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Abstract. We model the tradeoff between the monitoring costs and gain
in throughput for overlay-based routing in the Internet. A Markovian
model is shown to fit the real throughput traces quite well. The tradeoff
problem is formulated as Markov decision process and it is observed
that the myopic policy that maximizes the immediate utility is close to
optimal on the real traces.

1 Introduction

More than two decades ago, it was observed that the performance of network
flows could be improved by choosing other paths than those computed by IP
routing protocols (see, e.g., [7]). Routing overlay networks were then proposed
as a solution for achieving spectacular performance improvements, without the
need to re-engineer the Internet (see [1] and references therein). An overlay
network is composed of Internet end-hosts which can monitor the quality of
Internet paths between themselves by sending probe packets. Since all pairs
of nodes are connected, the default topology of a routing overlay is that of a
complete graph. Although the monitoring cost is highly variable depending on
the metric to be probed, it is usually not possible to discover an optimal path by
probing all links in large overlay networks (see [2] for a graph-theoretic analysis
of this issue). An alternative approach is to devise a parsimonious monitoring
approach making the trade-off between the quality of routing decisions and the
monitoring cost. Given a source and a destination node in the overlay, the idea
is to probe only a small number of overlay paths between the two nodes at each
measurement epoch, but to choose those paths so as to make the best routing
decision.

Assuming known Markovian models for path delays, this trade-off problem
was formulated as a Markov Decision Process (MDP) in [8]. Using delay data
collected over the Internet, it was shown that the optimal monitoring policy
enables to obtain a routing performance almost as good as the one obtained
when all paths are always monitored, but with a modest monitoring effort.

In this paper, we adopt the theoretical framework introduced in [8], but focus
on data throughput rather than RTT. We note that efficient parsimonious mon-
itoring strategies are even more important for the throughput metric. Indeed,
although lightweight methods for estimating the available bandwidth between
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two Internet end-hosts were proposed in [4,5], in practice the only accurate
method is to transfer a large file between the two endpoints. It turns out that
the MDP formulation for maximizing the data throughput is equivalent to the
MDP formulation for minimizing the RTT. The contribution of the present paper
is therefore not on the theoretical side, but rather to investigate the applicability
of the approach proposed in [8] for optimizing throughput in overlay networks.
To this end, we use we use throughput measurements that were made between
9 AWS (Amazon Web Services) data centres.

2 MDP Formulation

The problem formulation in this section is essentially the same as in [6,8] except
that the quantity of interest is bandwidth instead of delay. Consider a single
origin-destination pair and {1, 2, . . . , P} a set of P paths between the origin and
the destination. The network topology is thus that of parallel links. At time step
t, path i is assumed to be have a bandwidth Xi(t), where Xi(t) is a discrete-time
Markov chain taking values in a finite set. The transition matrix for path i will
be denoted by Mi.

At each time step, the routing agent has to decide on which path it should
send data. For this, the agent has at its disposal the last observed bandwidth for
each path. Further, it can choose to measure the bandwidth on one or more paths
and update its state information before taking the routing decision. The agent
incurs a cost of ci for probing path i independently of time step. The decision-
maker must find a compromise between paying to retrieve information from the
system to get a higher bandwidth and not retrieving information leading to a
lower bandwidth.

Let u(t) ∈ {0, 1}P whose ith component indicates whether path i is moni-
tored in time step i or not. The total cost paid for action u(t) is

∑
i|ui(t)=1 −ci =

−c · u(t) with c = (c1, · · · , cP ). Let r(t) be the path chosen in time step t. A
policy θ can be defined by the sequence {(u(t), r(t))}t≥0. Just as in [8], it can
be seen that knowing only the last observed bandwidth for a link is not enough
to determine the distribution the bandwidth that will be obtained in a given
step. The state can be made Markovian by incorporating the age of the last
observed bandwidth as well. That is, the pair (yi(t), τi(t)), where yi(t) is the last
observed bandwidth of link i at time t and τi(t) is the age of the last observation
is sufficient as the state variable for a Markovian representation of path i. All
this information is summarized in a vector s(t) = (s1(t), s2(t), . . . , sP (t)) where
si(t) = (yi(t), τi(t)).

Since the state is now Markovian, the problem can be formulated as a Markov
Decision Process (MDP). This MDP can be further simplified by noting that in
the model, the routing decision does not have any impact on the evolution of
the state. Thus, a locally greedy routing decision conditioned on u(t) and the
current state will be optimal. In other words, for a given u(t), it will be optimal
to choose the path that maximizes the expected bandwidth. With this in mind,
the decision problem can be reduced to determining which paths to monitor in
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each time step. For a given state s ≡ (y, τ) of path i, define the belief on the
bandwidth being z of this path as follows: bi(z|s) := P(Xi(τ) = z|Xi(0) = y),
which is just the probability of path i transitioning from y to z in τ steps, and
can be computed by choosing the corresponding element of Mτ

i .
If path i is measured, then its actual bandwidth, Xi(t), will be known and

can be used in the routing decision. Otherwise, it is its expected conditional
bandwidth E[Xi|si] =

∑
x∈Xi

x · bi(x|si) that will be used. The locally greedy
routing decision will be to choose r(t) that maximizes (uiXi+(1 − ui)E[Xi|si]).
Note that this decision is taken after performing the action of monitoring the
subset of selected links. This leads to maximum bandwidth conditioned on s
and u of B(X|s,u) = maxi (uiXi+(1 − ui)E[Xi|si]), and an expected maximum
bandwidth of:

B̄(s;u) =
∑

x

(
P∏

i=1

bi(xi|si)

)

B(x|s;u). (1)

Here the product measure is used because Xis evolve independently.
Now that the routing decision is known, the final MDP takes the form:

max
θ

E
θ
s0

{ ∞∑

t=0

ρt
[
B̄(s(t);u(t)) − c · u(t)

]
}

. (2)

where θ ≡ u(t)t≥0, is limited to monitoring decisions only.
We remark that the above problem formulation resembles the multi-armed

bandit (MAB) framework. However, unlike standard MABs in which the cost
function is decomposable in the individual costs of the bandits, in our problem
the overall cost is not decomposable.

3 Numerical Results

In order to validate our approach on real data, for which the Markovian assump-
tion is not perfectly met, we use throughput measurements that were made
between 9 AWS (Amazon Web Services) data centres located in several places
around the world. In summer 2015, we measured the available throughput
between all pairs of data centres every five minutes, by transferring a 10 MB
file through the Internet, for a period of four days. We thus collected some
8.3×104 measurement data over the 4 days period. Assuming that the available
throughput over a path is the minimum of the throughputs of its constituent
links, the analysis of these data revealed that the IP route is the maximum
throughput route only in 23% of the cases, and that most of the time, the max-
imum throughput overlay route passes through 1 or 2 intermediate nodes (see
[1] for details).
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We selected three origin-destination (OD) pairs: Virginia/Ireland, Vir-
ginia/Frankfurt and Frankfurt/Tokyo. For the first two pairs, in addition to the
IP path, we selected two alternative paths which were sometimes better than
the IP path, whereas for the last example there was one alternative path.

For each path, we fitted a Markov model using a clustering method called,
Hierarchical Agglomerative Clustering [3]. This method creates a hierarchy
between clusters, like a tree. At the beginning, each value of bandwidth is a
cluster. The algorithm agglomerate one by one the closest data (in term of a
distance metric chosen) together in a new cluster, until it creates one big clus-
ter. On our data, we use the Euclidean distance between the bandwidth values.
After that, we decided where to cut the tree and obtain a certain number of
clusters.

Now that we have our different states, we have to determine the transition
probability matrices, Pi. We elaborate this matrix by counting the number of
transition between each pair of states. Finally, we search the minimum value
τmaxi

which satisfy max(P lim
i − P

τmaxi
i ) < 10−2. It appears that, on real data,

the τmax per link is lower than 10 and the number of states per link is between
2 and 12.

We evaluate the average utility (see (2)) for four policies: optimal, myopic
policy that optimizes the immediate cost only, a receding horizon policy (with a
horizon of 3) and a decomposition based heuristic. For a description of the last
two policies, we refer the reader to [6].

First, we check that the Markov models we fitted are representative of the
real traces. For this, for each OD pair, using the transition matrices, we generate
a sample path of throughputs on each of the paths. On these sample paths, we
apply the three heuristics (but not the optimal) and compute the average utility
for each policy. We then apply the policies on the real traces and compute
the average utilities. Table 1 shows the percentage relative error between the
average utility computed on a sample path and that on the corresponding real
trace. The relative error is less than 2% which indicates a good match. Finally,
Table 2 shows the utilities of the four policies for varying monitoring costs. One
surprising observation from these examples is that the myopic policy is almost
optimal.

Table 1. Percentage relative error between utility computed using Markov model and
on real trace.

(a) Virginia/Ireland.

c 1 2 3 4 5

Myopic 1.38 1.14 0.52 0.95 0.01

RH 1.38 0.98 0.50 0.62 0.01

H2 1.73 1.81 1.84 1.90 1.97

(b) Virginia/Frankfurt.

c 1 2 3 4 5

Myopic 1.36 0.91 0.6 1.07 0.03

RH 1.34 1.046 0.62 1.067 0.03

H2 1.63 1.90 1.92 1.97 2.06
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Table 2. Utilities for different policies as a function of the monitoring cost.

(a) Virginia/Ireland.

c OPT Myopic RH H2

1.0 41.98 41.98 41.98 40.45

2.0 39.42 39.40 39.43 38.72

3.0 37.90 37.89 37.90 36.98

4.0 36.99 36.92 36.97 35.25

5.0 36.43 36.43 36.43 33.52

(b) Virginia/Frankfurt.

c OPT Myopic RH H2

1.0 41.91 41.91 41.91 40.77

2.0 39.45 39.47 39.45 38.84

3.0 38.02 38.03 38.03 36.97

4.0 37.11 37.11 37.11 35.13

5.0 36.38 36.36 36.36 33.30

(c) Frankfurt/Tokyo.

c OPT Myopic RH H2

1.0 58.44 58.44 58.44 57.83

2.0 57.71 57.67 57.71 56.59

3.0 57.20 57.20 57.20 55.35

4.0 57.20 57.20 57.20 54.11

5.0 57.20 57.20 57.20 53.09

4 Conclusion and Future Work

The results indicate that Markovian models are a good fit for throughput on
paths in the Internet. Further, a myopic policy is nearly optimal for minimizing
a linear combination of the throughput and monitoring costs.

As future work, we would first like to understand why the myopic policy
works well on these examples. It would be interesting to obtain conditions under
which this is true. Next, we would like to generalize these models to multi-agent
settings in which each node of the overlay can be seen as an agents. These agents
can be either cooperative or be non-cooperative. Another possible improvement
of the setting would be to allow the routing decision to influence the future
evolution of the bandwidth of the path and to get state information from the
current routing decision.
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