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Abstract. We consider a random financial network with a large number
of agents. The agents connect through credit instruments borrowed from
each other or through direct lending, and these create the liabilities. The
settlement of the debts of various agents at the end of the contract period
can be expressed as solutions of random fixed point equations. Our first
step is to derive these solutions (asymptotically), using a recent result on
random fixed point equations. We consider a large population in which
the agents adapt one of the two available strategies, risky or risk-free
investments, with an aim to maximize their expected returns (or sur-
plus). We aim to study the emerging strategies when different types of
replicator dynamics capture inter-agent interactions. We theoretically
reduced the analysis of the complex system to that of an appropriate
ordinary differential equation (ODE). We proved that the equilibrium
strategies converge almost surely to that of an attractor of the ODE.
We also derived the conditions under which a mixed evolutionary sta-
ble strategy (ESS) emerges; in these scenarios the replicator dynamics
converges to an equilibrium at which the expected returns of both the
populations are equal. Further the average dynamics (choices based on
large observation sample) always averts systemic risk events (events with
large fraction of defaults). We verified through Monte Carlo simulations
that the equilibrium suggested by the ODE method indeed represents
the limit of the dynamics.

Keywords: Evolutionary stable strategy (ESS) · Replicator
dynamics · Ordinary differential equation · Random graph · Systemic
risk · Financial network

1 Introduction

We consider a financial network with large number of agents. These agents are
interconnected to each other through financial commitments (e.g., borrowing -
lending etc.). In addition they make investments in either risk-free (risk neutral)
or risky derivatives. In such a system the agents not only face random economic
shocks (received via significantly smaller returns of their risky investments),
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they are also affected by the percolation of the shocks faced by their neighbours
(creditors), neighbours of their neighbours etc. In the recent years from 2007–
2008 onwards, there is a surge of activity to study the financial and systemic
level risks caused by such a percolation of shocks [1,3–5]. Systemic risk is the
study of the risks related to financial networks, when individual or entity level
shocks can trigger severe instability at system level that can collapse the entire
economy (e.g., [3–5]). In this set of papers, the author study the kind of topology
(or graph structure) that is more stable towards the percolation of shocks in
financial network, where stability is measured in terms of the total number of
defaults in the network.

In contrast to many existing studies in literature related to systemic risk, we
consider heterogeneous agents and we consider evolutionary framework. In our
consideration, there are two groups of agents existing simultaneously in the net-
work; one group of agents invest in risk-free instruments, while the other group
considers risky investments. The second group borrows money from the other
members of the network to gather more funds towards the risky investments
(with much higher expected returns). These investments are subjected to large
(but rare) economic shocks, which can potentially percolate throughout the net-
work and can even affect the ‘risk-free’ agents; the extent of percolation depends
upon relative sizes of the two groups. We consider that new agents join such a
network after each round of investment; they choose their investment type (risky
or risk-free) based on their observations of the returns (the surplus of the agents
after paying back their liabilities) of a random sample of agents that invested
in previous round. The relative sizes of the two groups changes, the network
structure changes, which influences the (economic shock-influenced) returns of
the agents in the next round, which in turn influences the decision of the new
agents for the round after. Thus the system evolves after each round. We study
this evolution process using the well known evolutionary game theoretic tools.

In a financial network perspective, this type of work is new to the best of
our knowledge. We found few papers that consider evolutionary approach in
other aspects related to finance; in [7], the authors study the financial safety net
(a series of the arrangement of the firms to maintain financial stability), and
analyze the evolution of the bank strategies (to take insurance or not); recently
in [6] authors consider an evolutionary game theoretic model with three types
of players, i) momentum traders ii) contrarian traders iii) fundamentalists and
studied the evolution of the relative populations. As already mentioned, these
papers relate to very different aspects in comparison with our work.

Evolutionary Stable Strategies. Traditionally evolutionary game models have
been studied in the literature to study animal behaviour. The key ingredients of
the evolutionary game models are a) a large number of players, b) the dynam-
ics and c) the pay-off function (e.g., see the pioneering work [10]). Replicator
dynamics deals with evolution of strategies, reward based learning in dynamic
evolutionary games. Typically it is shown that these dynamics converge to a
stable equilibrium point called Evolutionary Stable Strategy (ESS), which can
be seen as a refinement of a strict Nash Equilibrium [10]; a strategy prevailing in



Financial Replicator Dynamics: Emergence 213

a large population is called evolutionary stable if any small fraction of mutants
playing a different strategy get wiped out eventually. Formally, in a 2-player
symmetric game, a pure strategy ŝ is said to be evolutionary stable if

1. (ŝ, ŝ) is a Nash Equilibrium; i.e., u(ŝ, ŝ) ≥ u(s
′
, ŝ) ∀s

′
and

2. If (ŝ, ŝ) is not a strict NE (i.e., ∃ some s
′ �= ŝ such that u(ŝ, ŝ) = u(s

′
, ŝ)),

then u(ŝ, s
′
) > u(s

′
, s

′
).

We study the possible emergence of evolutionary stable strategies, when peo-
ple choose either a risky or a risk-free strategy; the main difference being that the
returns of either group are influenced by the percolation of shocks. The returns
of the portfolios depend further upon the percolation of shocks due to layered
structure of financial connections, and not just on the returns of the investments,
i.e., not just on economic shocks. Our main conclusions are two fold; a) when
agents consider large sample of data for observation and learning, the replicator
dynamics can settle to a mixed ESS, at which the expected returns of the two
the groups are balanced; b) in many other scenarios, through theoretical as well
as simulation based study, we observed that the replicator dynamics converges
to one of the two strategies, i.e., to a pure ESS (after completely wiping out the
other group).

The analysis of these complex networks (in each round) necessitated the study
of random fixed point equations (defined sample path-wise in large dimensional
spaces), which represent the clearing vectors of all the agents ([1,3–5] etc.). The
study is made possible because of the recent result in [1], which provided an
asymptotically accurate one dimensional equivalent solution.

2 Large Population Finance Network

We consider random graphs, where the edges represent the financial connection
between the two nodes. Any two nodes are connected with probability pss > 0
independent of the others, but the weights on the edges depend on (the number
of) neighbors. This graph represents a large financial network where borrowing
and lending are represented by the edges and the weights over them. The mod-
eller may not have access to the exact connections of the network, but random
graph model is a good approach to analyse such a complex system. In particular
we consider the graphs that satisfy the assumptions of [1].

The agents are repeatedly investing in some financial projects. In each round
of investment, the agents borrow/lend to/from some random subset of the agents
of the network. Some of them may invest the remaining in a risk-free investment
(which has a constant rate of interest rs). While the others invest the rest of
their money in risky investments which have random returns; we consider a
binomial model in which returns are high (rate u) with high probability δ and
can have large shocks (rate d), but with small probability (1− δ); it is clear that
d < rs < u. We thus have two types of agents, we call the group that invests
in risk-free projects as ‘risk-free’ group (G1), the rest are being referred to as
‘risky’ group (G2).
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New agents join the network in each round of investment. They choose their
investment type, either risk-free or risky, for the first time based on the previous
experience of the network and continue the same choice for all future rounds of
investment. The new agents learn from network experience (returns of agents of
the previous round of investments) and choose a suitable investment type, that
can potentially give them good returns. The new agents either learn from the
experience of a random sample (returns of two random agents) of the network or
learn from a large number of agents. In the former case, their choice of investment
type depends upon the returns of the random sample in the previous round.
While in the latter case the decision can also depend on the average utility of
each group of the agents, obtained after observing large number of samples.

Two Strategies: As mentioned before, there are two strategies available in
the financial market. Risk-free agents of G1 use strategy 1; these agents lend
some amount of their initial wealth to other agents (of G2) that are willing to
borrow, while the rest is invested in a government security, for example, bonds,
government project etc. Risky agents of G2 are adapting strategy 2, wherein they
borrow funds from the other agents and invest in risky security, for example,
derivative markets, stocks, corporate loans etc. These agents also lend to other
agents of G2. Let εt be the fraction of the agents in G1 group and let n(t) be
the total number of agents in round t. Thus the total number of agents (during
round t) in group 1 equals n1(t) := |G1| = n(t)εt and n2(t) := |G2| = n(t)(1−εt).

We consider that one new agent is added in each round1, and thus size of
the graph/network is increasing. The agents are homogeneous, i.e., they reserve
the same wealth w > 0 for investments (at the initial investment period) of each
round. Each round is composed of two time periods, the agents invest during the
initial investment period and they obtain their returns after some given time gap.
The two time period model is borrowed from [1,3,4] etc. The new agents make
their choice for the next (and the future) round(s), based on their observations
of these returns of the previous round.

Initial Investment Phases: During the initial investment phases (of any round
t), any agent i ∈ G1 lends to any agent j ∈ G2 with probability pss and it lends
(same) amount2 w/(n(t)pss) to each of the approachers based on the number that
approached it for loan; let Iij be the indicator of this lending event. Note that for
large n(t), the number of approachers of G2 approximately equals n(t)(1−εt)pss,
and, thus any agent of G1 lends approximately w(1 − εt) fraction to agents of
G2. The agents of G1 invest the rest wεt in risk-free investment (returns with
fixed rate of interest rs).

Let w̃ be the accumulated wealth3 of any agent of G2 out of which a positive
fraction α is invested towards the other banks of G2 and (1 − α) portion is
1 This approach can easily be generalized to several other types of dynamics and we

briefly discuss a few of them towards the end.
2 This normalization, (after choosing the required parameters, like w, appropriately)

is done to derive simpler final expressions.
3 These amounts could be random and different from agent to agent, but with large

networks (by law of large numbers) one can approximate these to be constants.
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invested in risky security. Thus the accumulated wealth of a typical G2 agent is
governed by the following equation,

w̃ = w + wε
︸ ︷︷ ︸

Initial wealth + Borrowed from G1

+ w̃α
︸︷︷︸

Lend/borrow G2

and thus w̃ =
w(1 + ε)
(1 − α)

.

(1)
Thus the total investment towards the risky venture equals w̃(1−α) = w(1+ ε).
The G2 agents have to settle their liabilities at the end of the return/contract
period (in each round) and this would depend upon their returns from the risky
investments. Thus the total liability of any agent of G2 is y = (wε+ w̃α)(1+ rb),
where rb is the borrowing rate4; by simplifying

y =
w(ε + α)(1 + rb)

(1 − α)
.

Similarly, any agent of G2 lends the following amount to each of its approachers
(of G2):

αw̃

n(t)(1 − εt)pss
=

αw(1 + ε)
n(t)(1 − εt)pss(1 − α)

. (2)

Return and Settling Phases, Clearing Vectors: We fix the round t and
avoid notation t for simpler notations. The agents of G2 have to clear their
liabilities during this phase in every round. Recall the agents of G2 invested
w(1 + ε) amount in risky-investments and the corresponding random returns
(after economic shocks) are:

Ki =

{

w(1 + ε)(1 + u) =: ku, w.p. (with probability) δ

w(1 + ε)(1 + d) =: kd, otherwise
(3)

This is the well known binomial model, in which the upward moment occurs
with probability δ and downward moment with (1−δ). The agents have to return
y (after the interest rate rb) amount to their creditors, however may not be able
to manage the same because of the above economic shocks. In case of default,
the agents return the maximum possible; let Xi be the amount cleared by the
ith agent of group G2. Here we consider a standard bankruptcy rule, limited
liability and pro-rata basis repayment of the debt contract (see [3,4]), where the
amounts returned are proportional to their liability ratios. Thus node j of G2

pays back XiLji/y towards node i, where Lji the amount borrowed (liability)
during initial investment phases equals (see the details of previous subsection
and Eq. (2)):

Lji =

{

Iji
w

npss
, if i ∈ G1

Iji
αw(1+ε)

npss(1−α)(1−ε) , if i ∈ G2.
(4)

4 For simplicity of explanation, we are considering constant terms to represent all these
quantities, in reality they would be i.i.d. quantities which are further independent
of other rounds and the asymptotic analysis would go through as in [1].
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Thus the maximum amount cleared by any agent j ∈ G2, Xj , is given by the
following fixed point equation in terms of the clearing vector {Xi}i∈G2 composed
of clearing values of all the agents (see [3,4] etc.):

Xi = min

⎧

⎨

⎩

(

Ki +
∑

j∈G2

Xj
Lji

y
− v

)+

, y

⎫

⎬

⎭

, (5)

with the following details: the term Ki is the return of the risky investment, the
term

∑

j∈G2
Xj Lji/y equals the claims form the other agents (those borrowed

from agent i) and v denotes the taxes to pay. In other words, agent i will pay
back the (maximum possible) amount Ki +

∑

j∈G2
Xj

Lji

y −v in case of a default,
and in the other event, will exactly pay back the liability amount y.

Surplus of any agent is defined as the amount obtained from various invest-
ments, after clearing all the liabilities. This represents the utility of the agent in
the given round. The surplus of the agent i ∈ G2:

R2
i =

⎛

⎝Ki +
∑

j∈G2

Xj
Lji

y
− v − y

⎞

⎠

+

, (6)

while that of agent i ∈ G1 is given by:

R1
i =

⎛

⎝wε(1 + rs) +
∑

j∈G2

Xj
Lji

y
− v

⎞

⎠

+

. (7)

In the above, the first term is the return from the risk free investment. The
second term equals the returns or claims form G2 agents (whom they lent) and
v denotes the amount of taxes.

3 Asymptotic Approximation of the Large Networks

We thus have dynamic graphs whose size increases with each round. In this
section, we obtain appropriate asymptotic analysis of these graphs/systems, with
an aim to derive the pay-off of each group after each round. Towards this, we
derive the (approximate) closed form expression of the Eqs. (6) and (7), which
are nothing but the per-agent returns after the settlement of the liabilities.

The returns of the agents depend upon how other agents settle their liabilities
to their connections/creditors. Thus our first step is to derive the solution of the
clearing vector fixed point Eqs. (5). Observe that the clearing vector {Xj}j∈G2

is the solution of the vector-valued random fixed point Eqs. (5) in n-dimensional
space (where n is the size of the network), defined sample-path wise.

Clearing Vectors Using Results of [1]: Our financial framework can be analysed
using the results of [1], as the details of the model match5 the assumptions of
5 Observe that α(1 + ε)/(α + ε) < 1.
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the paper. By [1, Theorem 1], the aggregate claims converge almost surely to
constant values (as the network size increases to infinity):

(claims of agents of G1),
∑

j∈G2

Xj
Lji

y
→ (1 − α)(1 − ε)

α + ε
x̄∞ a.s., and

(claims of agents of G2),
∑

j∈G2

Xj
Lji

y
→ α(1 + ε)

(α + ε)
x̄∞ a.s.,

where the common expected clearing value x̄∞ satisfies the following fixed point
equation in one-dimension:

x̄∞ = E

[

min

{
(

Ki +
α(1 + ε)
α + ε

x̄∞ − v

)+

, y

}
]

. (8)

Further by the same Theorem, the clearing vectors converge almost surely to
(asymptotically independent) random vectors:

Xi → min

{
(

Ki +
α(1 + ε)
α + ε

x̄∞ − v

)+

, y

}

, for each i ∈ G2. (9)

By virtue of the above results, the random returns given by Eqs. (6) and (7),
converge almost surely:

R1
i →

(

wε(1 + rs) +
(1 − α)(1 − ε)

(α + ε)
x̄∞ − v

)+

, for each i ∈ G1 (10)

R2
i →

(

Ki +
α(1 + ε)
α + ε

x̄∞ − v − y

)+

, for each i ∈ G2. (11)

Probability of Default is defined as the fraction of agents of G2 that failed to
pay back their full liability, i.e., Pd := P (Xi < y). For large networks (when
the initial network size n0 itself is sufficiently large), one can use the above
approximate expressions and using the same we obtain the default probabilities
and the aggregate clearing vectors in the following (proof in Appendix).

Lemma 1. The asymptotic average clearing vector and the default probability
of G2 is given by:

(x̄∞, Pd) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(y, 0) if cε > y−w
y

(

δy+(1−δ)w
1−(1−δ)cε

, 1 − δ
)

if y−w
y−(1−δ)(w−w) < cε < y−w

y
(

kd(1−δ)+kuδ−v
1−cε

, 1
)

if cε < y−w
y−(1−δ)(w−w)

(12)

where, cε = α+αε
α+ε , E[W ] = δku + (1 − δ)kd − v , w = kd − v and w = ku − v. �
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Expected Surplus: By virtue of the Theorem developed in [1, Theorem 1] we
have a significantly simplified limit system, whose performance is derived in the
above Lemma. We observe that this approximation is sufficiently close (numerical
simulations illustrate good approximations), and assume the following as the
pay-offs of each group after each round of the investments:

φ1(ε) := E(R1
i ) =

(

wε(1 + rs) +
(1 − α)(1 − ε)

α + ε
x̄∞ − v

)+

, for any agent of G1

φ2(ε) := E(R2
i ) = E

(

Ki +
(1 + ε)α
α + ε

x̄∞ − v − y

)+

, (13)

=
(

ku +
α(1 + ε)
α + ε

x̄∞ − v − y

)+

δ +
(

kd +
α(1 + ε)
α + ε

x̄∞ − v − y

)+

(1 − δ),

for any agent of G2. Observe here that the aggregate limits are almost sure
constants, hence the expected surplus of all the agents of the same group are
equal, while the random returns of the same group are i.i.d. (independent and
identically distributed).

4 Analysis of Replicator Dynamics

In every round of investments, we have a new network that represents the liability
structure of all the agents of that round formed by the investment choices of
the agents, and, in the previous two sections we computed the (asymptotically
approximate) expected returns/utilities of each agent of the network. As already
mentioned in Sect. 2, new agents join the network in each round, and choose
their strategies depending upon their observations of these expected returns of
the previous round.

These kind of dynamics is well described in literature by name replicator
dynamics (e.g.,[2,6,9] etc.). The main purpose of such a study is to derive asymp-
totic analysis and answer some or all of the following questions: will the dynamics
converge, i.e., would the relative fractions of various populations settle as the
number of rounds increase? will some of the strategies disappear eventually? if
more than one population type survives what would be the asymptotic fractions?
etc. These kind of analysis are common in other types of networks (e.g., wire-
less networks (e.g., [9]), biological networks [2]), but are relatively less studied
in the context of financial networks (e.g., [6]). We are interested in knowing the
asymptotic outcome of these kind of dynamics (if there exists one) and study the
influence of various network parameters on the outcome. We begin with precise
description of the two types of dynamics considered in this paper.

4.1 Average Dynamics

The new agent contacts two random (uniformly sampled) agents of the previous
round. If both the contacted agents belong to the same group, the new agent
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adapts the strategy of that group. When it contacts agents from both the groups
it investigates more before making a choice; the new agent observes significant
portion of the network, in that, it obtains a good estimate of the average utility
of agents belonging to both the groups. It adapts the strategy of the group with
maximum (estimated) average utility.

Say it observes the average of each group with an error that is normally
distributed with mean equal to the expected return of the group and variance
proportional to the size of the group, i.e., it observes (here N (0, σ2) is a zero
mean Gaussian random variable with variance σ2)

φ̂i(ε) = φi(ε) + Ni with N1 ∼ N
(

0,
1
c̄ε

)

and N2 ∼ N
(

0,
1

c̄(1 − ε)

)

,

for some c̄ large. Observe by this modeling that: the expected values of the obser-
vations are given by (φ1(ε), φ2(ε)) and are determined by the relative proportions
of the two populations, while the variance of any group reduces as its proportion
increases to 1 and increases as the proportion reduces to zero. We also assume
that the estimation errors {N1,N2} (conditioned on the relative fraction, ε) cor-
responding to the two groups are independent. Then the probability that the
new agent chooses strategy 1 is given by

Prob(φ̂1(ε) − φ̂2(ε) > 0) = Prob(N2 − N1 ≤ φ1(ε) − φ2(ε)),

which by (conditional) independence of Gaussian random variables equals6

g(ε) :=
∫ (φ1(ε)−φ2(ε))

√
c̄ε(1−ε)

−∞
e−x2/2 dx√

2π
. (14)

Let (n1(t), n2(t)) respectively represent the sizes of G1 and G2 population
after round t and note that εt = n1(t)

n1(t)+n2(t)
. Then the system dynamics is given

by the following (g(·) given by (14)):

(n1(t + 1), n2(t + 1)) =

{ (
n1(t) + 1, n2(t)

)
w.p. ε2t + 2εt(1− εt)g(εt)(

n1(t), n2(t) + 1
)
w.p. (1− εt)2 + 2εt(1− εt)(1− g(εt)).

(15)

It is clear that (with ε0 and n0 representing the initial quantities),

εt+1 =
n1(t + 1)
t + n0 + 1

=
(t + n0)εt + Yt+1

t + n0 + 1
= εt +

1
t + n0 + 1

(Yt+1 − εt) where

Yt+1 =

{

1 wp ε2t + 2εt(1 − εt)g(εt)
0 wp (1 − εt)2 + 2εt(1 − εt)(1 − g(εt)), for all t ≥ 1.

One can rewrite the update equations as

εt+1 = εt +
1

t + n0 + 1
(h(εt) + Mt+1) , with, Mt+1 := Yt+1 − εt − h(εt), where,

h(ε) := E
[
Yt+1 − εt|εt = ε

]
= ε(1 − ε) (2 g(ε) − 1) for any 0 ≤ ε ≤ 1.

6 Because 1
ε

+ 1
1−ε

= 1
ε(1−ε)

.



220 I. Saha and V. Kavitha

and observe that (with Ft the natural filtration of the process till t)

E[Mt+1|Ft] = E[Mt+1|εt] = 0 and E[M2
t+1|Ft] ≤ C for some constant C < ∞.

Further observe that 0 ≤ εt ≤ 1 for all t and all sample paths.
Thus our algorithm satisfies assumptions7 A.1 to A.4 of [8] and hence we

have using [8, Theorem 2] that

Theorem 1. The sequence {εt} generated by average dynamics (15) converges
almost surely (a.s.) to a (possibly sample path dependent) compact connected
internally chain transitive invariant set of ODE:

ε̇t = h(εt). (16)

�

The dynamics start with initial condition ε0 ∈ (0, 1) and clearly would remain
inside the interval [0, 1], i.e., εt ∈ [0, 1] for all t (and almost surely). Thus we
consider the invariant sets of ODE (16) within this interval for some interesting
case studies in the following (Proof in Appendix).

Corollary 1. Define r̄r := uδ +d(1− δ). And assume w(1+d) > v and observe
that u > rb ≥ rs > d. Assume ε0 ∈ (0, 1). Given the rest of the parameters of the
problem, there exists a δ̄ < 1 (depends upon the instance of the problem) such
that the following statements are valid for all δ ≥ δ̄:

(a) If r̄r > rb > rs then φ2(ε) > φ1(ε) for all ε, and εt → 0 almost surely.
(b) If φ1(ε) > φ2(ε) for all ε then εt → 1 almost surely.
(c) When rb > r̄r > rs, and case (b) is negated there exists a unique zero ε∗ of

the equation φ1(ε) − φ2(ε) = 0 and

εt → ε∗ almost surely; further for δ ≈ 1, ε∗ ≈ rb − r̄r

r̄r − rs
.

�

From (13) and Lemma 1, it is easy to verify that all the limit points are evolu-
tionary stable strategies (ESS). Thus the replicator dynamics either settles to a
pure strategy ESS or mixed ESS (in part (c) of the corollary), depending upon
the parameters of the network; after a large number of rounds, either the fraction
of agents following one of the strategies converges to one or zero or the system
reaches a mixed ESS which balances the expected returns of the two groups.

In many scenarios, the expected rate of return of the risky investments is
much higher than the rate of interest related to lending/borrowing, i.e., r̄r > rb.
Further the assumptions of the corollary are satisfied by more or less all the
scenarios (due to standard no-arbitrage assumptions) and because the shocks
are usually rare (i.e., δ is close to 1). Hence by the above corollary, in majority

7 The assumptions require that the process is defined for the entire real line. One can
easily achieve this by letting h(ε) = 0 for all ε /∈ [0, 1], which still ensures required
Lipschitz continuity and by extending Mt+1 = 0 for all εt /∈ [0, 1].
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of scenarios, the average dynamics converges to a pure strategy with all ‘risky’
agents (i.e., εt → 0). The group G1 gets wiped out and almost all agents invest
in risky ventures, as the expected rate of returns is more even in spite of large
economic shocks. One can observe a converse or a mixed ESS when the magnitude
of the shocks is large (d too small) or when the shocks are too often to make
r̄r < rb.

4.2 Random Dynamics

When the new agent contacts two random agents of different groups, its choice
depends directly upon the returns of the two contacted agents. The rest of the
details remain the same as in average dynamics. In other words, the new agents
observe less, their investment choice is solely based on the (previous round)
returns of the two contacted agents. In this case the dynamics are governed by
the following (see (10)–(11)):

(n1(t + 1), n2(t + 1)) =

⎧

⎪
⎨

⎪
⎩

(n1(t) + 1, n2(t)) wp ε2t
(n1(t), n2(t) + 1) wp (1 − εt)2

(n1(t) + G(εt), n2(t) + (1 − G(εt))) else, with

G(εt) = 1{R1≥R2} (17)
= 1{

(wε(1+rs)+
(1−α)(1−ε)

(α+ε) x̄∞−v)+≥(Ki+
α(1+ε)

α+ε x̄∞−v−y)+
},

where x̄∞ = x̄∞(εt) is given by Lemma 1. Here we assume people prefer risk-free
strategy under equality, one can easily consider the other variants. Once again
this can be rewritten as

εt+1 = εt +
Zt+1 − εt

t + n0 + 1
with Zt+1 =

⎧

⎪
⎨

⎪
⎩

1 wp ε2t
0 wp (1 − εt)2

G(εt) else.
(18)

As in previous section the above algorithm satisfies assumptions8 A.1 to A.4 of
[8] and once again using [8, Theorem 2], we have:

Theorem 2. The sequence {εt} generated by average dynamics (17) converges
almost surely (a.s.) to a (possibly sample path dependent) compact connected
internally chain transitive invariant set of ODE:

ε̇(t) = hR(ε(t)), hR(ε) := Eε

[

Zt+1 − εt|εt = ε
]

= ε(1 − ε)(2E[G(ε)] − 1). (19)

�

One can derive the analysis of this dynamics in a similar way as in average
dynamics, however there is an important difference between the two dynamics;
we can never have random dynamics converges to an intermediate attractor, like

8 In the current paper, we consider scenarios in which hR(·) is Lipschitz continuous,
basically under the conditions of Corollary 2.
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the attractor in part (c) of Corollary 1 (unique ε∗ satisfying φ1 = φ2). This is
because Eε[G] = P (R1(ε) > R2(ε)) equals 0, 1 − δ or 1 and never 1/2 (unless
δ = 1/2, which is not a realistic case). Nevertheless, we consider the invariant sets
(corresponding to pure ESS) within [0, 1] for some cases (Proof in Appendix):

Corollary 2. Assume ε0 ∈ (0, 1). Given the rest of the parameters of the prob-
lem, there exists a 1/2 < δ < 1 (depends upon the instance of the problem) such
that the following statements are valid:

(a) If Eε[G] = 0 for all ε or 1 − δ for all ε, then εt → 0 almost surely.
(b) If Eε[G] = 1 for all ε, then εt → 1 almost surely.
(c) When w(1 + d) > v and u > rb ≥ rs > d, there exists a δ̄ < 1 such that for

all δ ≥ δ̄, the default probability Pd ≤ (1 − δ) and E[G] = 1 − δ and this is
true for all ε. Hence by part (a), εt → 0 almost surely. �

Remarks: Thus from part (c), under the conditions of Corollary 1, the random
dynamics always converges to all ‘risky’ agents (pure ESS), while the average
dynamics, as given by Corollary 1, either converges to pure or mixed ESS further
based on system parameters (mainly various rates of return).

From this partial analysis (corollaries are for large enough δ) it appears that
one can never have mixed ESS with random dynamics, and this is a big contrast
to the average dynamics; when agents observe sparsely the network eventually
settles to one of the two strategies, and if they observe more samples there is a
possibility of emergence of mixed ESS that balances the two returns. We observe
similar things, even for δ as small as 0.8 in numerical simulations (Table 4). We
are keen to understand this aspect in more details as a part of the future work.

To summarize we have a financial network which grows with new additions,
in which the new agents adapt one of the two available strategies based on the
returns of the agents that they observed/interacted with. Our asymptotic anal-
ysis of [1] was instrumental in deriving these results. This is just an initial study
of the topic. One can think of other varieties of dynamics, some of which could
be a part of our future work. The existing agents may change their strategies
depending upon their returns and observations. The agents might leave the net-
work if they have reduced returns repeatedly. The network may adjust itself
without new additions etc.

5 Numerical Observations

We performed numerical simulations to validate our theory. We included Monte-
Carlo (MC) simulation based dynamics in which the clearing vectors are also
computed by directly solving the fixed point equations, for any given sample
path of shocks. Our theoretical observation well matches the MC based limits.

In Tables 1, 2 and 3 we tabulated the limits of the average dynamics for
various scenarios, and the observations match the results of Corollary 1. The
configuration used for Table 1 is: n0 = 2000, ε0 = 0.75, rs = 0.18, rb = 0.19, w =
100, v = 46, α = 0.1, while that used for Table 2 is: n0 = 2000, ε0 = 0.5, rs =
0.17, rb = 0.19, w = 100, v = 40, α = 0.1. For both these tables risky expected
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Table 1. When the shocks are
too large along with larger taxes
(v = 46), the average dynamics
converges to a configuration with
all ‘risk-free agents’ !

u d δ φ1 φ2 ε∗

0.2 −0.05 0.8 72 0 1

0.2 −0.1 0.8 72 0 1

0.2 −0.15 0.8 72 0 1

0.2 −0.2 0.8 72 0 1

0.2 −0.25 0.8 72 0 1

Table 2. Average dynamics converges to
mixed ESS, at which both populations survive
with φ1 = φ2.

u d δ φ1 φ2 ε∗

0.2 −0.1 0.95 78.33 78.27 0.3326

0.2 −0.11 0.95 78.24 78.31 0.3791

0.2 −0.12 0.95 78.14 78.14 0.4288

0.2 −0.13 0.95 78.04 78.04 0.4820

0.2 −0.14 0.95 77.92 77.92 0.5385

Table 3. Average Dynamics con-
verges to all ‘risky-agents’; Config-
uration: n0 = 2000, ε0 = .5, rs =
0.10, rb = 0.12, w = 100, v = 30,
α = 0.5

u d δ φ1 φ2 ε∗

0.15 −0.1 0.9 0 82.12 0

0.16 −0.1 0.9 0 83.24 0

0.17 −0.1 0.9 0 84.29 0

0.18 −0.1 0.9 0 85.19 0

Table 4. Average and Random dynamics,
Comparison of MC results with theory Con-
figuration: n0 = 2000, u = 0.2, rs = 0.17, rb =
0.19, w = 100, α = 0.1

Config ε∗(Theory) ε�(Monte Carlo)

(d, δ, v) Avg Rndm Avg Rndm

0.10, 0.95, 40 0 0 .0016 0.0011

−0.10, 0.95, 40 0.33 0 .3214 0.0004

−0.15, 0.95, 40 0.6 0 .5988 0.0014

0.10, 0.80, 46 1 0 .9896 0.0065

rate of returns r̄r is smaller than rb and the dynamics converges either to ‘all
risky’ agents configuration or to a mixed ESS. In Table 3, the risky expected
rate of returns r̄r = .1250 which is greater than rb and rs, thus the dynamics
converges to all risky-agents, as indicated by Corollary 1.

In Table 4 we considered random dynamics as well as average dynamics.
In addition, we provided the Monte-Carlo based estimates. There is a good
match between the MC estimates and the theory. Further we have the following
observations: a) random dynamics always converge to a configuration with all
‘risky’ agents, as given by Corollary 2; b) when r̄r > rb, the average dynamics
also converges to ε∗ = 0 as suggested by Corollary 1; and c) when r̄r < rb,
the average dynamics converges to mixed ESS or to a configuration with all
‘risk-free’ agents, again as given by Corollary 1.

As the ‘risk increases’, i.e., as the amount of taxes increase and or as the
expected rate of return of risky investments r̄r decreases, one can observe that
the average dynamics converges to all ‘risk-free’ agents (last row of Table 4)
thus averting systemic risk event (when there are large number of defaults, Pd).
While the random dynamics fails to do the same. As predicted by theory (the
configurations satisfying part (b) of Corollary 2), random dynamics might also
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succeed in averting the systemic risk event, when the expected number of defaults
is one for all ε > 0. It is trivial to verify that the configuration with w(1 + u) <
v, is one such example. Thus, average dynamics is much more robust towards
averting systemic risk events.

6 Conclusions

We consider a financial network with a large number of agents. The agents are
interconnected via liability graphs. There are two types of agents, one group
lends to others and invests the rest in risk-free projects, while the second group
borrows/lends and invests the rest in risky ventures. Our study is focused on
analysing the emergence of these groups, when the new agents adapt their strate-
gies for the next investment round based on the returns of the previous round. We
considered two types of dynamics; in average dynamics the new agents observe
large sample of data before deciding their strategy, and in random dynamics the
decision is based on a small random sample.

We have the following important observations: a) when the expected rate
of return of the risky investments is higher (either when the shocks are rare
or when the shocks are not too large) than the risk-free rate, then ‘risk-free’
group wipes out eventually, almost all agents go for risky ventures; this is true
for both types of dynamics; b) when the expected rate of risky investments
is smaller, a mixed ESS can emerge with average dynamics while the random
dynamics always converges to all risky agents; at mixed ESS the expected returns
of both the groups are equal; more interestingly, when the risky-expected rate is
too small, the average dynamics converges to a configuration with all risk-free
agents.

In other words, in scenarios with possibility of a systemic risk event, i.e.,
when there is a possibility of the complete-system collapse (all agents default),
the average dynamics manages to wipe out completely the risky agents; the
random dynamics can fail to do the same. Thus when agents make their choices
rationally and after observing sufficient sample of the returns of the previous
round of investments, there is a possibility to avoid systemic risk events. These
are some initial results and we would like to investigate further in future to make
more affirmative statements in this direction.

Appendix

Proof of Lemma 1: We consider the following:
Case 1: First consider the case when downward shock can be absorbed, in this
case the clearing vector x̄∞ = yδ + y(1 − δ) = y, default probability is Pd = 0.
The region is true if the following condition is meet i.e., if

kd − v + ycε > y =⇒ cε >
y − w

y
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Case 2: Consider the case with banks receive shock will default and the corre-
sponding average clearing vector x̄∞ = yδ + (w + cεx̄

∞)(1 − δ) which simplifies
to:

x̄∞ =
yδ + w(1 − δ)
1 − cε(1 − δ).

This region lasts if the following conditions hold to be true

kd − v + cεx̄
∞ < y, and ku − v + cεx̄

2∞ > y.

Substituting x̄∞ = yδ+w(1−δ)
1−cε(1−δ) we have,

y − w

y − (1 − δ)(w − w)
< cε <

y − w

y
.

In this regime the default probability is Pd = (1 − δ). Case 3 can be proved
similarly, more details are in [11]. �
Proof of Corollary 1: First consider the system with δ = 1, i.e., system without
shocks. From Lemma 1, Pd ≤ (1 − δ) for all ε because (with δ = 1)

y

(
cε − y − w̄

y

)
= w(1+ε)(1+u)−v−wε(1+rb) = w(1+u)−v+wε(u−rb) ≥ w(1+u)−v,

for all ε (the lower bound independent of ε). Under these assumptions, there
exists δ̄ < 1 by continuity of the involved functions such that

y

(

cε − y − w̄

y − (1 − δ)(w̄ − w)

)

> 0 for all δ ≥ δ̄ and for all ε.

Thus from Lemma 1 x̄∞ = y or x̄∞ = δy+(1−δ)w
1−(1−δ)cε

for all such δ ≥ δ̄. We would
repeat a similar trick again, so assume initially x̄∞ = y for all ε and consider
δ ≥ δ̄. With this assumption we will have:

R1(ε) =
(

wε(1 + rs) +
(1 − α)(1 − ε)

(α + ε)
y − v

)+

(20)

= (wε(1 + rs) + w(1 − ε)(1 + rb) − v)+

= (w(1 + rb) − v + wε(rs − rb)) , under the given hypothesis, and

R2(ε) =
(

Ki +
α(1 + ε)
α + ε

y − v − y

)+

= (Ki − wε(1 + rb) − v)+ (21)

=
{

R2
u w.p. δ where R2

u := w(1 + u) − v + wε(u − rb)
(

R2
d

)+ w.p. 1 − δ where R2
d := w(1 + d) − v + wε(d − rb).

Note that R2
u ≥ w(1 + u) − v > 0 (for any ε) under the given hypothesis.

Proof of part (a): When r̄r > rb, from (13), it is clear that (inequality only
when R2

d is negative)

φ2(ε) − φ1(ε) ≥ R2
uδ + R2

d(1 − δ) − φ1(ε) = w(r̄r − rb) + wε(r̄r − rs) > 0.
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Thus in this case φ2 > φ1 for all ε and hence

g(ε) < 1/2 and 2g(ε) − 1 < 0 for all 0 < ε < 1.

Therefore with Lyaponuv function V0(ε) = ε/(1−ε) on defined on neighbourhood
[0, 1) of 0 (in relative topology on [0, 1]) we observe that

dV0

dε
h(ε) =

ε

1 − ε
(2g(ε) − 1) < 0 for all 0 < ε < 1 and equals 0 for ε = 0.

Further V0(ε) → ∞ as ε → 1, the boundary point of [0, 1). Thus ε∗ = 0 is the
asymptotically stable attractor of ODE (16) (see [8, Appendix, pp.148]) and
hence the result follows by Theorem 1.

For all δ ≥ δ̄, from Lemma 1, we have the following

sup
ε

|y − x̄∞| = sup
ε

(1 − δ)
∣

∣

∣

∣

y − cε − w

1 − (1 − δ)cε

∣

∣

∣

∣
<

1 − δ

δ
η (22)

for some η > 0 , which decreases to 0 as δ → 1. ( The last inequality is due
to cε < 1 and then taking supremum over ε). By continuity of the above upper
bound with respect to δ and the subsequent functions considered in the above
parts of the proof, there exists a δ̄ < 1 (further big if required) such that all the
above arguments are true for all δ > δ̄.

Proof of part (b): The proof follows in similar way, now using Lyaponuv
function V1(ε) = (1 − ε)/ε on neighbourhood (0, 1] of 1, and by observing that
g(ε) > 1/2 for all ε < 1 and hence

dV1

dε
h(ε) = −1 − ε

ε
(2g(ε) − 1) < 0 for all 0 < ε < 1 and equals 0 for ε = 1.

Proof of part (c): It is clear that φ1(ε) = R1(ε) decreases linearly as ε increases:

φ1(ε) = w(1 + rb) − v + wε(rs − rb).

For ε in the neighbourhood of 0, φ2(ε) > 0 and is decreasing linearly with
slope r̄r − rb, because R2

d(0) = w(1 + d) − v > 0 and thus for such ε

φ2(ε) = w(1 + r̄r) − v + wε(r̄r − rb).

From (21), R2
d(ε) is decreasing with increase in ε. There is a possibility of an ε̄

that satisfies R2
d(ε̄) = 0, in which case φ2 increases linearly with slope δw(u−rb),

i.e.,
φ2(ε) = δ [w(1 + u) − v + wε(u − rb)] for all ε ≥ ε̄.

When r̄r < rb we have,

φ1(0) = w(1 + rb) − v > w(1 + r̄r) − v = φ2(0).

By hypothesis φ1(ε) < φ2(ε) for some ε, hence by intermediate value theorem
there exists at least one ε∗ that satisfies φ1(ε∗) = φ2(ε∗). Further the zero is
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unique because φ2 is either linear or piece-wise linear (with different slops),
while φ1 is linear.

Consider Lyaponuv function V∗(ε) := (ε − ε∗)2/(ε(1 − ε)) on neighbourhood
(0, 1) of ε∗, note V∗(ε) → ∞ as ε → 0 or ε → 1 and observe by (piecewise)
linearity of the functions we will have

φ1(ε) > φ2(ε) and thus (2 g(ε) − 1) > 0 for all 0 < ε < ε∗ and
φ2(ε) > φ1(ε) and thus (2 g(ε) − 1) < 0 for all 1 > ε > ε∗.

Thus we have9,

dV∗
dε

= 2
ε − ε∗

ε(1 − ε)
+

(ε − ε∗)2(2ε − 1)
ε2(1 − ε)2

and hence

dV∗
dε

h(ε) = (ε − ε∗)
(

2 +
(ε − ε∗)(2ε − 1)

ε(1 − ε)

)

(2 g(ε) − 1) < 0 for all ε /∈ {0, 1, ε∗}.

Thus ε∗ is the asymptotically stable attractor of ODE (16) and hence the result
follows by Theorem 1. The result can be extended for δ < 1 as in case (a) and
the rest of the details follow by direct verification (at δ = 1), i.e., by showing
that φ1(ε∗) = φ2(ε∗) at δ = 1 and the equality is satisfied approximately in the
neighbourhood of δ = 1. �
Proof of Corollary 2: For part (a), hR(ε) = −cGε(1 − ε), where the constant
cG = 1 (or respectively cG = 2δ − 1). Using Lyanponuv function of part (a) of
Corollary 1, the proof follows in exactly the same lines.
For part (b), hR(ε) = ε(1 − ε), and proof follows as in part (b) of Corollary 1.
For part (c), first observe (using equations (20)–(21) of proof of Corollary 1)

R2
u(ε) − R1(ε) ≥ w(1 + u) + wε(u − rs) − y + x̄∞

(

2α + ε − 1
α + ε

)

= w(1 + u) + wε(u − rs) + (x̄∞ − y) − x̄∞
(

1 − α

α + ε

)

= w(u − rb) + wε(u − rs) + (x̄∞ − y)
(

1 − 1 − α

α + ε

)

> 0.

The last inequality is trivially true for δ = 1 (and so x̄∞ = y) for the given
hypothesis, and then by continuity as in proof of Corollary 1, one can consider

9 When ε < 1/2 and ε < ε∗ then clearly (ε−ε∗)(2ε−1)
ε(1−ε)

> 0. When ε > 1/2 we have

(2ε − 1)/ε < 1/2 and with ε < ε∗ we have ε∗ − ε < 1 − ε and thus

2 +
(ε − ε∗)(2ε − 1)

ε(1 − ε)
≥ 3/2 > 0 for all ε < ε∗.

In a similar way ε > ε∗, then we will have that the above term is again positive.
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δ̄ < 1 such that for all δ ≥ δ̄, the term (x̄∞ − y)
(

1 − 1−α
α+ε

)

(uniformly over
ε) can be made arbitrarily small. When Pd = 0, i.e., x̄∞ = y for some ε, then
R2

d(ε) − R1(ε) = w(d − rb) + wε(d − rs) < 0 for all such ε. When Pd �= 0, then
R2

d = 0 ≤ R1. Thus in either case R2
d(ε) ≤ R1(ε) for all ε.

By virtue of the above arguments we have Pd ≤ (1 − δ) and E[G] = 1 − δ
and this is true for all ε, for all δ ≥ δ̄. The rest of the proof follows from
part(a). �
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