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Abstract. Cloud computing is an innovative process that delivers on-
demand services over the internet. Virtualization is considered as the
key concept of cloud computing since it handles running multiple vir-
tual resources in a single physical resource. Mapping the virtual machine
(VM) to the appropriate physical machine (PM) is called virtual machine
placement (VMP). In this context, the dilemma of placing VMs in the
cloud environment presents a significant challenge that has been wholly
addressed but not yet totally fixed. This paper provides a multi-objective
decision-making approach for VMP in a cloud computing infrastruc-
ture. We propose a conic scalarization method to solve the optimization
problem. Simulation results prove that the offline algorithm yields good
results compared to online deterministic algorithms.

Keywords: Cloud computing · Virtual machine placement

1 Introduction

Nowadays, cloud computing is considered as an emerging technology that regu-
larly evolves towards a significant field of computer science. Cloud services are
continually being expanded to meet customer demands where the Infrastructure
as a Service (IaaS) package is the most requested by cloud users. The cloud
service provider delivers hardware services (i.e., CPU, memory, storage, network
bandwidth, etc.) using virtualization technology. To execute or serve a task in the
cloud, the first process to be performed is the Virtual Machine (VM) allocation,
which is the process of allocating or mapping a VM with a specific configuration
where the assigned VM must meet the Quality of Service (QoS). The next step
is the VM placement process, which is the process of placing or mapping the
VM to its best fit physical machine (PM), as presented in Fig. 1. By analogy,

c© Springer Nature Switzerland AG 2021
S. Lasaulce et al. (Eds.): NetGCooP 2021, CCIS 1354, pp. 154–166, 2021.
https://doi.org/10.1007/978-3-030-87473-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87473-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-87473-5_14


MODM for Virtual Machine Placement 155

we can see this problem as a “Tetris” game whose goal is to place the arrived
shapes in the right places properly. From the provider’s point of view, energy
consumption, cost, and resource wastage are the main objectives that need to
be optimized. At the same time, the QoS and the quality of experience are the
critical elements to be maximized from the customer perspective. In this con-
text, many algorithms and policies were proposed to solve the VM allocation
and placement problems.

The traditional VM mapping approaches were treated as single-objective,
whereas the recent ones address the VMP as a multi-objective optimization
problem. Moreover, this placement process can be accomplished either offline
(static) or online (dynamic). On the one hand, for offline placement, the data
center (DC) providers consolidate data and make placement decisions to meet
the consumer requests considering different constraints. On the other hand, for
online placement, the DC suppliers gather data periodically then decide whether
a rescheduling of the placement procedure is required.

Virtualization gives the possibility to conveniently move a Virtual Machine
(VM) from a specific host to another without turning it off; therefore, this can
offer a dynamicity on VM placement optimization with a negligible impact on
performance. Despite its numerous benefits, these dynamics may result in sub-
optimal or unstable configurations of the virtual networks. Moreover, VMs may
experience some fluctuations within the resource utilization (e.g., a mobile appli-
cation server and a web server may possess identical patterns of the incoming
workload while using the same CPU). In this context, several challenges hin-
der the efficient placement of the virtual machine, which can be dealt with as
multi-objective optimization approaches; Considering various trade-offs between
energy consumption, reliability and performance degradation [7,10], power con-
sumption and resource utilization [13], cost and QoS [1,21], network traffic and
resource utilization [6,8,18], etc.

Accordingly, to handle these combinatorial optimization problems, we model
the VM placement problem as a multi-objective decision making (MODM) app-
roach aiming to simultaneously optimize five objective functions: energy con-
sumption, cost, network traffic, resource utilization, and QoS. Therefore, to solve
this optimization model, we transform the problem into a single objective func-
tion using a scalarization method.

This paper is structured as follows; the next section presents the related
works. Section 3 presents the problem formulation analyzed as a multi-objective
decision making (MODM) approach. In Sect. 4, we describe the scalarization
method proposed to solve the MODM problem. Section 5 presents the test envi-
ronment to evaluate our model and examine the most appropriate algorithm
among proposals.

2 Related Works

Several approaches in the literature have studied the VMP problem in both
static and dynamic environments. In the following, we cite some references that
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Fig. 1. Cloud computing architecture

have dealt with this placement problem in different ways, mono-objective or
multi-objective optimization in online or offline settings. From 2007 to 2030,
global energy consumption will increase by 76%, referring to energy outlook 2030.
Therefore, we should think about the methods to be followed to reduce the energy
consumption in the cloud; since cloud data centers included thousand of servers
that consume an enormous amount of power. Therefore, to save energy consump-
tion, it’s preferable to place VMs on as few PMs as possible. However, if VMs are
placed densely in a server, this can cause an occurrence of heat islands, which
can affect the reliability of the device. In this context, [7] proposes a bi-objective
optimization algorithm that considers energy-saving and server reliability. This
algorithm aims to minimize the total power consumption of all servers as a
function of resource utilization and simultaneously achieves reliability by adding
backup servers when the number of working servers exceeds a redundancy ratio.
Simulation results prove the performance of the recommended algorithm in terms
of power consumption in both working and backup servers compared to online
deterministic heuristics as First-Fit-Decreasing (FFD), Modified FFD (MFFD)
and Thermal Aware Workload Scheduling Algorithm (TASA).

In the same regard, unbalanced resource usage may lead to resource wastage,
SLA violation, and high power consumption. Authors in [13] propose a multi-
objective virtual machine placement algorithm for IaaS cloud named (MOVMP).
This model allows reducing the number of active PMs through migrating VMs
and achieving a more balanced use of resources, which minimizes the energy
consumption and resource wastage. The experiment setup of the proposed algo-
rithm yields good results compared to First-Fit (FF) and Power-Aware Best Fit
Decreasing (PABFD).

The quality of service (QoS) in cloud computing is another challenge for cloud
providers to attract and satisfy users. Authors in [1] treated the VMP problem
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as a tradeoff between QoS and cost. They propose a two-layer model, where
the first one considers the allocation problem in a cost-effective way using linear
programming for load balancing. The second one regards the VM placement by
proposing a Genetic Algorithm Based Virtual Machine Placement (GABVMP)
algorithm as a solution to the optimization problem. Simulation results show that
GABVMP is more performant than two greedy heuristics (Random placement
and FF placement).

Several papers study the problem of minimizing network traffic [6,8,18]
to enhance the performance of a DC by selecting the most suitable physical
machines for virtual machines. Daniel et al. [9] present a VMP algorithm to
reallocate virtual machines in DC Server contingent on the memory usage, the
traffic matrix network, and the overall CPU. The first phase of this VMP algo-
rithm considers collecting data from VMs and DC topology. The second one
focuses on partitioning servers with a higher level of connectivity. The last one
consists of clustering VMs by defining the amount of purchased traffic using
graph theory to manage all the virtual servers. Simulation results prove that
this solution improves network traffic quality and the availability of bandwidth
at DC.

3 Multi-objective Decision Making: Problem Formulation

Based on our literature survey in [3], we analyze the different problems that
may interrupt the VM placement. We classify the existing solutions into five pri-
mary objective functions based on multiple performance metrics such as energy
consumption, quality of service, service level agreement, resource usage, and
incurred cost.

In this paper, we form the problem of virtual machine placement as a multi-
objective decision making (MODM) approach, by optimizing the five objective
functions: (1) Energy consumption minimization, (2) cost optimization, (3) Net-
work traffic minimization, (4) Resource utilization and (5) Quality of service
maximization simultaneously. We consider the available PMs specifications, the
requested VMs, the network traffic between VMs and their current placement
as Inputs, and the new convenient placement as Output. This section presents
a theoretical approach to solve the VMP problem (see Fig. 2).

Given a set of physical machines S = S1, S2..., Sn and a set of virtual
machines V = V1, V2, .., Vm. We are looking for new placement of VMs V on
a set of PMs S while satisfying the constraints and simultaneously optimizing
the five objective functions cited above in a pure multi-objective context.

Each physical machine Si is characterized by a specific processing resources
CPU, RAM memory, storage, and maximum power consumption represented as:

Si = [Scpu
i , Sram

i , Sstor
i , Spmax

i ]; ∀i ∈ {1, 2, .., n} (1)

Each virtual machine Vj needs processing resources of CPU V cpu
j , RAM

V ram
j , and storage V stor

j , providing economic revenue Rj and attributing SLA
to each VM. Consequently, a virtual machine Vj will be represented as:
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Fig. 2. Multi attribute decision making approach

Vj = [V cpu
j , V ram

j , V stor
j , Rj , SLAj ]; ∀j ∈ {1, 2, ..,m} (2)

The network traffic between the requested VMs is represented as follows:

Tj = [Tj1 , Tj2 , .., Tjm ]; ∀j ∈ {1, ..,m} (3)

where Tjk represents the average communication rate in [Kbps], between the
virtual machine Vj and the virtual machine Vk. Note that we can consider Tjj =
0.

3.1 Objective Functions

The five objective functions are mathematically formulated as follows:

Energy Consumption Minimization

Based on [4], the energy consumption of a resource is defined as the sum of the
power consumption of each PM considering a linear relationship with the CPU
utilization:

min g1(x) =
n∑

i=1

[
(Pmax

i − Pmin
i ) · U cpu

i + Pmin
i

] · Ai (4)

where

• g1(x): the total energy consumption of the PMs;
• Pmax

i : is the power consumption at the peak load;
• Pmin

i : is the minimum power consumption in the inactive mode;
• U cpu

i : is the utilization ratio of CPU resources used by Si

• Ai: is a binary parameter equal to 1 if PM turned on, 0 otherwise.
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Cost Optimization

Cloud service providers avoid economic loss generated by failures. Therefore,
based on [22], we adopt the proposed approach of maximizing cloud provider’s
revenue regarding SLA violation cost. We have two cases:

• if Vj is finished without failure: provider will receive revenue:

Rj = cj · tj − Ej (5)

where cj is the price of Vj ; Ej is the execution cost of Vj that can be estimated
through paying site infrastructure Capex and energy costs overall machines,
and tj is the lifetime of VM Vj .

• if Vj is failed: the customer is eligible to receive a refund from the provider,
which is equal to Dj = cj · tj · pSLA, where pSLA is a constant parameter and
indicates the part of the entire invoice that the provider has to deliver.

The expected revenue generated from placing Vj on Si is defined as the following:

Fj = Rj(1 − f i
j) − (Ej + Dj) · f i

j , (6)

where f i
j is the probability of at least one failure occurring on Si in tj .

The problem of maximizing cloud provider’s revenue (minimizing total cost)
is expressed by:

min g2(x) =
n∑

j=1

F̂j · Bj ; (7)

where:

• g2(x): is the total economical revenue for placing VMs; F̂j = −Fj

• Bj : is a binary variable equals to 1 if Vj is located on PM, 0 otherwise.

Network Traffic Minimization

Based on [16], the total network traffic among VMs is defined as the sum of
average network traffic Tjk generated by each VM Vj , which is located to run
on any PM, with other VMs Vk that are located to run on different PMs.

min g3(x) =
n∑

j=1

n∑

k=1

(Tjk · Xjk) (8)

where:

• g3(x): is the total network traffic between VMs;
• Xjk: A binary variable equals to 1 if Vj and Vk are located in different PMs

and 0 otherwise.
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The traffic between two VMs Vj and Vk which are located on the same PM
do not contribute to increase the total network traffic given by Eq. (8).

Resource Utilization

To make effective use of the resources in all dimensions and balance the resource
utilization on each server along different dimensions, we adopt the resource
wastage model proposed in [15]. The unused resources available on each server
may change considerably with different VM placement solutions. The following
equation is adopted to compute the implied cost of wasted resources:

Wi =
|Y p

i − Y m
i | + ε

Zp
j + Zm

j

(9)

where:

• Wi: denotes the resource wastage of the i-th server;
• Y p

i and Y m
i represent the normalized CPU and memory resource usage (i.e.,

the ratio of used resource to total resource);
• Zp

j and Zm
j represent the normalized remaining CPU and memory;

• ε is a very small positive real number and its value is set to be 0.0001;

The related objective function of resource wastage can be expressed by:

min g4(x) =
m∑

i=1

Wi (10)

Quality of Service Maximization

Quality of Service maximization is achieved when locating maximum number
of VMs with highest SLA level of priority. We use the same equation proposed
in [16] aiming to minimize SLA violations by using the highest level of priority
SLAi:

min g5(x) =
n∑

j=1

CSLAj · SLAj · Bj . (11)

where:

• g5(x): is the total QoS function for a given placement;
• C: is a constant, sufficiently large, to give priority to services with a higher

SLA over those with a lower SLA. Otherwise, if the constant C had small
value, g5(x) might choose a large number of VMs with a lower priority, which
is not correct, considering the intended purpose in Eq. (11).

3.2 Constraints

PMs Capacity. A PM must have sufficient available resources to meet the
requirements of all VMs. The capacity constraints can be mathematically for-
mulated as:
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h1(x) :
m∑

j=1

V cpu
j · Pji − Scpu

i � 0 (12)

h2(x) :
m∑

j=1

V ram
j · Pji − Sram

i � 0 (13)

h3(x) :
m∑

j=1

V stor
j · Pji − Sstor

i � 0 (14)

SLA Provisioning. A virtual machine Vj with decisive SLA (i.e., SLAj = 1)
must certainly be located to run on a physical machine Si. Consequently, this
restriction is expressed as:

h4(x) :
n∑

i=1

Sji = 1 ∀j such that SLAj = 1 (15)

Where:

– SLAj : Service Level Agreement SLAj = 1 if Vj is critical, or 0 otherwise.

Unique Placement of VMs. A VM Vj should be located to run on a single
PM. Alternatively, it could not be located in any PM if the associated SLAj is
not the highest level of priority. Consequently, this constraint is expressed as:

h5(x) :
n∑

i=1

Sji − 1 � 0 (16)

where Sji is a binary variable that equals 1 if Vj is located to run on PM;
otherwise, it is 0.

3.3 Output Parameters

Solution should indicate the placement of each virtual machine Vj on the neces-
sary physical machine Si, considering the multi-objective optimization criteria.
A placement is represented as a matrix S = Sji of dimension (m × n), where
Sji ∈ {0, 1} indicates if the virtual machine Vj is located (Sji = 1) or not
(Sji = 0) for execution on a physical machine Si (i.e., Sji: Vj → Si).

4 Solving MODM Problem

4.1 Scalarization Method

The general multi objective decision making problem can be presented as follows:
{

g(x) = [g1(x), g2(x), g3(x), g4(x), g5(x)]
Subjectto hi(x) with i ∈ {1, 2, 3, 4, 5} (17)
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The idea of finding a solution for (18) would be challenging since a single
point that minimizes all objective functions simultaneously often doesn’t exist. In
this context, we normalize each objective function by computing the normalized
objective function cost ĝi(x) as:

ĝi(x) =
gi(x) − gi(x)min

gi(x)max − gi(x)min
(18)

Based on previous works [12], different scalarization methods can be used to
solve the multi-objective optimization approaches as Benson’s method, Weighted
Tchebyshev method, Pascoletti-Serafini method, Weighted sum method (WS),
Euclidean Distance (ED), etc. In [5], the efficient method for VMP placement
was ED, while in [12], authors recommend the Tchebychev method, and as per
[19] and [16], the often-used method is Weighted sum. In this paper, we consider
the Conic Scalarization (CS) method detailed in [14]. The concept of this method
is straightforward: (i) choosing preference parameters which consist of weights
of objective functions and a reference point for these objectives and (ii) solving
the scalar optimization problem.

Consider the multi-objective virtual machine placement that aim to simul-
taneously minimize the five objective functions as follows:

Minimise g(x) = [g1(x), g2(x), g3(x), g4(x), g5(x)]
First, choose preference parameters:

– Weight vector ω = ωi: denotes the importance degree associated to each i-th
objective function for decision maker, where i ∈ {1, .., 5}.

– Reference point r = (r1, r2, .., r5): identified by decision maker to compute
the minimal elements and can be chosen arbitrarily.

Second, choose an augmentation parameter α such that (ω, α) ∈ C, where:
C = ((ω1, .., ω5), α) : 0 � α � ωi, ωi > 0, i = {1, .., 5}
The scalar problem for the given parameters (ω, α) and r is:

min
5∑

i=1

ωi(ĝi(x) − ri) + α

5∑

i=1

|ĝi(x) − ri| (19)

In this work, the weight ωi is constant ( 15 ). In the case where α = 0, the scalar-
ization method (20) becomes that of the weighted sum method.

4.2 Algorithms

This subsection presents the proposed alternatives used in our experiments to
solve the VMP problem comparing the four online algorithms (FF, FFD, BF,
BFD) against the offline algorithm ACO based memetic algorithm with VM
migration.

• First-Fit (FF): This algorithm places VMs according to the first in first
out (FIFO) basis where requested VMs are allocated on the first host with
available resources [11].
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• First-Fit-Decreasing (FFD): The FFD algorithm works in a similar way
to the FF algorithm presented above. It aligns VMs in the decreasing order,
then finds and places servers with available resources to place VMs [2].

• Best-Fit (BF): This algorithm assigns the VMs required on the first PM
with the available capacity from a sorted list of PMs in ascending order by a
rating associated to each PM [2].

• Best-Fit-Decreasing (BFD): This algorithm is similar to BF. The dif-
ference is only on selecting VM lists in decreasing order by inquired CPU
resources [2].

• Memetic Algorithm (MA): The term Memetic Algorithm describes popu-
lation based hybrid evolutionary algorithms that are coupled with local refine-
ment strategies, more details are presented in [20].

• Ant Colony Optimization (ACO): The ACO based algorithm is intro-
duced as an instance of the multi-dimensional bin-packing problem [17].

5 Test Environment

Fig. 3. Test environment

Experiments were conducted on a GNU Linux System with an Intel(R) Xeon(R)
E3-1505M at 2.80 GHz CPU and 32 GB of RAM. Figure 3 shows an overview
of the test environment. The proposed algorithms were developed by Java pro-
gramming language. Unfortunately, it’s not feasible (at least expensive) to test
the VM placement based on real traces for a large-scale environment. In this
paper, we use uncertain workload traces similar to real-world ones. We import
data files of a particular format, to convert workload traces to the given format,
and create test data in the given format. Physical resources comprise a diver-
sified IaaS cloud, taking into account four categories of physical machines (i.e.,
small, medium, large, and xlarge), as presented in Table 1.
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In this paper, we compare different algorithms in online and offline envi-
ronments for various CPU load types. Simulation results presented in Table 2
prove the performance of BFD in both medium and high CPU load compared to
other dynamic placement algorithms, while BF is the best one for low CPU load.
On the other hand, one can see the ACO algorithm yields good results for all
CPU load sizes. We can conclude that ACO based memetic algorithm is better
then deterministic algorithms, otherwise the offline placement outperforms the
online one. In Fig. 4, we compare the results of the conic scalarization method for
MODM problem, considering different values of the augmentation parameter α
(0.01, 0.05, 0.1,0.15, 0.2) less than ω = 1

5 . We see that the more α tends towards
ω, the better results are obtained for all algorithms.

Fig. 4. Normalized objective functions for different values of augmentation parameter
α (scale x100)

As a perspective, in the future work, we propose to combine the online and
offline placement, and compare the CS method to other scalarization methods.

Table 1. Types of physical machines

PM characteristics CPU RAM Network Pmax(W )

S.small 32 128 1000 500

S.medium 64 256 1000 1000

S.large 256 512 1000 2000

S.xlarge 512 1024 10000 4000



MODM for Virtual Machine Placement 165

Table 2. Normalized objective functions of evaluated algorithms

Algorithm Low CPU load Medium CPU load High CPU load

First-Fit 0.675 0.733 0.972

First-Fit decreasing 0.703 0.742 0.965

Best-Fit 0.653 0.723 0.846

Best-Fit decreasing 0.685 0.721 0.837

ACO 0.595 0.654 0.683

6 Conclusion

We consider the VMP problem as a multi-objective decision-making approach
that aims to optimize simultaneously five objective functions: energy consump-
tion, cost optimization, network traffic, resource utilization, and QoS. The opti-
mization problem is solved based on a conic scalarization method. Simulation
results show that ACO based-memetic gives good results compared to FF, BF,
FFD, and BFD. However, offline algorithms can’t be used in a pure dynamic
environment. Therefore, our future will consider a combination of both offline
and online placement algorithms.
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