stress hormones, such as adrenaline and cortisol
(Kandola et al. 2019). While some physical exercise may exert anti-inflammatory
effects depending on the type of activity, exercise duration, body composition,
gender, and age, excessive physical activity can instead induce inflammation as
the exercise itself represents a type of physical stress that challenges homeostasis.
Moderate exercise has been consistently shown to bring about many positive
physiological changes, resulting in improved mood state, self-esteem, and decreased
stress and anxiety levels (Dinas et al. 2011). It seems that the benefits of exercise are
the result of numerous physiological and psychological changes, involving increased
endorphin levels, body temperature, mitochondrial function and
mitochondriogenesis, neurotransmitter production, as well as attenuation of the
HPA axis response to stress (Phillips 2017). Moreover, physical exercise increases
dopaminergic signaling, particularly in the reward pathway, and promotes
glutamatergic neurotransmission-induced neuroplasticity.

Overall, the combination of several lifestyle components, including sleep habits,
smoking, alcohol consumption, interacts with the genetic background, shaping an
individual’s ability to cope with stress. This interplay leads to epigenetic modifica-
tions, affecting inflammatory pathways and inducing neuroinflammation (McEwen
2016; Ramos-Lopez et al. 2021). However, due to the heterogeneity of the existing
data and the scarcity of studies in humans, additional double-blind placebo-con-
trolled randomized clinical trials in the field of nutriepigenetics are required. Pro-
gress in the identification of epigenetically active dietary components and lifestyle
factors will strongly contribute to the creation of innovative prophylactic and
therapeutic interventions, which will include daily consumption of dietary bioactive
compounds, regular physical activity, and other optimal lifestyle behaviors adjusted
to the specific population and disease groups.
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4.2.5 Nutritional Supplements for the Treatment
of Depressive Symptoms

A possible link between specific micronutrient supplementation and its antidepres-
sant effects has also been proposed (Hoepner et al. 2021). Indeed, in line with the
evidence described in the previous paragraph, several nutrients, including vitamins,
minerals, fatty acids, and essential amino acids, have been implied in the regulation
of neurological, hormonal, neurotransmitter, and other signaling pathways related to
chronic stress-induced depressive symptoms. Among those, although with mixed
results, most of the studies focused on folate, homocysteine, S-adenosylmethionine
(SAMe), L-acetylcarnitine, alpha-lipoic acid, N-acetylcysteine, L-tryptophan, zinc,
magnesium, vitamin D, omega-3 fatty acids, coenzyme Q10, and inositol.

Some reports also suggested that augmenting conventional antidepressants with
“medical foods” may be a viable option for individuals with depression who have
tried and failed multiple antidepressant regimens. L-acetylcarnitine and
L-methylfolate have obtained the most robust body of evidence as putative
antidepressant-augmenting agents (Chiechio et al. 2018; Martone 2018). Impor-
tantly, preclinical observations demonstrated that antidepressant properties of
L-acetylcarnitine involve neuroplastic effects, which are in turn dependent on
changes in neurotransmitter regulation and metabotropic glutamate receptor
upregulation, further confirming the importance of glutamatergic neurotransmission
in the induction of antidepressant effects and neuroplasticity (Nasca et al. 2017). In
addition, preclinical evidence showed that other micronutrients, including
L-theanine, curcumin, taurine, zinc, magnesium, and selenium, may exert
antidepressant/anti-stress effects through mechanisms involving the modulation of
glutamatergic transmission.

Although the molecular mechanisms linking nutritional supplementation with
changes in central glutamatergic function remain largely unknown,
anti-inflammatory and metabolic actions are likely to be involved. Indeed, both
inflammation and interference with glutamate metabolism may impact glutamate
transmission through processes involving glutamate excitotoxicity, oxidative stress,
and apoptosis (Miller et al. 2009).

4.2.6 Conclusion: Dealing with Stress

The stress response involves several systems, ranging from endocrine and immuno-
logical functions to cognitive, emotional, and behavioral responses. Thus, the
consequence of chronic stress has a relevant impact at several levels, including
physical well-being, psychological and sociological aspects. However, combined
preclinical and clinical evidence shows that a dysregulated stress response can be
redirected or re-tuned, not only through medical approaches but also through
psychosocial strategies, as well as through a greater emphasis on general health
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and mental and physical fitness as the means of achieving resilience (de Kloet et al.
2005; McEwen et al. 2015; McEwen and Akil 2020). Thus, a primary goal should be
to create incentives at home and in the workplace that encourage individuals to learn
tools that will help them engage in beneficial lifestyle practices.

In this context, there is a general interest in developing methods for stress
assessment and monitoring, especially at the workplace (Carneiro et al. 2019).
Indeed, while occupational stress affects individuals personally, it also has a severe
economic impact. This substantial financial burden calls for the development and
implementation of initiatives for stress management that would simultaneously
reduce the enormous costs associated with absenteeism and presenteeism and
improve employee overall physical and mental well-being. Moreover, the primary
aim of these interventions would be that both people and businesses can not just
survive but thrive in the global economy associated with constant VUCA (Volatility,
Uncertainty, Complexity, and Ambiguity) due to frequent economic, ecological, and
pandemic crisis. The most recent example pertains to the pandemic caused by the
COVID-19 virus, which led to transitioning to a “New Normal” workplace and
industry practices, forcing most companies to shift to remote, home-based working
and online trade.

Meanwhile, recent technological and scientific advances in organizational psy-
chology related to workplace stress management and monitoring added several
innovative appliances and methods to the traditional ones (e.g., physiological sen-
sors, specific job-tailored questionnaires). The most progressive approach uses
various ambient intelligence systems to continuously monitor employee well-being
and stress levels in the working environments without interference. These systems
should then be adjusted and tailored according to the corporate environment and
cultural specifics. They would also include identifying the critical stressors related to
the specific job design and task, followed by a detailed evaluation of their impact on
the employee’s work performance and job satisfaction levels, eventually enabling
successful implementation of long-term personalized workplace stress management
practices.

Indeed, in addition to detecting and monitoring stress, some workplace studies
also proposed various modalities that could be easily employed to alleviate stress.
For example, some ancient techniques found to be highly beneficial in managing
stress are yoga and meditation, which could be performed during regular breaks in
indoor or outdoor corporate facilities. An even better and more efficient alternative
would be the introduction of “just in time” effective stress management interventions
to alleviate physical and mental tension associated with increased stress levels “on-
the-spot” without leaving the office space, thus assuring continuous and long-lasting
personal well-being, which would eventually translate into improved employee
engagement and increased performance (Can et al. 2019).

Finally, all these developments gave a solid impetus to human resource pro-
fessionals to improve or recreate policies related to mental health promotion while
assuring continuous education and training of leaders, managers, and employees in
various occupational and psychological safety practices leading to increased work-
place and subjective well-being.
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Although developing such innovative systems for monitoring and managing
workplace stress is challenging, there are even more issues to deal with when taking
a step outside controlled environments. Typically, researchers aim to detect stress
levels and help all individuals to better cope with high-stress levels in their daily
lives. However, this approach is associated with multiple deficiencies in stress-
detection accuracy and reliability. Indeed, most of these assessment methods rely
on user reports, surveys, and non-validated questionnaires, which could lead stress
management and health experts in the wrong direction due to their high levels of
subjectivity.

Novel methodologies involving integrating different physiological measures are
required to improve stress-detection accuracy, with the final goal to bring benefits to
the general population. However, designing and bringing such applications to mass
markets will strongly depend on progress in technology, data analysis, and evalua-
tion methodologies to increase the comfort and accuracy of stress measurement.
Moreover, high inter-individual variability in results obtained would pose significant
difficulties to their accurate interpretation and negatively impact appropriate design-
ing and implementation of the specific stress management intervention on a com-
munity level.

Beyond external interventions, internal factors or traits may also be amplified and
targeted to increase individual coping strategies and prevent associated adverse
psychological and physical outcomes related to chronic stress exposure. Indeed,
individuals perceive stressful events differently, and some individuals are less
vulnerable to stress than others, which are deemed resilient. Since most people
who experience stressful events do not develop psychopathology, increasing interest
has been directed towards potential psychological resilience-promoting factors that
may be associated with or influencing mental toughness. Targeting these factors with
newly developed therapeutics may be one of the modalities to decrease the incidence
of mental and systemic illnesses.

It has been shown that increasing resiliency throughout the lifespan can slow
down the aging process, improve general health, and protect against external and
internal stressors. Regrettably, most researchers centered their studies on creating
resilience measurement instruments and identifying mental and physical factors
associated with psychological resilience rather than developing and testing effective
resilience interventions and therapeutic solutions (McEwen 2016). However, the
minority of them focused on assessing the effects of various ancient and novel
individual and psychosocial interventions that would increase individual coping
mechanisms. For example, mindfulness training, a cornerstone of Buddhist practice,
has been consistently related to improved concentration, increased self-awareness,
and decreased mind wandering resulting in positive mood states and more efficient
emotion regulation.

Moreover, Tang et al. showed for the first time that regular brief mindfulness
practice mediated beneficial effects on brain activity, morphology, and functional
connectivity through changes in brain glutamate metabolism in the ACC (see
Fig. 4.4) (Tang et al. 2020).
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In contrast to psychological interventions, the knowledge about the possibility of
enhancing mind and body resilience with pharmaceuticals is still scarce and lacks
human clinical trial data. Moreover, increased insights about the significant chal-
lenges and impediments associated with real-world implementation of established
interventions such as intermittent fasting and physical exercise noted in recent
community trials additionally discouraged neuroscientists and clinicians from dili-
gently pursuing studies on resilience (van der Kooij 2020). In contrast, in the last
couple of decades, sustained efforts from industry members mainly concentrated on
developing drugs and nutraceuticals that would efficiently increase mental and
physical resilience without adopting specific long-term lifestyle modifications. An
excellent example is a recent repurposing of medications with mTOR inhibitory
properties, such as Rapamycin (immunosuppressant), Resveratrol (natural polyphe-
nolic compound), and Metformin (antidiabetic drug) into the category of “caloric
restriction mimetics.”

Unfortunately, these pioneering activities were not too rewarding for their initi-
ators and promoters as most proof-of-concept studies, clinical development trials,
and data obtained during post-marketing surveillance showed mixed and inconsis-
tent effects of these compounds on stress biomarkers and chronic stress or specific
stress-related condition symptom levels (Faye et al. 2018).

Developing the most sophisticated stress-prevention modalities like innovative
drugs with pro-resilient properties would require a long-term collaborative strategi-
cal commitment of both academia and industry representatives, including their
significant joint workforce, time, and financial investments.
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Chapter 5
The Role of the Glutamate System
in Posttraumatic Stress Disorder
and Glutamate-Based Treatments

M. Popoli, A. Ieraci, and L. Musazzi

Abstract Posttraumatic Stress Disorder (PTSD) is a chronic mental illness with
limited options for treatment, characterized by intrusive memory of trauma, avoid-
ance, hyperarousal, emotional numbing, and anhedonia. PTSD is often triggered by
exposure to a single traumatic experience, with high prevalence among war veterans.
PTSD, together with other neuropsychiatric disorders, involves long-term changes in
the structure and function of brain areas, synaptic disconnection, and changes in
large-scale brain networks.

Trauma-focused psychotherapy is considered first-line treatment, with greater
and more persistent efficacy than pharmacotherapeutic approaches. Pharmacological
treatments include SSRI, particularly paroxetine and sertraline, and other traditional
antidepressants. The effect size of efficacy for these drugs is often small, with high
treatment resistance in certain populations. In recent years a major shift in the
conceptual framework of neuropsychiatric disorders has occurred, from the mono-
amine hypothesis to a neuroplasticity hypothesis, in which the glutamate system is
conceived as a primary mediator of pathology and a straight target for antidepressant
drugs. Novel potential treatment options have emerged in recent years, in particular
several modulators of the glutamate system, including ketamine, riluzole, D-cyclo-
serine, N-acetylcysteine. Ketamine, the prototypical rapid-acting antidepressant, has
received much attention for its complex mechanism of action (including clinical
trials), and has been proposed as a prophylactic agent against the onset of PTSD after
exposure to traumatic stress.

This chapter will explore new pharmacological approaches to the therapy of
PTSD, based on the modulation of the glutamate system.
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5.1 Posttraumatic Stress Disorder: A Stress-Related
Disorder

Most brain disorders are characterized by the so-called gene–environment interac-
tion, where the presence of mutations in the genome (particularly single-nucleotide
polymorphisms) moderates the effects of environmental factors in relation to resil-
ience or vulnerability for different psychopathologies. The most common and
influential among environmental factors in neuropsychiatric disorders are various
adverse life events, often conveyed under the name of “stress.” While it is known
that stress is a primary risk factor for neuropsychiatric disorders, and the popular use
gives the word “stress” a negative connotation, it is important to remember that the
stress response is a physiological reaction that subserves the adaptation to changes in
the environment (including those that are, or may seem, menacing). Under this
respect, it is not just the nature of the stressor itself but rather the kind of response
that may generate deleterious consequences for health (Duman and Aghajanian
2012; Pitman et al. 2012; Popoli et al. 2012; McEwen et al. 2015; Duman et al.
2016; Musazzi et al. 2017). A pro-adaptive stress response facilitates the achieve-
ment of a new level of adaptation through changes (allostatic change), while a
maladaptive response sets the system off-balance favoring the onset of psychopa-
thology (allostatic overload) (McEwen 2017).

However, in Posttraumatic Stress Disorder (PTSD), a debilitating, often chronic
and comorbid, mental illness with as yet limited options for treatment, the relation-
ship with the exposure to strong, traumatic events is particularly evident. It has been
estimated that 70% of the world population has been exposed to trauma and
approximately 6% of trauma-exposed individuals develop PTSD, although the
prevalence of PTSD varies widely across studies, due to different assessment
methods, kinds of stress and populations. However, many studies agree that its
prevalence is lower in the general population compared, for instance, with war
veterans (25%), suggesting that stressful events have a key role in its pathophysiol-
ogy (Koenen et al. 2017; Fulton et al. 2015). Typical symptoms of PTSD include
intrusive memories of trauma, avoidance of trauma-related stimuli, increased
arousal, vigilance and irritability, negative cognition and mood (including anhedo-
nia) (Fig. 5.1) (Kessler et al. 1995; APA 2013).
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5.1.1 Posttraumatic Stress Disorder Involves Dysfunctional
Processing of Fear Memory

PTSD is conceptualized as a disorder involving dysfunctional processing of fear and
fear memory. Fear is a primary emotion that has obvious evolutionary value,
defending our biological integrity from actual or envisaged danger, and may predis-
pose to a fight-or-flight reaction (Popoli et al. 2012; LeDoux 2014; McEwen et al.
2015; McEwen 2017). The biological mechanisms of fear memory have been
extensively studied in rodent models, particularly by using fear conditioning pro-
tocols (Milad and Quirk 2012; Izquierdo et al. 2016). In a classical protocol, rodents
receive brief inescapable shocks (unconditioned stimulus; US) coupled with an
acoustic or visual stimulus (conditioned stimulus; CS). The phase following this
training is called “fear memory consolidation.” When they are placed again in the
same context and exposed to CS (in the absence of US) they will freeze because they
associate CS to US. When this is repeated over time, rodents will learn that the CS is
no more painful and extinguish the fear memory. This phase is called “fear memory
extinction.” In early studies, it was proposed that fear conditioning may serve as an
animal model for anxiety disorders, including PTSD, and could be useful for
understanding the biological mechanisms of human disorders. PTSD-affected sub-
jects may form strong associations between traumatic events and sensory cues
present in the context of the trauma, which at some point become resistant to
extinction (Milad and Quirk 2012). Rodent studies showed that both fear
consolidation and fear extinction are active forms of learning, requiring (among
others) N-methyl-D-aspartate (NMDA) receptors for glutamate. Both rodent studies
and clinical studies with functional Magnetic Resonance Imaging (fMRI) identified a

Fig. 5.1 Core symptoms of Posttraumatic Stress Disorders
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fear circuitry involving (among others) amygdala and prefrontal cortex (PFC) as key
structures responsible for the formation and processing of fear memory. Activation
of amygdala is required for acquisition and expression of conditioned fear responses,
while PFC is activated in top-down control of amygdala and fear memory
processing. In particular, a number of studies showed that the rodent prelimbic
(PL) cortex increases fear expression and inhibits extinction, while infralimbic
(IL) cortex inhibits fear expression and increases extinction. In humans, fMRI
studies showed that dorsal anterior cingulate cortex (dACC) and ventromedial
PFC (vmPFC) are homologous of PL and IL cortex in rodents, respectively, in
relation to modulation of fear expression (Milad and Quirk 2012). In recent years,
the discovery of large-scale human brain networks has added a new level of
complexity to pathophysiology of PTSD (see Sect. 5.4.1, below).

The fear extinction mechanism has a clear translational value as a model for the
exposure therapy, widely used in the treatment of PTSD. A prominent feature of
exposure therapy is the extinction of the memory that caused the trauma, often a fear
memory that keeps coming back in the presence of environmental cues.
The objective of exposure therapy is to attain a degree of extinction by making the
subject re-experience elements of the traumatic events, through remembering the
events and engaging with, rather than avoiding, reminders of the trauma.

5.1.2 Posttraumatic Stress Disorder and Acute Stressors

In many cases, the exposure to a single traumatic event (a traffic accident, a natural
catastrophe, an episode of violence) is enough to trigger PTSD later. When humans
are exposed to trauma many experience symptoms typical of PTSD in the following
days and weeks. However, most of them recover and this is considered a form of
pro-adaptive stress response (allostatic change) and a manifestation of resilience.
Instead, a minor proportion of exposed subjects develop a permanent disorder that
may last for years or even a lifetime (Abdallah et al. 2019). These subjects show a
long-term maladaptive stress response (allostatic overload), a manifestation of
vulnerability. The difference between resilience and vulnerability is presumably
due to a complex interaction of genetic signature, sex, previous life events, and
severity of trauma. At least in PTSD, this last factor seems quite important because
the risk of developing the disorder is proportional to severity of the stressor. This
makes the odds even more difficult to calculate, because implies for all subjects an
individual threshold, separating resilience from vulnerability toward the conse-
quences of trauma. Paraphrasing the notorious line “every man has his price,” one
could say that every human has his/her stress threshold. Furthermore, for some
reason we do not understand, the percentage of subjects developing PTSD is higher
after trauma linked to human-related technology (car accident, plane crash, etc.) than
to natural causes (earthquakes, etc.).

It is common, in theoretical frameworks of mental illness, to consider chronic
stress as a major risk factor in pathophysiology. Yet, we know that at least for PTSD
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the disorder can be triggered by a single, although traumatic, stressful event. This
suggests that in some way even acute stress (lasting minutes to hours) can have long-
lasting consequences (years), perhaps by establishing a prolonged maladaptive stress
response. Along with other mediators, the glutamate system has a central role in this
maladaptive response, as shown in the following sections.

5.2 Central Role of the Glutamate System
in Pathophysiology of Posttraumatic Stress Disorder

Glutamate is by far the most abundant neurotransmitter in the brain, although its role
was not recognized until the early 1980s, much later than the monoaminergic
neurotransmitters (Sanacora et al. 2012). Particularly in the neocortex, about 80%
of all neurons release glutamate and form about 85% of all synapses (Orrego and
Villanueva 1993; Douglas and Martin 2007; Nava et al. 2015). Most of the
remaining neurons, about 20%, are γ-aminobutyric acid (GABA)-ergic inhibitory
interneurons, forming about 15% of synapses; all other synapses, including mono-
aminergic, acetylcholinergic, peptidergic or using other mediators, represent a much
smaller proportion. As an example, in the whole brain, there are approximately two
to three hundred thousand serotonergic neurons, compared to the roughly hundred
billion total neurons (Baker et al. 1991). This pervasive presence of glutamate is not
without a cost. The concentration of glutamate in the brain tissue is quite high (up to
10 mM), but the extracellular concentration is about ten thousand times lower
(<1 μM), thanks to the presence of efficient transporters on the membranes of
both astrocytes and neurons. If this mechanism is impaired, like in brain ischemia
or trauma, higher levels of extracellular glutamate become excitotoxic and may
induce neuronal death.

Throughout the years a major shift in the conceptual framework investigating
pathophysiology and treatment of neuropsychiatric disorders has occurred, from a
mainly monoamine-oriented hypothesis to a neuroplasticity hypothesis, in which the
role of the glutamate system is conceived as a primary mediator of neuropsychiatric
pathology and also a straight target for antidepressant drugs (Sanacora et al. 2012;
Duman and Aghajanian 2012; Abdallah et al. 2015; Lener et al. 2017; Murrough
et al. 2017). This has not undermined the important role of monoaminergic neuro-
transmitters in the fine-tuning of cognitive and emotional functions, and in the
pathophysiology of neuropsychiatric disorders.

There is a large and consistent body of evidence in the literature clearly showing
dysregulation of the glutamate system in stress rodent models and in human neuro-
psychiatric disorders, particularly in PTSD, as illustrated below.
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5.3 Preclinical Evidence of Dysregulation of Glutamatergic
System in Posttraumatic Stress Disorder: Rodent Stress
Models

A number of studies in recent years analyzed in detail the role of stress and stress-
related molecular/cellular/functional effects in the glutamate system, with regard to
pathophysiology of neuropsychiatric disorders (Gorman and Docherty 2010; Duman
and Aghajanian 2012; Popoli et al. 2012; Sanacora et al. 2012; McEwen et al. 2015;
Averill et al. 2017; Musazzi et al. 2017). Within this framework, a large body of
evidence on the role of the glutamate system comes from repeated or chronic stress
studies in rodents. Now, while it is generally assumed that chronic stress is associ-
ated with the pathogenesis of mood and anxiety disorders, the fact that PTSD may
also be triggered by acute exposure to a traumatic stressor contrasts with this
assumption. Indeed, it has been suggested that essential requirements for animal
models of PTSD should include the following: (1) the trauma must be relatively
severe, (2) a short duration of protocol should be sufficient to provoke PTSD-like
symptoms, (3) the intensity of the trauma should predict the severity of outcome, and
(4) significant interindividual variability should be observed in outcomes (Siegmund
and Wotjak 2006). For a comprehensive classification of the different animal models
of PTSD, see Flandreau and Toth (2018). Therefore, it seems essential, in rodent
models of PTSD, to assess long-term cellular/molecular changes that are associated
to PTSD-like long-term outcomes, possibly induced by short-term exposure to
traumatic stress (Flandreau and Toth 2018; Musazzi et al. 2018).

5.3.1 Mechanism of Neuroarchitecture Changes in Rodent
Stress Models

The most consistently observed consequences of chronic stress in rodents are the
changes of neuroarchitecture in three brain areas: prefrontal cortex (PFC), hippo-
campus (HPC), and amygdala. A whole array of studies using different stress pro-
tocols showed that chronic stress application reduces apical dendrite length and
branching of medial PFC pyramidal neurons (layers II/III and V) and HPC CA3
pyramidal neurons, while increasing dendritic density in basolateral amygdala. In
general, this dendritic atrophy in PFC and HPC goes along with a reduction of the
density of synaptic spines, and suggests that chronic stress induces a “synaptic
disconnection” syndrome within and between these areas (Duman and Aghajanian
2012; Sousa and Almeida 2012; Musazzi et al. 2017; Duman et al. 2019; Tornese
et al. 2019a). The preclinical results over the years have integrated, and contributed
to explain, the clinical neuroimaging data showing shrinkage of PFC and HPC,
particularly in major depression (see Sect. 5.4 below). What these studies compel-
lingly showed is the central role of the glutamate system in pathophysiology,
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because most neurons and synapses in these areas are glutamatergic, in particular
pyramidal neurons displaying synaptic disconnection.

A likely reason for these neuroarchitecture changes has been found in the
glutamate system itself, and is intimately linked to the mechanism of stress response
and its major mediators glucocorticoids. Early microdialysis found that different
acute stress protocols or administration of corticosterone (CORT; the main gluco-
corticoid stress hormone in rodents) rapidly increases the level of extracellular
glutamate in PFC and HPC (Bagley and Moghaddam 1997; Lowy et al. 1993;
Moghaddam 1993; Venero and Borrell 1999). However, total extracellular gluta-
mate does not exactly correspond to the pool of glutamate that is actively released at
synapses, and the actual demonstration of the impact of stress on glutamate release
was given by methods that measure the exocytotic release of aminoacid neurotrans-
mitters (Sanacora et al. 2012). In particular, the action of acute inescapable footshock
stress (FS) on glutamate release in PFC was shown by measuring glutamate release
from superfused purified synaptic terminals (synaptosomes), a method that allows
accurate characterization of the presynaptic release of endogenous amino acid
neurotransmitters (Popoli et al. 2012). The FS protocol induces long-term behavioral
changes resembling PTSD, and has the advantage to allow precise and reproducible
control of the shock parameters, as well as clearly defined and reproducible context
for stress. Long-term behavioral changes after FS include social avoidance, defen-
sive behavior, hypervigilance, sleep disturbances, generalization of fear (Bali and
Jaggi 2015; Flandreau and Toth 2018).

It was found that acute FS rapidly enhanced depolarization-evoked release of
endogenous glutamate from PFC synaptosomes, soon after completion of the stress
protocol (40 min). The enhancement of glutamate release was dependent on eleva-
tion of CORT levels and binding to CORT receptors, because treatment with
selective antagonists of glucocorticoid or mineralocorticoid receptor (GR/MR)
prevented the release increase. The enhancement of glutamate release was confirmed
by patch-clamp recordings in PFC and was prevented by chronic treatment with
different antidepressants (Musazzi et al. 2010). The mechanism was further dis-
sected by showing that CORT binds GR/MR located at glutamate synapses and
induces rapid (nongenomic) enhancement of the trafficking of glutamate synaptic
vesicles into the readily releasable pool (RRP), dependent on phosphorylation of
Ser9 in synapsin I (Treccani et al. 2014). These studies for the first time clearly
showed that CORT directly enhances presynaptic release of glutamate via neuronal
membrane-associated receptors. The outcome of this stress-induced surge of gluta-
mate is probably amplified by malfunction of glutamate clearance by glial trans-
porters, although the evidence for this after acute stress is scanty and limited to the
HPC (Yang et al. 2005; Homiack et al. 2018). Moreover, 13C-Magnetic Resonance
Spectroscopy studies demonstrated that chronic stress exposure decreases the
cycling and metabolism of glutamate and glutamine in PFC, an effect attributed to
a reduction in glial metabolism (Banasr et al. 2010; Duman et al. 2019).

In line with these findings, a widely shared hypothesis suggests that abnormal
enhancement of glutamate release induced by stress/CORT results in dendritic
atrophy, reduced spine density, and synaptic disconnection in PFC and HPC,
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when stress is repeated or sustained over time (Duman and Aghajanian 2012;
Sanacora et al. 2012; Abdallah et al. 2015; McEwen et al. 2015; Musazzi et al.
2017; Duman et al. 2019). Consistent with the hypothesis, blockade of N-methyl-D-
aspartate (NMDA) receptors during repeated restraint stress prevented stress-
induced apical dendritic retraction in mPFC (Martin and Wellman 2011). Initially,
retraction of apical dendrites could be an adaptive change against the glutamate
surge and spillover; for a discussion, see Musazzi et al. (2017).

5.3.2 Long-term Maladaptive Stress Response After Acute
Stress Involves the Glutamate System

As addressed in Sect. 5.3.1, neuroarchitecture changes in PFC and HPC have been
observed in many rodent studies using chronic protocols of stress; these findings
have contributed supporting the assumption that chronic stress is a major factor in
the induction of structural brain changes. However, in the last several years a few
studies have investigated the outcome of a single exposure to stress or of a few
closely spaced episodes of stress on neuroarchitecture. Interestingly, although with
different modalities, these studies found that also acute stress may induce atrophy of
apical dendrites or loss of synaptic spines in HPC/PFC. First, Izquierdo et al. (2006)
showed that a brief session of forced swim stress administered each day for 3 days,
followed by fear conditioning and extinction sessions, induced atrophy of apical
dendrites in infralimbic pyramidal neurons of medial PFC, together with impairment
of fear extinction. In the same study, it was shown that even a single session of swim
stress was enough to induce the dendrite atrophy observed at the end of the
experiment. Second, Hajszan et al. (2009) found that rats exposed to inescapable
FS in the context of a learned helplessness protocol (a popular model of depression)
showed similar loss of synaptic spines in CA1, CA3 and dentate gyrus of hippo-
campus, whether the spine density was assessed 1 day or 7 days after FS. A single
injection of corticosterone reproduced both the hippocampal neuroarchitecture
changes and the behavioral responses induced by inescapable FS. Third, Chen
et al. (2010) investigated the effects of short multimodal stress, a protocol containing
different forms of stress that lasts 5 h. They found reduction of synaptic spines
density in hippocampal CA3 area within hours after cessation of stress, along with
impairment of long-term potentiation, a well-known form of synaptic plasticity.
Taken together, these findings suggest that a single stressful event with short
duration or a few events closely spaced in time may induce rapid neuroarchitecture
changes in the brain.

Recently, using the same acute FS protocol that allowed a thorough dissection of
the action of stress and CORT on glutamate release in PFC (see above), it was found
that this brief exposure to stress induces after 24 h significant atrophy of apical
dendrites in pyramidal neurons of prelimbic PFC, similar to changes found by
studies using chronic stress protocols. Unexpectedly, this rapid change in
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neuroarchitecture was also found to be a stable long-term change, because it was
observed 1 and 2 weeks after acute FS (Nava et al. 2017). In parallel, it was found
that, different from the CORT elevation that was back to normal level soon after
cessation of stress, depolarization-evoked glutamate release was enhanced at all
times assessed up to at least 24 h. The RRP of glutamate vesicles (largely responsible
for the enhancement of release) and the phosphorylation of Ser9 of synapsin I,
previously shown to be functional to the RRP size increase, were also increased at
all times including 24 h (Musazzi et al. 2016). Taken together, these last studies
showed that acute stress exerts rapid, destabilizing effects on synaptic glutamate in
PFC, as well as sustained enhancement of depolarization-dependent release of
glutamate, at least for 24 h. During this time, between start of stress exposure and
24 h, rapid atrophy of apical dendrites occurs in PL PFC; this atrophy is not transient
but lasts for at least 2 weeks. Therefore, for the first time, it was clearly shown that a
brief episode of inescapable stress may induce long-term neuroarchitecture changes
in the brain, with synaptic disconnection and likely functional impairment. Indeed,
impairment in T-maze performance, a test for working memory (largely dependent
on PFC), was observed in the rats 24 h after FS stress (Musazzi et al. 2019).

Overall, the few studies that assessed the effects of acute or sub-acute stress on
neuroarchitecture demonstrated that brief exposure to stress may induce not only
rapid changes (within hours) but also reproduce the sustained structural changes that
are typical of chronic stress. These results and future developments may help
understand how acute FS and other protocols used as models of PTSD may induce
long-term behavioral changes. An interesting consequence of this is that protocols
based on acute stress models could work somewhat better than chronic models to
understand not only pathophysiology of PTSD, but also of depression and other
stress-related disorders. Indeed, when chronic stress models are used, we look at the
outcome after several days or weeks of repeated stress, just missing everything that
happened in the middle. Instead, when using acute stress protocols it is easier to
follow the changes with time in structural/functional readouts, along with changes in
behavioral readouts, something that could tell us more about relevant pathophysio-
logical changes. An added value of this approach is that this is also an excellent
ground for testing novel drugs, such as the new rapid-acting antidepressants
(Musazzi et al. 2018).

5.4 Clinical Evidence of Dysregulation of Glutamatergic
System in Posttraumatic Stress Disorder: Neuroimaging
Studies

Clinical evidence for dysregulation of glutamatergic system in neuropsychiatric
disorders comes from a large array of neuroimaging studies, which explored over
the last three decades the brain structural and functional changes associated with
mental illness (Koolschijn et al. 2009; Kempton et al. 2011; Sanacora et al. 2012;
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Schmaal et al. 2016). All the cortical and limbic areas where changes have been
found are areas where glutamate neurons and synapses predominate (see Sect. 5.2).
Some of these areas, in particular HPC and PFC are smaller in major depression (the
largest number of studies) and, in a few studies, a reduced density of dendrites and
synaptic spines has also been found in the same areas, like in preclinical studies (see
Sect. 5.3.1) (Soetanto et al. 2010; Kang et al. 2012). Therefore, it is assumed that, in
both rodents and humans, the neuroarchitecture changes are the main reason for the
volumetric changes described by neuroimaging (Musazzi et al. 2017). Within this
body of work a fair number of published works have described the relevant changes
in PTSD brain, with many studies using structural or functional Magnetic Resonance
Imaging (MRI). Main areas implicated in PTSD by the findings from MRI studies
include the HPC, mPFC, dorsal anterior cingulate cortex (dACC), insula and
amygdala. In particular, structural MRI studies found lower volume of HPC, rostral
ventromedial PFC, and dACC in PTSD (Bremner et al. 1995; Gurvits et al. 1996;
Smith 2005; Kitayama et al. 2006; Kasai et al. 2008). A recent meta-analysis
evaluated a number of studies, comparing PTSD with control groups that included
non-traumatized and traumatized subjects in the analysis. The results showed sig-
nificant volumetric reduction in various areas (Fig. 5.2) and also that PTSD patients
exhibited reduced total brain and intracranial volume. As many of the areas showing
volumetric changes in PTSD were the same as in major depression but total brain
volume was not changed in the latter, the changes in total brain volume seem to
distinguish PTSD from depression (Bromis et al. 2018).

Functional MRI or Positron Emission Tomography (PET) has been used in most
functional neuroimaging studies. They found altered activity in amygdala, vmPFC,
dACC, HPC, and insula. Amygdala (which is powerfully activated by stressful
events and has a crucial role in fear learning), dACC, and insula were found to be
hyperactivated in PTSD. Instead, vmPFC showed reduced activation, while HPC
showed less or more activation in different studies. Decreased vmPFC activity was
associated with increased amygdala activity. Many of these studies (both structural
and functional) have been the object of meta-analyses, substantially confirming the
alterations found (Karl et al. 2006; Kitayama et al. 2006; Hayes et al. 2012;
O’Doherty et al. 2015; Bromis et al. 2018; Kunimatsu et al. 2019). These findings
are in line with a classical network model of PTSD, which posits a reduced capacity
of cortical areas to control fear and negative emotional responses, with increased
attentional bias toward threat, increased fear response, and defective extinction of
traumatic memories. In this theoretical framework, the capability of HPC to use
contextual cues to signal safety, and of vmPFC to promote extinction of conditioned
emotional responses related to traumatic learning, would be impaired (Rauch et al.
2006; Pitman et al. 2012).

With regard to neuroimaging data related to other neuropsychiatric disorders
(e.g., depression) it has been much debated if volumetric reductions in HPC and
PFC are a result of a maladaptive stress response following exposure to trauma or
rather represent a pre-existing risk factor, due to genetic signature and/or previous
life events. The same applies to volumetric changes observed in PTSD. A study with
monozygotic twins, in which one of the twins was a war veteran with PTSD and the
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other had not been exposed to combat, failed to find HPC volume difference among
the twins. In both twins HPC was smaller than in veterans that did not develop
PTSD. These results suggested that smaller HPC volume represents a pre-existing
vulnerability factor (Gilbertson et al. 2002). On the other hand, other studies showed
that functional measures, including skin conductance response and heart-rate
response to loud tone stimuli, are acquired features of the disorder (Orr et al.
2003; Metzger et al. 2008; Milad et al. 2008). Overall, a meta-analysis of 39 studies
investigating HPC volume in subjects with PTSD, trauma-exposed controls without
PTSD, and trauma-unexposed controls, found that trauma exposure itself, in the
absence of PTSD, was associated with HPC volume deficits, with further reduction
in subjects with PTSD (Woon et al. 2010). This would suggest that reduced HPC
volume is a consequence of trauma and not a pre-existing risk factor. For a
discussion, see Pitman et al. (2012).

Fig. 5.2 Results from a Region-of-Interest meta-analysis of 66 structural MRI studies comparing
patients with PTSD with non-traumatized or traumatized control subjects. Compared with all
control subjects, PTSD patients had reduced brain volume, intracranial volume, and reduced
volumes of the hippocampus, insula, and anterior cingulate. Hedges’ g (Cohen effect size with
small-sample correction) is shown for each structure, with 95% confidence intervals. The effect size
is positive when the structure is larger in patients with PTSD compared with control subjects and
negative when the structure is smaller in PTSD patients. The number of studies included in each
meta-analysis is indicated for each structure (from Bromis et al. 2018)
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5.4.1 Clinical Evidence of Dysregulation of Glutamatergic
System in Posttraumatic Stress Disorder:
Network-Based Models

As addressed above, there is compelling evidence for structural and functional brain
network dysfunction in PTSD, traditionally based on abnormal connection between
HPC, PFC, and amygdala. In recent years, based on a large body of evidence from
neuroimaging studies, a more complex model has been proposed, the so-called triple
network model, which allows a broad synthesis from a system’s neuroscience
perspective (Menon 2011). The model stems from the discovery that the human
brain is intrinsically organized into coherent large-scale functional networks. The
three networks, that have been identified across a wide range of cognitive tasks, are:
the Central Executive Network (CEN), the Default-Mode Network (DMN), and the
Salience Network (SN). The CEN, also called frontoparietal system, is anchored in
dorsolateral PFC and posterior parietal cortex (PPC). This network is responsible for
high-level cognitive functions such as planning, decision making, and the control of
attention and working memory; it is engaged in goal-directed behavior and in
top-down regulation of emotions. The DMN spans various areas, including the
PPC, medial PFC, and medial temporal lobe, including HPC. Contrary to the
CEN, the DMN is typically deactivated during most stimulus-driven cognitive
tasks. It is a large-scale network of brain areas forming an integrated system for
self-related cognitive activity, including autobiographical, self-monitoring, and
social functions. The SN is a large-scale brain network, anchored in the dorsal
anterior cingulate cortex (dACC) and frontoinsular cortex (FIC), which also includes
the amygdala and the substantia nigra/ventral tegmental area. It is involved in
detecting, integrating, and filtering relevant interoceptive, autonomic, and emotional
information. It is important for detection and mapping of salient external inputs and
internal events; it has been suggested that a key function of this network is to identify
the most homeostatically relevant among different internal and external stimuli to
guide behavior (Menon 2011 and refs. therein).

CEN and SN are typically activated during stimulus-driven processing of cogni-
tive and affective information, while DMN shows reduced activation during tasks in
which self-referential and stimulus-independent memory recall is not crucial. The
triple network model proposes that deficits in engagement and disengagement of
these three core networks play a significant role in both neuropsychiatric and
neurological disorders. A key role in the model is assigned to the SN, which may
show weak salience detection and mapping of goal-relevant external stimuli and
internal mental events. The defective action of SN may give rise to aberrant
engagement of the frontoparietal CEN, compromising cognition and goal-relevant
adaptive behavior. Also, weak engagement or disengagement of the DMN by salient
events is associated with altered self-referential mental activity, such as excessive
rumination in depressed patients. It was proposed that aberrant access, engagement,
and disengagement of these three large-scale neurocognitive networks play a prom-
inent role in several brain disorders, including schizophrenia, depression, anxiety,
dementia, and autism.
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This theoretical framework integrates on a higher level of complexity the vast
literature on neuroarchitecture changes revealed by neuroimaging and poses several
questions that are still open. These questions include the following: how are the
neuroarchitecture changes in different areas associated to specific functional network
changes and what are the specific changes (if any) relevant for different symptom-
atology? For instance, the evidence for altered glutamatergic metabolism within
these networks in major depression has given further insight into how aberrant nodes
influence within- and across-network interactions, and how this is linked to a chore
symptom of depression, e.g., anhedonia (Walter et al. 2009; Horn et al. 2010).

Recently, the triple network model framework has been applied to PTSD patho-
physiology (Fig. 5.3) (Akiki et al. 2017). Emphasizing the central role of the SN, it

Salience Network

dACC, amygdala, insula

activity and intrinsic
connectivity

Heightened threat-detection
(hyperarousal)
Impaired DMN and CEN
modulation

Default Mode NetworkCentral Executive Network

dIPFC, precuneus vmPFC, PCC, MTL

activity and intrinsic
connectivity

activity and intrinsic
connectivity

Disrupted internal mentation
(intrusive symptoms, re-
experiencing)
Altered sense of self/reality
(dissociation)
Fear generalization
(avoidance)

Cognitive deficits
Loss of top-down SN
regulation

Fig. 5.3 Network-based neurobiological model of PTSD. The salience network (SN; orange), the
central executive network (CEN; blue), and the default mode network (DMN; red) are represented.
Under each network the notable regions of interest, the putative changes in activity and connectivity
in PTSD and the resulting behavioral abnormalities are reported. According to the model, the SN is
hyperconnected/hyperactive, has a low threshold for perceived saliency (underlying hyperarousal),
and exerts aberrant modulation of DMN-CEN. The CEN is weakly interconnected/hypoactive
(underlying impaired cognition), resulting in impaired top-down SN regulation. The DMN is
weakly interconnected/hypoactive, resulting in impaired ability to maintain a homeostatic inner
state (intrusive symptoms), altered sense of self/reality (dissociation), and fear generalization
(avoidance) (from Akiki et al. 2017)
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has been proposed that hyperactivity of SN, with a low threshold for perceived
saliency, is involved in hyperarousal symptoms and heightened threat detection.
This in turn brings about aberrant modulation of CEN and DMN (e.g., switching
between task-relevant and task-irrelevant behavior). Defective engagement of CEN
results in cognitive deficits and loss of top-down regulation of SN. Defective
engagement of DMN results in disrupted ability to maintain a homeostatic inner
state (e.g., intrusive symptoms, re-experiencing), altered sense of self/reality (disso-
ciation), and fear generalization (avoidance). Based on MRI studies of PTSD, it has
been suggested that changes in the SN network may predict psychotherapy treatment
response using exposure therapies. Successful psychotherapy treatment response
would involve the ability to downregulate amygdala activity to trauma-related
stimuli, through modulation of the SN (Szeszko and Yehuda 2019).

It is not clear yet how the structural changes observed in the different areas in
PTSD (see Sect. 5.4) are related with the connectivity changes within and across
networks. Also, it is not clear if the structural changes are a causal factor for the
functional abnormalities, or whether the functional abnormalities induce long-term
structural changes. Longitudinal studies are necessary to clarify these points. How-
ever, once again, it should be underlined that, in the triple network model,
glutamatergic excitatory transmission is predominant in the connections within
and across networks.

5.5 Current Treatments for Posttraumatic Stress Disorder

Psychotherapy is generally considered first-line treatment for PTSD. A recent meta-
analysis showed that effect sizes for trauma-focused psychotherapies versus active
control conditions are greater than medications versus placebo (Lee et al. 2016).
Strikingly, PTSD is one of the neuropsychiatric disorders with the shortest list of
drugs approved for treatment by regulatory agencies. Only the selective serotonin
reuptake inhibitors (SSRI) antidepressants paroxetine and sertraline have been
approved by the US Food and Drug Administration (FDA) for PTSD treatment.
There are many reasons for this, including the complex and highly variable symptom
profile (based on subjective patient report), the frequent comorbidity with other
neuropsychiatric disorders (e.g., depression, anxiety, substance abuse), the well-
known difficulty of treating PTSD patients (particularly military veterans), and last
but not least a pathophysiology far from being completely understood. Based on the
DSM-V manual, there are 636,120 ways for an individual to qualify for a diagnosis
of PTSD (Galatzer-Levy and Bryant; 2013; Maeng andMilad 2017). Also, the recent
guidelines for treatment of major agencies differ significantly, although in general
they agree on a better efficacy of psychotherapy, including trauma-focused,
prolonged exposure, cognitive processing and cognitive-behavioral psychotherapy,
eye movement desensitization, reprocessing, compared to pharmacotherapy (Bestha
et al. 2018). As a result, off-label prescription and polypharmacy have been nearly a
routine in PTSD pharmacotherapy.
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Indeed, a shortlist of the medications that have been used for PTSD therapy may
resemble a handbook for therapy of the main neuropsychiatric disorders and is too
long to be reported fully in this chapter. We will mention here the main classes of
drugs used over the years and the principal representatives for each class (Steckler
and Risbrough 2012; Maeng and Milad 2017; Abdallah et al. 2018; Bestha et al.
2018).

Traditional Antidepressants Besides paroxetine and sertraline, other SSRI are
commonly used, such as fluoxetine. SSRI showed efficacy in reducing symptom
severity and in relapse prevention. However, about 60% of patients respond to
treatment and only 20–30% achieve full remission. The serotonin and noradrenaline
reuptake inhibitor (SNRI) venlafaxine has also been used in some studies, with effect
size comparable to SSRI. Among other antidepressants used are mirtazapine,
trazodone and the first-generation tricyclic drug amitriptyline. Mirtazapine and
trazodone have been used particularly for their sedative effect, but did not become
first-line treatment for PTSD because they are less well tolerated.

Anticonvulsants and Antipsychotics Anticonvulsants used include gabapentin,
topiramate, and valproic acid. Although some studies found their effect in PTSD
promising, recent clinical trials did not confirm efficacy. Also atypical antipsy-
chotics, in particular risperidone, olanzapine and quetiapine have been used, often
as adjunctive therapy to antidepressants. The most extensively studied is risperidone,
which in early studies showed potential for use in monotherapy or as adjunct to
antidepressants. However, a large clinical trial with risperidone augmenting SSRI
and meta-analyses articles did not find significant effect (Krystal et al. 2011).

Adrenoceptor Antagonists Noradrenergic hyperreactivity linked to hyperarousal
symptoms has traditionally been considered an interesting target. Prazosin, an α1-
adrenergic receptor antagonist, showed early promise in treatment of PTSD, partic-
ularly for nightmares and sleep-related symptoms. However, additional studies and a
recent large randomized controlled trial failed to reproduce these effects, both for
overall PTSD and sleep-related symptoms (Raskind et al. 2018). Interestingly, in the
randomized control trial in which prazosin was found to be effective, the patients had
higher blood pressure than in the later study. This may suggest that higher standing
blood pressure could be a biomarker to identify PTSD patients that may benefit from
prazosin. It is noteworthy that prazosin is considered as first-line drug treatment by
some agencies (e.g., International Society for Traumatic Stress Studies) but not
others (US Veteran Administration). The classical β-adrenoceptor blocker propran-
olol has been considered a promising candidate drug to be administered immediately
after traumatic stress to prevent development of PTSD, but clinical trials found it
devoid of efficacy when given after trauma (Amos et al. 2014; Sijbrandij et al. 2015).

Benzodiazepines Benzodiazepines have often been prescribed in PTSD to reduce
hyperarousal. However, when systematically tested they failed to show therapeutic
effects in PTSD. Rather, they showed worsening of PTSD symptoms or increased
risk of developing PTSD in the aftermath of trauma.
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Glucocorticoids The interest in using GR agonists for treatment of PTSD mainly
stems from the observation that individuals who develop PTSD have been shown to
have lower cortisol levels at the time of trauma. The tendency for somewhat reduced
cortisol levels appears to be maintained during the life course of PTSD patients and
seem to correlate with the risk of PTSD development (Yehuda 2004). Reduced
cortisol would result in reduced feedback, required for termination of the stress
response and prolonged activation of the HPA axis and sympathetic nervous system,
long after trauma exposure. Based on this hypothesis it was suggested that admin-
istration of a GR agonist in the vicinity of the traumatic event may block develop-
ment of PTSD. Indeed, beneficial effects of hydrocortisone (the pharmaceutical term
for cortisol) have been reported in small, randomized clinical trials (Schelling et al.
2001; Weis et al. 2006). Hydrocortisone augmentation of exposure psychotherapy in
veterans was associated with greater reduction in total PTSD symptoms compared to
placebo (Yehuda et al. 2015). In a prevention-oriented approach, it would be
interesting to treat subjects in the early aftermath of trauma to see if this reduces
the development of PTSD in subjects at risk. This approach has been applied, by
treating trauma survivors within 6 h with hydrocortisone (Zohar et al. 2011). Two
systematic meta-analyses considered several studies using various pharmacological
treatments for prevention of PTSD. While all other drugs were ineffective, hydro-
cortisone showed a large effect in reducing the risk of subsequent PTSD (Amos et al.
2014; Sijbrandij et al. 2015). GR antagonists have also been investigated in preclin-
ical studies but their efficacy is at best uncertain in possible clinical applications
(Golier et al. 2016).

5.6 New and Emerging Targets for Treatment
of Posttraumatic Stress Disorder

In recent years, many compounds have raised interest as candidate drugs for
treatment of PTSD (Steckler and Risbrough 2012; Krystal et al. 2017; Abdallah
et al. 2018; Bestha et al. 2018; Sartori and Singewald 2019). Most of them are
substances that have been used before with different indication or for recreational
use, or experimental drugs employed in preclinical studies. Many are currently tested
in ongoing clinical trials. The major classes of these drugs are the following:
(1) Glutamatergic agents, including ketamine, riluzole, D-cycloserine, N-
acetylcysteine; (2) Cannabinoids, including Δ-9-tetrahydrocannabinol (THC),
cannabidiol (CBD); (3) Neuroactive steroids, including hydrocortisone, ganaxolone;
(4) Recreational drugs, including MDMA, psilocybin, LSD; (5) Opioids, mainly
buprenorphine. Indeed, in a recent survey submitted to several PTSD investigators,
asking them to rank the top five potential new therapeutic targets for PTSD, the
resulting mechanisms (from 1 to 5) were: (1) NMDA receptor antagonists, (2) can-
nabinoid receptor modulators, (3) glucocorticoid receptor agonists, (4) non-5-HT
reuptake inhibitor antidepressants, (5) opioid receptor agonists (Krystal et al. 2017).
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Not casually, these two lists are largely overlapping. Agents acting on the glutamate
system, which are a main focus of this article, are treated in separate sections below.

5.6.1 New Glutamatergic Agents for Treatment
of Posttraumatic Stress Disorder: The Ketamine Story

The experimental drug that has paved new avenues for the development of
glutamate-based treatment strategies for neuropsychiatric disorders is undoubtedly
ketamine. Ketamine is a non-competitive antagonist of the NMDA receptor that has
been used as anesthetic since the 1960s, but has also been popular as a recreational
drug that induces dissociative behavior and has abuse liability. Several clinical
studies in the last two decades, mostly with treatment-resistant depressed subjects,
have shown that a single infusion of a subanesthetic dose of ketamine (typically
0.5 mg/kg) exerts a rapid (within hours) and sustained (at least a week or longer)
antidepressant effect (Berman et al. 2000; Zarate et al. 2006; aan het Rot et al. 2010;
Murrough et al. 2013). This has been called by many the most important discovery in
half a century in psychopharmacology of mood and anxiety disorders (Duman and
Aghajanian 2012). The efficacy of ketamine, confirmed over time by many inde-
pendent studies, has shown that a drug that targets directly the glutamate system may
have a faster antidepressant action, compared with traditional antidepressants
targeting monoaminergic systems. Indeed, the story of ketamine is a further dem-
onstration of the neuroplasticity/glutamatergic hypothesis of depression (Sanacora
et al. 2012; Duman and Aghajanian 2012; Popoli et al. 2012; Musazzi et al. 2013;
Duman et al. 2016; Lener et al. 2017; Murrough et al. 2017). In 2019, after three
short-term clinical trials and one longer-term maintenance-of-effect trial, FDA
granted approval for the use of esketamine (the S-ketamine enantiomer) nasal
spray in conjunction with an oral antidepressant, for treatment-resistant depression.
Because of the risk of serious adverse outcomes resulting from sedation and disso-
ciation, and the potential for abuse of the drug, esketamine is only available through
a restricted distribution system and administered in a certified doctor’s office or
clinic.

As mentioned in the previous section, ketamine and other glutamatergic com-
pounds are considered a top choice among experimental drugs for PTSD. A first
randomized clinical trial has tested the efficacy of ketamine in chronic PTSD patients
against midazolam, used as active comparator. The effect of ketamine infusion,
assessed after 24 h, was a significant and rapid reduction in PTSD symptom severity,
compared with midazolam. Ketamine was also associated with reduction in comor-
bid depressive symptoms and improvement in overall clinical presentation. This
study provided the first evidence for rapid reduction in symptom severity following
ketamine infusion in patients with chronic PTSD (Feder et al. 2014).

Several additional clinical trials with ketamine are reported in the database at
clinicaltrials.gov (spring 2020), including single or repeated administration for
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therapy of PTSD, on antidepressant-resistant PTSD, on PTSD with wound-related
pain (ketamine + opiate), on the possible restoration by ketamine of synaptic loss
(measured by detection of SV2A marker of synaptic vesicles; MRI/PET study)
(Holmes et al. 2019). Many of these studies are ongoing but some are nearly
completed and should contribute to the available evidence on ketamine as a thera-
peutic drug for PTSD.

5.6.2 The Mechanism of Ketamine

In rodent models, the most striking rapid effect of ketamine is the restoration of
neuroarchitecture compromised by chronic stress. Traditional antidepressants, such
as SSRI, need several weeks of treatment to reverse dendritic atrophy and loss of
spines in pyramidal neurons (Norrholm and Ouimet 2001; Bessa et al. 2009). Indeed,
a number of studies showed that a single administration of ketamine in just 24 h may
rescue dendritic atrophy and loss of synaptic spines induced by chronic stress. This
effect is temporally coincident with the peak of ketamine antidepressant action, and
seems to be closely correlated with the behavioral antidepressant effect (Li et al.
2011; Tornese et al. 2019a; Moda-Sava et al. 2019; Treccani et al. 2019; Zhang et al.
2019). The mechanism of ketamine has been extensively investigated in recent
years, probably more than any traditional antidepressant before, not only in relation
to its rapid antidepressant action, but also in an attempt to better understand the basic
neurobiological underpinnings of stress-related psychopathology. There are several
components to the mechanism of ketamine. The most well-known are the first two
mechanisms proposed, which are as follows: (1) Inhibition by ketamine of NMDA
receptors of GABAergic neurons in PFC, which rapidly increases the release of
glutamate from pyramidal neurons, activating postsynaptic α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors. This induces rapid and tran-
sient activation of mammalian target of rapamycin complex (mTORC) signaling
and, in turn, increases local expression of synaptic proteins, required for restoration
of glutamatergic synaptic spines; (2) Inhibition by ketamine of NMDA receptor-
mediated spontaneous transmission in hippocampus. This in turn reduces phosphor-
ylation of and activates eukaryotic elongation factor 2, resulting (again) in local
expression of synaptic proteins. Both mechanisms are purported to increase local
(synaptic) expression of Brain-Derived Neurotrophic Factor (BDNF), a
neurotrophin essential for synaptic function and plasticity (Li et al. 2010; Autry
et al. 2011). Several additional mechanisms have been proposed, also involving
different brain areas (e.g., Lateral Habenula; Yang et al. 2018). For detailed recent
reviews on the mechanism of ketamine, see Zanos and Gould (2018) and Kadriu
et al. (2019). An attractive general hypothesis, which stems from numerous preclin-
ical lines of evidence, suggests that ketamine repairs disrupted brain connectivity,
possibly by stabilizing excitatory (but also inhibitory) transmission within and
between brain areas relevant for pathophysiology (Thompson et al. 2015; Duman
et al. 2016; Musazzi et al. 2017; Workman et al. 2018; Zanos et al. 2018). In
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particular, a net effect of ketamine (and of its metabolite hydroxynorketamine; Zanos
et al. 2016) seems to be a sustained activation of AMPAR-mediated excitatory
transmission, which results in increased input to subcortical areas, thereby resulting
in better control of the stress response. How ketamine may stabilize excitatory
transmission is not clear. One of the first known effects of ketamine is a rapid and
transient increase of extracellular glutamate in PFC, assessed by early microdialysis
studies (Moghaddam et al. 1997), but there is scarce evidence in the literature on the
prolonged effect of ketamine treatment on glutamate release.

A recent study using the chronic mild stress (CMS) protocol, perhaps the most
popular rodent model of depression, investigated the effect of a single administration
of subanesthetic ketamine (10 mg/kg) on depressed-like behavior and related cellu-
lar/molecular changes (Tornese et al. 2019a). Different versions of the CMS protocol
have been used by several groups to investigate ketamine’s rapid antidepressant
effects (Li et al. 2011; Ma et al. 2013; Papp et al. 2017); in those studies typically the
effect of ketamine was assessed in stressed rats (taken as a whole group), compared
with non-stressed controls. Tornese et al. deemed the rats vulnerable or resilient to
the effects of CMS by using the classical sucrose consumption test for anhedonia
(one of two core symptoms of depression) and treated the vulnerable rats with
ketamine 24 h before the end of CMS (5 weeks). They found that anhedonic
behavior and most stress-induced maladaptive changes in the hippocampus were
observed only in vulnerable rats, including marked reduction of basal and
depolarization-evoked glutamate release, impaired trafficking of BDNF mRNA in
dendrites and atrophy of dendrites in CA3 and CA1. Administration of subanesthetic
ketamine to vulnerable rats rescued anhedonic behavior, basal glutamate release,
BDNF mRNA dendritic trafficking, and dendritic atrophy. Therefore, ketamine in
just 24 h was able to rescue depressed-like behavior and related cellular/molecular
changes, that were the result of 5 weeks of stress. Noteworthy, one of the key
readouts that were restored by ketamine was impaired basal release of glutamate;
this suggests that ketamine does not just induce a rapid and transient burst of
glutamate release, but rather stabilizes a correct level of synaptic glutamate after
stress-induced long-term impairment.

However, again, the outcome of chronic stress protocols in rodents has been
related to depression but, in PTSD models, a PTSD-like phenotype should rather be
the result of acute, short-term exposure to stressors (Siegmund and Wotjak 2006;
Musazzi et al. 2017). Therefore, in preclinical studies investigating the possible
pharmacological action of ketamine in PTSD, it should be assessed if ketamine may
block the long-term pathology-related maladaptive effects of acute stress exposure.

5.6.3 A Prophylactic Action of Ketamine Against
the Outcome of Traumatic Stress?

Recent evidence suggested that ketamine may exert a prophylactic action against the
effects of stressors, perhaps by enhancing resilience. In one study, mice were
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administered a single injection of ketamine (30 mg/kg) and 1 week later were
subjected to chronic social defeat stress (SDS), a protocol that induces depressive-
like behavior. Ketamine-treated mice were protected against the maladaptive effects
of SDS, showing reduced immobility time in the forced swim test; ketamine was
ineffective if administered 24 h after conclusion of SDS protocol. A similar prophy-
lactic, protective effect of ketamine was found when it was administered before the
Learned Helplessness protocol or chronic CORT administration. It was suggested
that ketamine has a prophylactic effect when administered before, but not after,
stress (Brachman et al. 2016). Furthermore, the effects of ketamine were tested in a
contextual fear conditioning protocol (see Sect. 5.1.1 above), in which the adminis-
tration of prophylactic ketamine 1 week before, but not after the protocol, reduced
freezing behavior, facilitating fear extinction. This confirmed that ketamine should
be administered before exposure to stressors (McGowan et al. 2017). In a different
study, Amat et al. (2016) found that 10 mg/kg ketamine, administered 2 h, 1 week or
2 weeks before inescapable acute tail shocks, prevented the reduction of social
investigation in rats, an effect replicated by microinjection of ketamine into PL
region of the mPFC.

The idea that ketamine (or other suitable compounds) may exert a prophylactic
action in PTSD is certainly attracting. Subjects at risk could be treated before being
exposed to potentially traumatic environmental situations. However, it would cer-
tainly be more feasible to treat people after they have been exposed to traumatic
shock, such as in the aftermath of a natural catastrophe. The appropriate time
window after exposure to traumatic stress should be investigated, in order to
optimize the prophylactic effect of treatment against subsequent development
of PTSD.

This possibility was investigated, again by measuring glutamate release from
superfused PFC synaptosomes (see Sect. 5.3.1 above), obtained by rats subjected to
inescapable acute FS stress. Previous work showed that FS stress-induced enhance-
ment of glutamate release in PFC is blocked by prior chronic treatment with
traditional antidepressants (Musazzi et al. 2010, 2013). Preliminary results showed
that a single ketamine injection (10 mg/kg) blocked the stress-induced enhancement
of depolarization-evoked glutamate release if administered either 72 or 24 h, but not
1 or 2 h, before FS. Moreover, ketamine administered 6 h after FS stress completely
blocked the enhancement of glutamate release measured 24 h after stress exposure
and promoted extinction of contextual fear memory (Popoli 2018; Tornese et al.
2019b).

Therefore, although more work is necessary to understand better modality and
timing of treatment, the possible implementation of a prophylactic use of ketamine to
prevent the development of PTSD and other stress-related disorders is a promising
perspective.
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5.6.4 Other Glutamatergic Agents for Treatment
of Posttraumatic Stress Disorder

Other agents targeting the glutamate system that have been proposed for the treat-
ment of PTSD are D-cycloserine (DCS), riluzole, and N-acetylcysteine (NAC). DCS,
similar in structure to the amino acid alanine, is a partial agonist of NMDA receptor
that was shown to enhance fear extinction learning in several experimental protocols,
including the single prolonged stress protocol (Yamamoto et al. 2008; Ledgerwood
et al. 2005).

Fear extinction learning requires protein synthesis and long-lasting synaptic
plasticity, involving the MAPK/Erk, PI3K/Akt, and BDNF pathways. Activation
of NMDA receptor, which stimulates the MAPK/Erk pathway via Ca2+ influx, has
been shown to be highly relevant in building extinction memory, making DCS
currently the most studied adjunct treatment to exposure therapy in off-label use
for anxiety-related disorders (Sartori and Singewald 2019). A recent meta-analysis
examined several clinical studies testing DCS as adjunct to exposure therapy for
anxiety, obsessive-compulsive disorder (OCD), and PTSD. The authors found
evidence supporting the short-term superiority of DCS vs placebo in the augmenta-
tion of exposure therapy and mixed evidence supporting maintenance of the benefits
at follow-up. Although statistically significant, the effect sizes were small. Addi-
tional ongoing studies are currently evaluating the use of DCS in combination with
psychotherapy. However, data on the efficacy of DCS in the modulation of associa-
tive fear learning and treatment of PTSD are mixed. In healthy volunteers, DCS
facilitated consolidation of fear acquisition and cued fear extinction, while other
studies did not find a reduction in conditioned fear. DCS was found particularly
effective when administered with virtual reality exposure therapy, and in subjects
with more severe PTSD. Moreover, participants with high conscientiousness and
low extraversion exhibited better outcomes with DCS and exposure therapy. These
data may suggest that DCS is an effective adjunct therapy only for a subset of the
clinical population and with specifically tailored psychotherapy sessions (Bowers
and Ressler 2015).

Riluzole is a neuroprotective agent, approved by FDA for treatment of
Amyotrophic Lateral Sclerosis, which targets primarily the glutamate system and
has a complex mechanism of action. It blocks voltage-sensitive sodium channels
with high affinity for inactivated channels, resulting in the inhibition of high-
frequency neuronal firing. At higher concentrations, riluzole interacts with other
presynaptic voltage-gated ion channels, including calcium and potassium channels.
The main mechanism proposed is a reduction of glutamate release and excitatory
transmission, together with increase of glutamate clearance by transporters and of
synaptic AMPA receptor trafficking. Riluzole has been shown to reduce clinical
symptoms in OCD, Generalized Anxiety Disorder and major depression with anx-
iety comorbidity (Pittenger et al. 2008). In 2018, positive results were reported from
a proof of concept clinical trial investigating the acute effect of a single sublingual
dose of riluzole (BHV-0223; under license of Biohaven) in patients with Social
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Anxiety Disorder, after meeting the primary endpoint of the trial. Two clinical trials
for PTSD are reported on ClinicalTrials.gov, an open-label and a randomized trial
currently evaluating safety and efficacy of oral riluzole either as monotherapy or as
augmentation treatment in patients with PTSD.

The antioxidant NAC has been increasingly investigated as a therapeutic agent
for a variety of neuropsychiatric disorders, characterized by impairment of executive
functions, impulse control, and top-down regulation, including Substance Use
Disorder (SUD). It has been shown that in cocaine relapse NAC stabilizes extracel-
lular glutamate by restoring the activity of cystine/glutamate exchanger in the
nucleus accumbens (Baker et al. 2003). Moreover, animal models of addiction
showed chronic downregulation of the glial glutamate transporter in the nucleus
accumbens, and treatment with NAC restored the transporter, thereby normalizing
glutamate transmission (Kalivas and Volkow 2011). Co-occurrence of PTSD with
SUD is not unusual and it has been suggested there are neurobiological mechanisms
in common, such as impaired prefrontal cortex regulation of basal ganglia circuitry,
particularly for glutamate synapses in the nucleus accumbens. Based on the capacity
of NAC to stabilize glutamate synapses in nucleus accumbens and to inhibit drug use
in animal models and human addiction, NAC was tested as adjunct therapy for
cognitive-behavioral therapy in a placebo-controlled trial with comorbid PTSD/
SUD. The results provided encouraging preliminary support for combining NAC
and cognitive-behavioral therapy in patients with PTSD and SUD (Back et al. 2016).
Two additional clinical trials are reported in the ClinicalTrials.gov database, one
withdrawn and another one recruiting patients.

5.6.5 New Non-Glutamatergic Agents for Treatment of PTSD

Although some of the agents reported in this section are not entirely new to the
PTSD field, we briefly discuss here the remaining 4 classes that were considered the
top potential new therapeutic targets for PTSD in a recent survey (Krystal et al.
2017).

Cannabinoids The endocannabinoid (eCB) system plays a key role in the modula-
tion of fear, anxiety, and stress response. Most eCB effects in brain are mediated by
the CB1 receptor, which is present on presynaptic terminals of most major neuro-
transmitter systems (including glutamate and GABA), although CB2 and TRP1
receptors also play a role. Converging evidence showed that the eCB system is
dysregulated in stress animal models and in patients with PTSD. Chronic stress
resulted in lower eCB concentrations and upregulation of CB1 receptors; subjects
with PTSD or major depression showed reduced circulating levels of the eCB
anandamide and upregulation of CB1 receptors in several areas (Morena et al.
2016; Hill et al. 2018). Activation of eCB signaling has been shown to exert
anxiolytic and antidepressant-like effects in rodents. Several clinical studies
suggested that enhancement of eCB signaling may be a promising target to reduce

184 M. Popoli et al.

http://clinicaltrials.gov
http://clinicaltrials.gov


PTSD symptoms (Sbarski and Akirav 2020). With regard to PTSD, the eCB agonists
that have been investigated in preclinical studies are THC and CBD. THC has been
shown to have biphasic effects, where low doses are anxiolytic and high doses are
anxiogenic; instead, CBD lacks the psychoactive effects of THC and seems to have
restorative properties in various pathophysiological situations (Crippa et al. 2018).
CBD may facilitate the extinction of contextual fear memory and decrease the
salience of significant stimuli (Bitencourt et al. 2008). In clinical studies THC
administration for 3 weeks as add-on resulted in improvement of global symptoms
of PTSD, with mild adverse effects in some patients. CBD treatment for 8 weeks
resulted in decrease of PTSD symptom severity. Nabilone, a synthetic derivative of
THC, was also employed in three studies, with general reduction in severity of
symptoms (Sbarski and Akirav 2020, and refs. therein). Currently, reported on the
ClinicalTrials.gov website and related to PTSD with different modalities, there are
7 studies with THC or cannabis, 3 studies with CBD (PTSD with or without alcohol
use disorder) and 2 with nabilone (in PTSD with cannabis use or as add-on to THC
treatment).

GR Agonists As addressed above in Sect. 5.5, glucocorticoids have been an option
for treatment of PTSD for quite some time and, at least for preventive treatment,
have often rated superior to other drugs available. A thorough discussion of their
effects and rationale for use in PTSD is beyond the finality of this chapter. For a
review see de Quervain et al. (2019). Currently, there are several ongoing clinical
trials investigating the effect of hydrocortisone on the development of PTSD and for
established PTSD.

Non-5-HT Reuptake Inhibitor Antidepressants As addressed above in Sect. 5.5,
besides SSRI, several other antidepressants with different mechanisms have been
employed over the years, including the dual inhibitor venlafaxine, the tricyclic
antidepressants imipramine, desipramine, the MAO inhibitor phenelzine, the
mixed-activity drugs mirtazapine, trazodone, nefazodone, tianeptine, vortioxetine.
Most of them were investigated in small-sample clinical trials. While some of them
seemed nearly as effective as SSRI, none of them became first-line treatment, partly
also because they are less well tolerated. In a network meta-analysis, encompassing
several classes of drugs (including antipsychotics, mood stabilizers, anticonvulsants,
and other mechanisms), many of these drugs were evaluated. Desipramine,
phenelzine, venlafaxine were more effective than placebo; phenelzine was signifi-
cantly more effective than nearly half of all active treatments assessed and was the
only drug that was significantly better than placebo for number of dropouts (Cipriani
et al. 2018). Currently, ongoing clinical trials for venlafaxine, desipramine, trazo-
done, mirtazapine and vortioxetine are reported on the ClinicalTrials.gov website.

Opioid Receptor Agonists Early studies have suggested that morphine administra-
tion shortly after traumatic stressors reduces the risk of developing PTSD (Holbrook
et al. 2010). Moreover, opioid-use disorder often occurs in comorbidity with PTSD
because patients will self-treat with opiates in an attempt to relieve the psychic
suffering from PTSD. Buprenorphine, a partial agonist of μ opioid receptors and
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antagonist of κ opioid receptors has been tested for treatment. Buprenorphine was
administered in combination with naloxone, compared to either SSRI or other
opioids (Lake et al. 2019). Buprenorphine/naloxone showed a statistically significant
improvement in PTSD scores as compared to SSRI. Currently, there are 8 ongoing
clinical trials testing buprenorphine in PTSD, mostly in patients with comorbid
opioid-use disorder.

5.6.6 3,4,-methylenedioxmethamphetamine (MDMA)
for Treatment of Posttraumatic Stress Disorder

MDMA, commonly known as ecstasy or molly, is a psychoactive drug primarily
used for recreational purposes. MDMA is a ring-substituted phenethylamine, which
acts primarily by increasing the activity of the neurotransmitters serotonin, dopa-
mine, and noradrenaline and also elevates the levels of the hormone oxytocin.
MDMA is illegal in most countries and has had so far no approved medical uses.
In 2017 FDA designated MDMA-assisted psychotherapy for PTSD a Breakthrough
Therapy, with agreement on Special Protocol Assessment for phase 3 Trials, based
on data showing a large effect size for this treatment (Sessa 2017; Feduccia et al.
2019). The Phase 3 trials are expected to be completed in 2021, meaning that the
FDA could approve the treatment as early as 2022. The European Medicines Agency
also approved the study to move to phase 3. A comparison of data used for the
approval of paroxetine and sertraline (the two SSRI currently approved for PTSD
therapy) and pooled data from Phase 2 studies showed that MDMA-assisted psycho-
therapy was a substantial improvement over available pharmacotherapies in terms of
safety and efficacy, with lower dropout rates compared to sertraline and paroxetine
(Feduccia et al. 2019). It is speculated that MDMA augmentation of psychotherapy
action involves enhanced fear extinction, memory reconsolidation, enhanced thera-
peutic alliance, widening of a window of tolerance for distressing thoughts or
experiences, and re-opening of a critical period for experiencing social reward.
Currently, there are 17 ongoing clinical trials testing MDMA-assisted psychotherapy
for treatment of PTSD. The MDMA-PTSD chapter is part of the revival in the study
of psychedelic drugs potential for therapy of neuropsychiatric disorders, which also
includes psilocybin in anxiety, depression, smoking, alcoholism, and of course
ketamine in treatment-resistant depression (see above) (Nutt 2019).

5.7 Conclusions and Future Perspectives

Although several possible therapeutic options are offered for PTSD, the number of
drugs approved for therapy is still quite small. Despite the relative efficacy of SSRI,
less than 60% of patients respond to these drugs and only 20–30% achieve full
remission.
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Recent translational and clinical research has revealed the key role played by
glutamate and the glutamatergic system in pathophysiology of neuropsychiatric
disorders, including PTSD. As a result, ketamine has become in the last few years
the single most investigated drug for therapy of mood and anxiety disorders; this has
brought about several new lines of discovery and development of the class of rapid-
acting antidepressants. As illustrated in this chapter, ketamine and several other
drugs targeting directly NMDA receptors or other mechanisms in the glutamate
system showed an interesting potential for therapeutic effect. In particular, in
preclinical studies, converging evidence showed that subanesthetic ketamine may
exert a prophylactic action against the development of PTSD-like behavior, possibly
when administered shortly after traumatic stress. Controlled clinical trials should
check this action of ketamine in trauma survivors, also to identify the right time
window for intervention. Moreover, current and future clinical trials with additional
glutamatergic drugs will show if any of these other drugs should be employed for
therapy of this serious, debilitating mental illness.

References

aan het Rot M, Collins KA, Murrough JW et al (2010) Safety and efficacy of repeated-dose
intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67:139–145

Abdallah CG, Sanacora G, Duman RS et al (2015) Ketamine and rapid-acting antidepressants: a
window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 66:509–523

Abdallah CG, Averill LA, Akiki TJ et al (2018) The neurobiology and pharmacotherapy of
posttraumatic stress disorder. Annu Rev Pharmacol Toxicol 59:17.1–17.19

Abdallah CG, Averill CL, Ramage AE (2019) Reduced salience and enhanced central executive
connectivity following PTSD treatment. 3:2470547019838971

Akiki TJ, Averill CL, Abdallah CG (2017) A network-based neurobiological model of PTSD:
evidence from structural and functional neuroimaging studies. Curr Psychiatry Rep 19:81

Amat J, Dolzani SD, Tildenet S al. (2016) Previous ketamine produces an enduring blockade of
neurochemical and behavioral effects of uncontrollable stress. J Neurosci 36:153–161

American Psychiatric Association (2013) DSM-5 Task Force. Posttraumatic stress disorder. Diag-
nostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing,
Arlington, VA, pp 271–280

Amos T, Stein DJ, Ipser JC (2014) Pharmacological interventions for preventing post-traumatic
stress disorder (PTSD). Cochrane Database Syst Rev 7:CD006239

Autry AE, Adachi M, Nosyreva E et al (2011) NMDA receptor blockade at rest triggers rapid
behavioural antidepressant responses. Nature 475:91–95

Averill LA, Purohit P, Averill CL et al (2017) Glutamate dysregulation and glutamatergic thera-
peutics for PTSD: evidence from human studies. Neurosci Lett 649:147–155

Back SE, McCauley JL, Korte KJ et al (2016) A double-blind randomized controlled pilot trial of
n-acetylcysteine in veterans with PTSD and substance use disorders. J Clin Psychiatry 77:e1439

Bagley J, Moghaddam B (1997) Temporal dynamics of glutamate efflux in the prefrontal cortex and
in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam.
Neuroscience 77:65–73

Baker KG, Halliday GM, Hornung JP et al (1991) Distribution, morphology and number of
monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe
nucleus. Neuroscience 42:757–775

5 The Role of the Glutamate System in Posttraumatic Stress Disorder and. . . 187



Baker DA, McFarland K, Lake RW et al (2003) N-acetyl cysteine-induced blockade of cocaine-
induced reinstatement. Ann N Y Acad Sci 1003:349–351

Bali A, Jaggi AS (2015) Electric foot shock stress adaptation: does it exist or not? Life Sci 130:97–
102

Banasr M, Chowdhury GM, Terwilliger R et al (2010) Glial pathology in an animal model of
depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the
glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511

Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed
patients. Biol Psychiatry 47:351–354

Bessa JM, Ferreira D, Melo I et al (2009) The mood-improving actions of antidepressants do not
depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14:764–
773

Bestha D, Soliman L, Blankenship K et al (2018) The walking wounded: emerging treatments for
PTSD. Curr Psych Reports 20:94

Bitencourt RM, Pamplona FA, Takahashi RN (2008) Facilitation of contextual fear memory
extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. Eur
Neuropsychopharmacol 18:849–859

Bowers ME, Ressler KJ (2015) An overview of translationally informed treatments for
posttraumatic stress disorder: animal models of Pavlovian fear conditioning to human clinical
trials. Biol Psychiatry 78:E15–E27

Brachman RA, McGowan JC, Perusini JN et al (2016) Ketamine as a prophylactic against stress-
induced depressive-like behavior. Biol Psychiatry 79:776–786

Bremner JD, Randall P, Scott et al (1995) MRI-based measurement of hippocampal volume in
patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152:973–981

Bromis K, Calem M, Reinders A et al (2018) Meta-analysis of 89 structural MRI studies in
posttraumatic stress disorder and comparison with major depressive disorder. Am J Psychiatry
175:989–998

Chen Y, Rex CS, Rice CJ et al (2010) Correlated memory defects and hippocampal dendritic spine
loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S
A 107:13123–13128

Cipriani A, Williams T, Nikolakopoulou A et al (2018) Comparative efficacy and acceptability of
pharmacological treatments for post-traumatic stress disorder in adults: a network meta-analysis.
Psychol Med 48:1975–1984

Crippa JA, Guimarães FS, Campos AC et al (2018) Translational investigation of the therapeutic
potential of cannabidiol (CBD): toward a new age. Front Immunol 9:2009

de Quervain D, Wolf OT, Roozendaal B (2019) Glucocorticoid-induced enhancement of extinction-
from animal models to clinical trials. Psychopharmacology (Berl) 236:183–199

Douglas RJ, Martin KA (2007) Mapping the matrix: the ways of neocortex. Neuron 56:226–238
Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic

targets. Science 338:68–72
Duman RS, Aghajanian GK, Sanacora G et al (2016) Synaptic plasticity and depression: new

insights from stress and rapid-acting antidepressants. Nat Med 22:238–249
Duman RS, Sanacora G, Krystal JH (2019) Altered connectivity in depression: GABA and

glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102:75–90
Feder A, Parides MK, Murrough JW et al (2014) Efficacy of intravenous ketamine for treatment of

chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71:681–688
Feduccia AA, Jerome L, Yazar-Klosinski B et al (2019) Breakthrough for trauma treatment: safety

and efficacy of MDMA-assisted psychotherapy compared to paroxetine and sertraline. Front
Psychiatry 10:650

Flandreau EI, Toth M (2018) Animal models of PTSD: a critical review. Curr Top Behav Neurosci
38:47–68

188 M. Popoli et al.



Fulton JJ, Calhoun PS, Wagner HR et al (2015) The prevalence of posttraumatic stress disorder in
Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis. J
Anxiety Disord 31:98–107

Galatzer-Levy IR, Bryant RA (2013) 636,120 ways to have posttraumatic stress disorder. Perspect
Psychol Sci 8:651–662

Gilbertson MW, Shenton ME, Ciszewski A et al (2002) Smaller hippocampal volume predicts
pathologic vulnerability to psychological trauma. Nat Neurosci 5:1242–1247

Golier JA, Caramanica K, Michaelides AC et al (2016) A randomized, double-blind, placebo-
controlled, crossover trial of mifepristone in Gulf War veterans with chronic multisymptom
illness. Psychoneuroendocrinology 64:22–30

Gorman JM, Docherty JP (2010) A hypothesized role for dendritic remodeling in the etiology of
mood and anxiety disorders. J Neuropsychiatry Clin Neurosci 22:256–264

Gurvits TV, Shenton ME, Hokama H et al (1996) Magnetic resonance imaging study of hippo-
campal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 40:
1091–1099

Hajszan T, Dow A, Warner-Schmidt JL et al (2009) Remodeling of hippocampal spine synapses in
the rat learned helplessness model of depression. Biol Psychiatry 65:392–400

Hayes JP, Hayes SM, Mikedis AM (2012) Quantitative meta-analysis of neural activity in
posttraumatic stress disorder. Biol Mood Anxiety Disord 2:9

Hill MN, Campolongo P, Yehuda R et al (2018) Integrating endocannabinoid signaling and
cannabinoids into the biology and treatment of posttraumatic stress disorder.
Neuropsychopharmacology 43:80–102

Holbrook TL, Galarneau MR, Quinn K et al (2010) Morphine use after combat injury in Iraq and
post-traumatic stress disorder. N Engl J Med 362:110–117

Holmes SE, Scheinost D, Finnema SJ et al (2019) Lower synaptic density is associated with
depression severity and network alterations. Nat Commun 10:1529

Homiack D, O’Cinneide E, Hajmurad S et al (2018) Effect of acute alarm odor exposure and
biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of
Wistar rats. Stress 21:292–303

Horn DI, Yu C, Steiner J et al (2010) Glutamatergic and resting-state functional connectivity
correlates of severity in major depression – the role of pregenual anterior cingulate cortex and
anterior insula. Front Syst Neurosci 4:33

Izquierdo A, Wellman CL, Holmes A (2006) Brief uncontrollable stress causes dendritic retraction
in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26:5733–5738

Izquierdo I, Furini CR, Myskiw JC (2016) Fear memory. Physiol Rev 96:695–750
Kadriu B, Musazzi L, Henter I et al (2019) Glutamatergic neurotransmission: pathway to develop-

ing novel rapid-acting anti-depressant treatments. Int J Neuropsychopharmacol 22:119–135
Kalivas PW, Volkow ND (2011) New medications for drug addiction hiding in glutamatergic

neuroplasticity. Mol Psychiatry 16:974–986
Kang HJ, Voleti B, Hajszan T et al (2012) Decreased expression of synapse-related genes and loss

of synapses in major depressive disorder. Nat Med 18:1413–1417
Karl A, Schaefer M, Malta LS et al (2006) A meta-analysis of structural brain abnormalities in

PTSD. Neurosci Biobehav Rev 30:1004–1031
Kasai K, Yamasue H, Gilbertson MW et al (2008) Evidence for acquired pregenual anterior

cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder.
Biol Psychiatry 63:550–556

Kempton MJ, Salvador Z, Munafò MR et al (2011) Structural neuro-imaging studies in major
depressive disorder: meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry
68:675–690

Kessler RC, Sonnega A, Bromet E et al (1995) Posttraumatic stress disorder in the national
comorbidity survey. Arch Gen Psychiatry 52:1048–1060

Kitayama N, Quinn S, Bremner JD (2006) Smaller volume of anterior cingulate cortex in abuse-
related posttraumatic stress disorder. J Affect Disord 90:171–174

5 The Role of the Glutamate System in Posttraumatic Stress Disorder and. . . 189



Koenen KC, Ratanatharathorn A, Ng L et al (2017) Posttraumatic stress disorder in the World
Mental Health Surveys. Psychol Med 47:2260–2274

Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ et al (2009) Brain volume abnormalities in
major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain
Mapp 30:3719–3735

Krystal JH, Rosenheck RA, Cramer JA et al (2011) Adjunctive risperidone treatment for
antidepressant-resistant symptoms of chronic military service-related PTSD: a randomized
trial. JAMA 306:493–502

Krystal JH, Davis LL, Neylan TC et al (2017) It is time to address the crisis in the pharmacotherapy
of posttraumatic stress disorder: a consensus statement of the PTSD Psychopharmacology
Working Group. Biol Psychiatry 82:e51–e59

Kunimatsu A, Yasaka K, Akai H et al (2019) MRI findings in posttraumatic stress disorder. J Magn
Reson Imaging. https://doi.org/10.1002/jmri.26929. Online ahead of print

Lake EP, Mitchell BG, Shorter DI et al (2019) Buprenorphine for the treatment of posttraumatic
stress disorder. Am J Addict 28:86–91

Ledgerwood L, Richardson R, Cranney J (2005) D-cycloserine facilitates extinction of learned fear:
effects on reacquisition and generalized extinction. Biol Psychiatry 57:841–847

LeDoux JE (2014) Coming to terms with fear. Proc Natl Acad Sci USA 111:2871–2878
Lee DJ, Schnitzlein CW, Wolf JP et al (2016) Psychotherapy versus pharmacotherapy for

posttraumatic stress disorder: systemic review and meta-analyses to determine first-line treat-
ments. Depress Anxiety 33:792–806

Lener MS, Niciu MJ, Ballard ED (2017) Glutamate and gamma-aminobutyric acid systems in the
pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry
81:886–897

Li N, Lee B, Liu RJ et al (2010) Mtor-dependent synapse formation underlies the rapid antidepres-
sant effects of NMDA antagonists. Science 329:959–964

Li N, Liu RJ, Dwyer JM et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly
reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:
754–761

Lowy M, Gault L, Yamamoto B (1993) Adrenolectomy attenuates stress induced elevation in
extracellular glutamate concentration in hippocampus. J Neurochem 61:1957–1960

Ma XC, Dang YH, Jia M et al (2013) Long-lasting antidepressant action of ketamine, but not
glycogen synthase kinase-3 inhibitor SB216763, in the chronic mild stress model of mice. PLoS
One 8:e56053

Maeng LY, Milad MR (2017) Post-traumatic stress disorder: the relationship between the fear
response and chronic stress. Chronic Stress 1:2470547017713297

Martin KP, Wellman CL (2011) NMDA receptor blockade alters stress-induced dendritic
remodeling in medial prefrontal cortex. Cereb Cortex 21:2366–2373

McEwen BS (2017) Neurobiological and systemic effects of chronic stress. Chronic Stress 1:
2470547017692328

McEwen BS, Bowles NP, Gray JD et al (2015) Mechanisms of stress in the brain. Nat Neurosci 18:
1353–1363

McGowan JC, LaGamma CT, Lim et al (2017) Prophylactic ketamine attenuates learned fear.
Neuropsychopharmacology 42:1577–1589

Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network
model. Trends Cogn Sci 15:483–506

Metzger LJ, Pitman RK, Miller GA et al (2008) Intensity dependence of auditory P2 in monozy-
gotic twins discordant for Vietnam combat: associations with posttraumatic stress disorder. J
Rehabil Res Dev 45:437–449

Milad MR, Quirk GJ (2012) Fear extinction as a model for translational neuroscience: ten years of
progress. Annu Rev Psychol 63:129–151

Milad MR, Orr SP, Lasko NB et al (2008) Presence and acquired origin of reduced recall for fear
extinction in PTSD: results of a twin study. J Psychiatr Res 42:515–520

190 M. Popoli et al.

https://doi.org/10.1002/jmri.26929


Moda-Sava RN, Murdock MH, Parekh PK et al (2019) Sustained rescue of prefrontal circuit
dysfunction by antidepressant-induced spine formation. Science 364:eaat8078

Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids
in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–
1657

Moghaddam B, Adams B, Verma A et al (1997) Activation of glutamatergic neurotransmission by
ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and
cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

Morena M, Patel S, Bains JS et al (2016) Neurobiological interactions between stress and the
endocannabinoid system. Neuropsychopharmacology 41:80–102

Murrough JW, Perez AM, Pillemer S et al (2013) Rapid and longer-term antidepressant effects of
repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 74:250–
256

Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression:
progress and prospects. Nat Rev Drug Discov 16:472–486

Musazzi L, Milanese M, Farisello P et al (2010) Acute stress increases depolarization-evoked
glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.
PLoS One 5:e8566

Musazzi L, Treccani G, Mallei A et al (2013) The action of antidepressants on the glutamate system:
regulation of glutamate release and glutamate receptors. Biol Psychiatry 73:1180–1188

Musazzi L, Tornese P, Sala N et al (2016) Acute stress is not acute: sustained enhancement of
glutamate release after acute stress involves readily releasable pool size and synapsin I activa-
tion. Mol Psychiatry 22:1226–1227

Musazzi L, Tornese P, Sala N et al (2017) Acute or chronic? A stressful question. Trends Neurosci
40:525–535

Musazzi L, Tornese P, Sala N et al (2018) What acute stress protocols can tell us about PTSD and
stress-related neuropsychiatric disorders. Front Pharmacol 9:758

Musazzi L, Sala N, Tornese P et al (2019) Acute inescapable stress rapidly increases synaptic
energy metabolism in prefrontal cortex and alters working memory performance. Cereb Cortex
29:4948–4957

Nava N, Treccani G, Liebenberg N et al (2015) Chronic desipramine prevents acute stress-induced
reorganization of medial prefrontal cortex architecture by blocking glutamate vesicle accumu-
lation and excitatory synapse increase. Int J Neuropsychopharmacol 18:pyu085

Nava N et al (2017) Temporal dynamics of acute stress-induced dendritic remodeling in medial
prefrontal cortex and the protective effect of desipramine. Cereb Cortex 27:694–705

Norrholm SD, Ouimet CC (2001) Altered dendritic spine density in animal models of depression
and in response to antidepressant treatment. Synapse 42:151–163

Nutt D (2019) Psychedelic drugs-a new era in psychiatry? Dialogues Clin Neurosci 21:139–147
O’Doherty DC, Chitty KM, Saddiqui S et al (2015) A systematic review and meta-analysis of

magnetic resonance imaging measurement of structural volumes in posttraumatic stress disor-
der. Psychiatry Res 232:1–33

Orr SP, Metzger LJ, Lasko NB et al (2003) Physiologic responses to sudden, loud tones in
monozygotic twins discordant for combat exposure: association with posttraumatic stress
disorder. Arch Gen Psychiatry 60:283–288

Orrego F, Villanueva S (1993) The chemical nature of the main central excitatory transmitter: a
critical appraisal based upon release studies and synaptic vesicle localization. Neuroscience 56:
539–555

Papp M, Gruca P, Lason-Tyburkiewicz M et al (2017) Antidepressant, anxiolytic and procognitive
effects of subacute and chronic ketamine in the chronic mild stress model of depression. Behav
Pharmacol 28:1–8

Pitman RK, Rasmusson AM, Koenen KC et al (2012) Biological studies of post-traumatic stress
disorder. Nat Rev Neurosci 13:769–787

5 The Role of the Glutamate System in Posttraumatic Stress Disorder and. . . 191



Pittenger C, Coric V, Banasr M et al (2008) Riluzole in the treatment of mood and anxiety disorders.
CNS Drugs 22:761–786

Popoli M (2018) Ketamine rescues dysfunction of glutamate release and BDNF dendritic trafficking
induced by both acute and chronic stress: implications for pathophysiology and treatment.
ACNP 57th Annual Meeting: Panels, Mini-Panels and Study Groups.
Neuropsychopharmacology 43:1–76

Popoli M, Yan Z, McEwen BS et al (2012) The stressed synapse: the impact of stress and
glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37

Raskind MA, Peskind ER, Chow B et al (2018) Trial of prazosin for post-traumatic stress disorder
in military veterans. N Engl J Med 378:507–517

Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and
extinction: human neuroimaging research--past, present, and future. Biol Psychiatry 60:376–
382

Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an
emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:
63–77

Sartori SB, Singewald N (2019) Novel pharmacological targets in drug development for the
treatment of anxiety and anxiety-related disorders. Pharmacol Ther 204:107402

Sbarski B, Akirav I (2020) Cannabinoids as therapeutics for PTSD. Pharmacol Ther 18:107551
Schelling G, Briegel J, Roozendaal B et al (2001) The effect of stress doses of hydrocortisone

during septic shock on posttraumatic stress disorder survivors. Biol Psychiatry 50:978–985
Schmaal L, Veltman DJ, van Erp TG et al (2016) Subcortical brain alterations in major depressive

disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychi-
atry 21:806–812

Sessa B (2017) MDMA and PTSD treatment: “PTSD: from novel pathophysiology to innovative
therapeutics”. Neurosci Lett 649:176–180

Siegmund A, Wotjak CT (2006) Toward an animal model of posttraumatic stress disorder. Ann N Y
Acad Sci 1071:324–334

Sijbrandij M, Kleiboer A, Bisson JI, Barbui C, Cuijpers P (2015) Pharmacological prevention of
post-traumatic stress disorder and acute stress disorder: a systematic review and meta-analysis.
Lancet Psychiatry 2:413–421

Smith ME (2005) Bilateral hippocampal volume reduction in adults with post-traumatic stress
disorder: a meta-analysis of structural MRI studies. Hippocampus 15:798–807

Soetanto A, Wilson RS, Talbot K et al (2010) Association of anxiety and depression with
microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densi-
ties in hippocampal CA3 of older humans. Arch Gen Psychiatry 67:448–457

Sousa N, Almeida OF (2012) Disconnection and reconnection: the morphological basis of (mal)-
adaptation to stress. Trends Neurosci 35:742–751

Steckler T, Risbrough V (2012) Pharmacological treatment of PTSD e Established and new
approaches. Neuropharmacology 62:617–627

Szeszko PR, Yehuda R (2019) Magnetic resonance imaging predictors of psychotherapy treatment
response in post-traumatic stress disorder: a role for the salience network. Psychiatry Res 277:
52–57

Thompson SM, Kallarackal AJ, Kvarta MD et al (2015) An excitatory synapse hypothesis of
depression. Trends Neurosci 38:279–294

Tornese P, Sala N, Bonini D et al (2019a) Chronic mild stress induces anhedonic behavior and
changes in glutamate T release, BDNF trafficking and dendrite morphology only in stress
vulnerable rats. The rapid restorative action of ketamine. 10:100160

Tornese P, Sala N, Paoli C et al (2019b) Ketamine promotes fear extinction and rescues dysfunction
of glutamate release in a rat model of PTSD. Biol Psychiatry 85(10(Suppl)):S125–S126

Treccani G, Musazzi L, Perego C et al (2014) Stress and corticosterone increase the readily
releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex.
Mol Psychiatry 19:433–443

192 M. Popoli et al.



Treccani G, Ardalan M, Chen F et al (2019) S-ketamine reverses hippocampal dendritic spine
deficits in flinders sensitive line rats within 1 h of administration. Mol Neurobiol 56:7368–7379

Venero C, Borrell J (1999) Rapid glucocorticoid effects on excitatory amino acid levels in the
hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 11:2465–2473

Walter M, Henning A, Grimm S (2009) The relationship between aberrant neuronal activation in the
pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depres-
sion. Arch Gen Psychiatry 66:478–486

Weis F, Kilger E, Roozendaal B et al (2006) Stress doses of hydrocortisone reduce chronic stress
symptoms and improve health-related quality of life in high-risk patients after cardiac surgery: a
randomized study. J Thorac Cardiovasc Surg 131:277–282

Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to
psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog
Neuropsychopharmacol Biol Psychiatry 34:1181–1188

Workman ER, Niere F, Raab-Graham KF (2018) Engaging homeostatic plasticity to treat depres-
sion. Mol Psychiatry 23:26–35

Yamamoto S, Morinobu S, Fuchikami et al (2008) Effects of single prolonged stress and
D-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a
rat model of PTSD. Neuropsychopharmacology 33:2108–2116

Yang CH, Huang CC, Hsu KS (2005) Behavioral stress enhances hippocampal CA1 long-term
depression through the blockade of the glutamate uptake. J Neurosci 25:4288–4293

Yang Y, Cui Y, Sang K et al (2018) Ketamine blocks bursting in the lateral habenula to rapidly
relieve depression. Nature 554:317–322

Yehuda R (2004) Risk and resilience in posttraumatic stress disorder. J Clin Psychiat 65:29–36
Yehuda R, Bierer LM, Pratchett LC et al (2015) Cortisol augmentation of a psychological treatment

for warfighters with posttraumatic stress disorder: randomized trial showing improved treatment
retention and outcome. Psychoneuroendocrinology 51:589–597

Zanos P, Gould TD (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 23:
801–811

Zanos P, Moaddel R, Morris PJ et al (2016) NMDAR inhibition-independent antidepressant actions
of ketamine metabolites. Nature 533:481–486

Zanos P, Thompson SM, Duman RS et al (2018) Convergent mechanisms underlying rapid
antidepressant action. CNS Drugs 32:197–227

Zarate CA Jr, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate
antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

Zhang J, Qu Y, Chang L et al (2019) (R)-ketamine rapidly ameliorates the decreased spine density
in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat
stress. Int J Neuropsychopharmacol 22:675–679

Zohar J, Yahalom H, Kozlovsky N et al (2011) High dose hydrocortisone immediately after trauma
may alter the trajectory of PTSD: interplay between clinical and animal studies. Eur
Neuropsychopharmacol 21:796–809

5 The Role of the Glutamate System in Posttraumatic Stress Disorder and. . . 193



Chapter 6
Glutamate in Migraine Neurobiology
and Treatment

Anna P. Andreou

Abstract Migraine is a disabling chronic condition characterised by recurrent
episodes of head pain accompanied by other sensory disturbances. Its pathophysi-
ology is complex and involves both the peripheral and central nervous systems.
Glutamate is believed to play an important role in migraine pathophysiology, as it is
involved in multiple processes of migraine’s neurobiology. Glutamate is the main
neurotransmitter of the trigeminal system and along the ascending trigeminothalamic
pathways. It is also involved in the initiation and progression of cortical spreading
depression, the underlying biological processes of migraine aura. Its levels are
increased during attacks and in chronic migraine patients. Increased glutamate
excitation is believed to be at least partly responsible for the clinical symptoms of
allodynia in patients during an attack, as well as in the transformation of episodic
migraine to chronic migraine. Some of the current migraine treatments include in
their mechanism of action, at least partly, modulation of glutamatergic signalling.
While some attempts have been made to directly block glutamate receptors, these
were abandoned due to the development of significant side effects. Future
glutamatergic therapeutics that could indirectly block glutamatergic signalling may
present a viable effective tool in migraine patients.
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6.1 Introduction

Migraine is a common, chronic neurological disease characterised by recurrent
episodes of intense headache, that can worsen with activity, accompanied by nausea,
sensitivity to light, noise or even smells (IHS 2018). A proportion of patients also
experiences migraine with aura—transient neurological symptoms that usually occur
just before the onset of a migraine headache. About 1–2% of migraine patients
develop chronic migraine, characterised by at least 15 headache days per month
(Buse et al. 2012). The majority of these patients may actually develop a daily or
nearly daily migraine headache. Migraine pathophysiology is now believed to be
triggered by, or at least include, dysfunctional processes at the level of the hypo-
thalamus (Peres et al. 2001; Schulte et al. 2017; Schulte and May 2016), making
migraine a brain disorder. However, many of the successful treatments of migraine
involve drugs that do not cross the blood brain barrier, with their mechanism of
action identified at the peripheral nervous system, mainly the trigeminal nerve and
the trigeminal ganglion (Andreou and Edvinsson 2019; Lambru et al. 2018).

The pain of migraine was initially thought to be driven by the cephalic vascula-
ture, potentially through excess vasodilation (Moskowitz and Macfarlane 1993;
Wolff 1948). More recent research in migraine pathophysiology suggests that
dysfunctional brain networks are involved in the disorder’s predisposition and
potentially in driving attack initiation (Andreou and Edvinsson 2019). However,
central and peripheral neuronal pathways involved in pain signalling, as well as
inflammation, are equally important drivers of disease biology and offer targets for
the development of future therapeutics. Glutamate is the excitatory neurotransmitter
that drives activation of the both the peripheral and central arms of the trigeminal
pain pathway, making it a key player in the manifestation of migraine. Migraine
pain-relay centres, including the trigeminal ganglion, trigeminocervical complex
(TCC) and sensory thalamus, contain glutamate-positive neurons (Alam et al.
1998; van Dongen et al. 2017), while glutamate has been shown to excite neurons
in the TCC and thalamus (Ferrari et al. 1990; Martinez et al. 1993). The presence of
glutamate in the transmission of sensory information implicates the involvement of
glutamate receptors that modulate glutamate responses, in migraine neurobiology.
Thus, glutamate receptors and glutamatergic signalling offer a great potential in the
development of novel, migraine-specific treatments.

In the present chapter we will discuss the neurobiology and pathophysiology of
migraine and the current evidence on the involvement of glutamate signalling in the
development of different migraine symptoms. We will further discuss interactions
with the glutamatergic signalling of current migraine treatments and how we could
effectively target the glutamate system in the future in order to develop more effec-
tive, tolerable, migraine-specific treatments.
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6.2 Plasma, Cerebrospinal Fluid (CSF) and Brain Levels
of Glutamate in Migraine Patients

Migraine patients have interictal elevated plasma levels of neuronal amino acids,
including glutamate, glutamine, glycine, cysteic acid and homocysteic acid (van
Dongen et al. 2017). The plasma levels of glutamate were found to be further
increased during a migraine attack (Alam et al. 1998; Ferrari et al. 1990). Increased
peripheral glutamate, if correlated with increased brain levels, suggests that migraine
biology involves a persistent neuronal hyperexcitability that becomes heightened
during a migraine attack.

Indeed, during migraine attacks cerebrospinal fluid (CSF) concentrations of
glutamate were found to be higher in patients than in controls, suggesting an excess
of neuroexcitatory amino acids in the CNS (Martinez et al. 1993). The increased
levels of glutamate, particularly in migraine with aura patients may be relevant to
their neurological symptoms (D'Andrea et al. 1991). Additionally, glutamate con-
centrations were increased in CSF from chronic migraine patients (Gallai et al. 2003;
Peres et al. 2004; van Dongen et al. 2017), further supporting the concept of excess
neuroexcitation in the CNS. In support of this theory is the finding that
migraine patients exhibit signs of central sensitization during an attack (Burstein
et al. 2000), which is a process of excessive activation of second order dorsal horn
neurons and/or third order thalamic neurons, which occurs following peripheral
sensitization in the trigeminal ganglion (Woolf and Decosterd 1999). Glutamate
release in the spinal dorsal horn and glutamate receptor activation mediates central
sensitization (Burstein 2001). Allodynia and hypersensitivity is a common clinical
observation of chronic migraine (Bigal et al. 2008a; Kitaj and Klink 2005) and is
regarded as the result of central sensitization (Andreou and Edvinsson 2019).

Brains of patients with migraine differ pharmacologically from those of
non-migraine sufferers (Mathew 2011), with glutamate playing a major role in
such differences. A small magnetic resonance spectroscopy study found
glutamatergic abnormalities in the anterior cingulate cortex and insula in migraine
patients during their interictal period compared to healthy controls (Prescot et al.
2009). Bigger magnetic resonance spectroscopy studies of the cortex and the
thalamus found higher interictal glutamate levels in the visual cortex and thalamus
of migraine patients (Bathel et al. 2018; Zielman et al. 2017), but no group differ-
ences in GABA levels supporting the hypothesis of cortical and thalamic
hyperexcitability in migraine driven by excess availability of glutamate (Bathel
et al. 2018).
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6.3 Genetics of Migraine and the Glutamatergic System

The increased glutamate levels, both during a migraine attack and in chronic
migraine, may suggest a defective cellular reuptake mechanism for glutamate in
migraine patients at the neuronal/glial level, predisposing the pain pathway to excess
excitation. Increased cortical glutamate levels may also drive the development of
cortical spreading depression during migraine aura. To date, our knowledge on
migraine genetics is not complete, but some genetic modification findings may
support this theory.

Migraine is a multifactorial disorder and genetic factors play an important role in
the development of the disorder. Studies examining the genetic basis of migraine are
complicated by the heterogeneous nature of the condition and the lack of objective
clinical or diagnostic tests. Family and twin studies showed increased risk in the
family members of migraine patients (Noble-Topham et al. 2003; Ziegler et al.
1998), indicating that genetic factors are a major contribution to the pathogenesis
of both migraine with and without aura. Genome-wide association studies (GWAS)
failed to shed light on the actual molecular changes that are responsible for the
genetic susceptibility of migraine. It is understood that multigenetic variants, rather
than individual genes, influence the susceptibility to migraine (Gormley et al. 2016).
Regardless of these outcomes, due to their small effect size, no single nucleotide
polymorphisms has any clinical use in predicting the risk of developing migraine
(Andreou and Edvinsson 2019). Potentially, more knowledge on the function of
these variants could highlight which molecular pathways are involved in migraine
susceptibility (van den Maagdenberg et al. 2019). With respect to the glutamatergic
system, one of the chromosomal regions with significant linkage for non-hemiplegic
migraine with aura is the 11q24 locus (Cader et al. 2003), which maps, among other
candidates, the GRIK4 gene of the KA1 kainate receptor subunit (Mayer 2007).
Polymorphisms in the glutamate receptor ionotropic amino-3-hydroxy-5-methyl-4-
isoxazole-propionin acid 1 (GRIA1) and GRIA3 genes that code for two of the four
subunits of the AMPA ionotropic glutamate receptor have been previously associ-
ated with migraine in an Italian and Australian population (Fang et al. 2015;
Formicola et al. 2010; Maher et al. 2013), further supporting the plethora of evidence
suggesting that glutamate dysfunction may contribute to migraine susceptibility.
Furthermore, genetic screening of a patient with hemiplegic migraine, seizures and
episodic ataxia revealed a mutation on the excitatory amino acid transporter
1 (EAAT1) (Jen et al. 2005), which reduces the glial cell’s ability to clear glutamate
from the synaptic cleft (Ramadan and Buchanan 2006). The resultant increased
availability of synaptic glutamate would contribute to post-synaptic hyperexcitation,
which would further lead to the development of central sensitization and the
prominent neurological symptoms seen during migraine attacks. Another small
study demonstrated that polymorphism of the glutamate transporter protein excit-
atory amino acid transporter 2 (EAAT2) are potentially involved in the development
of medication-overuse headache and migraine transformation into chronic daily
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headache, as EEAT2 polymorphisms were significantly higher in patients with
frequent analgesic usage (Shin et al. 2011).

Familial Hemiplegic Migraine (FHM) is a rare monogenic form of migraine with
prominent aura symptoms (Ferrari et al. 2015) that is inherited in an autosomal
dominant manner. The molecular linkage of FHM involves three mutations (van den
Maagdenberg et al. 2007): FHM 1 mutation affecting the CACNA1A calcium
channel gene mapped to chromosome 19p13 (Ophoff et al. 1996). FHM 2 mutation
affecting the ATP1A2 gene on chromosome 1q23 (De Fusco et al. 2003). FHM
3 mutation affecting the SCN1A gene on chromosome 2q24, which is a rarer cause of
FHM (Dichgans et al. 2005; Vanmolkot et al. 2007). Interestingly a common
consequence of these mutations is an increase in glutamate availability at the
synaptic cleft (Andreou and Goadsby 2009a). The FHM 1 mutation on the pore-
forming A1 subunit of Cav2.1 (P/Q-type) voltage-gated neuronal calcium channels
that modulate release of neurotransmitters at peripheral and central synapses (van
den Maagdenberg et al. 2007; Wessman et al. 2004) can have as a consequence
enhanced glutamate release due to enhanced calcium flux at the pre-synaptic termi-
nal (Schneggenburger and Neher 2005). The FHM2 mutation affecting the A2
subunit of sodium-potassium pump ATPases, which transport potassium and sodium
ions across the cell membrane, has as a consequence a dysfunction on the reuptake of
potassium and glutamate from the synaptic cleft into glial cells (De Vries et al.
2006). The FHM 3 mutation affects the A1 subunit of neuronal voltage-gated
sodium (Nav1.1) channels that normally modulate generation and propagation of
action potentials, and has as a consequence the facilitation of high-frequency
discharges that might also increase synaptic glutamate levels (Dichgans et al.
2005). The increased glutamate availability at the synaptic cleft caused by these
mutations could potentially explain the increased susceptibility to cortical spreading
depression, the underlying mechanism of migraine aura (van den Maagdenberg et al.
2004; Wessman et al. 2007).

6.4 Pathophysiology of the Migraine Attack and Glutamate
Involvement

To date, through brain imaging studies we have a clear understanding of the bulk
brain structures involved in migraine pathophysiology, however, the exact molecular
mechanisms are not understood. Glutamate, as the main excitatory neurotransmitter
in the brain, and the major neurotransmitter of the peripheral trigeminal system, has
been implicated in all phases of a migraine attack. A migraine attack is characterised
by different phases, the premonitory phase, migraine aura phase, the headache phase
and the postdrome. Each phase is thought to involve functional changes in different
brain structures.
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6.4.1 The Premonitory Phase

Before the onset of any neurological symptoms or head pain, the majority of
migraine patients can recognise the onset of the “premonitory phase”. During the
premonitory phase, which can last between few hours to days, patients experience
excessive yawning, thirst, somnolence, food craving, cognitive difficulties and mood
changes (Laurell et al. 2016). Early hypothesis on the brain areas involved in the
preliminary phase of migraine suggested an association with hypothalamic function,
given that the symptoms described are strongly associated with homeostatic func-
tions regulated by the hypothalamus, such as arousal, sleep and feeding (Alstadhaug
2009). Additionally, a disturbance in homeostatic function, such as changes in sleep
or eating patterns is a significant trigger of attacks (Kelman 2007). In the past years,
few brain imaging studies provided stronger evidence for hypothalamic activation in
migraine patients. These studies demonstrated increased blood flow in the posterior
region of the hypothalamus during the very early stages of spontaneous migraine
attacks (Denuelle et al. 2007; Schulte and May 2016) and during the premonitory
phase of nitroglycerin (nitric oxide-NO donor)-induced migraine attacks (Maniyar
et al. 2014). One of the fMRI studies, which scanned daily a migraine patient and
captured all phases of migraine within a period of one month, reported, in addition to
hypothalamic activation, increased activity at the occipital cortex (Schulte and May
2016), which has been long recognised as an area of hyperexcitability both in
episodic and in chronic migraine (Aurora et al. 1999; Mulleners et al. 2001).
Although it has been suggested that dysrhythmia along the thalamo-cortical axis in
migraine patients may be responsible for abnormal cortical responses (Coppola et al.
2007), no such theory or evidence has been shown to date for hypothalamic-cortical
dysrhythmia. Hence, through which networks, neurotransmitters and molecular
changes the occipital cortex and the hypothalamus may influence each other remains
unknown. A role for glutamate is possible, as preclinical studies demonstrated the
participation of glutamatergic efferent pathways from the cortex to the posterior
hypothalamus in the modulation of pain and anxiety and highlighted a role for
ionotropic glutamate receptors (Falconi-Sobrinho et al. 2017).

Importantly, to date we do not understand the actual hypothalamic nuclei and
their pharmacology involved in the development of the premonitory phase of
migraine and potentially the triggering of a migraine attack. The hypothalamus,
although a small region in the brain, consists of a number of different subnuclei that
play a crucial role in many important functions, including releasing hormones,
regulating body temperature, sleep and arousal. Although imaging studies suggest
it is mostly its posterior area that could be implicated in the premonitory phase of
migraine, several subnuclei, neurotransmitters and neuropeptides may be involved.
Mainly animal studies suggest that these include dopaminergic mechanisms
(Akerman and Goadsby 2007; Barbanti et al. 1998; Charbit et al. 2010; Marmura
2012; Shepherd et al. 2002), potentially from the dopaminergic A11 nucleus of the
hypothalamus which has been shown to project to the TCC (Bjorklund and
Skagerberg 1979). Interestingly, vesicular glutamate transporter 2 (VGluT2)
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mRNA-expressing neurons are observed within different hypothalamic nuclei and
on each midbrain dopamine system, suggesting that at least a subset of neurons
might release dopamine and glutamate separately from different varicosities in many
of their single axons (Kawano et al. 2006; Morales and Root 2014). To date, no
concrete data in humans suggest the actual involvement of any specific hypotha-
lamic nucleus or hypothalamic neurotransmitters/neuropeptides in migraine patho-
physiology, although it remains an interesting area to explore for the development of
future migraine therapeutics.

6.4.2 The Migraine Aura

The occipital cortex has been strongly linked to the development of migraine aura.
This phase of a migraine attack occurs in about 20% of patients (Rasmussen and
Olesen 1992) and it is characterised by transient neurological symptoms, most
commonly visual alterations, that occur just before, or at the onset the actual
migraine headache (IHS 2018; Zhang et al. 2016). Visual symptoms are the most
common and are usually described as zigzag or scintillating figures mostly affecting
one hemifield of both eyes. In some patients, sensory symptoms affecting the hand
and gradually spreading to the whole arm and the perioral region occur alone or in
conjunction with visual aura (Russell and Olesen 1996). Motor aura is less frequent
and not well recognised by patients and is usually described as motor weakness
(Jensen et al. 1986; Silberstein et al. 2001). Speech disturbances may also occur in
some patients during the aura phase.

The underlying phenomenon that drives the migraine aura is now believed to be a
wave of cortical spreading depression (CSD) which spreads out from the cortex,
resulting in an initial hyperaemic phase followed by an oligaemic phase, and linked
with a wave of cortical neuronal depolarisation (Lauritzen 1994; Leão 1944; Olesen
1998; Olesen et al. 1990). CSD, described first by Leão in the rabbit cortex in 1944,
is a self-propagating depolarisation of neurons and glia linked with depressed
neuronal electrical activity (Leão 1944) that moves at a rate of about 2–3 mm/min
across the cerebral cortex. Leão first observed that CSD leads to transient dilatation
of pial arteries. Following this transient hyperperfusion, hypoperfusion ensues,
which persists long after CSD waves have passed. Spreading depression has been
demonstrated in almost all the grey matter regions of the central nervous system
(CNS) (Somjen 2001), although the cortex of primates, especially in humans, is
relatively more resistant to CSD. Early observations from Lashley (Lashley 1941)
suggested an association between CSD and the migraine aura and several imaging
and blood flow studies of patients during migraine with aura showed unilateral
regions of occipital hypoperfusion that tend to spread rostrally from the occipital
cortex and persist into the headache phase (Sanchez-del-Rio and Reuter 2004).
Actual clinical evidence supporting that a cerebral blood flow altering event such
as CSD generates the aura in human visual cortex came only with the use of high-
field functional MRI with near-continuous recording during migraine visual aura in
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humans. With this method Hadjikhani and colleagues (2001) observed blood oxy-
genation level-dependent (BOLD) signal changes that demonstrated characteristics
of CSD as time-locked to percept onset of the aura. For ethical reasons, direct
electrophysiological recordings in the migraine brain have not been contacted, as
for example in traumatic brain injury (Hartings et al. 2011; Lauritzen et al. 2011).

It is not yet clear how CSD is triggered in human cortex during migraine aura. A
number of diverse stimuli trigger CSD in animal models, including direct cortical
trauma, exposure to high concentrations of excitatory amino acids, including gluta-
mate, or K+, direct electrical stimulation, inhibition of Na+/K+-ATPase and energy
failure (Somjen 2001). CSD in the neocortex of a variety of species, including man,
has been demonstrated to be dependent on activation of the N-methyl-D-aspartate
(NMDA) receptor (Faria and Mody 2004). Local release of glutamate by neurons is
thought to initiate CSD and the subsequent activation of post-synaptic central
glutamate receptors is argued to explain its propagation (Vinogradova 2018; Zandt
et al. 2013). Volume-sensitive organic anion channels (VSOACs) in astrocytes are
activated by cell swelling and release glutamate which contributed further to the
propagation of spreading depression (Basarsky et al. 1999). NMDA receptor antag-
onists reduce the rate of propagation of SD (Basarsky et al. 1999). Furthermore,
inhibition of CSD by memantine, an NMDA receptor antagonist, also suggests a key
role for activation of neuronal glutamate receptors in the initiation of CSD (Peeters
et al. 2007). As previously mentioned genetic predispositions and environmental
factors may modulate individual susceptibility by lowering the CSD threshold (van
den Maagdenberg et al. 2004), and cortical excitation may cause sufficient elevation
in extracellular K+ and glutamate to initiate CSD (De Fusco et al. 2003).

Although no obvious aura symptoms are reported by the majority of migraine
patients, the presence of silent auras has been proposed (Dahlem and Isele 2013;
Purdy 2008), based on observations of increased cortical blood flow in migraine
without aura patients at the onset of a migraine attack (Denuelle et al. 2008; Woods
et al. 1994). This theory however remains a matter of debate, as it is yet unclear if
CSD can trigger a migraine attack in humans. Clinically, this hypothesis is not
supported as aura without headache is not uncommon, and migraine aura is not
always contralateral to the headache (Goadsby 2001). On the other hand, increased
cortical excitability, potentially due to elevated glutamatergic activity, has been seen
in migraine without aura patients controls (Aurora et al. 1999; Mulleners et al. 2001).
In animals, CSD has been shown to induce activation of second order neurons in the
TCC, and the authors suggested this is due to sensitization of pial emended trigem-
inal fibres from ions released from the cortex during a CSD (Zhang et al. 2010,
2011). However, if indeed the ascending trigeminothalamic pathway can be modu-
lated by CSD, this could also be through activation of cortico-spinal projections or
cortico-thalamic activation (Andreou et al. 2012, 2013), at least in animal models of
migraine.
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6.4.3 The Headache Phase

The headache phase of migraine is the most disabling phase of the attack. The actual
pain in an untreated migraine attack may last between 4 and 72 h and it is
characterised as moderate or severe. Head pain is often accompanied by nausea
and other sensory symptoms, including photophobia and phonophobia. The patho-
physiology of the headache phase in migraine is believed to include activation of
trigeminal fibres, that innervate the dura matter and intracranial vasculature
(Edvinsson et al. 2020; Olesen et al. 2009; Penfield and McNaughton 1940; Ray
and Wolff 1940; Wolff 1948). These primary fibres have their cell body in the
trigeminal ganglion and project centrally in the trigeminocervical complex (TCC;
trigeminal nucleus caudalis, C1 and C2 spinal levels) (Edvinsson et al. 2020). The
axons of the second order neurons in the TCC are part of the ascending
trigeminothalamic pathway which projects and transmits nociceptive information
to third order neurons, mainly in the ventroposteromedial thalamic nucleus (VPM)
(Andreou and Edvinsson 2019).

A number of evidence over the decades suggest that activation of peripheral
trigeminal fibres and subsequently of the ascending trigeminothalamic pathway
during the headache phase may drive the nociceptive signals of the migraine
headache (Andreou and Edvinsson 2019). First, stimulation of the dura matter and
its vasculature in humans during awake brain surgery induces head pain that
resembles the migraine headache and its frequent localisation on the temporal region
(Olesen et al. 2009; Penfield and McNaughton 1940; Ray and Wolff 1940; Wolff
1948). Activation of the trigeminal fibres in migraine is mostly evident by the release
of the neuropeptide calcitonin-gene related peptide (CGRP). CGRP levels have been
shown to be elevated in cranial circulation during a migraine attack and in chronic
migraine patients. Animal studies suggest that the origin of the CGRP is indeed the
trigeminal nerve (Goadsby et al. 1988, 1990; Lambert et al. 1988). Additionally,
substances like calcitonin gene-related peptide and histamine, that do not cross the
blood brain barrier (BBB), can trigger a migraine attack (Hansen et al. 2010; Lassen
et al. 1995). Final evidence and perhaps the most important is that therapeutics, like
triptans (5HT1B/D agonists),—the migraine-specific acute treatments, that do not
cross the BBB can stop a migraine attack (Millson et al. 2000; Tfelt-Hansen 2010).
Other preventive migraine treatments that also do not cross the BBB, like the new
CGRP monoclonal antibodies (mAbs) and botulinum toxin A (BOTOX) are
amongst the most effective treatments in reducing the frequency of headache in
chronic migraine patients (Andreou et al. 2018; Lambru et al. 2018).

The trigeminothalamic pathway includes the second order neurons located in the
TCC and their projections to third order neurons, mainly in the VPM nucleus. Both
the TCC and the thalamus are important relay centres of the migraine pathophysi-
ology and prominent sites of action of migraine therapeutics (Andreou et al. 2010;
Andreou and Goadsby 2009a; Andreou and Goadsby 2011; Shields and Goadsby
2006). The thalamic area has been further implicated in the development of
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associated symptoms, such as hypersensitivity to visual (Noseda et al. 2010) and
auditory stimuli (Filippov et al. 2008).

The major neurotransmitter in the trigeminal ganglion neurons, TCC neurons and
third order neurons in the VPM is glutamate (Andreou and Goadsby 2009a).
VGLUT1 and VGLUT2 positive neurons in the TCC provide collateral projections
to the thalamus (Zhang et al. 2018). In vivo studies using microdialysis and blood
flow measurements demonstrated increased levels of glutamate in the TCC during
and post stimulation of trigeminal fibres in dural structures (Bereiter and Benetti
1996; Goadsby and Classey 2000). Glutamate plays a crucial role in the transmission
of nociceptive information in the VPM. It is involved in signalling from
spinothalamic tract and lemniscal pathways and from cortico-thalamic afferents
(Broman and Ottersen 1992). Extracellular levels are increased following experi-
mentally produced pain (Silva et al. 2001).

Glutamate triggers post-synaptic excitatory action potentials both in second TCC
and third order VPM neurons, by activating multiple glutamate receptors (Andreou
et al. 2015; Dougherty et al. 1996; Li et al. 1996; McCormick and von Krosigk 1992;
Salt et al. 1999a, b; Salt and Eaton 1995; Salt and Turner 1998). Subunits of all three
ionotropic glutamate receptors, namely NMDA, AMPA and kainate receptors,
which are involved in fast synaptic signalling, have been found in trigeminal ganglia
neurons or on their primary axons on the dura matter (Andreou et al. 2009, 2015;
O'Brien and Cairns 2016; Quartu et al. 2002; Sahara et al. 1997; Watanabe et al.
1994). A study in rodents showed that peripherally administrated monosodium
glutamate lowers the mechanical threshold of activation of trigeminal fibres in the
dura matter, an effect blocked by NMDA receptor antagonists (O'Brien and Cairns
2016). In humans, anecdotal reports exist on the role of dietary monosodium
glutamate as a migraine trigger, potentially acting on peripheral glutamate receptors
(Borkum 2016; Jinap and Hajeb 2010). Intramuscular injection of glutamate in the
masseter muscle which is also innervated by trigeminal fibres evokes pain, poten-
tially through activation of the NMDA receptor (Cairns et al. 2003; Castrillon et al.
2007). These studies further support a role of peripheral glutamate receptors in
trigeminal nociception.

On the other hand, earlier brain imaging studies demonstrated increased blood
flow in the region of the dorsal rostral pontine and brainstem in both episodic (Afridi
et al. 2005; Weiller et al. 1995) and chronic migraine patients (Matharu et al. 2004).
The brainstem is known to project a number of descending modulatory circuits to the
spinal cord (Akerman et al. 2011), and potentially a malfunction of this modulatory
tone may amplify normal sensory processing along the ascending trigeminothalamic
pathway (Andreou and Edvinsson 2019).

Within the TCC, microiontophoresis of selective NMDA, AMPA and kainate
agonists was shown to excite second order neurons that respond to
trigeminovascular stimulation (Andreou et al. 2006; Storer and Goadsby 1999).
On the other hand, selective antagonists of NMDA, AMPA and kainate receptors
have been shown to inhibit nociceptive trigeminovascular activation of these neu-
rons (Storer and Goadsby 2009a, b), including magnesium, which can block the
NMDA receptor (Furukawa et al. 2005). Likewise, within the VPM, agonists of the
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ionotropic glutamate receptors were found to excite third order neurons, and selec-
tive antagonists were found to inhibit these neurons and trigeminovascular stimula-
tion (Andreou et al. 2008; Salt 2002; Salt and Eaton 1989). Of interest, topiramate,
an anti-convulsant approved for the preventive treatment of migraine has been
shown to inhibit third order neurons responding to trigeminovascular stimulation,
and to selectively block excitation induced by kainate receptor agonists but not by
NMDA or AMPA agonists (Andreou and Goadsby 2011).

Some members of the metabotropic glutamate receptors (mGLuRs), which act by
coupling to G-proteins and modulate differentially activation of sensory fibres, are
also found in the trigeminal ganglion. Activation of group I mGluRs (mGluR1 and
mGluR5) can increase neuronal excitation through phospholipase C calcium
mobilisation (Abe et al. 1992; Pin et al. 2003). Activation of group II (mGluR2
and mGluR3) and group III (mGluR4, mGluR6, mGluR7 and mGluR8) mGluRs
decreases neuronal excitation by inhibiting adenylyl cyclase (AC) resulting in
reduction of intracellular cyclic adenosine monophosphate (cAMP) levels (Boye
Larsen et al. 2014; Pin et al. 2003; Tanabe et al. 1993). Studies in rats showed that
trigeminal neurons express mGluR1α, mGluR2/3 and mGluR8, while satellite glial
cells (SGCs) express mGluR1α and mGluR8 (Boye Larsen et al. 2014). The role of
mGluRs has been studied extensively in animal models of somatic pain (Pereira and
Goudet 2018), however, very few studies investigated their function in trigeminal
nociception and in migraine models. The mouse TCC has been shown to express at
least the mGluR1, mGluR5, mGluR3 and mGLuR4. These receptors have been also
found in the sensory thalamus and in midbrain and medulla sections involved in
descending modulation of pain, notably in the periaqueductal grey (PAG) and
rostroventral medulla (RVM) (Pereira and Goudet 2018).

Within the thalamus, microiontophoretic studies demonstrated that selective
mGLuR1 and mGluR5 agonists can excite third order thalamic neurons (Salt et al.
1999b; Salt and Eaton 1995). Acute thalamic nociceptive responses are found to be
mediated by a combination of mGlu1, mGlu5 and NMDA receptor activation, and
that co-activation of these receptors produced a synergistic excitatory effect (Salt
et al. 1999a; Salt and Binns 2000). On the other hand, agonists that are active at
Group II and Group III mGluRs were shown to reduce sensory-evoked synaptic
inhibition by a pre-synaptic mechanism (Salt and Eaton 1995; Salt and Turner 1998).
A small clinical trial on the acute actions on migraine attack of a selective mGluR5
agonist, ADX-10059, was discontinued due to unacceptable side effects, despite
some promise on its efficacy versus placebo (Marin and Goadsby 2010).

The glutamate transporters (GLT) have been also found on trigeminal fibres in the
periphery and in the dorsal horn of the TCC (Alvarez et al. 2004; Kim et al. 2015,
2018; Li et al. 2003; Persson et al. 2006). High affinity excitatory amino acid
transporters (EAATs) are essential to terminate glutamatergic neurotransmission
and to prevent excitotoxicity. So far, five structurally distinct transporters have
been identified from animal and human tissues: glutamate/aspartate transporter
(GLAST; EAAT1 in human), glutamate transporter-1 (GLT-1; EAAT2 in human),
excitatory amino acid carrier-1 (EAAC1; EAAT3 in human), excitatory amino acid
transporter 4 (EAAT4) and excitatory amino acid transporter 5 (EAAT5). In the

6 Glutamate in Migraine Neurobiology and Treatment 205



TCC, it was shown that EAAC1 like-immunoreactivity was present in lamina
II. GLAST like-immunoreactivity was also present in lamina II, in both astroglia
and neurons and around the central canal (lamina X). GLT-1 was highly expressed in
astroglial cells in laminae I-III and the area around the central canal (Tao et al. 2005),
and finally, though EAAT4 was initially found to be neuronal in the brain, it has
been co-localised with astroglia in the spinal cord (Hu et al. 2003; Rothstein et al.
1994). EAAC1, in addition to its expression in the spinal cord neurons, is detected in
dorsal root ganglia (DRG) and distributed predominantly in small DRG neurons
(Tao et al. 2005). Some of these EAAC1-positive DRG neurons are positive for
CGRP or are labelled by isolectin B4 (Tao et al. 2005), a marker of non-peptidergic
neurons. As mentioned earlier, polymorphisms of EAAT2 have been proposed to be
involved in the development of chronic migraine (Shin et al. 2011).

Vesicular glutamate transporters (VGLUTs) are considered as the best glutamate
markers for staining glutamatergic cells; their presence is a strong indication that
glutamate is accumulated in vesicles from which it can be released. Staining studies
found these transporters in populations of axons that are known to be glutamatergic
and their expression in cultured cells results in glutamate uptake and the subsequent
conversion of neurons to a glutamatergic phenotype (Bellocchio et al. 2000; Todd
et al. 2003). In the spinal cord both the VGLUT1 and VGLUT2 are expressed,
though the spinocervical tract, including the TCC, was found to contain dense
labelling for VGLUT2 (Persson et al. 2006). This suggests that VGLUT2 is the
transporter responsible for the vesicular accumulation of glutamate at the
spinocervical tract terminals, and thus most glutamatergic fibre systems in the spinal
cord should display high probability of release, because of their use of VGLUT2 as
vesicular transporter (Fremeau Jr et al. 2001; Persson et al. 2006). Spinal, and
subsequently TCC, glutamate transporters might play an important role in normal
sensory transmission. Intrathecal application of the selective glutamate transporter
blocker DL-threo-β-Benzyloxyaspartic acid (TBOA) resulted in significant and
dose-dependent spontaneous nociceptive behaviours, and in remarkable hypersen-
sitivity in response to thermal and mechanical stimuli (Liaw et al. 2005). TBOA on
the dorsal surface of the spinal cord also resulted in a significant elevation of
extracellular glutamate concentrations (Liaw et al. 2005). These findings indicate
that a decrease of spinal glutamate uptake can lead to excessive glutamate accumu-
lation in the spinal cord, which might, in turn, result in over-activation of glutamate
receptors, and production of spontaneous nociceptive behaviours and sensory hyper-
sensitivity (Tao et al. 2005). However, the glutamate transporters seem to also have
opposing actions in pathological pain in animal models. Inhibition or transient
knockdown of spinal GLT-1 led to a significant reduction of nociceptive behaviour
in the formalin model, whereas different glutamate transporter inhibitors (TBOA,
dihydrokainate, threo-3-hydroxyaspartate) reduced formalin-induced nociceptive
responses and complete Freund’s adjuvant-evoked thermal hyperalgesia (Tao et al.
2005). Different potential mechanisms by which glutamate transporters are involved
in pathological pain have been suggested; however, their exact function is not
completely understood.
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6.4.4 The Postdrome Phase

The postdrome phase is the last phase of a migraine attack, which is recognised by at
least 80% of patients (Giffin et al. 2016). The postdrome phase occurs after the end
of the headache phase and its duration may be between few hours to days. It is
mainly characterised by symptoms of fatigue, difficulties in concentration and
comprehension, neck stiffness and high disability scores (Giffin et al. 2016). The
migraine postdrome is the least studied and least understood phase of migraine. A
couple of functional imaging studies showed widespread reduction in brain-blood
flow during this phase, but persistent blood flow increase in the occipital cortex
(Bose and Goadsby 2016; Schulte and May 2016).

6.5 Pathophysiology of Chronic Migraine and Glutamate
Involvement

Chronic migraine is defined by the International Classification of Headache Disor-
ders (ICHD3) of the International Headache Society, as a disorder with headache
occurring on at least 15 days per month, which on at least 8 days have the features of
a migraine headache (IHS 2018). In chronic migraine it is often impossible to
distinguish the individual episodes of headache attacks and the headache appears
as a continuous state. About 2.5% of episodic migraine patients progress into chronic
migraine (Manack et al. 2011). Chronic migraine is disabling, underdiagnosed and
undertreated, affecting about 1–2% of the general population (Buse et al. 2012;
Natoli et al. 2010). Factors identified to increase the risk for migraine chronification
include de novo increased migraine attack frequency, overuse of acute migraine
medication, ineffective acute treatment that could lead to medication overuse,
depression and lifestyle factors such as stress, high caffeine intake and obesity
(Ashina et al. 2012; Bigal and Lipton 2006; Katsarava et al. 2004; Lipton et al.
2015; Mathew et al. 1990; May and Schulte 2016; Scher et al. 2003).

Chronic migraine appears to induce neuroplastic changes in patients’ brain. A
number of brain imaging studies showed changes in grey matter volume, as well as
in white matter hyperintensities in CM patients, compared to episodic migraine
patients (Aradi et al. 2013; Chiapparini et al. 2010; Rocca et al. 2006; Valfre et al.
2008; Zheng et al. 2014), as well as large-scale reorganisation of functional cortical
networks and interactive neuronal networks (Coppola et al. 2019). Similar to
episodic migraine, cortical excitability appears to be abnormal in chronic migraine
patients, but whether this contributes to migraine chronification remains uncertain
(Coppola and Schoenen 2012; Cosentino et al. 2014).

The physiological mechanisms that underlie the development of chronic migraine
from its episodic form are not understood (Andreou and Edvinsson 2019). However,
central sensitization, occurring from peripheral sensitization, has been proposed to
play a key role in the development of chronic migraine, similar to other chronic pain
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conditions. Central sensitization refers to increased excitability of second order
neurons and could even include sensitization of third order thalamic neurons,
characterised by increased synaptic strength and enlargement of receptive fields
(McMahon et al. 1993; Woolf and Doubell 1994; Woolf and Salter 2000). Central
sensitization occurs following repeated activation of peripheral fibres that are at a
state of peripheral sensitization leading to the establishment of hyperexcitability in
second order neurons in the TCC. Multiple studies in different animal models of pain
showed that activity-dependent central sensitization is induced by intense, repeated,
or sustained nociceptor inputs. Central sensitization can then persist in the absence of
further nociceptor input. Clinically, central sensitization is manifested as a state of
either hyperalgesia—an exaggerated pain in response to a stimulus that normally
causes mild pain, or of allodynia—a pain response to a normally nonpainful stim-
ulus, and exaggerated pain response referred outside the original pain site (Dodick
and Silberstein 2006). Indeed, during a migraine headache about 80% of migraine
patients develop cutaneous allodynia, characterised by increased skin sensitivity,
mostly within the referred area of pain of the ipsilateral head, but other parts of the
body may be also affected, especially if the attack remains untreated (Burstein et al.
2000; Selby and Lance 1960; Su and Yu 2018). Allodynia in non-cephalic areas has
been proposed to include sensitization of both second order neurons in the TCC and
of third order neurons in the thalamus (Burstein et al. 2000; Dodick and Silberstein
2006). Hence, repeated episodes of peripheral and central sensitization could lead to
the development of chronic migraine.

Central sensitization is a glutamate-dependent process and at least, NMDA
receptor activation seems to be pivotal for the induction and maintenance of central
sensitization in neuronal fibres innervating the dura matter (Woolf and Thompson
1991). Hence, treatment of chronic migraine could target glutamatergic transmission
in brain pathways involved in central sensitization, or the peripheral cause in the
trigeminal system that induced glutamatergic-driven peripheral sensitization.

Central sensitization requires activation of NMDA receptors for its induction,
which leads to elevation in intracellular calcium, activating multiple calcium-
dependent kinases that act on receptors and ion channels to further increase synaptic
efficacy (Latremoliere andWoolf 2009). AMPA receptors may also participate in the
elevation of calcium in the synapse. Studies in multiple pain models suggest that
central sensitization includes multiple mechanisms of synaptic plasticity caused by
changes in the density, nature and properties of ionotropic and metabotropic gluta-
mate receptors (Latremoliere and Woolf 2009). Ionotropic glutamate receptors can
be phosphorylated by intracellular kinases, inducing changes in their activity and
trafficking to the membrane, which manifest central sensitization by boosting syn-
aptic efficacy (Carvalho et al. 2000; Lau and Zukin 2007). Stimulation of group I
mGluRs also participate, along with NMDA and AMPA receptors, in the activation
of the intracellular pathways that sustain central sensitization (Ferguson et al. 2008;
Guo et al. 2004; Hu et al. 2007).

In animal models of migraine, inflammatory agents on the dura matter induced
long-lasting activation of the trigeminovascular pathway (Burstein et al. 1998;
Ebersberger et al. 1997; Schepelmann et al. 1999), which provoked long-lasting
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sensitization in trigeminocervical neurons manifested as increased responsiveness
and expansion of dural and cutaneous receptive fields (Burstein et al. 1998). These
changes were recorded in parallel to an increase of the extracellular glutamate
concentration of second order neurons in the TCC (Oshinsky and Luo 2006),
indicating an important contribution of glutamate and its receptors in trigeminal
allodynia (Oshinsky and Luo 2006). The increased glutamate concentrations in the
CSF of chronic migraine patients (Gallai et al. 2003; Peres et al. 2004; van Dongen
et al. 2017) indeed support the presence of central sensitization (Burstein et al.
2000).

6.6 CGRP inMigraine and its Modulation of Glutamatergic
Transmission

What may initiate peripheral sensitization of the trigeminal nerve that could then
lead to the development of central sensitization in chronic migraine remains uncer-
tain, however a role for peripheral inflammation seems plausible (Andreou and
Edvinsson 2019; Edvinsson et al. 2019). Calcitonin gene-related peptide (CGRP),
of trigeminal origin, is a neuropeptide shown to be increased in the circulation of
patients during migraine attacks (Goadsby et al. 1988, 1990) and in between attacks
(Ashina et al. 2000). Its levels were shown to be normalised following treatment with
sumatriptan (Goadsby and Edvinsson 1993), a 5HT1B/D agonist designed as a
migraine-specific acute treatment. Intravenous infusion of CGRP has been shown
to induce migraine attacks without aura in migraine patients (Hansen et al. 2010).
Importantly, CGRP has emerged as a therapeutic target in migraine, since CGRP
receptor antagonists and mAbs against CGRP itself or against its receptor are
effective preventive treatments for episodic and chronic migraine patients (Andreou
et al. 2020; Lambru et al. 2018).

In the peripheral neural tissue, CGRP is found in the trigeminal, dorsal root and
vagal ganglia, and their nerve endings, including peri-vasculature nerve terminals in
the dura matter (Edvinsson et al. 2020). Centrally, CGRP is found mainly in nerve
fibres in the dorsal horn laminae I/IIo of the spinal cord and the TCC, and in some
acetylcholine neurons of the ventral horn (Piehl et al. 1991). Small populations of
neurons expressing CGRP are also found in the brain (Hokfelt et al. 1992). In
migraine animal models, stimulation of trigeminal fibres innervating the superior
sagittal sinus increases CGRP circulating levels (Goadsby et al. 1988; Zagami et al.
1990). In humans CGRP levels are increased during stimulation of the trigeminal
ganglion, further supporting a trigeminal origin of CGRP in migraine patients
(Goadsby et al. 1988).

CGRP is expressed in many human VGLUT1 and VGLUT2 positive trigeminal
axons, as well as in rat glutaminase positive neurons (Miller et al. 1993) but not in
VGLUT1 positive trigeminal neurons (Cho et al. 2021). However, in immunohisto-
chemistry studies using an anti-glutamate glutaraldehyde antibody in rat and rhesus
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monkey trigeminal ganglia found only few neurons co-expressing CGRP and
glutamate (Eftekhari et al. 2015). CGRP has been found however to co-release
with glutamate, and its release is regulated by voltage-dependent calcium channels
(Xiao et al. 2008). Upon its release, CGRP acts on the CGRP receptor which consists
of heterodimers of CLR/RAMP1 subunits. Functional CLR/RAMP1 receptors
require intracellular interactions with receptor component protein (RCP) and its
activation induces stimulation of adenylyl cyclase (AC) and production of cyclic
adenosine monophosphate (cAMP) (Russell et al. 2014). Recently, the calcitonin
receptor CTR/RAMP1 heterodimer (AMY1 receptor) is also believed to be a
functional CGRP receptor (Hay et al. 2008; Walker et al. 2015). Functional CGRP
receptor(s) have similar distribution patterns as with CGRP neurons and fibres
(Russell et al. 2014).

While peripherally, the vascular actions of CGRP as the most potent vasodilator
are well characterised (Brain et al. 1985), its modulatory function in somatosensory
neurons received considerable attention only recently. Growing evidence indicates
that CGRP plays a key role in the development of peripheral sensitization and in the
development of neurogenic inflammation. In animals, sustained CGRP release may
induce peripheral sensitization of the trigeminal system (Nakamura-Craig and Gill
1991), likely due to the release of pre-synaptic inflammatory mediators, such as
bradykinin or prostaglandins from nerve endings and potentiation of post-synaptic
glutamate responses (Birrell et al. 1991; Schaible and Schmidt 1988; Wang et al.
2006). CGRP induces release of pro-inflammatory mediators from inflammatory
cells (Walsh et al. 2015). Direct application of CGRP on trigeminal fibres on the dura
matter does not sensitize second order neurons (Levy 2012; Levy et al. 2005). When
CGRP is applied microiontophoretically onto second order neurons in the TCC, in
the absence of any other stimulus, it also has little effect on spontaneous neuronal
firing (Leem et al. 2001; Miletic and Tan 1988). However, in the presence of
glutamate, CGRP can facilitate, inhibit or have no effect on glutamate-evoked firing
in second order neurons (Leem et al. 2001; Yu et al. 2002). CGRP was shown to
potentiate mainly NMDA, but also AMPA-evoked firing, while in some neurons
CGRP showed reciprocal changes, inducing potentiation of NMDA-evoked firing
and suppression of AMPA-evoked firing (Leem et al. 2001). Given that CGRP is
co-released with glutamate, its role as a glutamatergic modulator is thus of signifi-
cant importance. Importantly, CGRP can facilitate nociceptive activation of second
order neurons and contributes to the development and maintenance of central
sensitization (Biella et al. 1991). In animal models of migraine, CGRP antagonists
have been shown to inhibit trigeminovascular nociceptive information in parallel to
reducing glutamate-evoked activation of second order neurons in the TCC (Storer
et al. 2004).
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6.7 Current Migraine Treatments Acting as Modulators
of Glutamatergic Signalling

Migraine treatment involves acute (abortive) and preventive therapies. Acute treat-
ments are used for relieving migraine headache upon occurrence of a migraine
attack. Preventive treatments on the other hand aim to reduce frequency and severity
of migraine attacks. A wide range of medications have been used for the preventive
treatment of migraine, including beta-adrenoceptor blocking drugs, antidepressants,
calcium channel blockers, antiepileptics, botulinum toxin A and the newly devel-
oped anti-CGRP mAbs and CGRP antagonists. Acute treatments include triptans,
non-steroidal anti-inflammatory drugs, acetaminophen and other over-the-counter
pain killers. These treatments exhibit different mechanisms of actions and their
efficacy in migraine is variable.

6.7.1 Triptans and Glutamatergic Modulation

Triptans are 5HT1B/D agonists specifically developed for the acute treatment of
migraine. Part of their anti-nociceptive mechanism of action is believed to be due
to the modulation of glutamate release from primary afferents, similar to endogenous
serotonin’s actions (Travagli and Williams 1996). Triptans have been shown to
modulate the release of glutamate from primary afferents in the TCC, by decreasing
the amplitude of glutamatergic excitatory post-synaptic currents and reduce the
frequency of spontaneous miniature excitatory post-synaptic currents. These actions
are potentially mediated by the presence of 5-HT1D and/or 5-HT1B receptors on the
pre-synaptic terminal, activation of which affects pre-synaptic Ca2+ influx (Choi
et al. 2012; Hwang and Dun 1999; Jennings et al. 2004). Similar actions of triptans
on glutamatergic transmission have been shown in brain neurons (Maura and Raiteri
1996; Stepien et al. 1999), however triptans are unlikely to cross the blood brain
barrier (Kaube et al. 1993; Liktor-Busa et al. 2020). Regardless, CSF levels of
glutamate in chronic migraine patients who overuse triptans are lower than in CM
who overuse other abortive treatments suggesting that triptans mechanism of action
may include in part reduction of extracellular glutamate levels in the brain (Vieira
et al. 2007).

6.7.2 Preventive Migraine Treatments Acting as Modulators
of Glutamatergic Signalling

Topiramate is an anti-epileptic drug used in the preventive treatment of migraine. Its
mechanism of action is complicated and rather unclear. Several targets have been
proposed to be relevant to the therapeutic activity of topiramate (Aboul-Enein et al.
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2012) including voltage-gated sodium channels, high-voltage-activated calcium
channels, GABAA receptors and AMPA/kainate receptors. Although all the above-
mentioned mechanisms of action may be relevant to its therapeutic efficacy in
migraine, preclinical studies in animal models of migraine showed that topiramate
can block nociceptive-evoked activation of second and third order neurons in the
TCC and thalamus, respectively (Andreou and Goadsby 2010, 2011; Storer and
Goadsby 2004), by selectively blocking kainate agonists-evoked currents (Andreou
and Goadsby 2010, 2011). Topiramate’s modulatory action on the glutamatergic
system may be more complicated as in healthy subjects it was found to increase the
cortical levels of glutamine, possibly by acting on the metabolic pathway of gluta-
mate and GABA (Moore et al. 2006). Although topiramate was shown to inhibit
CSD in animal models, it was not found effective in preventing migraine aura in
patients (Lampl et al. 2004).

Lamotrigine is an anti-convulsant which reduces glutamate release possibly
through modulation of voltage-sensitive sodium channels (Lee et al. 2008; Wang
et al. 2001). A role for lamotrigine in the prophylactic treatment of migraine has been
suggested by small studies, although conflicting outcomes are available (D'Andrea
et al. 1999; Gupta et al. 2007; Lampl et al. 1999, 2005; Smeralda et al. 2020; Steiner
et al. 1997). Clinically, lamotrigine seems to be an effective treatment option in
chronic migraine patients with allodynia, prominent aura and vertigo (Bisdorff 2004;
Cologno et al. 2013; D'Andrea et al. 1999).

Ketamine is a medication primarily used for the induction of sedation; however, it
can be used for the acute management of pain under controlled conditions (Rocchio
and Ward 2021). Ketamine is a non-competitive antagonist at the NMDA receptor
which has been used in small studies in migraine patients and found to be effective as
an abortive treatment of migraine, especially in patients accessing the emergency
department (Bilhimer et al. 2020). It has been also used in FHM migraine with aura
patients and found to be effective in reducing the aura symptoms in about 50% of the
patients without significant improvement of the migraine headache (Kaube et al.
2000). Ketamine in migraine animal models attenuated neurogenic dural vasodila-
tion (NDV) in rats, demonstrating an additional role for NMDA receptors on the
peripheral trigeminovascular system (Chan et al. 2009). Its use has limitations
however as its overall efficacy and dosage in relation to the risk of undesirable
side effects remain uncertain. Of interest in a small, randomised study, intranasal
ketamine was not found to be superior to standard therapy among patients with
primary headache syndromes (Benish et al. 2019).

Memantine is another non-competitive NMDA receptor channel blocker which
demonstrated significant effects in reducing the headache frequency and the mean
disability scores when given as a preventive treatment of refractory migraine
(Assarzadegan and Sistanizad 2017; Charles et al. 2007; Krymchantowski and
Jevoux 2009; Noruzzadeh et al. 2016; Shanmugam et al. 2019). In a small
randomised double-blind placebo-controlled trial memantine was found a tolerable
and efficacious preventive treatment in patients with migraine without aura
(Noruzzadeh et al. 2016). Its side effects were generally mild (Bigal et al. 2008b;
Noruzzadeh et al. 2016). Memantine was shown to inhibit nociceptive
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trigeminovascular transmission in second order neurons in the TCC of animal
models of migraine (Hoffmann et al. 2019).

Activation of NMDA requires simultaneous binding of both glutamate and the
co-agonist glycine (Johnson and Ascher 1987; Kleckner and Dingledine 1988) in
conjunction with the removal of Mg2+ blockage in a voltage-dependent manner
(Mayer and Westbrook 1987). Oral magnesium is commonly used as a
non-prescription preventive therapy in migraine (Orr 2016), although appropriate
studies providing strong evidence on its efficacy are lacking (Andreou and Goadsby
2009a). It is worth mentioning that Mg2+ efficacy may include other mechanisms of
action beyond the NMDA receptor. A role for Mg2+ in migraine pathophysiology
has been suggested as reduced Mg2+ levels have been reported in the serum and CSF
during and between attacks (Nischwitz et al. 2008; Ramadan et al. 1989; Sarchielli
et al. 1992). An older MR spectroscopy study also showed reduced Mg2+ concen-
tration within the brain of migraine patients (Ramadan et al. 1989). In animal models
of migraine, Mg2+ was shown to inhibit nociceptive trigeminovascular transmission
in second order neurons in the TCC of (Hoffmann et al. 2019).

Subcutaneous/intramuscular injections of botulinum toxin A (BoNT/A) in the
head, neck and shoulders (PREEMPT protocol) is one of the most effective preven-
tive treatments in migraine (Andreou et al. 2018; Aurora et al. 2014; Dodick et al.
2010). BoNT/A cleaves SNAP-25, preventing the correct assembly of the SNARE
complex which leads to potent blockade of neurotransmitter and neuropeptide
release. At the neuromuscular junction, BoNT/A-induced cleavage of SNAP-25
inhibits the release of acetylcholine from the nerve endings, resulting in muscle
paralysis (Binz et al. 2010). Similarly, by cleaving SNAP-25, BoNT/A can interfere
with sensory neuronal secretion by blocking pre-synaptic release of glutamate and
neuropeptides (Durham et al. 2004; Gazerani et al. 2010; Meng et al. 2009). In
animal models of migraine, BoNT/A was shown to block the release of CGRP and of
glutamate from trigeminal ganglion neurons (Durham et al. 2004; Gazerani et al.
2010; Meng et al. 2009). In the trigeminovascular model of migraine, BoNT/A was
shown to block mechanical activation and sensitization of nociceptors (Burstein
et al. 2014; Gazerani et al. 2010). Interestingly, the SNARE complex is also used for
the vesicular transport and exocytosis of NMDA and other glutamate receptors on
the neuronal membrane (Woo et al. 2020). BoNT/A has been shown to reduce the
expression of these receptors, representing an additional anti-nociceptive mechanism
of action (Cheng et al. 2013; Woo et al. 2020).

6.8 Future Developments and Perspectives for Glutamate
Modulating Treatments

Glutamate is clearly implicated in migraine pathophysiology. Being the major
neurotransmitter that drives activation of the ascending trigeminovascular pathway,
ultimately a glutamate blocker will be the “cure” of at least the disabling migraine
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headache. However, given the abundance of glutamate and its receptors in the brain
and their significant function in excitatory neurotransmission, such an option is
unacceptable.

Some attempts have been made in the past to block ionotropic glutamate recep-
tors in clinical trials. In a randomised, double-blind, proof-of-concept study which
assessed the efficacy of an AMPA receptor antagonist, BGG492, in the acute
treatment of migraine, BGG492 was found superior to placebo, but not superior to
sumatriptan. However, adverse effects were reported by 80% of patients on the
active arm (Gomez-Mancilla et al. 2014). In a randomised double-blind study, a
selective GluK1 kainate antagonist LY466195 (Weiss et al. 2006) was effective in
relieving acute migraine (Johnson et al. 2008), however, patients reported significant
visual side effects. In preclinical studies using selective ionotropic glutamate recep-
tor agonists, Andreou and colleagues identified in addition to kainate, NMDA
antagonist actions of this compound on second order neurons in the TCC (Andreou
and Goadsby 2009a, b). A possibility is that the visual disturbances reported by
patients were mediated by the NMDA antagonism, while both receptors may have
participated in the clinical efficacy of this drug. With that in mind, amongst the
ionotropic glutamate receptors, the kainate receptor may represent a potential
glutamatergic target for future therapeutics, providing that more selective antago-
nists will become available for clinical trials.

Kainate receptors are not as abundant as NMDA or AMPA receptors, however
they are expressed in key structures of the trigeminal nociceptive pathway, including
the trigeminal ganglion, trigeminal fibres innervating the dura matter,
pre-synaptically and post-synaptically in the TCC and ventroposteromedial thala-
mus. Their expression within the trigeminal ganglion has been shown to increase
after injection of nitroglycerin (Sankaran et al. 2019), which in humans triggers a
migraine attack (Iversen and Olesen 1996). In vitro experiments have demonstrated
that kainate receptors function as modulators of synaptic transmission and plasticity
by regulating post-synaptic currents and pre-synaptic neurotransmitters’ release
(Andreou and Goadsby 2009a; Bortolotto et al. 1999; Kerchner et al. 2002).
Microiontophoretic ejection of selective GluK1 antagonists in the TCC caused a
differential response with both inhibition and facilitation in different subpopulations
of neurons, activated in response to dural vessel electrical stimulation, by acting at
either post-synaptic or pre-synaptic sites (Andreou et al. 2015). Intravenous admin-
istration of an iGluR5 agonist inhibited neurogenic dural vasodilation, whereas an
antagonist had no effect (Andreou et al. 2009). Direct ejection of an iGluR5
antagonist in the VPM, using microiontophoretic electrode, attenuated activation
of third order neurons in response to dural vessel electrical stimulation (Andreou and
Goadsby 2009a).

Migraine treatment with metabotropic glutamate receptors has been also
attempted in small clinical trials, based on outcomes from preclinical studies on
the efficacy of mGluR antagonists in the reduction of hyperalgesia and allodynia in
animal models of chronic pain (Fundytus 2001). A potent, selective, negative
allosteric modulator of the mGluR5 receptor, ADX10059, was used in small
randomised, placebo-controlled clinical trial for the acute treatment of migraine.
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ADX10059 showed a statistically significant higher number of patients pain-free 2 h
after dosing compared to placebo, however the reported side effects, including
hallucinations and vivid dreaming, were discouraging (Marin and Goadsby 2010).
Further to this group I mGluR5 antagonist, group II mGluR antagonists have been
also advanced into clinical trials in the past for the treatment of acute migraine,
however their outcomes have not been published (Johnson et al. 2008). These
concerned an mGluR3 antagonist, and a dual mGluR2/cysteinyl-leukotriene
1 (CysLT1) antagonist which entered a Phase II placebo-controlled proof-of-concept
study in patients with migraine. This molecule was found to have low brain
penetration and was found effective in a preclinical rodent model of migraine, and
well tolerated in rat and dog toxicological studies (Célanire et al. 2012). Moving
forward, group II mGluRs may still offer a potential therapeutic opportunity, given
their important role in pain modulation (Mazzitelli et al. 2018). mGluR2 and
mGLuR3 are couple negatively to adenylyl cyclase through Gi/Go proteins, mainly
expressed pre-synaptically, and typically their activation has been shown to inhibit
the release of neurotransmitters, including glutamate and GABA. Although more
knowledge is needed around their function, pharmacological studies in pain models
have shown anti-nociceptive effects of group II mGluR agonists, and not of antag-
onists (Mazzitelli et al. 2018). The availability of orthosteric and new selective
allosteric modulators acting on mGluR2 and mGluR3 may provide valuable tools
for investigating the role of these receptors in migraine pathophysiology and their
potential as therapeutic targets (Mazzitelli et al. 2018).

Any new pharmacological agents that target the glutamatergic system will also
have to possess acceptable safety profiles along with clinical efficacy. This is
illustrated by the recent discontinuation of clinical trials involving the mGluR5
receptor modulator ADX10059. Perhaps, targeting the glutamatergic system indi-
rectly is an approach that deserves further investigations. For example, the kynurenic
acid, a product of the tryptophan-kynurenic pathway, may present such a possibility.
Kynurenic acid has been shown to act as an antagonism of NMDA receptors (Stone
and Darlington 2002). Studies in chronic migraine patients found altered serum
levels of all kynurenine metabolites (Curto et al. 2015). In animal models
pre-treatment with kynurenic acid was shown to prevent the nitroglycerine-induced
neuronal activation and sensitization in the TCC (Fejes-Szabo et al. 2014), to supress
nociceptive activation of the trigeminal pathway (Csati et al. 2015; Lukacs et al.
2016; Veres et al. 2017), and to reduce the release of glutamate (Lukacs et al. 2016).
Additionally, the expanding engineering of recombinant BoNT molecules (Dolly
et al. 2011), which have been shown to be effective in animal models of migraine
(Andreou et al. 2021), could offer in the future the opportunity to selectively block
VGLUT1/2 trigeminal fibres, in order to selectively block glutamatergic transmis-
sion along the trigeminal system.

Despite the number of studies on pain pathways involved during the headache
phase, the molecular changes that actually trigger a migraine attack in the brain
remain unknown. The lack of such knowledge had significantly hampered the design
of migraine-specific and effective preventive treatments for a long time. Certainly,
designing brain acting glutamate modulators could offer a significant therapeutic
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value in migraine patients, however any attempt will have to minimise the occur-
rence of significant side effects, that limited the advancement of glutamate antago-
nists in migraine clinic.
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Chapter 7
Astrocyte Glutamate Transporter EAAT2
in Alzheimer Dementia

Markku Kurkinen

Abstract Glutamate is an amino acid and also the major synaptic signaling mole-
cule of neurons, essential in cognition, learning, and memory. Glutamate is neuro-
toxic. As soon as the glutamate signaling starts it is stopped in one millisecond by
astrocytes, which take up and clear glutamate from the synapses, and prevent
extended glutamate signaling, which can cause synapse loss and neuron cell death.
Astrocytes express EAAT2 (excitatory amino acid transporter-2), the major gluta-
mate transporter and 1% of brain protein. In Alzheimer dementia, brain has less
EAAT2. In experimental Alzheimer mouse models, decreasing EAAT2 expression
enhances dementia progression, and increasing EAAT2 expression slows dementia
progression. These and other data indicate EAAT2 as a novel drug target in the
treatment and prevention of Alzheimer dementia. In this chapter, after a brief revisit
of Alzheimer research and clinical trials, synaptic glutamate signaling and EAAT2, I
argue why EAAT2 drugs make therapeutic sense, and then describe a simple drug
screening assay how to find them, by targeting the EAAT2 protein reconstituted in
liposomes.

Keywords Dementia · Drug discovery · Glutamate · EAAT2 · Synaptic signaling

7.1 Introduction: Alzheimer Dementia

Aging and old age-associated disabilities, diseases, and other geriatric syndromes
come hand-in-hand (Franceschi et al. 2018). Many of us know what they are and
how to get used to live with them. Yet, nothing compares to dementia (out of mind in
Latin), an unprecedented, ever growing pandemic, and the most devastating disorder
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of the human mind. Alois Alzheimer called it “eine eigenartige Erkrankung der
Hirnrinde” (a peculiar disease of the cortex) (Alzheimer 1907).

Alzheimer dementia is detected first by slowly progressing and irreversible
memory and mind problems, followed by remarkable behavioral and personality
changes, and, in the end, loss of self. Family history of dementia, advanced or old
age, is the only high risk factor for developing Alzheimer. These are the risks we
cannot do anything about. Other risks include cardiovascular diseases, diabetes, head
trauma, obesity, psychiatric symptoms, and stroke (Lane et al. 2018; Qiu et al. 2009;
Whitehouse and George 2008). APOE4 is the only major genetic risk factor of
Alzheimer (Roses 1996). Some rare early-onset forms of Alzheimer are caused by
inherited dominant mutations in APP, PS1, or PS2 gene (Karch and Goate 2015;
Tanzi 2013; Van Cauwenbergh et al. 2016). There is no cure or treatment for
Alzheimer. There are no Alzheimer survivors.

In the year 1900, in the USA, there were 10,000 people aged 100 years or more.
In 2050, there will be 1,000,000. Alzheimer dementia is diagnosed every 3 s, with
the prevalence of 10% of the people at age 65, 20% at 75, and 40% at 85. Today
50 million people worldwide have Alzheimer, in 2050 there will be 150 million. In
the USA, $1 billion a day goes to health care of 6.08 million people living with
Alzheimer at homes or nursing homes (ADI n.d.; Alzheimer’s Association 2020;
Brookmeyer et al. 2018). In 2020, the National Institutes of Health (NIH) is
supporting Alzheimer research with $2.8 billion (www.nia.nih.gov/sites/default/
files/2019-07/FY21-bypass-budget-report-508.pdf).

January 4, 2011, in Washington DC, Mr. President Obama signed NAPA
(National Alzheimer’s Project Act) into law, to “prevent or effectively treat
Alzheimer’s disease by 2025” (www.govtrack.us/congress/bills/111/s3036/text).
December 11, 2013, in London, UK, the world leaders of G8 countries agreed on
their “commitment to identify a cure or a disease-modifying therapy for dementia by
2025” (www.a lzhe imers .o rg .uk / s i t e / s c r ip t s /document s_ in fo .php?
documentID¼2363&page-Number¼4).

A few excellent reviews have described many of the hurdles on the road from
drug discovery to clinical development to therapy (Banik et al. 2015; Cummings
et al. 2016; Golde 2016). First, it takes time to find the drugs, then study the drugs in
preclinical trials on animals, in clinical trials on humans, have the drugs approved by
FDA (the US Food and Drug Administration) for human use, and then finally see if
the drugs are right for the people living with Alzheimer. This path from drug
discovery to Alzheimer therapy is ten or many more years down the road.

Sooner or later there will be safe and cost-efficient drugs for a long-term use by
Alzheimer patients. Whether the health care systems and societies at large are
adequately prepared for such a time has been a major concern. For example, in
their recent commentary The Edinburgh Consensus, Ritchie and colleagues (Ritchie
et al. 2017) discuss “the implications of disease-modifying treatments for
Alzheimer’s disease which seem likely to appear in the next few years” and then
conclude “The majority of current services in the UK and elsewhere would not be
able to accommodate the specialist investigations required to select patients and
prescribe these therapies.”
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7.2 Amyloid Precursor Protein and the Amyloid Hypothesis

Amyloid precursor protein (APP) is a highly conserved protein in 400 million years
of evolution (Moir and Tanzi 2019), an indication of multiple molecular interactions
of physiologic importance. APP is so named after its proteolytic metabolism, which
generates the Aβ peptides which form amyloid, an insoluble aggregate of β-sheet
fibrils. First cloned in 1987 byMüller-Hill and colleagues from a brain cDNA library
as a 695-amino acid protein, APP has one transmembrane domain, and “features
characteristic of glycosylated cell-surface receptors.” (Kang et al. 1987).

More recently, APP was found to be a G protein-coupled receptor (GPCR), which
binds via its intracellular C-terminal domain to the heterotrimeric G protein subunit
Gsα, which activates adenylate cyclase which activates cAMP regulated protein
kinase A (PKA) signaling systems, which in turn regulate genes and proteins
essential in learning and memory formation. One of them is CREB (cAMP respon-
sive element binding) protein (Deyts et al. 2019).

APP has several isoforms, 639–771 amino acids in length, which differ in tissue
and cell expression levels. APP675 is expressed in brain neurons, and APP750 and
APP771 are found in most tissues and cells, including leucocytes, erythrocytes, and
platelets (Bush et al. 1990; Järemo et al. 2019; Mönning et al. 1990; Müller et al.
2017). APP750 and APP771 have a 56-amino acid domain (inserted after K289)
similar to the Kunitz proteinase inhibitor (KPI) (Xu et al. 2017). The proteinase
inhibitor called protease nexin-II (PN2) is identical to APP with the KPI-domain, the
major APP isoforms in the brain (Van Nostrand et al. 1989). APP and the Aβ
peptides play important roles in cerebral hemostasis, capillary blood flow, throm-
botic and fibrinolytic events, and hemorrhagic and ischemic strokes (Korte et al.
2019; Van Nostrand 2016).

APP is involved in cancer progression and metastasis. When tumor cell-surface
APP binds to death receptor 6 (DR6) on the blood vessel endothelial cells, it induces
endothelial cell death, thereby facilitating tumor cell extravasation and metastasis
formation (Strilic et al. 2016). Tumor cell-surface APP, but not the soluble extra-
cellular APP domain released from tumor cells, is required for DR6-mediated
endothelial cell death. Tumor cells, in which APP expression was reduced by
siRNA-mediated knockdown, almost completely lost their ability to form metastases
in iv-injected mice. These data agree well with epidemiological studies indicating
higher frequency of metastasis formation with increased cancer cell APP expression
(Strilic et al. 2016).

The crystal structure of the DR6 ectodomain bound to the E2 domain of APP
reveals they interact only at a small interface of 680 Å2 made of hydrophilic and
hydrophobic amino acids. Strikingly, a single APP mutation M335K at the interface,
whereby hydrophilic lysine (K) replaces hydrophobic methionine (M), prevents APP
binding to DR6 (Xu et al. 2015). Small molecule drugs mimicking this interaction
could prevent tumor cell-surface APP from binding to DR6 and provide a novel
therapy in the treatment of metastatic cancer progression.
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In the embryonic brain development, APP is involved in the elimination of
synapses, pruning of axons and dendrites, and neuron cell death (Nikolaev et al.
2009). Here, the model of mechanism of action is that after APP and DR6 come
together on the neuron cell-surface membrane, APP (as a dimer) binds and induces
dimerization of DR6, which then signals death to synapses, dendrites, axons, and
neurons (Nikolaev et al. 2009).

Intriguingly, abundant experimental evidence indicates the Aβ peptides as a
potent wide-spectrum antimicrobial peptide (AMP), a part of the innate immune
system against infections by bacteria, fungi, and viruses (Gosztyla et al. 2018; Moir
et al. 2018). As an example, increased expression of Aβ peptides in transgenic mice
and C. elegans provides increased resistance to infection from both bacteria and
viruses. This antimicrobial activity of Aβ peptides is also thought to explain why
increased rates of infection have been observed in many participants of Alzheimer
drug trials designed to inhibit the production of Aβ peptides and amyloid formation.
In contrast, when bacterial or viral brain infection in humans, and experimental
animal models, is often associated with elevated amyloid levels, it has been seen as
an evidence for microbes causing dementia (Itzhaki 2019).

Overwhelmingly most research on APP, however, has been concerned with the
proteolytic products of APP, the Aβ40 and Aβ42 peptides, dominated by the belief
that they are the cause of Alzheimer dementia. Proteinases α-secretase and
β-secretase cut APP outside the membrane, and γ-secretase cuts APP in the middle
of the transmembrane domain. γ-secretase is a complex of four proteins, PS1
(or PS2) as the diaspartyl-proteinase component. APP proteolysis takes place inside
the cell, on endosomal membrane, generating the Aβ40 peptide, or less often, the
Aβ42 peptide (Ben Halima et al. 2016; Liu et al. 2019; Schreiner et al. 2015; Xie
2019; Yuan et al. 2017).

According to the amyloid hypothesis, Alzheimer dementia begins in the brain
with Aβ peptides accumulation, aggregation, and amyloid formation. Therefore,
how to stop or slow Alzheimer dementia progression has looked very simple: stop
making Aβ peptides. Formulated in 1991–92, the amyloid hypothesis has played a
dominant role in Alzheimer research and clinical trials ever since. The amyloid
hypothesis is strongly supported by the molecular genetics of the inherited early-
onset forms of Alzheimer, which are caused by dominant mutations in APP, PS1, or
PS2 gene (Bertram et al. 2010; Hardy and Higgins 1992; Karran and De Strooper
2016; Rosenberg et al. 2016; Selkoe and Hardy 2016). More than 230 mutations,
most of them in PS1, have been identified. Overall, the mutations increase, have no
effect, or decrease Aβ peptides production. Further, one third of the PS1 mutants are
inactive, so cannot produce any Aβ peptides, yet they cause dominant early-onset
Alzheimer (Sun et al. 2017). The amyloid hypothesis has been tested in clinical
trials, over and over again, and shown to be wrong. Be it with β- or γ-secretase
inhibitors to reduce Aβ peptides production, or with anti-Aβ antibodies to clear
amyloid from the brain, the trials have failed to stop or slow cognitive decline and
memory loss (Anderson et al. 2017; Drachman 2014; Herrup 2015; Kurkinen 2017;
Morris et al. 2018).

232 M. Kurkinen



In 2014, when Jack de la Torre (2014) was writing in The New England Journal
of Medicine: “The question logically arises: when is a dead hypothesis really dead?”
he was commenting on a piece written by Eric Karran and John Hardy (Antiamyloid
therapy for Alzheimer’s disease: are we on the right road? N Engl J Med
370, 377–378, 2014). Karran and Hardy were reviewing then the high-profile trial
failures of anti-Aβ antibodies bapineuzumab and solanezumab, and had said the
trials “have provided valuable information” and that the trials of anti-Aβ antibodies
should continue.

A popular argument to “explain” the Alzheimer trial failures has been that the
drug treatments of mild to moderate Alzheimer dementia patients were “too little too
late” to have any therapeutic effect at the time of intervention, when the dementia
had already progressed beyond the point of no return. Be as it may, the argument is
weak, after the fact, and the logic falls apart with the failures of recent preventive
trials. Trials with β-secretase inhibitors of cognitively normal people of age 65–85, at
high risk of developing dementia due to APOE4 or elevated brain amyloid PET scan,
were all stopped early after 12 months because of serious adverse events and health
problems, such as falls and injuries, suicidal ideation, weight loss, sleep disturbance,
rash, and hair color change. While the β-secretase inhibitors did reduce Aβ peptides
in blood and “dimmed” brain amyloid PET scan, they did not prevent or slow
cognitive decline. On the contrary, many study participants showed impaired cog-
nition compared to placebo treated control participants (Egan et al. 2019a, b; Henley
et al. 2019; Mullard 2018).

Dominantly Inherited Alzheimer Network (DIAN) is an international registry of
families with mutations in APP, PS1, or PS2 gene, the genes that cause 1% of
Alzheimer at the early age of 22–55, at about the same age as their mother or father,
and their mother or father developed dementia, the exact timing of onset being
dictated by the gene and the particular mutation. DIAN people provide an unprec-
edented, unique opportunity to uncover the cellular mechanisms and molecular
details at work many decades before Alzheimer begins (Bateman et al. 2012,
2017; Lopez Lopez et al. 2019; Morris et al. 2012; Ryman et al. 2014). As shown
by initial results, the preventive trial by DIAN-TU, explicitly designed not to be “too
little too late” (NCT01760005), failed to stop or slow cognitive decline. This was a
5-year trial with anti-Aβ antibodies solanezumab or gantenerumab on
presymptomatic people destined to develop dementia due to inherited dominant
mutations in APP, PS1, or PS2 gene (Fuller et al. 2019; The New York Times
2020; WUSTL 2020).

Strikingly, a recent case report (Arboleda-Velasquez et al. 2019) describes an
individual in Christchurch, New Zealand, with the PS1 mutation E280A, who did
not experience mild cognitive impairment (MCI) until her seventies, which is three
decades beyond the expected age of 44 of dementia onset with the E280A mutation.
She also had two copies of the APOE3 mutation R136S, and an unusually high
amount of brain amyloid. Arguably, this case report is a major discovery in dementia
research, and as the authors put it “Our findings have implications for the role of
APOE in the pathogenesis, treatment and prevention of Alzheimer’s disease.”
(Arboleda-Velasquez et al. 2019).
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7.3 Glutamate and Synaptic Glutamate Receptors

Glutamate is an amino acid and also the major synaptic signaling molecule of
neurons, essential in cognition, learning, and memory (Danbolt 2001; McEntee
and Crook 1993; Watkins and Jane 2006). All cells, except neurons, can synthesize
glutamate de novo, for example, from alanine or aspartate, and α-ketoglutarate, a
metabolite in the mitochondrial tricarboxylic acid cycle. Neurons make glutamate by
converting glutamine to glutamate and ammonia, a hydrolytic reaction catalyzed by
glutaminase in mitochondria. Neurons derive glutamine from astrocytes, and the
level of glutamate in neurons is adjusted by the glutamine-glutamate cycle between
astrocytes and neurons, which maintains the supply for demand in synaptic gluta-
mate signaling.

Brain has the most glutamate in the body, at 5–15 mM, depending on the area,
most of it stored in synaptic vesicles at nerve terminals. Other tissues, including
blood and cerebrospinal fluid (CSF), have 1000-fold less glutamate. Upon nerve
stimulation, glutamate can be released from the nerve terminal vesicles into the
synapse (also called the synaptic cleft), where it can bind and activate postsynaptic
glutamate receptors, and initiate neurotransmission.

Glutamate receptors are ion channels, membrane proteins with one or more
transmembrane domains (Reiner and Levitz 2018). Neurons and astrocytes have
three types of ionotropic glutamate receptors called NMDA (n-methyl-d-aspartate),
AMPA (α-amino-3-hydroxy-5-ethyl-4-isoxazolepropionic acid), and KA (kainic
acid) receptor, and five metabotropic G protein-coupled glutamate receptors called
mGluR. Of interest, a major difference between the receptors is their signaling time.
Ionotropic receptor signaling happens in one millisecond, whereas mGluR signaling
can last from seconds to minutes (Reiner and Levitz 2018).

NMDA receptor is the channel for Ca2+ and Na+ inflow and K+ outflow of the
cell. NMDA receptor is a tetramer of two GluN1 subunits, and two GluN2 subunits
(or occasionally, one or two GluN3 subunits). There are eight GluN1, four GluN2,
and two GluN3 subunit variants, which can give rise to many types of NMDA
receptors, different in location and regulation of signaling (Paoletti et al. 2013).
NMDA receptor is part of a multi-protein complex which includes more than
70 intracellular proteins, such as Neto1, important in the trafficking, stability,
composition and function of the NMDA receptor subunits (Ng et al. 2009). Inter-
estingly, GluN3A and GluN3B inhibit NMDA receptor signaling, and GluN2B is
necessary for cognition, learning, and memory (Jacobs et al. 2014).

AMPA receptor is a tetramer of two GluA2 subunits, and one or two GluA1, A3,
or A4 subunits, each of which binds glutamate. AMPA receptors are the most
abundant glutamate receptors, they open and close in one millisecond, provide fast
glutamate signaling and mediate most of the synaptic transmission. AMPA receptors
with GluA2 prevent Ca2+ inflow, which is proposed to guard against glutamate
excitotoxicity (Diering and Huganir 2018).

There are five KA receptor subunits, GluK1–5, which form tetramers and chan-
nels for Na + and K+ ions. KA receptors play only a minor role in synaptic
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transmission. Presynaptic KA receptors regulate glutamate and GABA release, and
thus, participate in excitatory and inhibitory synaptic signaling, while activation of
postsynaptic KA receptors contributes to synaptic integration. Brain distribution and
expression of KA receptors has been linked to schizophrenia, depression, autism,
Huntington’s, bipolar disorder, and epilepsy, often associated with mutations in
GluK subunits (Matute 2011).

7.4 Synaptic Glutamate Signaling

Human brain has 86 billion neurons (19 billion of them in the cerebral cortex),
85 billion glia cells (astrocytes, oligodendrocytes, and microglia), and 1000 trillion
synapses (Alonso-Nanclares et al. 2008; Azevedo et al. 2009). As seen in electron
microscope, synapses are distinct structures of 100 nm wide, which connect neurons
20–40 nm apart. One neuron can synapse to one or a few other neurons, which in
turn can be synapsed by 40,000–140,000 other neurons (Bosch et al. 2015). Astro-
cytes play an essential role in neural circuit development and synaptic function
(Allen and Eroglu 2017; Clarke and Barres 2013; Papouin et al. 2017; Souza et al.
2019; Südhof 2018; Verkhratsky and Nedergaard 2018; Xu and Südhof 2013).
Synapses are maintained by cell adhesion molecules, extracellular matrix proteins
and proteoglycans, integrins, and remodeled by matrix metalloproteinases (Beroun
et al. 2019; Condomitti and de Wit 2018; Park and Goda 2016; Rivera et al. 2019;
Smith et al. 2016). Synapses are covered by astrocytes. One astrocyte domain
(territory) can cover 270,000to two million synapses (Heller and Rusakov 2015;
Oberheim et al. 2009). Synapses are the sites of neurotransmission (Fig. 7.1).

85% of neurotransmission is excitatory, that is, synaptic signaling activates target
neurons. Glutamate mediates 95% of excitatory signaling, the remaining 5% is by
dopamine, glycine, histamine, and serotonin signaling. Fifteen percent of neuro-
transmission is inhibitory, synaptic signaling inhibits target neurons. GABA,
γ-amino butyric acid (derived from glutamate) is the major inhibitory neurotrans-
mitter. In contrast to excitatory synapses, which target dendrite spines, inhibitory
synapses target the neural cell body. In the neural circuit, individual neurons are
subject to both excitatory and inhibitory input, synchronized and connected in their
activity (Froemke 2015; Sohal and Rubenstein 2019). Brain activity, as studied by
EEG or MEG, appears differently synchronized and connected in Alzheimer brains
compared to cognitively normal brains, and studies have shown hippocampal
hyperactivation in presymptomatic early-onset Alzheimer, as well as in mild cogni-
tive impairment compared to normal aging and Alzheimer dementia (Babiloni et al.
2020; Busche and Konnerth 2015; Dickerson et al. 2005; Quiroz et al. 2010; Wisch
et al. 2020; Zott et al. 2018).

Intracellular calcium concentration is 10–20 nM and the extracellular 1–2 mM
(Bronner 2003). This 100,000-fold difference generates Ca[2+] electrochemical
membrane potential, which powers neurons in synaptic signaling. When an action
potential (AP) arrives at the nerve terminal, it can open voltage-gated calcium
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channels on the presynaptic membrane for Ca2+ inflow down the concentration
gradient, which triggers a membrane fusion reaction with synaptic vesicles, and
release of glutamate molecules, 2000/vesicle, into the synapse (Südhof 2013).

In the synaptic cleft of 1 fl (1 um3), with diffusivity of 0.46 μm2/ms it takes one
microsecond for glutamate to reach the postsynaptic receptors 20–40 nm away
(Zheng et al. 2017), Ambient (non-signaling) synaptic glutamate concentration is
maintained at 10–20 nM, which goes up to 1–5 mM at the time of glutamate
signaling, a 100,000-fold increase. Yet, as soon as the glutamate signaling starts it
is stopped in 0.1–2 ms by astrocytes, which take up and clear glutamate from the
synapses (Clements et al. 1992; Herman and Jahr 2007; Scimemi and Beato 2009).
This fast clearance makes the glutamate signaling essentially an on-or-off event,
with a high signal-to-noise ratio, necessary for high-speed neurotransmission with
precision. Fast glutamate clearance also prevents extended glutamate receptor sig-
naling, excessive calcium inflow and calcium signaling, which in turn can impair
synaptic structure and function, cause synapse loss, and in the end, neuron cell death.

Synaptic NMDA receptor activation begins by D-Serine (secreted by astrocytes
and neurons) binding to GluN1, and glutamate binding to GluN2. In addition, it
requires simultaneous glutamate binding to AMPA receptor, and inflow of Na + ions,
which depolarize the postsynaptic membrane potential, make it more positive-
inside, which repels Mg2+ ion (the natural NMDA receptor inhibitor) from the
GluN2 subunit, thereby opening the channel for Na+ and Ca2+ inflow, and K+

Fig. 7.1 Synaptic glutamate signaling. At the nerve terminal (red), action potential opens mem-
brane channels (not shown) for calcium (Ca2+) inflow, which initiates synaptic vesicle membrane
fusion and glutamate (E) release into synaptic cleft. Glutamate binding to synaptic glutamate
receptors (not shown) on dendrite spine (green) initiates short-term and long-term calcium-depen-
dent signaling events in the postsynaptic neuron. Glutamate transporter EAAT2 (yellow double
arrow) on perisynaptic astrocyte membrane process (white) takes up glutamate from the synapse,
and prevents extended glutamate signaling, which causes neurodegeneration. See text for details
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outflow, down their membrane gradients (Vyklicky et al. 2014). The outcome of all
of this is a more depolarized postsynaptic neuron able to generate an EPSP (excit-
atory postsynaptic potential). EPSP is not an “all-or-nothing” type of action poten-
tial, but fades away as it travels to the neural cell body, the soma. However, when
many of these excitatory potentials, produced locally at a high rate or globally at
many different synapses, spines and dendrites, reach the soma at about the same
time, together they can generate a true action potential at the “axon-hillock”
(Leterrier 2018).

Long-lasting effects of calcium entry begin with Ca2+ binding to calmodulin
(CaM), which binds and activates CaMKII (calcium/calmodulin regulated kinase II)
and CaN (calcineurin) phosphatase, which in turn regulate many signaling systems
in the postsynaptic neuron (Clapham 2007; Rusnak and Mertz 2000; Yamaguchi
2005). For example, regulation of the number and type of glutamate receptors
determines synaptic “strength” measured by LTP (long-term potentiation) and
LTD (long-term depression), which are generally thought to be the electrophysio-
logic basis of learning and memory (Baltaci et al. 2019; Diering and Huganir 2018;
Lynch 2004; Malenka and Bear 2004). In LTP, more AMPA receptors make
synapses stronger, facilitate glutamate signaling, and enhance neurotransmission.
In LTD, with less AMPA receptors, the opposite is true.

The loss of synapses in hippocampus and neocortex is an early event in the
development of Alzheimer dementia, and the best correlate of cognitive impairment
(Blennow et al. 1996; Colom-Cadena et al. 2020; Terry et al. 1991). Scheff and
colleagues have estimated the number of synapses, by electron microscope, in the
outer molecular layer of the dentate gyrus in postmortem autopsy tissue of individ-
uals with early Alzheimer dementia (eAD), mild cognitive impairment (MCI), or no
cognitive impairment (NCI). Individuals in the eAD group had significantly fewer
synapses than individuals in the MCI and NCI groups. Seventy five percent in the
MCI group had fewer synapses compared to the NCI group. Synaptic numbers
correlated with the individual’s Mini-Mental State Examination (MMSE) score,
but showed no correlation with APOE genotype or Braak stages of Alzheimer.
Indeed, as the authors put it “This study supports the concept that synapse loss is
an early event in the disease process and suggests that MCI may be a transition stage
between eAD and NCI with synaptic loss [as] a structural correlate involved in
cognitive decline.” (Scheff et al. 2006).

Török and colleagues (Helassa et al. 2018) have constructed an ultrafast gluta-
mate sensor (iGluu), a genetically engineered green fluorescent protein to image
glutamate at individual synapses of choice. In rat hippocampal slice culture stimu-
lated at 100 Hz, iGluu was fast enough to resolve individual glutamate release
events, that is, in every 10 ms. This result clearly shows how rapidly glutamate
can be cleared from the synapse ex vivo in time.

Transgenic Q175 mouse is a model of Huntington disease. Q175 mice express
less EAAT2 around corticostriatal nerve terminals. Synaptic glutamate imaging with
iGluu revealed prolonged glutamate clearance in the Q175 mice. Treatment of wild
type mice with the EAAT2 inhibitor TFB-TBOAmimicked the prolonged glutamate
clearance seen in the Q175 mice. As the authors write “The results provide a positive
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answer to the hitherto unresolved question of whether neurodegeneration (e.g.,
Huntington’s disease) associates with a glutamate uptake” and then suggest “. . .
astrocytic Glu transport remains a promising target for therapeutic intervention
. . .”(Dvorzhak et al. 2019).

7.5 Glutamate Is Neurotoxic

In 1957, Lucas and Newhouse showed that high blood glutamate level caused mice
to lose their sight due to retinal cell death (Lucas and Newhouse 1957). Twelve years
later, John Olney (Olney 1969) reported that mice treated with monosodium gluta-
mate (MSG) showed neuron cell loss in brain areas not protected by the blood–brain
barrier, developed obesity and other disturbances, a phenomenon he called
[glutamate] excitotoxicity. In 1989, Rosenberg and Aizenman demonstrated “Hun-
dred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor
cultures of rat cerebral cortex” (Rosenberg and Aizenman 1989). In 1992, Rosen-
berg and colleagues did a simple experiment with an astrocyte-rich neuron cell
culture, but without sodium in the culture medium. Astrocyte glutamate uptake
was impaired, to the effect, that they were no longer able to protect neurons from
dying of glutamate excitotoxicity (Rosenberg et al. 1992).

7.6 Astrocyte Glutamate Transporter EAAT2

Humans have five glutamate transporters, also called excitatory amino acid trans-
porter (EAAT), which differ by tissue and cell distribution, sub-cellular level of
expression, and glutamate uptake kinetics (Murphy-Royal et al. 2017; Olivares-
Bañuelos et al. 2019; Vandenberg and Ryan 2013). One percent of brain protein is
EAAT2, which covers 95% of synaptic glutamate uptake. Astrocytes express most
of the EAAT2 protein. By electron microscope studies, 90% of EAAT2 is found on
the perisynaptic astrocyte membrane processes around synapses, at the density of
8500/um2, or 25,000 per synapse (Danbolt 2001; Roberts et al. 2014).

EAAT2 of 573 amino acids is encoded by 34 Mb gene with 11 exons on
chromosome 11. There are several splice and exon-skipping variants of EAAT2
(Gebhardt et al. 2010; Scott et al. 2011). EAAT2 is 36% identical in amino acid
sequence with the aspartate transporter GltPh from Pyrococcus horikoshii bacte-
rium, however, most of the amino acids indicated in glutamate binding and transport
are conserved. EAAT2 has eight transmembrane (TM) domains, two helical hairpins
HP1 and HP2, a trimerization domain and the glutamate transport domain (made of
TM7, HP2, and TM8). In the crystal structure, GltPh appears as trimer (Akyuz et al.
2013; Yernool et al. 2004). GltPh provides the best model for how EAAT2 works.
As seen in the movies made by Ryan and colleagues (Ruan et al. 2017), using high-
speed atomic force microscopy, EAAT2 works like an elevator. When one glutamate
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molecule, three Na+ ions and one H+ “proton” bind to each of the three glutamate
transport domains, they separately and independently can go down the membrane
15 Å (1.5 nm), one third of the membrane, and rotate 35 degrees against the
trimerization domain, which stands still in the membrane. After dropping off gluta-
mate, Na+ and H+ inside the cell, one K+ ion binds to the “empty,” glutamate-free,
transport domain, which isomerizes, goes up the membrane, and resets EAAT2 for
another glutamate binding and transport. An EAAT2 mutant E404D, which cannot
bind K+ ion, cannot isomerize, be exposed to the outside, and therefore cannot
transport glutamate (Kavanaugh et al. 1997).

The rate-limiting step in glutamate uptake is the glutamate-bound EAAT2 mov-
ing down the membrane, which takes 50 ms, while EAAT2 without glutamate
moving up happens in 0.5 ms (Akyuz et al. 2013). This immediately raises the
question: how can astrocytes and EAAT2 handle all that synaptic glutamate signal-
ing, a 1 ms event? It seems that, just by binding glutamate, EAAT2 can easily clear
synaptic glutamate, even at the rapid synaptic firing rate of 100 Hz (Helassa et al.
2018). Indeed, as of 1% brain protein, and 25,000 copies on astrocyte membrane
processes around synapses, EAAT2 is exactly where it should be,

7.7 Regulation of EAAT2 Expression: Drugs

In 2005, Rothstein and colleagues screened 1040 FDA-approved drugs and nutri-
tionals to look for regulation of EAAT2 expression. Their assay was made of spinal
cord slice cultures prepared from 9-day-old rats (to preserve cell–matrix interactions
and metabolism ex vivo). One of the drugs they identified was ceftriaxone (CEF), a
potent wide-spectrum β-lactam antibiotic. CEF increased EAAT2 expression by
gene transcription. In mice, CEF increased EAAT2 expression in the brain,
suggesting CEF entered the brain. CEF was neuroprotective in cell culture models
of ischemic brain injury and motor neuron cell death (Rothstein et al. 2005). In a
mouse model of focal cerebral ischemia, pretreatment with CEF reduced infarct
volume and improved recovery. These effects of CEF were not seen if EAAT2 was
inhibited with dihydrokainate (DHK), a specific inhibitor of EAAT2 (Chu et al.
2007).

Amyotrophic lateral sclerosis (ALS) is caused by motor neuron cell death asso-
ciated with astrocyte impairment, reduced EAAT2 expression and glutamate uptake
(Rosenblum and Trotti 2017; Rothstein et al. 1992). As shown by Rothstein and
colleagues using the transgenic SOD1(G93A) mice, a model of ALS, CEF delayed
motor neuron cell death and loss of muscle strength, and increased survival time by
10 days (Rothstein et al. 2005). A human ALS trial with CEF (clinicaltrials.gov
NCT00349622) had to be stopped early because CEF had little or no effect, except
causing adverse side effects on the gastrointestinal and liver function. There was no
increase in survival time (Cudkowicz et al. 2014).

Rats treated with 6-hydroxydopamine is a model of Parkinson disease. In these
animals, EAAT2 expression was decreased in striatum, whereas neural glutamate
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transporter EAAC1 expression was increased in the substantia nigra pars reticulata.
Increased EAAC1 was thought to increase GABA synthesis (from glutamate) and
enhance inhibitory synaptic GABA signaling (Chung et al. 2008). In another study
with 6-hydroxydopamine-treated rats, CEF increased EAAT2 expression and
prevented dopamine neurons from dying. In behavioral tests, grip strength was
increased and numbers of apomorphine-induced contralateral rotation were reduced
(Leung et al. 2012). OXYS rat strain is a natural model of accelerated senescence. In
these rats, CEF was neuroprotective and improved cognition and behavior
(Tikhonova et al. 2017).

Wistar male rats, stereotaxically injected with MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) into substantia nigra pars compacta (SNc), is another model of
Parkinson disease. These rats develop impaired motor function, decreased working
memory and object recognition, and in addition, have reduced neurogenesis in SNc
and dentate gyrus of the hippocampus. CEF prevented all of these behavioral,
cognitive, and neuronal defects (Hsieh et al. 2017).

Clearly, these and other studies in cell culture and animal models of a variety of
different neurodegenerative diseases indicate CEF as a potential drug to stop or slow
the disease progression (Yimer et al. 2019). CEF increases EAAT2 expression by
gene transcription via the nuclear factor-kappa-B (NFκB) signaling pathway. NFκB
binds to the EAAT2 promoter at the �272 position (Lee et al. 2008).

LDN/OSU-0212320 (LO) is a small molecule translational activator of EAAT2,
that is, LO increases EAAT2 expression by mRNA translation. It was discovered
after studying a library of 140,000 small molecules in a cell-based high-throughput
screening (HTS) assay designed to measure EAAT2 mRNA translation (Colton et al.
2010). In astrocyte-neuron cell culture, LO protected neurons from glutamate
excitotoxicity and death by increasing EAAT2 expression. This effect was not
seen if EAAT2 was inhibited with DHK. In the SOD1 (G93A) mice, a model of
ALS, LO delayed motor function decline and extended lifespan. LO also reduced
mortality, neuronal cell death, and spontaneous recurrent seizures in a pilocarpine-
induced model of temporal lobe epilepsy (Kong et al. 2014).

Parawixin-1 is a neuroprotective compound from Parawixia bistriata spider
venom. As originally studied by dos Santos, Fontana, and Amara, it increases
astrocyte glutamate uptake (Fontana et al. 2003; Fontana et al. 2007). Parawixin-1
is EAAT2 specific, it increases glutamate uptake 70% by COS-7 cells expressing
EAAT2 but not by COS-7 cells expressing EAAT1 or EAAT3. Most important,
parawixin-1 does not increase glutamate uptake by increasing EAAT2 expression,
but by increasing EAAT2 activity, as shown by glutamate uptake by EAAT2
reconstituted in liposomes. Recently, Fontana and colleagues have found, after a
virtual screening of two million chemical compounds, three drugs that increase
glutamate uptake by astrocytes, and EAAT2 liposomes (Kortagere et al. 2017).
One of them called GT949, added to an astrocyte-neuron cell culture medium,
protected neurons from dying of glutamate excitotoxicity (Falcucci et al. 2019).

Rapamycin (sirolimus) is an immunosuppressant drug, most often used in
kidney transplants. Rapamycin inhibits mTOR (mammalian target of rapamycin),
which is a serine/threonine protein kinase that regulates interleukin-2 activation of T
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and B cells. In the MPTP-treated rats, a model of Parkinson disease, rapamycin
increased EAAT2 expression and prevented dopamine neurons from dying (Zhang
et al. 2017).

Raloxifene (Evista) is a selective estrogen receptor modulator (SERM) used in
invasive breast cancer treatment, and in the management of osteoporosis. In breast,
raloxifene inhibits, and in bone, raloxifene activates the estrogen receptor (Clemett
and Spencer 2000; Moen and Keating 2008). Interestingly, raloxifene improved
verbal memory of women aged 70 and over, and reduced dementia risk in women
with osteoporosis (Jacobsen et al. 2010; Yaffe et al. 2005). Osteoporosis is a
dementia risk (Chang et al. 2014; Zhou et al. 2014). As shown by Karki and
colleagues, raloxifene increased EAAT2 expression by gene transcription by acti-
vating many signaling systems involving EGFR, MAPK, PI3K/Akt, Src, CREB, and
NFκB (Karki et al. 2014). Clearly, this wide signaling spectrum contraindicates
raloxifene in general use as a “memory” drug.

For many additional drugs, EAAT2 expression, and relevant diseases, please see
the excellent review by Andréia Fontana (Fontana 2018).

7.8 EAAT2 in Alzheimer Dementia

In okadaic acid-induced rat model of Alzheimer dementia, increasing EAAT2
expression with CEF reduced short- and long-term memory impairment, as mea-
sured by behavioral and passive avoidance tests. CEF also significantly reduced
attenuation of field excitatory postsynaptic potential (fEPSP) slope and population
spike (PS) amplitude indicating its beneficial effects on both short-term and long-
term synaptic plasticity (Hamidi et al. 2019).

Transgenic 3xTg mice, a model of Alzheimer, express less EAAT2 in the
hippocampus. In these mice, increasing EAAT2 expression with CEF significantly
restores synaptic proteins, prevents cognitive decline, reduces the age-dependent tau
accumulation, but has no effect on brain amyloid (Hamidi et al. 2019). The authors
also show that Aβ peptides down regulate EAAT2 expression in astrocyte-neuron
cell culture. These results suggest that EAAT2 is neuroprotective, and that reduced
EAAT2 expression caused by Aβ peptides may serve as one of the “pathological
links between Aβ and tau pathology” (Fan et al. 2018).

In transgenic APP/PS1 mice, a model of Alzheimer, CEF increased EAAT2
expression in the hippocampus and significantly reduced cognitive deficits, as
measured by Morris water maze test.CEF also increased the expression of glutamine
synthetase (GS) and system N glutamine transporter 1 (SN1) of the glutamate-
glutamine cycle. CEF had none of these effects if EAAT2 and glutamate uptake
was inhibited with dihydrokainate (Zumkehr et al. 2015).

In transgenic APPswe,Ind mice, a model of Alzheimer, increasing EAAT2
expression with LDN/OSU-0212320 improved “cognitive functions, restored syn-
aptic integrity, and reduced amyloid plaques” (Takahashi et al. 2015a). Even after
stopping the drug treatment, the effects were observed for 1 month, which made the
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authors write: “EAAT2 is a potential disease modifier with therapeutic potential for
AD [Alzheimer dementia].” (Takahashi et al. 2015a).

Riluzole, an FDA-approved drug, has been used in the management of ALS since
1995. Riluzole delays the onset of ventilator-dependence (tracheostomy) in some
people and may increase survival time by 2–3 months (Fang et al. 2018). Riluzole
decreases presynaptic glutamate release, increases EAAT2 expression, and improves
memory (Pereira et al. 2017; Vallée et al. 2020). A comparison of Alzheimer patients
data with the effects of riluzole in aged rats revealed that many of the gene
expression changes observed in Alzheimer are reversed in riluzole treated rats.
RNA-sequencing and immunohistochemistry confirmed increased EAAT2 expres-
sion in hippocampus, identifying a possible mechanism for the improved memory of
riluzole treated old rats (Pereira et al. 2017). In transgenic APPswe/PS1dE9 mice, a
model of Alzheimer, early life stress (ELS) impairs synaptic plasticity and spatial
memory, in close correlation with reduced hippocampal EAAT2 expression. In
riluzole treated mice, ELS had none of these effects (Lesuis et al. 2019). These
and other data suggest a potential role for riluzole in the treatment and prevention of
Alzheimer dementia (Vallée et al. 2020).

When APPswe/PS1dE9 mice where crossed with transgenic mice with only one
copy of the EAAT2 gene, the crossed mice showed increased spatial memory
problems at 6 months and behavioral disorders at 9 months. These results suggest
that reduced synaptic glutamate uptake (because of reduced EAAT2 expression from
only gene) enhances the progression of dementia caused by APP and PS1 mutations
(Mookherjee et al. 2011).

When APPswe,Ind mice (which express 40% less EAAT2 in the brain) were
crossed with transgenic EAAT2 mice expressing two-fold more EAAT2, EAAT2
expression was normalized in the crossed mice, which also showed improved
“cognitive functions, restored synaptic integrity, and reduced amyloid plaques”
(Lin et al. 2012). In astrocyte-neuron cell culture, prepared from the transgenic
EAAT2 or wild type mice, Aβ25–35 oligomers decreased EAAT2 expression 5% in
transgenic, and 45% in wild type culture. The EAAT2-specific, dihydrokainate-
sensitive, [3H]glutamate uptake decreased 16% in transgenic, and 60% in wild
type culture. When neuron cell morphology was visualized using MAP 2 antibody
immunostaining, Aβ25–35 oligomers caused profound damage and neurite degener-
ation in wild type cultures, whereas neurons in transgenic EAAT2 cultures were
spared. These results suggest that increased EAAT2 expression protects against
neuronal damage by Aβ25–35 oligomers (Lin et al. 2012).

Conditional deletion of EAAT2 in mice leads to early deficits in short-term and
long-term memory, and in spatial reference learning (Sharma et al. 2019). Interest-
ingly, EAAT2 deficiency also results in impaired innate and adaptive immune
pathways, which correlate with cognitive decline. Furthermore, in these mice,
gene expression changes associated with inflammation and synaptic function appear
similar to those observed in the aging human brain and Alzheimer dementia (Sharma
et al. 2019).

In a study of midfrontal cortex of normal and Alzheimer brains, EAAT2 expres-
sion, measured by [3H]aspartate binding, was compared to synaptophysin levels,
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brain spectrin degradation products, and other clinical and neuropathological indi-
cators (Masliah et al. 1996). Compared to control brains, Alzheimer brains had 30%
decrease in [3H]aspartate binding, 48% loss of synaptophysin, and increased levels
of brain spectrin degradation products. These results suggest that decreased EAAT2
activity in Alzheimer dementia is associated with increased excitotoxicity, synaptic
damage, and neurodegeneration (Masliah et al. 1996).

As shown by Jacob and colleagues (Jacob et al. 2007), in a study of EAAT1,
EAAT2, and glutamate receptors in Alzheimer brains, EAAT1 and EAAT2 gene and
protein expression were reduced already in the early stages of Alzheimer dementia,
in hippocampus and gyrus frontalis medialis. The loss of EAAT1 and EAAT2
proteins was particularly obvious in the vicinity of amyloid plaques. In later demen-
tia stages, KA (GluK4) receptor was upregulated, and AMPA (GluA4) and NMDA
(GluN1A) receptors were downregulated. This study supports the causal role of
impaired synaptic glutamate uptake and excessive glutamate signaling in the path-
ogenesis of Alzheimer dementia (Jacob et al. 2007).

In a study of EAAT2 mRNA splice variants in Alzheimer brains (freshly obtained
at autopsy), wild type EAAT2 mRNA showed global reduction, while mRNA splice
variant for EAAT2b (563 amino acids), specific to perisynaptic astrocyte processes,
showed no significant variation. Remarkably, brain regions vulnerable to neuronal
loss demonstrated greater expression of mRNA splice variants for EAAT2 with
reduced activity, as shown by an in vitro assay of glutamate uptake. As the authors,
Dodd and colleagues, put it “These results have implications for the treatment of AD
as modulators of EAAT2 splicing and/or glutamate uptake would augment current
therapies aimed at blocking glutamate receptors” (Scott et al. 2011).

In contrast to all these data on EAAT2 in Alzheimer dementia, when Garcia-
Esparcia et al. (Garcia-Esparcia et al. 2018) studied EAAT2 mRNA expression, by
real time quantitative PCR (RT-qPCR), in postmortem human brain samples of
frontal cortex Brodman area BA8 in advanced stages of Alzheimer and terminal
stages of dementia with Lewy bodies (DLB), they found no difference between the
samples, and no difference from the normal brains.

The best proof of concept for the role of EAAT2 in the development of dementia
is provided by HIV, the virus that causes AIDS. HIV also causes HIV-associated
neurocognitive disorder (HAND), also called HIV-associated dementia (HAD)
(Clifford and Ances 2013; Heaton et al. 2010). In the brain, HIV infects astrocytes
and microglia cells, but not neurons. In astrocytes, HIV envelope glycoprotein
gp120 inhibits EAAT2 gene transcription and glutamate uptake (Potter et al. 2013;
Rumbaugh et al. 2007; Wang et al. 2003). Increasing EAAT2 expression with CEF
protects against HIV neurotoxicity (Rumbaugh et al. 2007). Of note, as reported by
Togas and colleagues in 1994, transgenic mice expressing gp120 in astrocytes
develop neurodegeneration (Toggas et al. 1994). Transgenic HIV Vpr mice, a
model of HAND, express less EAAT2 in the brain (Power et al. 2012). Further,
HIV-infected people being treated with a combination antiretroviral therapy, which
includes two HIV proteinase inhibitors, amprenavir (APV) and lopinavir (LPV),
often experience cognitive and behavioral problems (Underwood et al. 2015). As
reported by Vivithanaporn and colleagues, APV and LPV inhibit EAAT2 expression
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and glutamate uptake in astrocytes in cell culture. In addition, APV or LPV treated
HIV Vpr mice show impaired learning and memory, associated with less EAAT2
expression in the brain (Vivithanaporn et al. 2016).

7.9 EAAT2 Drugs: The Liposome Glutamate Assay

To discover drugs, chemical compounds and natural products that can activate
EAAT2 and increase glutamate uptake, we have designed a simple assay, which
targets the EAAT2 protein reconstituted in lipid vesicle (liposome) membrane, and
measures glutamate uptake by red light (Fig. 7.2). In brief, Oxonol VI is a negatively
charged lipid soluble molecule, which can diffuse in and out of liposomes. When
Oxonol VI binds to liposome membrane lipids, its excitation and emission wave-
lengths increase 10–15 nm. This “red shift”makes it possible to measure lipid-bound
Oxonol VI in liposomes (Apell and Bersch 1987; Apell and Damnjanovic 2016).
EAAT2 is electrogenic and glutamate transport is powered by a Na[+] membrane
gradient (Grewer and Rauen 2005), that is, with every glutamate molecule, three Na
[+] ions and one H[+] “proton” are co-transported inside. Drugs that activate EAAT2
and glutamate uptake make the liposomes more positive-inside, to the effect, that
more Oxonol VI stays inside the liposomes, binds to the membrane lipids, and emits
more 660 nm red light (when excited at 580 nm yellow light).

Fig. 7.2 Liposome glutamate assay. EAAT2 (yellow double arrow) reconstituted in liposome
membrane (white) transports glutamate (E) and three sodium (Na+) ions, which make the liposome
more positive-inside. Oxonol VI (red circle) is a negatively charged red fluorescent molecule, which
diffuses in and out of liposome. Excited at 580 nm, membrane lipid-bound Oxonol VI fluorescences
at 660 nm. More positive-inside liposome retains more Oxonol VI inside and emits more 660 nm
light. In other words, the more glutamate in, the more red light out. See text for details
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7.10 Why Target EAAT2 in Liposomes?

The answer is simple: it is the best drug screening assay we can think of because it
targets nothing but EAAT2. The assay is easy to do, fast, unbiased, blind, and cost-
effective. Formatted in a high-throughput screening (HTS) platform, drugs, chemical
compounds and natural products can be screened in a rather short time. Furthermore,
consider this:

1. If a drug increases liposome glutamate uptake, then we know the drug must
directly activate the EAAT2 protein. In contrast, in a drug screen targeting
EAAT2, for example on cells in culture, it would not be possible to target
EAAT2 anywhere near with the same precision. In a cell-based assay, a drug
could increase glutamate uptake by increasing the amount of EAAT2 on cell-
surface membrane, by increasing EAAT2 gene transcription, mRNA translation,
protein targeting and trafficking, or by some other unknown mechanism. These
mechanisms cannot be EAAT2 specific, indeed, cell signaling systems are never
private, but always shared in many molecular details, so such a drug would also
act on other targets, and cause side effects and adverse events.

2. An argument could be made for proteins as the best targets in drug discovery,
because the 3D structure of proteins has a more “rich landscape” for specific drug
interactions, in contrast to the 1D or 2D landscapes displayed by DNA
and mRNA.

3. In glutamate uptake, EAAT2 reconstituted in liposomes works the same way as it
does in astrocytes in cell culture, as measured by similar Vmax and Km values.
This suggests a self-autonomous mechanism of action of EAAT2, with no
additional cellular components needed. This is very important because it implies
that drugs acting on EAAT2 in liposomes can do the same on EAAT2 in
astrocytes.

7.11 In Perspective

As Hans-Christian Danbolt has said “Like glutamate itself, glutamate transporters
are somehow involved in almost all aspects of normal and abnormal brain activity”
(Danbolt 2001). A number of papers and reviews of literature indicate EAAT2 as a
novel target for drug discovery and clinical development in the treatment and
prevention of a variety of cognitive, psychiatric, neurodevelopmental, and neurode-
generative disorders, such as ADHD, drug addiction, alcoholism, ALS, Alzheimer
dementia, autism, depression, bipolar disorder, epilepsy, glioblastoma, Huntington
disease, migraine, chronic pain, Parkinson disease, schizophrenia, ischemic stroke,
and essential tremor (Ayers-Ringler et al. 2016; Blacker et al. 2020; Chu et al. 2007;
Fontana 2015; Fontana 2018; Gegelashvili and Bjerrum 2019; Ghanizadeh and Berk
2015; Hubbard and Binder 2017; Jia et al. 2017; Kurkinen 2018; Laprairie et al.
2019; Lee et al. 2011; Mookherjee et al. 2011; Naaijen et al. 2017; Nanitsos et al.
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2005; O’Donovan Sinead et al. 2017; Pajarillo et al. 2019; Parkin et al. 2018; Petr
et al. 2015; Rao et al. 2015; Rojas 2014; Takahashi et al. 2015b; Wang et al. 2016;
Wei et al. 2019; Yang et al. 2018; Zhou et al. 2019).

Drug discovery and clinical development is a very expensive experiment that can
last 10–15 years, yet fails most of the time (Banik et al. 2015; Batool et al. 2019;
Cummings et al. 2016; Gisbert Schneider 2018; Golde 2016). Ninety-nine percent of
drugs in the pipeline of drug industry never reach the FDA-approved standard for
marketing in human use. A major reason for this is the lack of efficacy, specificity,
safety, and adverse side effects of the drugs, or “noise” as it is called in the drug
industry parlance.

Alzheimer is diagnosed every 3 s. Today 50 million people live with Alzheimer at
homes or long-term care facilities. In the past, Alzheimer drug trials targeting brain
amyloid have been unsuccessful, and it should be absolutely clear by now, trials
based on the amyloid hypothesis will be unsuccessful.

In this chapter, I have presented EAAT2 as an important novel drug target in the
treatment and prevention of Alzheimer dementia, and have described a simple assay
using EAAT2 reconstituted in liposomes to find drugs that increase glutamate
uptake. The assay is blind, not structure-based, and assumes nothing about the
mechanism of action of EAAT2. The drugs could act on EAAT2 outside or inside
the membrane, the drugs could act on membrane lipids regulating EAAT2 activity
(McIlwain et al. 2015), or the drugs could act by some other unknown mechanisms.
In short, we are looking for drugs that make the glutamate-bound EAAT2 go down
faster in the membrane, because that is the rate-limiting step in glutamate uptake.
Indeed, the first thing to do to regulate a chemical reaction is to find out the rate-
limiting step, and then find out ways to regulate that step. Is there a rate-limiting step
in the development of Alzheimer dementia?

Why, and how, is EAAT2 expression downregulated in Alzheimer dementia?
EAAT2 expression is subject to several signaling systems regulating transcription,
transcript splicing, mRNA processing and translation, protein trafficking and
targeting, and finally, EAAT2 activity (Abdul et al. 2009; Alam and Datta 2019;
Fontana 2015; Ghosh et al. 2016; Huerta et al. 2006; Karki et al. 2014; Laprairie
et al. 2019; Lauriat and McInnes 2007; Lutgen et al. 2016; Martinez-Lozada et al.
2016; Underhill et al. 2015; Vallée et al. 2020). For example, EAAT2 gene tran-
scription is regulated by calcineurin/NFAT, CaMKII, CREB, EGFR, MAPK, NFκB,
Pax6, PI3K/Akt, Src, and WNT/β-catenin signaling pathways. In addition, the 3’
untranslated region of EAAT2 mRNA can be processed in multiple ways, all of
which affect the efficacy of translation and EAAT2 protein synthesis (Kim et al.
2003). Therefore, comparing signaling pathway data with EAAT2 expression data in
Alzheimer dementia and control subjects could help find the best correlates in
different brain regions and stages of disease progression. For example, EAAT2 is
downregulated in brain regions involved in learning and memory such as hippo-
campus, in contrast to cerebellum, where EAAT2 is upregulated (Jacob et al. 2007).
Recent work in positron emission tomography (PET) imaging of EAAT2 in the brain
(Eduardo Zimmer, pers.com) will advance our understanding of the role EAAT2
plays in the development of Alzheimer dementia.
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7.12 Lest We Forget

Alois Alzheimer was a psychiatrist and neuropathologist, and a great scientist, born
on June 14, 1864 in Marktbreit am Main, Germany (Toodayan 2016). Aged
51, Alzheimer died in December 19, 1915 in Breslau, Silesia (now Wroclaw,
Poland), where he had been a Professor of Psychiatry at the University of Breslau
since 1912. Alzheimer published two papers in 1907 and 1911 describing “amyloid
plaques and neurofibrillary tangles” in the brain autopsies of his two presenile
patients, Auguste Deter and Johann F. (Alzheimer 1907, 1911). Alzheimer always
acknowledged his colleagues, notably Fischer, Redlich and Simchowics, who had
described similar structures in the brains of their senile patients (Alzheimer 1911,
p. 72). Alzheimer never suggested plaques and tangles were the cause of dementia.
Indeed, this is what he wrote in 1911: “So scheint wirklich kein stichhaltiger Grund
vorhanden, diese Fälle als durch einen besonderen Krankheitzprozeβ verursacht zu
betrachten” (Alzheimer 1911, p. 378). “There is then no tenable reason to consider
these cases as caused by a specific disease process” (Förstl and Levy 1991, p. 93).
Most interestingly, the re-discovery of Alzheimer’s records and neuropathology
slides of his two patients, by Graeber and colleagues in 1995 and 1997, made it
possible to determine that Auguste Deter had carried the PS1 mutation F176L
(Graeber 1999; Müller et al. 2013).
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Chapter 8
The Glutamatergic System as a Target
for the Development of New
Pharmacological Treatments of Bipolar
Disorder

Grigorios N. Karakatsoulis and Konstantinos N. Fountoulakis

Abstract Bipolar affective disorder is a relatively common psychiatric disorder that
affects millions of people worldwide. Existing antidepressants and mood stabilizers
used to treat it are not always sufficient for all patients and typically depression in
patients with bipolar disorder (BD) is not well responding to antidepressants.
Glutamate is the major excitatory neurotransmitter of the CNS and is present in
more than 50% of nerve tissue. The relationship between glutamatergic dysfunction
and the pathophysiology of depression either unipolar or bipolar has been
documented over the past 20 years. Although the first clinical trial investigating
ketamine’s potential antidepressant effect was conducted approximately 25 years
ago, and the relevant literature is relatively limited, new pharmaceutical agents
targeting the glutamatergic system are under investigation. The glutamate hypothesis
of etiology of mood disorders is expected to complement and improve the prevailing
monoamine hypothesis and may indicate novel therapeutic targets. There are cur-
rently few pharmacological agents that act on the glutamatergic system and have
been approved for the treatment of bipolar disorder. In fact, only S-Ketamine has
been recently approved (2019) in the United States FDA from March 2019. Current
research is Focused on: a) broad glutamatergic modulators such as ketamine,
S-ketamine, dextromethorphan, AVP-786, nitric oxide (N2O), AZD6765, b) N-
methyl-D-aspartate (NMDA) specific subunit receptor antagonists (NR2B) such as
CP-101,606, MK-0657 (CERC-301), c) some NMDA receptor glycine site agonists
such as D-cycloserine (Chen et al. 2019), GLYX-13, sarcosine, AV-101,d) d)
metabotropic glutamate receptors (mGluRs) modulators such as AZD2066,
RO4917523/basimglurant, JNJ40411813/ADX71149, R04995819). There are
even other potentially interesting targets of the glutamate receptor with preclinical
antidepressant-like efficacy, including AMPA agonists (for example, CX-691/ORG
2448 and ORG-26576) as well as mGluR agonists (Fountoulakis et al. 2012a, b).
Τhe range of spectrum of the above recent findings dictates most intensive and
targeted study based on both preclinical and clinical studies of agents that influence
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the glutamatergic system with the aim of developing new effective therapies for
bipolar disorder.

Keywords Bipolar disorder · Glutamate · Novel · Treatments · Molecular
components

8.1 Historical Perspective Introduction for Bipolar
Disorder

Bipolar affective disorder is a relatively common, chronic, and recurrent psychiatric
disorder that affects millions of people worldwide. Existing antidepressants and
mood stabilizers used to treat it are not always sufficient for all patients and typically
depression in patients with bipolar disorder (BD) does not respond well to antide-
pressants. These patients have delayed onset of antidepressant activity, residual
symptoms, low rates of remission, and more frequent relapses. Consequently, the
need for developing targeted antidepressants in patients with treatment-resistant
bipolar disorder is pressing.

Over the past 20 years, the relationship between glutamatergic dysfunction and
the pathophysiology of depression has been documented, and it has been shown that
glutamatergic activity has multiple goals for the development of new antidepres-
sants. NMDA antagonists have been shown to produce rapid antidepressant effects
in various preclinical models (Zarate et al. 2012).

For at least 75 years glutamic acid has been known to affect the central nervous
system (CNS) but its role as a neurotransmitter was not recognized until 1984
(Fonnum 1984). Glutamic acid is the major excitatory neurotransmitter in the
mammalian CNS. The initial interest in the contribution of the glutamatergic system
to the pathophysiology of neuropsychiatric diseases was born after the discovery of
ischemic-mediated glutamatergic neurotoxicity following a stroke.

Following this finding, an increasing number of studies on glutamatergic signal-
ing in the affected brain have been observed. Current research is focused on
glutamatergic neurotransmission, which is considered a suitable therapeutic target
for both mental disorders such as major depressive disorder, bipolar disorder,
schizophrenia, mental disorders such as cardiovascular and cardiovascular disorders.
multiple sclerosis or motor neuron disease (ALS). Apart from the glutamatergic
system, the cholinergic system (e.g., scopolamine), the endogenous opioid system
(e.g., factor ALKS-5461), antagonists of the corti-cotrophin releasing factor receptor
(e.g. OPP, CP-316,311) are concidered as potential therapeutic targets that promote
rapid antidepressant activity (Skolnick et al. 2009, Fountoulakis et al. 2012b).

The involvement of glutamatergic dysfunction with mood disorders was initially
based on preclinical data related to NMDA antagonists. Postmortem studies of
patients with BD revealed reduced expression of both the NR1 subunit of NMDA
receptors in the frontal cortex and several subunits of the same receptor as well as
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AMPA and kainate receptors in the midbrain (Hashimoto et al. 2007). Other similar
studies have also shown reduced expression of metabotropic glutamate receptors
(mGluRs) in the frontal cortex of patients with bipolar disorder. Parallel genome-
wide association studies (GWAS) have revealed genetic evidence that glutamate
signaling is involved in the pathophysiology of bipolar disorder.

Subsequently, neuroimaging studies in patients with bipolar disorder confirmed
the above findings (Li et al. 2018). A meta-analysis of studies of 1H-MRS (Proton
magnetic resonance spectroscopy) from 1980 to 2010 on the levels of glutamic acid
in the brains of patients with bipolar disorder showed extensive elevation of Glx in
the frontal cortex compared with healthy controls. The same result was confirmed
and in subsequent meta-analyses, however it was further found that many factors
including patient disposition and medication may affect glutamine levels. Of the
specific pharmacological agents that have action on glutamic acid receptors, the first
to be found to have therapeutic efficacy in bipolar disorder and major depressive
disorder is ketamine.

Ketamine was discovered in 1962, first tested in humans in 1964, approved for
use in the United States in 1970, and is currently used clinically for anesthesia for
brief surgical procedures. Its composition was derived from phencyclidine and
cyclohexamine and was initially used for its anesthetic and analgesic properties
presenting hallucinations and dissociative symptoms (mainly amnesia) as adverse
effects from the mental sphere. It is also used to treat postoperative pain, chronic
cancer and neuropathic pain, as well as a sedative in the emergency department.
More recently it has been shown to have antidepressant properties in both major
depressive disorder (MDD) and bipolar depression (Grady et al. 2017).

The antidepressant properties of ketamine were first found in small studies in
2000 and 2006, though the first clinical trial investigating its potential antidepressant
effect was conducted approximately 25 years ago (Diazgranados et al. 2010).

Ketamine is an N-methyl-D-aspartate receptor antagonist (NMDAR). It is a
racemic mixture comprising equal portions of (R)-Ketamine and (S)-ketamine,
producing rapid and prolonged antidepressant activity in treatment-resistant patients
with major depressive disorder (MDD) or bipolar depression (BD) (Zarate et al.
2006) and presents some important advantages such as rapid antidepressant effect
(Fountoulakis and Vieta 2008, Fountoulakis et al. 2007) and the absence of some
adverse effects of the SSRIs such as sexual dysfunction and body weight changes. It
may also increase the efficacy of electroconvulsive therapy (ECT) and may be
preferable for anesthesia in the surgical operations of patients with depression.

Its major disadvantages are that its therapeutic effects are temporary, weakening
after days to weeks (with response rates above 60% 4.5 h after a single dose, and
approximately 40% after 7 days), although more are reported long-term effects in
some patients and there is always the risk of tolerance and dependence (Caddy et al.
2014). Oral ketamine has limited bioavailability (17% to 20%). Therefore, the main
route of administration of ketamine is intravenous (IV).

Ketamine is water soluble and has a short half-life (1–3 h) and is metabolized to
dehydro-ortamine, norketetamine, and hydroxynoramethamine. Of these metabo-
lites, norketetamine is active and accounts for one third of the analgesic potency of
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ketamine. The liver enzymes that biotransform ketamine are CYP3A4, 2B6,
and 2C9.

Despite its clear antidepressant efficacy, ketamine has been associated with
significant long-term side effects including: psychotic and withdrawal symptoms,
cognitive deficits (such as severe working memory impairment, episodic and seman-
tic memory), urotoxicity, dangerous fluctuations in heart rate and blood pressure,
visual acuity, drowsiness (Grady et al. 2017; Short et al. 2018), and the possibility of
abuse as previously mentioned (Li et al. 2011).

Because (R)-ketamine has a lower affinity for NMDA than the (S)-ketamine
enantiomer (which exhibits approximately four times more affinity for the NMDA
glutamate receptor in vitro than R-ketamine) (Molero et al. 2018) but mainly because
of its serious side effects it has not been approved for use as an antidepressant in
contrast to (S)-ketamine (Dhir 2017; Fountoulakis et al. 2017; Hashimoto 2019).
Developed as a nasal spray formulation and approved in the United States Food and
Drug Administration (FDA) from March 2019, as a drug against to treatment-
resistant depression (TRD). In recent years, in addition to S-ketamine, new effective
therapeutic agents for bipolar disorder with properties of glutamatergic modulators
have been studied. Such factors are: (a) broad glutamatergic modulators such as
dextromethorphan, dextromethorphan-quinidine combination, nitrogen dioxide
(N2O), factor AVP-786 and AZD6765, traxopropyl-C65; 301), (b) glycine site
agonists such as D-cycloserine, sarcosine, the GLYX-13 and AV-101 factor and
their regulators, (c) metabotropic glutamate receptors such as AZO2066,
RO4917523/basimglurant, JNJ40411813/ADX71149, R04995819 (RG1578)
(Henter et al. 2018).

In conclusion the knowledge that glutamatergic dysfunction plays a critical role
in the pathophysiology of bipolar depression has paved the way for the study of
multiple molecular targets of glutamatergic dysfunction in order to develop more
effective and safer antidepressants with new mechanisms of action. This path is just
beginning and requires a great deal of research. In any case, the optimism is justified
that the glutamatergic system is the main area of development for the next generation
of therapeutic agents for bipolar disorder and many other psychiatric disorders.

8.2 The Glutamatergic System in Bipolar Disorder

As the main stimulus neurotransmitter in the central nervous system, glutamate, as
measured in combination with glutamine (Glx), is involved in many psychopatho-
logical conditions when its levels are disturbed. Bipolar disorder (BD) is one of these
conditions as elevated levels of Glx are observed in the sufferers (Smaragdi et al.
2019; Dalvie et al. 2016).

Bipolar disorder (BD) is also strongly associated with glutamate/GABA-
glutamine cycle disorders. This has also been demonstrated by magnetic resonance
spectroscopy (MRS) studies that confirm elevated levels of glutamate (Glu) as well
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as the sum of glutamate and glutamine (Glx) in individuals with BD (Soeiro-de-
Souza et al. 2015; Yuksel and Ongur 2010).

The hippocampus, thalamus, and glutamatergic neurotransmission pathways
associated with these structures are also involved in the pathophysiology of bipolar
disorder (McCullumsmith et al. 2007). Chemical neuroimaging studies also confirm
the involvement in its pathophysiology of glutamate-dependent neurotransmitter
abnormalities in the hippocampus. The same studies also show the highly increased
neurotransmitter cell metabolism in the hippocampal neurons of these patients. In
addition, abnormalities of the ionotropic glutamate receptors have been identified
within their hippocampus although there are still insufficient studies to confirm a
similar effect on the metabotropic receptors. In recent years, however, there has been
increasing interest in investigating the role of metabotropic glutamate receptors
(mGluRs) in BD and their selection as a relevant therapeutic target (Blacker et al.
2017). There are relatively few data available for the study of glutamatergic neuro-
transmission in the thalamus of patients with bipolar disorder, and these have been
derived mainly from a few immune-histochemical studies. These data also indicate
glutamatergic neurotransmission disorders at the level of intracellular signaling
processes (Ng et al. 2009; Chitty et al. 2015).

In addition to the findings of immune-histochemical studies and chemical neu-
roimaging, there are currently two theories regarding the underlying etiology of
mood disorders (and therefore bipolar disorder), which include, besides abnormal-
ities in glutamatergic neurotransmission, the over-activation of inflammatory path-
ways (King et al. 2019).

Thus, it seems that dysfunction of a wide range of monoaminergic, glutamatergic,
and immune systems is involved in a complex way in the pathophysiology of mood
disorders. One possible point of convergence of these three systems is the
kynurenine (KYN) pathway. Ketamine has been shown to affect the essential
elements of this metabolic pathway too (Kadriu et al. 2019). Several genes in the
glutamatergic system have been found to be involved in the etiology of bipolar
disorder. SRC family tyrosine kinase FYN appears to play a key role in the
production of anti-NMDAR antibodies in the brain during episodes of BD (partic-
ularly in early onset type I BD) (Szczepankiewicz 2009). Conversely, long-term
lithium treatment is found to induce lower levels of anti-NMDAR antibodies, fact
which may explain the lithium’s stabilization properties (Ferensztajn-Rochowiak
et al. 2019).

Bipolar disorder and suicidality have been the subject of a genome-wide associ-
ation study (GWAS). In this study suicide attempt has been evaluated as an inde-
pendent factor in subjects suffering from bipolar disorder (Willour et al. 2012). Its
results have shown strong glutamatergic neurotransmission engagement to the
vulnerability of committing suicide (Gaynor et al. 2016).

From the above it can be concluded that the etiology of bipolar disorder is
multifactorial. It has multiple dimensions, one of which consists of the glutamatergic
system. The evidence appears to be well documented and based on preclinical,
clinical, neuroimaging, immune-histochemical, and genomic studies. Consequently,
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the growing interest in the development of pharmacological therapies whose action
is aimed at the glutamatergic system is justified.

8.3 Molecular Components of the Glutamate
Neurotransmitter System as Potential Drug Targets
for Bipolar Disorder

Many glutamate regulatory factors have been studied in various preclinical models
of mood disorders, and apparently pharmaceutical agents targeting glutamatergic
signaling are important new therapeutic approaches to mood disorders.

8.3.1 Glutamatergic Receptors

Glutamate is the major excitatory neurotransmitter of the CNS and is present in more
than 50% of nerve tissue. It is also involved in the synthesis of GABA (-
γ-aminobutyric acid) (Petroff 2002), which is the major inhibitory neurotransmitter
of the mammalian central nervous system.

It is produced from α-ketoglutaric acid, which is an intermediate in the Krebs
cycle and is packaged into secretory vesicles in the presynaptic neuron by specific
glutamate transporters (Machado-Vieira et al. 2012). It activates several receptors
that distinguish their pharmacological and physiological properties in three classes
of ionotropic receptors: NMDA, AMPA, and kainate receptors (CA) and in three
groups of metabotropic receptors. Twenty-seven genes have been identified for
specific subunits of these receptors and a further five proteins are likely to function
as receptor-binding proteins or as receptor subunits (Table 8.1).

Table 8.1 The glutamate receptors (Stahl 2020)

Glutamate receptors

Ionotropic Metabotropic

NDMARs AMPARs Kainate receptors Group I Group II Group III

mGluR1/
mGluR5

mGluR2/
mGluR3

mGluR4

mGluR6

mGluR7

mGluR8
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8.3.2 Ionotropic Glutamate Receptors

Glutamate controls synaptic stimulation in most brain circuits, including the inter-
limbic pathway but also other pathways involved in synaptic plasticity, learning,
memory, behavior (Collingridge and Bliss 1995), and mood disorders.

Several pathophysiological findings have been associated with glutamatergic
neurotransmission in persons with mood disorders (Machado-Vieira et al. 2012).
Specifically in patients with bipolar disorder, changes in plasma glutamate, serum,
and cerebrospinal fluid (CSF) levels as well as elevated levels of glutamate in
different areas of the brain have been observed in both live and postmortem studies.

Various types of glutamate ionotropic receptors and their corresponding subunits
(NMDA with subunits: NR1C, NR2D, NR3C, NR2D, NR3A and NR3B, AMPA:
GluR1, GluR2, GluRu, GluR7, GluR7, GluR7, GluR3, GluR3 have been identified.
Apart from them, eight more types of metabotropic receptors (mGluR) associated
with G-protein have also been identified and divided into three groups based on the
signaling pathway that each one induces: group I (mGlu1 (a, b, c, d) and mGlu5 (a,
b) group II (mGlu2 and mGlu3) and group III (mGlu4, mGlu6, mGlu7 and mGlu8)
(Machado-Vieira et al. 2012). Glutamine binding sites in areas of the brain involved
in regulating mood are mainly expressed in the NR2A and NR2B subunits
(Magnusson et al. 2002).

Both ionotropic and metabotropic glutamate receptors bind to various intracellu-
lar messengers, such as cyclic AMP, Ca2 +, reactive oxygen forms and induce the
onset of multiple signaling cascades that determine neuronal growth and
development.

Fig. 8.1 The NMDA receptor complex
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8.3.3 NMDA Receptors (NMDARs)

NMDA receptors (NMDARs) are involved in the pathophysiology of several CNS
disorders including bipolar disorder (Fountoulakis 2012). A number of their sub-
types have been identified, which are formed by alteration of the combination of
seven subunits (GluN1, GluN2A-D and GluN3A-B) in quadruple complexes
(Fig. 8.1).

These NMDA receptor subtypes exhibit unique structural characteristics, which
explain their specific functional and pharmacological properties (Hansen et al.
2018).

Glutamate binds to the agonist site at NMDA receptors. PCP, ketamine, and
dizocilpine bind to the PCP receptor in the internal side of the NMDA receptors.
Glycine, D-serine, and D-cycloserine bind to a glycine site of the receptor
(Kantrowitz et al. 2015). Activation of the NMDA receptor by binding to both
NMDA and glycine results in the opening of the channel (Jiang and Amara 2011).
This allows voltage-dependent Na+ and small amounts of Ca2+ ions flux inside the
cell and K+ outside the cell.

8.3.4 AMPA Receptors (AMPARs)

AMPA receptors (AMPARs) are activated in the presence of glutamate, causing a
rapid stimulation signal. They have a lower affinity for glutamate than NMDA
receptors, which allows a faster disintegration of glutamate and therefore rapid
inactivation of the receptor (Machado-Vieira et al. 2012) (Fig. 8.2).

Fig. 8.2 AMPA and kainate receptors
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8.3.5 Kainate Receptors (KARs)

Kainate receptors (KARs) have a limited distribution in the brain, and they are
believed to affect synaptic signaling and plasticity less than AMPA receptors. KARs
present a dual role in stimulating neurotransmission both by activating postsynaptic
receptors and by inhibiting γ-aminobutyric acid (GABA) release.

8.3.6 Metabotropic Glutamate Receptors

Group I metabotropic receptors (mGluRs) bind to the phospholipase C signal
transduction pathway and localize to both the presynaptic and postsynaptic mem-
brane. Group II and III mGluRs are inhibitory to the adenylyl cyclase pathway and
are involved in regulating the release of both glutamate and GABA. Glutamate
release is limited by activation of the mGlu2 and 3 presynaptic receptors.

8.3.7 Subunits of the Glutamate Receptors

The first report of glutamate receptor subunit cloning (Hollmann et al. 1989) was
published in December 1989, and the beginning of the 1990s marked the beginning
of a long series of analogous cloning of such different subunits. The number of these
clones was large, and the nomenclature of the various subunits was neither system-
atic nor common. Thus, different laboratories gave different names for the same
glutamate receptor subunit copy, resulting in confusion in the literature. This
confusion has been slowly restored and since 2009 the nomenclature of the gluta-
mate receptor subunits has been systematically revised. The nomenclature of the
International Union of Basic and Clinical Pharmacology has replaced the previously
common names.

8.3.8 Glutamate and Glx Metabolites

Specific imaging studies have also found elevated levels of glutamate and its
metabolites in the occipital cortex (OCC) of individuals with BPD (as in individuals
with MDD) and decreased levels in the anterior cingulate cortex (ACC) of these
patients (Fountoulakis et al. 2008). Specific magnetic resonance spectroscopy
(MRS) studies performed to date show a consistent pattern of elevated levels of
Glx (glutamate + glutamine) in subjects with bipolar disorder regardless of mood
polarity and reduced levels of Glx and GABA in patients with MDD (Machado-
Vieira et al. 2012).

8 The Glutamatergic System as a Target for the Development of New. . . 269



8.3.9 Postsynaptic Density PSD Proteins

Other potential therapeutic targets of bipolar disorder that include glutamatergic
dysfunction include postsynaptic density proteins (PSD) (Machado-Vieira et al.
2012). These are proteins such as PSD95, SAP102, and others, which interact with
ionotropic glutamate receptors in the synaptic membrane and modulate signal
transduction. Reduced levels of PSD95 have been observed in the toothed helix of
individuals with bipolar disorder. SAP102 protein has been shown to decrease
NMDAR-2B subunit expression in individuals with mood disorders.

8.3.10 Excitatory Amino Acid Transporters (EAATs)

The major role of the Excitatory Amino Acid Transporters (EAATs) is to clear
glutamate from the extracellular space (these are transmembrane proteins that utilize
the electrochemical gradient to slowly transfer glutamic acid from the extracellular
space into the glial cells).

In postmortem studies of people with affective disorders, decreased expression of
various EAATs has been observed. On the contrary, it has been observed that
β-lactam antibiotics induce increased expression of these transporters. Mood stabi-
lizers, such as valproate and lamotrigine, are also inducers of EAAT activity through
a different pharmacological mechanism. Conversely, in various preclinical models,
EAAT competition has been shown to have depressive symptoms. EAATs have also
been shown to mediate synaptic transmission, as well as their function serves the
recycling of the neurotransmitter and protects the neurons from the toxicity of its
excess (Zerangue and Kavanaugh 1996).

8.3.11 Vesicular Glutamate Transporters

Significantly reduced expression of VGLUT1 mRNA in the entorhinal cortex (ERC)
of patients with both bipolar disorder and major depressive disorder has been found
(Bai et al. 2001). It has also been found that various antidepressants increase the
expression of VGLUT in the limbic system and the same has been observed after
lithium treatment. This latter observation sheds light on a possible mechanism that
explains the protective action of lithium against glutamate-induced stimulatory
toxicity.

In conclusion it is therefore possible to develop antidepressants, not only by
modulating the ionotropic and metabotropic receptors, but also by altering synaptic
glutamate concentrations by developing appropriate agents that will affect receptor
subunits and neurotransmitter metabolites, in postsynaptic density proteins (PSD)
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and excitatory amino acid transporters (Excitatory Amino Acid Transporters,
EAATs).

8.4 Current Treatments and Modulators of Glutamatergic
Signaling for Bipolar Disorder

Currently there are few pharmacological agents that act on the glutamatergic system
and have indication for the treatment of bipolar disorder. Only S-ketamine has been
recently approved (2019) in the United States FDA from March 2019 and developed
as a nasal spray formulation, although not indicated for bipolar disorder but as a drug
against treatment-resistant depression (TRD). Other medications with action on
glutamatergic system which are currently used for the treatment of BD are
lamotrigine and memantine although only the first has official indication. Current
research is investigating other agents such as riluzole and (R)-ketamine (PCN-101,
HR-071603), whose efficacy in the treatment of bipolar disorder is expected to be
established.

8.4.1 Ketamine

Ketamine has been studied in the last decade for its efficacy in bipolar depression as
well as for major depressive disorder (Singh et al. 2017). Its antidepressant proper-
ties are believed to be due to the competition of N-methyl-D-aspartate receptors
(Grady et al. 2017). Oral administration of ketamine is not particularly effective.
Sublingual administration has a better bioavailability of ~30% and a lower rate of
conversion to norketamine compared to oral administration. Intravenous adminis-
tration of ketamine at a dose of 0.5 mg/kg produces rapid and potent antidepressant
effects (Thomas et al. 2018); however, such administration is not practical. In
addition to its beneficial effects, it is a potentially addictive drug. At the same
time, its prolonged use has been associated with a decline in cognitive functions
and alterations that are apparent in imaging brain processes. Current data suggest
that a single intravenous ketamine infusion is effective for patients with bipolar
depression without psychotic symptoms who have no comorbidity with substance
dependence (Grady et al. 2017; Lapidus et al. 2013).

8.4.2 S-ketamine

S (+)-ketamine is the pure dextrorotatory enantiomer of ketamine and has been in use
in anesthesiology approximately for the last 25 years. Its main action is due to
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non-competitive inhibition of the NMDA receptor while simultaneously is acting on
monoamine, opioid, adenosine, and other purinergic receptors (Trimmel et al. 2018).
S-ketamine has antidepressant effects similar to ketamine. At the same time it seems
to be better tolerated with less psychotomimetic side effects than racemic ketamine
(Paul et al. 2009). U.S. Food and Drug Administration approved esketamine in nasal
spray in March 2019 in combination with oral antidepressant medication to treat
adults suffering from treatment-resistant depression. However, it has not yet received
formal approval for the treatment of bipolar depression.

8.4.3 Lamotrigine

Lamotrigine has been in use as an anticonvulsant since 1991 and has been approved
as a maintenance treatment for bipolar disorder II in June 2003 (as the first drug of
this class after lithium). It has proven its efficacy mainly in the relapse prevention of
bipolar depression. Pharmacologically it is inhibitor of glutamate release while
simultaneously is increasing the expression of the AMPA receptor through inhibi-
tion of the voltage-dependent channels of sodium, potassium, and calcium. It has
also neuroprotective action, slightly inhibits serotonin reuptake and has activity of an
agonist of gamma aminobutyric acid (GABA). It is less effective in treatment-
resistant bipolar depression and rapid cycling disorder. It requires relatively long
time for starting its action.

8.4.4 Memantine

Memantine is an NMDA receptor inhibitor that has been in clinical use since 1982
and has been approved for Alzheimer’s dementia. It is a low affinity voltage-
dependent uncompetitive antagonist of NMDA glutamatergic receptors. Memantine
inhibits the prolonged intracellular influx of Ca2 + ions binding primarily to
extracellular NMDA receptors (Parsons et al. 2007). At the same time, it prevents
desensitization of dopaminergic receptors, caused by antidepressants, which may
induce further depressive symptoms. It is considered effective in the treatment of
acute mania and in the prevention of both manic/hypomanic and depressive relapses
of bipolar disorder. Although it has no official indication, it can be used to treat
bipolar disorder that does not respond to classic mood stabilizers (Serra et al. 2014).
Common side effects include drowsiness, dizziness, headache, and constipation.
However, it can also have serious side effects such as heart failure, thrombosis, and
psychotic symptoms.
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8.5 Emerging Treatments Related to Glutamate
Modulating Drugs for Bipolar Disorder

Both preclinical and clinical studies have implicated glutamatergic dysfunction in
the pathophysiology of mood disorders, such as bipolar depression and major
depressive disorder (MDD). In particular, rapid reductions in depressive symptoms
were observed in response to hypoanesthetic doses of ketamine in subjects with
bipolar depression or MDD. These results have led to the development of other
glutamatergic modulators for use either as monotherapy or as adjunctive therapy.

The antidepressant effects on bipolar depression of various glutamatergic mod-
ulators are investigated, including: (1) broad glutamatergic modulators (ketamine,
S-ketamine, dextromethorphan, AVP-923, AVP-786, nitric oxide (N2O),
AZD6765). (2) N-methyl-D-aspartate (NMDA) specific subunit receptor antagonists
(NR2B) (CP-101,606, MK-0657 (CERC-301)), (3) some glycine site agonists (D-
cycloserine, GLYX-13, sarcosine, W-101), and (4) glutamate receptor modulators
(AZO2066, RO4917523/basimglurant, JNJ40411813/ADX71149, R04995819).

There are even other potentially interesting targets of the glutamine receptor with
preclinical antidepressant-like efficacy, including AMPA agonists (for example,
CX-691/ORG 2448 and ORG-26576) as well as mGluR7 agonists.

8.5.1 Wide Glutamatergic Modulators

8.5.1.1 Ketamine

Ketamine is by far the best-studied glutamatergic agent in the treatment of affective
disorders, with a very low risk (similar to placebo) of causing hypomania or mania,
indicating that its use is safe for people with bipolar depression while at the same
time is also known to have anti-suicidal activity. In all studies to date which
investigate its efficacy in bipolar depression, it has been used in combination with
conventional mood stabilizers such as lithium and valproate.

At the cellular level, increased glutamatergic capacity is responsible for the
antidepressant effects of ketamine. It is still possible that increased glutamatergic
efficiency of AMPA receptors over NMDA receptors following ketamine adminis-
tration may enhance the dynamics of neuronal synapse and activate genes which
encode neuronal plasticity-mediated proteins. Ketamine has been shown in experi-
ments in rats to rapidly activate the mTOR pathway, leading to an increased
synthesis of signaling proteins and an increased number of new synapses in the
prefrontal cortex (Henter et al. 2018).

The (S)-ketamine isomer has been found to block NMDA receptors with greater
potency than the (R) isomer, but without similar antidepressant effects. It has been
found that its antidepressant activity is produced by one of its metabolites,
hydroxynorketamine (HNK) via an independent mechanism that appears to increase
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AMPA receptor activation. The metabolites of (2S, 6S, 2R, 6R) -HNK are also
pharmacologically active.

From its side effects the most severe acute of these are the transient psychotic-like
and dissociative episodes, increased blood pressure, and tachycardia while chronic
side effects such as drug abuse and dependence, dissociative symptoms (e.g.,
dissociative amnesia), ulcerative cystitis, and neurotoxicity should be considered.
The limitations and the serious side effects of ketamine’s use led to the development
of more effective relevant pharmacological agents with fewer side effects. Relevant
emerging therapeutic approaches to bipolar disorder that target the glutamatergic
system will be presented below.

8.5.1.2 R-ketamine (PCN-101, HR-071603)

R-ketamine is the (R)-(-)enantiomer of ketamine. Preclinical studies appear to have a
faster onset, stronger and longer-term antidepressant activity than S-ketamine at least
in animal models of depression (Zhang et al. 2014). R-ketamine has been undergo-
ing trials for the treatment of depression under the code PCN-101 since
November 2019.

It is believed that the better efficacy of both R-ketamine and S-ketamine over
racemic ketamine may be due to the strong competition of alpha-7 nicotinic recep-
tors, both by themselves and their metabolites norketamine and hydroxynorketamine
(Yang et al. 2015).

8.5.1.3 Dextromethorphan (DXM), AVP-923, AVP-786

Dextromethorphan is a non-selective, non-competitive antagonist of NMDA recep-
tors better known as an antitussive agent. It also has action on opioid receptors and at
higher doses it acts as an agonist for the sigma-1 receptor and as an inhibitor of the
norepinephrine and serotonin transporters. To date, there is no randomized con-
trolled trial investigating the use of dextromethorphan as a monotherapy for the
treatment of mood disorders. The efficacy of the combination of dextromethorphan
with quinidine (named AVP-923) is currently being studied in treatment-resistant
depression at oral dosage of 45 mg dextromethorphan and 10 mg quinidine twice
daily. The above combination presents mild side effects from the digestive system,
sedation, dizziness, and possibly insomnia. It also inhibits cytochrome 2D6, thereby
increasing plasma dextromethorphan levels. The combination of deuterated
(d6) -dextromethorphan with an extremely low dose of quinidine (AVP-786) as
well as deuterium incorporation (2H) optimizes the reduction of first-pass metabo-
lism of both dextromethorphan and quinidine, thereby reducing the risk of cardio-
logical adverse reactions and interactions with other drugs (Henter et al. 2018).
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8.5.1.4 Nitrous Oxide (N2O)

Nitrous oxide (N2O) is an inhaled general anesthetic most commonly used in dental
or short obstetric surgical operations. It is a non-competitive NMDA receptor
inhibitor and has a broad mechanism of action similar to that of ketamine. Inhalation
of a mixture of 50% N2O and 50% nitrogen does not cause psychotic-like symptoms
and its side effects include anxiety, headache, and nausea/vomiting. To date N2O is
used only in a research setting (Tym and Alexander 2011).

8.5.1.5 Riluzole

Riluzole is a glutamic acid modifier approved for the treatment of ALS. It reduces
extra-synaptic glutamate by inhibiting presynaptic release and simultaneously
enhances astroglial glutamate uptake. Its antidepressant activity has been demon-
strated in animal models, but to date no randomized controlled trials (RCTs) using
riluzole have been published in patients with mood disorders. However, there are
several case reports describing recession rates of depressive symptomatology from
21 to 32%. In at least one such case study of bipolar depression, increased doses of
riluzole at 50–200 mg per 24 h in combination with lithium resulted in significant
remission of depressive symptoms during the 5th to 8th week of treatment without
developing hypomania or mania.

8.5.1.6 AZD6765

AZD6765 is a non-selective low affinity NMDA receptor channel inhibitor whose
development was discontinued in 2013 and is reported here for historical reasons. It
was administered intravenously at 50, 100, and 150 mg and showed no psychotic-
like symptoms.

8.5.2 Subunit NR2B-Specific NMDA Receptor Antagonists

NR2B is a subunit of the NDMA receptor. Studies of the therapeutic effects of
NMDA receptor subunit antagonists were based on the hypothesis that agents that
selectively block the NMDA receptor are by definition specific and have fewer
undesirable side effects than broad glutamatergic modulators. Two agents of this
class have been investigated to date: CP-101,606 and MK-0657 (recently renamed
CERC-301).
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8.5.2.1 CP-101,606

CP-101,606 is a selective antagonist of the NR2B subunit of the NMDA receptor
which has been used only intravenously at a dose of 0.75 mg/kg per hour for 1.5 h
followed by 0.15 mg/kg per hour for the next 6.5 h. The development of this agent
stopped due to potentially cardiovascular toxicity (QT c prolongation).

8.5.2.2 MK-0657 (CERC-301)

MK-0657 (CERC-301) is an oral selective NR2B subunit antagonist of the NMDA
receptor. In contrast to CP-101,606, no serious adverse reactions were observed
during the relevant trials. However, there was no statistically significant improve-
ment in depressive symptoms over placebo (after MADRS evaluation) at oral
administration of at least 20 mg, although at the same dosage some improvement
was observed using the HAM-D scale, as well as using the BDI self-report scale.

8.5.3 NMDA Receptor Glycine Site Partial Agonists

8.5.3.1 D-Cycloserine (DCS)

D-cycloserine (DCS) is a broad-spectrum antibiotic and at doses greater than 100 mg/
24 h, acts as an NMDA receptor glycine site partial agonist. Recent studies evalu-
ating the efficacy of agents acting on the NMDA receptor have found that D-
cycloserine exhibits at high dosage (1000 mg) a rapid antidepressant response,
although not at a lower dosage (250 mg).

Its side effects include symptoms from the gastrointestinal system, dizziness,
tinnitus and vision disorders, sleep disorders, peripheral neuropathy, and even
depressive symptoms. Epileptic seizures and psychotic symptoms are also reported
in <5% of the patients who are treated with D-cycloserine (Machado-Vieira et al.
2017; Dang et al. 2014).

8.5.3.2 GLYX-13

GLYX-13 is also an NMDA receptor glycine site partial agonist, administered
intravenously at a dosage of 5–10 mg/kg and which has encouraging preliminary
results in the treatment of depressive symptomatology. Since early 2016 it has been
approved by the FDA as a complementary treatment for major depressive disorder.
In contrast to the intravenous injection of NMDA receptor antagonists, the
corresponding injection of GLYX-13 at any dose did not cause neither severe
adverse reaction (with the exception of dizziness at 10%) nor dissociative symptom-
atology (Lener et al. 2017; Henter et al. 2018).
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8.5.3.3 Sarcosine

Sarcosine is a glycine-I transporter inhibitor and enhancer of NMDA receptor
function. To date, its therapeutic potential has not been fully evaluated. It is effective
in oral administration at a dosage of 1000–1500 mg/24 h. The most important side
effects reported are relatively mild sleep disorders.

8.5.3.4 4-Chlorokynurenine (AV-101)

4-Cl-KYN (AV-101) is a highly selective, potent glycine site antagonist of the
NMDA receptor. Its action as a rapid-acting antidepressant is under trial. It is
administered orally at a dosage of 1.080 to 1.440 mg/24 h. In 2019 a phase II clinical
trial had negative results for major depressive disorder.

8.5.4 Metabotropic Glutamate Receptors (mGluRs)

Metabotropic glutamate receptors (mGluRs), which are observed in both neurons
and glial cells, are an additional glutamate signaling pathway in addition to NMDA
and AMPA receptors and are found throughout the whole brain.

The hypothesis of the efficacy of mGluR2 agonists in the treatment of depressive
symptoms in both major depressive disorder and bipolar disorder is based on their
reduction in glutamate release.

By an opposite mechanism, antidepressant effects are expected from mGluR2/3
antagonists, which enhance glutamate levels in the synaptic cleft, thereby enhancing
the transmission rate of AMPA receptors by causing increased extracellular mono-
amine levels. Although several agents (either positive or negative allosteric modu-
lators) are under trial for treatment-resistant depression, at present there is no strong
evidence of their antidepressant effect.

8.5.4.1 AZD2066

AZD2066 is an mGluR5 antagonist that exhibits antidepressant properties. It seems
to be an ineffective agent in oral administration. Dosage ranges from 12–18 mg/24 h.
Side effects include mild gastrointestinal symptoms, mild sleep disorder, and
headache.
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8.5.4.2 RO491753/BasimglurantRO4917523

Basimglurant, RG7090 is an mGluR5 negative allosteric modulator. It is also not an
effective agent in oral administration. Its dosage range fluctuates from 0.5 mg to
1.5 mg/24 h. Adverse reactions include mainly dizziness (23%) and two cases of
mania triggering have been reported.

8.5.4.3 JNJ40411813/ADX71149

JNJ-40411813/ADX71149 is an mGluR2 positive allosteric modulator that does not
appear to outperform at least its antidepressant effects over other agents in the same
class. It is also ineffective orally. Its dosage range fluctuates from 50 to 150 mg. The
most common side effect is vertigo.

8.5.4.4 RO4995819

RO4995819 is an mGluR2/mGluR3 antagonist and negative allosteric regulator that
has antidepressant efficacy but its development for MDD resistant to treatment has
been discontinued. It was also not effective in oral administration and its dosage
ranged from 5 to 30 mg/24 h.

8.6 Conclusion and Future Perspectives

Currently available therapeutic agents used to treat bipolar disorder act on multiple
molecules and receptors. A fundamental issue for the discovery of innovative
therapies is the understanding of the combination of cellular interactions and the
molecular mechanisms which are responsible for bipolar disorder.

Recent findings from research into the treatment of bipolar disorder suggest that
the effects on NMDA receptors may need to be combined with other cellular and/or
molecular effects to provide effective therapeutic responses. Such combinatorial
interactions warrant the most intensive and targeted study based on both preclinical
and clinical studies of agents that influence the glutamatergic system.

Research to date justifies the optimism that new pharmaceutical agents targeting
the glutamatergic system may play an important role in the treatment of bipolar
disorder. In the above framework, ionotropic glutamate receptors appear to be
predominant, despite the fact that ketamine and other glutamatergic modulators
that work with a similar mechanism may not be widely recommended as treatment
in clinical practice.
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However, ketamine may be considered a therapeutic option for cases of bipolar
depression that are resistant to treatment, either for the temporary relief of symptoms
or as transitional therapy in view of alternative methods. In contrast, S-ketamine has
proven its efficacy clinically through its wide glutamatergic action. Factors belong-
ing to the broad glutamatergic modulators such as N2O and AVP-923 are promising;
however, more research is needed to establish their efficacy and safety.

A significant number of broad and selective NMDA receptor antagonists that are
withdrawn after failure to demonstrate efficacy for other indications are currently
under investigation, and if proven to be effective, they may be alternative therapies
that deprive ketamine’s psychotic-like and dissociative side effects. In addition to
these other NMDA receptor antagonists, which have actually demonstrated antide-
pressant properties, some factors such as GLYX-13 and CERC-301 appear to have
encouraging preliminary results. It should be noted, however, that none of these
agents at least currently appear to exhibit rapid antidepressant activity, efficacy
against durable symptoms, single-dose efficacy as well as anti-manic/anti-suicidal/
anti-anhedonic properties and stabilizing action.

The metabotropic glutamate receptor modulators so far do not appear to be
particularly effective in clinical trials which are relevant with the development of
new therapeutic agents for bipolar disorder. Besides, there are currently no new
agents (after lamotrigine) that act on the glutamatergic system and have proven
mood stabilizing properties.
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Chapter 9
CNS Glutamate in Impulsive Aggression

Alan R. Felthous and Joe Nassif

Abstract Glutamate appears to be a critical neurotransmitter in the neurocircuitry
and neurophysiology of aggressive behaviors in mammals including humans. Ani-
mal models help to clarify the neurocircuitry of both defensive and predatory
aggression. Together with other neurotransmitters, glutamate is involved in the
medial amygdala–mediobasal hypothalamus–dorsal periaqueductal gray pathway
which triggers defensive aggression in animal models and impulsive aggression in
humans. CSF glutamate levels are shown to be elevated in humans with impulsive
aggression. The growing knowledge about glutamate’s potential role in abnormal
impulsive aggression may help to explain antiaggressive mechanisms of action of
anti-impulsive aggression and antipsychotic agents as well as memantine, an
N-methyl-D- aspartate antagonist, through restoration of a glutamate/GABA
imbalance.

Keywords Anti-impulsive aggression agents · Glutamate · Glutamate/GABA
balance · Impulsive aggression · Neurocircuitry of aggression · Top-down/bottom-up
hypothesis

9.1 Introduction

According to Barratt’s tripartite classification of human aggression (Barratt 1991),
medical or secondary aggression typically improves from pharmacotherapy of the
primary disorder such as bipolar disorder with aggression associated mania; impul-
sive aggression often responds to an anti-impulsive aggression agent (AIAA)
(Felthous and Stanford 2015; Lee et al. 2019), whereas premeditated,
nonpsychopathological aggression has not been shown to improve with any phar-
maceutical agent (Felthous and Barratt 2003).
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A longstanding and continuing flaw in research on the pharmacotherapy of
aggression has been the failure to identify the type of aggression that is being treated
(Barratt and Slaughter 1998; Felthous et al. 2013), and to distinguish impulsive
aggression in particular (Felthous and Stanford 2015). Where the literature on the
pharmacotherapy of aggression does not specify the type of aggression or leaves the
definitions broad or vague, results of drug trials have been and will continue to be
inconclusive. For example, the review by Huband and colleagues on antiepileptic
therapy for aggression did not limit the focus to primary impulsive aggression and
broadened the study population to include various psychopathological conditions
(Huband et al. 2014): results were unsurprisingly mixed. Where reviews and studies
focus on primary impulsive aggression, aggression that is not only recurrent but
defined and diagnosed as impulsive, the results are much more consistent (Felthous
et al. 2013).

9.2 The Neurocircuitry of Impulsive Aggression

9.2.1 Animal Models and the Neurocircuits of Impulsive
and Predatory Aggression

Animal models support two neuropathways for two distinctly different types of
aggression, manifested somewhat differently in different species. Subsequently
two separate but closely located neurocircuits have been identified in the cat for
defensive/affective (impulsive) aggressive behavior and quiet biting attack/biting
aggression (predatory or premeditated) behavior. For defensive/affective behavior
the ascending pathway has been traced using radioautography to the antero-medial
hypothalamus and the medial thalamus. Descending projections pass through the
central tegmental areas of the midbrain and pons, locus coeruleus and motor and
sensory nuclei of the trigeminal complex (Shaikh et al. 1987). Activation of the
medial amygdala-mediobasal hypothalamus-dorsal periaqueductal gray pathway
triggers hyper-arousal-driven aggression (Toth et al. 2012), i.e., defensive rage,
comparable to reactive or impulsive aggression in humans.

When Hess elicited defensive aggression in the cat by electrical stimulation of the
hypothalamus (Hess 1927), he provided the first evidence for its involvement.
Subsequent demonstration that injection of L-glutamate into the hypothalamus
also elicited the aggressive reaction (Brody et al. 1969) suggested that this neuro-
transmitter may be involved in hypothalamic aggression. Glutamate projections act
on the N-methyl-D-aspartate (NMDA) receptors in the dorsolateral periaqueductal
gray. Demonstrating evolutionary conservation, the aggressive response from stim-
ulating the hypothalamus has been shown in various animal species ranging from
fish and lizards to monkeys and humans (Haller 2013).

Hypoarousal-related aggression is associated with activation of the central
amygdala-lateral hypothalamus-ventral periaqueductal gray pathway (Tulogdi
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et al. 2010). This type of aggression is known as predatory (Haller 2013), and may be
analogous to proactive, predatory, or premeditated aggression of humans. The
periaqueductal gray (PAG) is involved in aggression-induced autonomic responses
(Bandler and Shipley 1994; Behbehani 1995) with the dorsolateral PAG increasing
the heart rate and associated with affective hyperexcitatory aggression whereas
activation of the ventrolateral periaqueductal gray is associated with hypoexcitatory,
predatory aggression (Tulogdi et al. 2010).

Hypothalamic mechanisms of aggression are influenced by neural connections
with multiple neurotransmitters including acetylcholine, dopamine, GABA, gluta-
mate, noradrenaline, serotonin, substance P, and vasopressin (Haller 2013). Dopa-
minergic and noradrenergic inputs as well as substance Pergic neurons from the
medial amygdala activate the mediobasal hypothalamus in cats, which project to the
periaqueductal gray via glutamergic neurons (Siegel et al. 1999, 2007). Through
GABAergic projections, the mediobasal hypothalamus inhibits the lateral hypothal-
amus from mediating predatory aggression (Haller 2013). Conversely the lateral
hypothalamus, also via GABAergic neural input, inhibits the mediobasal hypothal-
amus when predatory aggression is initiated (See Fig. 9.1).

In the rat electrical stimulation of the hypothalamic attack area not only projects
to lower brain levels, stimulation also projects upstream to the mediodorsal thalamic
nucleus, the piriform and cingular cortices. This allows execution of conspecific
attack by enabling location and approach of the opposing rat and overcoming the
object’s resistance (Halasz et al. 2002).

Fig. 9.1 The two parallel tracks for hyperarousal and hypoarousal aggression can inhibit each other
with bidirectional GABA neurons in the hypothalamus
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9.2.2 Neuroimaging of the Neurocircuit of Impulsive
Aggression in Humans

The only DSM disorder that is essentially impulsive aggression is Intermittent
Explosive Disorder (IED, DSM-5, American Psychiatric Association 2013).
Keedy and colleagues recently reviewed neuroimaging studies of subjects diagnosed
with IED, wherein some subjects may have had a personality disorder such as
borderline personality disorder (Keedy et al. 2019). Studies focused on the
orbitofrontal cortex and the amygdala regions which, together with the hippocam-
pus, the corpus callosum, the superior temporal regions, have been associated with
aggressive behavior and psychopathic disorders in general (Müller 2007, 2021;
Yang and Raine 2007, 2021.

A neuroimaging study showed that subjects with IED had reduced OFC
(orbitofrontal cortex) volume (Coccaro et al. 2016), and reduced activations when
presented with angry expressions (Coccaro et al. 2007) as well as alteration in the
connectivity between the OFC and the right amygdala. Keedy et al. point out that
IED subjects had reduced functioning in the frontal brain areas assumed to inhibit
and modulate activity in the limbic system (Keedy et al. 2019). Using MRI scans on
same-sexed twins, Coccaro et al. found lifetime history of aggression to have modest
inverse associations with medial prefrontal ( p < 0.001) and lateral prefrontal
( p < 0.001) cortices with significant heritability determined by biometric twin
analyses (Coccaro et al. 2018). IED subjects studied with diffusion tensor imaging
(DTI) showed reduced white matter integrity in the superior longitudinal fasciculus,
a white matter track that connects frontal with temporoparietal regions (Coccaro and
McCloskey 2019; Lee et al. 2016).

Neuroimaging studies of IED subjects show reduced gray matter in the right
amygdala and the less gray matter, the more extensive the subjects’ history of
aggressive behaviors. The right amygdala has an inward deformity in IED subjects
in comparison with normal controls (Coccaro et al. 2015a). IED subjects have a
greater amygdala response to images of angry faces when studied with fMRI
(Coccaro et al. 2007). This response is greater in subjects with a more pronounced
history of aggressive behavior, with similar findings confirmed by McClosky et al.
(2016).

9.2.3 Human Lesion Models in Human Neurocircuits
of Impulsive and Premeditated Aggression

In humans stimulation of the posteromedial hypothalamus induces aggression
(Bejjani et al. 2002), whereas lesioning this region reduces or eliminates aggressive
behavior in violent patients (Sano et al. 1970). Intractable aggression has subsided
with continuous electrical stimulation of the “triangle of Sano” (Franzini et al. 2008;
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Hernando et al. 2008; Savard et al. 2003). Aggression subsided only gradually and
after prolonged intermittent stimulation, but recurred once stimulation was stopped.

Patients with a hypothalamic hamartoma with increased aggression, either affec-
tive (impulsive) or predatory (premeditated), show diminution in aggression once
the hamartoma is removed (de Almeida et al. 2008; Weissenberger et al. 2001).
Hypothalamic hamartomas provide additional evidence for glutamate contributing to
aggression in humans. These congenital malformations of the ventral hypothalamus
are known for causing treatment resistant epilepsy with gelastic seizures (Kerrigan
et al. 2017). They can also be the cause of uncontrollable rage that improves after
complete surgical resection of the hamartoma (Savard et al. 2003). The neurons of
hypothalamic hamartomas express glutamic acid decarboxylase and putatively have
ɣ-aminobutyric acid (GABA) as their primary neurotransmitter (Kerrigan
et al. 2017).

The anterior cingulate cortex has been considered the location of the core of the
human will, the faculty of decisional intention. This is because the ACC is involved
where there is conflict between the emotional response of the amygdala and the
analytic response of the prefrontal cortex (DeMartino et al. 2006; Felthous 2008a).
Disturbances in aggression and impulsivity have been associated with abnormalities
in the fronto-limbic network, including the ACC (Mancke et al. 2015; Sebastian
et al. 2014).

9.3 Molecular Components of the Glutamate
Neurotransmitter System as Potential Drug Targets
for Impulsive Aggression

9.3.1 Genetic Studies Implicating Glutamate in Aggression

Glutamate receptor genes have been linked to aggressive behavior. Brodkin and
colleagues identified the glutamate receptor AMPA3 gene (Gria3) as a candidate
quantitative trait locus in a study of aggression in mice directed toward “dangled”
intruder mice (Brodkin et al. 2002; Scott and Fredericson 1951). The subunit of the
ionotropic glutamate receptor AMPA3, encoded by the mouse Gria3, contributes to
excitatory neurotransmission throughout the brain (Ozawa et al. 1998). However, the
importance of this or any other single gene in the glutamate system remains to be
supported by studies of “knockout mice” (Anagnostopoulos et al. 2001; Miczek
2001). Given the widespread nature of glutamate in the brain, it is likely that the most
significant contributions of glutamate receptor genes occur within the discrete
pathway that mediates aggressive behavior. Studies using antisense oligonucleotides
for glutamate receptors in areas such as the prefrontal cortex, amygdala, and
hypothalamus may be more useful approaches for understanding the importance of
glutamate receptor genes in aggression.
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9.3.2 Glutamate Metabolism and Receptors

Glutamate levels in blood plasma fluctuate with feeding. The blood brain barrier
assists in maintaining separate pools of neurotransmitters including glutamate,
which if flowing freely into the CNS could cause permanent neurotoxic damage.
This separation of glutamate and other neurotransmitters also minimizes “cross-talk”
between the central and peripheral nervous systems (Abbott et al. 2010).

In understanding glutamate’s role in impulsive aggression and potential thera-
peutic modifiers, its metabolism and receptors must be addressed. Glutamate is the
most abundant and primary excitatory neurotransmitter in the brain. It is dubbed the
brain’s “master switch” because of its capacity to excite nearly all neurons in the
brain (Stahl 2013). In addition to the synaptic roles of glutamate and GABA
described within neurocircuits of aggression, neurotransmitters involved in these
circuits also reach relatively distant extra-synaptic sites with high-affinity receptors
(e.g., glutamate, (Kew et al. 1998), GABA (Oláh et al. 2009), dopamine (Caillé et al.
1996), and serotonin (Hervé et al. 1987). Thus, glutamate and other neurotransmit-
ters can potentially control a large number of target cells monosynaptically, (Haller
2013), an important consideration for psychopharmacology in general (Vizi 1984,
2000), including the anti-impulsive agents to be discussed below.

Glutamate has three main types of receptors all of which are cation channels:
N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)
propanoic acid (AMPA), and kainate receptors respectively, all of which depolarize
the surrounding neuronal membrane. Glutamate also activates G-protein coupled
receptors, a distinct class designated as metabotropic glutamate receptors (In GluRs)
(Takahashi and Miczek 2014). The roles of glutamate in aggression differ depending
on the type, subtype, and location of its receptor as well as specific intrinsic and
extrinsic conditions.

The most studied for the relationship between glutamate and aggression is the
NMDA receptor, which has biphasic effects of its antagonists. At low doses antag-
onists of NMDA receptors increase aggression whereas higher doses decrease
aggression (Takahashi and Miczek 2014). Illustrating potential environmental influ-
ences on NMDA subunits, social isolation of mice with resultant increased aggres-
sive behavior is attended by an increase in NR2A and NR2B subunits in the
hippocampus yet decreased NR2A expression in the prefrontal cortex (Zhau et al.
2009).

In order for glutamate to function as a neurotransmitter at the NMDA receptor,
glycine must also be present (Kemp and Leeson 1993). As glycine is essentially
always present at micromolar levels (Kemp and Leeson 1993), which are sufficient
to maintain saturation of NMDA receptors (Kew et al. 1998), it is the glutamate
released from presynaptic terminals that functions as a neurotransmitter (Kew et al.
1998). In the brain astrocytes remove glutamate from the cleft. Kir4.kt channels
maintain a hyperpolarized membrane which drives the uptake of glutamate which
otherwise accumulates in the cleft and impairs proper physiological functioning.
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9.3.3 Glutamate in the Neurocircuit of Impulsive Aggression

Much of our knowledge of the neurochemistry of aggression is provided by research
on animal models. Results can differ based upon animal species and age, type of
aggression assessed, and methodology. As previously discussed the neurocircuits of
aggressive behavior involve several different areas and tracts of the brain, and
multiple neurotransmitters including, in addition to glutamate and GABA, the
inhibitors serotonin and oxytocin and the facilitating modulators, catecholamines,
vasopressin, neuropeptide y, substance P, cytokines, and testosterone (Fanning et al.
2021). In animal models hyperarousal (affective, reactive, defensive) appears to
correspond with impulsive aggression in humans, whereas its opposite hypoarousal
(predatory) animal aggression may at least heuristically serve as an analogue of
premeditated (proactive) aggression in humans. An area of the brain that has been
much investigated using animal models for the study of the neurocircuitry and
neurochemistry of aggression is the hypothalamus.

Within the hypothalamus the neurotransmitters acetylcholine, dopamine, GABA,
glutamate, noradrenaline, serotonin, substance P, and vasopressin are involved in
aggressive behavior and locally controlled by glucocorticoids and testosterone
(Haller 2013). In the cat, affective aggression (defensive rage) is thought to be
initiated by projections of glutamergic neurons of the mediobasal hypothalamus to
NMDA receptors to the periaqueductal gray (Siegel et al. 1999, 2007). The
mediobasal hypothalamus is stimulated by substance Pergic neurons from the medial
amygdala as well as dopaminergic and noradrenergic neurons (Haller 2013). Gluta-
mate neurons from the basal amygdala also facilitate defensive rage behaviors by
projecting to the PAG and acting on NMDA receptors (Siegel et al. 2007). Similarly
in the rat, glutamine is involved in attack behavior in the mediobasal hypothalamus
(Adams et al. 1993; Haller et al. 1998; Roeling et al. 1993).

Attack behaviors are mediated by substance P thought projecting from the medial
amygdala (Halasz et al. 2008, 2009) and arginine vasopressin afferent neurons
(Caffrey et al. 2010; Ferris et al. 2008). The rat mediobasal hypothalamus contains
both glutamergic and GABAergic neurons, each with this own localization within
the mediobasal hypothalamus (Hrabovszky et al. 2005).

The lateral hypothalamus, active in hypoexcitatory predatory aggression in the
cat, is like the hyperexcitatory basomedial hypothalamus, stimulated by dopaminer-
gic and cholinergic neurons (Haller 2013). GABAergic neurons are generally inhib-
itory but can facilitate affective aggression by inhibiting predatory aggression and
vice versa. GABAergic neurons from the mediobasal hypothalamus inhibit activity
of the lateral hypothalamus. GABAergic neurons from the medial hypothalamus also
inhibit the predatory impulse stimulated by the Substance Pergic neurons from the
medial amygdala. Both basomedial and lateral areas of the hypothalamus are
activated by dopaminergic and cholinergic neurons and both sites are inhibited by
serotonin (Haller 2013; Hassanain et al. 2003).

Within the hypothalamus and the PAG, three neurotransmitters function to
suppress defensive rage behavior. Serotonin from the brainstem raphe neurons acts
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upon 5-HT1A receptors in either the medial hypothalamus or the PAG, especially the
dorsolateral aspect (Hassanain et al. 2003; Shaikh et al. 1997; Siegel et al. 2007).
μ-opioid receptors are potent suppressors of rage in the PAG, receptors activated
upon by enkephalinergic neurons projecting from the central nucleus of the amyg-
dala. As explained above, GABAA receptors in the medial and lateral hypothalamus
reciprocally suppress either defensive or predatory aggression. GABA neurons of
unknown origin also suppress defensive rage by acting on GABAA receptors in the
PAG (Siegel et al. 2007; Shaikh and Siegel 1990).

9.3.4 P3 ERP, Glutamate and Impulsive Aggression

In several abnormal mental or behavioral conditions, including impulsive aggres-
sion, the amplitude of the P3 ERP is abnormally low. Barratt and colleagues
demonstrated that phenytoin, in contrast to placebo, reduces impulsive aggression
and concomitantly increases, i.e., normalizes the P3 of impulsively aggressive sub-
jects (Barratt et al. 1997a, b). This raises the possibility that the anti-impulsive
aggression effect of phenytoin may be due, at least in part, to its enhancing efficient
information processing as reflected by normalization of the P3 ERP.

Glutamate functioning appears to contribute to the P3, particularly the earlier,
more frontal component, viz. P3a. The later, more parietal component, P3b, may not
be a function of glutamate activity. Hall and colleagues consider the ratio of
glutamine (Gln) to glutamate (Ghu) to be the most specific measure of glutamate
functioning at the synapse because it corresponds to the relative amount of each.
Using proton magnetic resonance spectroscopy (‘H MRS) to measure glutamine
(Gln), glutamate (Glu) and Gln/Glu, a measure of glutamergic processing, and
obtaining frontal P3a (F3) and parietal P3b (Pz) using an auditory oddball task on
32 healthy subjects, Hall and colleagues found that the frontal P3a amplitude was
significantly positively correlated with Gln ( p ¼ 0.02) and the Gln/Glu ratio
( p ¼ 0.001), but these measures were not significantly correlated over the parietal-
occipital cortices (Hall et al. 2015). The authors suggest that frontal P3a ERP could
be useful in approaching the pharmacological treatment of schizophrenia. We
suggest this may also apply to the development and use of AIAAs in the treatment
of impulsive aggression, also attended by low amplitude P3 which may be restored
with phenytoin which decreases glutamergic synaptic excitation (Cunningham et al.
2000). That phenytoin can decrease impulsive aggression, increase the amplitude of
P3, and decrease glutamergic transmission, even though increased glutamergicity
contributes to the amplitude of P3a, is an apparent paradox to be addressed with
future research.
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9.3.5 Glutamate and GABA Levels in the Brain and CSF
of Humans with Impulsive Aggression

Glutamate (glutamate to total creatinine ratios (Glu/tCr)) and GABA levels have
been measured using MR spectroscopy in the ACC of female patients with BPD and
ADHD, respectively, two conditions characterized by impulsivity, and aggression to
test for association of altered Glu/tCr and GABA levels with impulsivity and
aggression, respectively (Ende et al. 2016). Study groups were female patients
with BPD, ADHS, and a healthy group of control subjects. The ADHD patients
manifested significantly lower GABA levels, whereas the Glu/tCR ratio was not
significantly different in any of the three groups. Apart from the two disorders that
separated the groups, impulsivity as measured by the Barratt Impulsivity Scale
(BIS-11, Barratt; Preuss et al. 2008) was associated by differences in the Glu/tCR:
GABA balance. Total score of the BIS-11 and Glu/tCR showed a significant positive
partial correlation and the total score on the BIS-11 and GABA exhibited a signif-
icant negative partial correlation. Aggression as measured by the score on the
Brown, Goodwin Lifetime History of Aggression (BGLHA, Brown et al. 1979)
did not show a positive correlation with Glu/tCr, but did evince a significant negative
partial correlation where controlled for diagnosis (Ende et al. 2016). Note that
primary impulsive aggression or IED was not examined in this study.

CSF Glutamate levels are thought to reflect brain glutamate (Coccaro et al. 2013),
because the blood-brain barrier actively moves glutamate into the blood from the
interstitial brain fluid (Helms et al. 2012) leaving CSF levels at 20% of that in the
peripheral circulation (Abbott et al. 2010). Coccaro and colleagues measured gluta-
mate levels in the CSF of 38 healthy subjects (Coccaro et al. 2013). The investigators
used multiple measures of aggression and impulsivity: For aggression, the Life
History of Aggression assessment (LHA; Coccaro et al. 1997) and the Aggression
Factor score from the Buss-Durkee Hostility Inventory (BDHI, Buss and Durkee
1957); for impulsivity, the Barratt Impulsivity Scale-Version II (BIS-II, Patton et al.
1995) and the Eysenck Personality Questionnaire (EPQ, Eysenk and Eysenck 1977).
As previously described, Coccaro and colleagues used a data-reduction step to
derive composite variables for “aggression,” “impulsivity,” and “impulsive aggres-
sion” (Coccaro and Lee 2010).

They found that CSF Glutamate levels were statistically, positively correlated
with composite measures of aggression ( p ¼ 0.004), impulsivity ( p ¼ 0.062), and
composite impulsive aggression ( p ¼ 0.026) in all 38 subjects. Positive correlations
were found in both personality disordered subjects (28) and healthy volunteers (10),
statistically significant only in the PD group, but due to small sample size, not in the
HV group for which the magnitude of the correlation was similar. Personality
disordered subjects showed correlations for aggression (n ¼ 28, p ¼ 0.004), com-
posite impulsivity ( p ¼ 0.033), and composite impulsive aggression ( p ¼ 0.012).

The authors interpreted these correlations of CSF Glutamate with aggression,
impulsivity, and impulsive aggression to support the theory that CNS glutamate
facilitates aggressive behavior (Coccaro et al. 2013; Comai et al. 2012) and
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suggested a mechanism whereby glutamate stimulates NMDA, AMPA, and
metabotropic receptors in the amygdala, the medial hypothalamus, and
periaqueductal gray, as is suggested in animal model experiments eliciting defensive
rage behavior (Coccaro et al. 2013). Regardless of the specific mechanism, this is
consistent with the top-down bottom-up theory of human aggression involving
glutamate (Siever 2008).

In contrast to this positive correlation of CSF glutamate with aggression, Lee,
Petty, and Coccaro found no association between CSF GABA levels and aggressive
behavior. Instead they found CSF GABA levels to show a positive correlation with
impulsivity and with a history of suicidal behavior (Lee et al. 2009).

9.4 Anti-Impulsive Aggression Agents
and the Glutamate/GABA Balance

No pharmaceutical agent has been FDA approved for the treatment of impulsive
aggression or intermittent explosive disorder, yet the disorder is in need of treatment
as it can result in disrupted relationships, domestic abuse, assault and even homicide,
with potentially dire consequences for those afflicted as well as the targets of their
aggression. Five medications have been identified by more than one high quality
study as efficacious for impulsive aggression: fluoxetine, phenytoin, valproic acid/
duloxetine, carbamazepine/oxcarbazepine, and lithium (Felthous et al. 2013).

These five AIAAs are classified based on heterogeneous applications: SSRI
antidepressant (fluoxetine), anticonvulsant (phenytoin), anticonvulsant and mood
stabilizer (valproate/divalproex, carbamazepine/oxcarbazepine), and mood stabilizer
without anticonvulsant effect (lithium). The pharmacotherapeutic mechanism for
their primary use is not well understood for any of these, and not known for their
anti-impulsive aggression effects. Moreover, each agent carries a constellation of
molecular effects within the CNS, and the pharmacodynamic profile of each is
unique. Most research that aims to explain the method of action does so for the
drug’s primary indication, viz., depressive, bipolar or seizure disorder, not for
impulsive aggression.

A hypothesis for clinical aggression that is gaining currency is the “top-down/
bottom-up” hypothesis (Siever 2008), which also attempts to explain the efficacy of
agents in controlling impulsive aggression (Stahl and Morrisette 2014). Top down
corresponds to the controlling neurotransmitters such as serotonin in the frontal
lobes and GABA, whereas bottom up refers to excitatory neurotransmitters, gluta-
mate in particular. According to this hypothesis an imbalance between control and
excitation can lead to poorly controlled aggression. This can be the result of too little
control from the prefrontal cortex or too much excitation from the amygdala.
Impulsive aggression may also represent an imbalance of the glutamergic and
GABAergic activity in the aggression mediating amygdala-hypothalamus-
periaqueductal gray circuits. Of the various effects and proposed mechanisms of
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action for each AIAA, this discussion will focus on those that enhance
GABAergicity or diminish glutamaticity in the brain.

The balance in the glutamate GABA-glutamine metabolic cycle has been impli-
cated in several mental disorders and behaviors including aggressive behavior. Thus,
in examining the possible role of glutamate signaling in aggression, we must also
examine the role of GABA, the principal inhibitory neurotransmitter in the mam-
malian brain (Zhao and Gammie 2014). GABA and glutamate signaling are impor-
tant in modulating various behaviors. Among other responses, GABA signaling is
associated with aggression (Zhao and Gammie 2014). Activation of the GABAA

receptor in the lateral septum (LS) increases aggression in Syrian Hamsters
(McDonald et al. 2012). This may seem counterintuitive if GABA is expected to
diminish aggression. However, if enhanced GABA signaling also reduces anxiety
and fear, and in the case of Syrian hamsters the expression of conditioned defeat; this
mechanism may secondarily embolden the animal allowing expression of aggression
unfettered by inhibitory anxiety.

9.4.1 Fluoxetine

Serotonin’s effect in improving prefrontal cortical activity (New et al. 2004),
normalization of orbitofrontal and anterior cingulate functioning with fluoxetine
(New et al. 2004), resulting in prefrontally mediated self-control with diminished
impulsive aggression (Coccaro et al. 2015b), have been addressed previously and
need not be further discussed here. In addition to the control from enhanced
prefrontal serotonicity, Coccaro et al. conclude that fluoxetine alters the cortico-
limbic circuitry by improving amygdala functioning (Coccaro et al. 2011, 2015b).
This is suggested by fluoxetine’s reduction of Blood Oxygenation Level Dependent
(BOLD) responses in the amygdala as measured by functional magnetic resonance
imaging (fMRI).

Among the 14 distinct serotonin receptors (Samuels et al. 2015), serotonin
receptor subtypes that have been studied with regard to aggression are 5-HT1a,
5HT1b, 5-HT2a, and 5-HT3. Of these, 5-HT1a is strongly implicated in anxiety and
depression, and increasingly in impulsivity and aggression. By promoting mem-
brane hyperpolarization, the 5-HT1a receptor mediates inhibitory action on two
relevant neuronal populations: raphe serotonergic neurons where autoreceptors are
distributed in a somato-dendritic pattern, and serotonergic cortical, hippocampal,
and septal neurons postsynaptically (Rosell and Siever 2015). Impulsive aggression
is thought to be inhibited by 5-HT1a but promoted by 5-HT2a/6 neuromodulation
(Lee and Coccaro 2019). The antidepressant action of SSRIs is thought to be due to
increased signaling of the 5-HT1a in the dentate gyrus of the hippocampus (Samuels
et al. 2015) and chronic SSRI treatment, possibly through post receptor desensitiza-
tion, reduces cortical 5-HT2a binding (Lee and Coccaro 2019), a two-pronged
mechanism that could as well conceivably contribute to SSRIs’ action as an
AIAA. On the other hand, another SSRI citalopram has been shown by single-
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photon emission computed photography (SPECT) to improve the behavior of eight
out of nine impulsive aggressive dogs and to decrease binding at the 5-HT2a

receptors in cortical, but not subcortical regions (Peremans et al. 2005).
The dorsal raphe nucleus, implicated in modulating aggression and emotions,

contains most of the brain’s 5-HT neurons (Takahashi and Miczek 2013) which
project to the cortex and limbic targets (Takahashi and Miczek 2013). Within the
dorsal raphe nucleus, serotonin, the main neurotransmitter of the DRN (Michelsen
et al. 2007), and GABA interact in ways that can promote or inhibit aggression
depending on their receptor subtype, location and specific conditions (e.g., after
alcohol consumption). For example, 5-HT is increased in the medial prefrontal
cortex by GABAB activation in the DRN, suggesting that intermale aggression is
attended by activation of DRN 5-HT neurons (Takahashi et al. 2010).

Fluoxetine may also reduce impulsive aggression by increasing allopregnanolone
(Allo) which is a positive allosteric modulator of GABAergicity at GABAA recep-
tors. Research shows that the intensity of aggression shown by socially isolated mice
to an intruder is related to the downregulation of Allo content that accompanies
social isolation. Fluoxetine both normalizes Allo levels and abolishes aggression
against an intruder (Pinna et al. 2003).

Frizzo proposes that fluoxetine and sertraline, another SSRI shown to reduce
impulsive aggression Buttler et al. 2010; Feder 1999), may serve as glutamergic
modulators by reducing glutamate uptake from the synaptic cleft (Frizzo 2017).
Fluoxetine and sertraline inhibit Kir4.lkt channels. The peripheral measure of glu-
tamate uptake in human platelets is thought to reflect similar SSRI reduction in CNS
astrocyte uptake of glutamate. If accumulated intersynaptic glutamate is involved in
SSRIs mechanism of action, as Frizzo suggests, this is counterintuitive and not fully
explanatory, as one would expect proportionate increase, not decrease, in
glutamergicity to be associated with impulsive aggression. See Table 9.1 for a
summary of the identified effects through animal models of each AIAA on brain
glutamate.

9.4.2 Valproate/Divalproex

Structurally distinct from other psychotropic agents, valproic acid (dipropylacetic
acid) was used as a solvent in identifying other potential anti-epileptic agents
(Bowden 2004) before its anti-epileptic, mood-stabilizing, and anti-impulsive
aggression qualities became known. Potential mechanisms of action include neuro-
nal stabilization by reducing sodium influx and increasing potassium efflux, increas-
ing dopamine turnover (Löscher 1993), decreasing aspartate release, decreasing
somatostatin in the CSF, and decreasing NMDA-mediated circuits (Bowden 2004).

In line with the up-down/bottom-up hypothesis of aggression, and the GABA/
glutamate balance in particular, is the evidence that valproate enhances GABA
functioning by increasing its CNS levels (Patsalos and Lascelles 1981), inhibiting
the catabolism of GABA, promoting its release, decreasing its turnover, increasing
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GABAB receptor density and possibly increasing neuronal responsiveness to GABA
(Bowden 2004; Post et al. 1992). (See Fig. 9.2.) Valproate may also affect dopami-
nergic and serotonergic functioning (Löscher 1993) and decrease excessive neuro-
transmission by reducing the flow of ions through voltage-sensitive sodium channels
(VSSC, Stahl 2013).

Whether valproate affects brain and CSF concentrates of glutamate and glutamine
depends on the species (Cotariv et al. 1990; Godin et al. 1969; Löscher 1993).
Valproate increased concentrations of glutamine, the amino acid precursor for
glutamate, in the baboon CSF (Valin et al. 1991), the mouse brain (Kapetanovic
et al. 1988), and rat cortex (Patsalos and Lascelles 1981). In rodents treated with

Table 9.1 AIAAs effects on Glutamergic and GABAergic activity

AIAA Glutamergic Effect(s) GABAergic Effect(s)

Fluoxetine Reduces glutamate uptake from the
synaptic cleft by inhibiting Kir4.lkt
channels involved in astrocytic uptake
of fluoxetine

Valproate/
Divalproex

Valproate stimulates glutamine syn-
thetase (GS), synthesis of glutamine
from glutamate in astrocytes, which is
then transported to neurons within
which it is transformed into GABA
and glutamate

Valproate enhances GABA func-
tioning by inhibiting the catabolism
of GABA, promoting its release,
decreasing its turnover, increasing
GABAB receptor density and possi-
bly increasing neuronal responsive-
ness to GABA

Carbamazepine/
Oxcarbazepine

Blocks sodium channels by decreas-
ing glutamate and aspartate release.

Carbamazepine enhances GABA
functioning by increasing GABAB

receptors and decreasing GABA
turnover.

Phenytoin Decreases glutamergic synaptic exci-
tation, reduces the frequency of excit-
atory postsynaptic potentials
enhanced by exogenous activation of
AMPA and NMDA glutamate recep-
tors. May reduce background and
evoked excitation by decreasing the
frequency of spontaneous glutamate-
mediated EPCSs.

Increases GABAergic synaptic inhi-
bition, increases the level of GABA
from presynaptic terminals, increases
the amplitude of inhibitory postsyn-
aptic potentials (IPSP) which may
indicate postsynaptic potentiations of
GABA receptors.

Lithium Suppresses glutamine-induced loss of
phosphorylated CREB caused by the
activation of protein phosphatase
1 and antagonizes glutamate-induced
activation of c-Jun-N-terminal kinase
(JNK), p38 kinase, and AP-1 binding.
Effects gene expression and signaling
pertaining to excitatory & inhibitory
system. Enhances recovery of
glutamate-induced Akt inactivation,
preventing or reversing extracellular
glutamate excitotoxicity.

Increases limbic GABAB receptors,
decreases GABA turnover
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valproate, glutamate concentrations have been reported as increased, decreased, and
unchanged (Cotariv et al. 1990; Löscher 1993; Löscher and Hörstermann 1994;
Kapetanovic et al. 1988; Patsalos and Lascelles 1981). Kapetanovic and colleagues
found that valproate increased basal but decreased newly synthesized GABA. The
authors suggested that turnovers of newly synthesized neurotransmitters better
reflect their dynamics and neuronal activity. Lowering new GABA by valproate
could be the result of feedback inhibition of and decreased synthesis of GABA from
increased GABAergic transmission (Kapetanovic et al. 1988). In humans age makes
a difference, as valproate increases CSF glutamine in children (Jaeken et al. 1987)
but not in adults (Pitkänen et al. 1989).

The effect of valproate on levels of glutamine, glutamate, and GABA is also
dependent on the presence of certain mental or neurological disorders. Valproate
does not change the level of CSF GABA in patients with epilepsy (Pitkänen et al.
1989), Parkinson’s disease (Nutt et al. 1979), or schizophrenia (Lautin et al. 1980).
Yet other studies showed an increase in CSF GABA in both epileptic children and
adults treated with valproate (Löscher and Siemes 1985; Araki et al. 1988). Petroff
et al. (1999) in contrast using nuclear magnetic resonance (NMR) spectroscopy did
not find a significant increase in GABA concentration in the occipital lobe of adult
patients with complex partial seizures.

Fig. 9.2 The potential mechanisms whereby valproate reduces impulive aggression illustrates the
up down/bottom up hypothesis of aggression. Here the imbalance is illustrated by too little GABA
activity and/or too much glutamate activity. Valproate restores the GABA/glutamate balance
thereby reducing impulsive aggression
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9.4.3 Carbamazepine/Oxcarbazepine

The drug of choice for complex partial seizures/temporal lobe epilepsy and tonic-
clonic seizures (Mattes 1986; McNamara 2011) is carbamazepine, beginning in the
1980s as one of the first alternatives to lithium in the treatment of bipolar disorder.
Now recognized as an effective AIAA, its preclinical anticonvulsant profiles are
similar to that of phenytoin and somewhat like that of valproic acid. Like phenytoin,
carbamazepine, as well as its metabolite, 10,11-epoxycarbamazepine, limits
sustained neuronal firing at therapeutic concentrations. Reduction in neuronal firing
appears to be mediated by slowing the rate of recovery from inactivation of voltage-
activated sodium channels. At therapeutic levels this is not affected by iontophoret-
ically applied GABA or glutamate (McLean and Macdonald 1986; McNamara
2011).

Of its numerous cellular and intracellular effects, we here concentrate on those
that most compare with the effects of lithium and valproic acid, which are also
effective AIAAs, and that may affect the GABAergic-glutamergic balance of the
up-down bottom-up hypothesis of aggression. Like lithium and valproic acid,
carbamazepine increases limbic ɣ-aminobutyric acid (GABA) type B receptors.
All three AIAAs increase hippocampal GABAʙ receptors in rats (Motohashi 1992;
Motohashi et al. 1989) and decrease GABA turnover (Bernasconi 1982; Bernasconi
and Martin 1979; Bernasconi et al. 1984). Translationally, Ketter and colleagues
suggest that these agents stabilize mood by decreasing GABA turnover and enhanc-
ing hippocampal GABAʙ receptor mechanisms.

Other effects are in common with either lithium or carbamazepine but not both.
Of relevance to the GABA-GLU hypothesis, like valproic acid but unlike lithium,
carbamazepine blocks sodium channels thereby decreasing glutamate and aspartate
release. Aspartate is the other of the two major excitatory amino acids in high
concentration in the CNS (Nester et al. 2001).

9.4.4 Phenytoin

Phenytoin is neither an SSRI nor a mood stabilizer. As an anticonvulsant, phenytoin
(diphenylhydantoin, DPH) is effective in the treatment of partial and tonic-clonic but
not absence seizures (McNamara 2011). Research on mechanisms of action has the
translational goal of explaining phenytoin’s anticonvulsant action. Because both
seizure disorders and impulsive aggression are disorders of dysregulated
neuroexcitement, it is conceivable that explanations of phenytoin’s anticonvulsant
action may pertain to its therapeutic effect on impulsive aggression as well. If
phenytoin improves the GABAergic-glutamergic balance, this may reduce the
likelihood of impulsive aggressive outbursts as well as epileptic seizures.

The anticonvulsant effect of DPH is thought to be due to its blockade of Na+
channels. By slowing the rate of recovery of voltage-activated sodium channels from
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inactivation, DPH like carbamazepine sustains depolarization and limits neuronal
firing (McNamara 2011; McLean and Macdonald 1986). However, research with
animal models has demonstrated that DPH both increases GABAergic synaptic
inhibition and decreases glutamergic synaptic excitation (Cunningham et al. 2000).
Prolonged treatment of rats with DPH resulted in reduced GABA concentration in
the cerebellum, hypothalamus, and striatum (Patsolos and Lascelles 1981). DPH
appears to both increase the release of GABA from presynaptic terminals and
increase the amplitude of inhibitory postsynaptic potentials (IPSPs), which may
indicate postsynaptic potentiation of GABA receptors (Cunningham et al. 2000).

While enhancing the GABAergic inhibitory actions, DPH has been shown to
reduce the frequency dependent excitatory postsynaptic potentials enhanced by
exogenous activation of AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) glutamate receptors.
Although DPH does not affect the regional concentration of glutamate in rats
(Patsalos and Lascelles 1981), Cunningham and colleagues demonstrated that phe-
nytoin decreased the frequency but not the amplitude of spontaneous glutamate-
mediated EPCSs in the entorhinal cortex neurons of male Wistar rats (Cunningham
et al. 2000). They concluded that phenytoin’s anticonvulsive efficacy is due to its
enhancement of GABA mediated background and evoked inhibition together with
its reduction of background and evoked excitation. Given the evidence for GABA/
glutamate imbalance as a neuromechanism for aggressive behavior, these findings
could as well contribute toward understanding phenytoin’s mechanisms for reducing
impulsive aggression.

9.4.5 The Non-AIAA Levetiracetam

Levetiracetam ((S)-α-ethyl-2-exo-1-pyrrolidine acetamide) is an effective anti-
epileptic drug for pharmacotherapy of myoclonic, partial, and generalized seizure
disorder (McNamara 2011). Unlike the AIAAs phenytoin, valproate/divalproex and
carbamazepine/oxcarbazepine, which are also anti-epileptics, controlled drug trials
have shown levetiracetam to be ineffective in controlling impulsive aggression
(Felthous et al. 2013; Mattes 2008). Therefore, potential anticonvulsant mechanisms
of action may be usefully compared with those of efficacious AIAAs, in searching
for mechanisms specific for controlling impulsive aggression.

By several mechanisms levetiracetam acts on ion channels and inhibits the
amplitude of excitatory, postsynaptic currents (EPSC). Levetiracetam interacts
with presynaptic P/Q-type voltage-dependent calcium channel (VDCC) to reduce
glutamate release. Levetiracetam in contrast to valproate, carbamazepine and phe-
nytoin, has no direct effect on glycine-gated currents (Rigo et al. 2002).

Two important anti-epileptic mechanisms are reducing glutamate release
(Cunningham et al. 2004) and blocking glutamate receptors resulting in diminished
neuroexcitability (Lee et al. 2009). Using male Wistar rats, Lee and colleagues
investigated whether levetiracetam regulates AMPA and NMDA receptor-mediated

298 A. R. Felthous and J. Nassif



excitatory transmission in the dentate gyrus when seizure activity is regulated.
Results suggested that levetiracetam modulated the presynaptic P/Q-type voltage-
dependent calcium channel. This reduced glutamate release and diminished the
amplitude of the EPSC. The authors indicate that this likely contributes to the anti-
epileptic therapeutic effect of levetiracetam (Lee et al. 2009). In common with the
AIAA anti-epileptic agents, levetiracetam diminishes CNS glutamate activity, but by
a different mechanism, presynaptically, and so far demonstrated only in the dentate
gyrus of the hippocampus.

9.4.6 Lithium

Lithium, one of the first elements created in the universe, is FDA approved and used
primarily in the treatment of bipolar disorder. The lightest alkali metal and a
monovalent cation (Baldessarini 1996; Ward et al. 1994), lithium has also been
shown effective in the treatment of impulsive aggression (Felthous et al. 2013; Lee
et al. 2019; Sheard et al. 1976). Among its multiple effects, lithium influences
secondary messenger systems such as cyclic guanosine monophosphate (cGMP)
and cyclic adenosine monophosphate (cAMP). It has been hypothesized that lith-
ium’s mood-and-behavior-stabilizing effects are due to lithium’s competition with
cations of neurophysiological importance, such as sodium, potassium, and calcium
(Ward et al. 1994).

Among its effects on multiple neurotransmitter systems are several mechanisms
by which lithium may diminish the excitatory effect of glutamate or enhance the
inhibitory effects of GABA and acetylcholine. Importantly lithium suppresses
glutamine-induced loss of phosphorylated CREB caused by the activation of protein
phosphatase 1. Lithium also antagonizes glutamate-induced activation of c-Jun-N-
terminal kinase (JNK1), p 38 kinase and AP-1 binding (Chuang 2004). Gao and
colleagues have demonstrated that long-term treatment of cultured rat cerebellar
granule cells with lithium increases the m3-muscarinic acetylcholine receptor-
mediated phosphoinositide turnover as well as the levels of c-fos and m3-receptor
mRNA (Gao et al. 1993). Included in lithium’s multiple sites of action, therefore, are
also sites of gene expression and signaling (Chuang 2004), which also affect the
balance between excitatory and inhibitory systems, potentially favoring the control
of impulsive aggression.

Excessive accumulation of extracellular glutamate results in glutamate
excitotoxicity and even neuronal death. In preventing, diminishing, or reversing
the processes leading to glutamate excitotoxicity, lithium is a neuro-protective agent
(Chuang 2004). By activating protein phosphatases, treatment with glutamate causes
a rapid but reversible loss of Akt (Ser 473) (Chalecka-Franaszek and Chuang 1999).
Chuang suggests that Akt contributes in mediating against glutamate excitotoxicity,
as this is supported by the finding that the complete loss of Akt activity is prevented
by long-term lithium treatment which enhances the recovery of glutamate-induced
Akt inactivation (Chuang 2004).

9 CNS Glutamate in Impulsive Aggression 299



9.5 Antipsychotic Agents and Emerging Treatments
for Impulsive Aggression

9.5.1 Antipsychotic Agents

In our review of AIAAs, haloperidol was the only antipsychotic tested to diminish
impulsive aggression (Felthous et al. 2013). Only one such quality study was
identified and its effect on impulsive aggression in children was favorable. Antipsy-
chotics are shown to be effective in controlling aggressive behavior and other
symptoms of mania, psychotic agitation, and schizophrenia. We do not recommend
antipsychotics as first-line agents against primary impulsive aggression, because of
their significant potential for serious side effects and insufficient evidence of efficacy
for IA. Nonetheless, antipsychotics are widely used as general antiaggressive agents.
Accordingly, we comment on how three of the more favored antipsychotics for
aggression interact with the GABA/glutamine balance: risperidone, olanzapine, and
clozapine. In schizophrenic subjects, antipsychotic agents may improve NMDA
receptor functioning favoring cognition and reducing negative symptoms by acting
through the glycine modulatory site (Goff and Coyle 2001). Much of schizophrenic
aggression is phenomenologically impulsive (Felthous 2008b) and hypothetically
responsive to pharmacotherapy that improves cognition and executive function.

9.5.2 Risperidone

After haloperidol and before olanzapine and clozapine came onto the scene, the
atypical antipsychotic risperidone was shown to control aggressive behavior in
patients with schizophrenia (Aleman and Kahn 2001) hospitalized mental patients
(Chengappa et al. 2000) and as a last resort when AIAAs were insufficiently
effective (Moeller and Swann 2007). Different classes of antipsychotic agents target
and modulate three ionotropic glutamate receptor subtypes: NMDA ((N-methyl-D-
aspartate acid), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid),
propionic acid (AMP), and Kainate (Ozawa et al. 1998). It has been hypothesized
that dysfunctional glutamatergic neurotransmission can contribute to the onset and
neuropathology of schizophrenia and other psychotic disorders (Goff and Coyle
2001; Tsai and Coyle 2002). The psychotomimetic agents phencyclidine and keta-
mine have been shown to act on NMDA receptors (Javitt and Zukin 1991; Tsai and
Coyle 2002). As risperidone is an effective antipsychotic and antiaggressive agent,
even if not specifically tested for primary impulsive aggression, it is conceivable that
both effects are induced by the same disturbance in glutamine transmission.

Using brain homogenates of Sprague-Dawley rats, comparing juvenile and adult
rats, Choi and colleagues tested for in vitro glutamate receptor affinity and receptor
autoradiography at the three glutamate receptors specified above. Risperidone
showed very low affinity for all three glutamate receptors in both juvenile and
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adult rat brain homogenate. Weekly injection of high doses of risperidone did not
alter the levels of NMDA, AMPA, or KA (kainic acid) receptors in the medial
prefrontal cortex, the caudate-putamen or the nucleus accumbens, whereas high
doses (1.0 and 3.0 mg/kg/day) significantly decreased NMDA binding in the
caudate-putamen of juvenile and adult rats, and in the nucleus accumbens of
juveniles but not adults. In juveniles but not adults, these two doses of risperidone
decreased NMDA receptors in the nucleus accumbens. Risperidone did not change
the number of kainite receptors at either dose in either juveniles or adults (Choi et al.
2009).

Thus, risperidone has different effects at different doses on the glutamate recep-
tors in different areas of the brain and at different phases of animal development. The
three ionotropic glutamate receptors behave differently in different brain areas and at
different phases of brain development. Accordingly the mechanisms of glutamate in
modulating aggression may not be the same in those areas of the brain known to be
involved in the release and control of aggressive behavior or for that matter across
species.

9.5.3 Olanzapine

One of the most widely used antipsychotic agents for the treatment of acute and
recurrent aggression in the schizophrenia spectrum disorders in particular is
olanzapine, a thienobenzodiazepine derivative (2-methyl-4(4-methyl-1-piperazine)-
10H-thienol[2-3-6][1.5]benzodiazepine) which is chemically related to clozapine, a
dibenzodiazepine. Like other antipsychotics it blocks D2 receptors (Kapur and
Remington 2001) and D2 receptor blockage has been thought to be an important
component of the antipsychotic therapeutic action. Atypical antipsychotics also act
on 5-HT receptors and olanzapine is a much stronger blocker of 5-HT2A than DA
receptors (Kapur et al. 1998). The mechanism of “atypicality” has been attributed to
the 5-HT-DA antagonist hypothesis (Meltzer et al. 1989) with the greatest atypicality
shown by agents like olanzapine with the relatively greater 5-HT receptor blockade
(Schulz et al. 2004).

Because both quetiapine and olanzapine reversed isolation-induced prepulse
inhibition effect in rats (Bakshi et al. 1998), and NMDA antagonists are associated
with prepulse inhibition, olanzapine appears to have an effect on the glutamergic
system which is implicated in the pathophysiology of schizophrenia (Schulz et al.
2004). Using magnetic resonance spectroscopy, Goff and Coyle (2001) found that
glutamate levels increased when patients were switched from typical antipsychotic
medication to olanzapine. Brain levels of glutamate did not increase except in those
patients whose symptoms improved following the switch to olanzapine. These
findings are consistent with the hypo-glutamergic hypothesis of schizophrenia
(Moghaddam and Javitt 2012).

Uniquely olanzapine, and not clozapine, chlorpromazine, haloperidol, bupropion,
fluoxetine, and amitriptyline, inhibits the activity of D-aspartate oxidase. D-aspartate
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activation of NMDA receptors has been shown to be at low levels in schizophrenia
(Sacchi et al. 2017). D-aspartate stimulates the release of glutamate in the prefrontal
cortex of mice. These and other experiments support the possibility that by inhibiting
activity, olanzapine increases L-glutamate release in murine prefrontal cortex
(Sacchi et al. 2017). Thus, olanzapine may diminish symptoms of schizophrenia,
including perhaps secondary aggressive behavior, by increasing glutamate
availability.

9.5.4 Clozapine

A dibenzepine tricyclic antipsychotic primarily used in the treatment of schizophre-
nia and schizoaffective disorder and especially refractory schizophrenia (Marder and
Wirshing 2004), clozapine has been shown to be much more effective than other
antipsychotics in bringing aggressive behavior under control. Following research
protocol, clozapine was demonstrated to bring aggression under control in
non-psychotic, nonschizophrenic subjects diagnosed with psychopathy whose
aggression was non-responsive to more commonly used agents (Brown et al. 2016).

Hippius (1999) noted delay in appreciating the efficacy of clozapine because it
did not conform to popular theory of mechanism of action. Clozapine is especially
atypical as an antipsychotic in that it is not a neuroleptic with extrapyramidal side
effects. Clozapine has low dopamine (D2) receptor occupancy and so its remarkable
efficacy cannot be explained with the dopamine theory of psychosis. Similar to other
second generation antipsychotics clozapine’s affinity ratio of 5-HT2A to D2 receptors
is high (Marder and Wirshing 2004).

A more recent explanation for clozapine’s efficacy in the treatment of schizo-
phrenia, and we might suggest in controlling aggressive behavior, is its effect on
glutamate and glutamine levels. Antipsychotic medication decreases glutamate or
total glutamate plus glutamate in the brains of patients with schizophrenia as
demonstrated by proton magnetic resonance spectroscopy studies (Goldstein et al.
2015). In the study by Goldstein and colleagues, those patients with schizophrenia
who responded to first-line antipsychotics had high total glutamate plus glutamine
levels in the prefrontal cortex in comparison with those with ultra-treatment resistant
schizophrenia. On the other hand, patients with treatment resistant schizophrenia had
higher total glutamate plus glutamine levels scaled to creatinine in the putamen than
both first-line responders and those with ultra-treatment resistant schizophrenia.
Because the patients with schizophrenia who did not respond to first-line antipsy-
chotics but did respond to clozapine showed elevated total glutamate-glutamine
levels scaled to creatinine in the putamen, this was considered a marker for favorable
response to clozapine (Goldstein et al. 2015). This finding raises the question of
whether the finding could also be associated with schizophrenic-associated aggres-
sion that is also responsive to clozapine (Table 9.2).
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9.5.5 Glutamate Antagonists

9.5.5.1 Memantine

Although not applied to primary impulsive aggression, memantine, an N-methyl-D-
aspartate antagonist, has been shown to reduce aggressive behavior in patients with
moderately severe to severe Alzheimer’s disease (Wilcock et al. 2008). From a
pooled analysis of three large six-month randomized studies of subjects with mod-
erately severe to severe Alzheimer’s disease, Wilcock and others found that
memantine in comparison with placebo showed improved cognition, global func-
tioning, activities of daily living, and decelerated deterioration. At week
12 (53.3% vs. 43.1%, p ¼ 0.011) and week 24/28 (61.0% vs. 45.0%, p < 0.001) a
significantly higher percentage of the patients receiving memantine had improve-
ment in their aggression and agitation. That antiglutamergic pharmacotherapy would
diminish aggression supports the role of glutamergic neurotransmission in some
types of aggression, viz., that which is secondary to Alzheimer’s disease.

9.6 Conclusions and Future Directions

Animal models and neuroimaging and lesions studies in humans have elucidated the
neurocircuitry of impulsive aggression and the role of the glutamate excitatory
neurotransmitter within this neurocircuitry. Although interacting with several other
neurotransmitter systems, also within this circuitry, the balance between glutamate
and the neuroinhibitory neurotransmitters GABA and serotonin appears to be cru-
cial. From the developing glutamate, GABA, serotonin model of impulsive aggres-
sion, possibilities are suggested for mechanisms of medication with evidence of
efficacy as AIAAs. Future research in the development of AIAAs with increasing

Table 9.2 The effects of antipsychotics on Glutamergic and GABAergic activity

Antipsychotic Glutamergic Effect(s)
GABAergic
Effect(s)

Risperidone Risperidone may have different effects on glutamate receptors in
different areas of the brain and at different phases of animal
development

Olanzapine Glutamate levels increase in patients whose antipsychotic is
switched to olanzapine and subsequently the patient's symptoms
of schizophrenia improve, consistent with the hypo-glutamergic
hypothesis of schizophrenia. Uniquely, may diminish symptoms
of schizophrenia by increasing glutamate activity by inhibiting
D-aspartate oxidase activity, enhancing D-aspartate activity,
which in turn stimulates the release of glutamate.

Clozapine Patients with schizophrenia who did not respond to first-line
antipsychotics but who responded to clozapine have higher
glutamate-glutamine levels scaled to creatinine.

9 CNS Glutamate in Impulsive Aggression 303



efficacy and specificity will progress on two fronts: (1) the continued use of animal
models including gene knockout glutamate and interacting neurotransmitters and the
effect of identified as well as potentially new AIAAs, (2) and well-designed studies
of candidate AIAAs on impulsive aggression, its neurocircuitry, and neurotransmit-
ters, with increasing attention to the subtypes of glutamine receptors.
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Chapter 10
Glutamatergic Treatments for Parkinson’s
Disease

Fabrizio Gardoni

Abstract Parkinson’s disease is characterized by the degeneration of dopaminergic
neurons of the substantia nigra pars compacta (SNpc) projecting to the striatum and
resulting motor and non-motor symptoms. The current knowledge demonstrates that
the activity of glutamatergic signals from the cortex to the striatum is strictly
regulated during the progression of the disease and indicates that modulation of
synaptic transmission at the glutamatergic synapse represents a major target to
rescue the altered neurotransmission. Molecular and functional alterations of gluta-
mate receptors in experimental models of Parkinson’s disease as well as in patients
have been demonstrated and several studies have been performed by using receptor
antagonists/modulators. In particular, compounds targeting N-methyl-d-aspartate-
type (NMDA) glutamate receptors and specific subtypes of metabotropic glutamate
receptors (mGluR) have been tested both in preclinical and clinical studies. At
present, amantadine, a low-affinity non-competitive NMDA receptor antagonist,
represents a recommended add-on agent to decrease the dyskinetic motor compli-
cations of the dopaminergic therapy.

The chapter will describe advances in basic research, preclinical and clinical
studies in the attempt of identifying innovative strategies for the modulation of
glutamate receptors in Parkinson’s disease. Overall, these results indicate that
modulation of the glutamatergic system remains one of the promising pharmaco-
logical strategies in the field.
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10.1 Introduction

Parkinson's disease is the second most frequent neurodegenerative disorder associ-
ated with aging and affects approximately 1% of the population over 65 years, the
mean age at which the disease is diagnosed. The disease is characterized by the
progressive degeneration of dopaminergic neurons of the substantia nigra pars
compacta (SNpc) projecting to the striatum and the consequent motor and
non-motor impairments. However, other cell types and neurotransmitter systems
are also involved, probably from early disease onwards and the underlying patho-
genesis involves multiple pathways and mechanisms.

Parkinson’s disease is also characterized by abnormal presence of toxic forms of
α-synuclein that, when clustered into Lewy bodies, represents one of the patholog-
ical hallmarks of the disease. α-synuclein is present physiologically as monomer
widely distributed in the brain and is involved in the regulation of presynaptic vesicle
pool, neurotransmitter release, synaptic function, and plasticity. However,
α-synuclein has the intrinsic tendency to aggregate in structures of higher molecular
weights leading to the formation of oligomers, protofibrils, and eventually fibrils, the
main components of Lewy bodies (Spillantini et al. 1997; Wong and Krainc 2017).
Mechanisms mediating α-synuclein toxicity in humans have not yet been fully
determined. However, recent studies point to α-synuclein oligomers and to
protofibrils as major players of the synaptic dysfunction as observed in Parkinson’s
disease.

The natural history of Parkinson’s disease is complex and involves differential
mechanisms during its various pre-symptomatic and symptomatic phases. Although
clinical diagnosis mainly relies on the evaluation of bradykinesia and other motor
symptoms, Parkinson’s disease is also characterized by the onset of many non-motor
symptoms that increase the overall disability of the patient. Accordingly, beyond the
notion of Parkinson’s disease as a motor disorder, it is now clear that numerous
non-motor symptoms such as cognitive impairment, autonomic dysfunction, disor-
ders of sleep, depression, and hyposmia contribute to the disease. Importantly, early
clinical symptoms of Parkinson’s disease are detected only when about 70–75% of
dopaminergic neurons are already lost.

10.2 Cross-Talk Between Dopamine and Glutamate
Receptors

An integrated cross-talk between dopamine and glutamate receptors plays an essen-
tial role in driving a physiological motor behavior. In particular, dopaminergic
terminals from SNpc converge with glutamatergic terminals at dendritic spines of
striatal GABAergic spiny projection neurons (SPNs), that represent more than 95%
of striatal neurons. Accordingly, in the corpus striatum dopamine release from SNpc
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dopaminergic neurons strictly regulates the activity of corticostriatal glutamatergic
inputs onto the striatal SPNs and therefore controlling the overall striatal output.

In the last decades, several possible mechanisms have been proposed to explain
dopamine-mediated regulation of the glutamatergic synapse. Early reports indicated
that dopamine modulates the function of ionotropic glutamate receptors leading with
a reduction of AMPA-type receptor-evoked currents and an increase of NMDA-type
receptor-evoked currents (Cepeda et al. 1993; Levine et al. 1996; Cepeda and Levine
1998).

In the striatum, SPNs express NMDA receptor subtypes containing GluN2A and
GluN2B regulatory subunits. However, unlike many other adult brain regions,
GluN2B is the main GluN2-type subunit at SPN synapses (Dunah and Standaert
2001). Interestingly, GluN2A and GluN2B subunits differentially contribute to the
glutamatergic transmission in striatal SPNs (Paoletti et al. 2008; Jocoy et al. 2011).
While blockade of GluN2A increases D1 dopamine receptor-mediated potentiation
of NMDA receptor responses, inhibition of GluN2B reduces this potentiation,
suggesting a counterbalance of their respective functions. Moreover, it has shown
that GluN2A subunits contribute mainly to NMDA responses in SPNs containing the
D1 receptor, whereas GluN2B subunits are more involved in NMDA responses in
SPNs containing the D2 receptor (Paoletti et al. 2008; Jocoy et al. 2011). D1 receptor
activation can also play important roles in the modulation of NMDA receptor
subunit localization/trafficking at the postsynaptic membrane (Hallett et al. 2006;
Dunah et al. 2004; Tang et al. 2007; Vastagh et al. 2012).

Notably, other studies describing the co-localization of D1 and NMDA receptors
at SPN synapses put forward the idea of a direct interaction between the two
receptors (Kung et al. 2007; Heng et al. 2009; Kruusmägi et al. 2009; Jocoy et al.
2011; Vastagh et al. 2012). In particular, D1-type dopamine receptors directly
interacts with the GluN1 obligatory subunit of NMDA receptors with the formation
of functional heteromeric complexes at striatal SPN synapses (Cahill et al. 2014;
Fiorentini et al. 2003; Lee et al. 2002; Pei et al. 2004). Interaction with NMDA
receptors recruits D1 receptors to the synaptic membrane and limits its agonist-
induced internalization (Fiorentini et al. 2003; Pei et al. 2004; Scott et al. 2006).
Interestingly, disruption of D1 receptor binding to GluN1 by treatment with cell-
permeable peptides abolished the synaptic retention of D1 receptors, thus suggesting
that D1 are enriched at glutamatergic synapses through a mechanism requiring the
interaction with NMDA receptors (Ladepeche et al. 2013a). Moreover, disruption of
D1/NMDA receptor complex modulates NMDA receptor synaptic levels through
lateral redistribution and promotes long-term potentiation (Ladepeche et al. 2013b).
D2 receptors interact specifically with GluN2B-containing NMDA receptors (Liu
et al. 2006) and dopamine stimulation by treatment with cocaine enhances the
formation of this complex and inhibits NMDA receptor-mediated currents in SPNs
(Liu et al. 2006).

As mentioned above, dopamine can also modulate the activity of AMPA recep-
tors. Early studies showed that activation of D1 receptors can promote the phos-
phorylation of AMPA receptors by protein kinase A, the increase of AMPA receptor
surface expression (Snyder et al. 2000; Gao et al. 2006; Vastagh et al. 2012), and the
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potentiation of AMPA receptor currents (Price et al. 1999). Conversely, D2 receptor
agonists can decrease AMPA receptor phosphorylation (Håkansson et al. 2006).

10.3 The Glutamatergic System in Disease Setting

The degeneration of the nigrostriatal dopaminergic pathway that occurs in
Parkinson’s disease leads to significant morphological and functional modifications
of the corticostriatal glutamatergic synapse and of the striatal neuronal circuitry.
Most of the preclinical and clinical results obtained in the last decades have clearly
demonstrated that the subcellular localization and the activity of postsynaptic gluta-
mate receptors at striatal SPNs represent a key event in the pathogenesis of
Parkinson’s disease as well as in the onset of drug-induced motor complications.
Different types of modifications of both ionotropic and metabotropic glutamate
receptors in striatum have been described in several different experimental models
and in postmortem specimens from Parkinson’s disease patients (Gardoni and Di
Luca 2015; Mellone and Gardoni 2018). Accordingly, it has been put forward the
idea that the rescue of a physiological glutamatergic activity in the striatum could
represent a useful strategy to restore functional alterations of the basal ganglia
circuitry in the different phases of Parkinson’s disease.

10.3.1 Alterations of NMDA Receptors in Parkinson’s
Disease and L-DOPA-Induced Dyskinesia

NMDA receptor dysfunction has been described in several brain disorders, including
ischemia, neuropathic pain, schizophrenia, addiction, and neurodegenerative dis-
eases (Paoletti et al. 2013). In Parkinson’s disease and after chronic treatment with
L-DOPA, the glutamatergic signaling from the cortical afferents to the striatum
undergoes adaptive changes leading to an excessive release of glutamate from the
presynaptic terminals together with an aberrant distribution and activity of NMDA
receptors at dendritic spines of SPNs (Mellone and Gardoni 2018).

NMDA receptor subunit composition varies across the different brain areas and it
influences the receptor biophysical and pharmacological properties (Paoletti et al.
2013; Sanz-Clemente et al. 2013). Moreover, NMDA receptor subunit composition
strictly regulates NMDA receptor distribution within synaptic or extra-synaptic sites
and this event closely affects NMDA receptor activity and intracellular signaling
(Hardingham and Bading 2010). In Parkinson’s disease, alterations in the levels of
NMDA receptor GluN2-type regulatory subunits at the postsynaptic membrane are
associated with the extent of dopamine denervation as well as with the development
of dyskinesia after chronic treatment of patients with L-DOPA (Hallett et al. 2005;
Mellone et al. 2015; Paillé et al. 2010). Early preclinical studies found a decrease of
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the GluN2B subunit in striatal membranes of the rat model of the disease (Dunah
et al. 2000; Gardoni et al. 2006). Interestingly, dopamine depletion induces similar
alterations in the levels of striatal GluN2B-containing receptors at synapses of
parkinsonian macaques (Hallett et al. 2005). Conversely, an increased expression
of synaptic GluN2A was observed in a model characterized by a partial (about 75%)
lesion of the nigrostriatal pathway and mild motor symptoms (Paillé et al. 2010),
suggesting that different degrees of dopamine denervation could lead to specific
alterations of the NMDA receptor. Notably, the above-described alterations in
NMDA receptor subunit composition at SPNs synapses correlated with the reduction
of NMDA receptor-dependent corticostriatal synaptic plasticity (Gardoni et al. 2006;
Picconi et al. 2004).

More recent in vitro and in vivo studies showed α-synuclein-dependent modifi-
cations of NMDA receptors. In primary cultured neurons, α-synuclein modulates the
levels and the function of GluN2B-containing NMDA receptors (Navarria et al.
2015). In cultured dopaminergic cells, α-synuclein increases clathrin-mediated
endocytosis of NMDA receptors through the participation of Rab5B (Cheng et al.
2011). Similar results were obtained in primary neurons treated with recombinant
human α-synuclein or overexpressing α-synuclein (Chen et al. 2015). Interestingly,
α-synuclein can also interact with the prion protein PrPC and triggers calcium
dyshomeostasis and synaptic damage through a mechanism involving activation of
Fyn kinase, mGluR5 and GluN2B-containing NMDA receptors (Ferreira et al.
2017). In vivo injection of α-synuclein decreases NMDA receptor-mediated synaptic
currents and impairs corticostriatal long-term potentiation of striatal SPNs (Diógenes
et al. 2012; Durante et al. 2019). Notably, treatment with antibodies targeting
α-synuclein prevents the α-synuclein-induced effects on the glutamatergic
corticostriatal synapse suggesting that this strategy might counteract synaptic dys-
function occurring in Parkinson’s disease (Durante et al. 2019).

Cholinergic interneurons (ChIs) represent a very small portion (about 2%) of
neurons in the striatum, but they are major players in striatal neurotransmission,
regulating both dopamine and glutamate inputs to the striatum (Lapper and Bolam
1992; Ding et al. 2010). In the adult, ChIs selectively express NMDA receptors
containing GluN2B/GluN2D regulatory subunits (Bloomfield et al. 2007; Tozzi
et al. 2016). In physiological conditions, striatal GluN2D-containing NMDA recep-
tors contribute to the inhibition of both dopamine and glutamate release through the
action of acetylcholine released by ChIs (Zhang et al. 2014). However, this inhib-
itory function on the glutamatergic transmission is altered in the striatum of a mouse
model of Parkinson’s disease, suggesting that this NMDA receptor subtype may play
a role in the adaptive changes occurring in the disease (Feng et al. 2014). Moreover,
in the disease also SPNs start to express GluN2D-containing receptors, thus resulting
in complex modification of NMDA receptor-mediated synaptic transmission (Zhang
and Chergui 2015). Overexpression of α-synuclein blocks the induction of long-term
potentiation in ChIs, producing early memory and motor alterations. Notably, these
effects are dependent on α-synuclein modulation of the GluN2D-expressing NMDA
receptors (Tozzi et al. 2016). However, despite the emerging function of GluN2D
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subunit in the disease process, further investigation is still needed before compounds
specifically targeting this NMDA receptor subtype can find a clinical application.

Changes of the synaptic levels of NMDA receptor subunits are strictly correlated
with modifications of their binding with scaffolding proteins, namely members of
the membrane-associated guanylate kinase (MAGUK) protein family, i.e. PSD-95
(Gardoni et al. 2006). Interestingly, a decreased synaptic membrane localization
MAGUK proteins and interaction with GluN2-type subunits has been reported in
experimental parkinsonism thus addressing a key role also for MAGUK/NMDA
receptor clustering in the observed aberrant localization of NMDA receptor subunits
at synapses (Gardoni et al. 2006, 2012; Picconi et al. 2004). Finally, genome-wide
studies identifiedGRIN2A gene, encoding the GluN2A subunit, as a genetic modifier
of the inverse association of coffee with the risk of developing Parkinson’s disease
(Hamza et al. 2011; Simon et al. 2017). In addition, another study indicated that
vertebrate motor behavior and synaptic signaling acquired depend upon the dupli-
cation and diversification of ancestral GluN2-type genes (Ryan et al. 2013).

Alterations of the synaptic enrichment of both GluN2A and GluN2B subunits of
the NMDA receptor have been widely described in both rat and monkey models of
dyskinesia following chronic L-DOPA administration (Gardoni et al. 2006, 2012;
Mellone et al. 2015). In particular, a prolonged exposure to L-DOPA induces
a redistribution of GluN2B-containing receptor to the extra-synaptic membrane,
and a concomitant increase of GluN2A synaptic levels in striatal SPNs. This leads
to a significant increase of NMDA receptor GluN2A/GluN2B ratio at SPN dendritic
spines. Notably, these results have been further confirmed in the putamen of
postmortem tissue from Parkinson’s disease patients showing a high dyskinetic
profile (Mellone et al. 2015). Overall, these reports suggest that an imbalance in
the synaptic pool of specific NMDA receptor subtypes in the striatum is responsible
for the disturbances of the glutamatergic synapse underlying L-DOPA-induced
dyskinesia. Importantly, all these changes in synaptic NMDA receptor subunit
content in striatal SPNs correlate with the motor behavior abnormalities and the
altered expression of striatal plasticity observed in experimental models of both
Parkinson’s disease and L-DOPA-induced dyskinesia (Gardoni et al. 2006; Paillé
et al. 2010; Picconi et al. 2004). Even if the exact mechanisms leading to this
aberrant NMDA receptor synaptic retention are not fully elucidated, several reports
identified alterations of the interaction of GluN2 subunits with specific binding
partners, i.e. different types of scaffolding proteins. Among others, MAGUK pro-
teins such as PSD-95, SAP97 and SAP102 show a reduced association with GluN2B
in dyskinetic rats (Gardoni et al. 2006), while an increased interaction with PSD-95
and Rph3A may be responsible for the augmented GluN2A anchoring at the
postsynaptic density of striatal SPNs (Mellone et al. 2015; Stanic et al. 2017).
Other studies suggest that dyskinesia onset is related to the increase in PSD-95
and SAP97 at the synaptic membrane of experimental rodent and primate models
(Nash et al. 2005; Porras et al. 2012).

Besides NMDA receptor activity and subunit composition, other modifications
such as phosphorylation of specific subunit have been found altered in experimental
models of dyskinesia. In particular, GluN2B subunit Tyr1472 phosphorylation is
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increased in different animal models of dyskinesia and this is believed to affect
AP-2-mediated endocytosis of GluN2B-containing NMDA receptors (Oh et al.
1998; Quintana et al. 2010).

10.3.2 Alterations of AMPA Receptors in Parkinson’s
Disease and L-DOPA-Induced Dyskinesia

AMPA receptors are ionotropic glutamate receptors involved in several brain func-
tions including synaptic transmission, spine morphology, and synaptic plasticity
(Huganir and Nicoll 2013). Alterations in the molecular mechanisms that regulate
AMPA receptor assembly and trafficking have been found in neurological and
neurodegenerative disorders (Henley and Wilkinson 2016). In particular, impair-
ments in AMPA receptors synaptic localization and phosphorylation have been
observed in preclinical models of L-DOPA-induced dyskinesia and in Parkinson’s
disease patients. Importantly, enhanced phosphorylation of AMPA receptors GluA1
subunit on serine845 by PKA has been described in rodent and non-human primate
models and it has been defined as an experimental marker of dyskinesia (Ba et al.
2006; Errico et al. 2011; Santini et al. 2007, 2010). Moreover, modifications of
AMPA receptor subunit composition have been also demonstrated (Hallett et al.
2005; Silverdale et al. 2010). Finally, excessive AMPA receptor activity has been
correlated to the development of dyskinesia in animal models (Kobylecki et al. 2010;
Konitsiotis et al. 2000).

10.3.3 Alterations of Metabotropic Glutamate Receptors
in Parkinson’s Disease and L-DOPA-Induced
Dyskinesia

Activation of metabotropic glutamate receptors (mGluRs) plays a key role for a fine
modulation of synaptic transmission and neuronal excitability at the glutamatergic
synapse in the brain. A great variety of mGluR subtypes are expressed in the
different brain area (mGluR1-8) giving the opportunity for a selective pharmaco-
logical intervention in those pathological conditions characterized by specific
mGluR subtype alterations (Crupi et al. 2019). mGluR4 and mGluR5 represent the
two mGluR subtypes that have been mostly correlated to Parkinson’s disease
pathogenesis as well as to the onset of L-DOPA-induced dyskinesia in the last
fifteen years. In the striatum, mGluR4 are located at presynaptic membranes of
glutamatergic synapses and their activation induces a decrease in neurotransmission
at the striatopallidal synapse (Bogenpohl et al. 2013; Valenti et al. 2003, 2005). In
particular, its activation determines a reduction in GABA and glutamate release in
the indirect pathway of the basal ganglia (Conn et al. 2005). Accordingly, several
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studies identified mGluR4 as a potential target for the control of motor symptoms in
Parkinson’s disease. Indeed, the group III mGluR-selective agonists inhibit striatum-
evoked GABAA-mediated current recorded in the neurons of the globus pallidus
through a presynaptic mechanism mediated by mGluR4 (Valenti et al. 2003). This
finding indicates that mGluR4 may selectively modulate striatopallidal transmission
and that activation of mGluR4 may decrease the excessive inhibition of the globus
pallidus in Parkinson’s disease.

mGluR5 is located at the postsynaptic membranes of striatal SPNs, where they
allow for a fine regulation of the activity of NMDA receptors (Gubellini et al. 2004;
Rouse et al. 2000). Several preclinical reports demonstrated that enhanced mGluR5
levels in the striatum may contribute to the pathogenesis of L-DOPA-induced
dyskinesia both in the rodent and in the monkey model (Ouattara et al. 2010;
Samadi et al. 2008). Interestingly, pharmacological prevention of L-DOPA-
induced-dyskinesia is strictly correlated with a decrease of mGluR5 binding. In
addition, analysis of mGluR5 mRNA levels and specific binding after chronic
L-DOPA treatment and withdrawal confirm that fluctuating levels of mGluR5 can
contribute to the development of dyskinesia (Ouattara et al. 2010).

10.4 Current Treatments and Clinical Use of Modulators
of Glutamatergic Signaling for Parkinson’s Disease
and L-DOPA-Induced Dyskinesia

The degeneration of nigrostriatal dopaminergic neurons leading to reduction of
striatal dopamine levels is the key mechanism underlying the main motor features
of Parkinson’s disease (Poewe et al. 2017). Accordingly, the systemic administration
of the dopamine precursor levodopa (L-DOPA) represented a huge breakthrough in
the treatment of the disease. More recently, several step forwards in the understand-
ing of the pharmacological regulation of dopaminergic neurotransmission have
revealed multiple additional targets for dopaminergic therapies. Monoamine oxidase
type B (MAO-B) and catechol-O-methyltransferase (COMT) inhibitors and dopa-
mine receptor agonists are now available for clinical use, very often as add-on
treatment to L-DOPA, that remain the gold standard therapy for Parkinson disease,
and over time, almost all patients with this disease will require L-DOPA adminis-
tration. However, chronic treatment with L-DOPA is associated to the onset of motor
complications, including motor oscillations and L-DOPA-induced dyskinesia. Even
if the cellular and molecular mechanisms involved in these side effects are still not
fully understood, both presynaptic and postsynaptic mechanisms play a relevant
role. In particular, as described above, excessive glutamatergic neurotransmission
and aberrant NMDA receptor activity play a key role in the genesis of L-DOPA-
induced dyskinesia. At present, amantadine is the only evidence-based medicine
review recommended for the treatment of dyskinesia from the Movement Disorders
Society (Hubsher et al. 2012; Perez-Lloret and Rascol 2018). Amantadine is a
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non-competitive, low-affinity, NMDA receptor antagonist at the phencyclidine
binding site which has also been shown to block cholinergic muscarinic receptors,
to increase dopamine release and to inhibit its reuptake (Hubsher et al. 2012).
However, numerous studies suggest that the anti-dyskinetic effect observed with
the clinical use of amantadine is mostly related to its NMDA receptor blocking
properties (Perez-Lloret and Rascol 2018). Amantadine is a synthetic tricyclic amine
that belongs to the class of aminoadamantanes (Deleu et al. 2002), which was
originally used in the 1960s for addressing viruses and treating influenza (Hubsher
et al. 2012). From the late 1990s, clinical studies started to support its use in
Parkinson’s disease patients. An initial evaluation of the efficacy of amantadine on
dyskinesia, performed in a small placebo-controlled cross-over study in
18 Parkinson’s disease patients with motor fluctuations and dyskinesia (Verhagen
Metman et al. 1998), showed that amantadine is able to reduce the severity of
dyskinesia without modifying motor symptoms of the disease. The anti-dyskinetic
effect was still present one year after as assessed in a placebo-controlled follow-up
study in patients still receiving amantadine, thus indicating a prolonged effect of the
drug on dyskinesia (Metman et al. 1999). However, another randomized, placebo-
controlled study in 40 Parkinson’s disease patients with motor fluctuations suggested
an effect of amantadine treatment lasting for less than 8 months (Thomas et al. 2004).
Notably, withdrawal of amantadine induced a rebound with increase of dyskinesia in
11 patients. These conflicting results prompted to assess the long-term anti-dyski-
netic effect of amantadine in other randomized placebo-controlled parallel-group
studies (Ory-Magne et al. 2014; Wolf et al. 2010). In the study performed by Wolf
and colleagues, patients were treated with amantadine for at least one year and then
switched in a double-blind manner to amantadine or placebo. Ory-Magne and
colleagues switched patients to either amantadine or placebo after at least 6 months
of stable treatment with amantadine. In both trials, dyskinesia worsened significantly
in patients receiving placebo but not in those treated with amantadine. Overall, these
studies suggested long-term anti-dyskinetic effects of amantadine in Parkinson’s
disease patients with dyskinesia induced by L-DOPA and prompted the evaluation
and the clinical use of different pharmaceutical forms of amantadine (currently
available in the market): an oral immediate-release, an extended-release, and an
intravenous infusion (Perez-Lloret and Rascol 2018).

Amantadine is not the only drug used in Parkinson’s disease patients targeting the
glutamatergic synapse. Safinamide is a drug recently approved first by the European
Commission and more recently by the US Food and Drug Administration (FDA) as
an adjunctive treatment to L-DOPA in patients with mid- to late-stage Parkinson’s
disease and motor fluctuations. The pharmacological profile of safinamide includes
reversible MAO-B inhibition, blockage of voltage-operated sodium channels, and
modulation of voltage-operated calcium channels, which results in an in vivo inhi-
bition of glutamate release (Müller and Foley 2017). Accordingly, safinamide is a
drug characterized by a broad spectrum of pharmacological actions targeting both
dopaminergic and glutamatergic neurotransmission. Results from several clinical
trials suggest that safinamide represents a good option for add-on therapy to
L-DOPA in patients with advanced Parkinson’s disease with motor complications

10 Glutamatergic Treatments for Parkinson’s Disease 321



(Borgohain et al. 2014; Schapira et al. 2017). In particular, these studies have shown
that safinamide increased ON time with no or non-troublesome dyskinesia,
decreased daily OFF time, improved overall motor function and quality of life
(Borgohain et al. 2014; Schapira et al. 2017). However, there is still insufficient
evidence to recommend safinamide as monotherapy or add-on therapy in patients
with early Parkinson’s disease. Safinamide is generally well-tolerated and safe, with
few treatment-related mild adverse events.

Even if both preclinical and clinical studies suggest that safinamide does not
induce significant modifications of the severity of L-DOPA-induced dyskinesia
(Bette et al. 2018), preclinical studies demonstrated that safinamide induces a
significant rescue of the above-mentioned glutamatergic biochemical and neuro-
chemical correlates of dyskinesia (Gardoni et al. 2018; Morari et al. 2018). In
particular, co-treatment of safinamide with L-DOPA prevented the striatal
rearrangement of synaptic GluN2 subunits of the NMDA receptor and the rise in
striatal glutamate associated with dyskinesia appearance (Gardoni et al. 2018;
Morari et al. 2018).

10.5 Emerging Treatments Targeting Molecular
Components of the Glutamatergic Synapse
for Parkinson’s Disease and L-DOPA-Induced
Dyskinesia

10.5.1 Emerging Treatments Targeting NMDA Receptors

Early preclinical studies evaluated the efficacy of different types of NMDA receptor
subunit-specific antagonists in improving motor behavior in experimental models of
both Parkinson’s disease and L-DOPA-induced dyskinesia (Loschmann et al. 2004;
Nash et al. 2000; Wessell et al. 2004). The GluN2B-selective antagonists reduced
parkinsonian symptoms in both rats and non-human primates models of Parkinson’s
disease (Nash et al. 2004; Morissette et al. 2006), but other reports described
conflicting results about the efficacy of these compounds in reducing the onset of
dyskinesia in experimental models (Wessell et al. 2004; Rylander et al. 2009).
Unfortunately, a randomized, double-blind, placebo-controlled clinical trial showed
that the GluN2B-antagonist CP-101,606 reduced the severity of L-DOPA-induced
dyskinesia in patients, but it induced dose-related amnesia (Nutt et al. 2008). Only
few studies have been performed on GluN2A-selective antagonists. Treatment with
cell-permeable peptides disrupting GluN2A/PSD-MAGUKs interaction demon-
strated that a decrease in synaptic GluN2A-containing NMDA receptors induces a
significant improvement of motor behavior in parkinsonian rats (Paillé et al. 2010)
and a reduction in the onset of dyskinesia (Mellone et al. 2015).

Other authors recently focused on the role of GluN2D-containing NMDA recep-
tors mainly expressed in striatal ChIs and on the putative efficacy of newly
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developed GluN2D-selective positive allosteric modulators (Feng et al. 2014).
However, additional preclinical studies are still needed for a detailed comprehension
of the role of the GluN2D in disease pathogenesis and before a putative clinical use
of agents specifically targeting this NMDA receptor subunit.

Considering that the enrichment in specific regulatory GluN2-type subunits
regulates NMDA receptor function and pharmacological properties (Paoletti et al.
2013), another putative therapeutic strategy could aim at restoring a physiological
subunit composition synaptic content rather than acting on the receptor activity. The
use of cell-permeable peptides disrupting GluN2A interaction with scaffolding pro-
teins demonstrated that a decrease in synaptic GluN2A-containing NMDA receptor
is sufficient to improve the motor behavior in parkinsonian rats (Paille et al. 2010)
and reduces the onset and severity of established L-DOPA-induced dyskinesia in
both rat and monkey models (Gardoni et al. 2012; Mellone et al. 2015; Stanic et al.
2017). In addition to NMDA receptor association with scaffolding proteins, also the
D1-NMDA receptor heteromer has been recently considered a possible target to
counteract L-DOPA-induced dyskinesia. Intrastriatal administration of a cell-
permeable peptide disrupting D1-GluN1 binding reduced the severity of established
dyskinesia (Song et al. 2016).

Finally, the noble gas xenon is capable of working as inhibitor of NMDA
receptors (Haseneder et al. 2009), thus suggesting that also xenon could reverse
L-DOPA induced dyskinesia. A recent preclinical study shows that xenon gas
exposure normalized synaptic transmission and synaptic plasticity at corticostriatal
glutamatergic projections, ameliorated dyskinesia in rat and non-human primate
models, and improved gait performance in a non-human primate model of
Parkinson’s disease. Accordingly, these results pave the way for a future clinical
testing of this unconventional approach (Baufreton et al. 2018).

10.5.2 Emerging Treatments Targeting AMPA Receptors

The putative activity in reducing dyskinesia of selective AMPA receptor antagonists
in combination with L-DOPA therapy has been investigated in preclinical and
clinical research. A competitive AMPA receptor antagonist reduced wearing-off of
L-DOPA-induced motor responses in a rat model (Marin et al. 2001), while a
non-competitive antagonist increased the anti-parkinsonian benefits of L-DOPA in
a monkey model (Konitsiotis et al. 2000). However, clinical trials with AMPAR
antagonists such as topiramate and perampanel, two drugs commonly used in the
clinical practice for the treatment of epilepsy, have provided conflicting results
(Eggert et al. 2010; Kobylecki et al. 2011; Kobylecki et al. 2014; Lees et al.
2012). Overall, other studies are warranted to clarify the efficacy of AMPA receptor
compounds for the treatment of L-DOPA-induced dyskinesia.
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10.5.3 Emerging Treatments Targeting mGluRs

Several preclinical reports have demonstrated the efficacy of selective mGluR
modulators in the treatment of neurodegenerative disorders, including both
Parkinson’s disease (Rouse et al. 2000; Amalric 2015) and Alzheimer’s disease.

In vivo treatment with mGluR4 agonists or positive allosteric modulators (PAM)
produced beneficial effects in rodent models of Parkinson’s disease (Valenti et al.
2003; Niswender et al. 2008; Beurrier et al. 2009). In addition, chronic treatment
with mGluR4 agonist in combination with L-DOPA significantly reduced the
development of abnormal involuntary movements. However, a single injection of
the agonist was not sufficient to decrease the severity of already established dyski-
nesia (Lopez et al. 2011). Similarly, an mGlu4 receptor PAM combined with
subthreshold doses of L-DOPA acts synergistically with the latter to alleviate
akinesia and reduced the incidence but not the severity of dyskinesia (Bennouar
et al. 2013).

A more recent study found that both mGluR4 orthosteric agonist and PAM did
not alter the development of L-DOPA-induced dyskinesia and did not modify the
abnormal involuntary movement score in animals with already established dyskine-
sia (Iderberg et al. 2015). However, mGluR4 PAM but not orthosteric agonist
potentiated the motor stimulant effect of a subthreshold L-DOPA dose in specific
behavioral tests (Iderberg et al. 2015), suggesting that a pharmacological stimulation
of mGlu4 lacks intrinsic anti-dyskinetic activity, but it has a DOPA-sparing activity
in the treatment of Parkinson’s disease-associated motor symptoms. In addition,
another study showed that co-treatment with selective mGluR4 PAM in association
with a low dose of L-DOPA induces a robust dose-dependent reversal of the
akinesia. Importantly, the enhancement of L-DOPA effect is not associated with a
worsening of dyskinesia treated with the mGluR4 PAM (Le Poul et al. 2012).

Finally, the mGluR4 PAM PXT002331-foliglurax alleviated the motor symptoms
of Parkinson’s disease and the motor complications induced by L-DOPA in primates
(Charvin et al. 2018).

All the above-mentioned preclinical results clearly support the putative therapeu-
tic effect of the co-therapy with L-DOPA and an mGluR4 to maintain the benefits of
L-DOPA on Parkinson’ disease motor symptoms reducing the development of
dyskinetic behavior. A recent phase 1 randomized, double-blind, placebo-controlled
single and multiple ascending dose clinical trial has been successfully completed
showing that the PXT002331-foliglurax (https://clinicaltrials.gov/ct2/show/
NCT02639221) is safe and well-tolerated even at doses much higher than those
necessary for robust effects in animal models of Parkinson’s disease. A phase 2 trial
to evaluate PXT002331-foliglurax efficacy, safety, and tolerability in reducing L-
DOPA-induced motor complications is currently ongoing (https://clinicaltrials.gov/
ct2/show/NCT03162874).

mGluR4 forms heteromeric complexes with other mGluR subtypes, such as
mGluR2. These mGluR4/mGluR2 heteromers show distinct pharmacological pro-
files and different responses to allosteric modulators compared to mGluR4
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homomers. In particular, some mGluR4 PAMs do not potentiate glutamate activity
when mGluR2 and mGluR4 are co-expressed, whereas other compounds potentiate
mGluR4 responses regardless of mGluR2 co-expression. Interestingly, a novel
mGluR4 PAM (VU0418506) potentiates mGlu4 homomers in rodent models, but
it fails to potentiate the activity of an mGluR4 agonist at mGluR2/4 heterodimers.
These findings suggest that the anti-parkinsonian activity of mGluR4 PAMs is
mediated by mGluR4 homomeric receptors without the involvement of mGluR2/4
heteromers (Engers et al. 2016; Niswender et al. 2016).

mGluR2 has been also involved recently in Parkinson’s disease. mGluR2 regu-
lates glutamate transmission and, upon activation, reduces glutamate release (Crupi
et al. 2019). Consequently, mGlu2 stimulation could lead to a reduction of NMDA
activation, thus suggesting a possible anti-dyskinetic effect. In agreement with this
hypothesis, orthosteric activation of mGlu2/3 receptors reduces the severity of
already established L-DOPA-induced dyskinesia in both the rat and the marmoset
model (Frouni et al. 2019). In addition, a highly-selective mGluR2 PAM is effective
in alleviating established and preventing the development of L-DOPA-induced
dyskinesia in the rat model (Hamadjida et al. 2020) suggesting that mGluR2
activation may be an effective and promising therapeutic strategy to alleviate this
L-DOPA-induced motor complication.

Modulation of mGluR5 activity has been considered for a long time an attractive
pharmacological approach for the treatment of Parkinson’s disease and L-DOPA-
induced dyskinesia. mGluR5 antagonists or negative allosteric modulators (NAM)
modulate the motor behavior in experimental models of L-DOPA-induced-dyskine-
sia (Fieblinger et al. 2014; Grégoire et al. 2011; Johnston et al. 2010; Morin et al.
2010; Rylander et al. 2010). Chronic treatment with the mGluR5 antagonist MPEP
in the rodent model almost abolishes L-DOPA-induced dyskinesia (Levandis et al.
2008). Similarly, several studies confirmed the anti-dyskinetic properties of mGluR5
antagonists also in the monkey model (Grégoire et al. 2011; Johnston et al. 2010;
Morin et al. 2010; Rylander et al. 2010). More recently, the mGluR5 NAM
dipraglurant reduced both choreic and dystonic L-DOPA-induced dyskinesia in
parkinsonian monkeys without inducing any modification of the efficacy of
L-DOPA (Bezard et al. 2014). Overall these preclinical studies strongly suggested
that mGluR5 modulators could be potentially useful for the treatment of L-DOPA-
induced dyskinesia, thus supporting the evaluation of their efficacy in clinical trials.
Early clinical studies suggested that the use of the mGluR5 NAM mavoglurant in
combination with high doses of L-DOPA may be effective in treating Parkinson’s
disease patients with L-DOPA-associated motor fluctuations and dyskinesia. In
particular, phase 2 trials investigated the safety and efficacy of mavoglurant and
demonstrated the potential of this compound in reducing L-DOPA-induced-dyski-
nesia in patients (Berg et al. 2011). Concomitant administration of mavoglurant
improved off-time in patients treated with high doses of L-DOPA without worsening
their dyskinetic profile (Kumar et al. 2016). Unfortunately, this clinical study was
limited by several key issues including the limited number of enrolled patients
(n ¼ 7/group), the short treatment duration, and the conflicting clinician-rated
measures (Kumar et al. 2016). Conflicting results were obtained in two other
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phase 2 randomized, double-blind studies which tested the effects of immediate-
release (study 1) and modified-release (study 2) mavoglurant on LID. These studies
report no significant improvement of L-DOPA-induced-dyskinesia and fail to repli-
cate the previous outcome (Trenkwalder et al. 2016). In contrast, encouraging results
were obtained in a recent phase 2 double-blind, placebo-controlled, randomized
clinical trial where the NAM dipraglurant was tested in patients with moderate to
severe L-DOPA-induced-dyskinesia. Moreover, dipraglurant was well-tolerated and
induced a significant decrease of peak-dose dyskinesia on day 14 with no evidence
of worsening parkinsonism (Tison et al. 2016). However, further studies in a larger
cohort of patients are warranted to confirm the efficacy of dipraglurant in reversing
L-DOPA-induced-dyskinesia.

A recent meta-analysis of 9 clinical trials evaluating the effects of mGluR5
antagonists for the treatment of patients with L-DOPA-induced dyskinesia did not
recommend the use of mGluR5 antagonists for the routine treatment of patients right
now (Wang et al. 2018). In fact, even if they found significant difference between
mGluR5 antagonists and placebo in terms of abnormal involuntary movement score,
there were no significant improvements in terms of LFADLDS (Lang-Fahn Activ-
ities of Daily Living Dyskinesia scale) and UPDRS Part IV (Unified Parkinson’s
Disease Rating Scale—motor complications). Moreover, adverse events incidence
was higher with mGluR5 antagonists than with placebo, especially at the expense of
increased dizziness, visual hallucination, or fatigue (Wang et al. 2018).

10.6 Conclusion and Future Perspectives

Molecular and functional interactions between dopamine and glutamate regulate a
high variety of brain functions such as motor control, cognition, and memory and
many others and, when altered, they play an important role in numerous central
nervous system disorders. Several studies in the last twenty years, described in this
chapter, focused on the understanding of the mechanisms coordinating the cross-talk
between glutamate and dopamine and its relevance in Parkinson’s disease. Hope-
fully, a complete knowledge of the dysregulation between glutamate and dopamine
signaling could represent the first step for the identification and setting up of novel
therapeutical approaches for this brain disorder (see Fig. 10.1).

The pathophysiological picture emerging from all the above-mentioned studies
shows that the strength of glutamatergic signals from the cortex to the striatum is
dynamically regulated during the progression of Parkinson’s disease and following
chronic dopaminergic therapy with L-DOPA. Accordingly, the complete
characterization of the role played by the glutamatergic synapse in Parkinson’s
disease-associated motor alterations is essential for a full comprehension of disease
pathogenesis and the setting up of a novel pharmacological intervention strategy
targeting glutamate neurotransmission. The efficacy of glutamate receptors to mod-
ulate synaptic transmission in the striatum indicates that modulation of the activity of
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these receptors may represent a key target to rescue the altered neurotransmission in
Parkinson’s disease (see Fig. 10.1).

At present, two drugs targeting the glutamatergic synapse are used in the clinical
practice as add-on treatment to L-DOPA for the management of motor fluctuations
(safinamide) or to decrease the severity of dyskinesia (amantadine). As described
above, safinamide reduces glutamate release from presynaptic terminals while
amantadine mainly acts as low-affinity antagonist of NMDA receptor. Taking into
account results obtained on the molecular and functional alterations of ionotropic
and metabotropic glutamate receptors in experimental models of Parkinson’s disease
and L-DOPA-induced dyskinesia, several preclinical and clinical studies have been
performed by using different types of receptor modulators. Unfortunately, in many
cases encouraging results described in animal models have not been fully confirmed
in clinical trials, even if the role played by NMDA receptors and mGluRs in disease
pathogenesis and in dyskinesia has been clearly addressed and confirmed. However,
some disappointing results obtained in clinical trials with agents modulating
mGluRs suggest that a lot of effort is still required to understand the molecular
basis of dyskinesia and to develop effective therapeutic strategies able to halt the
motor abnormalities which affect parkinsonian patients after prolonged administra-
tion of L-DOPA.
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Chapter 11
The Modulation of Glutamatergic Signaling
as a Potential Therapeutic Strategy
for Major Depression

Patricio Molero , Enrique Aubá, María del Mar Unceta,
and Felipe Ortuño Sánchez-Pedreño

Abstract The aim of this chapter is to provide an update of the most relevant
advances in the conceptualization of the modulation of glutamatergic signaling as
a potential therapeutic strategy for Major Depressive Disorder (MDD), from animal
models to recent phase III clinical trials. The main clinical features of MDD, its
epidemiological impact in terms of disease burden, its mainstream pharmacological
treatment, and current unmet needs are presented. A brief review of the implications
of the glutamatergic system for MDD follows, together with its close relationship
with the gabaergic system. The main molecular components of the glutamatergic
system as potential drug targets for MDD are presented, namely selective NMDA
receptors (NMDAR) antagonism, AMPA receptors (AMPAR) potentiation,
metabotropic glutamate receptors 2 and 3 (mGluR2 and 3) antagonism, excitatory
amino acid transporters (EAAT) potentiation, mammalian target of the rapamycin
complex 1 (mTORC1) modulation and GABA-A receptor modulation. The current
modulators of the glutamatergic signaling for the treatment of MDD are presented:
intravenous ketamine (off-label use for MDD), intranasal esketamine (FDA
approved for TRD), and intravenous brexanolone (FDA approved for postpartum
depression). In addition, some emerging treatments related to glutamate modulating
drugs for MDD are mentioned with their rationale (R-ketamine, rapastinel,
lanicemine, and other compounds).
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Abbreviations

AEs Adverse events
AMPAR α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

receptor
BDNF Brain-derived-neurotrophic-factor
EAAT Excitatory amino acid transporters
eEF2 Eukaryotic elongation factor 2
GABA Gamma-aminobutyric acid
GABA-R GABA receptor
Glu Glutamate
HADRS Hamilton depression rating scale
HNK Hydroxynorketamine
i.v. Intravenous
MADRS Montgomery-Asberg depression rating scale
MDD Major depressive disorder
mGluR2 and 3 Group II metabotropic glutamate receptors 2 and 3
mPFC Medial PFC
mTORC1 Mammalian target of rapamycin complex 1
NMDAR N-methyl-D-aspartate (NMDA) receptor
NR2B NMDA receptor subunit 2B
PET Positron emission tomography
PFC Prefrontal cortex
R-HNK R-hydroxynorketamine
SNRI Serotonin-norepinephrine reuptake inhibitor
SSRI Selective serotonin reuptake inhibitor
TRD Treatment-resistant depression
TrKB Tropomyosin receptor kinase B

11.1 Introduction: Major Depressive Disorder

Major depressive disorder (MDD) is a persistent state (of at least 2 weeks) defined
clinically as a combination of either persistent depressed mood and/or loss of interest
(apathy) or pleasure (anhedonia), together with other symptoms such as fatigue or
loss of energy, psychomotor retardation or agitation, reduced concentration and
attention (with diminished ability to think and indecisiveness), reduced self-esteem
and self-confidence, ideas of excessive or inappropriate guilt and worthlessness,
hopelessness, disturbed sleep (insomnia or hypersomnia), reduced appetite with
weight loss (or increased appetite). It may be associated with suicidal thoughts
(ranging from recurrent thoughts of death to suicide ideation with a plan or suicide
attempt in severe forms) or with delusional ideas in severe forms. These clinical
features cause a significant impairment of the global functioning (in the
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socio-familiar and occupational spheres) and important distress and suffering for the
person presenting them and their relatives and significant others (World Health
Organization 2004; American Psychiatric Association 2013).

From the epidemiological point of view, MDD is highly prevalent in western
society, and this translates into a serious public health problem of growing concern:
it was the fourth leading cause for the burden of disease already in 1990 (Murray and
Lopez 1997), remains as one of the most important causes of Years Lived with
Disability (GBD 2016 Disease and Injury Incidence and Prevalence Collaborators
et al. 2017) and furthermore it is expected to be the leading cause of disease burden
by 2030 (Lépine and Briley 2011).

The treatment of MDD consists of a combination of psychotherapy (usually for
mild and moderate forms) and psychopharmacological treatment (indicated in mod-
erate and severe forms). Another therapeutic modality is based on neurostimulation
treatments, mainly electroconvulsive therapy (which requires general anesthesia and
is reserved for severe or refractory forms or in situations which require a fast
response or when a proper psychopharmacological treatment is not possible, due
to comorbidities or other situations such as pregnancy).

Pharmacological treatment is essential in the therapeutics of MDD and during the
last 60 years, the mainstream pharmacodynamic strategy for the majority of antide-
pressant drugs has been the modulation of monoamine neurotransmission systems,
namely acting on the selective transporters of serotonin (SERT), noradrenaline
(NET) and dopamine (DAT) to block reuptake, and on monoamine oxidase enzyme
to inhibit monoamine catabolism. Although these drugs originate immediate neuro-
biological, post-receptorial effects (e.g., upon neuronal metabolism and genetic
expression processes), the clinical therapeutic effect typically appears after
3–6 weeks of the initiation of treatment. This period can be problematic when a
fast response is needed (as in cases of suicide risk or delusional depressive ideation).
Also, the global effectiveness of this scheme is not optimal, with estimations of a
global remission rate in the order of 30% after 12 weeks of treatment and in the order
of 70% after four sequential treatments (Rush et al. 2006).

Although there is not a consensus for the definition of treatment-resistant depres-
sion, a proposed definition is the failure to achieve remission with two or more
adequate antidepressant trials, and there are several staging models for a progres-
sively increased resistance, from one to several antidepressant drugs, of the same or
different class, or inclusion of electroconvulsive therapy (McIntyre et al. 2014). The
prevalence of TRD has been estimated in 12-month prevalence rates of about 3% for
Stage 1 TRD (failure to respond to 1 adequate trial of an antidepressant) and about
2% for Stage 2 TRD (failure to respond to 2 adequate trials) (Nemeroff 2007).

With these figures, it becomes clear that the improvement of both the long latency
of the therapeutic clinical response to available antidepressants and the low remis-
sion rates are important unmet needs in the treatment of MDD.
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11.2 The Glutamatergic System in Mood Disorders

Glutamate (Glu) is the main excitatory neurotransmitter in the mammalian brain
(Orrego and Villanueva 1993) and is involved in the regulation of emotional and
cognitive processes: it has a prominent role in synaptic plasticity, learning and
memory, but in pathological conditions it is a potent neuronal excitotoxin, triggering
either fast or delayed neurotoxicity (Sanacora et al. 2008). Excessive exposure to
Glu or a hyperstimulation of Glu receptors causes a detrimental process called
excitotoxicity, which causes neuronal death or dysfunction. Gamma-aminobutyric
acid (GABA) is the major inhibitory neurotransmitter in the mammal brain, and both
systems are reciprocally regulated to maintain a balance of excitation/inhibition
(Schoepp 2001). Cortical activity is the result of a balance between excitation and
inhibition, and the activity of both systems is closely related: Glu is the metabolic
precursor of GABA, which can be recycled through the tricarboxylic acid cycle to
synthesize glutamate (Petroff 2002).

Glutamate is synthesized from glucose or through the glutamate/glutamine cycle,
is present in a dense network of both neurons and glial cells (astrocytes) (Erecińska
and Silver 1990) and is transported into synaptic vesicles where it is stored until its
release to the synaptic cleft by exocytosis (Sanacora et al. 2008). After release, Glu
binds to glutamate receptors throughout the brain. Clearance of glutamate from the
extracellular space through the excitatory amino acid transporters 1 to 5 (EAAT1-5)
is essential to avoid excitotoxicity, given the lack of Glu catabolic enzymes in the
synapse. This precisely is one of the most important functions of astrocytes that
express EAAT1 and EAAT2 (EAAT3-5 are exclusively neuronal) (Murphy-Royal
et al. 2017).

There are two main types of glutamate receptors: ionotropic (ligand-gated ion
channels: AMPA receptors and Kainate receptors, that mediate the initial response to
Glu by allowing inward flow of Na+, and NMDA receptors (NMDAR), blocked by
Mg+ at rest) and metabotropic (group I, acting through PLCβ and activation of IP3
and DAG -mGluR1a-d and mGlu5a-b-, and groups II -mGluR2 and 3- and III
-mGluR4 and mGluR6-8- acting through negative coupling to adenylyl cyclase)
(Sanacora et al. 2008).

As mentioned above, moderate levels of NMDAR activation promote
neuroprotective signaling pathways, including activation of the RAS–mitogen-acti-
vated protein kinase (RAS–MAPK) pathway and cyclic AMP-responsive element-
binding protein (CREB)-mediated expression of brain-derived neurotrophic factor
(BDNF), with a key role in neuroprotective and neurotrophic processes that are
relevant to stress and mood disorders (Murrough et al. 2017). However,
overactivation of NMDAR leads to excitotoxicity that contributes to the pathogen-
esis of neurodegenerative diseases (Dong et al. 2009) including Parkinson’s disease
(Kaur et al. 2019), Alzheimer’s disease (Wang and Reddy 2017), and Huntington
disease (Fan and Raymond 2007).

An abnormal glutamatergic activity has been proposed as a contributing factor to
the impairments in synaptic and neural plasticity of severe or recurrent mood
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disorders (Sanacora et al. 2008). In a comprehensive review of this matter, Sanacora
and colleagues from Yale University and NIMH-NIH (USA) articulate the evidence
on glutamate neurotransmission and mood disorders in these important domains:
(1) changes in glutamate levels of plasma, serum, cerebrospinal fluid, and brain
tissue; (2) Glutamate receptor alterations, including differences related to NMDAR
expression and binding affinities between individuals with and without mood dis-
orders, and genetic polymorphisms of the GRIN1 gene coding for the NR1 subunit
and the GRIN2B gene coding for NR2B; (3) Evidence of glial-cell pathology,
namely reduced numbers of oligodendrocytes and reduced expression of excitatory
amino acid transporters (EAATs), which clear glutamate from the synaptic cleft.

Another aspect of the possible implication of the glutamatergic system in MDD is
related with the relationship between chronic stress, chronic depressive symptoms
and neuronal atrophy in the prefrontal cortex (PFC) and hippocampus, which may be
mediated by the glutamatergic activity in a model extensively reviewed by
Murrough et al. (Murrough et al. 2017): acute stress increases glutamate release,
and chronic stress induces a reduction in synaptic AMPAR and NMDAR availability
in the cortex and maladaptive changes within glutamate synapses, including reduced
extracellular glutamate clearance by glia and the increased activation of
extrasynaptic NR2B-containing NMDARs, potentially contributing to synaptic
loss and the activation of cellular apoptotic pathways, all this resulting in a decrease
in synaptic functioning and contributing to features of MDD as changes in glutamate
levels, reductions in brain volume and altered function and connectivity within brain
networks that are crucial for mood regulation.

In order to understand the relevance of the glutamatergic system in MD, it is
important to conceptualize it in the functional context of the known neurobiological
underpinnings of depression, especially regarding the monoaminergic system and
the Glutamate-GABA balance.

There is evidence supporting an important relationship between the glutamatergic
and the serotonergic systems regarding the antidepressant effect (a review of this
matter can be found in Chaki and Fukumoto (2019). mGluR2 and 3 antagonism exert
antidepressant effects in rodent models similar to those of ketamine, with shared
synaptic response and neural mechanisms and, interestingly, an implication of the
serotonergic system (Chaki and Fukumoto 2019): both ketamine and mGluR2 and
3 receptor antagonists increase the 5-HT extracellular levels in the rat medial
prefrontal cortex (mPFC) through activation of the AMPA receptor (which leads
to an increase in activity of 5-HT neurons in the dorsal raphe nucleus (DRN),
presumably via the mPFC-DRN projection), and the antidepressant actions of
ketamine in the Forced Swim Test (FST) are blocked under pharmacological
depletion of 5-HT in the brain with pretreatment with para-chlorophenylalanine
(PCPA), an irreversible inhibitor of tryptophan hydroxylase (Gigliucci et al. 2013).
These data suggest that the AMPA receptor-dependent 5-HT release in the mPFC
may be closely involved in the antidepressant effects of the mGlu2/3 receptor
antagonist and ketamine (Chaki and Fukumoto 2019).

Precisely the evidence of the anatomical connection and reciprocal regulation
between prefrontal cortex (PFC) and dorsal raphe (DR)—of GABA interneurons and
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glutamatergic pyramidal neurons of PFC (by serotoninergic projections from DR)
and DR serotoninergic neurons (by PFC pyramidal neurons) (Warden et al. 2012)—
has allowed a hypothesis of monoamine (5-HT)–Glutamate/GABA long neural
circuit proposed by Yun-Fen Li from the Beijing Institute of Pharmacology and
Toxicology (Li 2020). According to this model, the serotoninergic activity of DR is
regulated by long projection from pyramidal neurons of PFC (through AMPA
receptors) and by nearby GABA interneurons (through regulation of GABA-A
receptor); and in PFC, the excitatory/Inhibitory balance of glutamatergic pyramidal
neurons and GABA interneurons, respectively, is regulated by long-projections of
serotoninergic neurons from DR (via 5-HT receptor such as 5-HT1AR). In this
model, the excitatory/Inhibitory (Glu/GABA) rebalance is the rate-limiting step for
the onset speed of antidepressant, and rapid activation of this circuit would allow the
PFC to rapidly reach the E/I balance, and rapidly enhance synaptic plasticity by
BDNF-mTOR pathway (Li 2020).

11.3 Molecular Components of the Glutamate
Neurotransmitter System as Potential Drug Targets
for MDD

11.3.1 Selective NMDAR Antagonism

The evidence of the clinical effects of a single subanesthetic dose of ketamine, a
NMDAR antagonist, since the seminal trial of Berman and colleagues from Yale
University in the year 2000 (Berman et al. 2000) (namely, a rapid, sustained though
transient—from 72 h to 1 week—and a short psychotomimetic and cardiovascular
effects immediately postdose) has led to the investigation of the precise nature of
NMDAR antagonism (in terms of anatomical connection and intensity) that yields an
antidepressant mechanism, given that other NMDAR antagonists do not produce
antidepressant effects.

The functional antagonism of NMDAR of the GABA inhibitory neurons has been
postulated as the mechanism underlying the dissociative effects of ketamine
(Homayoun and Moghaddam 2007). Ketamine antagonism of NMDAR deactivates
eukaryotic elongation factor 2 (eEF2) kinase (reduced eEF2 phosphorylation) lead-
ing to de-suppression of translation of BDNF (Autry et al. 2011). It has been
postulated that the antidepressant effect is mediated by the antagonism of
extrasynaptic NMDAR subtype expressing the NMDA receptor subunit 2B
(NR2B) (Lang et al. 2017), de-suppressing protein synthesis and inducing antide-
pressant actions via an mTOR-dependent mechanism (Zanos and Gould 2018). A
long-lasting activation of BDNF–TrkB cascade in the PFC and hippocampus might
be implicated in the long-lasting antidepressant effects of ketamine and its enantio-
mers (Hashimoto 2019).
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The evidence from mice models of depression suggests that the antidepressant
effect of ketamine might not necessarily be dependent upon NMDAR antagonism.
Indeed, Zanos et al. demonstrated that: (1) the ketamine metabolite
R-hydroxynorketamine (R-HNK) exerts behavioral, electroencephalographic, elec-
trophysiological, and cellular antidepressant actions that are independent of
NMDAR inhibition, but involve activation of AMPARs; and (2) R-HNK lacks
ketamine related side effect (Zanos et al. 2016). However, this evidence needs to
be replicated and translated to clinical research. On the other hand, interestingly, a
significant association has been found between increased dissociative symptoms
(ketamine’s side effects) at 40 min postdose and percent improvement with ketamine
in depressive symptoms in the Hamilton Depression Rating Scale (HDRS) at
230 min and Day 7, which raises the hypothesis of whether the dissociative side
effects of ketamine mediate its antidepressant effects (Luckenbaugh et al. 2014).

The glycine site of NMDARs is a promising target for antidepressant and
procognitive effects, and indeed six glycine site modulators with procognitive and
antidepressant properties have been identified (D-serine (co-agonist), D-cycloserine
(partial agonist), D-alanine (co-agonist), glycine (agonist), sarcosine (co-agonist),
and rapastinel (partial agonist) (Peyrovian et al. 2019).

A very intriguing, recent set of findings raises the question of a possible antide-
pressant effect of circulating autoantibodies (IgM, IgA, and IgG) against NMDAR
subunit NR1, that are endogenously synthesized in some pathological conditions and
stress (Pan et al. 2021). If confirmed in translational experimentation, this may
represent a novel opportunity to apply the principles of immunotherapy to major
depression.

11.3.2 AMPA Receptors Potentiation

It has been hypothesized that the rapid antidepressant effect of NMDAR antagonism
might require AMPA receptors activation, given that pretreatment with an AMPAR
antagonist attenuates the ketamine-induced antidepressant-like behavior in mice
(Maeng et al. 2008). It has been proposed that ketamine has a unique ability to
increase the AMPA–NMDA receptor throughput by directly blocking NMDA
receptors and indirectly enhancing AMPAR density and/or function, which in turn
activates downstream synaptogenic signaling pathways (e.g., BDNF, mTOR)
(Aleksandrova et al. 2017).

11.3.3 mGluR2 and 3 Antagonism

These metabotropic receptors are highly expressed in regions associated with cog-
nition and emotion (cortical and limbic areas). mGluR2 knockout mice show
antidepressant-like behavior in the forced-swim test and an enhanced rewarding

11 The Modulation of Glutamatergic Signaling as a Potential Therapeutic. . . 343



responsiveness to cocaine (with increased release of DA and Glu in Nucleus
Accumbens (NAc) (Morishima et al. 2005). mGlu2/3-R antagonism exerts antide-
pressant effects in rodent models similar to those of ketamine, with shared synaptic
response and neural mechanisms, which implies the serotonergic system (Chaki and
Fukumoto 2019). Indeed, serotonergic transmission plays critical roles in the anti-
depressant effects of both mGluR2/3 receptor antagonists and ketamine, that has
been proposed to be mediated by 5-HT1A in the medial PFC (Chaki and Fukumoto
2019).

11.3.4 EAAT Potentiation

A potential mechanism of neuroprotection from excitotoxicity is to enhance gluta-
mate reuptake, and this mechanism may be relevant for novel glutamatergic modu-
lators with antidepressant activity. Indeed, decreased expression of EAATs has been
observed in postmortem studies of subjects with mood disorders, whereas an
increased expression (e.g., as induced by ß-lactam antibiotics) may induce
antidepressant-like effects (Zarate et al. 2010). A potentiation of EEAT activity
has been suggested as a potential antidepressant mechanism (Lapidus et al. 2013).
Moreover, Colton and colleagues from the Ohio State University have identified a
series of compounds that can induce translation of EAAT2 transcripts (Colton et al.
2010), and this may represent the first step for the preclinical investigation of this
mechanism.

11.3.5 Mammalian Target of the Rapamycin Complex
1 (mTORC1) Modulation

Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation
control and long-lasting synaptic plasticity, and consists of two multi-protein sig-
naling complexes, mTORC1 and mTORC2 (Hoeffer and Klann 2010). Li et al. from
Yale University demonstrated that ketamine produces a fast activation of the mTOR
pathway, leading to increased synaptic signaling proteins and increased number and
function of new spine synapses in the prefrontal cortex of rats, and that blockade of
mTOR signaling blocks both ketamine’s antidepressant effects and induced
synaptogenesis (Li et al. 2010). In agreement with the glutamate/GABA regulation
hypothesis described above (Li 2020), there is evidence of the requirement of
GABA-B receptors signaling for the mTORC1-dependent protein synthesis under-
lying rapid antidepressant effect (Workman et al. 2013). However, the role of
mTORC1 as a mediator of antidepressant effects is not clear given that in a clinical
trial in TRD, the mTORC1 inhibitor rapamycin not only did not suppress the
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antidepressant activity of ketamine but it tripled its antidepressant effect (Abdallah
et al. 2018).

11.3.6 GABA-A Receptor Modulation

Positive and negative allosteric modulators of a GABA-A receptor expressed pref-
erentially on the hippocampus (α5-GABA-A receptor) have shown sustained
antidepressant-like effects in rodents in the absence of abuse-like properties, resto-
ration of synaptic function and behavioral deficits provoked by chronic stress and
anxiolytic-like effects, putatively via an increased signal-to-noise ratio of hippocam-
pal transmission (decreasing the tonic hippocampal activity without dramatically
altering phasic activation of pyramidal neurons) (Carreno et al. 2020). This mech-
anism may represent another opportunity for novel glutamatergic modulators with
antidepressant activity.

11.4 Current Modulators of the Glutamatergic Signaling
for the Treatment of MDD

11.4.1 Ketamine and Esketamine

Beyond unspecific NMDARs antagonism, proposed mechanisms of ketamine’s
antidepressant action have been reviewed extensively by Panos Zanos and Todd
D. Gould from the University of Maryland School of Medicine (Zanos and Gould
2018). In their review, this complex mechanism of action is based on several
domains, including: (1) GluN2B-selective extrasynaptic NMDAR inhibition and
inhibition of NMDARs of GABAergic interneurons (disinhibition hypothesis, lead-
ing to pyramidal cell disinhibition and an enhancement of excitatory glutamatergic
neurotransmission in the medial prefrontal cortex) and (2) inhibition of NMDAR-
dependent burst firing of lateral habenula neurons (with supporting preliminary
evidence from a PET study (Carlson et al. 2013)); together with downstream effects
upon synaptic plasticity, namely: (3) α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptors (AMPARs) activation; (4) phosphorylation (activation) of
tropomyosin receptor kinase B (TrKB) and increased expression of brain-derived
neurotrophic factor (BDNF); (5) inhibition of the phosphorylation of the eukaryotic
elongation factor 2 (eEF2) kinase; and (6) activation of the mammalian target of
rapamycin (mTOR) signaling. There is also evidence from mice models of depres-
sion of the contribution of the ketamine metabolite R-hydroxynorketamine (R-HNK)
through mechanisms independent from NMDAR antagonism (Zanos et al. 2016).

In 2000, Berman et al. demonstrated, in the first randomized, double-blinded
clinical study specifically designed to determine the antidepressant effects of
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ketamine, that a single dose of intravenous (i.v.) ketamine 0.5 mg/kg monotherapy
yielded a significantly greater reduction in depressive symptoms (as measured with
the Hamilton Depression Rating Scale [HDRS]) than saline treatment after 72 h, in
seven patients with MDD (Berman et al. 2000). This finding inspired a series of
Single-Dose, Proof-of-Concept Studies with ketamine in the following years that
globally assessed responses to a single dose of intravenous ketamine in over
150 patients with treatment-resistant depression (TDR) with multiple treatment
failures, including electroconvulsive therapy (ECT), with evidence of a very fast
improvement in depressive symptoms (within hours), with a response rate over 60%
in the first 4.5 and 24 h, and over 40% after 7 days, with a big effect size in
comparison with placebo (Cohen’s d 1.3–1.7) or active placebo (midazolam,
d ¼ 0.8) (a review of the clinical efficacy can be found in Molero et al. (2018)).
These figures contrast with the average effect size of monoaminergic antidepressants
(Cohen’s d 0.53–0.81) (Fournier et al. 2010) and their response latency (about
4–7 weeks) (Rush et al. 2006). After negative results of trials aimed to augment or
prolong this antidepressant effect of ketamine with a different known glutamatergic
modulator approved for clinical practice (riluzole) (Mathew et al. 2010; Ibrahim
et al. 2012), another wave of clinical trials of repeated doses of i.v. ketamine
monotherapy 0.5 mg/kg was conducted. Overall, these trials provided evidence
that repeated doses (two to three doses per week) maintain the response over several
weeks (18 (Murrough et al. 2013) to 28 (Shiroma et al. 2014) days), with an optimal
dose frequency of twice-weekly regimen (rather than a thrice-weekly regimen)
(Singh et al. 2016b).

In addition to the antidepressant effect, i.v. ketamine (0.5 mg/kg over 40 min) has
been associated with a reduction in suicidality 24 h after a single dose (monotherapy)
in patients with TRD, and this effect can be sustained for 12 days with repeated doses
(Price et al. 2009). There is evidence suggesting that this antisuicidal effect is
partially independent of the antidepressant effect (Grunebaum et al. 2018) and
may be mediated by a reduction of nocturnal wakefulness (Vande Voort et al. 2016).

The S-enantiomer of racemic ketamine (esketamine) has higher affinity for the
NMDARs than the R-enantiomer and exhibits a two to four times more potent
antagonism (Oye et al. 1992; Zeilhofer et al. 1992; Moaddel et al. 2013). An optimal
risk/benefit ratio of intravenous esketamine for TRD was found for a low dose
(0.20 mg/kg over 40 min) with similar response rates than intravenous ketamine
(over 60%) and better tolerability profile (Singh et al. 2016a). The advantages of the
intranasal route regarding safety (compared with intravenous route) and bioavail-
ability (compared with oral route) led to pilot trials with intranasal esketamine for
MDD and TRD, with efficacy results comparable to intravenous ketamine 0,5 mg/kg
(Lapidus et al. 2014; Daly et al. 2017).

Two recent phase 3, double-blind, active-controlled, multicenter randomized
clinical trials have supported the efficacy and safety of esketamine nasal spray as a
rapidly acting antidepressant for patients with treatment-resistant depression, as an
add-on treatment combined with an oral conventional antidepressant (serotonin-
norepinephrine reuptake inhibitor—SNRI—or selective serotonin reuptake inhibi-
tor—SSRI) (Daly et al. 2017; Popova et al. 2019). In the first one, 197 patients
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completed a 28-day intensive, induction treatment phase (56 or 84 mg of intranasal
esketamine twice weekly during 4 weeks), yielding significantly greater improve-
ment in the Montgomery-Asberg Depression Rating Scale (MADRS) score with
esketamine plus antidepressant than with antidepressant plus placebo at day 28, with
clinically meaningful improvement observed in the esketamine plus antidepressant
arm at earlier time points also (days 2 (24 h), 8 and 22 after first dose of esketamine)
(Popova et al. 2019). The response and remission rates in the esketamine arm in this
study were 69,3% (with an NNT of 6) and 52,5% (with an NNT of 5), respectively.
In order to estimate the clinical relevance of these figures, these response and
remission rates were higher than those reported in the STAR*D trial for step
3 (16.8% and 13.7%, respectively) (Rush et al. 2006), and the only medication
approved for the treatment of TRD at that time (olanzapine plus fluoxetine) has an
NNT of 8 and 13, respectively (Citrome 2010).

The second one was designed to assess the efficacy of esketamine nasal spray in
delaying relapse of depressive symptoms. This study demonstrated that in patients
with TRD who experienced stable remission or response (176 and 121 patients,
respectively) after 16 weeks of initial esketamine treatment, continuation of
esketamine during a period of up to 88 weeks (either once weekly or every
2 weeks depending on an algorithm based on MADRS score) in addition to oral
antidepressant treatment resulted in clinically meaningful superiority in delaying
relapse compared with antidepressant plus placebo (Daly et al. 2017). Compared
with antidepressant plus placebo treatment, esketamine plus antidepressant treatment
decreased the risk of relapse by 51% among patients who achieved stable remission
and 70% among those who achieved stable response.

Tolerability of i.v. ketamine (0.5 mg/kg over 40 min) seems acceptable in the
short term, with postdose transient hemodynamic changes in about 30% of patients
(increases in pulse and mean blood pressure, with a mean systolic increase of
19.6 � 12.8 mmHg and a mean diastolic increase of 13.4 � 9.8 mmHg) and a
profile of common, reversible non-vital-risk-associated effects (drowsiness, dizzi-
ness, poor coordination, blurred vision, dissociative and psychotomimetic effects
like feeling strange or unreal), peaking 40 min postdose, prolonging during the first
2 h postdose and generally resolving by 4–24 h (Wan et al. 2015).

As expected, intranasal esketamine offers an improved tolerability profile. The
five most common frequent adverse events (AEs) in the intensive, induction phase
were dissociation, nausea, vertigo, dysgeusia, and dizziness. These AE generally
appeared shortly after dosing and resolved by 1.5 h after dosing. Also, transient
blood pressure increases occurred after each dose of esketamine; the maximum value
was reached at 40 min after dosing in most cases (mean maximum increases of
11.6 mmHg systolic, and 8.1 mmHg diastolic) and typically returned to or near the
predose range by 1.5–2 h after dosing (Popova et al. 2019). In the maintenance
phase, the five most common frequent AEs were dysgeusia, vertigo, dissociation,
somnolence, and dizziness. Most AEs were mild to moderate, observed after dosing,
and generally resolved in the same day. Importantly, no cases of respiratory depres-
sion or interstitial cystitis were observed (Daly et al. 2017). In an evaluation of the
cardiovascular safety of esketamine nasal spray, combined with an oral
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antidepressant, including 1708 esketamine-treated adults with TRD in six trials, of
4–52 weeks’ duration, blood pressure elevations following esketamine dosing were
not associated with clinically relevant changes of ECG parameters, are generally
transient, asymptomatic, and not associated with serious cardiovascular safety
sequelae (Doherty et al. 2020).

All in all, this evidence suggests that esketamine nasal spray (either 56 or 84 mg)
plus a newly initiated oral antidepressant (SSRI or NSRI) demonstrated: (1) a
clinically meaningful and statistically significant improvement in depressive symp-
toms compared to treatment with a newly initiated oral antidepressant treatment plus
placebo nasal spray (as assessed by change in MADRS total score after 28 days in
adult patients with TRD and in terms of time to relapse after 16 weeks of treatment);
(2) a positive benefit-risk assessment of esketamine nasal spray as a novel treatment
for patients with TRD. However, the generalizability of the study findings may be
limited by the exclusion of participants with significant psychiatric or medical
comorbidities or substance dependence.

Ketamine use for MDD remains an off-label indication. The American Psychiat-
ric Association (APA) Council of Research Task Force on Novel Biomarkers and
Treatments has published a consensus statement on this use with useful and detailed
recommendations on key aspects such as patient selection, clinician experience and
training, treatment setting, medication delivery, and follow-up and assessments
(Sanacora et al. 2017a).

On March 5, 2019, the FDA approved the first ketamine product (esketamine,
nasal spray) for treatment-resistant depression (indicated in conjunction with an oral
antidepressant—not as monotherapy—for the treatment of TRD in adults) (FDA
2019a). Major concerns remain in terms of establishing an effective protocol to
maintain the clinical antidepressant effect of ketamine/esketamine seen with acute
administration while managing long-term safety, specifically regarding the potential
for neurocognitive and urologic toxicity and the induction of substance use disorders
(Molero et al. 2018). Thus, evidence from common clinical practice still needed to
establish conclusions that are more definite.

11.4.2 Brexanolone

An exogenous analog of allopregnanolone, it acts as a positive allosteric modulator
at the GABA-A receptor (Schumacher et al. 2014), and therefore may modulate the
glutamatergic system to reestablish the Excitatory/Inhibitory (E/I) (Glu/GABA)
balance in MDD to achieve a fast antidepressant response according to the afore-
mentioned Li’s model (Li 2020). Allopregnanolone levels raise progressively during
pregnancy and rapidly fall in the postpartum period, which may participate in the
genesis of postpartum depression (Nappi et al. 2001). A single i.v. administration of
brexanolone during 60 h has demonstrated an antidepressant effect in women with
severe postpartum depression in the 24 h timepoint, maintained during 30 days
(Kanes et al. 2017). Brexanolone is the first Food and Drug Administration
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(FDA)-approved treatment for moderate to severe postpartum depression in adults
(FDA 2019b). The authorized administration consists of a slow, 60 h intravenous
drip under continuous monitorization of a healthcare professional, and most com-
mon side effects are sedation/somnolence/dizziness, dry mouth, loss of conscious-
ness, and flushing/hot flush (FDA 2019c).

11.5 Emerging Treatments Related to Glutamate
Modulating Drugs for MDD

The discovery of the antidepressant efficacy of ketamine and its clinical develop-
ment has inspired significant research efforts focused on the search of new molecules
with a pharmacodynamics based on the modulation of the glutamatergic system,
aiming for a fast antidepressant effect without the adverse reactions and inherent
disadvantages of ketamine.

11.5.1 R-Ketamine

In 2014, Hashimoto and colleagues from Chiba University (Japan) demonstrated that
(R)-ketamine produced longer-lasting antidepressant actions than (S)-ketamine in
mice after neonatal dexamethasone exposure (Zhang et al. 2014), apparently without
psychotomimetic side effects and abuse liability (Yang et al. 2015). The tolerability
of R-Ketamine may be better than S-Ketamine according to limited human preclin-
ical research. An investigation of the differential psychopathology and patterns of
cerebral glucose metabolization caused by (S)- and (R)-ketamine in healthy volun-
teers using positron emission tomography (PET), with an i.v. infusion of a
subanesthetic dose of both isomers (0.014–0.02 mg/kg/min over 53 min), yielded
that equimolar doses of (R)-ketamine—in contrast to (S)-ketamine—did not produce
psychotomimetic symptoms, but a state of relaxation and a feeling of well-being.
Some of the subjects described their (R)-ketamine experience as a state of facilitated
introspection comparable to a meditative state. (S)-ketamine-induced metabolic
hyperfrontality as well as the metabolic changes in the left temporomedial and lateral
cortex, basal ganglia, and occipital cortex. By contrast, (R)-ketamine produced
opposite effects on cerebral metabolic rates of glucose (Vollenweider et al. 1997).
A clinical trial of (R)-ketamine in depressed patients is currently ongoing (Hashi-
moto 2019).
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11.5.2 Rapastinel

Rapastinel (previously GLYX-13) is an amidated tetrapeptide, generated from an
amino acid sequence obtained from a hypervariable region of the light chain of a
monoclonal antibody with NMDAR-modulating properties, which acts as a partial
agonist at the glycine site of the NMDAR (Zhang et al. 2008). This positive allosteric
modulation of NMDA receptors produces convergent effects with ketamine, includ-
ing increased synaptic function and reverses the deficits caused by chronic stress
exposure through effects on BDNF and mTORC1, which may translate into rapid
and sustained antidepressant actions (Kato and Duman 2020). Indeed, at least nine
clinical trials have been initiated of Rapastinel for MDD, with evidence of rapid
antidepressant effects and beneficial effects on cognition and suicidality, without
psychotomimetic side effects (Ragguett et al. 2019). Rapastinel has potential to
produce procognitive effects, especially for age-associated cognitive impairment
(Kato and Duman 2020). The results of a proof-of-concept, double-blind, random-
ized, placebo-controlled study in 116 subjects with MDD with at least one treatment
failure found that a single dose of rapastinel 5 or 10 mg/kg IV reduced depressive
symptoms as assessed by the Ham-D17 at days 1 through 7, with onset of action
within 2 h, without psychotomimetic or other significant side effects (Preskorn et al.
2015). However, in three acute pivotal studies of rapastinel as an adjunctive treat-
ment of MDD (RAP-MD-01,-02,-03), the rapastinel treatment arms did not differ-
entiate from placebo on the primary and key secondary endpoints, though it was well
tolerated, without psychotomimetic side effects (Allergan 2019). Furthermore, an
interim analysis of the rapastinel relapse prevention study (RAP-MD-04) suggested
the primary and key secondary endpoints were not met (Allergan 2019). Despite
these negative clinical trials, it remains possible that rapastinel could prove effective
as an alternative rapid agent with reduced side effects (Kato and Duman 2020).

11.5.3 Lanicemine

A low-trapping NMDA channel blocker, it was developed firstly as an iv adjunctive
treatment for TRD with inconclusive results: in a 3-week, placebo-controlled phase
IIB study of 152 randomized patients with moderate-to-severe MDD, repeated
administration of lanicemine (100 or 150mg per infusion) at 3-day intervals pro-
vided sustained antidepressant efficacy, without psychotomimetic effects (Sanacora
et al. 2014), but a subsequent phase IIB study did not find significant differences in
302 randomized patients between lanicemine and placebo on any outcome measures
related to MDD (Sanacora et al. 2017b). Lanicemine will be investigated as the
active metabolite of BHV-5000 as oral treatment for TRD (Wilkinson and Sanacora
2019).
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11.5.4 Other Compounds

Other mechanisms that have been or are being investigated as therapeutic targets for
MD, without robust conclusive results so far, are (Wilkinson and Sanacora 2019):
(1) a weaker antagonism of NMDAR (than ketamine) using dextromethorphan, in
combination with an inhibitor of CYP2D6 to increase the bioavailability, namely
quinidine or bupropion; (2) selective NR2B subunit NMDAR antagonism—

Traxoprodil, EVT-101, Rislenemdaz; (3) different degrees of inhibition of
NMDAR activity through glycine site partial agonism—Apimostinel,
D-cycloserine; (4) selective antagonism at the glycine-binding site of the NMDAR
NR1 subunit—AV-101; and (5) positive allosteric modulation of the AMPAR—
tulrampator.

11.6 Conclusion and Future Perspectives

More than 60 years ago, the putative side effects of a new drug for tuberculosis
(iproniazid), namely euphoria, psychoestimulation, increased appetite and sleep,
were the rationale for a clinical study of that drug in patients with depression by
Loomer, Saunders, and Kline in 1957 with good results (LOOMER et al. 1957),
leading to the first (off-label) pharmacological treatment for depression, igniting the
clinical research of a new class of treatments for depression (monoamine oxidase
inhibitors and tricyclic antidepressants) and inspiring the monoamine hypothesis of
depression (Hillhouse and Porter 2015).

Similarly, preliminary studies suggesting a possible antidepressant activity of a
NMDAR antagonist was the rationale of the seminal work by Berman et al. in 2000
(Berman et al. 2000), as the first randomized, double-blinded clinical study specif-
ically designed to determine the antidepressant effects of the ketamine, until then
only used as an anesthetic. This has ignited intense efforts especially in the last
10 years for the clinical development of new glutamatergic and gabaergic modula-
tors for the treatment of MDD, and basic and clinical research focused on the role of
the glutamate and GABA systems in depression, with the result of the FDA
approvals, in March 2019, of the first ketamine product (esketamine, nasal spray)
for treatment-resistant depression and brexanolone as the first approved treatment for
postpartum depression (FDA 2019a, b).

There are still many unresolved issues and limitations of the current evidence of
the use of glutamatergic modulators for the treatment of MDD. Both the pharmaco-
dynamics and the neurobiological underpinnings of the antidepressant effects of
ketamine, esketamine, and other glutamatergic modulators remain largely unknown.
Regarding pharmacokinetics, the glutamatergic modulators represent a new para-
digm in comparison with the concept of traditional antidepressants administered
daily to achieve almost constant blood levels: ketamine has a half-life of 2–4 h and
apparently exerts neurobiological effects hours after, so the optimal pharmacokinetic
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patterns and dosing schedule require further study (Wilkinson and Sanacora 2019).
Also, more appropriate outcome measures to assess the efficacy of clinical trials with
new glutamatergic rapid-acting antidepressants are required, given that current
scales for depression—mainly HDRS and MADRS—are designed to capture change
in symptoms over weeks or months and not hours or days (Wilkinson and Sanacora
2019). Worthy of note are the major safety concerns regarding the use of
glutamatergic modulators as antidepressants (Molero et al. 2018): the potential for
neurotoxicity associated with long-term use of ketamine, leading to possible
neurocognitive impairment, also for nasal injuries or olfactory dysfunction associ-
ated with ketamine or esketamine intranasal route, and regarding potential physical
side effects such as ulcerative cystitis and possible increased risk of bladder cancer.
Further studies are needed to assess the tolerability profile of repeated doses of
ketamine or esketamine in the long term, especially regarding the systemic and
cardiovascular response and dissociative and psychotomimetic reactions. In addi-
tion, it is a priority to elucidate whether these treatments may induce substance abuse
and how to control the risk of esketamine abuse specifically by means of new,
appropriate galenical forms. Finally, the investigation of the efficacy of
glutamatergic modulators in the treatment of severe depression with psychotic
symptoms is an unmet need, given that psychotic symptoms are a common exclusion
criterion in the proof-of-concept and phase III clinical trials with these molecules
to date.

Future research may address these limitations to obtain a more precise knowledge
of the antidepressant mechanisms of action, optimal dosing, posology and clinical
indications of current and new glutamatergic modulators. The current evidence of
the implication of the glutamatergic system in the pathophysiology of depression
and the relevance of the gabaergic system to modulate the glutamatergic activity
make it possible to anticipate the approval of new glutamatergic modulators for the
treatment of major depression in the near future.
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Chapter 12
Glutamate-Based Treatment
for Amyotrophic Lateral Sclerosis/Motor
Neuron Disease

A. Diana and P. Bongioanni

Abstract Glutamate is the most diffused amino acid in the brain throughout the
human lifespan, since it is a unique actor in neuronal growth and differentiation,
synaptic plasticity, learning and memory consolidation, arousal, and behavior. Upon
certain circumstances, the glutamate homeostasis can be severely affected by the
overproduction of this excitatory neurotransmitter, ultimately leading to neurode-
generative events via excitotoxic mechanisms. Therefore, the abnormal exposure to
glutamate has been indicated the putative culprit in the onset and progression of
motor neuron diseases (MNDs), a heterogeneous group of fatal neurodegenerative
disorders encompassing the most common form called amyotrophic lateral sclerosis
(ALS) also known as Lou Gehrig’s disease. In ALS/MND neuronal excitotoxic
demise is the final step of progressive muscle weakness and atrophy because of the
upper or lower motor neuron dysregulation consistent with the degeneration of
pyramidal neurons in the motor cortex, cranial motor neurons, and anterior horn
cells in the spinal cord. This chapter aims at offering an overview of impaired
molecules of the glutamatergic system in ALS/MND pathology. A relevant part of
the topic is dedicated to discuss both the ongoing research with the available
antiglutamatergic drugs and the alternative therapeutical strategies for feasible
treatment of ALS/MND.
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12.1 Introduction

Motor neuron diseases (MNDs) are a heterogeneous group of fatal neurodegenera-
tive disorder whose causes are still largely unknown. MND leads to progressive
muscle weakness and atrophy, with upper or lower motor neuron signs, or a mixture
of them, due to degeneration of pyramidal neurons in the motor cortex, cranial motor
neurons and anterior horn cells in the spinal cord. The amyotrophic lateral sclerosis
(ALS) also known as Lou Gehrig’s disease is the most common form. It involves
both upper and lower motor neuron features. Less common variants involve a pure
upper motor neuron presentation (primary lateral sclerosis) or a pure lower motor
neuron presentation (progressive muscular atrophy).

Although the clinical outcome in ALS/MND has been identified with motor
neuron degeneration, the disease is non-cell autonomous, meaning the involvement
of astrocytes, microglia, and oligodendrocytes (Boillée et al. 2006; Ilieva et al. 2009;
Haidet-Phillips et al. 2011).

ALS/MND has a mean incidence of two cases per 100,000 and prevalence of 5.4
per 100,000 individuals, although significant geographical differences have been
reported (Logroscino et al. 2010; Chiò et al. 2013; Marin et al. 2017; Collaborators
GBDMND 2018). Genetic discoveries have contributed to the advancement of
pathophysiology understanding and broaden the original concept of ALS/MND,
previously perceived in terms of neuromuscular disease into a more complex illness
intermingled with cognitive decline leading to fronto-temporal dementia (FTD). As a
matter of fact, primary symptoms of ALS/MND refer to motor dysregulation but
soon other areas of the brain become prone to neurodegeneration. The overall
process leads to mild to severe derangement of cognitive and behavioral functions
in 40% to 60% of patients (Neary et al. 2000; Witgert et al. 2010; Ferrari et al. 2011;
Phukan et al. 2012; Abrahams et al. 2014) and, more specifically, nearly 15%
ALS/MND patients fulfill diagnostic criteria for FTD (Raaphorst et al. 2012).
Despite 90% of ALS/MND cases are sporadic (sALS), the small remaining 10%
fraction is inheritable (familial cases, fALS); hence, more than 30 genes (Chen et al.
2013; Zou et al. 2017; Mejzini et al. 2019) are directly implicated with the RNA
processing, protein trafficking and degradation, cytoskeletal and axonal dynamics,
mitochondrial metabolism and oxidation scavangers. Within those genes, superox-
ide dismutase 1 (SOD1), C9orf72, transactive response DNA-binding protein
(TARDP) 43-kD, fused in sarcoma (FUS), are the four top more causative genes
(Boylan 2015). Despite decades of intense clinical and basic research ALS/MND
etiology remains elusive and, during this time, two hypotheses dealing with the site
of disease onset have been advanced (Eisen et al. 1992; Kiernan et al. 2011). The first
one is the dying-forward hypothesis, which accounts for an anterograde degenera-
tion of motor neurons via glutamate excitotoxicity from the cortex. The second one
is the dying-back hypothesis, which suggests that ALS/MNDmay start distally at the
nerve terminal or the neuromuscular junction, continuing the progression toward the
cell body due to the lack of specific neurotrophic factors. Indeed, it has also been
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suggested that upper and lower motor neuron degeneration may be autonomously
activated (Kiernan and Hudson 1991; Pamphlett et al. 1995).

Regardless of the anatomical point of initial injury, possible bias in the interneu-
ronal connections has underpinned the dramatic role played by the modifications in
excitatory glutamatergic neurotransmission for disease evolution concomitantly with
enhanced neuronal vulnerability to excitotoxicity. In general terms, glutamate acts as
an indirect neuronal killer via the sustained activation of glutamate receptors that, in
turns, induces cationic influx, mitochondrial impairment, energy depletion, and
oxidative stress leading to accumulation of reactive oxygen species (ROS) (Lipton
2008; Vincent and Mulle 2009; Connolly and Prehn 2015; Prentice et al. 2015).

12.2 Glutamatergic System and ALS/MND

Glutamate is the principal excitatory neurotransmitter of the central nervous system
(CNS) and the most abundant amino acid in the brain. It is now widely accepted that
it plays important roles in neuronal growth and differentiation, synaptic plasticity,
learning and memory consolidation, arousal, and behavior. Glutamate
overproduction not properly counterbalanced by buffering mechanisms has a strik-
ing relevance in neurological and psychiatric diseases encompassing depression,
substance use disorder, schizophrenia, and other cognitive function and mood
deficits (Zhou and Danbolt 2014). The critical threshold between glutamate physi-
ology and overproduction is determined at the synaptic cleft due to the existing
balance between glutamate clearance and its recycling through the glutamate-
glutamine conversion. As already mentioned, it is transported inside vesicle com-
partments to the axonal terminals where, upon fusion to the presynaptic membrane,
it can be released by exocytosis in synergy with anion channels and transporter
reversal. The main actors of the glutamate metabolism are represented by glial cells,
several types of receptors including excitatory amino acid transporters (EAATs 1-5),
vesicular glutamate transporters (VGLUTs), alpha-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) receptors, N-Methyl-D-aspartate (NMDA) recep-
tors, glutamine-cystine exchangers (xCT), and various intracellular carriers. Any
possible event that impairs their capacity to handle and control glutamate metabo-
lism is reflected by a relevant modification of the excitatory transmission in the CNS
that has been defined as excitotoxicity. This term has been coined (Olney and Sharpe
1969) to describe the neuronal cell death taking place by the abnormal exposure to
glutamate or aspartate. This detrimental process is mediated by post-synaptic neu-
rons hosting a plethora of ionotropic and metabotropic receptors that trigger intra-
cellular cascade of signals. In contrast, glutamate transporters mainly distributed on
the neighboring astrocytes by sequestering glutamate molecules are in charge of
ending the molecular communication. In turn, the overstimulation of post-synaptic
membrane gives rise to Ca2+ influx mediated by voltage-gated Ca2+ channels,
NMDA, AMPA, and kainate (KA) receptors. Ca2+ entry will lead to dysregulation
of mitochondria and endoplasmic reticulum (ER) functions, namely depolarization
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of mitochondrial membrane, that precedes low-energy and oxidative state with
excitotoxic ROS production (Van Den Bosch et al. 2006) ultimately leading to
apoptotic demise (Lipton 2008; Caldeira et al. 2014). Despite the molecular
intercellular mechanisms, when dealing with glutamatergic synapses, scientists
have observed an unusual heterogeneity in the components of glutamatergic synap-
ses that have a strong impact on the time courses of synaptic communication. In
addition, the time course of glutamate dynamics can face some variations both
because of the complexity of synaptic morphology including surrounding glial
cells and the density of glutamate transporters (Jonas 2000). Therefore, the transition
from physiological concentration and excitotoxicity favoring ALS/MND onset and
progression is a breakpoint of the steady-state balance between glutamate secretion
operated by neurons and glial cells (Martin 1992; Vesce et al. 1999; Montana et al.
2006). Finally and in order to understand the molecular components as potential
targets for ALS/MND treatment, the glutamate neurotransmission can be recapitu-
lated in the following steps: (1) Intracellular glutamate is stored into synaptic
vesicles and released upon specific stimuli at the synaptic cleft determining a
concentration peak; (2) This transient burst of glutamate is detected and transduced
by glutamate receptors; (3) The excessive glutamate amount is removed from the
synaptic space by the EAATs, mostly present in astrocytes, to prevent the
overstimulation of the post-synaptic neurons. Remarkably, it should be highlighted
that synaptic secretion of extracellular glutamate does not result in the major source
of extracellular glutamate in the brain as shown in experiments where extracellular
glutamate rate was not sensitive to the blockade of synaptic glutamate secretion
(Timmerman and Westerink 1997; Jabaudon et al. 1999; Baker et al. 2002;
Featherstone and Shippy 2008). This non-vesicular glutamate release has appeared
mainly vehiculated by glial xCT cystine-glutamate antiport proteins in exchange
with cystine import (La Bella et al. 2007).

12.3 Molecular Components of the Glutamate
Neurotransmitter Signaling for ALS/MND

12.3.1 Glutamate Receptors

Glutamatergic neurotransmission is achieved by means of ionotropic (iGluRs) and
metabotropic (mGluRs) receptors. The iGluRs are ligand-gated ion channels that
drive the entry of sodium and potassium but massively calcium, while mGluRs are G
protein-coupled receptors (GPCRs) that direct cellular homeostasis via G protein
signaling cascades. Interestingly, glutamate does not show any preferential binding,
suggesting that the two receptor families are synergically operating (Reiner and
Levitz 2018). As a matter of fact, also mGluRs can induce Ca2+ unbalance since the
rapid surge of cytosolic Ca2+ is able to evoke Ca2+-induced Ca2+ release from
intracellular stores of ER.
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iGluRs belong to three distinct subfamilies such as NMDAR, AMPAR, and KAR
(Nicoll et al. 1990). All of them share pre- and post-synaptic distribution and are
made by the assembly of four subunits with different cation selectivity, Ca2+-
oriented only for NMDARs.

NMDAR is a heteromeric complex that interacts with multiple intracellular pro-
teins by three different subunits: GluN1, GluN2, and GluN3. The functional
NMDARs are heterotetramers composed of two GluN1 and typically two GluN2
subunits (Salussolia et al. 2011) that assemble to form an ion channel pore. However,
the diversity in the subunit composition is responsible for changes in functional
properties affecting both synaptic plasticity and stimuli triggered neuronal response
(Paoletti 2011). Glutamate is only one of the agonists for NMDARs. Glycine and
D-serine are co-agonists of the NMDARs, and their binding is a necessary require-
ment for the receptor activity. Since NMDARs have a relevant Ca2+ permeability
and slow on/off kinetics (Cull-Candy et al. 2001), they definitely play a cardinal role
in excitotoxicity. The Ca2+ cellular influx is significantly higher compared to the
same cation entry in non-NMDA glutamate receptors and voltage-gated Ca2+ chan-
nels (Mody and MacDonald 1995; Petralia et al. 2010).

The possible impact of NMDAR involvement in the ALS/MND onset has been
investigated by the pioneer work of Couriater and collaborators (Couratier et al.
1993) where cerebrospinal fluid (CSF) from ALS/MND patients was used for
toxicity assessment (Sen et al. 2005). It resulted that AMPA/KA receptor antagonists
were effective in blocking neurotoxicity, while NMDA antagonists were not protec-
tive. From that time, the decisive influence of NMDARs in ALS/MND has been
progressively overlooked although the well recognized excitotoxicity due to receptor
overstimulation.

In structural terms, AMPARs are organized in a tetrameric fashion by the
combination of several subunit receptors named GluA1-GluA4, also known as
GluR1-GluR4 and GluR-A to GluR-D (Wright and Vissel 2012). The Ca2+ entry
of AMPARs is dependent on the presence of GluA2 subunit within the tetramer.
Interestingly, it should be highlighted that astrocytes, in mutant SOD1, secrete
molecules that downregulate the expression of GluA2 subunit in motor neurons
causing excitotoxicity and cell death (Van Damme et al. 2005, 2007). A consistent
set of data have been gained both in vivo and in vitro dealing with the effects of
AMPARs in ALS/MND onset and progression. In SOD1-G93A mice, blocking
AMPARs by specific antagonists has been useful to slow the progression of ALS/
MND-like disease and meanwhile contributing to prolong the animal survival (Van
Damme et al. 2003; Tortarolo et al. 2006), and even local infusion of Ca2+-perme-
able AMPA channel blocker revealed positive effect for survival not only toward
motor neurons but also astrocyte glutamate transporter (Yin et al. 2007). It has been
also shown by iPS technology that motor neurons from patients carrying C9orf72
mutation were 100-fold more prone to glutamate toxicity (Donnelly et al. 2013). The
definitive proof of the AMPAR dysregulation has been provided recently in post-
mortem lower motor neurons located into the anterior horn of the spinal cord in
ALS/MND. In particular, GluA1 and GluA2 receptor subunits exhibited a reverse
expression: the former upregulated in sALS and mutant C9orf72 cases and the latter

12 Glutamate-Based Treatment for Amyotrophic Lateral Sclerosis/Motor Neuron. . . 363



downregulated in mutant SOD1 cases. At the higher CNS level, including prefrontal
cortex, such heterogeneous and anomalous expression was widespread but strictly
linked to the plasticity features of several brain areas by differential modulation of
those two subunits (Gregory et al. 2020).

With regard to the last class of ionotropic receptors, KA receptors are tetrameric
cation channels composed of five possible subunits with GluR5-7 necessary for
functional channels and mixed to KA1 and KA2 (Kew and Kemp 2005). Similarly to
AMPARs, upon glutamate exposure they allow ion flux resulting mostly impene-
trable to Ca2+ ions. Although they find a preferential site in the membrane of post-
synaptic neurons, they have been also recruited in the presynaptic domain
(Chittajallu et al. 1996; Castillo et al. 1997).

12.3.2 Glutamate Transporters

Wealth of knowledge has been gathered in favor of a defective glutamate transport
system in the onset and progression of ALS/MND that is intimately related to the
astrocytic clearance function. As already mentioned, the dramatic consequences of
the glutamate excess in the synaptic cleft make neurons highly vulnerable to
excitotoxicity. For that purpose, astrocytes harbor high-affinity sodium-dependent
glutamate transporters defined as EAATs in order to metabolize o recycle glutamate
intersynaptic glutamate molecules. These transporters on the astrocytic membrane
have been classified in EAAT1 or GLAST and EAAT2 or GLT-1 (Mahmoud et al.
2019). The sequestering capacity of astrocytes is extremely efficient, since the
binding ratio has been calculated in terms of 10�7/M/s (Takahashi et al. 2015). At
the moment, multiple isoforms of EAAT2 (a, b, c) have been identified that variously
change at the C-termini and, due to some slight variations at the 3’-UTR, they
possibly face differential regulation (Lauriat and McInnes 2007). It is noteworthy
that the complete knock-out of EAAT2 dramatically shortened life expectancy in a
mouse model (Tanaka et al. 1997). The dramatic impact of astrocyte-mediated
downregulation of EAAT2 has emerged in rodent models such as SOD1-G93A
and TDP-43 possibly causing glutamate deposit in the extracellular space. In addi-
tion, focal loss of the EAAT2 glutamate transporter in the ventral horn of the spinal
cord was concomitant to gliosis, but preceding motor neuron/axon degeneration.
Such findings favor the hypothesis of a determinant role of this transporter in the
apoptotic cellular cascade to cell death in ALS/MND (Howland et al. 2002; Tong
et al. 2013).

Experimental studies have been performed to ascertain to what extent EAAT2
overexpression can counteract disease progression in genetically ALS/MND driven
SOD1-G93A. Whilst it was effective on the disease onset, animals were neither
protected from death (Guo et al. 2003) nor preserved from respiratory failure
(Li et al. 2015). Biochemical assays provided further evidence for a link between
the decrease in EAAT2 protein expression in homogenate fractions obtained from
spinal cord in different murine SOD1 strains and neuronal demise (Bruijn et al.
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1997; Bendotti et al. 2001). The dramatic decrease of this protein has been corrob-
orated by the results obtained in ALS/MND patients where EAAT2 was
downregulated both in the motor cortex and spinal cord by immunochemical
detection (Rothstein et al. 1995). However, the same authors ended up with the
conclusion that, at mRNA level, there was no quantitative change for EAAT1,
EAAT2, or EAAT3 in ALS/MND motor cortex, even when patients presented
both a massive loss of EAAT2 protein (95% decrease compared with control) and
significative reduction of tissue glutamate transport (73% decrease compared with
control) (Bristol and Rothstein 1996). Later on, Sasaki et al. (2000), in search for a
relationship between EAAT1 and EAAT2 in ALS/MND patients, found the lack of
immunoreactivity for EAAT2 correlated to the observed neuronal loss in the gray
matter of the spinal cord while EAAT1 was still present. Interestingly, mild neuronal
depletion was associated with a dense localization of EAAT2, whereas a strong
reduction of the protein resulted when a consistent number of neurons disappeared.
These data aimed at demonstrating a difference in EAAT1 and EAAT2 immunore-
activity in different stages of progression in ALS/MND, as a pathogenetic feature.
The continued investigation of biochemical properties of EAAT2 molecule has
brought to the discovery of three coding isoforms and multiple 5’- and 3’-UTRs
with possible regulatory functions (Lauriat and McInnes 2007). Therefore, only
recently it has been ascertained that the regulation of EAAT2a and EAAT2b
transcripts is subjected to a different expression in transgenic SOD1-G93A rats,
where EAAT2b was increased in young SOD1-G93A rats as compared to wild-type
controls, but was prone to a slow decrease in both ventral and dorsal horns in the
disease progression (Dumont et al. 2013). Remarkably and seemingly, despite it was
detected a downregulation up to 95% of the overall EAAT2 levels in the motor
cortex of ALS/MND patients, the specific EAAT2b isoform levels were raised by
more than twofold (Maragakis et al. 2004).

12.4 Current Treatments and Modulators of Glutamatergic
Signaling for ALS/MND

Due to the role of glutamate dysregulation in ALS/MND and its potential conse-
quence of causing excitotoxicity, substantial research has been directed toward
demonstrating the efficacy of antiglutamatergic drugs (Petrov et al. 2017; see
Table 12.1).

12.4.1 Riluzole

Riluzole, a glutamate antagonist belonging to the benzothiazole class, acts as an anti-
excitotoxic drug by inhibiting glutamate presynaptic release (thus promoting
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glutamate re-uptake); inactivating fast voltage-dependent sodium channels (thus
reducing hyperexcitability); inhibiting voltage-gated Ca2+ current; slowing potas-
sium channel inactivation; inhibiting protein kinase C; and interfering with intracel-
lular events that follow transmitter binding at excitatory amino acid receptors
(Bellingham 2011).

Riluzole was approved for ALS/MND treatment, in the form of oral tablets, by
the FDA in 1995, and subsequently licensed for use in other territories, including
Europe (in 1996): the recommended dose is 50 mg twice daily, taken 1 h before or
2 h after a meal.

More recently, a novel, patented, oral liquid presentation of Riluzole, Teglutik®

5 mg/mL oral suspension, has been introduced (Dyer and Smith 2016): it has been
reported to offer advantages in ALS/MND treatment, since dysphagia is present in
about one-third of patients at onset, and over 80% develop this condition and/or need
enteral feeding in later disease stages. The oral suspension potentially allows patients
to continue Riluzole therapy for longer.

Human plasma Riluzole clinically effective concentrations are in the range
between 0.5 and 2 μM: relatively high inter-individual variations have been reported
(Groeneveld et al. 2003).

Table 12.1 Antiglutamatergic drugs acting as modulators of glutamatergic signaling for
ALS/MND

Site of action Mechanism of action

Riluzole Presynaptic and post-
synaptic neurons

Inactivation of fast voltage-dependent sodium channels

Inhibition of voltage-gated calcium current

Inactivation of slowing potassium channels

Inhibition of protein kinase C

Interfering with intracellular events that follow transmit-
ter binding at excitatory amino acid receptors

Topiramate Postsynaptic neurons Blockade of voltage-dependent sodium and calcium
channels

Enhancement of GABA-dependent chloride inward
currents

Antagonism at glutamatergic AMPA and kainate
receptors

Memantine Postsynaptic neurons Non-competitive antagonism at glutamatergic NMDA
receptors

Talampanel Postsynaptic neurons Non-competitive antagonism at glutamatergic AMPA
receptors

Anti-inflammatory effects in the CNS

Attenuation of caspase 3-mediated apoptosis

Ceftriaxone Postsynaptic neurons Increased glial transporter EAAT2 promoter activation
and EAAT2 function in rodent brains

AMPAAlpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, CNS Central nervous system,
EAAT Excitatory amino acid transporter, GABA Gamma-aminobutyric acid, NMDA N-Methyl-D-
aspartate
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In a study of Riluzole plasma concentrations in ALS/MND patients, drug clear-
ance was independent from dosage, treatment duration, age, and renal function, but
was significantly lower in women compared to men, and in smokers compared to
nonsmokers (Bruno et al. 1997), consistent with a report that mean plasma concen-
trations were higher in ALS/MND patients who were women or smokers
(Groeneveld et al. 2003). Survival in a group of ALS/MND patients was found not
to be correlated with individual Riluzole plasma levels (Groeneveld et al. 2007).

Four key publications related to randomized clinical trials (RCTs) conducted on
Riluzole in ALS/MND patients were reported between 1994 and 2002 (Bensimon
et al. 1994; Lacomblez et al. 1996; Yanagisawa et al. 1997; Bensimon et al. 2002):
since then, no new RCTs appear to have been performed on Riluzole in ALS/MND
patients.

Patients enrolled in the two trials which led to the licensing of Riluzole
(Bensimon et al. 1994; Lacomblez et al. 1996) had been suffering from the disease
for <5 years and had a baseline forced vital capacity (FVC) � 60%.

In the first trial (Bensimon et al. 1994), 155 patients, recruited from France and
Belgium, were followed up for at least 13 months after treatment with either 100 mg/
day of Riluzole or placebo.

In the second trial (Lacomblez et al. 1996), 959 patients recruited from both North
America and Europe were followed up for at least 12 and 18 months, respectively,
after treatment with either 50, 100, or 200 mg/day of Riluzole or placebo: patients
treated with 50 mg/day of active drug did not show a statistically significant
difference compared with the placebo group, and the results of 200 mg/day were
essentially identical to those with 100 mg/day. In the first trial (Bensimon et al.
1994), there was a 38,6% reduction in mortality, and the median survival time was
17.7 months in the active drug group vs 14.9 months in the placebo group; while in
the second trial (Lacomblez et al. 1996), there was a 35% improvement in survival,
and the median survival time was 16.5 months in the Riluzole group vs 13.5 months
in the placebo group. There was no statistically significant difference in mortality at
the end of the trials.

Data from the RCTs and subsequent meta-analyses, using death or tracheostomy
as an endpoint, indicate that Riluzole at 100 mg/day had a modest beneficial effect
on bulbar and limb function, but no effect on muscle strength, and typically extends
survival by 2–3 months and increases the chance of an additional year of survival by
9% (Miller et al. 2012).

Riluzole treatment has been reported to have no effects on clinical EMG param-
eters commonly used to measure ALS/MND progression, including fasciculations,
polyphasic motor unit potentials, increased motor fiber jitter and density, and
increased amplitude and area of motor units (Desai et al. 1998). Patients often
showed deficient paired pulse inhibition, presumably due to cortical
hyperexcitability (Caramia et al. 2000): it has been reported that Riluzole treatment
partially restored deficient paired pulse inhibition, but had no effect on paired pulse
facilitation (Stefan et al. 2001), while other studies found that Riluzole treatment was
without effect on motor evoked potentials or paired pulse inhibition (Caramia et al.
2000).
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The above-mentioned survival data, however, do not take into consideration
patients who survived longer than the 18- to 21-month follow-up period in
the RCTs: over a decade on, there is substantial support for prolongation of survival
times of patients following Riluzole therapy, based on retrospective and prospective
studies utilizing clinical databases (Chiò et al. 2002; Miller et al. 2003; Traynor et al.
2003; Mitchell et al. 2006).

Meta-analyses on the RCTs have also been performed to examine the clinical and
cost-effectiveness of Riluzole (Stewart et al. 2001): combined analysis revealed a
hazard ratio of 0.89 (0.75–1.05), a small but positive benefit by Riluzole therapy.

A meta-analysis of RCTs concluded that drug safety was not a major concern in
treatment, with nausea, asthenia, and elevated serum alanine transaminase being the
only side effects which were significantly increased in patients receiving Riluzole,
compared to those with placebo (Miller et al. 2012).

Asthenia is of particular interest, as clinically relevant Riluzole levels act to
decrease motor neuron excitability and neurotransmitter release: Riluzole might
contribute to asthenia by lowering individual motor neuron firing rate, therefore
delaying fusion of muscle twitches in a single motor unit to tetany.

Caution in Riluzole administration has been recommended for patients with
elevated serum transaminase levels or liver disease (Lacomblez et al. 2002).

Other adverse effects most commonly observed were somnolence, nervousness,
circumoral paraesthesia, headache, itching, anorexia, diarrhea, depression (Debove
et al. 2001; Groeneveld et al. 2003; Bensimon and Doble 2004). Incidence of such
adverse drug effects was not related to Riluzole dosage in the range from 50 to
200 mg/day (Le Liboux et al. 1999; Groeneveld et al. 2003). Riluzole administration
to elderly patients or advanced stage patients did not increase the incidence of
adverse effects (Le Liboux et al. 1999; Bensimon et al. 2002).

Subsequent to the RCTs, more than ten independent retrospective and prospective
studies on ALS/MND patients utilizing clinical databases from patients in the “real-
world” have been carried out. Riluzole administration in ALS/MND patients was
well tolerated for periods of up to 7 years (Lacomblez et al. 2002). Open label,
nonrandomized studies have suggested that Riluzole treatment at earlier disease
stages may have greater benefits (Riviere et al. 1998; Traynor et al. 2003; Zoing
et al. 2006). Patients with bulbar onset may also benefit more from drug treatment
(Traynor et al. 2003; Zoccolella et al. 2007), and lifespan increase may be greater in
patients with symptom onset at older ages (Zoccolella et al. 2007).

Individual studies suggest that Riluzole therapy produced prolongation of the
time spent in the initial or milder disease stages, but had little effect on time spent in
advanced or severe disease stages (Riviere et al. 1998).

On the other hand, a recent data analysis from the original Riluzole dose-ranging
RCT (Lacomblez et al. 1996) on 959 patients, by using the King’s clinical staging
system (Roche et al. 2012), reported that Riluzole prolonged survival in the ALS
Stage 4 (corresponding to either nutritional failure with 10% of premorbid weight
loss due to dysphagia, sufficient to require gastrostomy, or substantial respiratory
failure fulfilling guidelines for needing non-invasive ventilation), and that most of
the benefits occurred during this stage. Moreover, there was no difference in time
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from trial Stages 2 or 3 to the next stages or death between the active drug and the
placebo treatment groups (Fang et al. 2018).

Such findings were robust to the method of analysis and independent of the stage
at which treatment was started: they imply that Riluzole survival benefits were
achieved by extending Stage 4, not by prolonging Stages 2 or 3, or generally slowing
disease. Furthermore, the “selective” Stage 4 extension would help to explain the
original report of improvement in survival without a concomitant effect on function
(Lacomblez et al. 1996), since function at this stage is limited, and a flattening of the
slope of functional decline would be hard to detect.

The use of the “real world” evidence is crucial to ensure that the results obtained
in RCTs translate into tangible benefits in the patients’ population; based largely on
retrospective/prospective analysis of huge clinical databases (encompassing more
than 5000 patients), it suggests significant enhancement of median survival by up to
19 months in Riluzole-treated ALS/MND patients with the most remarkable effects
in patients who started the drug early in the disease: such an information should
assist prescribers, patients, and caregivers in effectively managing ALS/MND treat-
ment. Not only, but such data are more impressive, by considering that the clinical
databases comprised patient populations ranging from the United Kingdom, Ireland
and Italy to the USA, Taiwan, and China: the fact that differences (due to likely
differences in healthcare systems and ancillary care, such as nutritional supplemen-
tation) were not found supports the relevance of such data (Meininger 2002).

Besides Riluzole other drugs which have targeted glutamatergic transmission as
their primary mechanism of action were used over time in ALS/MND treatment.

12.4.2 Topiramate

Topiramate, a well-known antiepileptic drug, is effective against focal onset seizures
and generalized onset tonic-clonic seizures and as a prophylactic treatment of
migraine (Spritzer et al. 2016). Topiramate has several mechanisms of action:
although none of them has been pointed out as the principal one, blockade of
voltage-dependent sodium and calcium channels, enhancement of GABA-dependent
chloride inward currents, and antagonism at glutamatergic AMPA and kainate
receptors have received most attention (Shank et al. 2000). Moreover, some studies
have shown that it has neuroprotective properties (Kudin et al. 2004).

A double-blind, placebo-controlled, multicenter clinical trial (Cudkowicz et al.
2003) was carried out in 296 ALS patients, randomized (2:1) to receive Topiramate
(maximum tolerated dose up to 800 mg/day) or placebo for 12 months.

Patients treated with the active drug showed a significantly ( p ¼ 0.012) faster
decrease in arm strength (33.3%) as measured by the maximum voluntary isometric
contraction, but no significant differences—as compared to placebo group—in the
decline of FVC and ALS functional rating scale (ALSFRS) or in survival.

Topiramate was associated with an increased frequency of anorexia, depression,
diarrhea, ecchymosis, nausea, kidney calculus, paresthesia, taste perversion,
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thinking abnormalities, weight loss, and abnormal blood clotting (pulmonary embo-
lism and deep venous thrombosis).

Since Topiramate, at the dose studied, did not have a beneficial effect for
ALS/MND patients, further studies on such a drug (at least at a daily dose of
800 mg) were not warranted (Cudkowicz et al. 2003).

12.4.3 Memantine

Memantine, a moderate-affinity voltage-dependent non-competitive antagonist of
glutamatergic NMDA receptors, has been shown to protect neurons against
glutamate-induced in vitro toxicity (Chen and Lipton 1997). It inhibits and reverses
the abnormal tau hyperphosphorylation leading to protein aggregation and the
disassembly of microtubules (Li et al. 2004). Memantine, currently approved for
the treatment of Alzheimer’s Disease, has been shown to prolong survival in a
SOD1-G93A mouse model for ALS/MND (Wang and Zhang 2005).

A phase II/III, 12-month, double-blinded, single center, randomized, parallel,
placebo-control clinical trial with 63 patients also treated with Riluzole (50 mg twice
a day) failed to demonstrate any effect of 20-mg daily memantine on both primary
and secondary endpoints in clinically probable, probable-laboratory supported or
definite ALS patients of less than 36-month disease duration and progression over a
1-month lead-in period (De Carvalho et al. 2010). Primary endpoint was 12-month
ALSFRS decline; secondary endpoints were FVC, manual muscle testing, visual
analogue scale, quality of life, motor unit number estimation, and neurophysiolog-
ical index (De Carvalho et al. 2010). Memantine did not show more adverse events
or lab (blood chemistry) changes than placebo. Therefore, the study showed that
memantine was well tolerated and safe, but with no evidence of efficacy, although
the authors could not exclude a positive outcome on survival.

In a pilot trial (Levine et al. 2010) in 20 patients suffering from sporadic clinically
probable or definite ALS, receiving Riluzole (50 mg daily) and Memantine (10 mg
twice a day) for 18 months, changes in CSF biomarkers during drug therapy were
studied. Memantine was well tolerated and there was a strong correlation between
CSF tau levels and disease progression. Since such a study had no a placebo arm, it is
difficult to draw conclusions about the significance of CSF tau decline during
memantine treatment: further studies would be needed to assay levels of CSF tau
over time within individual ALS/MND patients. Moreover, no conclusions about the
efficacy of memantine in slowing down the disease course can be drawn, given the
open label nature of the trial.
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12.4.4 Talampanel

Talampanel, a small molecule with good blood-brain barrier (BBB) penetration, is
an orally active non-competitive antagonist of AMPA receptors mediating
glutamate-induced excitotoxicity to motor neurons (Van Den Bosch et al. 2000). It
is a member of the family of the benzodiazepines; it has independent anti-
inflammatory effects (Greene et al. 2008) in the CNS and attenuates caspase
3-mediated apoptosis (Denes et al. 2006).

Talampanel has been tested in human trials of epilepsy and was found to have
significant anticonvulsant properties, demonstrating bioavailability within the CNS
(Langan et al. 2003).

A phase II, double-blind, placebo-controlled, multicenter, randomized clinical
trial of 9-month treatment duration, performed on 59 definite or probable ALS
patients (40 subjects receiving 50-mg orally thrice a day active drug and 19 subjects
placebo), showed a trend toward slower decline in ALSFRS and isometric muscle
strength in Talampanel-treated patients (Pascuzzi et al. 2010). Talampanel was well
tolerated: mortality rates and drug discontinuation rates were similar in both groups
of active drug- or placebo-treated patients; although some adverse events occurred
more frequently in the Talampanel group, the rate of subject drop-out after 9 months
did not exceed that seen in other trials (Pascuzzi et al. 2010).

The data for the failed Phase 3 study, recruiting 559 patients (trial ID#
NCT00696332) was not publicly disclosed.

In addition, a patent disclosed evidence of the efficacy, tolerability, and safety of
150-mg daily doses of drug in patients afflicted with ALS/MND (Ben-Ami et al.
2009): Talampanel had beneficial effects on the rate of functional decline and the
progression of symptoms: neuroprotective effects of Talampanel were only present
when it was applied during the early disease stage.

12.4.5 Ceftriaxone

Ceftriaxone is an FDA-approved beta-lactam antibiotic with good CNS penetration
through the BBB.

It increases glial transporter EAAT2 promoter activation and EAAT2 activity in
rodent brains (Rothstein et al. 2005); protects motor neurons in culture from
excitotoxicity (Vincent et al. 2005); and has antioxidant activity (Tikka et al.
2001). Ceftriaxone administered to SOD1-G93A mice at disease onset slowed the
disease course, preserved strength, delayed weight loss, and prolonged survival
(10 days longer); moreover, SOD1-G93A mice treated before disease onset had a
decreased motor neuron loss after 2 weeks (Rothstein et al. 2005).

In addition to the preclinical data supporting its beneficial effects in ALS/MND
models, Ceftriaxone has been reported as neuroprotective in vitro and in vivo in
other neurologic diseases, including spinal muscular atrophy (Nizzardo et al. 2011),
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Huntington’s Disease (Miller et al. 2008), ischemic stroke (Thone-Reineke et al.
2008), and multiple sclerosis (Melzer et al. 2008).

Ceftriaxone is the only intravenous beta-lactam antibiotic which was investigated
in a large-scale non-stop Phases I-II randomized clinical trial recruiting 513 ALS
patients (Berry et al. 2013; Cudkowicz et al. 2014), using a novel 3-stage design:
Stage 1 determined the CSF pharmacokinetics; Stage 2 evaluated safety and toler-
ability for 20 weeks; based on the data of the two previous stages, drug dosage was
established for Stage 3 efficacy testing.

Stage 1 analysis showed linear pharmacokinetics and demonstrated that both
Ceftriaxone dosage levels (2 g and 4 g daily) achieved CSF concentrations of�1 μM
(0.55 μg/mL), namely those of in vitro efficacy: drug holidays of up to 3 days were
possible while maintaining effective CSF drug concentrations (� 1 μM) in patients
receiving high doses (4 g/die).

Tolerability findings pointed out that Ceftriaxone at daily dosages up to 4 g was
well tolerated for 20 weeks. Biliary adverse events (biliary sludge/cholelithiasis)
were more common with the active drug, but they were not dose-dependent and
improved with biliary acid therapy; other adverse events did not occur more com-
monly with Ceftriaxone treatment as compared to placebo.

Nevertheless, the study failed to demonstrate significant improvement in survival
and functional outcomes in ALS/MND patients (Berry et al. 2013; Cudkowicz et al.
2014).

Functional decline was reported slower in patients belonging to the high dose
(4 mg daily) group as compared to those with placebo ( p ¼ 0.0416): unfortunately,
such a decrease in functional decline was not replicated in the Stage 3 interim or final
analysis, nor differences in survival were observed. Furthermore, adverse event rates
were significantly higher in the active drug group for gastrointestinal, hepatobiliary,
and blood or bone marrow involvement: patients receiving Ceftriaxone also had
more hepatobiliary serious adverse events, but fewer infection-related serious
adverse events.

Since Ceftriaxone was ineffective in treating ALS/MND patients, it remains to be
clarified whether EAAT2 upregulation is no longer a useful clinical target. The
actual efficacy of drug in increasing EAAT2 in the CNS was not determined as no
markers existed at the time of the study. On the other hand, animal models also
demonstrated Ceftriaxone efficacy only when administered before symptom onset.
Perhaps it would be more valuable for pre-onset fALS carriers: stratification by
mutation status, onset type, or cognition status might also yield interesting results
(Van Den Berg 2014).

An alternative explanation for the failure of Ceftriaxone in clinical trials might be
the existence of a secondary EAAT2-mediated neurotoxicity pathway: EAAT2 is
cleaved by caspase 3 in ALS/MND, leading to the generation of a C-terminal
fragment/end (CTE), which was found to be sumoylated (Gibb et al. 2007). Trans-
fection of an artificially fused CTE-SUMO1 construct induces astrocytes to secrete
toxic factors for motor neurons (Foran et al. 2011). Theoretically, such a pathway
would be upregulated with many of the EAAT2-targeted treatments, potentially
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preventing their success by coupling induction of decreased excitotoxicity with an
increased secretion of toxic factors.

12.5 Future Developments and Modulators
of Glutamatergic Signaling for ALS/MND

The fundamental issues and challenges of developing new effective drugs for
treatment of ALS/MND patients are related to inadequate animal models and
preclinical experimental designs; pharmacokinetic differences between rodents and
humans; the genetic complexity of ALS/MND disease and genotypic feature dis-
crepancies in recognizing the disease subtypes; the heterogeneity among patients
and diagnostic delays; poorly sensitive biomarkers; RCTs faulty designs, together
with the lack of distinction between null versus negative effects, and the lack of
focus on clinical significance instead of just statistical significance.

Measures and strategies, to reduce the number of false positives in preclinical
studies and thereby prevent unwarranted clinical trials, and improve RCTs in
ALS/MND patients, can be suggested: (1) developing novel animal models (Perrin
2014) to better understand disease pathophysiology, according to guidelines for
preclinical studies (Kilkenny et al. 2010); (2) using correct experimental designs,
statistical models, and measures; (3) determining drug accessibility to target tissue/
region, right time of treatment, better dose and dose response-curve; (4) differentiat-
ing between null and negative drug effects; (5) adapting innovative study designs
and careful patients’ enrollment to cut cost and increase RCT robustness (Mitsumoto
et al. 2014); (6) classifying phenotypic variations among patients and stratificating
patients in different groups for RCTs; (7) evaluating multiple doses over different
time-spans to point out the correct dose (Gordon and Meininger 2011); (8) incorpo-
rating mathematical modeling and computational biology to discover gene–gene and
gene–environment interaction; (9) developing new models for drug screenings
(Jaiswal 2017); (10) testing multidrug therapy and novel treatment approaches,
such as those with stem cells, antisense oligonucleotides, or mitochondrial
replacement.
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Chapter 13
Modulation of Glutamate for Chronic Pain
Management

Kathleen F. Holton

Abstract Glutamatergic neurotransmission is strongly implicated in both normal
pain neurotransmission and the transition to chronic pain and central sensitization.
As such, there is great interest in identifying optimal treatment options which
beneficially reduce pain with limited side effects. Potential options include antago-
nism of ionotropic and Group I metabotropic glutamate (mGlu) receptors, agonism
of Group II and III mGlu receptors, modulation of transporter function, reduction in
neuroimmune cytokines which affect glutamate, improvement in glutamatergic and
GABA neurotransmission through dietary modulation, and other
non-pharmacological approaches such as electroacupuncture and exercise. Current
pharmacological treatment options are limited due to widespread distribution of
glutamate action in the body, making side effects very common.
Non-pharmacological treatment options such as dietary intervention may be good
adjunct treatments due to the positive effects on glutamatergic neurotransmission
and reduction of inflammation, with little to no side effects. Current pharmacological
and non-pharmacological treatment options which affect glutamatergic neurotrans-
mission for the treatment of chronic pain are reviewed.

Keywords Glutamate · Chronic pain · Central sensitization · Treatment · Ionotropic
glutamate receptor · Metabotropic glutamate receptors · Diet

13.1 Introduction

Pain is considered an essential protective mechanism in the body when happening
acutely. However, chronic pain, related to nerve injury or inflammation, can lead to
reduced quality of life and disability, and is now considered a major public health
problem (Blyth et al. 2015). The prevalence of chronic pain has been estimated to
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fall between 30 and 50% of the worldwide population (Inoue et al. 2015; Fayaz et al.
2016; de Souza et al. 2017), with higher prevalence rates in women and the elderly
(de Souza et al. 2017).

Patients suffering with chronic pain will typically report this sensation after both
painful stimuli (hyperalgesia) and non-painful stimuli (allodynia), manifesting in a
greater pain response than a normal healthy individual (Sandkuhler 2009). This
phenomenon has been associated with central sensitization, where the central ner-
vous system undergoes neuroplasticity to support a persistent state of high reactivity,
which accumulating evidence suggests may also be associated with
neuroinflammation (Ji et al. 2018). Widespread chronic pain commonly presents
with other comorbid symptoms including headache/migraine, cognitive dysfunction,
sleep problems, mood dysregulation, chronic fatigue, and gastrointestinal issues,
which are thought to be related to central sensitization (Yunus 2007). These comor-
bid symptoms can make chronic pain even more debilitating. One study character-
ized high-impact chronic pain in the USA and found that the likelihood of disability
from chronic pain was over 4 times higher than from other chronic conditions
(OR (95% CI) ¼ 4.43 (3.73–5.26) (Pitcher et al. 2019).

Opioids have been used for decades as an effective short-term treatment for acute
pain, and this prior success led to several prominent pain specialists in the 1980s to
suggest that opioids also be prescribed for the treatment of chronic pain (Meldrum
2016). It is now well known that this increased prescribing practice has contributed
to the opioid epidemic now being faced in the USA (Floyd and Warren 2018). The
opioid epidemic has brought to light the imperative need for alternative ways to treat
chronic pain. Glutamate, the most ubiquitous neurotransmitter in mammalian sys-
tems, is well-known for its contribution to pain signaling. This knowledge has led to
a growing interest in identifying ways to modulate glutamatergic neurotransmission
for the treatment of chronic pain.

13.2 The Glutamatergic System in Chronic Pain

Glutamate functions as a neurotransmitter throughout the body, with receptors found
not only in the CNS, but also in the immune system, pancreas, heart, kidney, lungs,
gastrointestinal tract, and skin (Gill and Pulido 2001). The wide-ranging location of
these receptors may be the reason for the diverse symptom presentation in wide-
spread chronic pain conditions, as well as the varying side effect profiles of medi-
cations affecting this system.

Glutamate plays a major role in pain neurotransmission, with receptors found in
the sensory part of the periphery, the spinal column (Aδ and C fibers), and in the pain
processing areas of the brain, such as the anterior cingulate cortex (ACC), insular
cortex (IC), primary somatosensory cortex (S1), secondary somatosensory cortex
(S2), and prefrontal cortex (PFC) (Zhuo 2017). Additionally, the amygdala, a brain
region responsible for the pain-related emotional responses and anxiety-like behav-
ior, also uses glutamate in its functioning (Neugebauer 2015).
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Peripheral pain signaling can activate Aδ and C fibers in the spinal cord, releasing
glutamate in the spinal dorsal horn, along with pain-related neuropeptides like
substance P and neurokinin A. These neuropeptides and glutamate then activate
spinal dorsal horn neurons, triggering afferent signaling to the thalamus which then
signals to the brain areas mentioned above (Li et al. 2019). It is important to note that
substance P has the ability to create permeability in the blood-brain barrier (BBB)
(Vink et al. 2017), in addition to the BBB being susceptible to neuroinflammatory
effects from mast cells and glia cells (Skaper 2016). Thus, prolonged pain signaling
and neuroinflammation can lead to increased susceptibility to toxins circulating in
the bloodstream.

There are two major types of glutamate receptors, ionotropic and metabotropic.
The ionotropic receptors include NMDA (N-methyl-D-aspartate), AMPA (α-amino-
3-hydroxy-5-methyl-4-isoxazopropionic acid), and kainate receptors ((Zhuo 2017).
For an in-depth review of the contribution of cortical ionotropic glutamate receptors
in chronic pain, the reader is encouraged to see Zhuo (2017). Additionally, recent
research has also shown that metabotropic receptors have the ability to affect pain
through their ability to modulate the action of the ionotropic receptors (Palazzo et al.
2014; Cavallone et al. 2020).

The NMDA receptor has the most complex modulation of the ionotropic recep-
tors. As opposed to simple transport of sodium and potassium which is used for
AMPA and kainate function, the NMDA receptor has more complex regulation and
uses calcium signaling. For NMDA activation, glutamate must be present along with
glycine (Curras and Pallotta 1996). Magnesium can block the calcium channel of the
NMDA receptor, serving as a soft inhibitor to activation (Kirkland et al. 2018)
and this block can be removed by sufficient membrane depolarization (Latremoliere
and Woolf 2009). Additionally, zinc is co-released with glutamate at the synapse,
and also has the ability to modulate function of the NMDA receptor (Mony et al.
2009). Phencyclidine (PCP) and ketamine are both well-known strong antagonists of
the NMDA receptor and have been used as drugs of abuse (Cadinu et al. 2018).
Thus, this receptor can be modulated by both pharmacological and nutritional
means.

While all three ionotropic receptors have some impact on chronic pain, the
NMDA receptor has been most highly implicated in pain, being especially important
for long-term potentiation (LTP), which is a strengthening of synapses based on
patterns of signals, which results in long-term strengthening of signal transmission
between neurons. While LTP is vital for memory and learning processes in the
hippocampus, it can have negative consequences for chronic pain when it occurs in
the spinal cord, ACC, and IC (Li et al. 2019), leading to central sensitization
(Latremoliere and Woolf 2009). Glial activation has also been implicated in the
pathogenesis of chronic pain, with some authors having suggested that chronic pain
may manifest as a “gliopathy” or dysfunction of glial cells, which has been
connected to neuroinflammation (Ji et al. 2013). Gliopathy is characterized by
downregulation of astrocytic glutamate transporters in spinal astrocytes, resulting
in glutamate accumulation and excessive excitation of neurons (Sung et al. 2003).

13 Modulation of Glutamate for Chronic Pain Management 383



Historically, it was believed that central sensitization resulted from sustained
persistent nociceptive input from the periphery; however, it is now understood that
central sensitization can also occur from changes in the properties of neurons in the
central nervous system (Latremoliere and Woolf 2009). For example, traumatic
brain injury and multiple sclerosis can cause central sensitization,
neuroinflammation, and chronic pain, without any peripheral trauma or damage
(Hains and Waxman 2006).

13.3 Molecular Targets of the Glutamate Neurotransmitter
System

In order to identify optimal molecular glutamatergic targets for the treatment of
chronic pain, it is imperative to understand potential areas of modulation. Drug
development has been somewhat inhibited due to the wide distribution of glutamate
receptors throughout the peripheral and central nervous systems, making it difficult
to treat chronic pain via modulation of glutamate, without causing side effects in
some bodily functions.

Potential drug targets include antagonists of the ionotropic and Group I mGluRs,
agonists of Group II and III mGluRs, modulation of NMDA receptor function,
inhibition of calcium or sodium channels of glutamate receptors, upregulation of
glutamate transporters which help clear glutamate from the synaptic cleft to prevent
excitotoxicity, upregulation of the inhibitory neurotransmitter GABA to off-set the
excitatory effects of glutamate, or modulation of neuroimmune cytokines to reduce

Fig. 13.1 Glutamate and GABA receptors
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neuroinflammation and the downstream effects on excitatory neurotransmission.
Figure 13.1 shows the differential effects of glutamate and GABA receptors.

13.4 Emerging Treatments Related to Glutamate
Modulation

13.4.1 Pharmacological Effects on Glutamate
Neurotransmission

There are five types of pharmacological approaches currently being used to treat
chronic pain. Each of these is discussed below, including specific examples of
medications, the types of pain they are being used to treat, and side effects or
other limitations to their use.

13.4.2 NMDA Antagonists

NMDA antagonists have demonstrated varying benefit for the treatment of chronic
pain (Nicol et al. 2017). As discussed above, due to the location of glutamate
receptors throughout the body, antagonism of ionotropic receptors, such as the
NMDA receptor, can cause widespread side effects in the body, in addition to
having the potential for abuse (Liu et al. 2016). However, due to how strongly the
NMDA receptor is implicated in chronic pain and central sensitization, there is
intense interest in modulation of this receptor.

Ketamine has been tested in many types of neuropathic pain, with demonstrated
benefit in 12 of 13 intravenous studies and 2 of 3 studies using oral ketamine, but
only in 1 of 5 studies using the topical version (Aiyer et al. 2018). Ketamine is the
only medication which has demonstrated effectiveness in treating chronic regional
pain syndrome (CRPS) (Sigtermans et al. 2009; Schwartzman et al. 2009) and has
also demonstrated positive intra-group change effects in fibromyalgia (Olivan-
Blazquez et al. 2014). Use of IV ketamine for pain is considered an off-label use,
and as such, is not covered by insurance, and is also expensive to set up, which limits
the feasibility and accessibility of this medication (Aiyer et al. 2018). The downsides
of this approach include the necessity for tight control of drug delivery, mainly by IV
administration, and its high potential for abuse (Liu et al. 2016); however, as
demonstrated above, IV ketamine has the most studies supporting its use. Side
effects of ketamine, like other NMDA antagonists, affect multiple body regions
and include psychedelic effects, nausea/vomiting, somnolence, heart effects, blad-
der/renal complications and infrequent hepatotoxicity (Niesters et al. 2013). Keta-
mine sensitization (necessary for addiction to occur) has been shown to be both
robust and reliable in animal studies (Trujillo and Heller 2020). Nevertheless, in
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2018, consensus guidelines were published by the American Society of Regional
Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the
American Society of Anesthesiologists, supporting the intravenous use of ketamine
for the treatment of chronic pain. The group observed that the level of evidence
varied by condition and dose range, with higher doses and more frequent infusions
being associated with the greatest risk of side effects (Cohen et al. 2018).

Dextromethorphan is a medication most often seen as an ingredient in cough
suppressant over-the-counter medication. It has also been tested as a treatment for
chronic pain, and was found to be effective in reducing pain intensity in diabetic
neuropathy (Sang et al. 2002; Nelson et al. 1997). Dextromethorphan is thought to
be a safer alternative to ketamine, but can cause psychological addiction, and is
limited by side effects including skin issues, gastrointestinal symptoms, vestibular
effects, confusion, sedation, nervousness, and hallucinations (Ziaee et al. 2005).

Carbamazepine is a medication typically used to treat seizure disorders, but which
is also used for treatment of neuropathic pain. Most of the studies have been
conducted on trigeminal neuralgia, with consistent benefit being demonstrated in
most studies, as well as some suggested benefit in diabetic neuropathy (Aiyer et al.
2018). Carbamazepine appears to have a narrow therapeutic index and substantial
interethnic and interindividual variability in effectiveness. Some serious adverse
effects of this medication have been reported, and include decreased bone marrow
function, suicidality, and potentially life-threatening hypersensitivity reactions, such
as Stevens-Johnson syndrome and toxic epidermal necrolysis (Jaramillo et al. 2014).

Interestingly, methadone, which is typically known for its action as a synthetic
opioid agonist, has been shown to also be a potent NMDA antagonist (Davis and
Inturrisi 1999; Shimoyama et al. 1997). Three out of six studies have demonstrated
efficacy of methadone for the treatment of neuropathic pain and chronic cancer pain
(Aiyer et al. 2018), but use of this medication is limited by risk of cardiac compli-
cations (Faisal and Jacques 2017) and the stigmas surrounding its use, which have
been tied to discrimination, stereotypes and prejudice (Earnshaw et al. 2013).

Lastly, valproic acid is an anticonvulsant which has also been shown to block
excitatory responses via NMDARs. It has good evidence for neuropathic pain relief,
with 4 of 5 studies demonstrating benefit (Aiyer et al. 2018). Valproic acid is also
being used for migraine prevention (Shelton and Connelly 1996) and is used as an
intravenous treatment for acute migraine treatment (Waberzinek et al. 2007). How-
ever, this medication is also limited by its side effect profile which includes derma-
tological effects on skin, alopecia, organ toxicity, weight gain, and worsening of
triglyceride, glucose, and cholesterol measures (Dreifuss and Langer 1988).

Overall, a systematic review of these NMDA antagonists reported that IV keta-
mine and oral carbamazepine currently have the most evidence of efficacy for
neuropathic pain conditions (Aiyer et al. 2018). Even though there are substantial
side effects to antagonism of the NMDA receptor, the benefits demonstrated so far
are great enough to elicit continued research in this area.
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13.4.3 Modulation of Metabotropic Glutamate Receptors

Metabotropic glutamate receptors (mGluRs) are gaining attention as a potential
candidate for drug development for chronic pain (Cavallone et al. 2020; Palazzo
et al. 2014). These mGluRs are able to modulate presynaptic neurotransmission by
influencing ionotropic neurotransmission. These are classified into three groups
based on their pharmacological profile and effects on signal transduction (Crupi
et al. 2019). Group I mGluRs (including mGluR1 and mGluR5) normally increase
excitation, whereas Group II mGluRs (including mGluR2 and mGluR3) and Group
III mGluRs (including mGluR4, mGluR6, mGluR7, mGluR8) normally inhibit
ionotropic glutamatergic neurotransmission (Conn and Pin 1997). Thus, work is
focusing on antagonists to specific Group I receptors and agonists to specific
mGluRs in Group II and III. For example, Cavallone and colleagues recently
reported on research testing the mGlu5 antagonist Fenobam in humans, since this
compound has shown analgesic effects in a number of mouse pain models (Montana
et al. 2011; Crock et al. 2012). Unfortunately, they did not observe any lasting
antihyperalgesic or antinociceptive effects of fenobam compared to placebo in a skin
sensitization model in humans; and the authors recommend further clinical trials
with other compounds with better pharmacokinetic profiles (Cavallone et al. 2020).
Animal models have also demonstrated promising analgesic effects from agonists of
Group II and III receptors, such as (S)-3,4-DCPG (Palazzo et al. 2014), but, to the
best of our knowledge, no human studies using this compound have yet been
conducted. Thus, development of drugs affecting mGluRs is still in its infancy and
more work is needed to help improve the selectivity of these compounds to help
bypass the differential pain effects in animals versus humans.

13.4.4 Modulation of Glutamate Transporters

There is great interest in ways to modulate excitatory amino acid transporters as a
treatment for chronic pain. These transporters clear glutamate from the synaptic
cleft, helping to prevent excitotoxicity. The glutamate transporters include EAAT1/
GLAST, EAAT2/GLT-1, and EAAT3-EAAT5, with the first two facilitating >95%
of glutamate transport in astrocytes, oligodendrocytes, and microglia (Danbolt 2001;
Domercq and Matute 1999; Xin et al. 2009). Abnormal function of these transporters
(such as due to energy deprivation via caloric restriction) is known to lead to
excitotoxic neuronal damage (Kanai et al. 2013). One exciting line of research is
examining the effects of beta-lactam antibiotics on glutamate transport function.
Ceftriaxone is a broad-spectrum beta-lactam antibiotic that enhances glutamate
reuptake through increased expression of excitatory amino acid transporter
2 (GLT1/EAAT2) (Lee et al. 2008). Ceftriaxone has also been shown to induce
expression of the cystine/glutamate exchanger, which increases cysteine availability
for the production of the potent antioxidant glutathione, leading to additional
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antioxidant neuroprotective effects (Gegelashvili and Bjerrum 2014). However,
long-term antibiotic treatment is not ideal for chronic pain, so work on alternative
beta-lactam compounds which are devoid of antibiotic properties is in development.
For example, clavulanic acid is a beta-lactam compound under investigation for the
treatment of pain, which has been shown to upregulate glutamate transporters in rat
studies (Kristensen et al. 2018). This is a very promising area of drug development.

In addition to beta-lactam antibiotic type compounds, other drugs which
upregulate glutamate transport include riluzole and amitriptyline. Riluzole is a
medication approved for use in ALS which also enhances the reuptake of glutamate
by inducing GLT1 expression (Carbone et al. 2012). Unfortunately, riluzole is a
relatively toxic compound, and as such, is again limited mostly to its use in serious
neurodegenerative conditions (Clark and Vissel 2016). In contrast, amitriptyline has
been used for years as an effective treatment for chronic pain, with lower doses being
needed for pain than for treating depression (Moore et al. 2012). The exact mech-
anism of the antinociceptive effects of amitriptyline is unknown, but some studies
have suggested that it has the ability to modulate the functional expression of
glutamate transporters in the spinal cord (Mao and Yang 2010). Amitriptyline
appears to be able to cause fast translocation of three major transporters, which
could be mediated through activation of the transcription factor Nf-κB (Tai et al.
2008). Thus, modulation of glutamate transporters is already being used as an
effective treatment for chronic pain and also has some promising new drug candi-
dates like clavulanic acid in the pipeline.

13.4.5 Inhibition of Calcium & Sodium Channels

The gabapentinoids are a class of antiepileptic medications, including pregabalin and
gabapentin, which were originally developed as GABA analogues. However, the
medications ended up having no direct effects on GABA receptors, and instead
appear to reduce excitatory synaptic transmission through inhibition of calcium
channels in the spinal dorsal horn, inhibition of descending serotonergic neurotrans-
mission, and potentially also by stimulating glutamate transport activity via EAAT3
(Chincholkar 2018). Gabapentinoids have demonstrated efficacy in reducing pain in
animal models of postoperative pain and inflammation; however, human studies
have shown variable results with increasing side effects with higher dosages
(Gottrup et al. 2004; Wallace and Schulteis 2008; Boyle et al. 2014; Chizh et al.
2007). Meta-analyses have demonstrated the strongest effectiveness for neuropathic
pain following spinal cord injury (Mehta et al. 2014), no demonstrated benefit for
chronic low back pain, and a high risk for adverse events (Shanthanna et al. 2017;
Enke et al. 2018). Another antiepileptic medication being used for the treatment of
chronic pain is lamotrigine, which blocks sodium channels. This medication is also
thought to suppress the release of the excitatory neurotransmitters: glutamate and
aspartate (Messenheimer 1995). The off-label use of lamotrigine for the treatment of
pain is not supported by the evidence. A recent meta-analysis found no strong
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supporting evidence for the use of 200–400 mg of lamotrigine daily for neuropathic
pain or fibromyalgia, along with an increased risk of adverse events, including rash
(Wiffen et al. 2013).

13.4.6 Modulation of Neuroimmune Cytokines

Neuroimmune modulators such as the cytokines TNF, IL-6 and IL-1β have the
ability to rapidly modulate the excitatory neurotransmitter receptors AMPAR and
NMDAR, as well as the inhibitory neurotransmitter receptors GlyR and GABAR.
This modulation leads to enhanced excitatory neurotransmission and suppressed
inhibitory neurotransmission, resulting in an amplification of pain circuits
(Kawasaki et al. 2008). Thus, neuroimmune cytokines are another potential target
for modulation.

Tumor necrosis factor (TNF) has been identified as a possible drug target to help
lower glutamate levels in neurogenic pain (Clark and Vissel 2016). Excessive TNF
can harm the nervous system by inhibiting glutaminase (the enzyme which converts
non-toxic glutamine into excitatory glutamate) (Takeuchi et al. 2006) and by
inhibiting glutamate reuptake (Fine et al. 1996; Zou and Crews 2005; Carmen
et al. 2009). Etanercept is an anti-TNF biologic in clinical use which has shown
efficacy in reducing brain glutamate levels in experimental models. However, this
molecule is large enough that transport into the CNS is limited, which necessitates
abnormally high doses to elicit these effects (Chio et al. 2010). Other cytokine
modulating drugs are also in testing. However, many of these such as
propentofylline (Sweitzer et al. 2001; Raghavendra et al. 2003), ketorolac (Wang
et al. 2014), and losmapimod (Ostenfeld et al. 2013) have failed to demonstrate
analgesic effects in human studies. Another IL-1 cytokine inhibitor, rilonacept, did
successively show benefit in a small group of subjects suffering from gouty arthritis
(Terkeltaub et al. 2009). In contrast, anakinra, an IL-1β inhibitor, failed to demon-
strate beneficial effects in chronic fatigue syndrome (Roerink et al. 2017). Analgesic
benefit in fibromyalgia has been successfully realized from naltrexone, which blocks
microglial activation (Younger and Mackey 2009). Overall, these immune modu-
lating agents need more research, and similar to other compounds, have been limited
in the translation from animal to human research. Animal models are extremely
important for testing newly developed medications. However, animal models cannot
reproduce every aspect of the varying chronic pain conditions, and this may be part
of the reason for the gap in translation between preclinical and clinical experiments
(Yekkirala et al. 2017).
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13.4.7 Non-Pharmacological Effects on Glutamatergic
Neurotransmission

In addition to exploring novel pharmacological treatment options for chronic pain, it
is also important to optimize non-pharmacological effects on glutamatergic neuro-
transmission. One of the most exciting emerging treatment options for chronic pain
is through dietary modulation. The most promising dietary intervention currently
being explored for the treatment of multi-symptom widespread chronic pain is
through reduction of free glutamate (and aspartate) in the diet (Holton et al. 2012).
Monosodium glutamate (MSG) is a well-known flavor enhancer in the diet, but other
sources of free glutamate are more ubiquitous and can be hidden under many food
additive names, such as hydrolyzed proteins, autolyzed yeast extract, protein con-
centrate, protein isolate, and others. Aspartate has the ability to activate the NMDA
receptor and is also restricted on the low glutamate diet, with common sources being
foods with aspartame and gelatin in them. Free glutamate is also found as a naturally
occurring substance in some products like soy sauce and aged cheeses, so these are
also excluded on the diet. Typically, the blood-brain barrier (BBB) limits transport of
glutamate from the blood into the brain (Smith 2000), which protects an individual
from high circulating plasma concentrations from dietary intake. However, it is well
known that the BBB can become permeable after stress (Robinson and Moody 1980;
Belova and Jonsson 1982), infection (Afonso et al. 2007) including HIV infection
(McRae 2016), trauma (Barzo et al. 1996), neurotoxic exposures (Ravid et al. 2018),
and as mentioned earlier, by substance P, which is released during prolonged pain
transmission (Sorby-Adams et al. 2017). Thus, there are many instances where
dietary intake of glutamate may become relevant for the treatment of chronic pain
(and other conditions mediated by glutamate). Zanfirescu and colleagues have
demonstrated that MSG administered orally to mice can reduce pain thresholds
and significantly increase brain nitric oxide (NO) levels (Zanfirescu et al. 2017).
This is consistent with well-known reports of sensitivity to MSG as a trigger for
primary headache and migraine (Taheri 2017; Shimada et al. 2013; Baad-Hansen
et al. 2010; Headache Classification Committee of the International Headache
Society (IHS) 2013). Injection of MSG into the masseter muscle in humans
(Shimada et al. 2015), as well as oral MSG consumption (Shimada et al. 2016),
has also been shown to elicit jaw pain. My research also supports this idea, as I have
demonstrated significant improvement in fibromyalgia and irritable bowel symptoms
after subjects followed a low glutamate diet for one month. In this study, 84% of
subjects had �30% of their symptoms remit and eight subjects had complete
remission of all symptoms, after one month on the low glutamate diet. Upon
double-blind placebo-controlled crossover challenge, symptoms significantly
returned after challenge with MSG as compared to placebo, demonstrating that it
was the restriction of glutamate from the diet, as opposed to some other inadvertent
dietary effect, which caused the symptom improvement (Holton et al. 2012).
Vellisca and colleagues restricted only MSG and aspartame from the diet of fibro-
myalgia subjects, and reported significant improvement at one month, but not at
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three months. However, this study failed to remove all sources of free glutamate and
aspartate from the diet, failed to monitor dietary adherence, and did not challenge
subjects in a double-blind placebo-controlled manner (Vellisca and Latorre 2014).
Our lab has also demonstrated significant improvement in pain impact scores after
subjects in a rural village in Kenya removed free glutamate from their diets for two
weeks (Holton et al. 2018). Similarly, we are currently observing profound improve-
ments in pain and associated symptoms from treatment with a low glutamate diet in
Gulf War veterans who are suffering from the multi-symptom chronic pain disorder
called Gulf War Illness (GWI). The symptoms of GWI almost completely overlap
with the symptoms of fibromyalgia and chronic fatigue syndrome. Significant
improvements were observed after one month on the low glutamate diet in overall
symptom number, myalgic score, number of tender points, and average dolorimetry
across tender point sites (all p < 0.001). When active intervention effects were
compared to wait-listed controls, the low glutamate diet demonstrated a very large
effect size of d ¼ 1.16, with no adverse effects reported (Holton, et al. 2020). The
low glutamate diet also significantly reduced inflammatory cytokines (Holton et al.
2021) improved cognitive function (Kirkland et al. 2021), and improved depression,
anxiety, and PTSD (all p < 0.001) (manuscript currently under review). Thus, the
low glutamate diet developed in our lab may be a highly effective treatment for
widespread multi-symptom chronic pain conditions, without side effects.

The low glutamate diet described above also optimizes nutrient intake, especially
those nutrients with protective actions in regard to glutamate. Five nutrients stand
out for their strong importance in normalizing glutamatergic neurotransmission, and
include vitamin C, vitamin D, vitamin B6, magnesium, and omega-3 fatty acids.

Vitamin C (ascorbate) is best known for its role as the main water-soluble
antioxidant in the diet (Carr and McCall 2017). Studies have demonstrated the
profound importance of vitamin C for optimal brain function (Kocot et al. 2017),
and vitamin C has been shown to be neuroprotective against glutamate excitotoxicity
in animal models (Shah et al. 2015), specifically for kainate (MacGregor et al. 1996)
and NMDA-related excitotoxicity (Majewska and Bell 1990; Majewska et al. 1990).
Neurons in the CNS have been shown to have some of the highest concentrations of
ascorbate (May 2012). Vitamin C can also directly reduce neural excitability through
modulation of calcium channels (Nelson et al. 2007). Furthermore, ascorbate can
also protect against the reactive oxygen species (ROS) that are produced as a result
of glutamate excitotoxicity (Lane and Lawen 2009).

Vitamin D has hormonal action in the body as well as the ability to regulate gene
transcription through the vitamin D responsive element (VDRE) (Nurminen et al.
2018). In-vitro studies have demonstrated that cultured cortical neurons are protected
from glutamate toxicity by vitamin D, via upregulation of the vitamin D receptor on
the VDRE (Taniura et al. 2006). This includes influence over the production of key
enzymes and receptors which affect glutamatergic neurotransmission. For example,
vitamin D can increase the gene transcription for producing the enzyme glutamic
acid decarboxylase (GAD), which in turn increases the conversion of excitatory
glutamate to inhibitory GABA, thereby lowering excitability in the CNS (Jiang et al.
2014). Research has demonstrated the presence of vitamin D deficiency in some
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chronic pain disorders including arthritis, muscle pain, and chronic widespread pain
(Wu et al. 2018), as well as the beneficial effects of vitamin D supplementation in
those who were identified as having low vitamin D levels (<30 ng/dL) before
starting treatment (Helde-Frankling and Bjorkhem-Bergman 2017). Furthermore,
vitamin D can also affect the gene transcription for important antioxidant enzyme
systems (Ferret et al. 2000) which again are needed to counteract the oxidative stress
which occurs with glutamate excitotoxicity.

Vitamin B6 (as pyridoxal-50-phosphate or PLP) functions as a cofactor for over
100 enzyme reactions, including essential action as a cofactor in the production of
major neurotransmitters in the body (Brown and Beier 2020). As described earlier,
glutamate is the precursor molecule for the production of GABA, the main inhibitory
neurotransmitter. The enzyme used in this conversion (mentioned above), glutamic
acid decarboxylase, also necessitates the use of vitamin B6 as a cofactor (Modi et al.
2015). Thus, deficiency in vitamin B6 may contribute to an imbalance in glutamate
versus GABA, supporting excessive excitation in the nervous system.

The mineral magnesium also plays an important role in nervous system function-
ing. As mentioned earlier, it serves as a blockade to the NMDA receptor and is
thought to help protect against excitotoxicity mediated by glutamate (Kirkland et al.
2018). Additionally, it has been suggested that it may positively affect the function
of GABA A receptors (Moykkynen et al. 2001) creating a net inhibitory effect.
Deficiency of magnesium is common (Workinger et al. 2018) and is likely to result
in increased susceptibility to excitotoxicity and low GABA levels.

Omega-3 fatty acids have been shown to be beneficial for brain aging by
increasing synaptic plasticity and reducing brain inflammation (Cutuli 2017), and
are also thought to be able to modulate glutamatergic neurotransmission. For
example, animals deficient in omega-3 fatty acids were shown to have higher
brain glutamate levels in the prefrontal cortex than control animals and those fed
DHA-rich diets (McNamara et al. 2017). Omega-3 fatty acids also have been shown
to reduce function of astroglial glutamate transporters at basal levels, while not
affecting glutamate transport during reactivity (Grintal et al. 2009). They have also
been shown to decrease inflammation and increase the fluidity of cell membranes
(Calder 2010), which may allow for more efficient neurotransmission. Beneficial
effects of supplementation with omega-3 fatty acids have been shown for the
majority of studies conducted on arthritis pain (Abdulrazaq et al. 2017), and a
meta-analysis of effects on chronic pain reported a pooled random effects estimate
of overall improvement from intervention studies, with a standard mean difference
of �0.40 (95% CI �0.58, �0.22) for pain studies including arthritis, migraine,
dysmenorrhea, chronic myalgia, and myofascial pain (Prego-Dominguez et al.
2016).

Taken all together, there is good evidence that diet can impact glutamatergic
neurotransmission and pain specifically. Future research should expand on this work
and directly compare the beneficial effects and side effects of dietary manipulation to
current pharmacological approaches.

Two other alternative treatments which may affect glutamatergic neurotransmis-
sion include acupuncture and exercise. Animal models suggest that
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electroacupuncture can reduce upregulated NMDA and AMPA receptor expression
in the spinal cord of an inflammatory pain model (Choi et al. 2005), and
downregulation of NMDA in the rostral ventromedial medulla in a model of visceral
pain (Qi and Li 2012). Thus, electroacupuncture may be able to induce analgesia
through changing expression of glutamate receptors. Similarly, exercise has been
shown to increase pain thresholds and induce analgesia; however, the use of this
intervention is slightly nuanced, since it also has the ability to increase pain in some
conditions (Lima et al. 2017). Demonstrated benefit has been shown from high
intensity swimming, which decreased glutamate-induced nociception (Martins et al.
2017). Similarly, women with fibromyalgia have experienced reduced interstitial
glutamate levels in their vastus lateralis, and reduced pain levels, after exercise
intervention (Gerdle et al. 2016). More research is needed to fully understand how
these alternative treatments may be able to impact pain via changes to glutamatergic
neurotransmission. Moreover, there may be great potential for combination therapies
in the treatment of chronic pain.

13.5 Conclusion and Future Perspectives

In summary, pharmacological modulation of glutamatergic neurotransmission can
effectively treat chronic pain conditions but is currently limited in its scope. Direct
antagonism of the NMDA receptor is effective for some pain conditions, but is
limited due to common side effects, and restrictive treatment modalities, such as the
need for IV administration of ketamine for optimal effectiveness, and the high abuse
potential for these types of medications. Modulation of metabotropic glutamate
receptors has shown promising results in animal studies and is a continuing area of
research to find effective compounds for human testing. Modulation of glutamate
transporters is effective for the treatment of pain (e.g. amitriptyline) and promising
work is being conducted on beta-lactam agents (ceftriaxone and clavulanic acid).
Lastly, emerging research on alternative treatments such as modulating
glutamatergic neurotransmission via dietary intervention suggests very promising
potential for this strategy, and other treatments including electroacupuncture and
exercise may also have beneficial effects on glutamatergic neurotransmission. These
non-pharmacological approaches deserve further study. Moreover, it is possible that
a multi-modal treatment approach may have greater benefits than a single modality
for the treatment of chronic pain through the modulation of glutamatergic
neurotransmission.
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Chapter 14
Pharmacological Role of Glutamate
Transporters in Substance Use Disorders

Gerald A. Deehan Jr, Robert A. Waeiss, Tiebing Liang, Zachary A. Rodd,
Youssef Sari, Richard L. Bell, and Sheketha R. Hauser

Abstract Substance use disorders (SUD) represent a public health crisis worldwide.
The development of effective pharmacotherapeutics to treat drug abuse and addic-
tion requires the identification of targetable neurobiological mechanisms. As the
primary excitatory neurotransmitter in the brain glutamate possesses a significant
role in plasticity, learning, and memory, and represents a promising neurotransmitter
of focus for intervention in the etiology of SUDs. Chronic drug exposure induces
lasting neuroadaptations in the glutamatergic system specifically within the
mesocorticolimbic (MCL) reward pathway which is posited to generate maladaptive
deficits in behavioral-control, thus contributing to the addictive cycle. Maintaining
the strict control of glutamate release and clearance is required for homeostasis as
well as the prevention of neurotoxicity and oxidative stress. There are five excitatory
amino acid transporters (EAATs) and three vesicular glutamate transporters. These
function to preserve homeostatic levels of glutamate under normal physiological
conditions. This review aims to highlight and summarize the preclinical evidence for
dysregulation of glutamate transport following drug exposure. Additionally, alter-
ations in glutamate transporters, with an emphasis on glutamate transporter
1 (EAAT2 encodes by SLC1A2) and its role in the development of detrimental
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drug-seeking behaviors, as well as current glutamate transporter-associated treat-
ments being investigated are discussed.

Keywords Substance Use Disorder (SUD) · Glutamate · Excitatory amino acid
transporters (EAAT) · Vesicular glutamate transporter (vGluT) · Ceftriaxone ·
n-acetylcysteine (NAC)

14.1 Introduction

Glutamic acid is a polar amino acid often found in an electrically charged state
within the human body. The ionized form, glutamate, is the most abundant as well as
the primary excitatory neurotransmitter in the mammalian central nervous system
(CNS). Glutamate is directly involved in a number of biological functions including
energy metabolism, cellular differentiation, protein synthesis, and synaptogenesis
through activation of its distinct receptor subtypes or cellular uptake (Zhou and
Danbolt 2014). Glutamate also serves as a precursor for GABA synthesis via
glutamate decarboxylase (GAD) or is transferred into the TCA/Krebs Cycle as
α-ketoglutarate following metabolism by glutamate dehydrogenase (Rowley et al.
2012; Bell et al. 2016b). Decades of research have demonstrated that glutamate
neurotransmission is fundamental to the cellular and molecular mechanisms of
synaptic plasticity and subsequent learning and memory (Kauer and Malenka
2007). Importantly, drug-induced pathological neuroadaptations to the
glutamatergic system has been found to contribute significantly to the development
of substance use disorders (SUDs) and other addictions (Kalivas 2009; Bell et al.
2016a; Kalivas and Volkow 2016; Scofield et al. 2016; Alasmari et al. 2018a, b).
SUDs are characterized by reduced behavioral flexibility in response to drug rein-
forcement, which has been proposed to stem from enhanced drug-seeking behavior
with simultaneous decreases in responses to non-drug stimuli (i.e., fixation; Volkow
et al. 2019). Thus, integration of known changes that occur within the glutamatergic
system, as well as opposing mechanisms that moderate glutamatergic signaling,
following chronic drug exposure is necessary to construct accurate global models of
the addiction process (Siggins et al. 2003; Basavarajappa et al. 2008; Leriche et al.
2008; Nam et al. 2012; Koob 2013; Tabakoff and Hoffman 2013). Therefore, the
goal herein is to explore the mechanisms that regulate glutamate uptake and transport
within the mesocorticolimbic reward neurocircuitry as it pertains to SUDs (Koob
et al. 2014; Rao et al. 2015).
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14.2 Glutamate & Reward Neurocircuitry

To process reward, the brain utilizes complex neurocircuitry that encompasses
several nuclei, projections, and neuromodulators to integrate and evaluate responses
to rewarding stimuli and direct motivational behavior accordingly. A well-
established projection within this circuitry is the mesolimbic dopamine
(DA) pathway (Fig. 14.1). This “reward” pathway originates in the ventral tegmental
area (VTA) and projects to the nucleus accumbens (Acb) (Di Chiara and Imperato
1988; Volkow et al. 2019). A consistent observation throughout the literature is that
addictive substances produce a significant elevation in DA levels within the
mesolimbic pathway, thereby exerting a modulatory role on reward processing
(Di Chiara and Imperato 1988; Volkow and Morales 2015). Currently, the more
predominant view is that the net effect of an organism’s exposure to rewarding/
reinforcing stimuli is processed through both the direct and indirect actions of a drug
on numerous nuclei within the CNS (Volkow et al. 2019). Neurocircuitry that
functions to mediate behavioral and cognitive processes including decision making,
learning, memory, emotion, and sensory processing is widespread and has been
implicated to also have a role in reward processing (Bell et al. 2013; Floresco 2015;
Rao et al. 2015; Koob and Volkow 2016). For instance, modulation of reward
behavior by serotonin (5-HT) and norepinephrine (NE) can be traced to the dorsal
(DR) as well as median (MR) raphe nuclei and the locus coeruleus (LC), respectively
(Cools et al. 2011; Lisieski et al. 2019). Inhibitory influence by γ-amino butyric acid
(GABA), the principal inhibitory neurotransmitter in the CNS, is released from
medium spiny neurons (MSN) and interneurons throughout the reward
neurocircuitry (Morales and Margolis 2017; Seo et al. 2016; Yang et al. 2018).
Modulatory actions via glutamate is ubiquitous and occurs at several levels of
reward processing (cf., Floresco et al. 2001, 2003; Bell et al. 2012, 2013, 2016b,
2017, 2019; Morales and Margolis 2017). Moreover, it has become increasingly
clear that interactions between DAergic and glutamatergic systems within the
“reward” neurocircuit play a major role in addiction (Schmidt and Reith 2005).
Thus, glutamate plays an integral role in reward/reinforcement processing that
mediates addiction.

The mesocorticolimbic (MCL) system encompasses several cortical and limbic
brain structures with several projections which have been strongly implicated in
addiction. Central to this system is the VTA which is primarily composed of DA
neurons that project to the Acb (mesolimbic) and the prefrontal cortex (PFC;
mesocortical) and, to a lesser extent, the amygdala (Amyg) and hippocampus
(HPC; extended Amyg; McBride 2002; Morales and Margolis 2017). Activity in
both pathways is heavily modulated by glutamatergic signaling which, under normal
circumstances, maintains a state of glutamate homeostasis (Scofield et al. 2016).
Structures including the PFC, basolateral amygdala (BLA), HPC, and
paraventricular nucleus of the thalamus (PVN) provide glutamate innervation to
the MCL and act to modulate neural activity associated with reward as well as
reinforcement (Fig. 14.1; Wassum and Izquierdo 2015; Cooper et al. 2017; Bossong
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et al. 2018; Otis et al. 2019). The Acb is divided into the shell (AcbSh) and core
(AcbCo) subregions which receive glutamatergic innervation from the infralimbic
(IL) and prelimbic (PL) regions of the medial mPFC, respectively (Kelley 1999;
McBride et al. 1999) and exhibit opposing influence on motivated behavior associ-
ated with reward (i.e., PL!AcbC ¼ go; IL!AcbSh¼ stop; Peters et al. 2009; Gass
and Chandler 2013; Gourley and Taylor 2016). Thus, the Acb represents an impor-
tant point of convergence for reward signaling that is heavily influenced by
MCL-associated glutamate projections (Fig. 14.1; Di Chiara and Imperato 1988;
Floresco 2015; Scofield et al. 2016).

14.3 Glutamate Regulation & Trafficking

Glutamate synthesis and metabolism is cyclical in nature. The metabolic, diffusion,
transport, and catabolic processes significantly contribute to the maintenance of
glutamate homeostasis and the prevention of neuronal excitotoxicity that can result
from excessive synaptic glutamate and subsequent overactivation of glutamate
receptors. The concentration of glutamate is strictly controlled, with basal levels
varying considerably across nuclei and neurocircuits. Intracellular glutamate con-
centration is the greatest within synaptic vesicles where it can reach 100 mM
(Hayashi 2018). Other intracellular glutamate levels are estimated to be near
2 mM, while extracellular levels are in the low micromolar range. Glutamate in
the synaptic cleft is maintained at an even lower level at less than 20 nM during
resting conditions which can briefly exceed 1 mM following action potential medi-
ated release (Moussawi et al. 2011; Hayashi 2018; Mahmoud et al. 2019). Glutamate
returns to resting levels within milliseconds through both diffusion and transport.
The subregional differences in concentration gradients within the CNS indicate the
importance of maintaining normal physiological levels both temporally and spatially
as well as its potential role in neuropsychiatric diseases (Kalivas 2009; Bell et al.
2016a; Spencer et al. 2016).

In contrast to many neurotransmitters that rely heavily on neuronal uptake,
glutamate uptake regulation is highly dependent upon glial cells (i.e., astrocytes).
Glial regulation occurs via active transport of glutamate from the synapse into
surrounding astrocytes that is then converted into glutamine by glutamine synthetase
(GS; Fig. 14.2; Danbolt 2001; Zhou and Danbolt 2014; Logica et al. 2016). Next, the
newly synthesized glutamine is shuttled from astrocytes back to neurons via gluta-
mine transporters (GlnT) found in the plasma membrane of both cell types
(Fig. 14.2). Specifically, GlnTs are members of the sodium-coupled neutral amino
acid transporter (SNAT) family and utilize the electrochemical gradient across
membranes to transport against concentration gradient. These include SNAT3
(SLC38A3) and SNAT5 (SLC38A5), which move glutamine out of the glial cell
and into the peri-synapse where concentrations range from 200 to 800 μM (Bröer
and Brookes 2001; Pochini et al. 2014). Glutamine is then transported into the
excitatory presynaptic compartment at concentrations up to 20 mM through
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SNAT1 (SLC38A1), SNAT2 (SLC38A2), and/or SNAT7 (SLC38A7; Chaudhry et al.
2002a, b). Importantly, glutamine can be moved in and out of the synaptic space
without inducing neurotoxic cascades (Deitmer et al. 2003; Pochini et al. 2014; Zhou
and Danbolt 2014; Rao et al. 2015). This metabolic/catabolic sequence is particu-
larly advantageous in that it reduces excessive synaptic glutamate levels which can
produce neuroadaptations associated with SUDs and neurotoxicity (Aschner et al.
2007; Lan et al. 2014). Glutaminase then converts intraneuronal glutamine into
glutamate (Rowley et al. 2012), which is packaged into secretory vesicles by
vesicular glutamate transporters (vGluT) in preparation for exocytosis. These
include vGluT1 (SLC17A7), vGluT2 (SLC17A6), and vGluT3 (SLC17A8;
Table 14.1; Bellocchio et al. 2000; Takamori et al. 2000a, b).

There is a significant potential for excessive glutamate in the synapse to induce
overactivation of receptors leading to excitotoxicity and neuronal death. Thus,
efficient glutamate uptake and transport from the synapse and surrounding area is
essential to prevent cell death (Danbolt 2001; Rao et al. 2015; Bell et al. 2016a;

Table 14.1 Summary of glutamate transporters

Excitatory Amino Acid Transporters (EAAT)

Human Rodent Gene CNS distribution Cell type
Subcellular
localization

EAAT1 GLAST SLC1A3 cerebral cortex, cer-
ebellum, spinal cord

Astrocytes,
oligodendrocytes

perisynaptic

EAAT2 GLT-1 SLC1A2 whole brain, cere-
bellum, spinal cord,
retina

astrocytes, neurons perisynaptic,
presynaptic

EAAT3 EAAC1 SLC1A1 hippocampus, stria-
tum, cerebellum

predominantly neu-
rons, some glia

postsynaptic,
cell soma,
dendrites

EAAT4 EAAT4 SLC1A6 cerebellum Purkinje cells postsynaptic,
dendrites

EAAT5 EAAT5 SLC1A7 retina bipolar cells,
photoreceptors

presynaptic

Vesicular Glutamate Transporters (vGluT)

vGluT1 vGluT1 SLC17A7 cerebral cortex, cer-
ebellum, spinal cord

glutamatergic neu-
rons, astrocytes

synaptic vesi-
cles, axon
terminals

vGluT2 vGluT2 SLC17A6 ventral tegmental
area, basolateral
amygdala, nucleus
accumbens, brain
stem

glutamatergic neu-
rons, dopaminergic
neurons

synaptic vesi-
cles, axon
terminals

vGluT3 vGluT3 SLC17A8 hippocampus,
nucleus accumbens,
dorsal striatum,
olfactory tubercle,
medial raphe nuclei

serotonergic neurons,
acetylcholinergic neu-
rons, GABA interneu-
rons, glutamatergic
neurons, and
astrocytes

synaptic vesi-
cles, cell
soma, den-
drites, glial
endfeet
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Mahmoud et al. 2019; Zhang et al. 2019). There are five transporters that regulate
extracellular glutamate levels and these are part of the solute carrier 1 (SLC1A)
family. These transporters are excitatory amino acid transporters (i.e., EAAT1,
EAAT2, EAAT3, EAAT4, and EAAT5) and correspond to human genes SLC1A3,
SLC1A2, SLC1A1, SLC1A6, and SLC1A7, respectively (Table 14.1). The rodent
homologues are referred to as glutamate aspartate transporter (GLAST; Slc1a3),
glutamate transporter 1 (GLT-1; Slc1a2), excitatory amino acid carrier 1 (EAAC1;
Slc1a1), EAAT4 (Slc1a6), and EAAT5 (Slc2a7; Wadiche et al. 1995; Arriza et al.
1997; Tanaka 2000). Similar to GlnTs, EAAT makes use of electrochemical gradi-
ents to transport glutamate against its concentration gradient. This occurs through
cotransport of one H+ and three Na+ ions along with the glutamate molecule while
exporting a single K+ ion (Grewer et al. 2008).

Glycine and glycine transport are also critical when exploring the prototypical
excitatory synapse. The N-methyl-D-aspartate receptor (NMDAR) contains subunits
with a co-agonist glycine binding site that potentiates glutamate signaling as well as
priming the receptor for internalization (Nong et al. 2003). Glycine transporter
1 (GlyT1) encoded by SLC6A9 is principally localized on glia, while GlyT2
(SLC6A5) is neuronally expressed at excitatory synapses. Additionally, there has
been increased interest in the efficacy of N-acetylcysteine to treat neuropsychiatric
disorders. It is therefore equally important to recognize the significance of the
cystine–glutamate exchanger (xCT; Slc7a11) and its effects on reversing neuronal
damage induced by excitotoxicity and/or oxidative stress (Lewerenz et al. 2013).
The xCT is commonly localized on astroglial cells and functions to exchange
extracellular cystine for intracellular glutamate at a one-to-one ratio (Watts et al.
2014). Glutamate is released in the exchange of cystine and binds at the presynaptic
mGluR2/3, thereby blocking synaptic glutamate release (Javitt et al. 2011; Moran
et al. 2005) and acting as a regulatory mechanism of glutamate homeostasis. Next,
cystine can be converted into cysteine, which is used to synthesize glutathione as
well as other proteins. Glutathione is a key antioxidant and functions to prevent or
reverse neuronal injury induced by excessive levels of glutamate and free radicals
(Patten et al. 2013).

14.4 Vesicular Glutamate Transporters

The vesicular glutamate transporters (vGluTs) are highly expressed in neurons
throughout the CNS with vGluT1 and vGluT2 more commonly found in
glutamatergic cells (Table 14.1). Specifically, vGluT1 localization is generally
widespread and found in the HPC, Amyg, Acb, PFC, cerebellum, and spinal cord.
Expression of vGluT2 is more limited and is localized to the BLA, Acb, and VTA.
On the other hand, vGluT3 is found primarily in non-glutamatergic cells (e.g.,
serotonergic, glial, GABAergic, cholinergic) of the Acb, olfactory tubercle, HPC,
and MRN (Wang et al. 2019; Zhang et al. 2019). Relative to EAATs, vGluTs display
100–1000-fold less affinity for glutamate (Shigeri et al. 2004). Importantly, vGluTs
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have a micromolar affinity for glutamate but do not transport aspartate, glutamine, or
GABA. The function of vGluTs is known to be dependent upon a vesicular proton
electrochemical gradient that is produced by ATPase activity. The transporters also
have a biphasic interaction with Cl-, where low concentrations initiate uptake while
higher concentrations have an inhibitory action on transporter function (Shigeri et al.
2004).

Alterations in vGluT1 have been associated with schizophrenia, addiction,
Alzheimer’s disease, and epilepsy (Alonso-Nanclares and De Felipe 2005; East-
wood and Harrison 2005; Mark et al. 2007; van der Hel et al. 2009). For example,
vGluT1 mRNA was increased five-fold in the DRN of rats following peri-adolescent
binge like alcohol drinking. This change was coupled with a significant reduction in
both vGluT2 and vGluT3 mRNA expression levels (McClintick et al. 2015). Addi-
tionally, following exposure to methamphetamine there was a significant and long-
lasting increase in vGluT1 mRNA and protein levels in the striatum (Mark et al.
2007). Knackstedt and colleagues (2009, 2010) reported a reduction in vGluT1
expression in the AcbCo following self-administration of cocaine or nicotine. Due
to the distinct regional and cellular expression of vGluT isoforms, these proteins are
often used as markers to delineate specific neuronal subpopulations. The deletion of
vGluT2 induced prenatal or neonatal mortality and an almost complete loss of
glutamate activity in the thalamus, but not in the HPC (Moechars et al. 2006).
Activation of vGluT2 expressing DA neurons in the VTA enhanced learning of a
conditioned place preference as well as reinforcing instrumental behavior (Wang
et al. 2015). Repeated deprivations from alcohol reduced vGluT2 in the AcbSh
(Zhou et al. 2006). The involvement of vGluT3 is involved in fear, stress, hearing, as
well as stimulant-induced locomotor activity (Ryu et al. 2017; Balazsfi et al. 2018; Li
et al. 2018; Mansouri-Guilani et al. 2019; Sakae et al. 2019). Collectively, these
findings provide evidence that vGluTs may play an important role in addiction
behaviors.

14.5 Plasma Membrane Glutamate Transporters

Glutamate transporters are located throughout the brain. EAAT1, or GLAST, is
located both on the plasma membrane and the mitochondrial membrane of glial cells
(i.e., astrocytes, microglia, and oligodendrocytes). EAAT2 (GLT-1) is located on
astrocytes, microglia, oligodendrocytes and on axon terminals (e.g., CA3 of the
HPC) and represents the primary transporter that removes more than 90% of
glutamate from the synapse, which is necessary to prevent excitotoxicity and
promote normal physiological function (Danbolt 2001). EAAT3, encoded by
SLC1A1, is located on neurons, specifically dendrites and axon terminals. Like the
predominantly glial transporters, EAAT3 removes excess glutamate from the syn-
apse but also transports aspartate and cysteine. A SLC1A1 polymorphism is present
in a subpopulation of individuals with obsessive-compulsive disorder (Stewart et al.
2013). In addition, there is some evidence that amphetamine leads to internalization
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of EAAT3 and this may coincide with internalization of the DA transporter as well
(Underhill et al. 2014). EAAT4 is expressed predominantly in the cerebellum
transporting both glutamate and aspartate concurrent with the transport of chloride
ions (Fairman et al. 1995), as well as in spinal cord, forebrain, and astrocyte
(Hu et al. 2003). In addition, the xCT (SLC7A11), a chloride-dependent, sodium-
independent transporter is located primarily on astrocytes (Bridges et al. 2001; Lin
et al. 2016). While the xCT is present throughout the brain, there is especially high
expression in the BLA and PFC of the MCL (Bridges et al. 2012). Finally, the
EAAT5 is found only in the retina (Table 14.1). For more information, there are
additional reports that expand on the mechanisms of glutamate transport (Rothstein
et al. 1994; Lehre et al. 1995; Wadiche et al. 1995; Arriza et al. 1997; Tanaka 2000;
Danbolt 2001; Huggett et al. 2002; Beschorner et al. 2007; Bellesi and Conti 2010;
Reissner and Kalivas 2010; Carbone et al. 2012; Karki et al. 2015; Bell et al. 2016a;
Spencer et al. 2016; Mazaud et al. 2019).

14.6 Upregulating Glutamate Transporters
and the Treatment of SUDs

Substantial evidence suggests that the development of substance dependence
involves changes in many aspects of glutamate homeostasis. Glutamate transmission
is heavily regulated by the glutamate transporters described in this review. Impor-
tantly, GLT-1 is considered the primary glutamate transporter in the brain that
regulates up to 90% of extracellular glutamate. Concurrently, xCT regulates gluta-
mate uptake through the exchange of extracellular cystine for intracellular glutamate
(Bannai and Ishii 1982; Bannai 1984; Sari 2013). Modulation of glutamate transport
through upregulation of GLT-1 is a promising avenue to treat dependence on drugs
of abuse, including ethanol and cocaine (Rao et al. 2015; Spencer and Kalivas 2017;
Alasmari et al. 2018a, b). Discussed here are the effects of medications, known to
upregulate GLT-1, on the attenuation of drug-seeking behaviors. An emphasis on the
use of β-lactam antibiotics, particularly ceftriaxone and N-acetylcysteine, as GLT-1
upregulators to attenuate drug-seeking behaviors is of particular interest.

14.7 Ceftriaxone and Ethanol

The expression of GLT-1 and its function can be upregulated by FDA-approved
β-lactam antibiotics, which increase glutamate uptake (Rothstein et al. 2005; Spen-
cer and Kalivas 2017). Ceftriaxone is a beta-lactam antibiotic that is known to
increase glutamate reuptake through the upregulation of glial GLT-1 expression
and/or function (Rothstein et al. 2005). Ceftriaxone decreases ethanol consumption
and ethanol preference over water in alcohol-preferring (P) rats (Sari et al. 2011,
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2013b; Rao and Sari 2014; Das et al. 2015) and outbred rats (Stennett et al. 2017).
These decreases in ethanol intake are associated with normalization (i.e., reversal of
ethanol-induced decreases) of GLT-1 and/or xCT protein levels in the Acb and/or
PFC (Sari et al. 2011, 2013a, 2013b; Rao and Sari 2014; Das et al. 2015). Ceftriax-
one attenuated ethanol-induced increases in extracellular glutamate in the Acb in
male P rats (Das et al. 2015), an effect that is likely mediated through upregulation of
GLT-1. In contrast, Stennett et al. (2017) found that ethanol intake in Sprague-
Dawley rats did not alter GLT-1 and xCT protein levels, which suggests that there
might be dysfunction of these transporters without alteration of their expression.
However, Sprague-Dawley rats consume much less ethanol than Wistars, Long-
Evans, and selectively bred alcohol-preferring rat lines (cf., Bell et al. 2014) possibly
leading to a floor-effect in the Stennett et al.’ (2017) study. It is important to note that
the expression of GLT-1 was not affected in the PFC and Acb in P rats that were
experiencing relapse-like ethanol behavior (Qrunfleh et al. 2013). However, ceftri-
axone treatment upregulated GLT-1 in these brain regions and attenuated relapse-
like ethanol-seeking behavior, which suggests that restoring dysfunctional GLT-1 is
critical in the attenuation of ethanol seeking (Qrunfleh et al. 2013). Other studies
confirmed the efficacy of ceftriaxone on reducing relapse-like ethanol-seeking
behaviors (Abulseoud et al. 2014; Alhaddad et al. 2014b; Rao and Sari 2014) and
alleviating ethanol withdrawal symptoms in male P rats (Abulseoud et al. 2014), and
this effect was associated with an upregulation of GLT-1 and xCT in the Acb, PFC,
and/or whole striatum (i.e., Acb, caudate, and putamen; Abulseoud et al. 2014;
Alhaddad et al. 2014b) and specific upregulation of GLT-1 isoforms (GLT-1a and
GLT-1b; Alhaddad et al. 2014a). Additionally, pretreatment with ceftriaxone during
acquisition of ethanol drinking reduces the maintenance of ethanol intake in female
adolescent and adult P rats, with a greater effect in adult rats (Sari et al. 2013a).

14.8 Ceftriaxone and Psychostimulants

Ceftriaxone appears to be more effective in reducing cocaine-seeking behaviors than
cocaine self-administration itself (Sari et al. 2009; Sondheimer and Knackstedt 2011;
Roberts-Wolfe and Kalivas 2015). Ceftriaxone attenuated cocaine-primed, context-
induced, or other cue-induced reinstatement of cocaine-seeking behaviors (Sari et al.
2009; Knackstedt et al. 2010; Roberts-Wolfe and Kalivas 2015; LaCrosse et al.
2016; Bechard et al. 2018; Bechard and Knackstedt 2019). Ceftriaxone-induced
attenuation of cocaine-seeking is associated with normalization (i.e., reversal of
cocaine-induced reductions) of GLT-1 and/or xCT expression in the Acb (Kalivas
2009; Sari et al. 2009; Knackstedt et al. 2010; Sondheimer and Knackstedt 2011;
LaCrosse et al. 2016; Spencer and Kalivas 2017; Bechard et al. 2018).

Importantly, ceftriaxone has also been found to attenuate reinstatement to meth-
amphetamine seeking behavior in conditioned place preference paradigm
(Abulseoud et al. 2012), possibly through overexpression of GLT-1. For instance,
overexpression of GLT-1 in Acb using gene transfer technology blocked
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methamphetamine reinstatement in conditioned place preference (Fujio et al. 2005).
It is important to note that exposure to methamphetamine can lead to increase of
glutamate release in the Acb and PFC (Ito et al. 2006; Labarca et al. 1995; Shoblock
et al. 2003; Stephans and Yamamoto 1995; Xue et al. 1996). These studies would
suggest that upregulation of GLT-1 with ceftriaxone is critical to the regulation of
glutamate uptake and subsequent attenuation of the reinstatement of methamphet-
amine seeking behavior. Acute repeated exposure to high dose of methamphetamine
of 10 mg/kg, i.p., every 2 h � 4/day downregulated the expression of GLT-1 in the
dorsal striatum, medial PFC and Acb (Alshehri et al. 2017; Althobaiti et al. 2016b).
Importantly, ceftriaxone attenuated the effects of methamphetamine-induced GLT-1
downregulation in these brain regions (Alshehri et al. 2017; Althobaiti et al. 2016b)
as well as methamphetamine-induced alterations in tissue content of several neuro-
transmitters, including glutamate (Althobaiti et al. 2016a).

14.9 Ceftriaxone and Other SUDs

As with ethanol, cocaine, and methamphetamine, chronic nicotine exposure
downregulated astrocytic GLT-1 and xCT within the Acb and/or VTA (Knackstedt
et al. 2009; Gipson et al. 2013; Spencer and Kalivas 2017). However, ceftriaxone
had no effect on the development of a nicotine conditioned place preference in mice
(Alajaji et al. 2013), but did attenuate nicotine-induced reinstatement in conditioned
placed preference paradigm (Alajaji et al. 2013; Philogene-Khalid et al. 2017) and
reversed nicotine withdrawal signs (Alajaji et al. 2013). In rats, ceftriaxone reduced
oral nicotine-sucrose and nicotine-ethanol intake by P rats, which was concurrent
with normalization of GLT-1 expression levels in the Acb and PFC (Sari et al. 2016).
Overexpression of GLT-1 in the Acb reduced morphine conditioned place prefer-
ence but did not affect somatic signs of naloxone-precipitated morphine withdrawal
(Fujio et al. 2005). Administration of ceftriaxone also attenuated the development of
tolerance to the anti-nociceptive effect of morphine and reduced naloxone- or
naltrexone-precipitated morphine withdrawal in mice and rats (Rawls et al. 2010;
Habibi-Asl et al. 2014; Medrano et al. 2015). Moreover, morphine-induced condi-
tioned place preference and morphine-associated locomotor sensitization were atten-
uated by ceftriaxone treatment (Schroeder et al. 2014). Shen et al. (2014) reported
that heroin self-administration impaired functional glutamate uptake and decreased
GLT-1 expression in the Acb. These authors also reported that ceftriaxone reduced
cue-induced reinstatement of heroin seeking (Shen et al. 2014). In addition, ceftri-
axone treatment attenuated morphine-induced hyperthermia (Rawls et al. 2007). A
more recent study showed that ceftriaxone attenuated the reinstatement of
hydrocodone-induced conditioned place preference and normalized a
hydrocodone-induced reduction of xCT expression in the Acb (Alshehri et al. 2018).
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14.10 Other Upregulators of GLT-1 and SUDs

Administration of the β-lactam antibiotics amoxicillin, Augmentin (amoxicillin/
clavulanate; Goodwani et al. 2015; Hakami et al. 2016), and ampicillin (Alasmari
et al. 2015; Rao et al. 2015) attenuates ethanol intake in male P rats. Similar to
ceftriaxone, systemic administration of Augmentin and amoxicillin upregulated/
normalized xCT and GLT-1 levels in the Acb and/or PFC (Alasmari et al. 2015;
Goodwani et al. 2015; Hakami et al. 2016, 2017). A recent report by Hammad et al.
(2017) examined the effects of the β-lactam antibiotic ampicillin/sulbactam on
cocaine reinstatement by male P rats. These authors found that cocaine-primed
reinstatement downregulated GLT-1 and xCT in the AcbSh and AcbCo, but not
the dorsal medial PFC (dmPFC; Hammad et al. 2017). Ampicillin/sulbactam
reduced cocaine-induced reinstatement in a conditioned place preference paradigm
while normalizing the expression of GLT-1 and xCT in the AcbSh, AcbCo, and
dorsal mPFC as well as mGluR1 levels in the AcbCo, although there was a decrease
in locomotor activity following treatment (Hammad et al. 2017). Importantly,
ampicillin/sulbactam attenuated cocaine-induced ethanol deprivation effects, and
this effect was associated with upregulation of GLT-1 and xCT expression in the
AcbSh and AcbCo as well as dmPFC (Hammad and Sari 2020).

Cefazolin and cefoperazone, both β-lactam antibiotics, decreased ethanol but not
sucrose intake (Rao et al. 2015; Alasmari et al. 2016). Cefazolin and cefoperazone
both upregulate GLT-1 and its isoforms (GLT-1a and GLT-1b) in the Acb and PFC
(Rao et al. 2015; Alasmari et al. 2016). Regarding xCT, cefazolin increased expres-
sion in both the Acb and PFC, while cefoperazone only upregulated xCT expression
in the Acb (Alasmari et al. 2016). Clavulanic acid, a β-lactamase inhibitor,
upregulates GLT-1 in the Acb (Kim et al. 2016). Clavulanic acid decreased ethanol
intake at a dose that was approximately 30-fold lower than ceftriaxone in P rats
(Hakami and Sari 2017; Althobaiti et al. 2019). This effect was associated with
restored expression of GLT-1 and xCT in Acb (Hakami and Sari 2017; Althobaiti
et al. 2019) and increased the expression of mGlu2/3R in the AcbSh and mPFC
(Althobaiti et al. 2019). In addition, clavulanic acid blocked the reinstatement of
methamphetamine-induced condition place preference (Althobaiti et al. 2019) and
this effect was associated with restoration of GLT-1 and xCT levels in the AcbSh,
but not in the AcbCo. In Mice, clavulanic acid produced significantly lower break-
points for cocaine maintained on a progressive ratio schedule of reinforcement (Kim
et al. 2016). Clavulanic acid also attenuated reinstatement to morphine in rats tested
using the conditioned place preference paradigm (Schroeder et al. 2014).

Other non-antibiotic drugs have been tested in male P rats and found to attenuate
ethanol intake, an effect associated with upregulation/activation of GLT-1. Among
these synthetic drugs, 3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-
dioxopentyl)-2-pyrrolidinecarboxylate (GPI-1046), an analog of FK506, and (R)-
(�)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153). GPI-1046 treatment reduced
ethanol intake in P male rats and upregulated the expression of GLT-1 levels in
key central reward brain regions (i.e., Acb and PFC; Sari and Sreemantula 2012).
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MS-153 treatment also reduced ethanol intake and attenuated an ethanol-induced
reduction in the expression of GLT-1 in the Acb, Amyg, and HPC (Aal-Aaboda et al.
2015; Alhaddad et al. 2014b).

14.11 N-acetylcysteine

N-acetylcysteine (NAC) is an FDA-approved treatment for paracetamol (acetamin-
ophen) overdose. NAC is oxidized into cystine leading to increase in availability of
cystine for the astroglial xCT (Nocito Echevarria et al. 2017). Increased levels of
cystine lead to an enhancement of glutamate exchange by astroglial cells resulting in
elevated concentrations of glutamate within the extrasynaptic space, increased
synthesis of glutathione (GSH) in astrocytes, and restoration of downregulated
GLT-1 expression (Berk et al. 2013; Brown et al. 2013; Nocito Echevarria et al.
2017). We suggest that the restoration of GLT-1 is associated with decrease in
extracellular glutamate concentrations in the brain and increases in the exchange
of cystine and glutamate thereby leading to increases in the biosynthesis of GSH.
This is an important process to reduce oxidative stress, which might be caused with
chronic exposure to drugs of abuse. Substantial research has shown that NAC has
antioxidant, anti-inflammatory, and neuroprotective properties (cf., Santus et al.
2014; Shahripour et al. 2014; Bhatti et al. 2017; Markoutsa and Xu 2017; Pei
et al. 2018).

14.12 N-acetylcysteine and Ethanol

Oral administration of NAC reduced ethanol intake, relapse drinking, and relapse-
associated blood ethanol concentrations in the Wistar derived University of Chile
Bibulous (UChB) alcohol-preferring rats (Quintanilla et al. 2016, 2018; Israel et al.
2019). Additionally, NAC fully abolished increased levels of oxidative stress and the
neuroinflammation induced by chronic ethanol intake by UChB rats (Quintanilla
et al. 2018). NAC administration in an ethanol-dependent animal model reduced
ethanol-intake, operant ethanol-self-administration, ethanol break-point (i.e., pro-
gressive ratio), ethanol-seeking behavior, and relapse-like ethanol-seeking behavior
(Lebourgeois et al. 2019). Moreover, NAC prevented stress-potentiated ethanol
intake and abolished conditioned stress-induced reinstatement of ethanol-seeking
behavior in outbred rats (Garcia-Keller et al. 2019).
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14.13 N-acetylcysteine and Cocaine

NAC appears to have limited effects on cocaine self-administration as it failed to
alter cocaine self-administration in rats (Murray et al. 2012; Frankowska et al. 2014)
or non-human primates (Kangas et al. 2019). Nevertheless, it appears to be intri-
cately involved in drug learning as others have reported that NAC prevented
cocaine-primed (Baker et al. 2003; Amen et al. 2011; Frankowska et al. 2014),
and cue-induced (Reichel et al. 2011; Murray et al. 2012; Frankowska et al. 2014;
Reissner et al. 2015) as well as stress-induced (Garcia-Keller et al. 2019), reinstate-
ment of cocaine-seeking in rats but not in non-human primates (Kangas et al. 2019).
NAC has also been found to facilitate extinction of drug-lever responding in rats
(LaRowe and Kalivas 2010) and non-human primates (Kangas et al. 2019). In
addition, Murray et al. (2012) reported that NAC was able to attenuate both early
and late stages of acquisition and maintenance of cue-induced cocaine-seeking
behavior. Intra-accumbal NAC attenuated cue-induced cocaine-seeking behavior
and cue-cocaine primed reinstatement of cocaine-seeking behavior, which was
enhanced by the mGluR5 antagonist MTEP (Kupchik et al. 2012). NAC restored
the expression of GLT-1, but not xCT, in MCL subregions, which was critically
important for the ability of NAC to suppress cue-induced reinstatement of cocaine-
seeking behavior (Reissner et al. 2015; Ducret et al. 2016). Another study reported
that NAC prevented the loss of control observed with chronic cocaine self-
administration (Madayag et al. 2007). However, in other work acute, chronic, and
progressive-ratio cocaine self-administration was not affected by NAC, although
NAC did facilitate punishment-induced extinction (Ducret et al. 2016). The discrep-
ancy between these studies may be due to differences in cocaine training history, the
dose of cocaine used, or timing of NAC administration prior to drug availability or
exposure among other experimental procedures.

14.14 N-acetylcysteine and Other SUDs

Acute administration of NAC can decrease nicotine self-administration without
altering food self-administration, whereas chronic administration lasting 14 days
had a non-specific attenuating effect on both nicotine and food self-administration
(Ramirez-Niño et al. 2013). Furthermore, acute NAC attenuated cue-induced rein-
statement of nicotine-seeking behaviors (Ramirez-Niño et al. 2013). Subchronic
NAC administration for five days produced mixed results on cue-induced nicotine-
seeking. One study found that this regimen of NAC exposure reduced cue-induced
nicotine-seeking in male Sprague-Dawley rats but not female rats regardless of
estrous cycle phase (Goenaga et al. 2020), while another study found that 5 days
of NAC treatment did not alter cue-induced nicotine-seeking in male Sprague-
Dawley rats (Powell et al. 2019). These results suggest that there may be sex specific
effects of NAC with regard to nicotine craving/relapse behaviors (Goenaga et al.
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2020) although the studies did possess differences in experimental procedures which
may have affected the results.

Chronic administration of NAC for 14–15 days has consistently inhibited
cue-induced nicotine-seeking behavior (Ramirez-Niño et al. 2013; Moro et al.
2019; Namba et al. 2019; Powell et al. 2019; Goenaga et al. 2020). In addition,
Moro et al. (2019) indicated that chronic administration of NAC has long-lasting
effects for up to 50 days post-treatment(Moro et al. 2019). Interestingly, Moro et al.
(2019) observed that NAC administration during abstinence in the home cage failed
to reduce cue-induced reinstatement, but administration during experimental
cue-exposure therapy or during extinction sessions attenuated cue-induced seeking.
This suggests pairing NAC treatment with experimental cue-exposure therapy or
extinction sessions may increase the effectiveness of NAC to prevent relapse (Moro
et al. 2019). These authors also reported that seven days post experimental
cue-exposure therapy was associated with a lower expression of GLT-1 as well as
higher expression of GluN2B in the AcbSh of nicotine self-administering rats, which
was normalized by NAC treatment (Moro et al. 2019). Fifty days after NAC
treatment there was a steep increase in mGluR2 levels in both the AcbSh and
AcbCo, as well as normalization of xCT expression in the AcbCo, and normalization
of GLT-1 expression in the AcbSh suggesting that NAC treatment can induce long-
term increases in glutamate uptake (Moro et al. 2019).

Namba et al. (2019) found that NAC normalized GLT-1 expression in the AcbCo,
reduced tumor necrosis factor-alpha (TNFα) expression in the AcbCo, and
suppressed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tor to NMDA current ratios, which again suggests NAC acts to restore glutamate
homeostasis and attenuate inflammatory response induced by cue-induced nicotine-
seeking following nicotine self-administration. Bowers et al. (2016) indicated that
NAC reduced the development of a nicotine conditioned place preference, nicotine
somatic withdrawal signs, hyperalgesia, while inducing a conditioned place aversion
in mice. However, it did not alter palatable food conditioned place preference,
anxiety-like behavior, or motoric capacity. In alcohol-preferring UChB rats, oral
administration of NAC reduced oral nicotine intake and fully suppressed the rein-
statement of a nicotine conditioned place preference (Quintanilla et al. 2018).
Moreover, NAC administration fully abolished increased oxidative stress and the
neuroinflammatory markers induced by nicotine (Quintanilla et al. 2018). Clinical
studies have shown that smokers treated with NAC reported a reduction in the
number of cigarettes smoked (Knackstedt et al. 2009; McClure et al. 2015) and
rated the first cigarette after an abstinence period as less rewarding (Schmaal et al.
2011). However, these effects were limited because NAC did not have any signif-
icant effects on craving (Knackstedt et al. 2009; Schmaal et al. 2011), withdrawal
symptoms (Knackstedt et al. 2009; Schmaal et al. 2011), or breath carbon monoxide
levels, which is a biomarker for smoking abstinence (Knackstedt et al. 2009).
Furthermore, the majority of smokers did not maintain abstinence (Knackstedt
et al. 2009; McClure et al. 2015). In contrast, a more recent study reported NAC
treatment reduced craving, helped participants to maintain abstinence, and positively
affected dysregulated corticostriatal connectivity (Froeliger et al. 2015). Thus, NAC
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may act to alter reward processing thereby helping smokers to maintain abstinence
immediately following cessation of smoking (Froeliger et al. 2015). Taken together,
these findings suggest that NAC may have some efficacy in relapse prevention with
regard to smoking.

There have been several clinical studies examining the efficacy of NAC in
cocaine-using as well as -dependent subjects. In actively using cocaine-dependent
individuals NAC did not alter cocaine use (LaRowe et al. 2013), however, there was
evidence that it helped maintain abstinence in individuals who had already achieved
abstinence (LaRowe et al. 2013). A more recent study found that cocaine use and
problems (Drug Use Disorder Identification Test) were decreased with NAC treat-
ment (Schulte et al. 2018). Lower cocaine-positive urine scores in the NAC group
supported these findings (Schulte et al. 2018). Levi Bolin et al. (2017) indicated that
NAC treatment significantly attenuated the reinforcing effects of cocaine. However,
NAC has had mixed results on psychostimulant craving. It has been shown to reduce
cocaine craving (Amen et al. 2011), although others did not find similar effects on
craving or self-reported abstinence (Schulte et al. 2018). Also, NAC did not have an
effect on cocaine cue-reactivity-associated neural correlates (Schulte et al. 2019).
Nevertheless, others have found that NAC suppresses methamphetamine-craving
(Mousavi et al. 2015). In early work, the administration of NAC, during extinction,
inhibited cue-induced and heroin-primed reinstatement of heroin-seeking with long-
lasting effects up to 40 days post-treatment (Zhou and Kalivas 2008). These findings
suggest that repeated NAC administration may have therapeutic potential in enhanc-
ing abstinence and reducing drug-seeking behaviors and -craving.

14.15 Conclusions

SUDs are characterized by a long-lasting vulnerability to relapse across drug classes.
Prolonged neuropathological changes to the glutamatergic system, within the MCL
described above, appear to contribute to the addicted state through glutamate
dysregulation. The significance of glutamate in learning and memory implicates
the magnitude of its role in initiating and promoting addiction, Alzheimer’s disease,
posttraumatic stress disorder (PTSD), and other psychiatric conditions. The impact
of glutamate transport and maintaining homeostasis to avoid neurotoxicity and
damage from oxidative stress necessitates additional investigation of EAATs and
vGluTs. Further research into the distinct neuroadaptations that result from gluta-
mate dysregulation could provide information needed to develop more effective
pharmacotherapeutics to treat addiction. Preclinical research has begun to explore
the potential of glutamate transporters as therapeutic targets through NAC and
cefazolin. Importantly, continued examination of the mechanisms behind the altered
MCL and response to rewarding stimuli following chronic drug exposure may also
support the development of pharmacotherapies for individuals with a dual-diagnosis
of an SUD comorbid with another psychiatric disorder.
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Chapter 15
Glutamate in Multiple Sclerosis: From
Pathophysiology to Treatments

Anna Pittaluga and Guendalina Olivero

Abstract Multiple sclerosis (MS) is an autoimmune disease typified by overt
demyelination and inflammation that develop in selected regions of the central
nervous system (CNS). Besides these signs, a diffuse loss of synaptic contacts,
axonal pruning and astrocytosis are also observed, that in general correlate with
the dysregulation of the glutamatergic system and with the onset of neurological
symptoms. Concomitantly to the synaptic derangements, impaired glutamate
homeostasis also dysregulates the immunocompetent responses, impairing the func-
tional cross-talk between the immune system and the CNS. The study of the
glutamatergic system therefore emerges as an important issue for deciphering the
cellular events at the basis of MS as it would permit the proposal of new appropriate
pharmacological interventions for the cure of the pathology. The chapter describes
recent advances in basic research, preclinical and clinical studies concerning the
impact of altered glutamate homeostasis in the course of the disease, as well as in the
innovative strategies that would permit the restoration of central glutamatergic
transmission.

Keywords Multiple sclerosis · EAE mice · Glutamate · Synaptopathy · Release ·
Uptake · Receptors
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AC Adenylyl cyclase
CB1 receptors Cannabinoid receptors type 1
CNS Central nervous system
d.p.i. Days post immunization
DMDs Disease-modifying drugs
EAAT Excitatory amino acid transporter
EAE Experimental autoimmune encephalomyelitis
EC Endogenous cannabinoids
EPSCs Excitatory postsynaptic currents
FAAH Fatty acid amide hydrolase
GCPII Glutamate carboxypeptidase II
GDH Glutamate dehydrogenase
GLS Glutaminase
GOT Glutamate-oxaloacetate transaminase
GPT Glutamate-pyruvate transaminase
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IPSCs Inhibitory postsynaptic currents
IS Immune system
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KP Kynurenine pathway
LTD Long-term depression
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MBP Myelin basic protein
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mGlu receptor Metabotropic glutamate receptor
MOG Myelin oligodendrocyte glycoprotein
MS Multiple sclerosis
MUNC-18 Mammalian uncoordinated-18
NAA N-acetyl-aspartate
NAALADase N-acetylated-alpha-linked acidic dipeptidase
PKA Protein kinase A
PLP Proteolipid protein
PPMS Primary progressive multiple sclerosis
QA Quinolinic acid
RMI Resonance imaging
RRMS Relapsing-remitting multiple sclerosis
SPMS Secondary progressive multiple sclerosis
T Tryptophan
TMS Transcranial magnetic stimulation
xCT Cystine/glutamate antiporter
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15.1 Introduction

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system
(CNS) affecting about two to three million people worldwide. It is a progressively
degenerating disorder typified by autoimmune attack directly at antigens associated
with myelin, leading to the appearance of focal demyelinated plaques within the
brain and the spinal cord. Despite the great efforts to investigate its aetiology and
although much has been discovered about the immunobiology, genetics and epide-
miology of the disease, its aetiopathogenesis remains so far unknown.

In most patients, MS develops a fluctuating course, typified by early relapsing-
remitting episodes of neurological and radiological worsening, followed by symp-
tomatologic recovers (i.e. the relapsing-remitting MS, RRMS). Epidemiological
studies show that the 85% of patients suffering from MS develops the RRMS
form of the disease. Within a decade, a large part of these individuals progresses
to a secondary progressive MS (SPMS), that is typified by the development of
neurological deficits that occur independently from relapses. A minor percentage
(~15%) of patients develops a progressive course of the disease (i.e. the primary
progressive MS, PPMS) for unknown reasons (Lublin et al. 2014).

Autoimmune mechanisms brought about by inflammatory lymphocytes, macro-
phages and activated microglia are traditionally proposed to play the major role in
the development of the pathology. In particular, it is proposed that MS is initiated
and maintained by the continuous migration of inflammatory immune cells from the
periphery into the CNS, but also by the concomitant modulation of the autoimmune
attack, probably mediated by the infiltrating T regulatory cells themselves.
Recruitment of pro-inflammatory and regulatory leucocytes into inflamed tissues is
controlled by chemokines and their receptors through their ability to drive gradient-
dependent cell migration nearby the sites where they are actively released (Karpus
and Ransohoff 1998; Ransohoff et al. 2007). Accordingly, the increased expression
of selected chemokines (CCL5 and CXCL12, for instance) are predictive markers of
the progression of the disease (Besong et al. 2002; Godiska et al. 1995; Pittaluga
2016; Sørensen et al. 1999).

Despite the peripheral to central immunological events are thought to play a main
role in the development of the disease, they are not essential to the onset of central
derangements. In fact, synaptic impairments, grey matter lesions and demyelination
become evident in selected CNS areas (i.e. the cortex, the hippocampus, the cerebral
cortex, the thalamus and the caudate-putamen) of MS patients starting from the
earliest phases of the disease, also in the absence of infiltrating lymphocytes and
macrophages (Klaver et al. 2013, Bevan et al. 2018; Eshaghi et al. 2018). The brain
magnetic resonance imaging (RMI) is usually used to evidentiate these central
lesions, that if present, often correlate with the onset of the early clinical neurological
symptoms of the disease, consistent with their relevance in the course of the
pathology.

Based on these considerations, starting from the last decade, MS has been
classified also as a primary neurodegenerative disorder and two terms were proposed
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to describe its course. The first term is “synaptopathy”, to evidentiate the main role of
synaptic disruption in the pathological framework (Mandolesi et al. 2015a, b) and
the second one is “silent progression”, which refers to the mode of progression of the
disease, to stress the fact that neurodegeneration proceeds in MS patients largely
independently from autoimmune inflammation (17; University of California, San
Francisco MS-EPIC Team, and Cree 2019).

Our understanding of MS, as well as of the development of disease-modifying
therapies, mostly relies on the availability of disease animal models. Among the
available models, most of the preclinical data originate from studies carried out in
mice suffering from the experimental autoimmune encephalomyelitis (the EAE
mice). The EAE mice recapitulate many features of MS (Rangachari and Kuchroo
2013; Swanborg 1995). The demyelinating disorder is induced by immunizing mice
with myelin antigens including myelin basic protein (MBP), proteolipid protein
(PLP) or the myelin oligodendrocyte glycoprotein (MOG). In particular, the immu-
nization with MOG elicits the development of a non-remitting form of disease
typified by the presence of inflammatory lesions and demyelinated areas that pre-
dominate in the spinal cord. The clinical signs become evident at the early almost
asymptomatic stage of the disease (at about 13 days after immunization, d.p.i.) and
reach the maximal gravity at about 21 � 1 d.p.i.

Interestingly, beside central inflammation and demyelination, EAE mice also
develop altered glutamatergic transmission in selected CNS regions (i.e. the cortex),
independently on the presence of clear white matter injures (Mangiardi et al. 2011).
The EAE mice therefore represent a suitable model to study the neurological defects
and the altered synaptic plasticity that typify the course of the disease.

15.2 The Glutamatergic System in MS and in EAE Mice

Glutamate controls the homeostasis of the CNS. It determines synaptic plasticity,
i.e. the principal neuronal property involved in the ability of CNS to resist to insults,
to assure an efficient neuronal response to stimuli and to build up restorative
adaptations. In other terms, glutamate participates to determine the cognitive reserve,
i.e. the ability of the brain to recover the maladaptation elicited by injures and/or
aging during the entire lifespan. These beneficial effects however can be exhausted
when pathological conditions that alter bioavailability of glutamate persist during
time and/or overwhelm the mechanisms of “cognitive buffering”.

In the CNS, the majority of neurons are glutamatergic and glutamate represents
the principal transmitter at chemical synapsis. Derangements of glutamatergic
homeostasis have a detrimental impact on the CNS and prelude to neurotoxicity as
well as to synaptic dysregulation. In MS patients impaired glutamatergic (and
GABAergic) synaptic transmission can be evidentiated by using the transcranial
magnetic stimulation technique (TMS, Stampanoni Bassi et al. 2017). This synaptic
maladaptation is proposed to play a main role in the onset and the development of the
central lesions and neurological disability that typify the course of the disease. In
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humans, learning and memory as well as the resilience to stress and anxiety largely
depend on the efficiency of central glutamate transmission and it is recognized that
the deterioration of the glutamatergic innervation negatively reverberates on these
functions. Consistent with this view, the neurological symptoms often observed in
MS patients include difficulties in learning and remembering new information,
depression and anxiety. These symptoms are observed in approximately 50% of
individuals with MS and, unfortunately, in some cases (at least in early MS) are
neglected or misdiagnosed (for reviews, see (Passos et al. 2014; Rao et al. 1991;
Siegert and Abernethy 2005)).

Besides neurons, which represent the primary physiological source of the excit-
atory amino acid, several other cells (i.e. astrocytes, glial cells, brain macrophages,
dendritic cells and infiltrating leucocytes and lymphocytes) release glutamate and
control its homeostasis. Astrocytes and migrating lymphocytes are important sources
of glutamate in pathological conditions associated with inflammation or

Fig. 15.1 Glutamate is the main excitatory transmitter in the central nervous system and plays a
main role in controlling synaptic plasticity, to assure an efficient neuronal response to stimuli and to
build up restorative adaptations. Unfortunately, when pathological conditions prevail and bioavail-
ability of glutamate itself persists and overwhelms the mechanisms of “synaptic buffering”,
glutamate becomes detrimental, favouring the mechanisms of neurodegeneration and altering the
efficiency of synaptic connection. In the central nervous system, besides neurons, which represent
the primary physiological source of the excitatory amino acid, there are several other cells [i.e.
astrocytes, microglia (μglia), brain macrophages, dendritic cells and infiltrating leucocytes and
lymphocytes (Th)] that release glutamate and that control its homeostasis. These cells, in particular
astrocytes and migrating lymphocytes, are important sources of the excitatory amino acid in
pathological conditions associated with inflammation or immunocompetent responses, such as
those observed in MS
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immunocompetent responses, such as those observed in MS (Fig. 15.1). All these
aspects have been largely discussed in previous reviews and will be not further
analysed in this chapter (see for exhaustive review (Centonze et al. 2009; Di Filippo
et al. 2015; Fazio et al. 2018; Levite 2017; Mandolesi et al. 2015b; Matute et al.
1999; Nicoletti et al. 2011; Pittaluga 2017)).

15.2.1 Glutamate Bioavailability in the CSN of MS Patients
and EAE Mice

Glutamate represents the driving force for synaptic plasticity and, as already intro-
duced, observations in MS patients and EAE animals agree with the conclusion that
severe, region-dependent alterations of glutamatergic transmission in the CNS are
pivotal to disease.

In 1997, Klivényi and colleagues (Klivényi et al. 1997) quantified the levels of
amino acids in the CSF of MS patients and compared the results with those obtained
from the CSF of individuals suffering from lower back pain. The authors did not find
significant differences in the CSF concentrations of the amino acids between the two
groups. Almost concomitantly Stover et al. (1997) found that the level of different
amino acids (including glutamate) was almost doubled in the CSF of MS patients at
the acute symptomatic phase of the disease with respect to healthy subjects.
Sarchielli et al. (2003) demonstrated a significant increase of glutamate (and aspar-
tate) levels in the cerebrospinal fluid (CSF) of patients with the RRMS and the SPMS
when compared to control individuals (subjects without central or peripheral neuro-
nal pathology). They also observed a correlation between the phase of relapse and
the concentration of glutamate in the CSF. Furthermore, they showed that the levels
of glutamate in patients suffering from the RRMS but who had active lesions were
higher with respect to patients without neuroradiological signs. High levels of
glutamate were also detected in the CSF of patients suffering from SPMS.

In 2014 evidence was provided showing decreased level of glutamate in large
areas of normal-appearing white and grey matter in MS patients (Azevedo et al.
2014). Multivoxel spectroscopy was used to quantify the glutamate and the N-acetyl-
aspartate (NAA) levels and to quantify the GLU/NAA ratio in these patients. The
results of the study unveiled a high GLU/NAA ratio that was considered predictive
of altered neuroaxonal integrity. The result was proposed to be predictive of a
decline of the brain volume and therefore of disease progression.

As to the EAE mice, data exists in the literature showing correlations between
altered glutamate homeostasis and oligodendrocyte and axonal damage (Matute
et al. 1999, 2001; Werner et al. 2001), among hyperglutamatergicity,
neuroinflammation and synaptic degeneration (Mandolesi et al. 2010), as well as
between altered glutamate release and glutamate receptor/transporters dysfunctions
(as discussed below, but see (Castegna et al. 2011; Levite 2017; Pittaluga 2017)).
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The excess of glutamate in the synaptic cleft is neurotoxic since it assures a
pathological activation of the receptors repertoire (in particular the ionotropic glu-
tamate receptors, namely NMDA and AMPA receptors) that is maladaptive to the
synaptic network. The pathologically-relevant, increased availability of the amino
acid might depend on several cascades of events, involving the impaired expression/
functions of glutamate metabolizing enzymes, the dysfunction of the glutamate
transporters and the hypersecretion of glutamate due to maladaptation in the synaptic
machinery accounting for vesicular exocytosis, as well as to the overproduction of
release-regulating factors, including cytokines. The information concerning these
aspects is reviewed below.

15.2.2 Glutamate Metabolizing Enzymes in the CSN of MS
Patients and EAE Mice

Studies in the literature correlate the central altered glutamate availability with the
impaired expression/functions of glutamate metabolizing enzymes [i.e. the gluta-
mate dehydrogenase (GDH) and the glutamine synthase (GS)] as well as of enzymes
which tune the production of the amino acid [i.e. the glutaminase (GLS)]. As the
GLS is concerned, its overexpression was reported to correlate with axonal damage.
In particular, both early and chronic active lesions in brain tissue from MS patients
showed high levels of the enzyme. Differently, evident GLS immunoreactivity was
not observed in chronic silent lesions. The GLS-positive cells mirrored the distribu-
tion of activated macrophages and microglia cells, which are characteristic of central
inflammation, suggesting a cross-linking between the overexpression of
GLS-containing glutamate-producing immune cells and the development of
excitotoxicity in the CNS of MS patients (Werner et al. 2001).

GS and GDH expression was dramatically decreased in the spinal cord of EAE
mice with a very high score (Hardin-Pouzet et al. 1997). Increased oxidative
modifications of GS in the cortex of EAE mice paralleled the severity of the clinical
signs, while the GS/glutamate ratio largely decreased suggesting a correlation
between EAE severity and excitotoxicity (Castegna et al. 2011). In the CNS of
MS patients, the distribution of GDH and GS immunoreactivity was largely different
from non-MS tissues. In particular, both enzymes were poorly expressed in oligo-
dendrocytes but largely present in astrocytes and microglia (Werner et al. 2001).

15.2.3 Efficiency of Central Glutamatergic Transmission
in the CNS of MS Patients and EAE Mice

The efficiency of synaptic transmission in MS patients is usually analysed with
non-invasive techniques including the Transcranial Magnetic Stimulation (TMS) to
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assess the integrity of the motor cortex plasticity, the efficiency of the cortical-spinal
innervation and the efficiency of local interneurons, i.e. the GABAergic inhibitory
ones for instance, in modulating synaptic signalling. Specific TMS measures and
different protocols of stimulations (exhaustively described by (Stampanoni Bassi
et al. 2017)) can be applied to evaluate the efficiency of glutamatergic transmission.
The revision of the data in the literature suggests that the observations so far
available require careful evaluation because of the heterogeneity of the modalities
adopted for the recruitment of both the healthy and the MS patients, of the form of
the disease they suffer from and of the concomitance of on-going therapy. None-
theless, the results permit the conclusion that brain networks that are relevant to
vision, cognition or sensory-motor functions undergo progressive modifications in
the excitatory transmission (and in the GABAergic one as well) starting from the
onset of the demyelinating disorder and that these modifications can be maladaptive
in nature. These neuronal alterations do not cause irreversible modification in the
synaptic activity, at least at the early stages of the disorder. As a matter of fact, the
available results seem compatible with the conclusion that, at the onset of the
disease, the brain maintains the ability to cope with the local and diffuse neuronal
damages, resisting until its resilience to injures is not exhausted by the maladaptive
stimuli. This synaptic flexibility accounts for the discrepancy often observed
between the clinical disability and the central lesions in patients, suggesting that
the ability of CNS to compensate for the central injures has an efficacy and an
intensity that vary among individuals (Di Filippo et al. 2013, 2015; Weiss et al.
2014).

Synaptic plasticity, as well as glutamatergic and GABAergic transmission, was
also analysed in the available animal models of demyelinating disorders, in partic-
ular in the EAE mice, by using different approaches typified by a different level of
anatomical and functional complexity.

Synaptic plasticity originates from the mechanisms of the Long-Term Potentia-
tion (LTP) and of the Long-Term Depression (LTD, Malenka and Bear 2004). LTP
is the persistent increase in efficiency of transmission at excitatory synapsis (Bliss
and Lomo 1973) while LTD consists of a decreased synaptic transmission that it is
produced by prolonged low-frequency stimulation (Mulkey and Malenka 1992).
LTP depends on glutamatergic signalling mainly involving NMDA receptors and
can be manipulated pharmacologically either by controlling glutamate signalling or
by modifying the GABAergic innervation. LTD involves glutamatergic signalling as
well, but it is also mediated by metabotropic glutamate receptors (Jones 2017).
Interventions that could affect the efficiency of glutamatergic and GABAergic
transmissions permit to manage and promote the synaptic plasticity and its func-
tional reorganization, increasing therefore the resilience of CNS to the neuronal
injuries that develop in the course of several central disorders including MS.

As far as the synaptic plasticity in EAE animals is concerned, studies dedicated to
quantify the efficiency of LTP and LTD in the hippocampus (Di Filippo et al. 2013;
Mori et al. 2014; Mosayebi et al. 2016; Nisticò et al. 2013; Novkovic et al. 2015;
Prochnow et al. 2013; Weiss et al. 2014) permitted to explore the gravity of synaptic
impairments that occur during the course of the demyelinating disorder. Studies were
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mainly carried out in the hippocampus of EAE mice at the acute stage of disease or
soon after, at the chronic phase. The available data agree upon the reduction of LTP
efficiency when compared to healthy controls, an event that strictly correlates with
the gravity and the progression of the symptoms in the EAE animals. These
maladaptive events are expected to play a main role in determining a progressive
exhaustion of the central neuronal plastic reserve and indirectly accounts for the
development of clinical signs such as cognitive defects, impaired locomotor activity,
mood and social impairments that emerge when testing behavioural skills in EAE
mice (Acharjee et al. 2013; Di Prisco et al. 2014a; Olechowski et al. 2013).

Beside these studies, electrophysiological recordings in slices were also carried
out to evaluate specifically the efficiency of glutamate and GABA transmission in
selected regions of the CNS. The studies focussed on the analysis of the excitatory
(EPSCs) and the inhibitory postsynaptic currents (IPSCs) at chemical synapses. The
pre- and the postsynaptic excitatory signalling was found to be increased in cortico-
striatal slices from EAE mice at the early and the acute stage of disease (Grasselli
et al. 2013; Haji et al. 2012; Rossi et al. 2010, 2011, 2012) and in the basolateral
amygdala (Acharjee et al. 2018), but it was significantly decreased in hippocampal
slices of EAE mice at the acute and the chronic stage of disorder progression
(Di Filippo et al. 2013; Mosayebi et al. 2016; Ziehn et al. 2012), further suggesting
the region-specificity of the synaptic impairments subserving the electrophysiolog-
ical recordings. Interestingly, in the striatum of EAE at the symptomatic phase the
increased EPSP signalling was paralleled by a significant reduction of the IPSP
signalling (Mandolesi et al. 2013; Musumeci et al. 2011) that would amplify the
altered EPSPs signalling observed in this brain region.

Finally, a direct quantification of the amount of glutamate and GABA release in
nerve terminals was achieved by using purified synaptosomes. Interestingly, the
dissection of the neuronal component from slices to synaptosomes unveiled a
scenario even more complicated, depending on the CNS regions under study and
on stage of the disease. The efficiency in glutamate exocytosis was found to be
significantly increased in spinal cord synaptosomes of symptomatic EAE mice
during and after the acute stage of disease (Bonfiglio et al. 2017; Di Prisco et al.
2013, 2014a, b, 2016; Marte et al. 2010), which would be consistent with the
increased glutamate availability observed in the CSF of MS patients and EAE
mice as well. In this region, also the GABA exocytosis was potentiated, consistent
with the conclusion that the EAE-induced deregulation of exocytosis is a general
event that relies on functional modifications of the intraterminal machinery
subserving the recruitment of the release vesicles, independently on the neuronal
population and on the neurotransmitter actively released. According to this view, it
was shown that the cytosolic adenylyl cyclase (AC) dependent, protein kinase A
(PKA)-mediated events, as well as the endogenous production of inositol triphos-
phate in spinal cord synaptosomes from EAE mice at the acute stage of disease, are
largely increased when compared to healthy animals (Di Prisco et al. 2013). Con-
sidering that both events participate to determine the cytosolic calcium availability in
neurons, it seems conceivable to propose that these metabolic adaptations might be
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critical to determine the increased release efficiency detected at both spinal cord
glutamatergic and GABAergic synaptic boutons.

Opposite to the spinal cord, the efficiency of glutamate exocytosis was drastically
reduced in cortical synaptosomes. The negative adaptation became evident very
early, when the animals became symptomatic (i.e. 13 � 1 d.p.i.), and persisted
during and after the acute stage of disease. Also in this case the onset of gluta-
mate release defects was paralleled by significative changes in AC e PKA activities,
that were drastically reduced in this CNS region (Chanaday et al. 2015; Cid et al.
2011; Di Prisco et al. 2013; Vilcaes et al. 2009). Finally, impaired glutamate
exocytosis emerged in hippocampal synaptosomes only after the acute stage of
disease (35� 1 d.p.i., (Bonfiglio et al. 2017)). Evident changes in GABA exocytosis
were not observed at all the stages of the disease in both cortical and hippocampal
synaptosomes (Bonfiglio et al. 2017; Di Prisco et al. 2013, 2014a, b, 2016).

Studies were also dedicated to investigate whether changes in glutamate exocy-
tosis efficiency observed in EAE mice were paralleled by modifications of the
expression of proteins involved in the mobilization of transmitter vesicles at pre-
synaptic nerve endings. It was found that the reduced exocytosis of glutamate
detected in EAE animals coincides with alterations of the presynaptic machinery.
In particular, the kinetic of the calcium-dependent phosphorylation of synapsin I was
significantly decreased in cortical synaptosomes of EAE rats (Chanaday et al. 2015;
Vilcaes et al. 2009), an event well consistent with the reduced mobility of the
synaptic vesicles. Furthermore, the expression of the mammalian uncoordinated-
18 (MUNC-18) protein was reduced in cortical nerve endings from EAE mice,
suggesting the destabilization of the synaptic vesicle fusion complex (Bonfiglio
et al. 2019). Finally, the expression of synapsin-2 and synaptotagmin-1 in the
serum of EAE mice was modified (Raphael et al. 2017).

15.2.4 Glutamate Transporters Expression and Function
in the CSN of MS Patients and EAE Mice

Altered glutamate availability in the synaptic cleft depends on impaired exocytosis
but also on the impaired mechanisms of reuptake in astrocytes, neurons, oligoden-
drocytes and immune-competent cells (Fig. 15.2). In physiological conditions, the
transporters expressed in all these cells rapidly remove, although to a different extent
and with different efficacy, the glutamate in the synaptic cleft, strictly controlling the
efficiency of the excitatory postsynaptic signalling which correlates with the con-
centration of the excitatory amino acid in the biophase. The main players in these
cellular events are the excitatory amino acid transporters (EAATs, Danbolt et al.
2016) and the cystine/glutamate antiporter (xCT). As far as the EAATs are
concerned, to date five members of the family have been described, which predom-
inate in the CNS and that are typified by a preferential anatomical distribution. The
EAAT1 transporter has a main non-neuronal expression, being preferentially

444 A. Pittaluga and G. Olivero



expressed in subpopulation of glial cells, i.e. the Bergmann glia and the Muller cells,
while the EEAT2 locates in astrocytes and accounts for most of the glutamate
uptake. Differently, the EAAT3, 4 and 5 subtypes are mainly expressed in neurons,
the EEAT4 in cerebellar Purkinje cells and the EEAT5 in the retina (Dunlop 2006).

EAAT subtypes impact differently the course of central neurological diseases,
including MS or EAE, and their activity depends on the phase of the pathology. In
general, at the acute symptomatic stage of EAE, EAAT1 was reported to undergo
adaptive modifications preferentially leading to the reduction of mRNA and protein
expression, that would be consistent with a reduced efficacy of the mechanism of
synaptic protection. Differently, contradictory results are available on the impact of
the demyelinating disorders on EAAT2 and the EAAT3 proteins, that were reported
to be either increased, decreased or unaffected during the course of disease (Azami
Tameh et al. 2013; Mandolesi et al. 2015a, b; Melzer et al. 2008; Mitosek-Szewczyk
et al. 2008; Ohgoh et al. 2002; Sulkowski et al. 2009; Vallejo-Illarramendi et al.
2006; Werner et al. 2001). Interestingly, by a functional point of view, glutamate
was taken up more efficiently in both nerve endings (synaptosomes) and glial

Fig. 15.2 Representation of glutamate transport and metabolism at the tripartite synapsis. Gluta-
mate released by nerve endings and astrocytes can diffuse in the synaptic biophase but it is also
actively taken up by astroglial and neuronal excitatory amino acid transporters (EAAT 1–3), as well
as by cystine/glutamate antiporter (xCT) that indirectly dictate the strength and the efficiency of
glutamate signalling. Glutamate taken up by astrocytes is the substrate of glutamine synthase
(GS) to produce glutamine that diffuses to the presynaptic component of glutamatergic synapses
to produce glutamate by means of glutaminase (GLS). Glutamate in astrocytes is also substrate of
glutamate dehydrogenase (GDH) to produce α-ketoglutarate. The availability of glutamate at
synapsis is therefore critically dependent upon diffusion, metabolism and active uptake through
selected glutamate transporters, representing therefore a complex system that can be targeted at
different levels by pathological conditions typified by inflammation and autoimmune responses
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particles (gliosomes) purified by the spinal cord of EAE mice at the early asymp-
tomatic stage of disease (Marte et al. 2010).

Last but not least, in 2008 the group of Domercq reported the presence of a
polymorphism in the promoter of the EAAT2 protein leading to a significant
reduction of the expression of the transporter expression. The polymorphism is not
associated with an increased risk to develop MS, but it is associated with high
glutamate plasma levels during the course of a relapse in RRMS patients (Pampliega
et al. 2008).

Besides EAATs, the xCT antiporter also influences glutamate bioavailability in
the synaptic cleft. The xCT is a membrane transport system that assures the uptake of
extracellular cystine (i.e. the limiting factor in the biosynthesis of glutathione, which
has a key role in antioxidant defence) and the concomitant outflow of glutamate in
most cells, including oligodendrocytes. xCT consists of two subunits, namely xCT
and 4F2hc that heterodimerize. The xCT light chain determines the specificity of the
amino acid transport, whereas the 4F2hc protein is common to several amino acid
transporters and assures the correct insertion of the antiporter in membrane. Because
of the main role of the two substrates in controlling the brain functions, functional
maladaptation of this antiporter could be detrimental to central homeostasis and in
particular to the myelinated fibres (Soria et al. 2016). In particular, upregulation of
the xCT is protective to oxidative stress since indirectly potentiates the intracellular
biosynthesis of glutathione to improve reactive oxygen species detoxification. The
dysregulation of the xCT causes increased release of glutamate in the biophase,
participating to glutamate-mediated excitotoxicity. In 2011 Pampliega and
colleagues (Pampliega et al. 2011) demonstrated that the xCT light chain is
overexpressed in the CNS and in peripheral blood cells (i.e. cells from monocyte-
macrophage-microglia lineage) in MS patients as well as in EAE mice. These
findings allowed the conclusion that upregulation of xCT antiporters represents a
maladaptive event of the demyelinating disorder that may favour overt
hyperglutamatergicity and excitotoxic damage to oligodendrocytes.

In a whole, the observations so far discussed agree with the conclusion that the
functionalities of most of the regulatory systems that control the glutamatergic
innervation are selectively altered during MS and or EAE and cannot correctly
assure the excitatory transmission required to maintain synaptic plasticity.

15.2.5 Glutamate as Modulator of the Immune System:
Central Nervous System Cross-Talk

Although the CNS has been long considered an immune-privileged organ, it is now
widely recognized that the immune system (IS) plays a main role in the development
of central neurodegenerative diseases (i.e. Alzheimer’s disease or amyotrophic
lateral sclerosis) as well as in classic autoimmune-inflammatory disorders (MS). In
support to this conclusion evidence suggests that many endogenous
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immunocompetent molecules (i.e. cytokines and chemokines) are produced and
released in the CNS where they control synaptic transmission, being therefore
specific signalling molecules linking the IS and the CNS (Besong et al. 2002;
Centonze et al. 2009; Rostène et al. 2007).

Central resident immunocompetent cells and/or peripheral T cells migrating to the
CNS can efficiently release glutamate. Furthermore, these cells also express gluta-
mate receptors sensing therefore the changes in glutamate homeostasis in the brain.
Finally, myelin-reactive T cells provoke microglia to release glutamate through the
system xCT transporter promoting myelin degradation in EAE (Evonuk et al. 2020).
All these aspects have been deeply revised by other authors (Levite 2017) and will
not be further discussed in this chapter.

15.3 Glutamate Receptors as Potential Drug Targets
for Treating Autoimmune Demyelinating Disease

Glutamate exerts its action at chemical synapses by binding glutamatergic receptors
that locate synaptically, both at the pre- and at the postsynaptic components of the
synapsis, as well as in surrounding cells, such as astrocytes and microglia. Glutamate
receptors also exist in oligodendrocytes and oligodendrocyte progenitor cells as well
as in immunocompetent cells, where they drive the myelination and the immuno-
competent activities of the CNS.

Glutamate receptors consist of ionotropic and metabotropic receptors which have
been proposed to participate to a different level and with different impact to the onset
and the development of MS (Fig. 15.3).

15.3.1 Ionotropic Glutamate Receptors in the CSN of MS
Patients and EAE Mice

In 2000, two different laboratories provided evidence showing that the treatment
with an AMPA antagonist (i.e. NBQX) largely reduced the neurological deficits in
EAE mice causing a substantial amelioration of the clinical scores, increasing
oligodendrocytes survival and reducing axonal lesions (Pitt et al. 2000; Smith
et al. 2000). Both the groups proposed that the AMPA-induced beneficial effects
did not rely on anti-inflammatory activity, since NBQX-treatment had no effect on
lesion size and did not reduce the degree of central inflammation. In addition, NBQX
did not alter the proliferative activity of antigen-primed T cells in vitro, suggesting
that an immunomodulatory activity was not primarily involved. Rather, it was
proposed that AMPA receptors mediate the neurological sequelae of events that
sustain the disease progression and therefore that their blockade could be beneficial
to the course of the pathology (Pitt et al. 2000; Smith et al. 2000; Werner et al. 2000).
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The role of AMPA receptors in dictating the recruitment and the migration of T
cells in the CNS, however, was soon after demonstrated by Ganor et al. (Ganor et al.
2003), which provided convincing evidence that normal human T cells, human T
leukaemia cell, and mouse anti-myelin basic protein T cells express high levels of
GluA3-containing AMPA receptors, the activation of which drives the CXCR4-
mediated T cell chemotactic migration towards the site of release of the chemokine
CXCL12 in the central inflammation loci. The role of AMPA receptors in determin-
ing the progress of the disease was confirmed by Kanwar et al. (2004). In particular
evidence was provided showing that GluA3 subunits are pivotal in the development
of neuronal deficits in EAE mice. In fact, mice genetically modified for the expres-
sion of GluA3 subunits were more resistant to neuronal excitotoxicity and developed
a milder spinal demyelination when immunized with myelin oligodendrocytes 35-55
protein (MOG35-55, Bannerman et al. 2007). Almost concomitantly, Sarchielli et al.
(2007) provided evidence showing that T lymphocytes of control subjects and MS
patients express both mRNA and protein of GluR3 receptors and that the activation
of the GluA3-containing AMPA receptors enhances the proliferation and the

Fig. 15.3 Glutamate exerts its action by binding glutamatergic receptors that locate synaptically,
both at the pre- and at the postsynaptic components of the synapsis, as well as in surrounding cells,
such as astrocytes and microglia (μglia). Glutamate receptors also exist in oligodendrocytes and
oligodendrocyte progenitor cells, as well as in immunocompetent cells, where they drive the
myelination and the immunocompetent activities of the CNS. Glutamate receptors consist of
ionotropic and metabotropic receptors which have been proposed to participate to a different
level and with different impact to the onset and the development of MS. Drugs that influence the
expression and the functions of glutamate receptors could permit to partly recover the central
derangements and pathological signalling underlying the onset and the progression of demyelinat-
ing disorders
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chemotactic migration of T lymphocytes from both controls and MS patients (but see
also Dutta et al. (2013); Newcombe et al. (2008)).

An interesting aspect refers to the ability of AMPA receptors to undergo consti-
tutive trafficking in neuronal plasma membranes, an event that controls the insertion
and the efficiency of the AMPA receptor-mediated signalling (Henley 2003;
Pittaluga et al. 2006). AMPA receptor trafficking is controlled by several agents,
including the immediate early gene Arc/Arg3.1, that has a preferential postsynaptic
localization and that regulates the AMPA receptor insertion in neuronal plasma
membranes, prolonging LTP (Chowdhury et al. 2006). In mice with EAE between
20 and 30 d.p.i., Arc/Arg3.1 mRNA level was dramatically downregulated in the
striatum. This event was proposed to participate in the reduction observed in this
region of the strength of AMPA-mediated excitatory transmission and, taking into
account that the Th1 cytokines (IFNg, TNFa and IL-1b) can modulate the
Arc/Arg3.1 mRNA expression on primary neuronal cultures, it seems conceivable
to propose a strong link between long-lasting synaptic changes and inflammation
(Centonze et al. 2009).

As far as the NMDA receptors are concerned, the observations that LTP and LTD
are impaired in EAE mice indirectly suggest the alteration in the expression/func-
tioning of these receptors during the course of the disease (Di Filippo et al. 2013;
Grasselli et al. 2013; Nisticò et al. 2013). The hypothesis is well in line with the
results obtained in EAE mice administered with NMDA receptor antagonists.
Treatment of EAE-sensitized animals with dizocilpine reduced the disease-
associated increase in CNS levels of putrescine which is an endogenous negative
modulator of the polyamine site at the NMDA receptors (reviewed by Bolton and
Paul (2006)). Similarly, limiting NMDA receptor functions by administering EAE
mice with memantine confirmed that pharmacological modulation of receptor func-
tion during EAE results in disease suppression and restoration of neurovascular
function (Wallström et al. 1996).

In 2017, Lim and colleagues (Lim et al. 2017) investigated the metabolomic
profile of the kynurenine pathway (KP) in MS patients. The KP is the major route of
metabolism of tryptophan (T) and leads to the production of two main compounds,
the quinolinic acid (QA) and the kynurenic acid (KA) which have opposite impacts
on NMDA receptors. In particular, QA is an orthosteric agonist at NMDA receptor
while KA is an antagonist that limits the NMDA-mediated signalling. In physiolog-
ical condition, the QA/KA balance assures a correct activation of the NMDA
receptors that supports the synaptic events. The activity of the pathway however is
under the direct control of inflammatory agents. In particular, pro-inflammatory
cytokines can elicit a dysregulation in the metabolic pathway, leading to an altered
QA/KA ratio that may either favour excitotoxicity or impair the mechanisms of
resilience and synaptic plasticity. QA is produced by activated microglia and
infiltrating macrophages, but not by neurons or astrocytes, while KA is produced
by astrocytes. The study involved two cohorts of patients suffering from the RR-SM,
the SPMS and the PPMS; patients were analysed for the serum content of KA and T
and identified for the KA/T ratio. In all the MS subtypes groups the K/T ratio was
significantly increased compared to the healthy controls. Inasmuch, aberrant levels
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of KA and QA were detected depending on the stage and on the form of the disease,
leading to propose the KP metabolic signatures in patients as a marker with high
sensitivity and specificity to discriminate clinical MS subtypes.

15.3.2 Metabotropic Glutamate Receptors in the CSN of MS
Patients and EAE Mice

The metabotropic glutamate receptors consist of eight different receptor subtypes
(namely, mGlu1 to mGlu8 receptor) that are further subdivided in main groups
(group I, group II and Group III) based on the sequence homology, the coupled G
protein and the associated transducing pathway(s) (Nicoletti et al. 2011; Pin and
Acher 2002).

mGlu receptors are fundamental to the mechanism of synaptic plasticity and to
the IS-CNS interactions, since they act as fine tuners of the functional responses of
neurons and astrocytes as well as of the activation of microglia and immune-
competent cells (Fazio et al. 2018).

The role of mGlu receptors in controlling chemical transmission and inflamma-
tion has been largely revised and will not be further addressed in this chapter (please
refer to (D'Antoni et al. 2008; Fazio et al. 2018; Olivero et al. 2019; Pittaluga 2016;
Raiteri 2008; Spampinato et al. 2018)).

Starting from the 2003, Aronica and colleagues provided evidence of changes in
the expression of mGlu receptors belonging to the three groups in the CNS of MS
patients. In particular, in 2003 (Geurts et al. 2003) they demonstrated that the
expression of both group I and II mGlu receptors in MS tissues differed significantly
from that of healthy individuals. Strong mGlu1a receptor immunoreactivity was
observed in the subcortical white matter, particularly in the center of actively
demyelinating lesions and in the borders of chronic active lesions. A diffuse increase
in the expression of mGlu5 and mGlu2/3 receptors, but not of mGlu1a receptor, was
also highlighted in reactive astrocytes, as well as in a population of microglial cells
that displayed a macrophage-like morphology. Two years later, Aronica and col-
leagues (Geurts et al. 2005) also add insights concerning the group III. mGlu8
receptor immunoreactivity was detected in microglia/macrophage cells in the active
lesions, but the expression in these cells significantly decreased in chronic active and
inactive lesions. No mGlu4 receptors were detected in these lesions, but mGlu4
receptor immunopositivity emerged in a population of reactive astrocytes localized
in the rim of the chronic lesions. More recently, in 2008, Fazio and colleagues
demonstrated that, differently from what observed in other brain regions, the expres-
sion of the mGlu1a receptor is largely reduced in the Purkinje cells in the cerebellum
of MS patients and this is paralleled by an increased expression of the mGlu5
receptors. In particular, the strong mGlu1a receptor somato-dendritic immunoreac-
tivity in Purkinje cells of control human cerebellum was drastically reduced in the
Purkinje cell/molecular cell layer of MS patients, while mGlu5 receptor
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immunoreactivity, that it is not detectable in the Purkinje cell/molecular cell layer of
healthy individuals, became prominent in Purkinje cells of the MS patients.

These observations in autoptic tissues fromMS patients were largely replicated in
the EAE mice (Besong et al. 2002). The expression of mGlu4 receptors in astroglial
cells from EAE rats was significantly modified. To note, the activation of these
receptors significantly reduced the production and release of the pro-inflammatory
chemokine CCL5 which represent a marker of MS progression (Besong et al. 2002).
Starting from 2010, however, evidence underlined the relevance of the mGlu4
receptor subtypes as potential target of therapy for the MS. Fallarino and colleagues
(Fallarino et al. 2010) demonstrated that the genetic deletion of the mGlu4 receptors
increases the susceptibility of mice to develop EAE, compatible with the conclusion
that the overt hyperglutamatergicity observed during the progression of the disease
might reflect a counter-regulatory mechanism that is protective in nature and that, by
acting at mGlu4 receptors, it would provide a mechanism of defence in the progres-
sion of the pathology. Accordingly, it was demonstrated that the administration of
cinnabarinic acid, an endogenous metabolite of the kynurenine pathway that acts as
an orthosteric agonist of mGlu receptors, was highly protective against the develop-
ment of EAE in mice (Fazio et al. 2014; Spampinato et al. 2015). Finally, besides
mGlu4, also mGlu2/3 receptors were proposed to play a main role in the develop-
ment of EAE signs in particular at the spinal cord level (Di Prisco et al. 2016). Group
II mGlu receptors are known to have a preferential presynaptic localization in the
central system and to control glutamate transmission at this level (Olivero et al.
2019). In symptomatic EAE mice, the release-regulating activity of the mGlu2/3
autoreceptors in the cortex was found to be largely reduced, but it was amplified in
the spinal cord, suggesting these receptors as potential targets of new therapeutic
approaches for controlling glutamate excitotoxicity in these regions.

15.4 Modulators of Glutamate Receptors for the Therapy
of Autoimmune Demyelinating Disease

The relevance of the central glutamatergic transmission in the onset and the devel-
opment of MS and demyelinating disorders is supported by the finding that several
disease-modifying drugs (DMDs) currently in use for the cure of MS recover, at least
in part, the central glutamate alterations in EAE mice.

Impaired glutamate release efficiency (measured as amount of transmitter release
upon application of a depolarizing stimulus at the presynaptic level, as well as EPSPs
frequency/intensity and as AMPA/NMDA ratio at the postsynaptic component of
chemical synapses) was reported to recover following chronic administration of
fingolimod (Rossi et al. 2012; Luchtman et al. 2016; Bonfiglio et al. 2017), dimethyl
fumarate (Luchtman et al. 2016; Parodi et al. 2015), glatiramer (Gentile et al. 2013)
and rituximab (Rossi et al. 2014).
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A large part of these studies investigate the effects of the prophylactic adminis-
tration of the drugs, but some of them also focussed on the therapeutic approach,
i.e. the administration of the drug starting from the onset of the first symptoms, a
condition well consistent with the timing experienced by MS patients.

In some cases, the possibility was discussed that the drugs could directly affect
the release of glutamate, as well as the mechanism of uptake of the endogenous
amino acid, by directly modulating neurons and astrocyte functions. Besides the
activity at neurons and synaptic connections, however, the beneficial effects of these
therapeutics were mainly related to their ability to recover the pathological activation
of central glial cells as well as to reduce the infiltration of circulating lymphocytes
(both B and T cells) and macrophages in the CNS, claiming for their main immu-
nomodulatory/antiinflammatory activities.

The main targets of fingolimod and derivatives are the sphingosine receptors, that
have a wide distribution throughout the CNS, being expressed in neurons, astro-
cytes, glial cells and oligodendrocytes (Healy and Antel 2016) and that allow to
hypothesize either direct and/or indirect activity at neurons/astrocytes to control
glutamate excitotoxicity. Chronic prophylactic and therapeutic fingolimod recovers
glutamate impairments in selected region of the CNS of EAE mice at different stages
of disease (Bonfiglio et al. 2017; Levite 2017; Pittaluga 2017; Rossi et al. 2012).
More interestingly, clinical observations unveiled that oral chronic fingolimod
restored glutamate-mediated intercortical excitability in patients suffering from the
RRMS (Landi et al. 2015).

Differently the efficiency of laquinimod in recovering glutamate excitotoxicity
was proposed to rely on a direct control of the uptake efficiency in astrocytes of EAE
mice (Gentile et al. 2018). Finally, dimethyl fumarate was found to control glutamate
homeostasis in the CNS of EAE mice by causing a change in the molecular and
functional phenotype of activated microglia from the classically activated,
pro-inflammatory type to the alternatively activated, neuroprotective one. The
mechanism of detoxification of astrocytes relied on the activation of the
hydroxycarboxylic acid receptor 2 (HCAR2), that, by means of an AMPK-Sirt1
axis, causes deacetylation, and thereby inhibition, of NF-κB-mediated pathways and,
consequently, of the secretion of several pro-inflammatory molecules. This
neuroprotective effect was exerted on neurons at presynaptic terminals and modu-
lated glutamate release as evidentiated by measuring EPSPs in the cortex (Parodi
et al. 2015).

Based on the observation that altered glutamatergic transmission seems to be a
hallmark of the onset and progression of the demyelinating disorders, researchers
hypothesized the use of glutamate receptors ligands to recover the aberrant
glutamatergic transmission. In particular, it was hypothesized the use of NMDA
and AMPA antagonists to contain the impact of excitotoxic conditions either on
synaptic transmission or on macrophages and lymphocytes recruitment, microglia/
astrocytes activation and oligodendrocytes toxicity (Basso et al. 2008; Bolton and
Paul 2006; Lim et al. 2017). This approach is of course limited by the lack of safe
orally active modulators of the ionotropic glutamate receptors. As far as the NMDA
receptors are concerned, the only antagonist available is memantine that is an

452 A. Pittaluga and G. Olivero



uncompetitive NMDA antagonist approved for the therapy of the mild cognitive
impairment in Alzheimer’s disease and that in recent years has gained interest for the
cure of other pathologies (migraine, epilepsy). However, although memantine was
reported to provide symptomatic relief to MS patients (Starck et al. 1997), its
efficacy was recently revised in the “EMERITE” (NCT01074619) study and the
conclusion did not support the use of this drug in MS (Peyro Saint Paul et al. 2016).
The EMERITE analysis was dedicated to evaluate the efficacy and safety of the
long-term administration of memantine as a symptomatic treatment for cognitive
disorders in patients with RR-MS. The results unveiled that memantine administra-
tion did not cause significant beneficial effects in the MS patients, but rather that its
tolerability was significantly worse than expected. Based on these results, the
possibility to approach a direct modulation of NMDA receptors through the admin-
istration of receptor antagonists, although attractive, seems unrealistic.

Perampanel is a selective AMPA receptor antagonist that was developed to treat
epilepsy. The drug was approved in the USA and Europe to treat localization-related
seizures in young and adult patients (Hanada et al. 2011). Studies were dedicated to
assess whether perampanel was effective in treating multiple sclerosis, Parkinson’s
disease, or migraine prophylaxis, but the results showed that the drug was almost
ineffective in these pathologies. The development of this drug for the cure of MS was
definitively discontinued in 2016.

15.5 Emerging Treatments Related to Glutamate
Modulating Drugs for Autoimmune Demyelinating
Disease

Although so far there are no mGlu receptors ligands close to approval for entering
the clinic (Nicoletti et al. 2011), mGlu receptors (including mGlu2 and 3 receptors)
are still considered promising targets for the development of drugs for the treatment
of CNS disorders. In particular, data were provided showing that MS patients with
cognitive impairment had low hippocampal NAAG levels, suggesting that agonists
at mGlu3-preferring receptors might be beneficial in this disease.

Glutamate carboxypeptidase II (GCPII), also known as N-acetylated-alpha-linked
acidic dipeptidase (NAALADase), is a zinc-dependent peptidase that could represent
a target of therapeutic interventions in a variety of neurologic disorders. It is
preferentially expressed in astrocytes and Schwann cells (Berger et al. 1995; Sacha
et al. 2007). This enzyme cleaves NAAG, inactivating it.

Inhibitors of CGPII are expected to increase the endogenous CNS level of NAAG
and therefore to be efficacious in preventing clinical symptoms in MS patients (Rahn
et al. 2012).

The first potent and selective GCPII inhibitor, the 2-(phosphonomethyl)
pentanedioic acid (2-PMPA), was reported in 1996 (Jackson et al. 1996). 2-PMPA
behaves as a competitive inhibitor of GCPII in the picomolar range and it is devoid

15 Glutamate in Multiple Sclerosis: From Pathophysiology to Treatments 453



of activity at other cellular targets including glutamate transporters and receptors.
The administration of 2-PMPA to the EAE mice significantly improved cognition in
the animals at the acute stage of disease. To note, the drug was found to be present in
the CNS, consistent with a direct central effect. Unfortunately, drugs acting at GCPII
for human use with a profile of safety and efficacy are not available (Rahn et al.
2012). We have already discussed the potential use of NMDA antagonists to reduce
the synaptic impairments and the excitotoxic events that occur during the develop-
ment of the demyelinating disorders. We also reported how this approach is limited
by the lack of drugs. It is however worth stressing that in recent years another
therapeutic approach to modulate the NMDA-mediated signalling is gaining interest.
This approach relies on the concept of the “metamodulation” and implies the use of
ligands acting at colocalized, functionally coupled receptors, which, either directly
or indirectly, control the functions of the receptors they cross-talk with.

In the case of the NMDA receptors, this approach would imply the use of ligands
acting at non-glutamatergic receptors that modulate NMDA-mediated responses by
controlling the glutamate release in the synaptic cleft or that colocalize and func-
tional cross-talk with the NMDA receptors themselves, controlling their activity. It is
the case of the cannabinoid receptors type 1 (CB1) receptors. These receptors exist
presynaptically in glutamatergic nerve endings in several CNS regions and their
activation negatively controls glutamate exocytosis (Kim and Thayer 2000). Fur-
thermore, data exist showing that CB1 receptors colocalize and functionally couple
with NMDA receptors (Neuhofer et al. 2019).

Ligands acting at the CB1 (Manterola et al. 2018; Pryce et al. 2003), as well as the
modulators of the enzymatic pathways accounting for the synthesis and/or the
metabolism of the endogenous cannabinoids (EC), would be of interest in this
approach since they would be expected to tune NMDA-mediated functions.

As far as the MS is concerned, the EC system appears a suitable and challenging
target for a therapeutic approach based on a series of evidences:

1. the EC system is deregulated in subjects suffering from demyelinating disorders,
as well as in animals suffering from EAE, in line with its role in the onset and
progression of the clinical symptoms of the disease (Centonze et al. 2007),

2. despite the above-mentioned deregulations, the EC system can function as a
tuning system that could mediate the restoration of neuronal and astrocyte
impairment (Pryce et al. 2003, 2015),

3. beside the control of central transmission, the EC system also modulates inflam-
matory processes involved in the pathological course of the demyelinating
disorders (Rossi et al. 2011, 2015).

The evidence supports the interest around the discovery of drugs able to modulate
the EC system for the cure of MS. The data so far available from clinical studies,
however, indicate that cannabis-based medicines have a narrow therapeutic window,
in particular because of the CB1 receptor-mediated psychoactive components of the
drug(s) used in therapy (Parmar et al. 2016). Unfortunately, the possibility to avoid
this CB1-mediated effect favouring the other CB1/cannabinoid receptors type
1 (CB2)-mediated activities by using broad spectrum exogenous receptor agonists
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seems unlike and the probability that these unwanted events occur during treatment
with cannabis derivatives or cannabinoid-like molecules is very high.

The advance in elucidating the enzymatic pathway accounting for the synthesis
and the metabolism of ECs, however, has recently determined an important progress
in cannabis-mediated medicine. In particular, the possibility to increase the levels of
the ECs by the pharmacological inhibition of the enzymes involved in their degra-
dation has emerged as a valuable approach that could represent a safe alternative way
to strengthen the cannabinoid-mediated control of both central neurotransmission
and inflammatory pathways (Lourbopoulos et al. (2011) and reference therein).
Accordingly, the modulation of these enzymatic pathways may allow a fine-tuning
of receptor-mediated functions, thus reducing the possibility of concomitant effects
due to CB over-activation.

Two are the main ECs in the CNS, i.e. anandamide and 2-arachidonoylglycerol
(2-AG). Anandamide is mainly metabolized by the well-characterized fatty acid
amide hydrolase (FAAH). FAAH selective inhibitors enhance anandamide levels
and induce analgesia and anxiolytic effects. However, the analgesic effects due to the
irreversible inhibition of FAAH have not been replicated in phase II clinical studies
and, more importantly, a phase I study on a FAAH inhibitor recently failed because
of serious lethal side effects (Bonifácio et al. 2020).

Alternative to the blockade of FAAH is the inhibition of the 2-AG catabolic
enzymatic pathway, the monoacylglycerol lipase (MGL). This enzyme is responsi-
ble for about 85% metabolism of 2-AG, the major EC in the CNS, which acts as a
full agonist at both CB1 and CB2, with lower potency than anandamide towards the
CB1/CB2 receptors. It has been suggested that MGL inhibitors could be useful for
the treatment of several diseases, including pain, neuropsychiatric disorders, cancer
and neurodegenerative disorders like MS. Evidence showing that the blockade of
this enzyme can elicit any adverse effect is so far lacking. Moreover, some recent
findings suggest that MGL inhibition can be attained without the onset of concom-
itant undesirable side effects mediated by central CB1 (Anderson et al. 2014). As the
demyelinating diseases are concerned, data in literature demonstrated that enzyme
inhibitors acting at both FAAH and MGL are active in in vivo studies in the EAE
mouse model of MS, in which they clearly ameliorated the course of disease without
inducing unwanted effects linked to the CB1 overstimulation (Bernal-Chico et al.
2015; Brindisi et al. 2016; Hernández-Torres et al. 2014).

It is predicted that the administration of the MGL inhibitors would be expected to
increase the tuning of the endogenous cannabinoid at CB1 and CB2 receptors,
including those located presynaptically that control glutamate release efficiency
(Musella et al. 2014; Sánchez-Zavaleta et al. 2018), as well as those colocalized
with the NMDA receptors, whose activation “metamodulates” the colocalized
glutamatergic receptors (Neuhofer et al. 2019).

Finally, a new approach has been proposed to control the hyperglutamatergicity
that typifies several central neuropathologies, including MS, the so-called blood
glutamate scavenging approach. When glutamate concentrations are pathologically
elevated in the brain, several inherent mechanisms can participate to reduce its level.
One such mechanism utilizes sodium-dependent transporters located on brain
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capillaries that provide an important way by which pathologically glutamate is
reduced in the brain and diffuses in the blood through mechanisms of facilitated
diffusion (Zhumadilov et al. 2015). The rate of brain-to-blood glutamate efflux can
be increased (Gottlieb et al. 2003) by using the blood enzymes glutamate-pyruvate
transaminase (GPT) and glutamate-oxaloacetate transaminase (GOT), which, in the
presence of their cosubstrates pyruvate and oxaloacetate, convert glutamate to
2-ketoglutarate. By injecting pyruvate and oxaloacetate in the peripheral blood,
Gottlieb and colleagues successfully increased the rate of elimination of glutamate
from the brain ECF, providing the first demonstration that the manipulation of blood
glutamate dramatically reduces brain glutamate concentrations.

The clinical relevance of the preclinical results concerning this approach has been
revised by Castillo et al. (2016). The results from clinical studies are in progress and,
if positive, would allow the use in therapy of this approach to contain
hyperglutamatergicity in patients.

15.6 Conclusion and Future Perspectives

Based on the findings revised in the chapter, it seems conceivable to confirm the
main role of the glutamatergic system in the aetiopathogenesis of MS. The results
concerning the role of glutamate derangement, either in the dysregulation of the
immune system or in determining the impaired chemical transmission at central
synapses, that were once obtained in MS animals models were largely confirmed in
MS patients. These observations proved the main role of glutamate in controlling the
immunocompetent responses, but also highlight its impact on the development of the
synaptic derangements that typify the demyelinating disease.

Very interestingly, several therapeutics known to modulate the immunocompe-
tent responses were recently reported also to significantly recover the glutamatergic
central derangements both in EAE mice and in MS patients. These observations by
one side further support the strict correlation and functional interaction linking the IS
and the CNS, but also suggest new approaches to counteract central excitotoxicity.
The efficacy of certain drugs (fingolimod, laquinimod) to recover glutamate trans-
mission might open the road to the use of these therapeutics also for the cure of other
central pathologies that are typified by overt altered glutamate homeostasis. These
observations are particularly intriguing, if one considers that almost all the glutamate
receptor ligands (with few exceptions, see for instance memantine) that were pro-
posed as promising drugs for the cure of central disorders were discontinued because
of the onset of unwanted side effects.

Alternative to the use of glutamate receptor ligands, some preclinical results in
EAE mice also unveiled the efficacy of alternative approaches that rely on the use of
indirect modulators of the glutamatergic system. It is the case the GCPII inhibitors,
which would modulate the bioavailability of endogenous glutamate ligands at
selective receptor subtypes. In this context, a particular attention must be paid to
the repositioning of therapeutics that are currently in use for certain pathologies but
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that can “metamodulate” the functions and the expression of glutamate receptors and
might assure an indirect control and tuning of glutamate transmission in the CNS.
We are referring to the MGL inhibitors that would “metamodulate” glutamate
receptors colocalized with cannabinoid receptors, restoring their physiological role
in CNS. All these approaches however deserve further investigations to translate
them to clinical studies and to ascertain their safety, tolerability and efficacy.

Finally, the new approach of blood glutamate scavenging represents a revolu-
tionary therapeutic strategy to be evaluated for its efficacy in containing
hyperglutamatergicity in MS patients.

We firmly believe that in the next future the study of the impact of the available
therapeutics on central glutamatergic system would improve our knowledge of the
mechanisms underlying the onset and the progression of MS, also unveiling new
cellular/molecular targets of new therapeutics.
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Chapter 16
The Role of Glutamate Dysregulation in
the Etiology of ADHD

P. E. A. Glaser, S. R. Batten, and G. A. Gerhardt

Abstract In this chapter we review current data assessing the role of glutamate in
the etiology of ADHD. A general introduction of ADHD and common comorbidities
are briefly discussed. The glutamate system in general and its potential role in
ADHD are thoroughly reviewed evaluating both preclinical and clinical data. The
current ADHD treatments that act on the glutamate system, memantine and
atomoxetine, are discussed. The chapter concludes with a discussion on the future
of glutamatergic drugs in the treatment of ADHD.

Keywords ADHD · Brain energetics · Glutamate · Glutamatergic
pharmacotherapies

16.1 Introduction

Attention-deficit hyperactivity disorder (ADHD) is a disorder commonly diagnosed
in children and adolescents that begins in childhood and may often continue into
adulthood (Martins et al. 2014; Granet et al. 2005). ADHD is considered a
neurodevelopmental disorder that is characterized by deficits in attention and
impulse control, often accompanied by hyperactivity (Martins et al. 2014; Morgan
et al. 1996). Currently, the etiological processes of ADHD are not well understood
despite the fact that it affects 5% of children and 2.5% of adults worldwide
(American Psychiatric Association 2013).
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Historically speaking, the earliest reference of ADHD or a “disease of attention”
is rumored to be by Shakespeare in his play King Henry VII (Martins et al. 2014).
However, a better-documented report was in 1902 by the English physician, George
Still, who focused on clinical aspects of those with ADHD-like symptoms and
argued that there were certain traits similar in all those who seemed to have this
“disorder” (Mash and Barkley 2003). Through the years ADHD has had several
different nomenclatures and diagnostic criteria (Martins et al. 2014). Currently, the
DSM-5 denotes three presentations of ADHD including inattentive (ADHD-PI),
hyper-active/impulsive (ADHD-HI), and combined (ADHD-C) (American Psychi-
atric Association 2013). The DSM-5 also established more “adult relevant” symp-
toms as well as the classification system for symptoms as mild, moderate, and severe
(American Psychiatric Association 2013).

Regardless of the nomenclature used throughout the years, it has been hypothe-
sized for decades that ADHD is a heterogeneous disorder involving interactions
between genetics and the environment (Genro et al. 2012; Biederman 2005). Envi-
ronmentally speaking, positive correlations are observed between ADHD and lower
socioeconomic status, parent criminality, parental mental health, fetal exposure to
alcohol, and maternal smoking as well as many other factors (Martins et al. 2014;
Shimizu and Miranda 2012; Zhang et al. 2012). From a genetic standpoint most
genes associated with ADHD seem to be related to malfunctions in several neuro-
transmitter systems with the most studied being those associated with the dopami-
nergic, noradrenergic, and serotonergic systems (Zhang et al. 2012; Roman et al.
2002; Kirley et al. 2002; Faraone et al. 2001).

More recently, however, evidence suggests that genetic and neurobiological
issues related to the glutamate system may be a contributing factor in the etiology
of ADHD (Miller et al. 2014; Miller et al. 2013; Reif et al. 2009; Hoogman et al.
2011). Here we will outline comorbidities associated with ADHD as well as discuss
the glutamate system in general, review data supporting the role of glutamate in
ADHD, discuss current glutamatergic pharmacotherapies, and discuss future per-
spectives on glutamatergic drugs in meliorating the symptoms of ADHD.

16.2 ADHD Comorbidities

In a study of children and adolescents referred for ADHD, comorbidity ranged from
ten to fifty percent for other common psychiatric disorders of youth (Rohde et al.
2004). Another study found roughly 62% of ADHD patients are likely to have one or
more comorbidities and 35% of patients are likely to have two or more psychiatric
comorbidities (Yoshimasu et al. 2012). However, no differences in comorbidities
seem to exist between males and females diagnosed with ADHD (Yoshimasu et al.
2012).

The main psychiatric conditions that accompany ADHD include disruptive
behavior disorders (30–50%), depression (15–20%), anxiety disorders (25%), learn-
ing disabilities (10–15%), and substance abuse disorders (9–40%) (Rafolovich
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2001). Of the disruptive disorders, a strong association is seen with ODD/CD
(Yoshimasu et al. 2012). Also, those with comorbid ADHD and major depression
are more likely to develop bipolar disorder later in life (Chen et al. 2015).

There is no difference in comorbidity rate between males and females with
ADHD; however, there are differences in the type of diseases comorbid with
ADHD between the sexes (Yoshimasu et al. 2012). Specifically, males are more
likely to have externalizing-only disorders (i.e., ODD/CD) and females
internalizing-only disorders (i.e., anxiety) (Yoshimasu et al. 2012). Thus, ADHD
is a disorder that is likely to be accompanied by a myriad of other disorders. These
comorbid data should be considered when thinking of the glutamatergic system’s
role in ADHD and how the glutamate system may promote other psychiatric
disorders.

16.3 ADHD and the Glutamate System

Several studies have shown issues with the prefrontal cortex (PFC) as well as other
“higher level” circuits in the brain in those with ADHD (Carrey et al. 2002; Moore
et al. 2006; Moore et al. 2007). Considering the many glutamatergic projections to
the PFC as well as other cortical regions it is no surprise that researchers have begun
exploring the glutamate system in those with ADHD (Moore et al. 2007).
Glutamatergic changes in human ADHD have also stimulated preclinical work on
glutamate and ADHD (Miller et al. 2013; Miller et al. 2019). Thus, it is becoming
apparent that dysregulations in the glutamate system may be one key etiologic factor
in ADHD. In this section we will examine general aspects of the glutamate system as
well as potential glutamatergic dysfunctions seen in ADHD.

16.3.1 Glutamate System Basics

Glutamate is the major excitatory neurotransmitter in the CNS (Danbolt 2001).
Glutamate is synthesized in the nerve terminals of glutamatergic neurons from two
major sources: α-ketoglutarate produced from the TCA cycle or from glutamine
shuttled to neurons from glial cells (Tapiero et al. 2002; Anderson and Swanson
2000; Daikhin and Yudkoff 2000). In neuron terminals α-ketoglutarate and gluta-
mine are enzymatically synthesized into glutamate and packaged into synaptic
vesicles in an energy dependent fashion via vesicular glutamate transporters
(VGLUT) (Fonnum et al. 1998).

Once packaged, glutamate can then be released into the synaptic cleft, in a Ca2+

dependent manner, upon the firing of an action potential (Meldrum 2000; Turner
1998). Once glutamate is released it is free to: (1) bind to pre- and post-synaptic
receptors, (2) be taken up by glial cells in a Na+ dependent fashion, (3) be actively
transported into presynaptic neurons and repackaged, and finally, (4) diffuse away
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from the synapse (Anderson and Swanson 2000; Daikhin and Yudkoff 2000; Attwell
2000).

In the synaptic cleft glutamate may bind to ionotropic receptors (NMDA, AMPA,
Kainate), presynaptic inhibitory metabotropic receptors (mGluR2, 3, 4, 7, 8), and/or
post-synaptic excitatory metabotropic receptors (mGluR1, 5) (Meldrum 2000;
Iversen et al. 2009; Schoepp et al. 1998). Approximately 90% of glutamate is
taken up by astrocytes either by excitatory amino acid transporter 1 or 2 (EAAT
1 and EAAT2, respectively) (Iversen et al. 2009; Schoepp et al. 1998; Danbolt et al.
1998). Glutamate can also be taken up by neurons via EAAT3–5 although this seems
to be a secondary process for this neurotransmitter system (Iversen et al. 2009;
Schoepp et al. 1998; Danbolt et al. 1998). See Fig. 16.1 for a simplified diagram of
the glutamate synapse, astrocyte uptake, and the regulation of glutamate signaling by
GABA interneurons.

Fig. 16.1 A simplified glutamatergic synapse showing interactions from glial cells and GABA
interneurons. Once glutamate is released from the presynaptic neuron it is free to bind pre- and post-
synaptic ionotropic and metabotropic receptors or be taken up by high affinity EAATs on glia cells
in a Na+ dependent fashion. Binding to AMPA, NMDA, Kainate, or mGluR1 receptors will cause
excitation. Binding to mGluR2,3 receptors causes cellular inhibition. GABA downregulates the
Glutamate synapse at GABA-A and GABA-B receptors
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16.3.2 Bridging Old and New Thoughts About Neural
Signaling in ADHD

Researchers became further interested in glutamate dynamics in the PFC in those
with ADHD after realizing the reciprocal modulatory nature between these
glutamatergic circuits and the dopamine system (the system historically most widely
studied in ADHD) (Miller et al. 2013). Specifically, glutamate projections from the
PFC project to dopamine rich areas such as the striatum, nucleus accumbens, ventral
tegmental area (VTA), and substantia nigra (Iversen et al. 2009; Schultz 2001).
Dopamine projections from the VTA and nucleus accumbens also project to the PFC
(Iversen et al. 2009; Schultz 2001). Thus, malfunctions in either of these systems
could cause dysregulation(s) in the others (Miller et al. 2013).

Studies have shown that the NMDA receptor is crucial in stimulating dopamine
neurons in the VTA and substantia nigra (Martinez-Fong et al. 1992; Warton et al.
2009). Also, there is evidence that D2 receptor activation may inhibit the excitatory
effects of NMDA receptors (Kotecha et al. 2002). Similarly, D4 receptor activation
may decrease the excitatory response of AMPA receptors in PFC pyramidal neurons
(Yuen et al. 2010). Thus, glutamatergic dysregulation in ADHD may be as detri-
mental as those seen in the dopamine system and therefore normalization of this
system may help alleviate symptoms seen in ADHD.

16.3.3 ADHD and Glutamate: Evidence from Human Studies

Decreased functioning of the PFC and subsequent deficits in cognitive functioning
including working memory have been observed in those with ADHD (Castellanos
and Tannock 2002; Tannock et al. 1995). An MRI study has shown that there is an
increase in a marker for glutamate in the anterior cingulate cortex of those with
ADHD compared to controls (Moore et al. 2007). There is also evidence that treating
children with medications known to meliorate the symptoms of ADHD decreases
glutamate levels in the striatum and PFC (Hammerness et al. 2012). A spectroscopic
study of children with ADHD showed decreased concentration of glutamate
( p ¼ 0.009), N-acetyl aspartate (NAA) ( p ¼ 0.029) and choline ( p ¼ 0.016) in
ADHD participants compared to controls specifically in the right striatum and no
significant changes in the left striatum (Hai et al. 2020). Genetic associations have
been found supporting the involvement of GABAergic and Glutamatergic systems in
ADHD when there is overlap of symptoms with ASD (Autism Spectrum Disorder)
(Naaijen et al. 2017). While this research is promising, there is no robust clinical data
on the role of glutamate in ADHD. However, more data from preclinical models are
suggestive of glutamate dysfunction in this disorder.
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16.3.4 ADHD and Glutamate: Evidence from Animal
Research

The spontaneously hypertensive rat (SHR) is the most widely used model of ADHD
specifically for studying the ADHD combined type (Sagvolden and Johansen 2011;
Russell 2001a). The SHR shows attention deficits, hyperactivity, and impulsivity in
motor movements (Sagvolden 2000; Sagvolden et al. 1992; Knardahl and Sagvolden
1979). While this model has been widely used in studying ADHD pathology, there
are recent arguments about how well this animal model translates to the human
disease, what animal models may represent other subtypes, and what the appropriate
control should be in the experiments (Alsop 2007). That being said, most agree that
the SHR from Charles River (SHR/NCrl) is the most appropriate animal model for
ADHD-C, the Wistar-Kyoto from Charles River (WKY/NCrl) is best suited as a
model for ADHD-PI (predominately inattentive type), and that the WKY from
Harlan (WKY/NHsd) is the most appropriate control with the outbred Sprague-
Dawley (SD) being another potential control (Russell 2001a; Sagvolden et al. 2005,
2008, 2009). Several different studies have shown glutamate dysregulation in these
animals.

Studying glutamate dynamics, specifically in the rat equivalent of the human
PFC, seems to be particularly important in understanding the etiology of ADHD
(Carrey et al. 2002; Moore et al. 2006, 2007). AMPAR-mediated synaptic transmis-
sion in pyramidal neurons of PFC was diminished in SHR, which was correlated
with the decreased surface expression of AMPAR subunits (Cheng et al. 2017).
Evidence from our lab has shown a significant increase in KCl-evoked glutamate
release in regions of the PFC, the cingulate and infralimbic cortices, in the SHR
compared to the WKY (Miller et al. 2019). It is worth noting that evidence suggests
that the cingulate cortex may regulate emotions in humans as well as be a primary
center for motivation (Granziera et al. 2011; Adey and Meyer 1952). On the other
hand, the infralimbic region seems to be related to attentional focus as well as
attentional set-shifting (Dalley et al. 2004). Note that these aforementioned issues
are all seen in ADHD (Krusch et al. 1996; Mehta et al. 2004; Klimkeit et al. 2005).

Data collected also suggest that glutamate release may be increased in the
striatum of the SHR compared to the WKY (Miller et al. 2019). This finding may
relate to ADHD in that the striatum is related to movement and reward circuitry both
of which seem to be disrupted in ADHD (Dunnett and Lelos 2010; Salamone and
Correa 2012). It also takes a significantly higher volume of ejected glutamate to
achieve similar peak amplitudes in SHR rats compared to WKY control suggesting
uptake may be faster in the PFC of SHRs; this may be a potential compensatory
response to increased vesicular glutamate release in this area (Miller et al. 2019).
Considering the differences seen above in anesthetized rats our lab has also
attempted to assess glutamate dynamics in freely-moving animals.

Evidence suggests that tonic glutamate concentrations are higher in SHR animals
compared to WKY rats regardless of treatment with methylphenidate (Miller et al.
2019). Specifically, higher tonic levels were seen in the cingulate, prelimbic, and
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infralimbic cortices compared to WKY (Miller et al. 2019). Similarly, tonic gluta-
mate levels are increased in the PFC of both intermediate and chronically treated
methylphenidate animals compared to SHR saline controls (Miller et al. 2019).
Further, phasic glutamate was decreased in SHR rats treated chronically with
methylphenidate compared to SHR rats treated with saline (Miller et al. 2019).

It is worth noting that the type of phasic signal seen in the animals in this
experiment differed between strain and treatment (Miller et al. 2019). Specifically,
SHR’s treated intermediately with methylphenidate had more rapid, multi-peaks
compared with WKY’s treated with methylphenidate (Miller et al. 2019). However,
when treated chronically with methylphenidate, the SHR rats had more slow phasic
events compared to SHR saline controls (Miller et al. 2019). Overall, these freely-
moving data suggest that there are dynamic changes in both tonic and phasic
glutamate levels in the PFC of SHR treated with a well-known dopamine acting
drug often prescribed to those with ADHD.

More “indirect measures” have also shown differences in glutamate signaling in
the SHR. For example, there is evidence that NMDA receptor activation resulted in
less calcium influx in SHR PFC slices compared to those obtained from WKY
(Lehohla et al. 2004). Glutamate applied to SHR PFC slices also showed an increase
in norepinephrine release by activation of NMDA receptors compared to WKY
controls (Russell 2001b).

Increased glutamate simulated release of dopamine in the substantia nigra of SHR
rats compared to WKY controls has also been found suggesting that there may be
altered regulation of dopamine by glutamate in the SHR (Warton et al. 2009). Mice
with inactivation of the dopamine transporter showed increased hyperactivity when
administered NMDA antagonists and the hyperactivity decreased when given drugs
that increased glutamate signaling (Gainetdinov 1999; Gainetdinov 2000). Neonatal
6-hydroxydopamine lesions in rats caused dose dependent decreases in D4 receptors
and increases in glutamate transporters in the striatum (Masuo et al. 2002). All of this
data further suggests tightly coupled interactions between the glutamate and dopa-
mine systems in ADHD (Masuo et al. 2002).

Inactivation of mGluR5 increases hyperactivity in mice (Halberstadt et al. 2011).
Further, impairment of presynaptic mGLuR7 receptors using MMPIP in the
prelimbic cortex decreased visuospatial attention (Benn and Robinson 2014). How-
ever, in this same study no other NMDA antagonists used or mGluR2/3 inhibitors
caused any changes in impulse control when infused into the prelimbic or
infralimbic areas (Benn and Robinson 2014). Nevertheless, considering that
mGluR drugs may work to normalize glutamatergic signaling, agonists of these
receptors may normalize the glutamatergic system and behavior in these animals
(Li et al. 2014). Along with this, downstream effectors of mGluRs may be
dysregulated in ADHD as well.

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C
(PKC) signaling in the PFC in glutamatergic neurons may also contribute to
ADHD symptomology. CaMKII and PKC are essential for long-term potentiation
(LTP); a process highly associated with glutamatergic signaling. In fact, it was found
that an increase in CaMKII autophosphorylation and GluR1 phosphorylation was
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found in the mPFC of stroke prone spontaneous hypertensive rats (SHRSP) com-
pared to WKY controls suggesting mPFC pathology; this was related to impaired
performance on both the Y maze task and a novel discrimination task (Yabuki et al.
2014). Furthermore, methylphenidate treatment did not only increase SHRSP per-
formance on behavioral tasks but also decreased CaMKII autophosphorylation and
GluR1 phosphorylation in the mPFC compared to WKY controls (Yabuki et al.
2014).

Using the 5-choice serial reaction time task (5CSRTT) it has been reported that
NMDA antagonism by MK-801 in the infralimbic cortex increased impulsive
responding (Benn and Robinson 2014). In another study assessing the role of the
glutamate system in impulsive choice (delay and probability discounting) it was
found that systemic injections of MK-801 decreased discounting rate for the larger
reinforcer (less impulsive) (Yates et al. 2015). These discrepancies may be due to the
different underlying processes thought to contribute to impulsive action compared to
impulsive choice (Perry and Carroll 2008). Regardless, these data do suggest that
some kind of interaction is occurring with the glutamate system in models of
impulsivity although from these studies the directionality is not clear.

16.3.5 Glutamate, ADHD, and Genetic Correlates

Latrophilin-3 (LRHN3), an adhesion G-protein coupled-receptor indicated in
synaptogenesis and synaptic plasticity, has been shown to promote ADHD-like
behaviors in experimental models with loss-of-function mutation in the LRHN3
gene (Silva et al. 2011). Specifically, LRHN3 knockdown causes increased loco-
motor activity and dopamine signaling and can be rescued by drugs used to treat
ADHD (Lange et al. 2012).

Fibronectin (FLRT3) is a transmembrane protein and a natural ligand of LRHN3;
this binding is essential to glutamatergic signaling (O’Sullivan et al. 2012). When
FLRT3 and LRHN3 bind this action seems to regulate excitatory synapses and
plasticity both pre- and post-synaptically (Yamagishi et al. 2011). Some with
ADHD have been shown to contain mutations in FLRT3 further suggesting links
between glutamate signaling and ADHD (Lionel et al. 2011).

Mutations resulting in malfunctioned SHANK proteins may also cause ADHD
symptoms (Durand et al. 2007). SHANK proteins are synaptic multi-domain scaf-
fold proteins of the post-synaptic density that connect receptors, ion channels, and
other types of membrane proteins to actin cytoskeleton G protein-coupled pathways
involved in dendrite maturation and synapse formation (Lesch et al. 2008). Gene
mutations in nitric oxide synthase-1 (NOS-1), a protein closely associated with the
NMDA receptor and responsible for nitric oxide generation, have been linked to
ADHD behaviors and impulsivity as well (Hoogman et al. 2011; Reif et al. 2006).

Mutations in several other genes including those that code for NMDA receptor
subunit-2A and 2B as well as genes encoding for glial glutamate transporter EAAT1
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and mGluRs have all been shown to be associated with ADHD (Lesch et al. 2008;
Dorval et al. 2007; Turic et al. 2005; Elia et al. 2012).

16.3.6 Brain Energetics and Glutamate: A New Way
to View ADHD?

The brain is an interesting organ in the fact that it is about 2% of a human’s mass but
utilizes approximately 20% of its oxygen and glucose (Magistretti et al. 1999).
Further, unlike other organs in the body the brain can only use sugars for energy
due to the blood-brain barrier (Fonseca-Azevedo and Herculano-Houzel 2012).
Neurons are also interesting in the fact that they are mercurial in nature; they can
go from quiescence to rapid firing in seconds (Attwell and Laughlin 2001). Even
more interesting is that neurons cannot store their own energy; this is a task left to
glia that store energy in the form of glycogen (Almeida et al. 2001). While these
aforementioned facts are generally accepted the molecule used as the primary energy
source in the brain is still debated (Barros 2013).

It is a well-accepted scientific fact that most of the body uses glucose as its
primary energy source. While the brain does seem to use glucose to some degree
evidence suggests that lactate may be used more frequently as an energy source by
the brain (Barros 2013). This balance and shuttling of glucose and lactate in the brain
is tightly performed and regulated by neuron-glia coupling (Magistretti 2006).

Glucose is transported into the brain through blood vessels and into astrocytes via
glucose transporters (GLUT1) (Magistretti 2006). Glucose is then transformed into
glucose-6-phosphate then either enzymatically transformed into glycogen via gly-
cogen synthase or turned into pyruvate then lactate via pyruvate kinase and lactate
dehydrogenase, respectively (Barros 2013; Magistretti 2006). Lactate can then be
shuttled out of astrocytes via monocarboxylate transporter 4 (MCT4) and shuttled
into neurons via MCT2 (Barros 2013; Magistretti 2006). Once lactate is in neurons it
is then transformed back into pyruvate and taken up by mitochondria for use in the
TCA cycle (Fig. 16.2) (Barros 2013; Magistretti 2006).

It has been shown that there is tight coupling between glutamate signaling and
lactate shuttling (Magistretti 2006). Evidence suggests that when glutamate is
released from neurons and taken up by glia via EAATs that this Na+ dependent
process causes lactate to be released to neurons to further support their firing
(Magistretti 2006). Also, memory formation, a process highly associated with
glutamate, also seems to be associated with lactate (Newman et al. 2011; Suzuki
et al. 2011). Research shows that blocking lactate transport in the brain may inhibit
memory formation (Newman et al. 2011; Suzuki et al. 2011). Also, lactate but not
glucose could “rescue” this loss of memory (Suzuki et al. 2011). Further, evidence
suggests that beyond lactate’s inherent energy properties it may also serve as a
second messenger for potentiating LTP likely by regulating the redox state of
neurons (Yang et al. 2014). Considering this research, there is ample evidence to
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suggest that the dysregulation in brain energy can directly affect glutamate signaling.
Thus, insufficiencies in how the brain acquires energy could directly affect neuro-
transmitter systems and promote disease.

Energetics and astrocytic control of glucose was proposed as a possible etiology
for ADHD by a review paper in 2001 (Todd and Botteron 2001). More recently
some research has shown that lactate hypo-function in the brain can cause aberrant
neuronal firing promoting the symptoms seen in ADHD (Killeen et al. 2013). In their
elegant paper Killeen et al. (2013) proposed the behavior neuroenergetics theory of
ADHD. The neuroenergetics theory assumes brain lactate hypo-function in those
with ADHD and uses the lactate-neuron shuttle as a “bottle neck” in neuronal energy
acquisition. Using the neuroenergetics theory, with the help of the neuroenergetics
mass-action model, these authors derived equations tying neuron physiology to
behavior (Killeen et al. 2013).

This model inferred that those with ADHD could only bring approximately
75–80% of their neurocognitive energy to exhibit on tasks (Killeen et al. 2013).
Further, ADHD individuals could only allocate approximately 85% of their cogni-
tive resources to behavioral tasks compared to controls (Killeen et al. 2013). Even
more impressive than the aforementioned was that parameters derived from the
model predicted performance on behavioral tasks suggesting that brain lactate levels

Fig. 16.2 The Astrocyte Neuron Lactate Shuttle. Glucose is transported into the brain through
blood vessels and into astrocytes via glucose transporters (GLUT1). Glucose is then transformed
into glucose-6-phosphate (G-6-P) then either transformed into glycogen or into lactate. Lactate can
then be shuttled out of astrocytes via monocarboxylate transporter 4 (MCT4) and shuttled into
neurons via monocarboxylate transporter 2 (MCT2). Once lactate is in neurons it is then
transformed into pyruvate and taken up by mitochondria for use in the TCA cycle
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are predictive of behavioral outcomes (Killeen et al. 2013). This fact alone suggests
hypo-energetics and changes in glutamate signaling may be very important in the
etiology of ADHD.

Other researchers have also found a link between brain energetics, neurotrans-
mitter dysregulations, and ADHD. For example, MRI studies suggest that the ability
of those with ADHD to “summon” glucose for oxidative metabolism is impaired in
the fronto-parietal system compared to typically developing controls (Cortese et al.
2012). Further, some data support that those with ADHD may have enzyme defi-
ciencies related to energy supply and that these deficiencies may cause developmen-
tal delays in the fronto-striatal circuitry (Fair et al. 2010). Evidence also suggests that
those with ADHD may require more brain energy than controls to function due to
inefficient neural networks lacking full myelination (Nagel et al. 2011).

Dysfunctional GABAergic fibers are also implicated in promoting impulsivity in
those with ADHD due to lack of these interneurons to inhibit upper motor neurons
(Koos and Tepper 1999). This GABAergic dysfunction may be caused by lack of
energy supply; this is thought to be especially relevant when considering that fast-
spiking GABAergic neurons may fail to completely inactivate their sodium channels
upon action potential firing thus allowing two times the amount of sodium to enter
the cell (Carter and Bean 2009). This larger intake of sodium then increases the ATP
needed for GABA cells to adequately restore membrane potential, thus this may
make these cells especially vulnerable to energy insufficiencies and thus be a
potential link in ADHD etiology (Killeen et al. 2013).

NAA levels, a neuro-specific energy storage molecule important for energy
metabolism and myelin sheath formation, is altered in ADHD (Ariyannur et al.
2010; Yang et al. 2010; Perlov et al. 2009). Evidence suggests that treatment with
methylphenidate increased NAA levels in the anterior cingulate cortex in those with
ADHD (Kronenberg et al. 2008). Considering that the anterior cingulate cortex is
essential in error processing and learning from mistakes (a deficit seen in those with
ADHD) this increase in the energy metabolite NAA may be crucial to ADHD
symptoms (VanMeel et al. 2007). The implication of NAA levels in ADHD etiology
is even more pronounced when we again consider that neurons in the ADHD brain
may be slower processing, more energy insufficient, and variable due to lack of
myelination (Nagel et al. 2011; Harris and Attwell 2012; Zhu et al. 2012).

It is worth noting that there is evidence against lactate as an energy source for
neurons, glutamate-lactate coupling, and energy deficits in those with ADHD
(Jolivet et al. 2010; Pancani et al. 2011). However, considering the overwhelming
evidence for a relationship between energy dynamics, glutamate, and ADHD it is
likely that issues with brain energy may be a primary cause of the disease and
perhaps even a potential target of future medications.
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16.4 Targeting the Glutamate System to Treat ADHD

Recently studies have suggested that not only may the glutamate system promote
ADHD pathology but also that targeting the glutamate system with pharmacological
agents may normalize the system and alleviate symptoms associated with ADHD
(Carrey et al. 2007; Kavirajan 2009; Findling et al. 2007). It is worth noting that
research has currently suggested that staple treatments in ADHD such as methyl-
phenidate and amphetamines may also affect the glutamate system indirectly (Miller
et al. 2013). However, here we will only discuss current pharmaceuticals approved/
suggested to treat ADHD that act directly on the glutamate system, namely
atomoxetine and memantine. For each drug a brief pharmacological profile will be
discussed followed by research from animal models and human studies.

16.4.1 Atomoxetine: Basic Pharmacology

Atomoxetine is a non-stimulant medication associated with less abuse liability than
traditional ADHD treatments (Jensen et al. 2015). Further, data suggest that it is well
tolerated with minimal adverse advents in children with ADHD (Wernicke and
Kratochvil 2002). Initially the primary mechanism of action of atomoxetine was
thought to be as a blocker of the norepinephrine transporter (NET) with minimal
activity at other neurotransmitter systems (Michelson et al. 2007a). However, more
recent evidence suggests that atomoxetine also works as a non-competitive antago-
nist at NMDA receptors at relevant physiological levels (Ludolph et al. 2010; Miceli
and Gronier 2015). In children and adolescents atomoxetine was absorbed with peak
plasma concentrations occurring in 1–2 h with a half-life of approximately 3 h
(Witcher et al. 2003). Generally speaking, the recommended dose of atomoxetine
for children is 80 mg/day with a maximum recommended dose of 100 mg/day (Sauer
et al. 2005). Atomoxetine is primarily metabolized in the liver by CYP2D6; those
who are poor metabolizers use the CYP2C19 pathway (Sauer et al. 2005). Note that
it is important to assess those for poor metabolism because the drug dose will need to
be adjusted accordingly (Sauer et al. 2005).

16.4.2 Atomoxetine & ADHD: Evidence from Animals
Models

Several studies have been conducted using atomoxetine in animal models of ADHD
and impulsivity. A recent study showed that rats with a lesion in the dorsal norad-
renergic ascending bundle given atomoxetine had increased performance on the
5-CSRTT task suggesting that not only can atomoxetine decrease impulsivity but
that atomoxetine’s effects on the NET are not the sole reason for the drug’s
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pharmacological efficacy (Liu et al. 2015). A separate study also found atomoxetine
to decrease impulsivity as measured by the 5-CSRTT task (Ansquer et al. 2014).

Contrary to the previous studies, Dommett (2014) found that atomoxetine had no
effect on SHR performance in the 5-CSRTT. The author of this study suggested that
lack of statistical significance could be due to a lack of sensitivity of the test to
adequately tap into the hypothetical construct of impulsivity or that the SHR is not a
good model of ADHD (Dommett 2014). While these explanations cannot be
completely ruled out, it is worth noting that there is ample evidence to suggest that
this may not be the case; however, these topics are discussed elsewhere (Sagvolden
2000; Broos et al. 2012; Bayless et al. 2015). It is also worth noting that Dommett
(2014) had a difficult time training the SHR on the 5-CSRTT with only ten out of
eighteen completing the task. Thus, there may have been an issue in the way the task
was set up in this experiment that may have confounded the results.

Another study showed that atomoxetine reversed locomotor activity, impaired
novel object recognition, and prepulse inhibition in impulsive mice (Shibasaki et al.
2015). A study assessing probability discounting in rats showed that a low dose of
atomoxetine increased choice for the larger reinforcer suggesting a decrease in
impulsive choice (Montes et al. 2015). However, rats in an adjusting delay
discounting procedure showed no changes in impulsivity when atomoxetine was
infused into the mPFC or OFC (Yates et al. 2014). These data suggest that these two
brain regions in isolation cannot account for atomoxetine’s observed effects in other
studies where impulsivity was shown to decrease upon drug administration.

Using DAT knockout mice another study found that atomoxetine decreased
cognitive deficits on an H maze task while having no effect on hyperactivity
(Del’Guidice et al. 2014). This suggests that atomoxetine may improve the cognitive
symptoms seen in ADHD without having any action on the dopamine system;
however, an effect on the dopamine system may be necessary to decrease symptoms
of hyperactivity. Another study was also interested in assessing how atomoxetine
may affect the dopamine system as well as how this drug may affect performance on
an open field task (Moon et al. 2014).

In the Moon study SHR were divided into four atomoxetine treatment groups:
control, 1, 5, 0.25 mg/kg/day doses (oral administration). The animals were then
assessed in the open field at one-, two-, and three-week intervals and after the
experiment their D2 receptor concentration from the PFC, striatum, and hypothala-
mus were analyzed using immunohistochemistry. It was found that the 1 mg/kg/day
dose significantly decreased open field hyperactivity in the SHR and that D2 receptor
concentration decreased in all brain regions in a dose-dependent manner. These data
suggest that atomoxetine may decrease hyperactivity by normalizing the dopamine
system (Moon et al. 2014). It is worth noting again that evidence suggests that
normalizing the dopamine system may also normalize the glutamate system and vice
versa, thus glutamate function may play a crucial role here as well (Miller et al.
2013).

SHR treated with atomoxetine in adolescence self-administer cocaine to a lesser
degree compared to those treated with methylphenidate suggesting a decrease in
potential drug abuse later in life for those taking this medication (Jordan et al. 2014,
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2015). Thus, all things considered, atomoxetine may not only be superior in treating
ADHD symptoms compared to traditional treatments but may also be less likely to
promote abuse behaviors in the future.

16.4.3 Atomoxetine & ADHD: Evidence from Clinical Trials

Although effect sizes are usually not as large as with stimulants, several clinical trials
have been conducted on atomoxetine in the ADHD population with the vast majority
showing positive results (Bitter et al. 2012). For example, a six-month, placebo-
controlled, double-blind trial showed an improvement in attention scores in adults
with ADHD compared to placebo controls (Brown et al. 2011). In another double-
blind, placebo-controlled study it was found that once-daily atomoxetine improved
ADHD symptoms in adolescents according to investigator, parent, and teacher
ratings (Michelson et al. 2007b). A meta-analysis conducted on 25 double-blind,
placebo-controlled studies also showed that atomoxetine decreased several symp-
toms associated with ADHD such as hyperactivity, impulsivity, and inattention
compared to placebo in children and adolescents (Schwartz and Correll 2014).

An integrated analysis of three Eli Lilly clinical studies showed that atomoxetine
increased emotional control in those with ADHD and that emotional control was also
found to correlate to improvements in core ADHD symptoms (Asherson et al. 2015).
Note that it has also been suggested that atomoxetine is equally efficacious regard-
less of prior stimulant medication treatment although crossover studies are currently
underway to address this question (Wehmeier et al. 2014).

In a 3-year open-label study atomoxetine was found to be more effective in adult,
female ADHD patients that also had other emotional dysregulations (Marchannt
et al. 2011). Further, an 8-week open-label study in Japanese adults with ADHD
showed a significant improvement in ADHD symptoms and a low medication
discontinuation rate (Takahashi et al. 2014). In a longer open-label study
(12-weeks) atomoxetine was found to be an effective treatment in adults with
ADHD that also had comorbid responsive generalized anxiety disorder (Gabriel
and Violato 2011). A meta-analysis conducted on data from 13 atomoxetine studies
(placebo-controlled and open-label) further concluded that this drug decreases
ADHD symptoms in adolescents with little to no drug tolerance or adverse events
after two years of use (Wilens et al. 2006). Overall there seems to be ample evidence
that atomoxetine is safe and effective in children, adolescents, and adults
with ADHD.

16.4.4 Memantine: Basic Pharmacology

Memantine is an uncompetitive NMDA antagonist with low to moderate affinity for
the NMDA receptor; initially, this drug was developed for the treatment of
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Alzheimer’s disease (Maeng and Zarate 2007). Pharmacokinetically, memantine is
absorbed readily from the gut reaching maximum plasma concentration in 3–8 h
with a half-life of approximately 60–80 h (Kavirajan 2009). Most of the drug is
metabolized by the kidneys with very little of the drug being metabolized in the liver
by cytochrome p450 enzymes (Kornhuber et al. 2007). Memantine appears to have
little side effects with the most commonly reported being dizziness, constipation,
headache, hypertension, and somnolence (Sani et al. 2012). Considering increased
glutamate levels are suggested in those with ADHD, it is theorized that memantine’s
ability to decrease glutamate signaling is a possible reason for its therapeutic value in
ADHD (Miller et al. 2013).

16.4.5 Memantine & ADHD: Evidence from Animal Models

There seems to be a paucity of data assessing memantine’s effects on impulsivity in
animal models; however, the studies found mixed results. For example, one study
showed that the time spent in the central area on a locomotor task increased in both
SHR and WKY controls after a high dose of memantine (32 mg/kg) suggesting an
increase in impulsivity (Sukhanov et al. 2004). However, at low memantine doses
(5.6 mg/kg) the SHR group spent a smaller amount of time in the central area
suggesting a decrease in impulsivity (Sukhanov et al. 2004). In this same study
memantine seemed to have little to no effect on SHR and WKY rats in delay
discounting suggesting that this drug did little to impulsivity (Sukhanov et al. 2004).

In another study memantine seems to increase impulsive choice in low impulsive
rats (Cottone et al. 2013). However, the fact that these authors used a median split in
order to divide their rats into low and high impulsive groups may confound their
results; thus, this should be considered when interpreting their data. All things
considered, animal models assessing the effects of memantine on impulsivity are
mixed; however, clinical trials seem to present more consistent results.

16.4.6 Memantine & ADHD: Evidence from Clinical Trials

Clinical trials have assessed the efficacy of memantine for the treatment of ADHD in
children, adolescents, and adults (Findling et al. 2007; Surman et al. 2013). An eight-
week, open-label trial found that a dose of 10 mg/day and 20 mg/day showed dose-
dependent benefits in both inattention and hyperactivity/impulsivity in adolescents
with ADHD-C (Findling et al. 2007). Another open-label study showed that
memantine titrated to a dose of 10 mg twice a day meliorated ADHD symptoms in
adults (Surman et al. 2013).

In a randomized, double-blind, placebo-controlled clinical trial memantine in
conjunction with stimulant medications was shown to improve behavior ratings on
ADHD inventories in adult ADHD (Biederman et al. 2014). To the best of the
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authors’ knowledge, these are the few clinical trials that have assessed memantine in
the ADHD population directly. However, there have been other trials assessing
memantine in impulsive-like disorders such as gambling, drug addiction, and klep-
tomania (Biederman et al. 2014; Grant et al. 2013).

In a study by Grant et al. (2010) 28 patients diagnosed with pathological
gambling received between 10 and 30 mg/day of memantine for 10 weeks. After
study completion participants reported a decrease in compulsive and impulsive
behaviors as well as improved cognitive flexibility (Grant et al. 2010). In other
studies assessing those with substance abuse disorders it was found that memantine
reduces cue-induced craving in alcoholics as well as decreases withdrawal symp-
toms associated with opiate abstinence (Krupitsky et al. 2007; Bisaga et al. 2001).
Another study showed that a dose of 10 mg/day titrated to 30 mg/day of memantine
decreased impulsive stealing behavior in those with kleptomania (Grant et al. 2013).
Thus, memantine may disrupt impulsive-like behaviors associated with ADHD,
gambling, and addiction. Further, memantine’s action on the glutamate system is
likely responsible for this therapeutic effect.

16.5 Future Perspective for Glutamate Modulating Drugs
for the Treatment of ADHD

The data reviewed in this chapter presents ample evidence of glutamatergic dys-
function in ADHD. Further, data supports that using pharmaceuticals that target the
glutamate system (i.e., memantine and atomoxetine) may stabilize glutamatergic
signaling and meliorate the behavioral issues associated with ADHD in both animal
models and humans. Another interesting thought presented in this chapter is the
relatively new idea that the neurotransmitter imbalances seen in ADHD could be due
to issues with how the brain obtains energy. Thus, future pharmaceuticals for the
treatment of ADHD targeting the glutamate system and systems that can increase
energy flow to the brain could be beneficial.

As previously mentioned, when glutamate is released from synapses and taken up
by astrocytes lactate is shuttled from astrocytes to fuel neuronal firing (Wyss et al.
2011). Further, stimulation of β-adrenergic receptors on astrocytes stimulates gly-
cogenolysis causing an increase in astrocytic glucose that is transformed to lactate
and shuttled to neurons (Pellerin and Magistretti 2011). Also, stimulation of α2A-
aderendergic receptors on astrocytes may increase astrocytic glycolysis in the long-
term thus increasing their energy storage (Hutchinson et al. 2011). This becomes
interesting considering that a current treatment for ADHD (i.e., atomoxetine) works
on the norepinephrine, dopamine, and glutamate pathways and that a current
hypothesis for ADHD is dopamine/norepinephrine hypo-function that in turn may
cause glutamatergic hyper-function (Miller et al. 2013).

Considering the above, it is easy to imagine a situation where lack of brain energy
eventually causes catecholamine hypo-function because not enough energy is
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available to sustain normal neuronal firing. This catecholamine hypo-function then
promotes an increase in glutamatergic firing, which then puts more energy stress on
an already vulnerable system. This could create a feed-forward pathological situation
that may lead to the symptoms seen in ADHD as well as other psychiatric illnesses.
Thus, the development of drugs, which act similar to atomoxetine both to decrease
glutamate signaling (i.e. glutamate antagonists) and increase catecholamine signal-
ing (i.e. agonists or uptake inhibitors) may help to increase the energy supply to the
brain and directly act on the neurotransmitter systems dysregulated; both effects
should normalize brain physiology and meliorate the symptoms of ADHD.

As proposed by Todd and Botteron in 2001, if we consider ADHD to be primarily
an issue with how the brain gets energy and that this energy problem causes
neurotransmitter dysregulations then a simplistic possibility is that diet and exercise
may also help to alleviate symptoms seen in ADHD. The current research from
animal models suggests that the data on modulating diet to improve ADHD symp-
toms is mixed (Pase et al. 2015; Liso Navarro et al. 2014). However, the evidence
from human studies seems promising (Heilskov Rytter et al. 2015). Although
clinical anecdotes from patients with ADHD attest to the importance of exercise in
reducing symptoms, evidence from animal models and human studies on exercise
and ADHD are mixed but seem promising (Robinson and Bucci 2014; Piepmeier
et al. 2015; Pan et al. 2015; Chuang et al. 2015). Thus, perhaps in the future a
standard of care for ADHD will not only be using pharmaceuticals that work to
increase brain energy but also by prescribing a certain diet and exercise regimen in
order to normalize glutamate and catecholamine neurotransmission in the brain.

16.6 Conclusion

In this chapter we have reviewed current, relevant data from animal models and
humans on the glutamate system and how this system may be dysregulated in
ADHD. We have also alluded to how other neurotransmitter systems such as the
dopamine and norepinephrine systems may interact with the glutamate system to
produce ADHD symptoms. We propose that an overarching cause of all the neuro-
transmitter dysregulations seen in ADHD have their root in brain energetics. Current
pharmacotherapies that work on the glutamate system were discussed, as were
thoughts for future treatments in ADHD that work on the glutamate system either
directly or indirectly. It is the hope of the authors that the data reviewed in this book
chapter as well as the novel ideas discussed will be helpful to researchers currently
working on treatments for ADHD and will encourage further research in this field.
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Chapter 17
Glutamate, Glutamatergic Drugs
and Schizophrenia

Carolina Muguruza and Luis F. Callado

Abstract Over the past two decades, increasing evidence from preclinical and
human studies supports a major role of glutamatergic dysfunction in the
aetiopathology of schizophrenia. Genetic, postmortem and neuroimaging studies in
schizophrenia patients showed alterations in different glutamatergic elements. Thus,
glutamatergic system has emerged as a promising target for the treatment of schizo-
phrenia, especially for symptoms not addressed by current antipsychotic medica-
tions, i.e. negative symptoms and cognitive deficits. To date, several drugs aiming at
restoring glutamatergic function in schizophrenia have already been researched. The
main pharmacological actions of these drugs comprise (1) potentiation of the NMDA
receptor function and (2) activation of metabotropic glutamate receptors (mGluRs).
Different glutamatergic targets have been proposed to enhance NMDA functioning,
including agonism at the glycine-binding site and inhibition of the glycine trans-
porter (GlyT1). Additionally, agonists of the mGlu2/3 receptor and positive alloste-
ric modulators (PAMs) of mGlu2 receptors have been tested as therapeutic bets for
the treatment of schizophrenia. From all emerging glutamatergic drugs in schizo-
phrenia, the selective GlyT1 inhibitor Bitopertin and the orthosteric mGlu2/3 recep-
tor agonist Pomaglumetad methionil have reached Phase III clinical trials. Despite
discouraging outcomes from these studies, deeper analyses on their methodological
features—including patient selection, previous medications, dosages, etc.—high-
light the effectiveness of these compounds in patients with schizophrenia.
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17.1 Schizophrenia

Schizophrenia is a common, chronic and severe psychiatric disorder that affects
more than 20 million people worldwide (Charlson et al. 2018). Its onset occurs
typically in late adolescence or early adulthood, and it is preceded by an initial
prodromal stage and followed by psychotic exacerbations or relapses that alternate
with periods of partial remissions. Schizophrenia is among the leading 20 causes of
global years lived with disability (YLDs) in both males and females according to the
Global Burden of Disease study 2017 (GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators 2018). A meta-analysis from 50 original studies showed
that, on average, only 13.5% of patients with schizophrenia met clinical and social
recovery criteria (Jaaskelainen et al. 2013). Moreover, compared to general popula-
tion, suicide rates among patients with schizophrenia are higher, and the mean age at
death is 15 years younger (Hjorthoj et al. 2017; Chan et al. 2018). Thus, the
combined social and economic costs of schizophrenia make this pathology a serious
health problem worldwide with a large burden that needs attention (He et al. 2020).

The clinical features of schizophrenia can be clustered in three categories:
positive symptoms, negative symptoms and cognitive deficits. Positive or psychotic
symptoms include delusions (firm and fixed beliefs held in the face of contradictory
evidence), hallucinations (perceptions in the absence of external stimulus that has
qualities of real perceptions, most commonly experienced as hearing voices distinct
from one’s own thoughts) and thought disorder (disorganized behaviour and
speech). Negative symptoms comprise psychomotor poverty (lack of speech, lack
of spontaneous movement), social withdrawal, impairments in initiative and moti-
vation and a reduced capacity to recognize and express emotional states. Cognitive
impairments include disturbances in selective attention, working memory, executive
control, episodic memory, language comprehension and social-emotional
processing. Current pharmacological treatments are based on antipsychotic drugs
that are effective in reducing the severity of positive symptoms (Miyamoto et al.
2012). Thanks to the advent of these drugs in the mid-1950s with the first antipsy-
chotic chlorpromazine (Delay and Deniker 1955), many patients have been able to
achieve symptomatic recovery in terms of hallucinations and delusions. However,
current available antipsychotic drugs are only partially effective for negative symp-
toms and have no effect on cognitive impairment (Miyamoto et al. 2012). The
prefrontal cortex (PFC) is the main anatomical substrate of cognitive activities,
particularly working memory, and it is a cardinal component of executive functions.
Neuropathological and neuroimaging studies have shown molecular and anatomical
alterations of the PFC in schizophrenic patients (Lett et al. 2014). In this sense,
despite psychosis being a core feature of schizophrenia, cognitive impairment pre-
cedes the onset of psychosis and constitutes a risk factor of the course of the illness
(Kahn and Keefe 2013). Moreover, it has been evidenced that dysfunction in
cognition and social cognition has a major impact on patients’ functional status
(Green 2016), representing important determinants of functional outcome for indi-
viduals with schizophrenia (Javed and Charles 2018). Thus, current treatment of
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schizophrenia with the available antipsychotics rarely, if ever, produces a cure or
entirely reverses symptoms of the illness (Smith et al. 2010).

Despite the efforts to elucidate the aetiopathogenic bases of schizophrenia over
the last decades, the biological processes underlying this pathology remain
unknown. Schizophrenia is considered a neurodevelopmental disorder with a genetic
background and high heritability but also with an important environmental compo-
nent (Stilo and Murray 2019; Van Os et al. 2010). Thus, schizophrenia is a
multifactorial disease that reflects an interaction between genetic vulnerability and
environmental contributors (Assary et al. 2018). Nevertheless, since there is a
consensus that schizophrenia is a brain disorder, the putative role of neurotransmitter
systems in the aetiology of the illness has been of major interest. The most widely
considered neurochemical hypothesis of schizophrenia is the dopaminergic hypoth-
esis, which goes back to the 1960s. This hypothesis is indirectly supported by two
sets of findings: (1) antipsychotic drugs are dopamine receptor antagonists (Carlsson
and Lindqvist 1963) and their clinical potency is strongly correlated to their ability to
block dopamine D2 receptors (Creese et al. 1976; Seeman et al. 1976); and (2) drugs
that increase dopamine activity, such as amphetamine, can induce psychotic symp-
toms in individuals who do not have schizophrenia (Angrist and Gershon 1970) and
exacerbate psychotic symptoms in schizophrenic patients (Curran et al. 2004;
Lieberman et al. 1987). However, the first general hyperdopaminergic hypothesis
was not supported by different studies, which reported unchanged levels of dopa-
mine metabolites in cerebrospinal fluid and postmortem brain samples in schizo-
phrenia. Moreover, negative symptoms and cognitive deficits could not be explained
by this first hypothesis. Consequently, the dopamine hypothesis was reformulated
postulating that positive symptoms of schizophrenia may result from subcortical
hyperdopaminergia, whereas prefrontal hypodopaminergia would be responsible for
the negative symptoms and cognitive impairments (Davis et al. 1991). More
recently, a “third version” of the dopamine hypothesis has been developed, which
takes into consideration new evidence on genetic, neurodevelopmental, environ-
mental and social factors linked to schizophrenia, giving rise to the “aberrant
salience-hypothesis” (Howes and Kapur 2009). Despite these reformulations, the
dopamine hypothesis cannot fully explain the clinical pathology and course of
schizophrenia. Actually, the third version is a “dopamine hypothesis of psychosis-
in-schizophrenia” rather than a hypothesis of schizophrenia (Howes and Kapur
2009).

Multiple transmitter/neural system alterations might underlie the negative symp-
toms and cognitive impairment of schizophrenia, which in many cases precede the
onset of psychosis. During the last decades, new beyond-dopamine hypotheses of
schizophrenia have emerged, contributing to a better understanding of the disease
and to the discovery of novel pharmacological targets for schizophrenia treatment
(Yang and Tsai 2017). Among these, the glutamatergic hypothesis of schizophrenia
was one of the firsts to be formulated, pointing at the glutamatergic system as a
promising avenue in the search for novel pharmacological treatments that focus
especially on negative and cognitive symptoms of schizophrenia.
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17.2 Glutamatergic Hypothesis of Schizophrenia: NMDA
Receptor Hypofunction

Glutamate is the major excitatory neurotransmitter in the brain interacting with two
types of receptors: (1) the ionotropic receptors with NMDA, Kainate, and AMPA
receptor subtypes connected to or representing ion channels, and (2) the
metabotropic glutamate receptors (mGluRs), comprising groups I to III with a total
of eight identified subtypes, which activate G-protein coupled signal transduction
(Nakanishi 1992). NMDA receptors are widely expressed throughout the brain
cortex and play a critical role in functions that have been proved to be altered in
patients with schizophrenia, such as synaptic plasticity, learning and memory
formation.

The hypothesis of an NMDA receptor hypofunction in schizophrenia arises from
the observation that the administration of NMDA receptor non-competitive antago-
nists, such as phencyclidine (PCP) and the dissociative anaesthetic ketamine, was
able to induce schizophrenia-like symptoms in healthy individuals (Javitt and Zukin
1991; Olney and Farber 1995; Stone et al. 2008). Moreover, these drugs reproduce
not only the positive/psychotic symptoms of the disease—induced also by
dopamine-increasing drugs like amphetamine—but also other core symptoms of
schizophrenia such as cognitive impairments and negative symptoms (Krystal et al.
2005). In this sense, the administration of NMDA receptor antagonists including
PCP, ketamine and dizocilpine (MK-801), has been widely used as a preclinical
model of schizophrenia (Bondi et al. 2012). In addition, another finding that supports
the NMDA receptor hypofunction hypothesis of schizophrenia is the existence of an
anti-NMDA receptor encephalitis, which is an autoimmune disorder with
schizophrenia-like symptoms (Dalmau et al. 2007). This disorder is caused by the
binding of pathogenic NMDA receptor autoantibodies to the extracellular domain of
the receptor inducing its blockage and internalization and producing neuronal
dysfunction (Hughes et al. 2010).

Nevertheless, the precise downstream molecular mechanisms by which NMDA
receptor antagonists induce schizophrenia-like symptoms have not been fully eluci-
dated. Since NMDA receptors are located on brain circuits that regulate dopamine
release, it has been suggested that cortical dopaminergic deficits in schizophrenia
may also be secondary to underlying glutamatergic dysfunction (Javitt 2010).
However, and paradoxically, the antagonism of NMDA receptors by PCP or keta-
mine induces an overall profound cortical activation and even neurotoxicity in both
humans and rodents (Breier et al. 1997; Ellison 1995; Suzuki et al. 2002;
Vollenweider et al. 1997). This controversy has been explained as a consequence
of a preferential action of these antagonists on NMDA receptors located in
GABAergic interneurons, suggesting that a disinhibition of pyramidal neurons
causes the cortical excitation (Homayoun and Moghaddam 2007). There are further
theories that try to explain the preferential inhibition of NMDA receptors located in
GABAergic interneurons, which include NMDA antagonism-induced changes in
reactive oxygen species as a main mechanism (Behrens et al. 2007). An aberrant

496 C. Muguruza and L. F. Callado



GABA interneuron activity leading to disruption of the excitatory/inhibitory cortical
balance has also been proposed as a core pathophysiological mechanism underlying
cognitive dysfunction in schizophrenia (Dienel and Lewis 2019). Thus, a specific
hypofunction of NMDA receptors located in cortical GABAergic interneurons might
explain the cortical dysfunction in schizophrenia. If this is the case, there are a few
questions that remain unanswered, such as which is the cause of NMDAR dysfunc-
tion and what approaches may be most effective to restore the underlying alterations
(Moghaddam and Javitt 2012).

In addition to the evidence related to NMDA receptor antagonism, postmortem,
genetic and neuroimaging studies have found that several components of
glutamatergic signaling system are altered in schizophrenic patients (see Sect.
17.3). All these indirect findings support a glutamatergic hypothesis of schizophre-
nia, and consequently, the search of novel drugs that could restore the glutamatergic
deregulation in the disease and provide a therapeutic alternative, especially for the
symptoms not addressed by current antipsychotic drugs. In this sense, numerous
preclinical and clinical studies have elucidated several potential targets to increase
NMDA receptor function and equilibrate glutamatergic tone, including NMDA
receptor co-agonists, inhibitors of the glycine transporter and agonists and positive
allosteric modulators (PAMs) of mGluRs (see Sect. 17.4).

17.3 Evidence of Altered Glutamatergic System
in Schizophrenia

17.3.1 Genetic Studies

Research on genetic alterations related to schizophrenia is a valuable approach that
can contribute to understand the cause of the disease (Harrison and Weinberger
2005). Genetic findings support the role of the glutamatergic system in schizophre-
nia pathophysiology. A genome-wide association study (GWAS), with over 100,000
controls and almost 40,000 schizophrenia cases, found 108 conservatively defined
loci associated with schizophrenia. These loci met genome-wide significance for
several genes that are involved in glutamatergic neurotransmission (Schizophrenia
Working Group of the Psychiatric Genomics Consortium 2014). Examples of the
glutamatergic elements encoded by these genes associated with schizophrenia
include the mGlu3R (GRM3), the NR2 subunit of NMDA receptor (GRIN2A), the
serine racemase (SRR) and the AR1 subunit of AMPA receptor (GRIA1) (Schizo-
phrenia Working Group of the Psychiatric Genomics Consortium 2014). Moreover,
studies on large copy-number variants (CNVs) and single-nucleotide variants—
exerting larger effects than common single-nucleotide polymorphisms (SNPs)—
have also found genes related to glutamatergic elements encoded in the variants
associated with schizophrenia. Thus, NMDAR network genes have proved to be
highly enriched in CNVs overall, primarily in duplications (Pocklington et al. 2015).
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Concerning Group I mGluRs, deleterious nonsynonymous SNPs have been found
in the gene encoding the mGlu1R (GRM1) in schizophrenia (Ayoub et al. 2012;
Frank et al. 2011b). In the gene encoding the mGlu5R (GRM5), two independent
variants—rs60954128 and rs3824927—have been associated with cognitive impair-
ments and right hippocampal volume reduction in schizophrenia (Matosin et al.
2018). It has been also reported that the functional polymorphisms (rs4354668 and
rs2731880) of the glutamate transporters EAAT1 and EAAT2—which are associ-
ated with lower transporter expression and higher glutamate levels— are associated
with a poorer cognitive performance in patients with schizophrenia (Spangaro et al.
2014).

Genetic alterations of the genes encoding the Group II mGluRs (GRM2 and
GRM3) have also been investigated in schizophrenia. For the GRM2, negative
results have been reported in linkage studies of the region encoding this gene
(Moreno et al. 2009) and no associations with schizophrenia were found in studies
searching for candidate polymorphisms in GRM2 alleles (Joo et al. 2001). However,
associations between SNPs in the GRM3 and schizophrenia have been consistently
reported (Chen et al. 2005; Cherlyn et al. 2010; Egan et al. 2004; Fujii et al. 2003;
Sartorius et al. 2008; Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2014), although these findings have not been replicated in some
population-based genetic studies (Marti et al. 2002; Tochigi et al. 2006). The vast
majority of the polymorphisms of GRM3 associated with schizophrenia are located
in non-coding regions, making it difficult to elucidate the pathophysiological role of
these genetic alterations in schizophrenia. In this regard, Egan et al. (2004) proposed
that the GRM3 genotype could alter the glutamatergic transmission through a
mechanism that leads to an increase in the risk for schizophrenia. Thus, on the one
hand, GRM3 intronic variation (hCV11245618) carriers showed poorer performance
on several cognitive tests and, on the other hand, the GRM3 variant was found to be
associated with lower mRNA levels of EAAT2 glutamate transporter in postmortem
brain of schizophrenic subjects (Egan et al. 2004). In this context, it has been
suggested that GRM3 genotype affects the risk to develop schizophrenia by means
of altered EAAT2 expression and glutamate neurotransmission (Egan et al. 2004).

17.3.2 Postmortem Brain Studies

Different elements of the glutamatergic system have been researched in the post-
mortem brain of schizophrenic subjects, ranging from the structure of glutamatergic
neurons to receptors and glutamate transporters (Hu et al. 2015). These studies
reached variable outcomes depending on the precise glutamatergic element and the
brain region under study. Many studies focused on cortical regions, as it is the main
anatomical substrate of the cognitive impairment associated with schizophrenia and
where dysfunction in glutamatergic signaling might have a major role (Coyle 2017;
Thomas et al. 2017). The main outcomes related to mRNA and protein expression of
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major ionotropic receptors, glutamate transporters as well as metabotropic glutamate
receptors in the schizophrenia postmortem brain are summarized below.

17.3.2.1 Ionotropic Glutamate Receptors

The mRNA and protein expression of the different subunits conforming the NMDA,
AMPA and Kainate receptors have been addressed in schizophrenia postmortem
brain studies. Overall, decreased or unchanged cortical expression has been reported
for the different subunits of the NMDA receptor, but increases have also been found
(Hu et al. 2015). Regarding the obligatory NR1 subunit of the NMDA receptor, a
quantitative meta-analysis including 12 postmortem studies reported a significant
decrease in mRNA and protein expression in the PFC of schizophrenic patients,
when compared to controls (Catts et al. 2016). Studies focusing on the variable
subunits of the NMDA receptor (NR2-A, B, C and D and NR3A) reached contro-
versial outcomes (Hu et al. 2015). In this sense, it is important to notice that multiple
receptor isoforms with distinct brain distributions and functional properties arise by
selective splicing of the NR1 transcripts (Zukin and Bennett 1995) and differential
expression of the NR2 subunits (Paoletti et al. 2013). This structural and functional
heterogeneity hinders the interpretation of subunit individual outcomes. In this
regard, a significantly increased expression of NR1 C2’ splicing variant has been
reported in the anterior cingulate cortex in schizophrenia—without changes in the
PFC—which suggests an altered cell processing of the NMDA receptor in this
cortical region (Kristiansen et al. 2006). A recent study found a significant reduction
in NR1 isoforms containing C1 splicing variant in the PFC of schizophrenic subjects
when compared to controls, but no changes were found in total NR1 protein levels
(Rodriguez-Munoz et al. 2017). Since the NR1 C1 subunit assists NMDARs in the
formation of stable complexes with GPCRs, this alteration in the composition of
NR1 subunits leads to a reduction in GPCR-NMDAR cross-regulation in schizo-
phrenia (Rodriguez-Munoz et al. 2017). In addition to the individual subunits, the
whole NMDA postsynaptic density (PSD) has also been investigated in schizophre-
nia. Strikingly, total NMDA receptor in PSD was found increased in schizophrenia
(Banerjee et al. 2015) even though decreased NR1 subunit levels (Catts et al. 2015)
and NR2 subunit hypofunction (Banerjee et al. 2015) have been reported.

Fewer studies have been conducted on Kainate and AMPA receptors in postmor-
tem brain of schizophrenic subjects. Several works have measured the mRNA
expression of different subunits of AMPA and Kainate receptors in the cortex of
schizophrenic subjects with inconsistent results (Hu et al. 2015). To date, only two
studies have evaluated the protein expression of AMPA receptor in the cortex of
schizophrenic subjects, and they have found a decrease in the four subunits of the
receptor (Corti et al. 2011; MacDonald et al. 2015). This decreased protein expres-
sion of AMPA receptor subunits in cortical regions is in line with the hypothesis of a
reduced AMPA receptor activity in schizophrenia contributing to a pathological
modulation of NMDA receptors (Huganir and Nicoll 2013). However, previous
binding studies found either no change or slightly increased AMPA receptor binding

17 Glutamate, Glutamatergic Drugs and Schizophrenia 499



in the PFC in schizophrenia (Healy et al. 1998, Kurumaji et al. 1992).
These contradictory outcomes could be a consequence of the different pool
of receptors targeted by the different technical approaches (radioligand
binding vs. immunodetection) used to assess the receptor levels.

17.3.2.2 Glutamate Transporters

Astrocytic EAAT1 and EAAT2, the primary glutamate transporters in the human
CNS in charge of glutamate reuptake from the synaptic cleft, have been investigated
in schizophrenia. Since cortical glutamate excitotoxicity has been associated with
schizophrenia, a dysregulation of EAATs may be involved in the resulting neuro-
pathology (O’Donovan et al. 2017; Parkin et al. 2018). Increased levels of EAAT1
mRNA have been reported in the cortex of subjects with schizophrenia (Bauer et al.
2008; Scarr et al. 2018). However, no changes in mRNA expression have also been
reported depending on the cortical area under examination (Bauer et al. 2008;
Lauriat et al. 2006). Regarding the protein expression of EAAT1 in schizophrenia,
monomeric EAAT1 was found decreased in the dorsolateral PFC (DLPFC) of
elderly subjects with schizophrenia (Bauer et al. 2008). Decreased (anterior cingu-
late cortex) or unchanged (DLPFC) glycosylation of the transporter has also been
shown (Bauer et al. 2010). Both mRNA and protein expression of EAAT2, which
accounts for the 90% of glutamate clearance (Suchak et al. 2003), have been shown
unchanged in the cortex of schizophrenic subjects (Bauer et al. 2008). However,
glycosylation of EAAT2 was found reduced in the brains of schizophrenic subjects
(Bauer et al. 2010). Together, these findings indicate that EAAT1/2 may be involved
in schizophrenia pathogenesis (Parkin et al. 2018).

17.3.2.3 Metabotropic Glutamate Receptors

Alterations in both, mRNA and protein expression of different mGluRs have been
reported in schizophrenia postmortem brain. Regarding Group I mGluRs, more
research has been focused on the mGlu5R than on mGlu1R subtype in schizophre-
nia; probably due to the major regulating role of mGlu5Rs over NMDAR function
(Matosin et al. 2017). One study has shown higher mRNA levels of mGlu1αR in the
DLPFC of schizophrenic subjects when compared to controls (Volk et al. 2010).
This altered mRNA expression is consistent with the results reporting increased
protein expression of mGlu1αR in the prefrontal cortex of schizophrenic subjects
(Gupta et al. 2005). This study also evidenced no changes in mGlu5R protein
expression in the PFC of schizophrenic subjects (Gupta et al. 2005). In the same
way, most of the studies assessing either mRNA or protein expression of mGlu5R in
the postmortem brain of schizophrenic subjects have reported no alterations when
compared to controls, regardless of the brain area under examination (Matosin et al.
2017). However, increased protein expression without changes in mRNA levels of
mGlu5R has been shown in the same PFC brain samples (Brodmann area 46) from
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schizophrenic subjects compared to controls. This suggests that the rate of mGlu5R
protein synthesis or degradation might be affected in schizophrenia depending on the
examined brain region (Matosin et al. 2015). In terms of functional assessment of
mGlu5R in schizophrenia, a reciprocal interplay between NMDA and mGlu5R
pathways has been suggested. Thus, a reduction in mGlu5R signaling accompanied
by a reduced GNR2 phosphorylation has been reported in the DLPFC of schizo-
phrenic subjects (Wang et al. 2018). The authors state that the decrease in NR2
phosphorylation can be precipitated by mGlu5R hypofunction and that increased
mGlu5R phosphorylation can result from decreased NMDAR function (Wang et al.
2018). Overall, the data reported to date regarding mGlu5R alterations in postmor-
tem brain of schizophrenic patients are inconclusive. It seems that mGlu5R could
play a significant role in the pathophysiology of schizophrenia. Nevertheless, further
research is needed to understand how mGlu5R might be involved in the neurobiol-
ogy of this disorder and especially to support the progression of mGlu5R-targeting
drugs into the clinic for schizophrenia treatment (Matosin et al. 2017).

The mRNA and protein expression of Group II mGluRs, comprising mGlu2R and
mGlu3R receptors, has been assessed in the postmortem brain of schizophrenic
subjects by means of different approaches. Overall, PFC levels of mGlu3R mRNA
have been shown unaltered in schizophrenia (Egan et al. 2004; Ghose et al. 2008;
Gonzalez-Maeso et al. 2008; Ohnuma et al. 1998). In contrast, different outcomes
have been reported related to mGlu2R mRNA expression in PFC schizophrenia
when compared to controls, including increases (Ghose et al. 2008) and decreases
(Gonzalez-Maeso et al. 2008).

Regarding protein expression of Group II mGluRs, the differentiation of the
subtypes 2 and 3 has been a problematic issue, due to the high homology between
these proteins and the lack of selective antibodies for each subtype. Thus, early
studies using non-specific antibodies achieved different outcomes in the PFC of
schizophrenic subjects when compared to controls, including unaltered (Crook et al.
2002; Gupta et al. 2005) and increased (Gupta et al. 2005) mGlu2/3R expression,
also depending on the Brodmann area assessed. Posterior studies have evaluated
selectively the immunoreactivity of the mGlu3R in schizophrenia, and they have
also reported non-concordant results (Corti et al. 2007; Garcia-Bea et al. 2016;
Ghose et al. 2009). Only one study has evaluated the immunoreactivity of
mGlu2R in schizophrenia PFC showing no alterations when compared to controls
(Dean et al. 2019). The receptor density of mGlu2/3R has also been evaluated in the
PFC of schizophrenic subjects by means of radioligand binding techniques. These
studies are limited by the use of non-selective radioligands of receptor subtypes. In
this sense, decreased (Gonzalez-Maeso et al. 2008) or unchanged (Frank et al.
2011a; McOmish et al. 2016) mGlu2/3R density has been reported in the PFC of
schizophrenic subjects when compared to controls.

In addition to protein expression and receptor density, one study has evaluated the
functional signaling of mGlu2/3R in postmortem PFC of schizophrenic subjects.
The authors showed that the activation of Gq/11 signaling by the mGlu2/3 agonist
LY379268 was significantly decreased in schizophrenic subjects when compared to
controls and no differences were found in the Gi/o LY379268-dependent activation
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(Moreno et al. 2016). This investigation on the G-protein signaling pattern in
schizophrenia was carried out based on previous data showing that mGlu2/3R
agonist signaling requires expression of 5-HT2A and mGlu2 heteromers (Moreno
et al. 2016). The implications of the organization of mGlu2 and 5-HT2A receptors
into heteromers on (1) the pattern of G-protein coupling and (2) the antipsychotic
effects of mGlu2 activation is discussed below (Sect. 17.5).

Overall, due to the inconclusive findings from postmortem studies, the status of
Group II mGluRs in schizophrenia remains unclear. Further investigation of the level
of expression and function of mGlu2R and mGlu3R in postmortem human brain of
schizophrenic subjects and controls is needed (Muguruza et al. 2016).

17.3.3 In Vivo Neuroimaging Studies

Glutamate function has been investigated in vivo in schizophrenic patients by means
of neuroimaging techniques including proton magnetic resonance spectroscopy
(1H-MRS), positron-emission tomography (PET) and single-photon emission com-
puted tomography (SPECT) (Li et al. 2019; Poels et al. 2014b). 1H-MRS has been
used to measure the levels of glutamate (Glu), glutamine (Gln) and the combination
of both (Glx) as markers of glutamatergic functioning. In healthy individuals,
1H-MRS studies reported that acute administration of ketamine is able to increase
glutamine levels in the anterior cingulate cortex (Rowland et al. 2005; Stone et al.
2012). 1H-MRS studies have been conducted in patients with first-episode psychosis
and chronic schizophrenia and compared to results on healthy controls (Poels et al.
2014a). Concerning cortical regions, when compared to controls, elevated
glutamatergic levels have been evidenced in antipsychotic-naïve/free schizophrenic
patients (Poels et al. 2014a; Salavati et al. 2015). However, no changes in glutamate-
related metabolites have been reported in a recent systemic review and meta-analysis
of 1H-MRS studies on antipsychotic-naïve/free patients with schizophrenia (Iwata
et al. 2018). Despite not all studies being in accordance, the majority of the results
revealed similar glutamatergic levels of medicated patients and healthy controls in
the PFC, suggesting that antipsychotic treatment may decrease glutamatergic levels
(Poels et al. 2014a). The outcomes from studies that performed longitudinal mea-
surements in patients in unmedicated and medicated states do not consistently
support these potential effect of antipsychotic treatment on glutamatergic indices
(Aoyama et al. 2011; Bustillo et al. 2010; Szulc et al. 2005; Theberge et al. 2007;). A
meta-analysis including studies that examine longitudinal changes in brain gluta-
mate metabolites in patients with schizophrenia before and after initiation of first
antipsychotic treatment or a switch in antipsychotic treatment reported a reduction in
brain glutamate metabolites with antipsychotic treatment (Egerton et al. 2017).
Nevertheless, further investigation is needed to confirm the impact of antipsychotic
medication in cortical glutamatergic levels in schizophrenic patients (Egerton et al.
2017). Additionally, there is considerable interest in the potential use of 1H-MRS to
predict treatment response in schizophrenia, holding the theory that poor responders
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to conventional dopaminergic antipsychotic treatments may have more
glutamatergic basis to their illness (Howes et al. 2015). A meta-analysis of
1H-MRS studies in schizophrenia reported significant elevations in Glu and Glx in
the basal ganglia, Gln in the thalamus and Glx in the medial temporal lobe, but no
significant alterations were found for neither Glu, Gln nor Glx in the medial frontal
cortex of schizophrenic patients (Merritt et al. 2016). Despite the lack of associations
in cortical regions, this study showed that schizophrenia is associated with elevations
in glutamate-related metabolites across several brain regions consistent with the
hypothesis that there is excess glutamatergic neurotransmission in this condition
(Merritt et al. 2016). In terms of clinical correlations with glutamatergic levels in
medial and dorsolateral PFC of schizophrenic patients, results are either negative or
inconsistent (Poels et al. 2014a). Interestingly, a recent study reported higher Glx
levels in the dorsolateral PFC of patients with lifetime auditory verbal hallucinations
(AVH) as compared to patients without lifetime AVH, suggesting a mediating role
for Glx in AVH (Curcic-Blake et al. 2017).

Taking into account the limitations of the measurements obtained by means of
1H-MRS, including the inability to distinguish between intracellular or extracellular
compartments, or between intra- or extra-neuronal compartments, PET and SPECT
techniques provide a more selective measurement of brain neurochemistry than
1H-MRS (Poels et al. 2014b).

PET and SPECT studies in healthy subjects showed an impact of NMDA
blockade (using ketamine) on dopaminergic indices, providing initial support for
the glutamate/NMDA hypothesis of schizophrenia. The following development of
PET and SPECT imaging of the glutamate system allowed the direct in vivo
measurements of glutamatergic indices, which are necessary to translate preclinical
and clinical findings into effective therapies (Poels et al. 2014b). Despite the rapid
advances in preclinical characterization of PET/SPECT ligands targeting different
glutamatergic elements, to date only a few clinical studies have been conducted to
assess direct measurements of glutamatergic elements in vivo. SPECT studies in
healthy volunteers showed that ketamine infusion led to decreases in NMDAR
availability. Moreover, studies on individuals with schizophrenia reported decreased
NMDAR availability in the hippocampus of drug-free patients. Together, neuroim-
aging studies provide support for the glutamate hypofunction hypothesis of schizo-
phrenia and encourage further development of glutamatergic-based treatments that
increase the activity of NMDAR (Poels et al. 2014b).

17.4 Glutamatergic Elements as Drug Targets
for Schizophrenia and Emerging Glutamate
Modulating Drugs

As detailed above, genetic, postmortem and neuroimaging studies, together with the
broad preclinical investigations in the field, evidence that glutamatergic dysfunction
plays a crucial role in schizophrenia. Therefore, the development of compounds
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aimed at modulating glutamatergic functions for schizophrenia treatment has been of
great interest in the last decade (Hashimoto et al. 2013; Li et al. 2019; Nicoletti et al.
2019; Noetzel et al. 2012; Stansley and Conn 2018; Zink and Correll 2015).

Two main pharmacological strategies have been proposed to restore the altered
glutamatergic function in schizophrenia: (1) the potentiation of NMDA receptor
function through the modulation of different glutamatergic targets, i.e. the NMDA
receptor Glycine Binding Site, the glycine transporter and AMPA receptors and
(2) the activation of mGluRs with orthosteric agonists or positive allosteric modu-
lators (PAMs). A schematic drawing of the glutamatergic elements investigated as
potential pharmacological targets for schizophrenia treatment is presented in
Fig. 17.1. A summary of the outcomes regarding the most promising glutamatergic
compounds that reached assessment for schizophrenia treatment in clinical trials is
presented below.

Fig. 17.1 Schematic representation of the glutamatergic pharmacological targets investigated for
schizophrenia, including the glutamatergic compounds that reached phase II or III in clinical trials.
(DCS D-cycloserine, Glu glutamate, PAM positive allosteric modulator)
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17.4.1 Potentiation of NMDA Receptors

The accumulating evidence supporting the NMDA receptor hypofunction hypothe-
sis in schizophrenia has driven the development of drugs targeting this receptor. Due
to the potential neurotoxicity of direct agonists at the NMDA receptor (Lynch and
Guttmann 2002), one of the main approaches to potentiate NMDA receptor function
focused on targeting the glycine-binding site (GBS) of the receptor (Peyrovian et al.
2019). As both, glutamate and glycine binding are required for the activation of the
NMDA receptor, agonists at the GBS have been investigated for pharmacological
development in schizophrenia in order to potentiate NMDA receptor neurotransmis-
sion. Clinical trials have been conducted to evaluate the impact of the GBS agonists
Glycine, D-Serine and D-cycloserine (DCS) on positive, negative and cognitive
symptoms in schizophrenia (Zink and Correll 2015). Glycine is an obligatory
co-agonist at the GBS of the NMDA receptor and it is required for NMDA complex
activation by glutamate. Several small trials found positive efficacy for glycine as
adjunctive therapy for schizophrenia (Zhand et al. 2019). However, the only avail-
able large multicentre study on the use of add-on glycine did not replicate the
positive results (Buchanan et al. 2007). Two meta-analysis concluded that, as an
adjuvant to non-clozapine antipsychotics, glycine improves multiple symptom
domains; however, it worsens them when added to clozapine (Singh and Singh
2011; Tsai and Lin 2010).

D-serine is an endogenous selective full agonist at the GBS of the NMDA
receptor. Clinical studies have been conducted in schizophrenia patients to evaluate
the use of D-serine alone or in combination with antipsychotics to determine its
effectiveness as a therapeutic agent (MacKay et al. 2019; Zhand et al. 2019). Positive
as well as negative clinical findings have been reported for D-Serine administered
alone or in combination with usual antipsychotics. In this sense, inconsistent results
for the therapeutic benefit of D-serine to improve the negative and cognitive
symptoms of the illness have been evidenced in clinical trials using low doses.
However, more consistent improvements have been found at doses of 60 mg/kg/d or
higher (MacKay et al. 2019). In summary, D-serine may be useful as adjuvant
treatment for schizophrenia (Singh and Singh 2011; Tsai and Lin 2010), but due
to the high doses required, more studies at longer time intervals should be conducted
to ensure patient safety (MacKay et al. 2019).

DCS acts as a partial GBS agonist at NMDA receptor at lower doses, but at high
doses it can act as a functional antagonist. It is the most studied NMDA receptor
co-agonist in clinical trials for schizophrenia treatment, with 19 clinical trials to date
(Zhand et al. 2019). Despite positive outcomes of DCS in the improvement of
negative symptoms in schizophrenia in initial trials, this result was not replicated
in several subsequent studies (Goff 2015). Moreover, meta-analysis results showed
that DCS did not improve any symptom domain in clinical trials with schizophrenic
patients (Tsai and Lin 2010). Another meta-analysis on the effects of glutamate
positive modulators focusing on cognitive deficits in schizophrenia showed no
differences between glycine, D-serine and DCS compared to placebo in terms of
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overall cognitive function (Iwata et al. 2015). Given the poor CNS bioavailability of
glycine and D-serine and the lack of full agonist activity by DCS, it remains unclear
whether the GBS target was adequately tested in clinical trials (Goff 2015). Thus,
further research is needed to elucidate the optimal dose ranges and route of admin-
istration of these drugs acting on the GBS of NMDA receptors.

In addition to acting directly on the GBS, the increase of glycine levels by means
of inhibition of the glycine transporter (GlyT1) has been considered as a therapeutic
approach for schizophrenia treatment. In this sense, two glycine transporter inhibi-
tors have been tested in clinical trials: bitopertin, a selective and potent GlyT1
inhibitor; and sarcosine, a potent endogenous non-selective GlyT1 inhibitor that
also acts as an NMDA receptor GBS co-agonist. Bitopertin, which was created and
developed by the pharmaceutical company F. Hoffmann-La Roche (Pinard et al.
2018), is, to date, the most advanced GlyT1 inhibitor in clinical assessment and the
only one that completed phase III clinical studies as an adjunctive treatment for
schizophrenia (Bugarski-Kirola et al. 2016, 2017). Despite the successful results in
phase II studies achieved in 2010 in patients with schizophrenia, overall negative
phase III data was obtained in 6 multicentre studies carried out in outpatient clinics in
Asia, Europe and North and South America (Bugarski-Kirola et al. 2016, 2017).
Only one study, NightLyte, met the primary endpoint where the Positive and
Negative Syndrome Scale Positive Symptom Factor Score significantly differed
from placebo at week 12, and only at the 10-mg dose (Bugarski-Kirola et al.
2016). The findings from these studies raise important questions at technical,
conceptual and regulatory levels that might have affected the ability to detect
significant treatment effects (Javitt 2016). These issues include: (1) high placebo
response, (2) inclusion of individuals receiving several simultaneous antipsychotic
medications and (3) strong inverted U-shaped dose–response curve, leading to a very
narrow therapeutic window (Javitt 2016).

Outcomes from phase II clinical trials with sarcosine as adjunctive treatment have
shown consistent and highly significant beneficial effects in a range of clinical
domains as shown in two independent meta-analyses (Singh and Singh 2011; Tsai
and Lin 2010). However, as for other NMDA receptor modulators (glycine, D-serine
and DCS), no therapeutic potential was demonstrated when added to clozapine
(Singh and Singh 2011; Tsai and Lin 2010). Promising results have been reported
for sarcosine, but further large-scale trials are required to replicate current findings.
As has happened with other agents such as bitopertin, success in small-scale studies
does not predict positive effects in larger scale studies. Moreover, a meta-analysis
focusing on the effects of glutamate positive modulators (including sarcosine) on
cognitive deficits in schizophrenia found that, as a group and individually, the
compounds were not superior to placebo in terms of overall cognitive function
(Iwata et al. 2015). The authors conclude that glutamate positive modulators may
not be effective in reversing overall cognitive impairments in patients with schizo-
phrenia as adjunctive therapies (Iwata et al. 2015).

A recent randomized, double-blind, placebo-controlled trial evidenced that
adjunctive treatment with sarcosine plus benzoate (a D-amino acid oxidase
(DAAO) inhibitor that prevents D-serine degradation), but not sarcosine alone,
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improved the cognitive and global functioning of patients with schizophrenia (Lin
et al. 2017). The authors conclude that a combination of NMDA-enhancing agents
(sarcosine and benzoate), but not sarcosine alone, can improve cognitive function in
patients with chronic schizophrenia (Lin et al. 2017). Nevertheless, future larger
sized studies are needed to corroborate this combination benefits.

Activation of AMPA receptors has also been proposed as an approach to enhance
NMDA receptor function in schizophrenia. In addition to the occupancy by two
neurotransmitters (glutamate and an agonist at the GBS) the NMDA receptor
activation requires the depolarization of the cell via AMPA gated channels. Since
full agonist at AMPA receptors has a low seizure threshold and is poorly tolerated,
positive allosteric modulators (PAMs) have been proposed as potential therapies for
schizophrenia (Ward et al. 2015). Two clinical studies using adjunct treatment with
the low-potency AMPA PAM (Ampakine) CX516 in schizophrenic patients have
shown inconsistent results. In the first trial, improved attention and memory were
evidenced in patients treated with CX516 as adjuvant treatment of clozapine (Goff
et al. 2001). Nevertheless, this finding was not reproduced in an add-on trial of this
compound with risperidone, olanzapine or clozapine (Goff et al. 2008). A posterior
clinical study (NCT00425815) testing Org 24,448 (CX691, another ampakine) for
cognitive deficits in schizophrenia as adjuvant treatment to non-clozapine antipsy-
chotics was withdrawn (terminated at Sponsor’s request) (Li et al. 2019). Trials of
more potent AMPA PAMs in schizophrenia have not been reported.

17.4.2 Activation of mGlu Receptors

Metabotropic glutamate receptors (mGluRs) can modulate glutamatergic tone and its
phasic release, refining the activity of ionotropic glutamate receptors in a subtle
manner. These characteristics have placed mGluRs in the spotlight as promising
targets for the development of drugs that restore glutamatergic function in schizo-
phrenia (Muguruza et al. 2016; Nicoletti et al. 2019; Stansley and Conn 2018;
Vinson and Conn 2012).

Among the different subtypes of receptors comprising the mGluRs, the Group I
mGlu5R subtype has gained attention in the last years as a potential target to treat
schizophrenia, especially regarding the cognitive symptoms associated with the
disease (Matosin et al. 2017). Metabotropic mGlu5R are colocalized with NMDA
receptors, they share the same scaffolding proteins and have the ability to mediate
postsynaptic NMDA receptor currents (Attucci et al. 2001; Mannaioni et al. 2001)
facilitating NMDA-induced long-term potentiation. Thus, the modulation of
mGlu5Rs has been proposed as an alternative pathway to selectively modulate the
NMDA receptors. Preclinical studies with mGlu5R PAMs in schizophrenia models
have shown the ability to reverse the positive, negative and cognitive schizophrenia-
like symptoms in rodents (Gastambide et al. 2012; Matosin and Newell 2013;
Newell 2013). However, excitotoxicity may be a limitation of mGlu5R PAMs to
overcome clinical studies, since preclinical data showed that these agents can exert
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neurotoxic effects (Parmentier-Batteur et al. 2014). Despite the activation of
mGlu5Rs being a new target for glutamatergic restoring in schizophrenia, the
mechanistic basis of their activation also involves the potentiation of NMDA
currents. Since the mGlu5R PAMs exert a final action similar to that exerted by
NMDAR enhancers (Sect. 17.4.1.), it is not surprising that these drugs induce similar
excitotoxic effects. These adverse effects of mGlu5R PAMs must be explored and
resolved before jumping into clinical research. In this context, there is much to
consider regarding the viability of mGlu5R as a novel therapeutic target for schizo-
phrenia, as well as the implementation of its PAMs, including investigation of
mGlu5R structure, signaling bias and other pathological evidence in schizophrenia
(Matosin et al. 2017).

The group II mGluRs is comprised by the high homology subtypes mGlu2 and
mGlu3 receptors. These receptors are mainly expressed presynaptically in cortical
pyramidal neurons and coupled to Gi/o inhibitory proteins. An excess of
glutamatergic activity leads to the activation of these receptors, which, by means
of a negative feedback mechanism, inhibit the release of glutamate. As stated above,
an increased cortical synaptic activity of glutamate due to disinhibition of pyramidal
neurons—as a consequence of reduced NMDAR activity on inhibitory interneu-
rons—has been proposed in schizophrenia. Based on this mechanism, normalizing
excess glutamate levels by mGlu2/3R agonists and PAMs has been proposed and
tested as a therapeutic mechanism for schizophrenia treatment in preclinical and
clinical studies (Ellaithy et al. 2015; Muguruza et al. 2016).

The oral prodrug of the orthosteric mGlu2/3R agonist LY404039, Pomaglumetad
methionil (LY2140023) developed by Eli Lilly and Company, became the first
non-monoaminergic agent with similar efficacy to conventional antipsychotic
drugs for the treatment of positive and negative symptoms of schizophrenia in a
phase II clinical trial (Patil et al. 2007). Unfortunately, further trials reached unsuc-
cessful outcomes. One follow-up multicentre phase II trial was inconclusive, with a
high placebo response rate (Kinon et al. 2011), and another phase II open-label study
found that pomaglumetad was inferior to a comparison atypical antipsychotic
(Downing et al. 2014). Finally, another study found no benefit of adjunctive
treatment with pomaglumetad versus placebo for negative symptoms in patients
with schizophrenia receiving treatment with atypical antipsychotics (Stauffer et al.
2013). In August 2012, Eli Lilly decided to stop phase III trials as one of the trials,
closest to completion, failed to meet its primary endpoint. An exploratory reanalysis
study with the clinical data on pomaglumetad treatment defined two patients sub-
populations based upon medication exposure during the 2 years before study entry
(Kinon et al. 2015). This analysis has demonstrated that, when treated with
pomaglumetad, only patients early-in-disease or previously treated with antipsy-
chotics with prominent dopamine D2 receptor antagonist activity exhibited signifi-
cantly greater improvement when compared to those receiving placebo (Kinon et al.
2015). Conversely, patients previously treated with atypical antipsychotics (with
prominent serotonin 5-HT2A receptor antagonist activity) evidenced no greater
response than placebo (Kinon et al. 2015). Kinon et al. conclude that the demon-
stration of antipsychotic efficacy of a potential glutamate-based pharmacotherapy for
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schizophrenia may require the identification of appropriate patient subgroups, since
the treatment responsiveness may be fundamentally related to dysregulation of
central nervous system glutamatergic tone. The implications of targeting serotonin
5-HT2A receptors (5-HT2ARs) chronically with atypical antipsychotic treatments
on mGlu2R agonists effectiveness are discussed in Sect. 17.5. Currently, there is an
active clinical trial with pomaglumetad entitled “Glutamate Reducing Interventions
in Schizophrenia” recruiting patients at clinical high risk for psychosis to determine
the potential reductions of glutamate and metabolism (ClinicalTrials.gov registry
number: NCT03321617).

Positive allosteric modulators of mGlu2R have also reached evaluation in clinical
trials for schizophrenia treatment. Potential advantages of these compounds in
comparison with the mGlu2/3 receptor orthosteric agonists might include subtype
selectivity, a better central nervous system penetration and avoidance of receptor
desensitization (Trabanco et al. 2019). To date, two mGlu2R PAMs have entered
clinical trials: JNJ-40411813 (also known as ADX71149) from Janssen Pharmaceu-
ticals, Inc. and Addex Therapeutics, and AZD8529 from AstraZeneca.
JNJ-40411813 demonstrated efficacy in patients with residual negative symptoms
in a phase II clinical trial (Hopkins 2013). However, both compounds,
JNJ-40411813 and AZD8529, failed to show robust efficacy in proof of concept
and phase IIa studies in schizophrenia (Litman et al. 2016; Trabanco et al. 2019).
Nevertheless, further investigation is needed to elucidate if different treatment
regimens or adjunct treatment of mGlu2 PAMs would provide benefit for schizo-
phrenia therapy (Litman et al. 2014).

17.5 Interactions Between Glutamatergic and Serotonergic
Systems in Schizophrenia: The Functional
Heterocomplex 5-HT2A-mGlu2 as a New Target

Both serotonergic and glutamatergic neurotransmitter systems have been involved in
the pathophysiology of schizophrenia. The interaction between these systems is
supported by extensive evidence that demonstrates its functional relevance in
schizophrenia, particularly through the heterocomplex formed by 5-HT2A and
mGlu2 receptors (Moreno et al. 2016; Shah and Gonzalez-Maeso 2019).

The individual implication of each receptor comprising this heteromer has also
been evidenced in schizophrenia (Muguruza et al. 2016; Selvaraj et al. 2014), and
both receptors have been considered as targets for antipsychotic drug development.
It has been demonstrated the existence of a specific functional heteromeric complex
formed by 5-HT2A and mGlu2 receptors through which serotonin and glutamate
ligands modulate the pattern of G protein-coupling in living cells (Baki et al. 2016;
Gonzalez-Maeso et al. 2008; Moreno et al. 2012). The mechanism of action of
both antipsychotic (Fribourg et al. 2011) and propsychotic hallucinogenic drugs
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(Lopez-Gimenez and Gonzalez-Maeso 2018) requires this serotonin-glutamate
heterocomplex. Hallucinogenic 5-HT2AR agonists, such as lysergic acid
diethylamide (LSD) or 2,5-dimethoxy-4-iodoamphetamine (DOI), induce the acti-
vation of both Gq/11 and Gi/o protein signaling pathways, while non-hallucinogenic
5-HT2AR agonists only activate the Gq/11 route (Lopez-Gimenez and Gonzalez-
Maeso 2018). The existence of the functional expression of 5-HT2A/mGlu2
heterocomplex is necessary for the hallucinogenic-dependent Gi/o activation and
behavioural effects (Moreno et al. 2011; Moreno et al. 2012). Moreover, it has been
reported that the signaling inputs mediated by atypical antipsychotic drugs, such as
clozapine and risperidone, which are high-affinity antagonists at the serotonin
5-HT2AR, are indeed integrated by the 5-HT2AR/mGlu2R heterocomplex that
modulates signaling outputs and behavioural changes (Fribourg et al. 2011). Thus,
the balance of Gi/o and Gq/11-dependent signaling of serotonergic and
glutamatergic drugs would be mediated by the 5-HT2AR/mGlu2R heterocomplex
and this activity would predict the propsychotic or antipsychotic effects of different
pharmacological compounds (see Fig. 17.2).

Altered density of 5-HT2A and mGlu2 receptors has been found in postmortem
PFC of schizophrenic subjects, with increased 5-HT2AR and decreased mGlu2R
binding densities (Gonzalez-Maeso et al. 2008; Muguruza et al. 2013). Furthermore,
the ligand binding crosstalk between 5-HT2A and mGlu2 receptors was found
dysregulated in the postmortem PFC of schizophrenic subjects when compared
with controls (Moreno et al. 2012). Additionally, the PFC signaling pattern of

Fig. 17.2 Scheme of
5-HT2AR/mGlu2R
heterocomplex activation of
both Gq/11 and Gi/o
proteins. The binding of
orthosteric (green circle) or
allosteric (yellow circle)
agonists to the mGlu2
receptor could differentially
modulate Gi/o and Gq/11
coupling through the
heterocomplex. The thrust
of this balance towards the
non-hallucinogenic
signaling pathway Gq/11
could predict potential
antipsychotic effects of
these drugs
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mGlu2Rs has been shown altered in schizophrenia, with a significant reduction in
the mGlu2R-dependent activation of Gq/11, but not Gi/o proteins (Moreno et al.
2016). Furthermore, a supersensitive 5-HT2AR signaling through inhibitory Gi1
proteins has been reported in the PFC of schizophrenia subjects, suggesting a
dysfunctional pro-hallucinogenic agonist-sensitive 5-HT2AR conformation
(Garcia-Bea et al. 2019).

It has been demonstrated that chronic atypical antipsychotics downregulate the
transcription of mGlu2R through epigenetic modifications (Ibi et al. 2017; Kurita
et al. 2012). In this sense, the ineffectiveness of mGlu2/3 receptor agonists in
schizophrenic patients that were previously treated chronically with atypical anti-
psychotic drugs (Kinon et al. 2015)—that have a prominent 5-HT2AR antagonist
activity—could be a result of the downregulation of mGlu2Rs derived from a
functional crosstalk with 5-HT2ARs at the epigenetic level (Ibi et al. 2017).

Pharmacogenetic studies have also linked different SNPs in the gene encoding the
5-HT2AR and patients response to pomaglumetad in clinical trials. Thus, patients
carrying the T/T genotype at rs7330461 were consistently associated with an
increased treatment response to pomaglumetad (Liu et al. 2012; Nisenbaum et al.
2016). Overall, these facts point to a putative role of the 5-HT2AR/mGlu2R
heterocomplex in the antipsychotic-like properties of the mGlu2R agonists and/or
PAMs that could explain the controversial results reported in clinical trials
(Muguruza et al. 2016).

17.6 Conclusion and Future Perspectives

Despite the reformulations and updates on the dopamine hypothesis of schizophre-
nia, its aetiopathology cannot be explained based solely upon dopaminergic dys-
function. Most of the current available antipsychotic drugs are based on a
dopaminergic blockage that ameliorates positive psychotic symptoms with no
impact on negative symptoms or cognitive deficits. Thus, many patients with
schizophrenia remain persistently disabled. Glutamatergic hypothesis of schizophre-
nia accounts for the three clinical dimensions of the disease and it leads to new
treatment approaches specifically targeting the unmet medical needs. Despite dis-
couraging results from the two glutamatergic-based compounds that reached phase
III development in clinical trials (bitopertin and pomaglumetad), the accumulating
postmortem, genetic and neuroimaging evidence suggests that glutamatergic
approaches to treat schizophrenia still need to be developed, but special attention
must be placed on how clinical trials are designed and conducted (Beck et al. 2016).
Undoubtedly, clarifying if specific subgroups of patients—depending on their spe-
cific pathophysiology, genetics or previous medication history—could benefit from
using these new glutamatergic drugs deserves further research.
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Chapter 18
Glutamate and Epilepsy: An Insight from
Temporal Lobe Epilepsy

Alberto E. Musto

Abstract The normal physiology of neurons is achieved through a delicate balance
between excitatory and inhibitory synapses. Any disruption of such intricate balance
can induce neuronal hyper-excitability in a susceptible neuronal network leading to
seizures. Glutamate is the main excitatory neurotransmitter in the nervous system but
when it is accumulated in excess induces neurotoxicity, mediates neuronal hyper-
excitability and seizures. In epilepsy, glutamate is abnormally concentrated in the
brain. Such abnormality is related with an altered synthesis, metabolism, storage,
exocytosis, and clearance of glutamate. Accumulation of glutamate triggers over-
activation of ionotropic N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), and 2-carboxy-3-carboxymethyl-4-
isopropenylpyrrolidine (Kainate) receptors (KAr) as well as metabotropic glutamate
receptors (mGLURs) in neurons. In addition, the abnormal molecular signaling from
those receptors promotes cell damage and aberrant neuronal plasticity that could
participate in the biology mechanism of epilepsy. In addition, glutamate is accumu-
lated in other neurological with high incidence of recurrent epilepsy, such as
glioblastoma multiforme and Sturge-Weber syndrome. Dissecting the cellular and
molecular biology of glutamatergic system in inducing, propagating, and sustaining
seizures will provide a new avenue for an innovative anti-seizure and/or anti-
epileptogenenic drugs.

Keywords Glutamate · Epilepsy · Seizures · NMDA · AMPA · Kainate ·
Epileptogenesis
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18.1 Introduction

The normal physiology of neurons is achieved through a delicate balance between
excitatory and inhibitory synapses (Kandel 2013). Any disruption of such intricate
balance can induce hyperexcitability in a susceptible neuronal network (such as
those residing in neocortex, hippocampus, etc.) leading to seizure(s) (Musto et al.
2015; Musto et al. 2016). A seizure, therefore, represents a brief episode of invol-
untary altered neurophysiological function associated with an electrical abnormality
within the brain, usually detected by an electroencephalography (EEG). Epilepsy, as
defined clinically by The International League Against Epilepsy (ILAE), is a neu-
rologic disease characterized by: “(a) the recurrence of unprovoked and spontane-
ous seizures at different time points, at least more than 24 h apart; (b) one
unprovoked or reflex seizure and a probability of further seizures similar to the
general recurrence risk (at least 60%) after two unprovoked seizures, occurring
over the next 10 years 3, or (c) a diagnosis of an epilepsy syndrome” (Fischer et al.
2014).

Epilepsy has no cure except for a small population of patients that require surgical
resection of the epileptic zone. Most patients respond satisfactorily to a clinical
treatment; however, almost 20–30% of them become resistant to current drugs. This
is often the case with temporal lobe epilepsy (TLE) or limbic epilepsy, one of the
most common forms of epilepsy in adults (Scharfman 2007; Bertram 2009). In
addition to the adverse effect of anti-epileptic drugs, patients with TLE have an
increased risk for early mortality and comorbidities including cognitive dysfunction,
depression, and anxiety disorders. In addition, TLE brings social stigma and
increases the costs of healthcare (Schmidt and Stavem 2009; Harroud et al. 2012).

Hayashi found that glutamate-anion of glutamic acid, if applied directly into the
cerebral cortex induces clonic seizures (Hayashi 1952). Since then, scientists have
been narrowing on glutamatergic system trying not only to understand its role in the
normal neurophysiology (Zhou and Danbolt 2014), but also how glutamate partic-
ipates in epilepsy (DiNuzzo et al. 2014; Kanamori 2017).

Glutamate is the main excitatory neurotransmitter in the nervous system, when it
comes to participating in neuronal organization during development and experience-
dependent plasticity (Kandel 2013). Physiologically, extracellular concentrations of
glutamate in the neural tissue are low compared to either intracellular or subcellular
sites (Burger et al. 1989; Herman and Jahr 2007; Morales-Villagrán et al. 2016). But,
when glutamate is accumulated in excess in the extracellular space of neural tissue, it
induces neurotoxicity (Zhou and Danbolt 2014) as well as mediates hyper-excitable
neuronal responses to a physiological input and promotes aberrant neural plasticity
(Ben-Ari 1985; Scharfman 2007) depending on the level of its accumulation and
permanence in the neural tissue.

In epilepsy, glutamate is abnormally concentrated in the extracellular compart-
ment of the neural tissue (During and Spencer 1993). High levels of glutamate have
been found in the epileptic tissue before and during seizures (Çavuş et al. 2016;
Herman and Jahr 2007), in the cerebral spinal fluid from patients with newly
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diagnosed epilepsy (Kälviäinen et al. 2006) and epileptic foci (Davis et al. 2015).
Using an experimental model of epilepsy, the extracellular accumulation of gluta-
mate during seizures had been shown to correlate with an increase in the fire rate of
neurons, the amplitude of local field potentials (Li et al. 2018), and electroenceph-
alographic oscillations during spontaneous epileptiform events (Morales-Villagrán
and Tapia 1996).

Since the glutamate accumulation exerts cellular physiology through its recep-
tors, those receptors have been considered as the main pharmacological targets to
treat epilepsy (Rogawski and Löscher 2004). Hence, modulating the biology of
glutamate is one of the focuses in drug development against epilepsy, especially
in TLE.

In this chapter, the glutamate system in epilepsy (Fig. 18.1) is updated and
summarized, providing perspectives for new avenues for new treatment in epilepsy
and its application for mental health disorders (O'Donovan et al. 2017).

Fig. 18.1 Glutamate system in epilepsy: Exacerbation or deficit of the neurobiological mechanism
of each step (synthesis, storage, etc.) of the glutamate system can contribute to increases of
glutamate in the neural tissue and as a consequence promotes neuronal hyper-excitability and
aberrant plasticity which in turn mediates seizures and epilepsy. In addition, glioblastoma
multiforme (GBM) or neuroinflammation mediated by stroke, traumatic brain injury, or
Alzheimer’s disease contributes to an increase in glutamate and then increases seizure susceptibility
and epilepsy
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18.2 The Glutamatergic System in Epilepsy as a Disrupted
Homeostatic Synaptic Scaling

The disruption of glutamatergic system involved in the development of seizure and
epilepsy is related with: (A) an altered synthesis, metabolism, storage, exocytosis,
and clearance of glutamate in neural tissue, and (B) an over-activation of ionotropic
N-methyl-D-aspartate(NMDA),α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), and 2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (Kainate)
receptors (KAr) as well as metabotropic glutamate receptors (mGLURs) in neurons.

18.2.1 Altered Synthesis, Metabolism, Storage, Secretion,
and Clearance of Glutamate

In epilepsy, the increase of glutamate in the brain could be related to one or more
factors such as: increase of its synthesis which in turn increases its concentration in
neurons, its accumulation in the presynaptic vesicles, an increase of its secretion
from presynaptic terminals, or an impairment of its clearance from the extra synaptic
sites.

The upregulation of the synthesis of glutamate in epilepsy is mediated by an
increase of glutamine, which is metabolized to glutamate by phosphate-activated
glutaminase or by the activation of tricarboxylic acid cycle (TCA) substrates. Both
the enzyme and TCA substrates are abnormally increased in TLE (Eid et al. 2007;
Melø et al. 2006). In addition, the activity of glutamate dehydrogenase, the enzyme
which converts glutamate to α-ketoglutarate and has a critical function in neural
metabolism (Kim and Baik 2019), is decreased in hippocampal tissue from a patient
with TLE (Malthankar-Phatak et al. 2006). On the other hand, reduced ATP syn-
thesis and oxidative stress increase the concentration of glutamate, thereby increas-
ing the excitability of neurons (Dutuit et al. 2002). This particular cellular event
could lead to sustained accumulation of glutamate during the inter-ictal period which
is associated with a reduced metabolism in the neuronal tissue (Joo et al. 2004).

The other factor to increase the production of glutamate is through several
transcription factors such as the Sonic Hedgehog (Shh). Shh is a mitogen and a
morphogen, which plays a role in cell proliferation and differentiation during early
development, rapidly enhancing extracellular glutamate levels (Feng et al. 2016).
Shh expression increases during the evolution of epilepsy in an experimental model
of TLE (Fang et al. 2011) suggesting an important role in limbic epileptogenesis.

Once the glutamate increases in the neuroplasma, glutamate is packaged into
presynaptic vesicles to be released in the synaptic cleft, as a consequence of either
action potential transmission or activation of mGlu2–3 receptors which result in
calcium influx (Sceniak et al. 2012, see below NMDA receptors). In epilepsy, the
entrance of glutamate to presynaptic vesicles through vesicular glutamate trans-
porters (VGLUT1–3) is increased in the hippocampus (Contreras-García et al.
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2018). Also, in some cases of refractory epilepsy SNAREs proteins, which mediate
vesicle docking; priming; fusion; and neurotransmitter release into the synaptic cleft,
are either mutated (Rohena et al. 2013) or increased in expression (Xiao et al. 2009)
that could lead to an increase of loading of glutamate in the vesicles.

Synaptic vesicle glycoprotein 2 (SV2) is a prototype protein specifically identi-
fied in the synaptic vesicles of neurons which regulates exocytotic release of
neurotransmitters (Chang and Südhof 2009; Ciruelas et al. 2019). Recently, (4R)-
4-(2-chloro-2,2-difluoroethyl)-1-{[2-(methoxymethyl)-6(trifluoromethyl)imidazo
[2,1-b][1,3,4]thiadiazol-5-yl]methyl}-pyrrolidin-2-one (Padsevonil) which binds to
SV2 proteins as well as interacts with GABA A receptor at the benzodiazepine site
had been shown to reduce seizure activity (Leclercq et al. 2020).

Moreover, altered molecular signaling related to glutamate exocytosis could be
another factor that contributes to glutamate accumulation in extrasynaptic sites. This
is the case of presynaptic c-Jun N-terminal kinase 2 and its interaction with
Syntaxin-1a (JNK2/STX) which mediate glutamate release (Marcelli et al. 2019).
In addition, activation of JNK molecular signaling is involved not only in neural
hyper-excitability but also in the development of epilepsy (Cole-Edwards et al.
2006).

Homeostasis of glutamate is balanced between glutamate reuptake from the
synaptic cleft by a series of glutamate transports, and proteins that initiate its
recycling back to glutamine (O’Donovan et al. 2017), mainly through the physiology
of astrocytes.

Extracellular glutamate is returned to the cellular compartment via transporter
proteins in astrocytes and neurons using Na + �dependent excitatory amino acid
transporters (EAATs), EAAT1 and EAAT2 are in human and glutamate aspartate
transporter (GLAST) and glutamate transporter-1 (GLT-1) present in rodents) (Van-
denberg and Ryan 2013). An impairment of glutamate uptake could sustain
glutamate-activated receptors that lead to neuronal hyper-excitability and seizures
(Eid et al. 2016). The downregulation or dysfunction of astrocyte GLT-1 also plays a
role in epileptogenesis (Peterson and Binder 2019; Muñoz et al. 2019).

On the other hand, inhibition or loss of astrocytic glutamine synthesis impairs
glutamate synthesis disrupting the glutamine metabolism which in turn promotes
glutamate accumulation and its potential to activate a mechanism underlying recur-
rent seizure (Mayer et al. 2020).

However, the extracellular concentration of glutamate could have some fluctua-
tion depending on when and under which circumstances the glutamate is measured.
For example, during the second seizure episode diminished glutamate biosynthesis,
enhanced glutamate reuptake, and/or neuronal death are considered possible causes
of the attenuated glutamate release (Furness et al. 2019).

These observations suggest that abnormal increments of glutamate in the neural
tissue sustain with time, contributing to over-excitability of neuronal networks and
as a result epileptiform discharges occur leading to seizures (Albrecht and Zielińska
2017).

Although it is not clear if one or more factors of the altered biology of glutamate
mentioned before are enough for the development of epilepsy, there is clear evidence
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from the clinical and experimental studies that they provide conditions which are
favorable for spontaneous recurrent seizure states (Wang et al. 2015).

18.2.2 Function of Different Glutamate Receptors and Its
Molecular Signaling Are Altered in Epilepsy

One of the main consequences of the abnormal accumulation of glutamate in the
brain is the over-stimulation of NMDA receptors (Wang and Qin 2010). These
inotropic calcium-permeable receptors, voltage-dependence, are modulated by gly-
cine, Mg2+, and seven subunit proteins (Wang and Furukawa 2019), their amino
acid sequence of the protein domains, and the scaffolding proteins in the synaptic
membranes. These receptors can be removed from the synaptic membranes by
enzymatic action and endocytosis mechanism (Hansen et al. 2017). NMDA recep-
tors can contribute to hyper-excitability of pyramidal neurons (Banerjee et al. 2015).
In epilepsy, NMDA receptors are rearranged through the upregulation and
downregulation of the subunits following epileptic seizures (Mihály 2019). One of
its subunits, NR2B, is upregulated in the hippocampal formation and entorhinal
cortex in experimental epilepsy (Zubareva et al. 2018), enhancing seizure suscepti-
bility by upregulating different molecular signaling such as cyclin-dependent kinase-
like 5 (Okuda et al. 2017). In experimental epilepsy, subunit mutations of NMDA
receptors are associated developments of seizures (Xu and Luo 2018). For example,
genetic modifications of subunit NMDA are related with epileptic syndrome (Von
Stülpnagel et al. 2017). Therefore, the molecular biology of these receptors offers a
great potential of molecular targets for epilepsy.

Experiments conducted to elucidate different types of receptor subunits and their
molecular signaling involved in regulating the response to excessive glutamate in
extracellular components have yielded the following results. For example, trans-
membrane protein 25 gene (Tmem25), upregulated in epilepsy mediates the expres-
sion of NR2B-a crucial subunit in NMDA receptor, which is phosphorylated at
Tyr1472, increases receptor excitability (Yang et al. 2019; Zhang et al. 2019).
Another example is the miR-139-5p downregulation, that enhances the expression
levels of NR2A (Alsharafi et al. 2016) when interacting with NR2B, can mediate
development of seizures (Tang et al. 2017). In addition, peptidyl-prolyl cis-trans
isomerase NIMA-interacting 1 (Pin1), which inhibits NR2A-NR2B interaction, is
decreased remarkably in epilepsy (Tang et al. 2017).

In addition, zinc had been proven to be an allosteric inhibitor of those subunit
receptors and, therefore, a crucial modulator of excitatory synaptic transmission
(Dudek 2001; Serraz et al. 2016). However, how increased glutamate levels in
synapse alter intracellular zinc levels is yet to be elucidated.

Additionally, NMDA interaction with other receptors can potentiate glutamate-
induced seizures. This is the case with sCaV3.2 channels, a T-type calcium channel
encoded by CACNA1H which regulates NMDA receptors (Wang et al. 2015).
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ASIC3 receptor is another example which, if inhibited, exacerbates seizures through
its interaction with the NMDA receptors via CaMKII/CREB signaling pathway
(Çavuş et al. 2016).

Glutamate accumulation triggers over-activation of AMPA receptors which, in
turn, mediate neuronal hyper-excitability and seizures (Rogawski 2013; Egbenya
et al. 2018). AMPARs are ligand-gated ion channels with four different subunits,
GluR1–4 wherein activation dependent upon phosphorylation of AMPAR serine site
and modulation of GRIP1 and PICK1, the classical auxiliary subunits TARP and
CNIH, can mediate seizures (Bissen et al. 2019).

Epileptiform activity leads to an increase in the amplitude of AMPA receptors-
mediated postsynaptic potentials (Amakhin et al. 2018). Over-activation of AMPA
could be the consequence of an increased expression of the GluA1 subunit at the
postsynaptic membrane (Rajasekaran et al. 2012). Any mutation in its submits, for
example in GluA, can mediate epileptic seizure (Itoh et al. 2018). In addition, loss of
function mutations in a human AMPA receptor are associated with choreoathetosis,
cognitive deficits, and epileptic encephalopathies (Stewart et al. 2019). Specifically,
downregulation of subunits GluA2 (Lorgen et al. 2017) and/or GluA1 (Lopes et al.
2015) induces epilepsy. On the other hand, phosphorylation of GluR1 S831 and
S845 affects seizure susceptibility and excitability (Rakhade and Loeb 2008).

Intraperitoneal administration of AMPA receptor antagonists within 48 h of
early-life seizures reduced later-life seizure susceptibility and hippocampal neural
injuries (Rakhade and Loeb 2008). In addition, AMPA receptor inhibitors (such as
Perampanel), competitive antagonist, ion-channel blockers, and negative allosteric
modulators have been developed against epilepsy (Rogawski 2013). For example,
decanoic acid which binds sites on the M3 helix of the AMPA-GluA2 transmem-
brane domain, independent from the binding site of perampanel, acts as a
non-competitive antagonist and mediates anti-seizure effects (Chang et al. 2016).

ATAD1, ATPase Family AAA Domain Containing 1, mediates AMPA receptor
recycling. In ATAD1 knockout mice reversed behavioral defects, normalized brain
MRI abnormalities, prevented seizures, and prolonged survival. The ATAD1
patients treated with Perampanel showed improvement in hypertonicity and resolu-
tion of seizures (Ahrens-Nicklas et al. 2017).

On the other hand, combinations of NMDA and AMPA antagonist receptors have
been shown to attenuate epileptogenesis (Schidlitzki et al. 2017), but no clinical drug
designed to antagonize both simultaneously is yet clinically available.

Glutamatergic influx in synapse is mediated also by KAr. KAr located in pre- and
post-synapsis participates in postsynaptic depolarization of glutamatergic and
GABAnergic neurons (Cossart et al. 2001).

KAr activation, either acute or chronic, induces seizures in models of epilepsy
and depending on its activation can induce a spontaneous recurrent seizure state
associated with neural tissue modification such as neural loss, astrogliosis, and
hippocampal sclerosis of CA1 and CA3 pyramidal cells which resemble character-
istics of human TLE (Ben-Ari 1985).

Among KAr subunits, the GluR5–7 subunit plays as homomeric and heteromeric
receptors, while KA1 and KA2 subunits have an auxiliary role that when they can
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associate with any of the GluR5–7 mediate neuronal excitability. In human and
experimental epilepsy, there is increased expression of GluR5, 6,7, and KA1 and
KA2 (Chittajallu et al. 1999) indicating an active role in neuronal hyper-excitability.

On the other hand, there is impairment of the inhibitory network resulting from
the depression of GABAergic interneuron transmission facilitated by activation of
KAr subunit, GluK1 (Girard et al. 2019). In contrast, GluK2 subunit, located in
excitatory neurons, modulates glutamate release presynaptically (Rodríguez-Moreno
and Sihra 2013) and then induces neuronal hyper-excitability (Castillo et al. 1997;
Schmitz et al. 2001) leading to seizures.

In addition, kainate subunits participate in the formation of aberrant neural
synapses observed in the hippocampus as a consequence of recurrent seizures
(Falcón-Moya et al. 2018). Since most of those aberrant terminals are excitatory,
this cellular modification induced by KAr could exacerbate the intra- or extra-
cellular accumulation of glutamate in epilepsy.

The Neuropilin and tolloid-like protein 1 (NETO1), a protein involved in the
development and/or maintenance of neuronal circuitry, is required for formation of
KAr containing synapses in interneurons and it has been postulated as a potential
therapeutic target for treatment of seizures (Orav et al. 2019).

Selective KAr antagonism, specially the GLUR6 signaling, shows promise in
epilepsy; however, drugs are still in development (Kaminski and Henley 2007).

mGLUR could play a role in epilepsy (Ali et al. 2016). mGluRs are G-protein
coupled receptors divided into three groups, including eight subtypes (mGluR1–8).
(Hermans and Challiss 2001). Neuronal excitability is accentuated via mGLUR
activation which increases glutamate exocytosis by activating phospholipase C and
protein kinase C (Group I).

mGluR5 signaling during TLE development mediates glutamate uptake in the
hippocampus (Ure et al. 2006) and together with the mGlu7 subunit, which reduces
spontaneous seizures (Girard et al. 2019), is postulated as a target for epilepsy
treatment (specifically, for absence epilepsy and propagation of seizures). In addi-
tion, blocking mGluR5 protects the brain after seizures (Jesse et al. 2008); however,
its role in TLE is discussed (Kandratavicius et al. 2013).

On the other hand, mGLUR can reduce the release of glutamate through other
subgroups by regulating adenylyl cyclase activity (Ure et al. 2006) (Group II). For
example, any downregulation of mGluR2, 3 in limbic regions contributes to neural
damage in the hippocampus during epileptogenesis (Bocchio et al. 2019) suggesting
that these mGLURs inhibit the release of glutamate into human neocortical pyrami-
dal neurons, regulating network excitability.

Overall, the over-activation of glutamate receptors and the consequences of its
molecular signaling can contribute to neural hyper-excitability or to increased
inhibition in the neural excitability showing a complex dynamic response to gluta-
mate accumulation. The time and cellular location of this receptor activation and its
role in the initiation, maintenance, or adaptation of seizures need to be elucidated to
determine the effective therapeutic target without adverse effect in epilepsy.
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18.3 Glutamate in Neurological Disorders Related
with Epilepsy

Glutamate is elevated in the neural tissues obtained from neurological pathologies
with high incidence of recurrent epilepsy, such as glioblastoma multiforme (GBM)
(Neal et al. 2018) and Sturge-Weber syndrome (Juhász et al. 2016). In the case of
GBM, malignant cells release glutamate in the extracellular space via Xc- antiporter
system, which then accumulates abnormally high, resulting in seizure induction
(Mayer et al. 2020). Cystine/glutamate antiporter system (xCT) is proposed as a
new target for antiepileptogenic treatments due to its crucial roles in glutamate
homeostasis and neuroinflammation. xCT is a pro-convulsive factor in glioma-
associated seizures setting. Drugs targeting it, such as sulfasalazine, have shown to
decrease seizure susceptibility and limit recurrent seizures in experimental models of
epilepsy (De Bundel et al. 2011).

Neuroinflammation is another factor that contributes to the development of
epilepsy (Rana and Musto 2018). Neuroinflammation indirectly perturbs neuronal
activity by promoting glutamate accumulation in extracellular space and hence
contributing to seizure susceptibility and synchronizing the neuronal network.
Neuroinflammation is a common denominator in neurological conditions such as
stroke, traumatic brain injury, and Alzheimer disease that are related with epilepsy.
For example, activation of microglial can mediate production of pro-inflammatory
molecules and hence, enhance glutamatergic action in the synapse. Increase of
pro-inflammatory mediators in neural tissue, such as IL-1 beta, platelet activating
factor (Musto et al. 2016), and TNF alpha induces glutamate release by activating
microglia and hence, thought to be involved in the etiology of neuronal
hyperexcitability (Rana and Musto 2018).

18.4 Glutamate as a Biomarker for Seizures and Epilepsy

Glutamate levels are proposed as a biomarker for the development of post-stroke
epilepsy (Neal et al. 2016). [11C]ABP688 is a radio-ligand which binds specifically
to the mGluR5 allosteric site providing a focal biomarker for local epilepsy, such as
MTLE (Çavuş et al. 2016). In addition, [18F] GE179 is a promising PET probe to
image functional NMDA receptor alterations, which can be applied in epilepsy.

18.5 Conclusion and Future Perspectives

Without a doubt, the glutamatergic system is impaired in epilepsy. Its complex
physiological upregulation and downregulation is drastically altered during epileptic
disease, requiring multidisciplinary approaches to treatment.
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Dissecting the cellular and molecular biology of the glutamatergic system in
inducing, propagating, and sustaining seizures will provide a new avenue for an
innovative anti-seizure and/or antiepileptogenic drug.
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Chapter 19
Glutamate Function in Anxiety Disorders
and OCD: Evidence from Clinical
and Translational Studies

Tália Cássia Boff, Silvio José Batista Soares, Millena Daher Medeiros Lima,
and Zuleide Maria Ignácio

Abstract Anxiety disorders affect a significant number of the world population.
They are among the most prevalent disorders in society and impose enormous
suffering and disabilities on the people affected. Among the anxiety disorders
described in DSM-5, the most prevalent and studied are generalized anxiety disorder
(GAD), social anxiety disorder (SAD), and panic disorder (PD). Obsessive-
compulsive disorder (OCD), although it shares many morphophysiopathological
aspects and symptoms with anxiety disorders, is addressed in a separate topic in
DSM-5. For all these disorders, serotonergic and dopaminergic neurotransmission
seems to play an important role. However, considering that the circuit involved in
these disorders has glutamate as a critical neurotransmitter, this chapter emphasizes
glutamate in anxiety disorders and OCD. The relationship between glutamate and
the hypothalamic-pituitary-adrenal axis (HPA) is addressed. Studies on the role of
glutamate in disorders are considered, as well as the brain structures involved. The
cortico-striated-thalamus-cortical (CSTC) and limbic areas connected to the circuit
and involved in the OCD are addressed, highlighting the function of glutamate in
connections, and possible interactions with other neurotransmitters. In OCD, genetic
studies about genes underlying glutamatergic neurotransmission are also considered.
Also, in both anxiety disorders and OCD, adjunctive treatment strategies with
glutamatergic compounds are addressed.
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19.1 Introduction

According to the DSM-V, anxiety disorders are classified into generalized anxiety
disorder (GAD), social anxiety disorder (SAD), panic disorder (PD), separation
anxiety disorder, selective mutism, specific phobia, agoraphobia, substance/medica-
tion-induced anxiety disorder, and anxiety disorder due to another medical condition
(American Psychiatric Association 2013).

Excessive and persistent anxiety is predominant concerning daily activities in
GAD. These feelings occur on most days for at least 6 months. The anxiety
generated has a distressing character of longer duration that causes significant
suffering since there is great difficulty controlling worrying thoughts, which distracts
attention away from daily activities. Women are twice as likely to develop GAD as
men (American Psychiatric Association 2013).

SAD is characterized by fear, avoidance, and intense anxiety in social situations
that involve the possibility of evaluation. This evaluation is not restricted to aca-
demic and professional moments, including situations in which the person faces new
social interactions and is overly concerned about being judged negatively. Faced
with these perceptions, the individual feels rejected, humiliated, or even has the
feeling of offending other people. The fear and anxiety generated are disproportion-
ate to the situation to which the individual is exposed, and these feelings must persist
for at least 6 months (American Psychiatric Association 2013).

In PD, panic attacks are the hallmark of the disorder. These are unexpected and
recurring conditions, making the individual apprehensive and concerned about the
appearance of new attacks. The attacks are sudden and full of intense fear that
reaches a maximum in a few minutes along with physical symptoms, such as
palpitations, tachycardia, sweating, tremors or shaking, feeling of shortness of breath
or suffocation, choking, chest pain or discomfort, nausea or discomfort abdominal,
feeling of dizziness, instability, dizziness or fainting, chills or hot flashes, and
paresthesia. PD is also accompanied by cognitive symptoms, such as derealization,
depersonalization, fear of going crazy, and dying. Panic attacks are followed by at
least a month of apprehension or concern about new attacks and the possibility of a
loss of control, as well as the individual may present a behavioral change to avoid
any activity that can trigger the attacks. It is worth remembering that attacks often
occur for no apparent reason and can serve as a specifier for other disorders such as
substance use, depression, and psychotic disorders (American Psychiatric
Association 2013).

In addition to the anxiety disorders specified in the DSM-V, the obsessive-
compulsive disorders (OCDs), although they have very particular characteristics,
some of their characteristics maintain intimate relationships with anxiety disorders.
Consequently, OCD was addressed in DSM-5 as a separate chapter and following
anxiety disorders (American Psychiatric Association 2013).

Fear and anxiety are adaptive behaviors crucial to survival. However, on many
occasions, the fear responses can become maladaptive, leading to a generalization of
the process. In these situations, various stimuli present in the environment can elicit
fear and anxiety behaviors, as observed in OCD. Studies in different lines of
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evidence, such as physiological and behavioral, suggest that glutamate neurotrans-
mission plays a relevant role in the pathogenesis of anxiety-related disorders (Riaza
Bermudo-Soriano et al. 2012).

Anxiety disorders and OCD have in common the involvement of glutamatergic
neurotransmission beyond other pathophysiological mechanisms and brain struc-
tures that may be more specifically related to some of these disorders. Some
neurotransmitters involved with anxiety disorders are gamma-aminobutyric acid
(GABA), serotonin, norepinephrine, neuropeptides, and glutamate. Glutamate has
received attention more recently for its involvement in the neurobiology and treat-
ment of anxiety disorders (Nasir et al. 2020).

Just as GABA is the main inhibitory neurotransmitter, glutamate is the primary
excitatory neurotransmitter in the central nervous system. Both neurotransmitters are
abundant in limbic system structures involving fear and anxiety (Bergink et al.
2004). After identifying glutamate as a neurotransmitter in 1959, many studies
have highlighted the importance of the glutamatergic system in the pathophysiology
and treatment of psychiatric disorders (for a review, see: Machado-Vieira et al.
2009).

Under normal conditions, glutamate plays a prominent role in synaptic plasticity,
learning, and memory (Marcondes et al. 2020) and is involved in neural develop-
ment, cell proliferation, and migration (McDonald and Johnston 1990). However,
under pathological conditions, glutamate’s exacerbated activity culminates in
excitotoxicity, leading to cell death (Pittenger et al. 2007).

The action of glutamate occurs through specific receptors located on the cell
membrane’s surface, classified according to their pharmacological and functional
properties (Sanacora et al. 2008). The function and regulation of glutamate levels
require presynaptic and postsynaptic neurons and glial cells, characterizing the
so-called tripartite synapse (Machado-Vieira et al. 2009). Its function occurs through
ionotropic (iGluR) and metabotropic (mGluR) receptors (Riaza Bermudo-Soriano
et al. 2012).

mGlu receptors are not exclusively in the synapse region, and when bind to
glutamate, they activate a signaling molecule, the G protein, which is responsible for
initiating an intracellular signaling cascade. There are eight different types of
metabotropic receptors, which are into three subgroups: Group I (mGlu1 and
mGlu 5), Group II (mGlu2 and mGlu3), and Group III (mGlu4, mGlu6, mGlu7,
and mGlu8) (Pilc et al. 2008; Bhattacharyya and Chakraborty 2007). mGlu receptors
are essential in modulating synaptic excitability (Niswender and Conn 2010; Harvey
and Shahid 2012).

iGlu receptors are ion channels with selective conductance for Ca2+ and Na+.
Once activated, an influx of these cations occurs, supporting the neuron depolariza-
tion. iGluRs are classified into N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid (AMPA), and kainate (Traynelis et al. 2010;
Harvey and Shahid 2012).

Many events contribute to glutamatergic changes, such as increased levels of
glutamate or changes in glial cells due to decreased extracellular glutamate reuptake
by excitatory amino acid transporters (EAATs) (Kugaya and Sanacora 2005).
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19.2 Glutamate and Hypothalamic-Pituitary-Adrenal Axis

There is the knowledge that psychiatric illnesses, mainly major depressive disorder
(MDD), post-traumatic stress disorder (PTSD), and anxiety disorders, can be trig-
gered by stress, a body reaction responding to a situation resulting in neuronal
balance dysregulation. It is important to note that some individuals are resilient to
stress to adapt to stressful events and are more resistant to developing psychopa-
thology. Among the risk factors for developing psychiatric disorders triggered by
external stressors are genetic predispositions, family inheritance, socio-
environmental factors, early life stress, and chronic diseases. The glutamatergic
pathway is involved in the mechanism of resilience to stress. However, studies are
still needed to understand how this modulation occurs (Faye et al. 2018).

Stressful events trigger a normal physiological and behavioral response that
activates the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis’s activation
culminates in the secretion of corticotropin-releasing hormone (CRH) from the
hypothalamus with the subsequent secretion of adrenocorticotropic hormone
(ACTH) by the pituitary gland. In this way, ACTH is released into the bloodstream
to reach the adrenal cortex, resulting in glucocorticoids secretion, primarily cortisol.
The release of cortisol usually occurs 30 min after exposure to stress, and the
recovery of this stimulus takes place in 60–80 min. However, prolonged and
constant exposure to stressful events leads to chronic stress that leads to persistent
functional changes (Faye et al. 2018).

The glutamatergic neurotransmission in the PFC represents a mechanism by
which stress influences neuronal processes related to affection and cognition. The
glutamatergic function involving the PFC in the stress response seems to be related
to direct acute and chronic action mediated by the HPA axis. Although there is
strong evidence that dopamine disorders are involved in the adverse effects of stress,
the activation of monoaminergic neurotransmission due to an abnormal stressor
seems secondary to changes in cortical neurotransmission glutamate (Moghaddam
2002).

The pharmacological block of glutamate release or specific glutamate receptors
has been shown to prevent atrophy induced by glucocorticoids such as cortisol.
Thus, there is a possibility that glutamatergic antagonism plays a role in blocking
hyperactive HPA axis systems in neuropsychiatric disorders, thus presenting a
neuroprotective role (Mathew et al. 2001). Activation of rats’ amygdala through
microinjection of glutamate increased plasma corticosterone, and this increase seems
to depend on the dose of CRH in the median eminence. Blocking CRH release
through an NMDA antagonist can be anxiolytic properties by inhibiting CRH release
in the amygdala. In regions of the hypothalamus and brainstem, however, the
response was inhibited by systemic dexamethasone, suggesting that glutamate
mediation on the HPA axis is sensitive to steroids (Mathew et al. 2001).

Among the mechanisms underlying the stress-induced changes in the HPA axis
are neuroplasticity changes, especially in the hypothalamus. Stimulation of the bed
nucleus of the stria terminalis (BNST) produced long-term suppression of the
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evoked field potentials in the paraventricular nucleus (PVN) of the hypothalamus.
The administration of a non-competitive NMDA receptor antagonist, MK-801,
reversed the suppression of potentials in the PVN (Tartar et al. 2006). The authors
infer that the high-frequency stimulation applied to BNST produces a fast and long-
lasting inhibition of the NMDA receptor in PVN, possibly through an increase in
BNST inhibitory control. This study suggests that inhibition of the NMDA receptor
may regulate the stress response that occurs with the activation of the HPA axis
(Tartar et al. 2006).

There is evidence that the excitatory synaptic transmission of glutamate increases
from stress due to social isolation. It causes a dysregulation in the receptors’
expression and function in the central nervous system, especially NMDA, resulting
in excitotoxicity and brain damage (Sestito et al. 2011). In this sense, the stress
seems to result in quite complex changes that mainly involve neurochemical and
neuroendocrine systems, in addition to physiological, anatomical, and behavioral
changes (Mumtaz et al. 2018).

19.3 Generalized Anxiety Disorder: GAD

Generalized anxiety disorder (GAD) is quite common, affecting over 6% of the
population during their lifetime. It is a disorder that causes disability and becomes
chronic in many people due to adverse effects and consequent withdrawal from
treatment. Besides, GAD is often accompanied by comorbidities, such as major
depressive disorder, panic disorder, and substance abuse, making treatment even
more challenging (Maron and Nutt 2017; Schanzer et al. 2019).

Abnormalities in neurotransmission and inhibitory-excitatory balance are char-
acteristics observed in GAD patients (Schanzer et al. 2019). Studies suggest that
gamma-aminobutyric acid (GABA) deficits and increased excitatory neurotransmis-
sion of glutamate are mechanisms involved in GAD’s pathogenesis. Changes in the
binding of GABA to GABA-A receptors found in the medial prefrontal cortex,
amygdala, and hippocampus, are related to anxiety and fear responses (Roy-Byrne
2005).

As with other anxiety disorders, glutamate has receipt highlight as a neurotrans-
mitter that plays an essential role in GAD. Studies in humans and animal models
bring evidence about the action of glutamate in limbic brain structures involved in
anxiogenic responses to stressful events (Mathew et al. 2005; Dunayevich et al.
2008; Riaza Bermudo-Soriano et al. 2012; Sugiyama et al. 2012).

Studies performed by functional magnetic resonance imaging (fMRI) sought to
evaluate the brain responses in GAD in the face of negative emotional stimuli. These
studies observed that fearful facial expression occurs in parallel to activate limbic
structures, such as the amygdala, a relevant region controlling fear and emotional
reactivity, and the insula, responsible for internal physiological states (Schanzer
et al. 2019).
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AGAD’s striking symptom is the stringent, persistent worry and without the need
for any external signal or stimulus. This symptom was observed through neuroim-
aging that pointed to an adaptive inadequacy of the medial prefrontal cortex (mPFC).
Also, the induction of worrisome stimuli in GAD patients activates the anterior and
dorsal cingulate, brain regions involved in stimulus-independent mental activity
(Paulesu et al. 2010).

A worrying stimulus triggered a robust increase in the PFC’s activity in elderly
individuals with GAD. Imaging exams also found greater activation in the left
amygdala. The GAD individuals showed greater activation in the left region than
the controls. The authors argue that the left amygdala is activated when linguistic
emotional alert stimuli are processed (Mohlman et al. 2017). The scientific literature
provides evidence that glutamate is the primary neurotransmitter in the bidirectional
connections between PFC and the amygdala (Sah et al. 2003). Although still lacking
clarification, studies suggest that traumatic stress influences the connectivity
between mPFC and amygdala and that compromised connectivity may be secondary
to trauma-induced changes in the prefrontal glutamatergic pathways (Ousdal et al.
2019).

The connectivity between the PFC and the amygdala seems responsible for
regulating outputs from the amygdala to the hypothalamus and activating physio-
logical responses to anxiety (Fig. 19.1) (Mohlman et al. 2017). Studies with animal
models of anxiety have observed that the NMDA receptor agonist in the PVN
induced an increase in sympathetic stimulation, with a consequent increase in
blood pressure and heart rate. At the same time, an NMDA antagonist blocked
such effects (Li et al. 2006).

19.4 Panic Disorder: PD

PD is one of the most investigated anxiety disorders, affecting 2.7% of the popula-
tion per year and has a lifetime prevalence of up to 5% in the general population. It
affects women twice as often as men and frequently develops in late adolescence or
early adulthood, with the average age of onset being 28 years (Zulfarina et al. 2019).

Still, there is no known etiology, as it is characterized by a heterogeneous
psychiatric disorder that is difficult to diagnose. Also, it is common for patients
with PD to have other medical conditions such as respiratory and heart diseases,
mental disorders due to substance abuse (alcohol, caffeine, cannabis, and cocaine),
affective disorder, post-traumatic stress disorder (PTSD), obsessive-compulsive
disorder, and social phobia. These comorbidities are usually associated with greater
severity and a worse clinical course of the disorder (Kelly et al. 2015; Chen and Tsai
2016). It is worth remembering that some patients manifest only panic attacks
(PA) resulting from another psychiatric disorder. Generally, it is possible to predict
its occurrence in these cases, as they correlate to a specific triggering situation
(Zulfarina et al. 2019).

544 T. C. Boff et al.



F
ig
.
19

.1
S
tr
es
s
an
d
tr
au
m
a
th
ro
ug

ho
ut

lif
e
ar
e
in
vo

lv
ed

in
an
xi
et
y
di
so
rd
er
s.

A
m
on

g
th
e
br
ai
n
st
ru
ct
ur
es

hi
gh

lig
ht
ed

ar
e
th
e
pr
ef
ro
nt
al

co
rt
ic
al

ar
ea
s,

su
bc
or
tic
al

lim
bi
c
ar
ea
s,
su
ch

as
th
e
hi
pp

oc
am

pu
s,
hy

po
th
al
am

us
,
an
d
am

yg
da
la
,
nu

cl
ei

in
th
e
br
ai
n
st
em

,
su
ch

as
th
e
pe
ri
aq
ue
du

ct
al

gr
ay

m
at
te
r
(P
G
M
),

ce
ru
le
an

lo
cu
s
(C
L
),
in
ad
di
tio

n
to
th
e
su
bs
ta
nt
ia
ni
gr
a
(S
N
)a
nd

ve
nt
ra
lt
eg
m
en
ta
la
re
a
(V

T
A
).
G
lu
ta
m
at
er
gi
c
hy

pe
ra
ct
iv
at
io
n
in
th
e
am

yg
da
la
,p
re
fr
on

ta
lc
or
te
x

(P
F
C
),
an
d
hy

po
th
al
am

us
se
em

s
to

be
a
cr
iti
ca
l
m
ec
ha
ni
sm

in
th
e
im

ba
la
nc
e
of

fu
nc
tio

na
l
co
rt
ic
o-
lim

bi
c
ac
tiv

ity
an
d
tr
ig
ge
ri
ng

ge
ne
ra
liz
ed

an
xi
et
y
di
so
rd
er

(G
A
D
),
so
ci
al
an
xi
et
y
di
so
rd
er

(S
A
D
),
an
d
pa
ni
c
di
so
rd
er

(T
P
).
Im

ag
es

w
er
e
ex
tr
ac
te
d
fr
om

th
e
B
io
R
en
de
r
ap
p

19 Glutamate Function in Anxiety Disorders and OCD: Evidence from Clinical. . . 545



Currently, the treatment of choice for PD includes selective serotonin reuptake
inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and tricy-
clic antidepressants (TCAs), which can take several weeks to achieve the therapeutic
effect. Therefore, therapy in combination with benzodiazepines (BZDs) is initially
necessary. However, the drugs mentioned above do not show complete clinical
results in the most treated patients (Perna et al. 2015).

An important mechanism that triggers PD is the inadequate activation of the
central fear network, which includes the amygdala and its connections with the
hippocampus, thalamus, hypothalamus, periaqueductal gray matter (PGM), cerulean
locus (CL), and PFC. The PFC generates an inadequate interpretation of the sensory
information and conditioning processes, resulting in panic attacks, anticipatory
anxiety, and avoidance (Perna et al. 2015; Chen and Tsai 2016).

The metabotropic glutamatergic receptors were investigated to verify the regula-
tion of presynaptic glutamate release and the consequent postsynaptic neuronal
excitability in PD. It is possible to mention the Group II receptors (mGlu2 and
mGlu3) that act negatively by modulating the release of glutamate and controlling
GABA release and other neurotransmitters, including monoamines. A potent agonist
of group II metabotropic receptors induces anti-panic-like responses in PD’s animal
model (Shekhar and Keim 2000). Another study noted that a selective allosteric
potentiator of the mGlu2 receptor reversed panic-like behavioral and physiological
changes in panic-vulnerable rats. The authors suggest that the best anti-panic effect
with fewer adverse effects may occur because the selective activator mGlu2 acts by
reducing the excessive action of glutamate without affecting the basal glutamatergic
activity (Johnson et al. 2013). These receptors are found in the cortex, hippocampus,
other limbic areas, and, to a lesser degree, in the brainstem and cerebellar regions
and, thus, are involved in the anxiety, emotion, and cognition responses of animals
and humans (Perna et al. 2011).

The dorsomedial hypothalamus (DMH) region coordinates neuroendocrine, auto-
nomic, and behavioral responses to various homeostatic mechanisms (Johnson and
Shekhar 2006). According to Perna et al. (2015), the decrease in inhibitory activity
mediated by infusion of the inhibitor of GABA synthesis L-glycine (L-AG) in the
HDM of rats results in the prolonged glutamate activity in this region. As a
consequence, rats exhibit increased behaviors associated with panic, in addition to
cardiorespiratory symptoms such as tachypnea, tachycardia, hypertension, and
increased avoidance behavior in social interaction (Fig. 19.1) (Perna et al. 2015;
Johnson and Shekhar 2012).

19.5 Social Anxiety Disorder: SAD

In social anxiety disorder (SAD), there is a global impairment of social functioning,
with a prevalence of 1.9% to 12.1% in the general population. Among the neurobi-
ological findings involved, the neurotransmitters serotonin, norepinephrine, gluta-
mate, and GABA stand out, in addition to the neuropeptide oxytocin. Furthermore,
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there is no single, comprehensive hypothesis available to explain SAD biological
characteristics. It is common to have concomitantly other psychiatric disorders such
as obsessive-compulsive disorder, generalized anxiety disorder, panic disorder, and
body dysmorphic disorder (Marazziti et al. 2015).

Currently, the literature brings data that the neurobiology of SAD is related to the
circuit of the basal ganglia and the reward and avoidance systems in general,
amygdala, and hippocampus (Fig. 19.1) (Caouette and Guyer 2014). The reward/
avoidance system is related to the basal ganglia, especially the caudate and putamen,
the thalamus, and cortical regions, such as the anterior cingulate cortex (ACC)
(Howells et al. 2015). Some important SAD behaviors arise from striatal
hyperactivation (Lorberbaum et al. 2004; Guyer et al. 2014).

A study evaluated the concentrations of metabolites such as N-acetyl-aspartate
(NAA), NAA with N-acetyl-aspartyl-glutamate (NAA + NAAG),
glycerophosphocholine (GPC) with phosphocholine (PCh) (GPC + PCh),
Myo-inositol, glutamate (Glu), and glutamate with its precursor glutamine (Gln)
(Glu + Gln) in the ACC, in addition to also evaluating the metabolites NAA +NAAG
and GPC + PCh in the cortical, striatal, and thalamic regions bilaterally. The protocol
made a crossing of the metabolites with social anxiety measures and related symp-
toms of SAD patients. The researchers observed a decrease in the relative concen-
tration of glutamate in the ACC of patients with SAD. Also, the NAA metabolite
concentration seems to increase in the thalamus of SAD patients. Finally, the choline
metabolite correlated with changes in social anxiety measures in the caudate and
putamen (Howells et al. 2015). However, other studies seem to find opposites
results. A protocol found a considerable increase in glutamate in the ACC, which
was correlated with the intensity of SAD symptoms (Phan et al. 2005). Another
study, in addition to a reduction in GABA and an increase in glutamate, found that
levetiracetam, a compound that increases gabaergic activity, reduced SAD behaviors
in parallel with a reduction in glutamine levels and an increase in GABA in the brain
of SAD individuals (Pollack et al. 2008).

In this sense, it is understood that the role of glutamate in anxiety is due to the
increase in glutamatergic transmission and the excessive release of glutamate in the
limbic system. Therefore, patients with SAD showed an exaggerated activation of
the limbic system in response to the social threat and situations that cause anxiety
(Fig. 19.1) (Phan et al. 2005).

19.6 Anxiety Disorder and Glutamatergic Treatment

Glutamatergic neurotransmission as a therapeutic target for GAD has also been
shown. Research with knockout mice for mGlu2 or mGlu3 has observed that a
selective agonist’s anxiolytic activity for these receptors requires the presence of one
or both receptors (Linden et al. 2005). A multicenter clinical study found that
treatment with the selective agonist mGlu2/3 promoted an anxiolytic effect with
few adverse effects, corroborating preclinical research findings (Dunayevich et al.
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2008). Activation of the mGlu2 and mGlu3 receptors is related to reduced presyn-
aptic glutamate release or postsynaptic neuron hyperpolarization in limbic areas
involved with anxiety, such as some amygdala nuclei, prefrontal cortex (PFC), and
hippocampus (Schoepp et al. 2003).

Studies in animal models provide evidence that riluzole, a presynaptic inhibitor of
glutamate release, has an anxiolytic effect (Stutzmann et al. 1989). The anxiolytic
effects of riluzole are in different mechanisms and without the adverse effects of
benzodiazepines (Sugiyama et al. 2012). Adult GAD patients treated for 8 weeks
with riluzole experienced a rapid and sustainable reduction in anxiety symptoms.
According to the Hamilton Anxiety Assessment Scale (HAM-A), approximately half
of the treated individuals achieved remission. Noteworthily, the side effects were
tolerable, allowing further studies to improve anti-glutamatergic agents’ use in GAD
treatment (Mathew et al. 2005). In another study using proton magnetic resonance
spectroscopy (1H MRS), the researchers found a strong correlation between reduced
anxiety symptoms and increased N-acetyl aspartate (NAA) concentrations in the
hippocampus of patients treated chronically for 8 weeks with riluzole. Most patients
who responded to riluzole had a considerable increase in hippocampal NAA at the
end of treatment than baseline. On the other hand, patients who did not respond to
treatment showed no difference or had a reduction in the concentration of NAA in
the hippocampus (Mathew et al. 2008).

Proton magnetic resonance spectroscopy (1H MRS) is a non-invasive technique
that allows assessing changes in specific metabolites in brain tissue resulting from
pathological changes (Ramin et al. 2003; Hill and Olga 2014). NAA, a marker of
neuronal viability, is one of the critical metabolites synthesized in brain tissue
mitochondria and is present in neuronal bodies and axons. It is a marker that
indicates neuronal density and viability (Ramin et al. 2003). The researchers suggest
that riluzole on GAD is related to reducing glutamatergic excitotoxicity and increas-
ing hippocampal plasticity (Mathew et al. 2008). In this regard, other studies have
observed a reduction in hippocampal volume in GAD patients. Treatment with
riluzole increased the hippocampal volume, positively correlated with NAA, and
reduced anxiety symptoms (Abdallah et al. 2013).

Research on glutamatergic ionotropic receptors is still limited because of the
significant adverse effects of binding substances. However, some research shows the
anxiolytic effects of substances antagonizing NMDA and AMPA receptors
(Wieronska et al. 2011). In a study with a fear-potentiated startle model in rats, the
researchers observed that blocking the NMDA receptor in the caudal pontine
reticular nucleus attenuated the fear-potentiated startle, suggesting that the potenti-
ated response is dependent on the activation of NMDA receptors in this region
(Fendt et al. 1996). Noteworthy were the studies, which showed the acute and long-
lasting effect of ketamine, an NMDA receptor antagonist, in GAD patient refractory
to other treatments. The individuals had few and tolerable adverse effects. The
authors suggest ketamine as a potential and safe treatment strategy for individuals
with resistant anxiety disorders (Glue et al. 2017).

Regarding glutamate as a therapeutic target in the SAD, it is noteworthy one
study, which found that the infusion of ketamine promoted an anxiolytic response
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for 2 weeks after administration in SAD individuals (Taylor et al. 2018). However,
considering the therapeutic strategy, the function of glutamate seems to have para-
doxical effects. Worthwhile notes the studies about this issue, which observe the
effect of D-cycloserine on learning that seems to facilitate the extinction of fear. In
this sense, it is worth mentioning that D-cycloserine, a partial NMDA agonist, has
been showing beneficial effects, increasing the therapeutic response of exposure
psychotherapy and, thus, helping to extinguish fear (Davis et al. 2006). Considering
that D-cycloserine is a partial agonist, a question is possible: its action may occur as
an agonist in some regions but as an antagonist in other regions of the circuit?
D-cycloserine administered directly to the amygdala’s basolateral nucleus facilitated
the learning of fear extinction, and its action was dependent on the synthesis of
proteins involved in signaling pathways that increase synaptic plasticity.

Another noteworthy piece of information is that D-cycloserine acts on the glycine
site and modulates the NMDA receptor. Thus, the influx of calcium occurs in an
eased way. Conversely, direct receptor agonists may be neurotoxic by increasing
unregulated calcium input (Yang and Lu 2005). Still, another relevant explanation is
that the glycine site is also activated by D-serine, an endogenous ligand more potent
than D-cycloserine. Therefore, in regions of the circuit responsible for the fear
acquisition, glycine and D-serine would already be saturated, surpassing D-cyclo-
serine’s action. This consideration is relevant since the acquisition of fear is an
adaptive mechanism for safety and survival (Davis et al. 2006).

More recent studies corroborate the role of D-cycloserine in enhancing the effects
of exposure therapy. Besides, D-cycloserine can also act in the consolidation of
extinction. However, some studies have observed that D-cycloserine can act
inversely in the consolidation process when individuals exposed to fear extinction
therapy do not show therapeutic success in extinction memory (Hofmann et al.
2015).

19.7 Obsessive-Compulsive Disorder: OCD

According to DSM-V, Obsessive-Compulsive Disorder (OCD) is characterized by
the presence of obsessions and compulsions (American Psychiatric Association
2013). Obsessions concern recurring and persistent thoughts, impulses, or images
experienced in an unpleasant and intrusive way. On the other hand, compulsions are
repetitive behaviors or mental acts that an individual feels obliged to perform due to
an obsession or according to rules that must be strictly applied. OCD affects
1.1–1.8% of the population worldwide. Males are the most affected in childhood,
and females are most affected in adulthood (American Psychiatric
Association 2013).

The DSM-V approaches OCD jointly with other related disorders. The topic in
DSM-V includes OCD, accumulation disorder, body dysmorphic disorder, skin-
picking disorder, trichotillomania, OCD and substance/drug induction disorder,
OCD and related disorder due to some medical condition, OCD and specified related
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disorder and OCD and unspecified related disorder, for example, repetitive behavior
disorder with a focus on the body and obsessive jealousy (American Psychiatric
Association 2013).

There is extensive literature addressing the vast range of factors and mechanisms
that are related to the expression of OCD. Among these factors and mechanisms are
neurotransmitters glutamate, serotonin, dopamine, GABA, besides biological vul-
nerability as biological sex and genetics factors, and endogenous processes like
neuroinflammation and oxidative stress (Woody et al. 2019).

Several hypotheses explain the pathophysiology of OCD. However, there is no
consensus about the etiology, which is possibly heterogeneous. The scientific
literature has pointed to glutamatergic neurotransmission as one of the critical
mechanisms involved in OCD. Studies bring evidence that the levels of glutamate
in the cerebrospinal fluid were elevated in OCD individuals (Chakrabarty et al.
2005).

The evidence supporting glutamate involvement in OCD includes genetic studies,
pharmacological investigations, animal models, neurochemical studies, small clini-
cal studies, and case reports (Pittenger et al. 2011).

In addition to the heterogeneity of factors, studies suggest a complex circuitry
involving the frontal cortex, basal nuclei, thalamus, and other regions of the limbic
system, when they do not process information in a balanced way, may trigger
specific symptoms of OCD. The functional connectivity of the cortico-striatal-
thalamo-cortical circuit is extensively investigated, and research suggests that dereg-
ulations in glutamatergic activity are critical in OCD (Karthik et al. 2020).

19.7.1 OCD and Glutamate in the Cortico-Striatal-
Thalamo-Cortical (CSTC) Circuit

The relevance of the CSTC circuit in the pathophysiology of several types of
disorders is not recent. Penney and Young (1983) bring critical explanations on
the central role of the base’s ganglia within the neuronal circuit CSTC, mainly in the
modulation of behaviors. Studies with structural and functional neuroimaging data
suggest that the CSTC circuitry plays an essential role in the pathophysiology of
OCD. The imbalance in the CSTC circuits is well documented as a possible trigger
of OCD. These circuits are composed of direct and indirect pathways, which act
through the neurotransmitters glutamate and GABA. Both neurotransmitters are in
balance in the absence of disorders (Saxena and Rauch 2000; Karthik et al. 2020). In
OCD individuals, there is often an increased metabolic activity in both PFC and
striatum, with a positive correlation between the two structures, suggesting
glutamatergic cortical hyperactivity (Carlsson 2001).

The CSTC pathway originates in specific regions of the frontal cortex, including
the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), orbitofrontal
cortex (OFC), and also the dorsolateral prefrontal cortex (dlPFC). From these
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cortical areas, the circuit reaches the corresponding striatal targets and then the
thalamus. Finally, the circuit’s signals return to the cortical areas, where the signals
started (Milad and Rauch 2012; Zhu et al. 2015). The mPFC/ACC is involved in the
affective and cognitive function directed to motivated behaviors, while the OFC
seems responsible for integrating emotional and limbic information into behavioral
responses (Chen et al. 2019). Meanwhile, considering the extinction of fear and
behavioral inhibition, Milad and Rauch (2012) propose a circuit that considers
specific cortical functions and involves limbic areas beyond the segregated
cortico-striatal pathway. The study by Wood and Ahmari (2015) sought to investi-
gate the role of other regions involved in the circuit of OCD. Among the regions
covered are the medial OFC, the amygdala, and the ventral tegmental area (VTA)
projections to the ventral striatum (VS). Among these, VS demonstrated a prominent
role in processing affection and reward, being essential for integrating compulsive
behaviors. Affective dysregulation and information processing from medial OFC,
VTA, and the amygdala to the VS are mechanisms involved in OCD symptoms.
Thus, other brain regions outside the classical CSTC pathway play a role, integrating
the OCD circuit (Menzies et al. 2008). In addition to the greater complexity, the age,
period of the symptoms, and the different dimensions of the symptoms with aggres-
sive obsessions and compulsions may culminate in differences in the circuit struc-
tures’ activities (Stein et al. 2019).

A meta-analysis provides evidence that during emotional processing in OCD
individuals, there is an increase in the activation of the bilateral amygdala, right
putamen, OFC, extending into the ACC and ventromedial PFC (vmPFC), middle
temporal and left inferior occipital cortex. It is noteworthy in these studies that
medication, the severity of symptoms, and comorbidities with other disorders
promoted differentiated activation of brain structures (Thorsen et al. 2018). Another
meta-analysis study showed that OCD patients showed overactivation of structures
in neuronal circuits involving salience and emotional alert responses, such as ACC,
insula, caudate head, and putamen. Conversely, in cognitive control regions, such as
mPFC and posterior caudate, OCD individuals are under-activated (Rasgon et al.
2017). These studies corroborate the morphofunctional complexity of the circuitry.

Several neurotransmitter systems are found within CSTC circuits, including
glutamate, serotonin, and dopamine. These neurotransmitters appear to play an
essential role in the pathophysiology of OCD. It is observed that several
glutamatergic neurons originating in the prefrontal cortex play a fundamental role
in the CSTC circuit (Fig. 19.2) (Stein et al. 2019). Repeated stimulation of
glutamatergic projections from the orbitofrontal cortex to the ventromedial striatum
triggers OCD-like behaviors in mice. The authors also observed that chronic treat-
ment with fluoxetine, an SSRI, reversed OCD-like behaviors. The authors suggest
that repeated glutamatergic stimulation triggers plasticity in the CSTC circuit struc-
tures, such as the thalamus and PFC, which increases the motivational salience in the
VTA. These behavioral changes from the VTA may justify the effects of fluoxetine
(Ahmari et al. 2013).
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Researchers observed a reduction in glutamatergic signaling in the mPFC and the
right thalamus of unmedicated OCD using magnetic resonance spectroscopy (MRS)
studies. The reduction in glutamatergic signaling in the right thalamus was signifi-
cantly correlated with compulsion scores (Zhu et al. 2015). The vmPFC appears to
be primarily linked to the conditioned response’s expression during the retention of
fear extinction learning. Damage or reduced stimulation of the vmPFC impairs the
retention or recall of fear extinction (Phelps et al. 2004). In this regard, a preliminary
study using MRS in OCD individuals found that glutamate levels in vmPFC were
negatively associated with the recall of fear extinction and positively related to
cognitive behavioral therapy (Giménez et al. 2020).

Functional connectivity at rest, defined as the temporal correlation of neuronal
activation between different brain regions during rest, has been used to investigate
changes in connectivity in the CSTC circuit of OCD patients. Through this
approach, some studies have found an increase in functional connectivity in struc-
tures in the direct loop of the CSTC, such as the cortex, striatum, and thalamus,
which points to a hyperactivation of the direct loop in OCD (Harrison et al. 2009;
Fitzgerald et al. 2011). A study using functional magnetic resonance imaging (fMRI)
at rest, combined with proton MRS, found functional connectivity changes in the
CSTC circuit and external networks connected to the circuit. The study found in
OCD patients a significant correlation between reduced functional connectivity from
the right thalamus to the middle occipital gyrus. Besides, functional connectivity was
negatively correlated with the total scores and the compulsion scores, measured on
the Yale-Brown Obsessive-Compulsive Scale (YBOCS). The authors suggest that
the increase in glutamate and reduced connectivity in this circuit may be related to
affective dysfunction in OCD. In the same series of studies, it was observed that the
functional connectivity between the right thalamus and the right dACC was nega-
tively correlated with the right thalamic glutamatergic signal in OCD. The authors
suggest that reducing the glutamatergic signal in this connection is related to
impairment in the patients’ cognitive control network (Chen et al. 2019). Another
study using proton MRS found a positive correlation between glutamate in the
thalamus with severity scores in OCD patients (Fan et al. 2017).

OCD patients had significantly higher resting functional connectivity between the
left caudate and dlPFC, in addition to a positive correlation between caudate and
dlPFC connectivity and depression scores. Greater connectivity was associated with
more severe depressive symptoms (Sha et al. 2020). Since glutamate plays a critical
role in the regulation of functional connectivity (Kapogiannis et al. 2013), the
findings of this study suggest that changes in the caudate with increased dlPFC
activity may represent the basis of the main symptoms of OCD and their relationship
with depression, through excitatory transmission along the cortical-limbic-striatal
circuit (Sha et al. 2020).

A study using proton magnetic resonance spectroscopy found increased relative
levels of Glx and NAA in the orbitofrontal white matter of OCD patients. Higher
levels of Glx/creatine were associated with the severity of symptoms. Furthermore,
in the head of the caudate nucleus, myoinositol’s relative values were reduced
bilaterally, and such levels of myoinositol/creatine were associated with more
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significant anxiety but not with the severity of OCD symptoms (Whiteside et al.
2006). A significant reduction in glutamate/glutamine (Glx) concentrations were
observed in the right and left dorsal ACC in female and male OCD patients. The
study also evidenced high myoinositol concentrations in the right ACC and a trend
of reduction in NAA of OCD patients of both sexes. The study observed that the Glx
levels in the ACC of female patients were linked to the severity of clinical symptoms
and probable more lasting disorder (Yücel et al. 2008). Another magnetic resonance
spectroscopy study found a significant negative correlation between myoinositol/
creatine in the left orbitofrontal region and the severity of symptoms in OCD
patients. Subclinical symptoms of depression and anxiety were related to metabolite
rates. The authors highlight the importance of observing these psychiatric
comorbidities in evaluating these metabolites in OCD individuals (Bédard and
Chantal 2011).

Some researchers examined the presence of autoantibodies against the basal
ganglia and thalamus and the amino acids glutamate, GABA, taurine, and glycine
in serum and CSF. The researchers observed an increase in autoantibodies against
the basal ganglia and the thalamus and glutamate and glycine in OCD patients. CSF
glycine levels were significantly higher in OCD patients with autoantibodies. There-
fore, based on these findings, it is assumed that autoantibodies do not directly cause
glutamatergic abnormalities but may be involved in modulating central glycine
levels. The study presented evidence that autoimmune mechanisms are present in
OCD pathogenesis (Bhattacharyya et al. 2009).

The glutamatergic hyperactivity in some CSTC areas is related to the OCD
pathophysiology, so some studies suggest a therapeutic potential for antagonists in
Group I (mGluR1 and mGluR5). The mGluR1 receptors are expressed in cortical,
limbic regions, basal ganglia, and thalamus, and their activation culminate in cellular
excitability by NMDA responses. Thus, Group I antagonists can effectively balance
increased glutamatergic activity in brain areas involved with OCD. Therefore, such
pharmacological approaches appear to benefit OCD therapy (Spooren et al. 2003;
Bhattacharyya and Chakraborty 2007).

19.7.2 Glutamate Genetic Aspects and OCD

According to the International Obsessive-Compulsive Disorder Foundation Genetics
Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies
(OCGAS) (2018), since the beginning of the last century, it is suspected that heredity
plays an important role in susceptibility to OCD. One of the most recent meta-
analyses that aimed to evaluate the complex genetic architecture of OCD, IOCDF-
GC, and OCGAS (2018) supports some of the pre-existing findings, which point to a
strong association between some genes and the OCD, for example, Slc1A1 (Solute
Carrier Family 1 Member 1), excitatory amino acid transporter 3 (EAAT3) gene,
Grin2B (Glutamate Ionotropic Receptor NMDA Type Subunit 2B), NR2B subunit
of the NMDA glutamate receptor, Grik2 (Glutamate Ionotropic Receptor Kainate
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Type Subunit 2), which encodes the subunit glutamate ionotropic receptor kainate
type subunit 2, also known as glutamate ionotropic receptor 6 (GluR6), and Dlgap1,
gene in the glutamatergic system that codifies disks large-associated protein 1.

Although studies to date demonstrate that the genetic etiology of OCD is com-
plex, genes related to glutamatergic transmission are strong candidates involved in
the disorder’s pathophysiology. Studies have pointed to an association between
Slc1A1 and the occurrence of OCD (Arnold et al. 2006; Dickel et al. 2006).

Glutamate transporters play a crucial role in finishing excitatory neurotransmis-
sion and regulating extrasynaptic glutamate levels. Thus, it has an action that limits
the activation of extrasynaptic neurotransmitter receptors and consequent
excitotoxicity (Danbolt 2001). In this way, the Slc1A1 gene appeared as a candidate
for the OCD-related gene in the disorder’s first genome-wide linkage study (Hanna
et al. 2002).

The Slc1A1 gene encodes the neuronal glutamate postsynaptic transporter
EAAT3, and several studies have demonstrated a possible association of Slc1A1
variants and risk for OCD (Pittenger et al. 2011; Robbins et al. 2019). One study
found that a single nucleotide polymorphism (SNP), rs301443, downstream of
Slc1A1, was strongly associated with OCD in the studied families and the authors
suggest that the SNP is located in a region involved in the regulation of gene
expression (Shugart et al. 2009). Another study from the same group confirmed
the association of rs301443 and found an association of an SNP haplotype
rs4740788- rs10491734-rs10491733 from Slc1A1 in family OCD (Samuels et al.
2011).

Another gene that may be related to OCD is the Sapap3 gene. This gene is
responsible for encoding a critical protein to the normal localization of ionotropic
glutamate receptors in the postsynaptic density (PSD) (Pittenger et al. 2011). A study
of Sapap3 mutant mice identified the relevant role of Sapap3 at cortico-striatal
synapses, and this study suggests that cortico-striatal synaptic defects perhaps be
central to the genesis of OCD-like behaviors (Welch et al. 2007). In this way,
Bienvenu et al. (2009) developed the first study to indicate the relationship between
variants of the Sapap3 gene and psychiatric phenomena in humans. These
researchers evidenced that variation in the Sapap3 gene is associated with human
grooming disorders, which appear close and comorbid with each other and with
OCD. However, variation in Sapap3 did not appear associated with OCD itself, so
more studies are necessary because a study with mice has pointed out the correlation
between sapap3 and OCD (Bienvenu et al. 2009).

To investigate the possible relationship between the Grik2 and ionotropic kainate
3 (Grik3) genes and the OCD, Delorme et al. (2004) investigated the frequency and
transmission of glutamate receptors Grik2 and Grik3 in OCD patients. Overall, was
observed a lack of association between Grik2 and Grik3 and OCD. In another study,
Sampaio et al. (2011) investigated the association between polymorphisms in the
Grik2 gene and OCD. As a result, the SNP rs1556995 and the haplotype of
2-markers rs1417182 and rs1556995 appeared associated with OCD. Both studies
suggest the need for more research (Delorme et al. 2004; Sampaio et al. 2011).
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Animal studies (Shmelkov et al. 2010) and humans (Song et al. 2017) suggest that
the Slitrk5 (SLIT and NTRK like family member 5) gene may also be related to
OCD. Slitrk proteins family was described by Aruga and Mikoshiba (2003), and
these proteins are leucine-rich repeat-containing transmembrane proteins responsi-
ble for synapse regulation and presynaptic differentiation. Expression of the gene
has been linked to the early formation of excitatory synapses. In the characterization
of this gene, six different types of Slitrk proteins have been described. Among these
Slitrk proteins, Slitrk5 seems to be related to OCD. According to the data, Slitrk5
may have an essential role in developing OCD-like behaviors, and the main symp-
toms found were self-injurious repetitive behavior and increased anxiety (Shmelkov
et al. 2010). Another relevant study that indicates a relationship between the Slitrk5
gene and OCD concerns a study by (Song et al. 2017), which re-sequenced the
human Slitrk gene in OCD subjects. It was observed that mutations in Slitrk 5 are
significantly associated with OCD.

According to the meta-analysis (IOCDF-GC and OCGAS 2018), the Dlgap1,
another gene in the glutamatergic system, is also strongly associated with OCD. Li
et al. (2015) aimed to observe an association between Dlgap1 rs11081062 poly-
morphisms with OCD in a Chinese population. They found no association between
Dlgap1 rs11081062 and OCD. However, associations were observed with OCD
subphenotypes. In this way, more investigations are needed, and it appears attractive
to divide OCD into more homogeneous subphenotypes (Li et al. 2015).

Despite several studies showing the relationship of critical genes in glutamatergic
neurotransmission with OCD, more studies are needed to reach genome-wide
statistical significance (Pittenger 2021).

19.7.3 Glutamate, Serotonin, and Dopamine Interaction
in the OCD Circuit

The interaction between glutamate and the neurotransmitters serotonin and dopa-
mine in the frontostriatal circuit seems to be an impaired functional mechanism in
OCD (Fig. 19.3) (Pauls et al. 2014). A possible explanation for the therapeutic effect
of IRSS is its function in the circuit, participating in the balance of glutamatergic and
dopaminergic neurotransmission.

Researchers suggest that an imbalance between the direct and indirect loop paths
of the CSTC circuit is a critical mechanism in the pathophysiology of OCD. Through
the direct pathway, mediated by the type 1 dopamine receptor (D1), the excitatory
signals from OFC and ACC increase GABA inhibitory signaling in the internal
globus pallidus (GPi) and reticulate substantia nigra (SNr) (Pauls et al. 2014).
Afterward, a reduction in the signal transmission triggers an increase in the
thalamus’s output to the cortex. In this sense, the indirect route, mediated by type
2 dopamine receptors (D2), called striatal-pallidal, acts as a modulator of
glutamatergic transmission through the direct route. Also, the striatum inhibits
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the subthalamic nucleus (STN) and globus pallidus external (GPe), resulting in the
stimulation of GPi and SNr, leading to thalamic inhibition (Vlček et al. 2018). The
circuit with increased activity in the direct path disinhibits the thalamus and pro-
motes repetitive behavioral sequences, represented by the most accepted model of
OCD pathogenesis (Baxter’s model) (Saxena and Rauch 2000; Ting and Feng
2008).

The D2-like receptor (D2/D3) balance in the frontostriatal circuit seems to have a
relevant role in learning for sensitivity to positive and negative feedback so that low
levels of D2-like receptors can infer behavioral inflexibility. Image studies in
monkeys have observed that behavioral flexibility, behavioral reversal activity,
and reinforcement sensitivity, which are impaired in OCD, depend on the
evaluability of D2-like receptors in the dorsal striatum, influencing the indirect
function of cortico-striatal connectivity (Groman et al. 2011). Changes in the
frontostriatal circuit’s dopaminergic modulation seem to reflect a change in the
balance of serotonergic and dopaminergic activity in the dorsal striatum (Pauls
et al. 2014).

The observation of the behavioral responses underlying treatment with SSRIs
inspired the suggestion that serotonergic neurotransmission may reduce the release
of glutamate in the PFC and striatum, thus modulating both the indirect and the

Fig. 19.3 Brain injury, life-long traumas, and stress interacting with genetic factors trigger
obsessive-compulsive disorder (OCD). These factors are associated with glutamatergic changes
in the cortico-limbic-striatal circuit, involving cortical areas of the prefrontal cortex (PFC), striatum,
thalamus, nucleus accumbens, ventral tegmental area (VTA), among other limbic structures.
Changes in the glutamatergic signal seem to involve dysregulation, mainly in serotonergic, dopa-
minergic, and GABAergic neurotransmission, culminating in the various behaviors inherent to
OCD. Images were extracted from the BioRender app
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direct path, allowing a balance between the behavioral programs established by both
pathways (Carlsson 2001). SSRIs are the primary drugs for treating OCD (Bokor
and Anderson 2014). The OFC, striatum, and thalamus, which are part of the CSTC
axis, are widely innervated by serotonergic or dopaminergic neurons (Zitterl et al.
2008). One study observed a significant reduction in the 5-HT2A receptor in cortical
areas of the CSTC circuit of OCD patients. The reduction of 5-HT2A in OFC and
dlPFC was correlated with the clinical severity of the disorder. Besides, the study
results appear to point to dopaminergic hyperactivity in the striatum (Perani et al.
2008). The study did not assess glutamatergic mechanisms. However, dopaminergic
changes in the striatum may likely be related to a glutamatergic function mediating
serotonergic activity.

A recent study demonstrated a possible serotonin role in the pathophysiology of
OCD. In this way, sertraline and cognitive behavioral therapy (CBT) can reduce
OCD symptoms. However, this robust and significant effect rarely achieves com-
plete remission, and the effect was associated with a significant increase in whole-
brain 5-HT synthesis capacity in patients who respond to either treatment (Lissemore
et al. 2018).

The interaction of glutamatergic neurotransmission with other key neurotrans-
mitters in the OCD circuit still needs studies to better understand
neurophysiopathology and possible treatment targets.

19.7.4 OCD and Glutamatergic Treatment

In a case study, the authors observed that memantine, an NMDA antagonist, had a
therapeutic effect and reduced the severity of OCD in a patient resistant to several
pharmacological therapeutic attempts. Besides, memantine was well tolerated, with
few adverse effects (Poyurovsky et al. 2005). In a systematic review with a meta-
analysis of eight studies involving 215 individuals, the researchers found that
memantine had a positive therapeutic effect in patients with severe OCD and
refractory to other therapies. The authors found that memantine was generally well
tolerated and that the adverse effects were transient (Modarresi et al. 2019). How-
ever, a critical comment points to problems in Modarresi’s study methodology, and
that from the study, memantine cannot yet guide clinical practice. The author also
concludes that memantine as an augmentation agent in OCD needs more studies
(Andrade 2019).

Riluzole, a presynaptic inhibitor of glutamate release, has also been shown to
improve patients’ symptoms resistant to standard treatment. One study found that
riluzole administered adjunctively had a positive effect on the Yale-Brown Obses-
sive-Compulsive Scale (Y-BOCS) symptoms. Also important, the adverse effects
presented by the patients were not severe and were well tolerated (Coric et al. 2005).
Adjunctive therapy with riluzole also showed a beneficial result and was well
tolerated in OCD outpatients and inpatients. The study also noted a beneficial
tendency for riluzole to improve symptoms of obsession in outpatients (Pittenger
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et al. 2015). In treating moderate to severe OCD, riluzole adjunctive therapy to
fluvoxamine improved symptoms, showing a beneficial clinical effect as a therapy of
augmentation to fluvoxamine (Emamzadehfard et al. 2016).

Troriluzole, a third-generation prodrug that enhances synaptic reuptake of gluta-
mate, was tested in phase 2/3 and showed therapeutic effect as adjunctive therapy in
patients with inadequate response standard treatments. Troriluzole was well tolerated
and showed a consistent safety profile, as seen in other clinical trials (Biohaven
Pharmaceuticals 2020).

Regarding ketamine, a partial NMDA antagonist with a potent and rapid antide-
pressant effect in refractory patients, one study found a positive therapeutic effect in
refractory OCD. However, the effect was better and persistent in depressive symp-
toms, while it did not persist in OCD after the effect of acute treatment (Bloch et al.
2012). A study of twelve untreated OCD patients evaluated the effect of ketamine
infusion before oral memantine administration. Four patients treated with ketamine
showed improvement in symptoms. Memantine alone had no therapeutic effect.
Adjunctive memantine also does not appear to have a beneficial effect on ketamine
(Rodriguez et al. 2016a). In another study, the authors observed the effect of a
ketamine infusion followed by CBT and found that the acute effect of ketamine
significantly reduced the severity of OCD. The therapeutic effect of acutely admin-
istered ketamine persisted with CBT therapy for 2 weeks (Rodriguez et al. 2016b).

It is also important to note a recent study, which observed that the chronic
infusion of ketamine adjunctive to treatment with SSRI significantly improved the
therapeutic response to standard treatments in patients with severe and refractory
OCD (Sharma et al. 2020).

However, research on ketamine is still scarce and with few individuals. Some
results also seem conflicting and need to be continued from further studies with
protocols that detail the acute and chronic effects and possible mechanisms involved
in different adjunctive therapies.

A recent study with laboratory rats found that two NMDA antagonists that target
NR2A and NR2B subunits with more affinity and D-cycloserine significantly
reduced anxiety-like and OCD-like behaviors, in addition to reducing glutamatergic
action in the hippocampus. The NMDA antagonists and D-cycloserine reduced the
NR2A and NR2B subunits levels in the hippocampus, suggesting that these drugs
may be therapeutic targets for OCD by suppressing these subunits (Zhan et al. 2020).
However, studies on the therapeutic function of D-cycloserine in OCD are still
conflicting and scarce, requiring approaches with protocols that can specify which
patients, dosage, and time for a clinical benefit (Pittenger 2021).

19.8 Conclusion and Future Directions

This review seeks to understand and discuss the research that used protocols to
understand the glutamatergic function in the pathophysiology and treatment of
anxiety disorders. Both study protocols in patients and animal models were
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considered to understand the morphofunctional mechanisms underlying the struc-
tures of the brain circuit involved in the disorders.

The relationship between glutamate and the function of the HPA axis in stress and
anxiety disorders was initially addressed, given that psychiatric disorders, in general,
have stress as one of the relevant factors involved (Faye et al. 2018).

Glutamatergic neurotransmission in the PFC, which has a fundamental role in the
circuit of anxiety disorders and especially in the OCD circuit, is also involved in
response to acute and chronic stress, mediated by the HPA axis (Moghaddam 2002).
Early life stress presents a developmental and complex interference in the HPA axis,
with changes throughout life that impact the triggering and severity of anxiety
disorders and OCD in adulthood (Faravelli et al. 2012). Rodents submitted to
maternal separation protocols in the first days of life show anxiety and depression
behaviors in adulthood, with relevant and complex changes in the HPA axis
throughout life (Ignácio et al. 2017).

An important aspect that may be inherent to some conflicting results is
comorbidities between the disorders. While some studies have found functional
changes in the HPA axis, others have not observed these anxiety disorders and
OCD (Bandelow et al. 2017; Kellner et al. 2020). One study noted that in OCD in
comorbidity with depression, increased anxiety was related to increased activation of
the HPA axis (Labad et al. 2018).

Most studies point to an increase in disorders due to increased glutamatergic
activity regarding the role of glutamate in anxiety and OCD disorders. However,
studies still need to be clarified about the interaction of glutamate with other
neurotransmitters. It is essential to consider that the main treatments are still related
to serotonergic, dopaminergic, and gabaergic neurotransmission in most anxiety
disorders. Therefore, studies on serotonergic, gabaergic, dopaminergic, and
glutamatergic neurotransmission interactions, considering the brain structures and
circuits involved, are still necessary.

The evidence that glutamatergic hyperactivity is related to anxiety disorders also
comes from research with compounds that reduce glutamate in neuronal endings.
For example, research with patients and animal models of anxiety points to riluzole’s
anxiolytic effect, an inhibitor of glutamate release (Stutzmann et al. 1989; Mathew
et al. 2005). A relevant factor is that riluzole’s anxiolytic function appears to be
related to reducing glutamatergic excitotoxicity and increasing hippocampal plastic-
ity (Mathew et al. 2008). Another compound widely investigated for its rapid
antidepressant effect, ketamine, an NMDA antagonist, has also been suggested to
treat patients with anxiety refractory to other treatments (Glue et al. 2017).

Although this and other evidence suggests that glutamatergic hyperactivity may
be underlying anxiety disorders, as already mentioned, research that considers
glutamatergic interaction with other neurotransmitters is still scarce and needs
further clarification. Some important questions come from studies with
D-cycloserine, which acts on the glycine site, modulating the NMDA receptor.
D-cycloserine directly in the basal amygdala nucleus seems to facilitate the learning
of fear extinction, dependent on synaptic plasticity (Davis et al. 2006). Thus,
D-cycloserine’s function may be related to increased glutamatergic activity in
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regions related to extinction learning. On the other hand, being a modulator can act
moderately in some brain regions, reducing neuronal overactivation. In this line of
reasoning, it is noteworthy that studies with laboratory animals, which observed an
anti-OCD-like effect parallel to a reduction in the glutamatergic activity in the
animals’ hippocampus from D-cycloserine. The results of D-cycloserine were sim-
ilar to the results of two NMDA antagonists (Zhan et al. 2020). Thus, future studies
on D-cycloserine and mechanisms of action in the cortico-limbic-striated circuit may
decipher some mechanisms that are still puzzling and challenging in the OCD
circuit.

Many studies with important protocols on the CSTC circuit consider functional
connections with limbic structures involved in regulating behaviors related to
anxiety and behavioral inhibition in the OCD. Functional connections point to an
imbalance of glutamatergic function in the cortico-limbic-striatal pathway. In some
regions, glutamate function appears to be increased, influencing compulsive behav-
iors, while in others, it appears to be reduced, impairing cognitive processes of fear
extinction (Zhu et al. 2015; Rasgon et al. 2017; Chen et al. 2019; Sha et al. 2020).
However, studies that address glutamate’s function, considering the circuit as a
whole and limbic areas related to affection, fear, and behavioral inhibition, highlight
glutamate hyperfunction, especially at the NMDA receptor.

OCD is a disorder that involves heterogeneous neurobiological mechanisms,
which make studies complex and challenging, both to elucidate the pathophysiology
and to discover more effective treatments. Besides, given the heterogeneity of
mechanisms involved in the population, it is unlikely that specific treatment can
induce an effective therapeutic response to all OCD patients (Pittenger 2021).

Despite some studies showing the relationship of the HPA axis with functions in
the circuit, few studies focus on this relationship with glutamate. Considering that
the HPA axis function can be unbalanced in many individuals subjected to stress
throughout life and that stress is one of the relevant factors underlying OCD and
other anxiety disorders, further studies relating the HPA axis and glutamatergic
function in the circuit are necessary. They can reveal possible and relevant thera-
peutic targets and strategies.

Glutamatergic hyperfunction is corroborated by studies that point out the thera-
peutic function of NMDA receptor antagonists associated with standard therapies,
such as SSRIs and CBT. However, considering that glutamatergic compounds alone
do not have practical therapeutic effects, the functional mechanisms in the OCD
circuit must be better understood so that the most effective therapeutic targets and
strategies can be elucidated.
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Chapter 20
Modulators of Glutamatergic Signaling
as Potential Treatments for Autism
Spectrum Disorders

Carla Sogos and Francesca Fioriello

Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder
characterized by deficits in social communication and social interaction in addition
to restricted and repetitive patterns of behaviors and interests.

ASD is a lifelong condition and constitutes a major public health problem in most
countries, as the rate of children being diagnosed with ASD has risen over the last
two decades and researchers cannot precisely explain the reason.

Current estimates of the Centers for Disease Control and Prevention (CDC) repre-
sent a 15% increase in prevalence: to 1 in 59 children, from 1 in 68, 2 years previous.

To date, few findings are available on reliable diagnostic biomarkers and on
effective treatments.

Several genetic variants of glutamatergic pathways seem to be related to ASD. In
particular, Glutamate receptor, metabotropic 7 (GRM7), a receptor coding gene of
glutamatergic pathway, is a promising candidate gene for autism.

The abnormalities of glutamatergic transmission represent potential pathophysio-
logic mechanisms responsible for atypical social behaviors in individuals with ASD.

The trials on glutamatergic modulators are promising but to date there is insuf-
ficient evidence to clearly support the efficacy of these drugs in ASD.

This chapter aims at evaluating the state of the art of clinical trials on glutamatergic
modulators in ASD.
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20.1 Introduction

20.1.1 History of Autism

In 1943, Leo Kanner first described early infantile autism. He noticed that: “these
children have come into the world with an innate inability to form the usual,
biologically provided contact with people.”

Kanner (1943) identified the great heterogeneity of the disorder, but considered
autism as a profound emotional disturbance without any evident cognitive deficit.

According to this description, in 1952 DSM II (American Psychiatric Association
1952) presented autism as a form of childhood schizophrenia.

Throughout the 1950s and 1960s, Bruno Bettelheim (Bettelheim 1967) intro-
duced the view that autism was caused by negative parenting and led the way to the
definition of “refrigerator mothers.” These views were devastating to a generation of
parents, who felt guilty and responsible for their children’s disorder.

During the 1960s and 1970s, researchers and clinicians rejected the psychoana-
lytic theory that considered autism as the effect of a poor mother–child relationship.
Autism began to be considered as a neurologic and hereditable disorder.

In 1980, the DSM III (American Psychiatric Association 1980) was published
and autism was described as a “Pervasive Developmental Disorder” (PDD) clearly
distinct from schizophrenia. PDD emerged before 30 months and was characterized
by three specific domains: severe lack of interest in social interaction, serious deficit
in communication, and atypical reactions to environment.

In 1987, DSM III was revised and published as DSM III-R (American Psychiatric
Association 1987). In the revised version, the diagnosis of PDD Not Otherwise
Specified was added, as a mild level of PDD.

The DSM IV (American Psychiatric Association 1994) was published in 1994
and revised in 2000. This version introduced, in addition to autism and PDD-NOS,
the Asperger Disorder, the Child Disintegrative Disorder, and the Rett Syndrome.
During this period research was focused on the genetic etiology of autism.
Researchers hoped to find genotypes specifically correlated to different autism
phenotypes.

Researchers didn’t find specific genes or specific treatments for the five condi-
tions listed in DSM IV-TR (American Psychiatric Association 2000). Based on these
results, the DSM 5 (American Psychiatric Association 2013) task force proposed an
all inclusive spectrum with a variety of severity levels, ranging from mild to severe.
Therefore, in 2013, DSM 5 introduced the diagnosis of Autism Spectrum Disorder.

20.1.2 Autism Spectrum Disorder (ASD)

Autism spectrum disorder includes a highly heterogeneous group of
neurodevelopmental disorder characterized by deficits in social communication
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and social interaction in addition to inflexible, restricted, and repetitive patterns of
behaviors and interests, hyper- or hypo-reactivity to sensory input, or unusual
interest in sensory aspects of environment. The term spectrum highlights that ASD
may present in a wide range of lifelong symptoms that may vary in form and
severity.

According to DSM 5 criteria, this diagnosis includes two groups of symptoms:
“persistent impairment in reciprocal social communication and social interaction”
and “restricted, repetitive patterns of behavior,” both present in early childhood.
DSM 5 excluded Asperger syndrome, PDD-NOS, and autism, but introduced a new
diagnosis of Social Communication Disorder characterized only by language and
social impairments. Childhood Disintegrative Disorder and Rett syndrome were
eliminated from the autism spectrum.

20.1.3 Epidemiology of ASD

Recently, the prevalence of ASD diagnosis has increased worldwide. CDC’s Autism
and Developmental Disabilities Monitoring (ADDM) Network rates of ASD among
children aged 8 years in the USA have increased from approximately one in
150 children during 2000–2002 to one in 68 during 2010–2012 (Baio et al. 2018a,
b). Based on the latest results (2018) of ADDM, about 1 in 59 children in the USA
was diagnosed with ASD. In other studies, rates vary from 1 in 67 (Lyall et al. 2017)
to 1 in 132 (Baxter et al. 2015). According to Fonbonne (2009), this variability is
presumably due to different methodological approaches across countries. Several
researchers hypothesized that the definition of autism was too narrow in the past and
that the recently observed increased rates of ASD may be a consequence of changes
in public awareness and in the interpretation of diagnostic criteria, especially as they
apply at milder severity levels.

ASD occurs more frequently in males, with a male to female ratio of around 4:1.
This led to considering autism as a male-dominated diagnosis. In the last years, many
papers questioned whether this difference in prevalence could come from underdi-
agnosis of ASD in females. Autism may have a different and possibly more subtle
presentation in girls, so prevalence in this sex could be higher than what appears in
the data at the moment (Dworzynski et al. 2012; Zwaigenbaum et al. 2013; Wickens
et al. 2018).

There is an important association with epilepsy and epileptiform or
non-epileptiform EEG abnormalities and autism. This may be determined by struc-
tural alterations, metabolic dysfunctions, or genetic defects with a role in
etiopathogenesis in both disorders (Keller et al. 2017).
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20.1.4 Early Diagnosis of ASD

ASD is still frequently diagnosed after the age of 4 years, despite the fact that autistic
signs appear very early in life and that early intervention may significantly improve
the outcomes of children with ASD.

No specific effective treatments are available for ASD. Since several researches
evidence that an early rehabilitative intervention may improve the prognosis of the
disorder influencing the development of neural pathways, early diagnosis becomes
crucial. Given how complex the brain is, it can be very difficult to modify difficulties
in brain development. This is why treatment for autism needs to be so intensive, and
why early diagnosis and treatment are so important.

Symptoms of autism typically become evident during the first three years of life.
Some children show atypical signs from birth; others show symptoms later at 18–-
36 months old. However, it is now well known that some patients may not show
symptoms of a communication disorder until demands of the environment exceed
their capabilities.

20.1.5 Genetics and Risk Factors

Given the increasing rates of ASD, the research of diagnostic markers has gained
considerable attention. ASD represents a high social cost, more than heart and cancer
disorders associated. Therefore there is a pressing need to identify specific ASD
biomarker in order to improve the reliability of symptomatic diagnosis.

The pathophysiology behind autism is still unknown, and no single etiological
and pathophysiological mechanism is involved. There are many different etiologies
behind autism spectrum disorder (Fig. 20.1).

Researchers agree that ASD has a strong genetic component and a high herita-
bility. However, the recent studies in genetic of ASD evidence a considerable
genetic heterogeneity and a lack of specific transmission model or major gene
causing the disorder.

Numerous genes have been implicated and in most of the ASD cases there are
many mutations, but each of these seems to only have a small effect. Most com-
monly, the mutations are copy number variants and often occur de novo, meaning
that they are not present in the mother and father’s DNA, partly explaining why ASD
can occur in families with no previous cases.

ASD can be syndromic or non-syndromic. Around 10% of the cases are
syndromic, meaning they are associated with single gene defects and chromosomal
abnormalities. The most common gene defect is fragile X syndrome (FXS), present
in 2–3% of ASD cases, caused by a mutation in the FMR1 gene and causes learning
disabilities and moderate to severe cognitive impairment. Another Mendelian
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condition associated with autism is Tuberous Sclerosis Complex, with alterations
found on genes TSC1 and TSC2 encoding hamartin and tuberin, respectively. Many
chromosomal abnormalities have been described in ASD, such as rearrangements in
the region 15q11-15q13 of chromosome 15, regions 7q22 and 7q31 of chromosome
7, deletions in 2q37 of chromosome 2.

It is expected that increasing genetic knowledge will raise the percentage of
specific genotypes and phenotypes in individuals with ASD. Regarding heritability
of ASD, it is worth noting that almost 20% of younger siblings of a child with ASD
will meet a diagnosis of ASD. This frequency is much higher than the 1–2% risk
among the general population reported by CDC.

Actually, a growing body of research focuses on the underlying objective,
effective, and specific biological mechanisms and the potential pathways connecting
genetic evidences and non-genetic factors in the etiology and pathogenesis of ASD.

Potential environmental risk factors are pollution, valproate exposure, advanced
parental age, pregnancy-related complications and medication use, and maternal
smoking (Bölte et al. 2019).

New evidences support the hypothesis that multiple genetic and environmental
risk factors for ASD contribute to disrupt the balance between glutamate-mediated
excitatory and gamma-aminobutyric acid (GABA)-mediated inhibitory neurotrans-
mission. The disruption of excitatory-inhibitory balance may address treatment
targets for the disorder (Nelson and Valakh 2015).

Fig. 20.1 Autism spectrum disorder
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20.2 Glutamatergic System in ASD

20.2.1 Glutamatergic Physiology

Glutamate is the principal excitatory neurotransmitter in the brain. It is essential for
normal brain development and plasticity and is generated from glutamine in the
presynaptic terminals of neurons by the enzyme glutaminase.

Glutamate modulates excitatory neurotransmission via different types of
ionotropic and metabotropic receptors. Ionotropic glutamate receptors are involved
in fast excitatory neurotransmission, whereas Group I metabotropic receptors are
specific for slower excitatory neurotransmission and Group II and Group III
metabotropic receptors are responsible for inhibitory neurotransmission.

The three ionotropic glutamate receptors are: N-methyl-D-aspartate (NMDA),
2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA), and kainate;
all named for specific agonists that bind the receptor with high selectivity. All
NMDA receptors (NMDARs) and AMPA receptors (AMPARs) consist of four
subunits, with peculiar functions. These receptor subtypes were renamed on the
basis of their subunit composition. AMPA receptors may be calcium-permeable or
calcium-impermeable, based on the absence or presence of the GluA2 subunit
(Hanley 2014). NMDA receptors constitute two GluN1 and two GluN2 (or GluN3
subunits). The four subtypes of GluN2 subunits (GluN2A-2D) determine the func-
tional difference and specific biophysical and pharmacological properties (Wickens
et al. 2018).

The eight metabotropic glutamate receptors (mGluR) are a class of G-protein
coupled receptors and are simply identified as 1–8. They are classified into three
groups based on receptor structure, functional similarity, and common agonists
(Niswender and Conn 2010).

Group I receptors consisting of mGlu1 and mGlu5 mainly potentiate presynaptic
glutamate release and interfere with ionotropic NMDAR receptor.

Group II consisting of mGlu2 and mGlu3 receptors mediate glutamate release,
mainly during the synaptic transmission.

Group III receptors consisting of mGlu4, mGlu6, mGlu7, and mGlu8 receptors
inhibit glutamate function.

Considering the complexity of glutamatergic system, an efficient glutamatergic
neurotransmission depends on the dynamic interactions among glutamate receptors
and other molecular components such as adhesion proteins, neuroligins, scaffolding
proteins, vesicle proteins, and transporters (Table 20.1).

20.2.2 Glutamatergic Receptors and ASD

Group 1 mGluRs including mGlu1 and mGlu5 and Group III mGlu7 seem to be
specifically involved in ASD and in some other neurodevelopmental disorders. In
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particular, mGlu7 is considered the most promising candidate for identifying ther-
apeutic agents for ASD. Actually mGlu7 is the most widely expressed mGlu receptor
in the central nervous system (Kinoshita et al. 1998). Preclinical studies evidenced
that reduced mGlu7 levels may correlate to aspecific symptoms of
neurodevelopmental disorders. The same symptoms may improve in rodents through
positive modulation of mGlu7. Further researches are necessary to better understand
which subtypes of NDD may benefit from an mGlu7-mediated therapy (Fisher et al.
2018).

Even glutamatergic signaling plays an important role in the pathology of ASD
particularly through N-methyl-D-aspartic acid (NMDA) receptor (Uzunova et al.
2014). This receptor is stimulated by glutamate when specific D-serine or glycine
coagonists occupy its allosteric site. Glycine has a high affinity for extrasynaptic
NMDARs. D-serine has a high affinity for synaptic NMDARs.

Several mutations or allelic variants, that may interact with brain development
and behavior, have been evidenced in autism. Furthermore, Bioinformatic analyses
of 99 modified genes were associated with human autism. Gene expression patterns
in preclinical studies show significant enrichment in autism-associated genes and the
NMDA receptor gene family was identified among these. Recently, the monoclonal
antibody-derived tetrapeptide GLYX-13 was evidenced to function as an N-methyl-
D-aspartate receptor modulator and it shows the possibility to cross the blood–brain
barrier. Treatment with the NMDAR glycine site partial agonist GLYX-13 solved
the deficit in the animal model. Seems to play a functional role in autism, and
GLYX-13 become suggestive for the treatment of autistic individuals (Santini
et al. 2014).

20.2.3 Increased Serum and Blood Glutamate in ASD

Several studies have demonstrated elevated serum glutamate in autism subjects
(Moreno-Fuenmayor et al. 1996; Shimmura et al. 2011; Tirouvanziam et al. 2012).

Table 20.1 Glutamatergic physiology

Glutamate Excitatory neurotrasmitter

Receptors Ionotropic and metabotropic

Functions Ionotropic receptors are involved in fast excitatory neurotransmission;
group I metabotropic receptors are involved in slower excitatory neuro-
transmission, group II and group III metabotropic receptors are involved in
inhibitory neurotransmission

Ionotropic
receptors

N-methyl-D-aspartate (NMDA), 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-
yl) propanoic acid (AMPA), and kainate

Metabotropic
receptors

mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, mGluR6, mGluR7,
mGluR8.
They are classified into 3 groups based on receptor structure, functional
similarity, and common agonists
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Only Rolf et al. (1993) described lower glutamate levels in ASD.
Given that glutamate does not go through the blood–brain barrier, it is still

unclear if these results depend on CNS amino acid levels.
Furthermore, in postmortem brain tissue of ASD subjects, Shimmura et al. (2013)

found elevated levels of glutamate and glutamine from the anterior cingulate cortex.

20.2.4 Hyperglutamate Vs Hypoglutamate Theory of ASD

Glutamate abnormality in blood plasma and serum has been proposed as a central
factor in the pathogenesis of ASD. In 1998, Carlsson proposed that infantile autism
could be a hypoglutamatergic disorder and hypothesized possible pharmacological
interventions based on the strict interaction between central glutamate and serotonin,
notably the serotonin (5-HT) 2A receptor (Carlsson 1998).

On the reverse side, in 2008 Fatemi proposed the hyperglutamate theory of autism
based on several studies that showed elevated levels of glutamate in blood samples
of children and adults with ASD.

20.2.5 Altered Glutamate–Glutamine Balance in ASD

The enzyme glutaminase catalyzes the synthesis of Glutamate from glutamine. A
great amount of the extracellular glutamate is reabsorbed by astrocytes and
converted back into glutamine. Glutamine may be stored in astrocytes or
transformed to Glutamate in both glutamatergic and GABAergic neurons (Rowley
et al. 2012). This process is identified as the glutamate-glutamine cycle and it is
necessary to maintain the constant flux of GABA, glutamine, and Glutamate. In
ASD, alteration of enzymes controlling glutamate-glutamine cycle has been found
(Fatemi et al. 2011; Shimmura et al. 2013; Yip et al. 2007; Brondino et al. 2016) and
consequently atypical metabolism in ASD.

Some studies described different alterations of glutamate and glutamine levels in
children with autism despite the fact that levels of glutamate should be highly
predictive of glutamine levels. A study (Shimmura et al. 2011) described higher
levels of glutamate and lower glutamine levels in children with ASD compared to
controls.

It is worth mentioning that glutamate is synthesized even into GABA by glutamic
acid decarboxylase (GAD). There has been described two GAD isoforms: GAD
67 and GAD 65 that produce GABA for specific functions within the neuron.
Several researches have described reduced GAD expression in postmortem tissue
of individuals with autism. Other studies have reported lower GAD65 and GAD67 in
cerebellar and parietal cortex tissues from individuals with ASD compared with
control samples. Reduced GAD expression in ASD seems to be related to increased
Glutamate concentration and also with decreased level of GABA (Gogolla et al.

578 C. Sogos and F. Fioriello



2009; Harada et al. 2010; Gaetz et al. 2013). The studies of these alterations in the
balance between glutamate-mediated excitatory and GABA-mediated inhibitory
neurotransmission may potentially allowed a better comprehension of etiology of
ASD and may address possible future treatments (Nelson and Valakh 2015).

Decreased GABA levels in the somatosensory cortex seem to be interlinked with
atypical tactile function in ASD children (Puts et al. 2017). It is worth noting that in
preclinical studies, atypical tactile function is connected to ASD social deficits.

Ajram et al. (2019) in an accurate review of recent studies in pediatric populations
(Brix et al. 2015; Cavalho Pereira et al. 2018; Drenthen et al. 2016; Gaetz et al. 2014;
Goji et al. 2017; Harada et al. 2011; Ito et al. 2017; Kubas et al. 2012; Puts et al.
2017; Rojas 2014; Horder et al. 2011) reassumed that the alteration of excitatory-
inhibitory system could be considered as a promising biomarker for ASD.

Actually, using [1H] MRS, Ajram et al. (2017) found a different E-I responsivity
between ASD and control subjects and may mean that the same treatment may have
different effects in ASD compared to typically developing individuals. Furthermore
this difference may explain the heterogeneous responses to pharmacological treat-
ments in ASD individuals and some paradoxical effects that some ASD may present
to different medications.

20.2.6 Glutamatergic Pathways and ASD

It is well known that a central network in the pathology of psychiatric disorders is
represented by glutamatergic signaling, through N-methyl-D-aspartic acid (NMDA)
receptor. This receptor is activated by glutamate when specific D-serine or glycine
coagonists occupy its allosteric site. Glycine is considered the main coagonist in the
spinal cord and in the hindbrain, and it has a high affinity for extrasynaptic
NMDARs. D-serine is the main coagonist in the forebrain.

Glutamate receptor, metabotropic 7 (GRM7), a receptor coding gene of
glutamatergic pathway, is a promising candidate gene for autism (Noroozi et al.
2016).

To date, in vivo molecular imaging researches on glutamate receptors in ASD are
insufficient.

Using postmortem evidences, the glutamate receptor densities and protein levels
of subjects with ASD were compared with samples of neurotypical individuals.

The density of AMPA-type glutamate receptor was found to be reduced in the
cerebellum of individuals with ASD (Purcell et al. 2001). The same authors reported
increased density of the glutamate transporters EAAT1 and EAAT2 in the post
mortem cerebellum of ASD individuals.

Furthermore, increased levels of metabotropic glutamate receptor 5 (mGluR5)
were described in the vermis of children with ASD (Fatemi 2008).
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20.2.7 Researches in Living Human Brain

Different results have been acquired in vivo. Many studies have measured the levels
of both glutamate and glutamine with proton magnetic resonance spectroscopy
(MRS) in humans.

Page et al. (2006) using MRS reported higher levels of glutamate in the right
hippocampus in ASD individuals compared to a group of typically developing
subjects. A different area in the parietal cortex did not show the same results.

Other researches reported high glutamate levels in several different regions
(Joshi: 2012ir; Bejjani et al. 2012; Brown et al. 2013), but, on the contrary, other
studies evidenced lower level of Glutamine, glutamate, and GABA or similar level
of glutamina, glutamate, and GABA in autism subjects compared to different groups
(Bernardi et al. 2011; Horder et al. 2013).

Actually, opposite findings have been reported on these assumptions.
Contrasting results have been described on single gene disorders associated with

autism using proton magnetic resonance.
Bruno et al. (2013) described decreased level of Glutamate, glutamine, and

GABA in the caudate nucleus of patients with fragile X syndrome. The reverse
has also been described by Pan et al. (1999) who found elevated gray matter
concentration of glutamate in patients with Rett syndrome.

No specific studies of the glutamate system have been carried out with either
position emission tomography (PET) or single-photon emission computed tomog-
raphy (SPECT) in ASD individuals.

It is worth noting that results of in vivo studies may vary based on the age group
sampled. Actually, ASD is a neurodevelopmental disorder and the results depend on
brain maturation.

Despite these limitations in the last years many encouraging [I] MRS studies of
excitatory-inhibitory balance in pediatric population of ASD have been conducted
(Ajram et al. 2019).

20.2.8 Genetics and Glutamate in Autism

Recently, Tick et al. (2016) reported the results of a meta-analysis of ASD twin
studies defining the sheritability of ASD in a range from 64 to 91%. They hypoth-
esized that presumably the variability in ASD between different countries is the
result of genetic differences. Autism has a well-known genetic base, nevertheless in
most cases it is still unclear a specific etiology. Betancur (2011) described a genetic
etiology in about 10–20% of cases of ASD. The most frequent was the fragile X
syndrome caused by a mutation in the FMR1 gene. Furthermore, Sebat et al. (2007)
found another 10% of ASD with copy number variations.

More recent studies reported in ASD subjects a possible association of excitatory
neurotransmission alteration with genes coding for cell-adhesion proteins. Vaags
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et al. (2011) described deletions of presynaptic Neurexin 1 (NRXN1) and NRXN3
connected to autism spectrum disorder. Variations of post synaptic Neuroligin
3 (NRLGN3) and 4 (NRLGN4) have been considered rarely associated with autism
(Jamain et al. 2003; Laumonnier et al. 2004; Talebizadeh et al. 2006).

The Autism Genome Project Consortium et al. (2007); Jacob et al. (2011)
described a possible link between ASD and the glutamate transporter genes
SLCIA1 and SLCIA2. Several studies confirmed a strong genetic base on glutamate
receptor’s and transporter’s alterations in ASD individuals.

Genetic association between Autism Spectrum Disorders and GRM7, the gene
that codes for mGlu7 in humans has been studied in several preclinical researches.
Gai et al. (2012) and Liu et al. (2015) found heterozygous deletions in GRM7 in
4 ASD patients. Yang and Pan (2013) described two specific polymorphisms: the
SNP rs6782011 and rs779867 that showed a significant association with ASD in a
group of 22 ASD patients. In an Iranian cohort of 518 ASD individuals, an SNP
rs779867 that associates ASD with GRM was reported by Noroozi (2016).

20.2.9 Sex Differences in Glutamate System in ASD

As above reported, male and females with ASD exhibited differences in prevalence
and presumably in symptoms. To gain a better understanding of sex differences in
ASD and identifying possible sex variations in treatment effectiveness, it is neces-
sary to study in depth potential sex differences in glutamate system.

Wickens et al. (2018) in an accurate review on this topic described sex differences
in many aspects of Glutamate system and considered how much more work is
necessary for a deeply understanding of how sex peculiarities in glutamate may
interact with the other components of the disease.

Studies using proton magnetic resonance spectroscopy have shown a slight
increase in glutamate levels in the parietal gray matter of men compared to women
(Sailasuta et al. 2008).

On the opposite, Zahr et al. (2013) described higher levels of glutamate in women
compared to men in the striatum and cerebellum. Sex differences of glutamate
concentrations were also observed in blood (Zlotnik et al. 2011) and serum
(Shulman et al. 2006). Notably, sex differences in glutamate concentrations change
across the lifespan. Sex differences were described in glutamate level and in
glutamate receptors as well. Results showed a slightly sex difference in glutamate
transmission in young adulthood but this difference during age is amplified and may
explain different sex differences in prevalence, symptoms, and treatment efficacy.

As reported above, boys are four times more likely to be diagnosed with ASD
than girls (Fonbonne 2009; Elsabbagh et al. 2012).

Several studies have demonstrated that in ASD individuals reduced concentration
of glutamate metabolites in the basal ganglia and in the anterior cingulate cortex is
correlated with severity of autistic disorder (Horder et al. 2013; Tebartz van Elst
et al. 2014).
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Furthermore in children with ASD, symptom severity appears to be correlated
with increased concentration of glutamate in plasma (Cai et al. 2016). Notably, no
researches have examined sex differences in glutamate concentration despite the
well-known sex differences in prevalence of ASD.

20.2.10 Single-Gene Conditions and Glutamate in ASD

The most known single gene conditions associated with ASD are fragile X syn-
drome, tuberous sclerosis, and 22q13 deletion syndrome.

Fragile X syndrome, presenting in males approximately in 1 in 3600–4000 sub-
jects and in females in 1 in 4000 to 6000, is caused by a single gene mutation
affecting fragile X mental retardation protein (FRMP) (Oostra and Verkerk 1992).
The data of the Centers for Disease Control and Prevention show 46% of males and
16% of females with FXS have been diagnosed or treated for ASD.

These conditions and in particular the advances in the knowledge of fragile X
syndrome contribute to a better understanding of glutamate alterations in ASD
individuals and might lead the way to new possibilities of treatment.

20.3 Current Treatment and Modulators of Glutamatergic
System for ASD

The abnormalities of glutamatergic transmission represent potential pathophysio-
logic mechanisms responsible for atypical social behaviors in individuals with ASD.
Glutamate, the main excitatory neurotransmitter in the brain, acts a central role in
cortical development and plasticity (Manent and Represa 2007). Glutamatergic
dysfunction seems to be central in etiopathogenesis of ASD. Actually several studies
have described atypical peripheral glutamate concentrations, altered glutamate
expression in the postmortem brain tissue, and genetic atypia in glutamate signaling
genes in subjects with ASD (Johnston 1995). In fact, concentration of glutamate
decarboxylase, the enzyme deputed to conversion of glutamate into γ-aminobutyric
acid (GABA), was evidenced to be lower in the postmortem brain tissue of patients
with ASD (Fatemi et al. 2011). Concentrations of the glutamatergic N-methyl-d-
aspartate (NMDA) receptor, which is indispensable for learning and memory, have
been shown to be high in the postmortem brain tissue of individuals diagnosed with
ASD (Purcell et al. 2001). High levels of glutamate during brain development result
in formation of defective neural pathways and negatively affect higher cortical
functions (Johnston 1995). The effectiveness of glutamate-modulating drug on
autistic disorders further supports the role of glutamate in the pathophysiology of
this disorder.

In this chapter we described the six more promising glutamatergic agents in ASD.

582 C. Sogos and F. Fioriello



20.3.1 Minocycline

Minocycline ((4S, 4AS, 5ar,12as)-4,7-bis(dimethylamino)-3,10,12,12a-
tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide)
is a second generation tetracycline antibiotic agent that easily crosses the blood–
brain barrier. This drug acts bacteriostatically against a broad spectrum of germs;
furthermore, it seems to have beneficial effects on anti-inflammation of the central
nervous system, on microglial activation, and on neuroprotection. In several studies,
minocycline has shown promising results in patients with psychological disorders,
for example depression (Miyaoka et al. 2012) and schizophrenia (Khodaie-Ardakani
et al. 2014). Recent research found minocycline to reduce glutamate excitotoxicity
and augment neurogenesis (Dean et al. 2011). It has a proven tolerability and safety
profile for clinical use.

Some studies have shown that minocycline has properties that influence
glutamatergic pathways, in particular, following glutamate administration,
minocycline-treated rat cortical neurons had increased cell viability compared with
controls, indicating decreased glutamate-induced neurotoxicity (Kraus et al. 2005;
Morimoto et al. 2005).

Several studies about neurophatic pain have shown that glutamate deficient intake
by glial cells into spinal sensory synapses resulted in increased activation of the
NMDA receptor; in rats treated with minocycline, emerged a reduced absorption of
glial glutamate in the spinal sensory synapses (Nie et al. 2010).

This drug can be an interesting candidate in management of ASD by inhibiting
the probable underlying neuroinflammatory mechanism and its immunomodulatory
characteristics.

Another possible minocycline mechanism of action in ASD could be through
reduction of metalloproteinase-9 (MMP-9); it is a zinc metalloproteinase enzyme
that is responsible for extracellular matrix degeneration and it is involved in synaptic
plasticity and learning processes (Ganguly et al. 2013). Furthermore, increased
levels of MMP-9 are known to be associated with neuroinflammation and
neurodegeneration (Kaplan et al. 2014). One study showed an increased level of
MMP-9 in patients with ASD (Abdallah et al. 2012).

Another possible role of minocycline could be in the regulating N-methyl-D-
aspartate (NMDA) receptors. Several mutations in genes encoding subunits of
NMDA receptors, in particular de novo, have been reported in patients with ASD
(Kenny et al. 2014), which are suspected to alter the function of these receptors and
NMDA receptor-dependent plasticity (Lee et al. 2015).

Recently, Ghaleiha et al. (2016) investigated, in a randomized, double-blind
placebo-controlled trial, the efficacy of minocycline as an add-on therapy to risper-
idone in reducing severity of ASD symptoms. 46 children, within the age range of
4–12 years, were selected and randomized to receive minocycline plus risperidone or
placebo plus risperidone for 10 weeks. Patients were evaluated using Aberrant
Behavior Checklist-Community (ABC-C). Minocycline improved patients’ symp-
toms in subscales of irritability and hyperactivity/noncompliance, while no
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improvements were observed in subscales of lethargy/social withdrawal, stereotypic
behavior, and inappropriate speech.

No serious adverse events were observed in the two groups.
Another study by Pardo et al. (2013) investigated the efficacy of minocycline in

an open-label trial on 10 children with ASD of the regressive subtype. Patients took
minocycline for six months. Cerebrospinal fluid (CSF), serum, and plasma were
obtained before and at the end of treatment and were analyzed for markers of
neuroinflammation; furthermore, behavioral measures were collected.

The authors observed only minimal clinical improvements in some of the
patients. There were no significant changes in the quantitative assessment of cyto-
kines and chemokine in serum and in cerebrospinal fluid, with the exception of a
reduction in the levels of CXCL8 in serum. BDNF (the truncated-BDNF form) in
CSF showed a significantly lower concentration post-treatment, instead the hepatic
growth factor (HGF) was found to be significantly increased in the CSF after
treatment. These results suggest that minocycline might have effects in the CNS
by modulating the production of neurotrophic growth factors.

Adverse events reported included gastrointestinal and upper respiratory symp-
toms. Side effects were reported in three subjects (benign hematuria, weight gain,
pica, teeth staining, increased aggression, and head-banging).

20.3.2 Riluzole

Riluzole (2-amino-6-trifluoromethoxy benzothiazole) is a benzothiazole with anxio-
lytic, neuroprotective, anticonvulsant, and anesthetic properties (Kretschmer et al.
1998). Its effects are mediated by block of glutamate transmission, the stabilization
of sodium channels and blockage of gamma-aminobutyric acid reuptake (Mechler
et al. 2018).

Riluzole acts on glutamate transmission, it uses extracellular glutamate through
several complex processes. This drug inhibits glutamate production, reduces
glutamic acid release, and enhances glutamate synaptic uptake.

At the presynaptic nerve cell terminal, riluzole inhibits the release of glutamate
and enhances glutamate reuptake. This drug also interferes with postsynaptic effects
of glutamate by noncompetitive blockade of alfa-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) glutamate receptors. The efficacy of AMPA
receptor modulators has been established in many psychiatric and neurological
diseases; altered density of AMPA receptors has also been demonstrated in patients
with ASD (Ghaleiha et al. 2013).

Furthermore, riluzole is thought to practice neuroprotective effects by potentiat-
ing gamma-aminobutyric acid type A (GABA A) neurotransmission.

This drug is generally well tolerated in the pediatric populations.
Recently, Wink et al. 2018 investigated, in a randomized, double-blind placebo-

controlled trial, the safety and tolerability of 5 weeks of adjunctive riluzole treatment
for drug-refractory (to the first-line treatment) irritability in 7 patients with autism
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spectrum disorder, within the age range of 12–25 years. All participants were treated
with at least one concomitant antipsychotic during the study and many were taking
additional behavioral medications.

Riluzole was well tolerated by study participants, in fact there were no clinically
significant laboratory abnormalities, blood pressure and heart rate remained stable
for study participants. However, no significant treatment effect was identified on the
target symptoms.

The results of this study must be interpreted in the context of its limitations, in fact
this study enrolled only 7 patients with ASD and ongoing irritability previously
unresponsive to drug treatment. It’s important to underline that this drug was well
tolerated by all participants.

Another study by Nicolson et al. (2017) investigated the safety and efficacy of
riluzole in treating the core symptom domains in ASD. 54 patients with ASD, within
the age range of 8–14 years, participated in a randomized, double-blind placebo-
controlled trial of riluzole. The drug was well tolerated, without serious adverse
events reported by participants. The riluzole was not superior to placebo in terms of
reduction in the core symptom domains of ASD, in fact there were no significant
differences between the two groups with regard to social withdrawal, repetitive
behavior, or ritualistic behavior.

However, patients taking riluzole did have a significantly greater and clinically
meaningful reduction in their score on the Aberrant Behavior Checklist-irritability
and Aberrant Behavior Checklist-Hyperactivity subscales; both of which are inter-
fering symptoms commonly associated with ASD.

In another study, Ghaleiha et al. (2013) investigated, in a randomized, double-
blind, parallel-group, placebo-controlled trial, the tolerability and efficacy of riluzole
as an add-on therapy to risperidone in reducing irritability in 40 children with ASD,
who were not optimally responding to previous treatments. Children are between
5 and 12 years old. The patients received riluzole or placebo in addition to risper-
idone for 10 weeks.

Patients in the riluzole group showed a significantly greater improvement on the
Aberrant Behavior Checklist-Community subscales “irritability, lethargy/social
withdrawal, stereotypic behavior, and hyperactivity/noncompliance.” Interestingly,
55% of children in the active treatment group versus 25% in the placebo group were
classified as responders based on their CGI-I scores.

Children in the riluzole group experienced significantly more increases in their
appetite and bodyweight than children in the placebo group by the end of the study,
there was no significant difference in the frequency of other side effects between the
two groups.

20.3.3 Modafinil

Modafinil ((+/�)-2-(benzhydrylsulfinyl)acetamide) is a psychostimulant which
works indirectly on the glutamate and GABA receptors. This drug stimulates the
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release of glutamate in both the hippocampus and the thalamus, although its precise
mechanism of action remains unclear (Gerrard and Malcolm 2007). Additional
indirect modulation of neurotransmission includes an increase in dopamine, nor-
adrenaline, and serotonin secretion. In the literature there are no studies available on
the efficacy and safety of this drug in patients with autism spectrum disorder.
Modafinil is mainly used as a waking agent for sleeping disorders. Further uses of
this drug include treatment for attention deficit/hyperactivity disorder, depression,
and depressive episodes in bipolar disorder (Patin and Hurlemann 2015).

20.3.4 Memantine

Memantine (3,5-dimenthyladamantan-1-amine) antagonizes the action of glutamate
and its receptors, most likely mediated principally through the voltage-dependent
blockade of current flow through N-methyl-D-aspartate (NMDA) receptor channels
(Mechler et al. 2018; Johnson and Kotermanski 2006; Parsons et al. 2007).

Recently, Hardan et al. 2019 investigated, in a three phase 2 trials, the efficacy
and long-term safety of weight-based memantine extended release treatment in
children with autism spectrum disorder. All participants were children aged
6–12 years. All studies have used the social responsiveness scale (SRS), the chil-
dren’s communication checklist second edition (CCC-2), the clinical global impres-
sion (CGI), and aberrant behavior checklist-community version (ABC-C).

The first study, a 50-week open-label trial, identified memantine extended-release
treatment responders for enrollment in second study and assessed safety and toler-
ability of this drug. 765 children completed this trial. The responsive criterion was
defined as an equal to or more than ten-point improvement on SRS total raw score
from baseline, about 75% of all sample achieved improvement in SRS total raw
score.

The side effects were: headache, nasopharyngitis, pyrexia, and irritability. Seri-
ous adverse events occurred in 6 children: abnormal behavior, accidental exposure,
constipation, disinhibition, and gastroenteritis.

Participants who completed equal to or more than 12weeks of treatment and met
the defined responsive criterion at two consecutive visits separated by at least
2weeks were eligible to transition to randomized trial (second study).

The second study was a 12-week randomized, double-blind, placebo-controlled,
withdrawal. The purposes of this study were to evaluate the safety, tolerability, and
efficacy of memantine extended release versus placebo in patients previously on
stable memantine therapy. 479 children completed the study. At week 12, no
clinically meaningful changes from baseline were observed between treatment
groups on the additional efficacy variables, clinical global impression-improvement
(CGI-I) scale and clinical global impression-severity (CGI-S) scale, ABC-C, or SRS
subscales, and SRS total raw score. The percentages of participants with side effects
were similar across treatment groups, the most common were irritability, vomiting,
agitation, and anxiety. Most side effects were mild to moderate in intensity. A total
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of six participants reported severe side effects: two with memantine extended release
and four with placebo.

The last study was an open-label extension trial in which participants from the
other two studies were treated for less than or equal to 48 weeks with memantine
extended release. The purpose of this study was to assess the long-term safety and
tolerability of memantine extended release. 81 children completed the study. About
half of the sample reported at least one side effect; the most common side effects
reported were nasopharyngitis, vomiting, pyrexia, and headache. A total of 17 par-
ticipants discontinued due to an adverse effect: namely aggression, abnormal behav-
ior, anxiety, irritability, and increased weight. By the end of this study, there was a
mean � SD (Standard Deviation) decrease (improvement) in SRS total raw score of
32.4 � 26.4 from baseline of the first lead-in study.

In another study Aman et al. (2017) investigated, in a randomized placebo-
controlled 12-week trial and 48-week open-label extension, the safety, tolerability,
and efficacy of memantine extended-release. 104 children completed the first study,
66 children completed the second study, within the age range of 6–12 years.

The first study was a 12-week, randomized, double-blind, placebo-controlled,
parallel-group, this study investigated the safety, tolerability, and efficacy of
memantine extended-release in children with autism. Analysis of the change from
baseline in SRS total raw score at week 12 showed no statistically significant
difference between the treatment groups; however, both groups achieved a clinically
significant improvement from the baseline. There were no statistically significant
difference between groups in core autism treatment scale-improvement (CATS-I),
but both groups demonstrated overall improvement versus baseline.

All side effects were mild or moderate in severity except for three: irritability,
affective disorder, and choking.

The second study was a 48-week, multicenter trial that evaluated the long-term
safety and tolerability of memantine extended-release in the same children of the first
study. All participants showed an improvement in SRS total raw score and in
CATS-I.

No clinically significant changes occurred in clinical laboratory values, vital
signs, or electrocardiogram.

These studies did not demonstrate clinical efficacy of memantine extended
release in autism; however, the tolerability and safety data were reassuring.

In another study Nikvarz et al. (2017) investigated, in a randomized open-label
trial, the efficacy of memantine versus efficacy of risperidone in reducing severity of
ASD symptoms, in particular stereotyped behaviors, impairment in social interac-
tions, and communication skills. 30 children, within the age range of 4–17 years,
were selected and randomized to receive memantine or risperidone for 8 weeks. Four
scales were used to assess patients: childhood autism rating scale (CARS), ABC,
CGI-I, and CGI-S. Results of ABC showed that both drugs reduced the scores of
“irritability,” “lethargy/social withdrawal,” “inappropriate speech,” and “hyperac-
tivity” subscales, but differences between the two groups for each subscale were not
found to be significant. Results obtained based on CARS indicated that both drugs
reduced total score and several subscales, but differences between the two groups
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were not significant for each item. Results of the CGI-I demonstrated that there are
no significant differences between the two groups. Side effects of memantine
included somnolence, insomnia, apnea at the beginning of speaking, nausea, dete-
rioration of stuttering, and decrease in appetite. Memantine causes aggravation of
some symptoms, which included throwing objects, impulsive behaviors, hyperac-
tivity, agitation, and pertinacity. Side effects of risperidone were increased appetite,
somnolence, fever, indifference to self-defense, enuresis, drooling, nasal congestion,
and fatigue.

This study suggests that memantine may have beneficial effects in the treatment
of many autism core symptoms. Nevertheless, memantine may be considered as a
potential medication in the treatment of those autistic children who do not respond or
cannot tolerate side effects of risperidone.

20.3.5 N-Acetylcysteine

N-acetylcysteine (2-acetamido-3-sulfanylpropanoic acid) is a derivative of the
endogenous amino acid L-cysteine, which is a precursor of the antioxidant enzyme
glutathione. The glutathione acts as the body’s defense mechanism against the
oxidant stress in several metabolic and pathological reactions. It exerts its antioxi-
dant effects by regulating oxidative metabolism and glutamate transmission and
plays a rate-limiting role in the synthesis of glutathione (Naveed et al. 2017).

N-acetylcysteine has been found to permeate the blood–brain barrier and has
good bioavailability. In the brain N-acetylcysteine is oxidized from L-cysteine to
cystine, facilitating its uptake by glial cells and consequently allowing the glutamate
release, which in turn stimulates inhibitory glutamate receptors (Wink et al. 2016).
Due to these metabotropic glutamate receptors, there is a reduction in the vesicular
release of glutamate, resulting in the decrease in glutamatergic neurotransmission
(Hardan et al. 2012). This mechanism of action of N-acetylcysteine is particularly
important because of its effect on glutaminergic neurons in the nucleus accumbens,
which is involved in the modulation of the reward and reinforcement center impli-
cated in the addictive behaviors (Gray et al. 2012).

Wink et al. (2016) with their study focus on evaluating efficacy, safety, and
tolerability of oral N-acetylcysteine, targeting core social impairment in youth with
ASD. This study was a 12-week randomized, double-blind, placebo-controlled trial
of oral N-acetylcysteine in 25 medically healthy children with ASD, age 4–12 years.

There was no statistically significant difference between the N-acetylcysteine and
the placebo groups at week 4, week 8, or week 12 on the CGI-I primary outcome
measure. At each time period, at least half of all participants were rated as having no
change. On the CGI-S secondary outcome measure, no participants were noted to
have increased scores suggesting clinical worsening of symptoms. There were also
no differences between the N-acetylcysteine and placebo groups for those whose
severity scores decreased from baseline to week 12. On the ABC, SRS, and Vineland
Adaptive Behavior Scales-II – Second Edition (VABS-II) secondary outcome
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measures, the employed models found no significant differences between groups in
change from baseline to week 12.

To investigate the impact of N-acetylcysteine on oxidative stress markers in
peripheral blood, venous blood samples were collected at screen and week 12. At
week 12, the glutathione level in blood was significantly higher in the
N-acetylcysteine group compared to placebo.

The results of this randomized, placebo-controlled trial indicate that
N-acetylcysteine treatment was well tolerated by study participants, had the expected
effect of boosting Glutathione production in peripheral blood. However,
N-acetylcysteine had no significant impact on the core social impairment of ASD
when compared to placebo treatment.

In another study, Nikoo et al. (2015) investigated, in a randomized, double-blind,
clinical trial, the efficacy and safety of N-acetylcysteine as an add-on therapy to
risperidone. The patients received N-acetylcysteine or placebo in addition to risper-
idone for 10 weeks.

40 children between 4 and 12 years of age completed the trial. The main tool in
this study was ABC-C. Patients in the N-acetylcysteine group showed a significantly
greater improvement on the Aberrant Behavior Checklist-Community subscales
“irritability, hyperactivity/non-compliance.” Improvements in “lethargy/social with-
drawal, stereotypic behavior, and inappropriate speech” subscale scores were not
significantly different between the two groups. Six adverse events (vomiting, nausea,
headache, dry mouth, abdominal pain, and diarrhea) were reported, there was no
statistically significant difference in the incidence of these adverse events between
the two groups. All adverse events were mild and transient and did not request any
kind of medical intervention.

20.3.6 D-Cycloserine

D-Cycloserine functions as a partial agonist of the glycine-binding site at NMDA
receptors. By modulating glycine action as a cotransmitter at the NMDA receptors
(Prosser and de Carvalho 2013), this drug is predicted to allow longer channel
openings with increased Ca2+ entry, ultimately enhancing connectivity and consol-
idating environmentally induced plastic modifications in excitatory circuits.

The NMDA receptor is central in cortical neuroplasticity for its mechanism of
long-term potentiation. The NMDA receptor is composed by 2 subunits: NR1 and
NR2. D-Cycloserine acts at the glycine-binding site of the NMDA receptor, which is
located at its NR1 subunit. D-Cycloserine plays a role of partial agonist of the
glycine-binding site at NMDA receptors (Watson et al. 1990), it means that it acts
like an agonist at low doses but has antagonistic features at high doses. This behavior
is caused by its different receptor subtype selectivity and intrinsic action, which
depends on various NR2 subunits (NR2A, NR2B, NR2C), the location of glutamate
binding (Dravid et al. 2010). Presumably, the effects at low doses of D-Cycloserine
reflect its agonistic action at the NR1/NR2C receptors, for which it has a high
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affinity, while at high doses the effects might be due to antagonistic inhibition of
NR1/NR2A and NR1/NR2B receptors, for which D-Cycloserine has a lower affinity
(Danysz and Parsons 1998). When acts to NMDA receptors that consist of NR2C
subunits, D-Cycloserine produces a 200% depolarization (compared with glycine)
that is not pH-sensitive and seems not to depend on concentrations of glycine
(Sheinin et al. 2001). NR2C units are mainly expressed in cerebellar structures,
but are also found in the striatum, hippocampus, olfactory bulb, retrosplenial cortex,
thalamus, pontine, and vestibular nuclei (Karavanova et al. 2007). Altogether,
D-Cycloserine seems to have an impact on cognitive functions, mainly those
associated with NMDA receptor-dependent mechanisms. Part of this effect seems
to be a stabilization of NMDA receptors, with a consequent facilitation of cortical
neuroplasticity (Schade and Paulus 2016).

Wink et al. (2017) and Minshawi et al. (2016) investigated, in a randomized,
double-blind, placebo-controlled trial, the efficacy of low dose of D-Cycloserine
given 30 min prior to weekly peer-mediated group to potentiate social skills training
in youth with ASD. 67 patients completed the trial, within age range of 5–11 years.
For the 10-week intervention phase of the study, participants were enrolled in a
series of 17 social skill groups, each containing four children with ASD and two
typically developing, age-matched peer models. Social skills intervention followed a
curriculum using Applied Behavioral Analysis-based techniques designed to teach
skills including greetings, understanding emotions, creative play, and social conver-
sations. Following the 10-week intervention phase, participants received no ongoing
study-related therapeutic intervention or treatment with study drug. At week 11, the
SRS change scores from baseline demonstrated no statistically significant difference
attributable to D-Cycloserine treatment. No significant difference noted for any of
the ABC subscales between two groups.

D-Cycloserine was well tolerated, irritability was the most frequently reported
adverse effect in both groups. There was no statistically significant difference in
number of reported adverse events between groups.

The second trial evaluated blinded week 22 durability of treatment data collected
following a 10-week randomized, double-blind, placebo-controlled D-Cycloserine
plus peer-mediated social skills group intervention in 60 high functioning youth with
ASD.SRS total raw scores from week 11 to week 22 demonstrate that the
D-Cycloserine group decreased significantly compared to the placebo group; in
particular, the social cognition subscale showed the greatest between groups differ-
ence. There were no statistically significant differences between groups on the social
awareness, social communication, social motivation, and autistic mannerism
subscales.

Adjunctive D-Cycloserine increased the sustained benefit from short-term social
skills intervention 3 months after treatment cessation. Additionally, the safety and
time limited nature of this drug treatment, as demonstrated by the limited adverse
effects reported by study participants, indicates that D-Cycloserine may be a safe and
effective strategy to enhance the durability of therapy impact in youth with ASD.
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In another study, Urbano et al. (2015) tested D-Cycloserine in a double-blind
randomized 10-week trial; the trial consisting of 8 weeks of active drug at either
weekly or daily dosing and a 2-week follow-up visit.

Twenty subjects completed the study, within the age range of 15–25 years. All
subjects maintained a stable medication and therapy regimen throughout the trial.
Most subjects were taking a serotonin-enhancing drug such as a selective serotonin
reuptake inhibitor, buspirone, or clomipramine and/or a stimulant such as extended-
release methylphenidate, methylphenidate, atomoxetine, or dextroamphetamine
amphetamine.

Three subjects were taking low-dose risperidone or aripiprazole, one subject was
taking clonidine, and one subject was taking oxcarbazepine.

SRS was used to assess severity of social impairment in this trial. Both daily and
weekly dosing strategies showed a significant downward trend when modeled
separately. D-Cycloserine caused statistically and clinically significant improvement
with no differentiation between dosing strategies on the Social Responsiveness Scale
and the Aberrant Behavior Checklist before and after D-cycloserine administration.
D-Cycloserine was very well tolerated; only transient spontaneously recorded side
effects were noted by the patients and their caregivers, which were not reasons for
interruption of the therapy. There was a softly higher incidence of side effects in the
daily dosage group than the weekly dosage group, but the difference was not found
to be statistically significant. The side effects were: mild periodic hand tremors,
nervousness, tired, trouble sleeping, bad dreams, headaches, increased appetite,
decreased appetite, irritable and feeling more down than usual.

The results suggest that a once-weekly pulsed dosing strategy can be adopted in
future clinical trials, which will enhance compliance and minimize the potential side
effects. D-Cycloserine was safe and well tolerated in this study sample (Table 20.2).

20.4 Conclusion and Future Perspective

In conclusion, all the trials on glutamatergic modulators are promising, but to date,
there is insufficient evidence to clearly support the efficacy of these drugs in ASD.

These modulators appear to be safe, but their effectiveness remained unproven to
treat the core symptoms of ASD.

Several results seem to be particularly promising.
Actually irritability and hyperactivity seem to decrease ASD patients treated with

N-acetylcysteine associated with risperidone, and in ASD patients treated with
minocycline added to risperidone.

Memantine showed similar effects to risperidone in controlling irritability
and seems to be an interesting alternative drug in patients who don’t tolerate
risperidone.
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Treatments with D-Cycloserine showed mild positive effects in individuals with
ASD mainly on social deficit and tend to show more and longer effectiveness
compared to placebo.

On the contrary, despite the previous promising data, Modafinil did not confirm
positive effects on social impairment in ASD.

In conclusion, since glutamatergic modulators show suggestive and still promis-
ing effects, new researches would be needed to detect more specific pathways, early
in life, in order to intervening when the brain is most plastic. Current epigenetic
knowledge seems to support the view that behavioral, environmental, and psycho-
logical interventions in addition to pharmacological treatments may cooperate in
brain modulation and plasticity in the first years of life and may improve ASD long-
term prognosis.

Notably, most clinical studies present significant limitations in terms of low
homogeneity of populations, sample size, and duration of studies.

Future trials on larger and homogeneous sample are needed for a better compre-
hension of real and specific effectiveness of these promising drugs in the treatment
of ASD.

Declaration of Interest None.

Table 20.2 Treatment and modulators of glutamatergic system for ASD

Minocycline Second generation tetracycline antibiotic agent; it acts bacteriostatically
against a broad spectrum of germs; it seems to have beneficial effects on anti-
inflammation of the central nervous system, on microglial activation, and on
neuroprotection

Riluzole It is a benzothiazole with anxiolytic, neuroprotective, anticonvulsant, and
anesthetic properties. Its effects are mediated by blockade of glutamate
transmission, the stabilization of sodium channels and blockage of gamma-
aminobutyric acid reuptake.

Modafinil It is a psychostimulant which works indirectly on the glutamate and GABA
receptors. This drug stimulates the release of glutamate in both the hippo-
campus and the thalamus; additional indirect modulation of neurotransmission
includes an increase in dopamine, noradrenaline, and serotonin secretion.
Its precise mechanism of action remains unclear

Memantine It antagonizes the action of glutamate and its receptors, most likely mediated
principally through the voltage-dependent blockade of current flow through
N-methyl-D-aspartate (NMDA) receptor channels

N-acetylcysteine It is a derivative of the endogenous amino acid L-cysteine, which is a
precursor of the antioxidant enzyme glutathione.
It exerts its antioxidant effects by regulating oxidative metabolism and
decreases glutamatergic neurotransmission and plays a rate-limiting role in the
synthesis of glutathione

D-Cycloserine It functions as a partial agonist of the glycine binding site at NMDA receptors.
This drug is predicted to allow longer channel openings with increased Ca2+
entry, ultimately enhancing connectivity and consolidating environmentally
induced plastic modifications in excitatory circuits
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