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Abstract. This paper addresses the multi-period problem of fixing the
energy charging price at a set of charging stations deployed to support
long journeys of electric vehicles along highways. In order to model the
problem, we propose a non-linear bilevel program, in which the leader (a
single centralized operator) fixes the charging price over the time hori-
zon to maximize its profit and the follower (the operator of the electric
vehicles) chooses the optimal assignment of the electric vehicles to the
stations so to minimize a cost function. To solve the resulting model, we
suggest to adopt an adaption of the Branch-and-Cut algorithm for Mixed
Integer Linear Bilevel Programming proposed by Fischetti et al. (2018).
Preliminary computational results are provided to show the interesting
performance of the new modeling and algorithmic approach.

Keywords: Electrical vehicles · Bilevel programming ·
Branch-and-Cut algorithm

1 Introduction

Recently, with the EV driving range1 (up to 300 km in a single ride) and the
deployment of rapid charging stations along highways, the long journey trip
1 Between the two Renault Zoe delivered respectively in 2012 and 2016, the cost of a
unit of battery storage (1 kWh) has been divided by two, while the energy density
has been doubled by 2. For a same battery size and a same price, Zoe 40 has a
doubled driving range.
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becomes more and more possible [2]. The main problem, tackled in this article,
is how to deal with the dimensioning of those rapid charge stations. In fact,
the autonomy is not sufficient for a long trip without recharging. Therefore,
the problem of managing such stations considering how EV customers react is
considered in this work. Such complex system involves a two levels hierarchical
structure and a specific mathematical problem has to be considered where the
manager of the charging station will be at the upper level and the set of EV at the
lower level (the decisions of the EV are managed by a single operator, centralized
context). In the past few decades, there have been many advances in the field of
Operations Research applied to the transport sector to solve planning or pricing
problems [3]. In many cases, these applications do not take into account the
feedback effects - also called reactions to the optimum- of the third parties of
the organ subject to the problem. Typically, this means optimizing the profit of
a service provider without taking into account the beneficiary’s reaction, whose
decision can potentially vary according to the service provider optimum. Hence,
decision problems need to take into account simultaneously two different actors
(or agents) who do not have the same objective. The corresponding model has to
imply both decision agents interacting sequentially and hierarchically. This type
of process can be formulated as a bilevel program [4] where a decision agent,
called the leader, integrates explicitly the reaction of another agent, named the
follower, when the leader has to make optimal choices. At the upper level, the
leader can be for instance faced to a pricing problem as in [5]. At the lower level,
on the other hand, the followers can interact in terms of a congestion problem as
in [8]. Bilevel models have been proposed recently to address EV problematic. In
[9] the authors propose a bilevel optimization framework for designing optimal
charging strategies for a fleet of EV. In [10], the authors propose also a bilevel
model (here a Stackelberg game), where EV charging station operators compete
at the upper level, offering charging prices to attract EV to their station. The
present paper proposes an approach for the modeling of the best pricing for
charging stations taking into account a set of EV whose decisions are made by
a single operator (centralized model). We make this first strong assumption of
centralized model because of the following two reasons: (i) the centralized context
gives an optimum social bound very interesting in terms of user performances
and recharging system; (ii) this bound will help us, for future work, to quantify
the price of anarchy obtained in a incitation/information decentralized model.
Most of new vehicles, and particularly EV, are basically equipped with GPS
driving facilities. Then, it is plausible, and in fact already present in particular
EV brands like Tesla, that such GPS system can provide information to drivers
on where and how much to charge during the trip. This driving aided system can
be computed in a centralized way by an operator of a fleet of EV. Two actors are
thus considered, one being the Charging Station Manager (CSM) whose objective
is to maximize his profit, the other being the Set of Electric Vehicles (SEV)
responsive to the prices assigned to recharging stations and to the waiting times
at the charging stations. The SEV is managed by a single operator. The paper
is organized as follows. We first state the studied problem in Sect. 2. Section 3
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details the bilevel model proposed to formulate both CSM and SEV problems.
We establish in Sect. 4 the adaptive exact algorithm implemented to solve our
problem. Section 5 is dedicated to numerical experiments. We finally conclude in
Sect. 6.

2 Problem Statement

The study of this paper addresses the problem of determining the unit charging
price at each charging station (CS) in order to influence EV stops in a multi-
dimensional case (several CS and several EV), modeling long travel on highways
with EV. The pricing adopted by the Charging Station Manager (CSM) is con-
sidered to follow a single objective: to maximize its profit by taking into account
the unit charging price and the waiting time at its CS. Inline with the case of
highways, we consider we consider a rectilinear road that the EV can use.

In this situation, it is essential to take into account the behavior of the
SEV since the unit charging price is implicitly dependent on the distribution
of vehicles to charging stations. Therefore, it is primordial to know the SEV’s
reaction to a pricing decision.

The work here presents a large framework and thus some assumptions limit
the complexity of the analysis and allow to focus on implicit CSM/SVE negoti-
ation through an applied Intersection Cuts method [6]. Such method has been
recently proposed and is very efficient to solve bilevel problems. The authors sug-
gest the use of basic Branch-and-Bound algorithm first employed for the relaxed
bilevel problem (i.e. for a single level problem concerning the upper level where
the optimization problem of the lower level is relaxed) called High Point Relax-
ation (HPR) problem and then an exploration at the node of the search tree is
done in order to find a feasible bilevel solution. In addition, the authors suggest
for the first time, the use for bilevel program of intersection cuts, initially devel-
oped by Balas [1] for Integer Linear Programming. The following hypotheses
are then considered: Prices are considered as natural integers and they are also
bounded; Time is discrete; Each charging station has only one charging point;
EV decisions are managed by a single operator (centralized context).

The main problem for the operator of the SEV is to determine, a priori, where
each EV has to stop during his long trip (assuming that each EV has necessary
the need to stop in order to reach its destination), considering pricing decisions
(the unit charging price) proposed by charging stations operator. In addition,
such optimization problem depends on the state-of-charge (SoC) of each vehicle.
It also involves a bilevel approach. We present in the next section the bilevel
model we have proposed to formulate the problem mentioned. Figure 1 gives an
overview of the considered problem. Let us consider S = 6 Charging Stations
(denoted by S on the figure) and 6 EV (denoted by EV on the figure). Each EV
can reach several CS according to its battery level, i.e. its SoC. The decision
of each EV will be taken according to the charging price and the waiting time
before service at each CS. For instance, let us focus on EV1. EV1 can reach S1 or
S2. Then, from S1 the EV1 can reach S3 or from S2 can reach S3 or S4 and so on,
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until EV1 reaches the last station S6. However, each station has its own charging
price, making them more or less attractive, and as a consequence, generating
more or less demand. This difference of attractiveness induces different queues
between the CS, which is another cost for EV.

Fig. 1. Possible stopping scenarios for EV1 where initial SoC for EV 1 is 10 units of
energy which is the maximum value.

3 The Proposed Bilevel Model

In this section, the bilevel model is established and notations are given. The
problem is concerned with two decision makers: a recharging station manager
(RSM) (the leader) and a Set of EV (SEV) (the follower). The output of the
model are the following:

1. Leader’s problem: The leader (RSM) manages a set of charging stations S
and a unit charging price ps has to be assigned to station s on the overall
time duration T , in order to maximize his benefit. This price is assumed
to be stationary which is more acceptable for customers in general like flat
rate pricing schemes in telecom, but the model can be simply enriched by
considering dynamic prices without too much complexity.

2. Follower’s problem: The follower (operator of the SEV) has to decide an
optimal repartition of the EV over the stations in order to minimize the total
charging cost and the waiting time; that is to minimize the cost.

Following notations are considered:

• T is the time interval (time horizon) of the model.
• I is the fleet of EV indexed by i. The EV are initialized to random position

(entrance of the road) and SoC within the discrete set E := {0, . . . , E}.
• S is the discrete set of charging stations (CS) indexed by s and geographically

positioned such that the distance between two consecutive CS is d distance
units uniformly located on the rectilinear considered road.

• All EV are identical and the maximal SoC is denoted by E. The SoC of EV
i at time t is denoted by ei,t such that 0 ≤ ei,t ≤ E.

• When EV i stops at a charging station s at time slot t, the EV charging time
is denoted by Ci,s,t and is equal to Ci,s,t := αC × (E − ei,t) (recovering full
battery level), where αC represents the ratio of the time needed for a full
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charge (when at CS) to the one for full discharge (when driving). αC ≤ 1,
and in the context of highways typical values lie in the range [1/20, 1/3]2.

• Each charging station s has an unit charging price ps in the discrete ordered
set P = {p0, p1, ..., pP } with p0 = Pmin and pP = Pmax.

The proposed bilevel model aims to explore the tradeoff between the charging
price and waiting time at the charging station. The pricing approach is inspired
from [5] which is standard for congestion control. More precisely our model is
based on the following decision variables:

– Pricing of charging stations: the decision variables ps (upper level) are integer
representing the pricing applied at station s per unit of charging time,

– Decision variables of the EV: the variables yi,s,t (lower level) are binaries and
determine if EV i has to stop at charging station s, knowing that the vehicle
will reach it at time t.

Taking ordering indices for the decision variables allows to determine the
stops of an EV along his travel and then deduce the arrival time at each station
corresponding to the stopping decision.

Let us describe the objective function of the leader (upper level optimization
problem), which is dependent on the stopping decision of the SEV (for charging).
The benefit of the leader for one particular charging station s is:

∑

i

yi,s,t × Ci,s,t × ps. (1)

This benefit, coming from EV i who stops at time t in station s, depends on the
charging time of this EV that is Ci,s,t. The maximization problem of the leader
who manages all CS is then expressed by:

maxp:=(p1,...,pS)

I∑

i

S∑

s

T∑

t

yi,s,t × Ci,s,t × ps. (2)

Concerning the follower (the manager of the SEV), it aims to minimize the
total charging cost for EV as well as the waiting times at the charging stations
(we make a sum of both follower’s objectives). We denote by �s the total waiting
time of all EV who stop at station s, which gives the following objective function:

miny(
I∑

i

S∑

s

T∑

t

yi,s,t × Ci,s,t × ps +
S∑

s

�s) (3)

where

�s =
I∑

i

T∑

t

δi,s,t (4)

2 This ratio being mainly dependent on the (ultra)fast charging power available cur-
rently in the range 50–350 kW in this use-case; the driving part being a “physical
constant”.
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This last expression represents the waiting time of EV i arrived at station
s at time t, before starting to get served (i.e. to start charging energy). More
precisely, if an EV, for example EV i arrives after EV k at the same station s
at time t, and if EVk is still charging then the waiting time for EV i at station
s depends on the remaining charging time of EV k like in a queueing system. In
addition, �i,s,t is the travel time for EV i given its position at time t, to reach
station s such that station s is in front of him but not the next one on the travel,
and it is determined by:

�i,s,t = di,s,t +
s−1∑

s′=1

T∑

t

Ci,s′,tyi,s′,t +
s−1∑

s′=1

T∑

t

δi,s′,t, (5)

with di,s,t = s × d − pos(i, t) is the distance between station s and the current
position of EV i at time t denoted by pos(i, t). Indeed, this variable has to take
into account the waiting and charging times for EV i in any other charging
stations s′ where the EV has stopped before reaching station s. If station s is
the next one on the travel, the travel time for EV i to reach s is simply:

�i,s,t = d − pos(i, t).

Let us now describe the constraints of our model. We have to guarantee that only
one travel can be taken by an EV. The yi,s,t are the decision variables related
to the decision that EV i stops at station s at time t and the order corresponds
to the t-th visited charging station since the beginning of the travel. This order
allows to guarantee that an EV can not turn back on the road. Let us give a
simple example to illustrate our constraints. Let us consider for example EV 1.
Let us assume that EV 1 stops at the station 1 at time 1 and then at station
3 at time 3 (recall that d = 1), consequently y1,1,1 = y1,3,3 = 1, and y1,s,t = 0
∀s, t, that is y1,2,4 = 1 is forbidden. More formally, this constraint can be stated
as follows: ∑

s

yi,s,t0 = 1 ∀ i. (6)

That is at t0 EVi has to choose one and only one station s. Nevertheless, after
t0 it has the choice to stop or not to a possible station. The constraints can be
expressed as follows:

(yi,s,t ×
S∑

s′=s+1

yi,s′,t+1) + (¬yi,s,t × (
S∑

s′=s+1

¬yi,s′,t+1)/S) = 1. (7)

If EVi stops at the station s at time t then it has to visit one and only one station
s′ (corresponding to accessible stations from station s) at time t + 1 otherwise
if EVi does not visit station s at time t (expressed by ¬yi,s′,t+1) then EVi can
not stop at any station s′ with ¬yi,s′,t+1). Finally constraints which allow link
between waiting time and charging price at CS are described hereafter:

ps ≤ (Δmax − Δs)
Δmax

× (Pmax − Pmin) + Pmin ∀s ∈ S. (8)
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Indeed, the constraint below aims to fix a price if and only if the waiting time
at station s allows it. It can be noticed that if, for instance, the waiting time at
station s is such that Δs = 0 then the charging price will be set at maximum
value Pmax. On the contrary, the bigger the waiting time is at station s, the
lower the charging price at this station. In addition, note that since Δs includes
a product of yi,s,t decision variables, those constraints are quadratic. Note that
Δmax, which is the maximum waiting time at a CS can be pre-calculated. We
are now able to establish the proposed non-linear bilevel problem (NLBLP ) as
follows:

Note that the proposed bilevel model includes characteristics which make it
non-standard:

– the objective functions of the leader (2) and follower (3) are not linear;
– constraints (8) relative to the relation between of the price and waiting time

are quadratic.

Consequently, the recent exact solution method developed in [6] has been
used by linearization of quadratic constraints in order to consider our non-
standard (NLBLP ). The algorithm is described in the next section.

4 Solution Algorithm for the NLBLP

Our bilevel program solution method is an adaptation of the Branch-and-Cut
algorithm proposed by [6] for our non linear problem. The authors have sug-
gested a general exact solution method dealing with Mixed-Integer Bilvel Pro-
gram (MIBLP ) where both objective functions and constraints for leader and
follower are linear. The decision variables of the leader which influence the deci-
sion of the follower have to be pure integer and bounded. The other decision
variables of the leader can be integer or continuous, and the one of the follower
are integers. The general (MIBLP ) studied in [6] can be written as follows:

min F (x, y) (9)

s.t.

G(x, y) ≤ 0 (10)

g(x, y) ≤ 0 (11)

x, y ∈ Rn (12)

f(x, y) ≤ φ(x) (13)

where for a given x ∈ Rn1 the follower value function is:

φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0} (14)

When constraint (14) is relaxed, the program is called High Point Relaxation
(HPR) which is assumed to be feasible. This is a strong property that our



192 A. Woznica et al.

model has to satisfy. The authors suggest a finitely-convergent branch-and-bound
algorithm based on the two following assumptions: (i) the variables x and y have
finite lower and upper bounds in (HPR) and in the follower (MILP ); (ii) the
continuous leader variables (if they exist) do not appear in the follower problem.

We apply [6] to our bi-level program. Actually, even if the objective func-
tion of the leader is non-linear, it is convex then it can be dealt by CPLEX. In
addition, since we deal with (HPR) the problem concerning the non linearity of
the objective function of the follower disappears. Concerning the quadratic con-
straints, a linearization is possible by the use of classical and well-known crossed
quadratic terms linearization techniques developed by Glover [7]. Consequently,
both assumptions (i) and (ii) established by Fischetti et al. are satisfied in our
context, we are then allow to use their Branch-and-Cut algorithm.

5 Preliminary Experiments

In this last section, preliminary experiments are conducted in order to illus-
trate the performance of the Branch-and-Cut algorithm used to solve our non-
standard (NLBLP). MILP problems have been solved using IBM ILOG CPLEX
12.6.3 using callbacks. We have implemented the algorithm in C++ language.
Numerical examples were run on a bi-xeon 3.4 Ghz with 4Go of main memory
computer. For all instances, maximal SoC is E = 17 kWh, d = 5 Km for the
distance between two consecutive stations, αC = 1 (that is one unit of energy is
consumed when traveling and one unit is recharged when charging, per unit of
time) and all initial SoC have been randomly determined. We have conducted
several tests with a number of EV and CS taking respectively their value in the
following discrete sets {2; 4; 8; 16; 32; 64} and {2; 4; 6; 8; 10}.

Table 1 displays: (i) the CPU times (in seconds) required by the exact algo-
rithm (B&C) we have coded, (ii) the CPU times (in seconds) needed by a fea-
sible solution method (HEUR) and (iii) the relative gap in percentage (Gap =
(Optimum – Lower Bound)/Lower Bound). The Lower Bound is provided by
the heuristic denoted by (HEUR) which corresponds to the first feasible bilevel
solution found in the Branch-and-Bound algorithm. Each line of Table 1 is an
average on ten random instances. The (B&C) and the heuristic are very fast on
small instances (2 EV). Moreover, the lowest relative gap (≤1%) is obtained for
this size of instances. Such good performance comes from the first step consist-
ing in finding a first feasible solution very quickly, which is a key step here in
our approach. When the number of EV increases, both methods become more
time consuming and the relative gap between the solutions of both methods also
increases. Note that our heuristic can be helpful when the exact solution can
not provide the optimum solution like for the instance (#EV,#CS) = (8, 4).
Obviously, more experiments have to be conducted in future work in order to
provide a precise size limit of the instances.
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Table 1. Average computational time (in sec.) of the B&C algorithm and our heuristic

Method (# EV, # CS) B&C HEUR Gap (%)

(2,2) 0.12 0.119 0.7

(2,4) 4.418 1.645 0.8

(2,6) 11.1 7.223 1

(2,8) 35.732 13.739 1.2

(2,10) 86.919 21.280 1.5

(4,2) 0.24 0.182 1

(4,4) 23.9 3.431 1.2

(4,6) 2995.201 123.667 1.4

(8,2) 0.715 0.221 3

(8,4) – 124.931 –

(16,2) 3.233 2.487 10

(32,2) 113.727 98.64 20

(64,2) 1370.292 1114.387 30

6 Conclusion

This work deals with the problem of managing a set of EV into different charging
stations, taking into account the charging and the waiting costs. The charging
price at each station is settled by a central controller, with the aim to induce an
optimal profit. The global problem is a non-linear bi-level problem (NLBLP).
The use of a recent tool is possible in our context and significant speedup of the
computational time of our heuristic has been obtained without losing the per-
formance. This work then shows on a simple example that managing optimally
many EV for long distance travel is possible trough the use of bi-level programs.
Many perspectives are possible, for example to take into account a network
topology and also to integrate decentralized decision taken by EV individually.
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