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Abstract. We study price formation in intraday electricity markets in
the presence of asymmetric information and intermittent generation. We
use stochastic control theory to identify optimal strategies of agents with
market impact and exhibit the Nash equilibrium in closed form for a
finite number of agents as well as in the asymptotic setting of Mean field
games. We show that our model is able to reproduce some empirical facts
observed in the market (price impact, volatility), and allows producers
to deal with risks and costs related to intermittent renewable generation.

Keywords: Stochastic games · Renewable energies · Electricity
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1 Introduction

The world electricity markets are presently undergoing a major transformation
driven by the transition towards a carbon-free energy system. The intraday mar-
kets are increasingly used by the renewable producers to compensate forecast
errors. This improves market liquidity and at the same time creates feedback
effects of the renewable generation on the market price, leading to negative
correlations between renewable infeed and prices, and, negative impact on the
revenues of renewable producers.

The aim of this paper is to build an equilibrium model for the intraday elec-
tricity market, to understand the price formation and identify optimal strategies
for renewable producers in the setting where renewable generation forecasts may
affect market prices. We consider renewable producers, optimizing their revenues
based on imperfect forecasts of terminal production. The actions of each agent
impact the market, leading to a stochastic game where players interact through
the market price. We exhibit a closed-form Nash equilibrium for this game in
the linear-quadratic setting, first for a finite number of agents with perfect infor-
mation, and then in the asymptotic Mean field game setting, with imperfect
information. We then show by numerical simulations that our model reproduces
the observed stylized features of the market price, such as the volatility patterns
and the market impact.
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Correlations between renewable infeed and intraday market prices have been
studied by a number of authors. Kiesel and Paraschiv [10] perform an economet-
ric analysis of the German intraday market and show that a deeper penetration
of renewable energies increases market liquidity and price-infeed correlations.
Karanfil and Li [9] draw similar conclusions on the Danish market, and exhibit
the impact of renewable energies on price and volatility. Gruet, Rowińska and
Veraart [14] establish a negative correlation between the wind energy penetra-
tion and the day ahead market prices. Jonsson et al. [8] show not only prices are
negatively correlated with the penetration of intermittent energies but also that
the latter modifies significantly the spot price distribution.

Optimal strategies in the intraday market for a single wind energy producer
have already been studied. In the price-taker setting, Garnier and Madlener
[6] solve a discrete optimal trading problem to arbitrate between immediate
and delayed trading when price and production forecast are uncertain. In [13],
Morales et al. consider a multimarket setting to derive an optimal bidding strat-
egy in the day ahead and adjustment markets while minimizing the cost in the
balancing market. This approach has been enhanced by Madsen et al., [16] and
then by Delikaraoglou et al. [5] , where the wind energy producer is first a price
maker in the balancing market , and then in both the spot and balancing markets.
Still in the price-maker setting, continuous approaches have also been developed.
Aı̈d, Gruet and Pham [1], consider the optimal trading rate and power gener-
ation for producer with uncertain terminal residual demand. Tan and Tankov
[15] develop an optimal trading model with a quantified evolution of forecast
uncertainty and exhibit optimal strategies depending on forecast updates. We
differ from the latter by considering an equilibrium setting with many agents
and determining the market price as the result of their interactions.

Explicit results for dynamic equilibria are often difficult to obtain. In partic-
ular, Nash equilibria often lead to coupled Partial Differential Equation (PDE)
systems. In the imperfect information setting, the problem may be simplified by
assuming a continuum of agents and using the Mean field game (MFG) approach.

The Mean field games are stochastic differential games with a large number
of symmetric agents, which were originally studied by Lions and Lasry [12] and
Huang, Caines, and Malhamé [7]. The equilibrium of such a game is characterized
through a coupled system of a Hamilton-Jacobi-Bellman and a Fokker-Planck
equation. Carmona and Delarue [3] proposed an alternative way to formalize
the system inspired by the Pontryagin principle and relating the Mean field
game solution to a McKean-Vlasov Forward Backward Stochastic Differential
Equation (FBSDE). From the Mean field game solution one can derive an ε-
Nash equilibrium of the corresponding N -player game.

Financial markets and energy systems are a natural domain of applications
of MFG. Alasseur, Tahar and Matoussi [2] develop a model for the optimal man-
agement of energy storage and distribution in a smart grid system through an
extended MFG. Casgrain and Jaimungal [4] apply it to optimal trade execution
with price impact and deterministic terminal liquidation condition. They dealt
with incomplete information and heterogeneous sub-populations of agents.
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The paper is organized as follows. Section 2 describes the main elements of the
model. Section 3 is devoted to the setting of complete information, where each
agent observes the production forecast of all other agents. In Sect. 4, we consider
a more realistic setting, where each agent observes only its own production fore-
cast as well as the national production forecast. In Sect. 5 we perform empirical
analysis of intraday market and confront it to the theoretical results obtained.
Section 6 concludes the paper.

2 The Model

We place ourselves in the intraday market for a given delivery hour starting at
time T , where time 0 corresponds to the opening time of the market. We assume
that market participants can trade during the entire period [0, T ].

To model the price and the forecasts, we introduce a filtered probability
space (Ω,F ,F := (Ft)t∈[0,T ],P) to which all processes are adapted. As the
agents’ strategies may impact the market price, we distinguish the price with-
out price impact or fundamental price S := (St)t∈[0,T ] from the market price
P := (Pt)t∈[0,T ], where the market impact is included.

We consider small renewable energy producers that use the intraday mar-
ket to manage the volume risk associated to the imperfect production forecast.
They observe a common national production forecast. In addition, each agent has
access to the individual production forecast, which may or may not be observed
by other agents. We assume that the forecast process of ith renewable producer
at time t is given by Xi

t := Xt + X̌i
t , where X := (Xt)t∈[0,T ] is common for all

agents (one can see this component as the national forecast), and the processes
X̌i := (X̌i

t)t∈[0,T ] for i = 1, . . . , N represent the individual production forecast
of each renewable producer. Each small renewable producer aims to maximise
her gain from trading in the market where they take their positions denoted
φi := (φi

t)t∈[0,T ] for i = 1, . . . , N . The agents control their positions by choosing
the trading rate, denoted by φ̇i

t, i = 1, . . . , N , at time t. They also face a termi-
nal volume constraint φi

T = Xi
T , which is enforced as a penalty. In Sects. 4, we

use a generic agent to model the renewable producers in the Mean field setting.
The agent has the same characteristics and goals as the ones of the small renew-
able energy producers above. The forecast process of this producer at time t is
denoted Xt = Xt + X̌t, her state process position is given by φ := (φt)t∈[0,T ]

and controlled by φ̇ := (φ̇t)t∈[0,T ].
In the following sections, we say that a strategy φ̇i, i = 1, . . . , N (resp φ̇), is

admissible if it is F-adapted and square integrable.

3 A Complete Information Game

In this section we place ourselves in a complete information setting to find the
unique Nash equilibrium. We assume that there are N identical agents in the
market and they all observe the individual production forecast of the other
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agents. The filtration F := (Ft)t∈[0,T ] models the information available to all of
them. Without loss of generality, we assume that the initial position is φi

0 = 0
for all i = 1, . . . , N , so that the position of the ith agent at time t is given by
φi

t =
∫ t

0
φ̇i

sds. The strategies impact the market price P as follows:

PN
t = St + aφ̄N

t , ∀t ∈ [0, T ], (1)

where φ̄N
t = 1

N

∑N
i=1 φi

t is the average position of the agents and a is a constant.
The agents trading in the market at time t incur an instantaneous cost,

φ̇i
tP

N
t +

α(t)
2

(φ̇i
t)

2, ∀t ∈ [0, T ]

for ith agent. The first term represents the actual cost of buying the electricity,
and the second term represents the cost of trading, where α(.) is a continuous
strictly positive function on [0, T ] reflecting the variation of market liquidity at
the approach of the delivery date.

The processes S and (Xi)N
i=1 satisfy the following assumption.

Assumption 1. The processes S and (Xi)N
i=1 are square integrable martingales

with respect to the filtration F.

Each producer wishes to maximize the objective function:

JN,i(φi, φ−i) := −E

[∫ T

0

{
α(t)
2

(φ̇i
t)

2 + φ̇i
t(St + aφ̄N

t )
}

dt +
λ

2
(φi

T − Xi
T )2

]

,

(2)
where λ determines the strength of the imbalance penalty and φ−i :=
(φ1, . . . , φi−1, φi+1, . . . , φN ) is the vector of all positions except ith agent’s one.

The optimal strategy of each player depends on other players’ actions and we
want to describe the resulting dynamical equilibrium, which we define formally
below.

Definition 1 (Nash equilibrium). We say that (φ̇i∗)N
i=1 is a Nash equilibrium

for the N-player game if it is a vector of admissible strategies, and for each
i = 1, . . . , N ,

JN,i(φi, φ−i∗) ≤ JN,i(φi∗, φ−i∗) (3)

for any other admissible strategy φ̇i of player i in the market.

The following theorem characterizes the Nash equilibrium of the N -player
game. In the theorem, we denote the average forecast process by X

N

t :=
1
N

∑N
i=1 Xi

t and use the following shorthand notation:

Δs,t :=
∫ t

s

η(u, t)
α(u)

du with η(s, t) = e− ∫ t
s

a
α(u)du and Δ̃s,t :=

∫ t

s

α−1(u)du.

(4)
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Theorem 2. Under Assumption 1, the unique Nash equilibrium in the complete
information N -player game is given by

φi∗
t =

∫ t

0

Δs,t
λdX

N

s − dSs

1 +
(

a
N + λ

)
Δs,T

+ Δ0,t
λX

N

0 − S0

1 +
(

a
N + λ

)
Δ0,T

+
∫ t

0

Δ̃s,t
λd(Xi

s − X
N

s )

1 +
(

a
N + λ

)
Δ̃s,T

+ Δ̃0,t
λ(Xi

0 − X
N

0 )

1 +
(

a
N + λ

)
Δ̃0,T

.

The equilibrium price has the following shape:

PN∗
t = St + aφ

N∗
t , φ

N∗
t =

∫ t

0

Δs,t
λdX

N
s − dSs

1 +
(

a
N

+ λ
)
Δs,T

+ aΔ0,t
λX

N
0 − S0

1 +
(

a
N

+ λ
)
Δ0,T

(5)

From the expression of the equilibrium price (5) in Theorem 2, we observe
that the price impact is composed of a deterministic part, a path dependent
stochastic part relying on the past values of S and X. These processes both play
a symmetric role in the price impact up to some coefficients.

Let us consider a finite number of players and let the penalization parameter
λ go to infinity. Then, from the expression (5) of φ

N∗
, we can derive, that the

price impact depends only on the aggregate production forecast and the final
aggregate position matches exactly with the final production forecast:

φ̄N∗
t

P−→
λ−→∞

∫ t

0

Δs,t

Δs,T
dX

N

s +
Δ0,t

Δ0,T
X0, φ̄N∗

T
P−→

λ−→∞
X

N

T

The complete information setting is questionable since one could argue that,
in practice, the producers do not observe the individual forecasts of other play-
ers. The complexity of determining a Nash equilibrium in a partial information
setting motivates us to consider the partial information problem in the Mean
field setting.

4 An Incomplete Information Game

In this section we assume that the agents do not observe each other’s individual
production forecasts and consider the associated Mean field game. We then inves-
tigate on the existence of an ε-Nash equilibrium approximation in the N -player
incomplete information game.

We consider a generic agent, and the filtration F contains the information
available to this agent. In addition we introduce a smaller filtration, containing
the common noise and denoted by F

0. This filtration contains the information
about the fundamental price and common part of the production forecast of the
generic agent.

Throughout the paper and for any F-adapted process (ζt)t∈[0,T ], we will
denote ζ̄t = E[ζt|F0

t ]. The game is now modeled by the interaction of agents
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through the conditional distribution flow μφ
t := L(φt|F0

t ) of the state process.
In the price impact function defined in the previous section, expectation with
respect to the empirical measure, will be replaced by an integral with respect to
the measure flow such that the market price is now given by:

Pt = St + aφ̄t. (6)

The generic agent wants to maximize the objective function:

JMF (φ, φ̄) := −E

[∫ T

0

α(t)
2

φ̇2
t + φ̇t(St + aφ̄t)dt +

λ

2
(φT − XT )2

]

, (7)

We now define what is meant be a Mean field equilibrium and make some
additional assumptions:

Definition 2 (Mean field equilibrium). An admissible strategy φ̇∗ is a Mean
field equilibrium if it maximizes (7) and φ̄ = φ̄∗.

Assumption 3.

– The process X is a square integrable martingale with respect to the filtration
F.

– The process S and the process X, defined by Xt := E[Xt|F0
t ] for 0 ≤ t ≤ T ,

are square integrable martingales with respect to the filtration F
0.

Note that if X is an F-martingale, then X is by construction an F
0-martingale,

but it may not necessarily be a martingale in the larger filtration F.
The following theorem characterizes the Mean field equilibrium in our setting.

In the theorem we use the same shorthand notation (4) as before.

Theorem 4. Under Assumption 3, the unique Mean field equilibrium is given
by

φ∗
t =

∫ t

0

Δs,t
λdXs − dSs

1 + λΔs,T
+ Δ̃s,t

λdX̌s

1 + λΔ̃s,T

+ Δ0,t
λX0 − S0

1 + λΔ0,T
+ Δ̃0,t

λX̌0

1 + λΔ̃0,T

.

The equilibrium price has the following shape:

Pt = St + a

∫ t

0

Δs,t
λdXs − dSs

1 + λΔs,T
+ aΔ0,t

λX0 − S0

1 + λΔ0,T
.

We now would like to construct an approximate equilibrium in the N -player
setting and quantify how close this approximate equilibrium will be to the true
solution. To address this question, both the N -agent problem and the Mean field
problem must be defined on the same probability space.

Assumption 5.

– The process S is a square integrable martingale with respect to the filtration
F
0.
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– The process X̄ and the processes (Xi)N
i=1 are square integrable martingale

with respect to the filtration F.
– For i = 1, . . . , N , almost surely, E[Xt|F0

t ] = E[Xi
t |F0

t ] := Xt, i = 1, . . . , N .
– The processes (X̌i)N

i=1 defined by X̌i
t = Xi

t − Xt for t ∈ [0, T ], are orthog-
onal square integrable martingales with respect to the filtration F, which are
identically distributed.

Definition 3 (ε-Nash equilibrium). We say that a strategy (φ̇i∗)N
i=1 is an

ε-Nash equilibrium for the N-player game if it is admissible and:

JN,i(φi, φ−i∗) − ε ≤ JN,i(φi∗, φ−i∗), ∀i ∈ {1, ..., N},∀t ∈ [0, T ]

for any other admissible control φ̇i.

Proposition 1. Under assumption 5, we define an admissible strategy for the
N -player game as follows.

φi∗
t =

∫ t

0

Δs,t
λdXs − dSs

1 + λΔs,T
+ Δ̃s,t

λdX̌i
s

1 + λΔ̃s,T

+ Δ0,t
λX0 − S0

1 + λΔ0,T
+ Δ̃0,t

λX̌i
0

1 + λΔ̃0,T

Then, for any ε > 0, there exists Nε with Nε = O( 1
ε2 ), such that for all N with

N ≥ Nε, this strategy is an ε-Nash equilibrium of the N-player game.

To complete the analysis led in the previous part, we would like to numerically
confront the model results to some empirical findings.

5 Numerical Illustration

Volatility and price impact showed to be characteristics of interest in empirical
studies. As they affect strategies of the agents, we want the model to capture
these patterns in order to manage the risks and costs related to renewable pro-
duction uncertainty.

5.1 Data Presentation

We use the limit order book data from the intraday EPEX market of January
2017 for the Germany delivery zone to perform the analyses on the market price.
To exhibit a linear price impact and calibrate the volatility of the market price
P defined in the theoretic model, we used the observed midquote price that we
denote P̃ . The volatility of the production forecast that we denote X̃, is also
calibrated from empirical wind energy forecasts over January 2015.

In order to conduct these empirical studies we assume the following dynamics
for P̃ and X̃:

dP̃t = μtdt + σtdW P̃
t , dX̃t = σ̃tdW X̃

t ∀t ∈ [0, T ], (8)
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where W P̃ ,W X̃ are F-Brownian motions, and μ, σ, σ̃ are F-adapted processes.
For the simulated data, we assume all through Sect. 5 the following dynamics:

dSt = σs
t dW 0

t , dXt = σ0
t dB0

t , dX̌i
t = σx

t dBi
t, i = 1, . . . , N, ∀t ∈ [0, T ]

where σs,σ0 and σx are deterministic functions and W 0, B0, Bi are F-Brownian
motions in the complete information setting (respectively F

0 for W 0, B0 and F
i

for Bi in the incomplete setting). We also assume all through Sect. 5 the liquidity
function α(.) is given by:

α(t) = α × (T − t) + β, ∀t ∈ [0, T ], α > 0, β > 0. (9)

The model parameters are specified in Table 1.

5.2 Price Impact

In this section, we compare the simulated price impact of the model to the
empirical one. In the empirical data, the market price is identified to the observed
midquote price, and we make the simplifying assumption that we can derive the
price impact from this single variable. We regress the midquote price shift just
before and just after a transaction on the traded volumes:

ΔP̃t = P̃t+ − P̃t− = a ∗ sign(Volumet) ∗ Volumet, ∀t ∈ [0, T ],

as the empirical analogous of the linear price impact in the model given by
expression (1). The volume sign corresponds to the side of the order that trigger
the transaction: if it is sell order then the sign is −, if it is a buy order it is +.

The results of this study are available in Fig. 1. We present the price impact
for several delivery hours, the regression was made over more than 4750 data
points for each of them. The price shifts are heteroscedastic and seem to be less
significant for small volumes. Despite the small volume effect, the p-value and
the R2 indicate a significant regression coefficient and are coherent with the price
impact assumption. In Fig. 2, we draw a trajectory of the fundamental price S
starting from t = 0 an hour before the delivery time, to the delivery time T . We
also draw the market price P associated with the different homogeneous settings
studied in the paper: the N -player Nash equilibrium, the ε-Nash equilibrium,
and the Mean field one.

The price impact matches with the production forecast changes. If producers
think they have underestimated their production forecast with respect to their
supply commitment (negative values of the production forecast changes process),
there will be an excess of sell positions in the market, thus the price impact is
negative. On the contrary, if they think they overestimated the final production
forecast, there will be a lack of supply in the market and a negative price impact.

5.3 Volatility

We want to investigate whether or not the uncertain production forecast has
an impact on the market price variations, and show that the volatility observed
empirically in the intraday market can be explained by this phenomenon.
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We are interested in estimating the instantaneous volatility σ of P̃ , intro-
duced in the dynamics (8). Following [11], we use a kernel-based non parametric
estimator of the instantaneous volatility:

σ̂2
t =

∑n
i=1 Kh(ti−1 − t)ΔP̃ 2

ti−1∑n
i=1 Kh(ti−1 − t)(ti − ti−1)

,

where Kh(x) = 1
hK(x

h ) and K(.) is the Epanechnikov kernel. We used a generic
choice: h = 0.1 hour for all the delivery dates and hours of January. We also
estimate the volatility σ̃ of the empirical wind production forecast X̃ introduced
in the dynamic (8) using the same method with h = 1 hour, and use it to
calibrate the volatility of the production forecasts σ0 and σx in the model.

In Fig. 3, the first graph and the second graph represent respectively the
empirical volatility of the midquote P̃ and the estimated variations of the Nash
equilibrium market price P , for different hours in function of the time to delivery.
During peak hours, activity and thus liquidity in the market is more important.
In order to adapt the liquidity to the delivery hour considered in the model, we
chose different levels of the liquidity coefficients α and β for the function α(.)
defined in (9), available in Table 2. Apart from these coefficients, all the other
parameters are the same as in Table 1. The model reproduces the increasing
shape of the empirical market price volatility when we approach the delivery
time. Moreover, by adapting the liquidity coefficients, the model also captures
the different levels of volatility according to the delivery hour.

6 Conclusion

We developed a linear quadratic model and derived a dynamic price equilibrium
in the intraday electricity market. We focused on the integration of renewable
energies in the energy supply system. We considered intermittent energy produc-
ers first in a complete information setting, then, in a more realistic incomplete
information one.

The model provides closed form optimal strategies for agents taking into
account their own incertitude. It leads to a dynamic equilibrium on the market,
and reproduces some important empirical patterns such as the price impact and
the volatility. For these reasons, a practical use of this mathematical tool might
help to better optimize the renewable furniture system.
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0003/Labex Ecodec/ANR-11-LABX-0047), FIME Research Initiative and Agence
Nationale de Recherche (ANR project EcoREES) is gratefully acknowledged.
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A Appendix

Fig. 1. Price impact over January 2017 for different delivery times

Table 1. Parameters of the model

Parameter Value Parameter Value

S0 40e/MWh a 1 e/MWh2

σs 10 e/MWh.h
1
2 λ 100e/MWh2

X0, X̌
i
0 0 MWh N 100

σx 73 MWh/h1/2 α 0.3 e/s.MW2

σ0 73 MWh/h1/2 β 0.1 e/MW2

Fig. 2. Theoretical price impact and common production forecast changes associated



304 O. Féron et al.

Fig. 3. Instantaneous market volatility and wind energy production forecast impact

Table 2. Liquidity coefficients in function of the hour trading activity

Hours Coefficients

α ( e/s.MW2) β (e/MW2)

2h00 1.2 0.5

8h00 0.5 0.2

12h00 0.7 0.3

18h00 0.3 0.1
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14. Rowińska, P.A., Veraart, A., Gruet, P.: A multifactor approach to modelling the

impact of wind energy on electricity spot prices (2018). SSRN 3110554
15. Tan, Z., Tankov, P.: Optimal trading policies for wind energy producer. SIAM J.

Financ. Math. 9(1), 315–346 (2018)
16. Zugno, M., Morales, J.M., Pinson, P., Madsen, H.: Pool strategy of a price-maker

wind power producer. IEEE Trans. Power Syst. 28(3), 3440–3450 (2013)


	Price Formation and Optimal Trading in Intraday Electricity Markets
	1 Introduction
	2 The Model
	3 A Complete Information Game
	4 An Incomplete Information Game
	5 Numerical Illustration
	5.1 Data Presentation
	5.2 Price Impact
	5.3 Volatility

	6 Conclusion
	A  Appendix
	References




