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Preface

This volume in the Communications in Computer and Information Science series
(CCIS, volume 1354) is a collection of the papers accepted for the 10th International
Conference on NETwork Games, COntrol and OPtimization (NetGCooP 2020). The
event was originally planned to take place in Cargèse, Corsica, France during March
18–20, 2020, but due to the recent COVID-19 pandemic the conference was postponed
to September 22–24, 2021. Because of the exceptional circumstances, and to ensure
timely dissemination of the contributions by the authors that would normally have been
presented last March, we decided to publish the accepted papers before the event.

Networks form the backbone of many complex systems, ranging from the Internet to
social interactions. The proper design and control of networks have been long-standing
issues in various engineering and science disciplines. The vision of the conference is to
provide a platform for researchers to share novel ideas and network applications in the
areas of control and optimization. From an application point of view, the 2020 edition
focused on resource allocation, energy markets, and opinion dynamics. And from a
theoretical point of view, we received and accepted papers concerning learning in
games, the value of information in games, and how to design robust defense strategies.

The program for NetGCooP 2020 comprised 14 papers (3 short papers and 11
regular papers) selected from submissions received through open calls, and an addi-
tional 15 papers selected from submissions received via invitation. We would like to
thank the authors for having done their best to produce works of high quality and for
having supported the difficult decisions that the organizers were forced to make
because of the challenging situation. Moreover, we would like to thank the reviewers
and the Technical Program Committee (TPC) members for providing reviews of
quality in spite of the challenges created by the pandemic.

June 2021 Samson Lasaulce
Panayotis Mertikopoulos

Ariel Orda
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On the Existence and Uniqueness of Nash
Equilibria in MIMO Communication

Games with a Jammer

K. Clay McKell1(B) and Gürdal Arslan2

1 California Polytechnic State University, San Luis Obispo, CA, USA
kmckell@calpoly.edu

2 University of Hawai’i at Mānoa, Honolulu, HI, USA
gurdal@hawaii.edu

Abstract. This paper models multiple users of a multiple-input
multiple-output communications channel and a jammer as players in a
competitive game. When users maximize their quality of service and the
jammer strives to minimize the aggregate quality of service in the net-
work with all players subject to a power constraint, we show that a pure
Nash equilibrium always exists. Under assumptions on channel structure,
including no user-user interference, we show that there can be at most
one Nash equilibrium where a user transmits on all of its subchannels.
A similar but weaker result holds for channels with limited amounts of
user-user interference.

Keywords: Multi-user MIMO · Jammer · Nash equilibrium

1 Introduction and Game Theoretic Model

We consider a single communication channel that is shared by r users, R =
{1, . . . , r}, each comprising a transmit/receive pair. When the transmitter and
receiver have multiple antennae, Nt and Nr, respectively, the channel is said to
be multiple-input multiple-output (MIMO). The multiple paths that information
streams can travel are referred to as subchannels. When Nt = Nr and if there is
no interference between subchannels, they are said to be orthogonal. In general,
however, the channel inputs may interfere with each other (constructively or
destructively).

Regarding notation: we use H
n to denote the set of n-dimensional Hermitian

matrices. If X ∈ H
n, then X � 0 (X � 0) means that X is positive semidefinite

(definite). The trace of a matrix is denoted TrX and the conjugate transpose is
X†. We use σ(Y ) to denote the maximum singular value of Y and λ(X) for the
minimum eigenvalue of Hermitian X.

We model the channel users’ objectives as their information throughput sub-
ject to an average power constraint. A utility game is then a set of agents,
P = R ∪ {0}, a set of channel matrices, {Hj,k}P×R, and a vector of positive

c© Springer Nature Switzerland AG 2021
S. Lasaulce et al. (Eds.): NetGCooP 2021, CCIS 1354, pp. 3–7, 2021.
https://doi.org/10.1007/978-3-030-87473-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87473-5_1&domain=pdf
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4 K. C. McKell and G. Arslan

power constraints c ∈ R
r+1. Gaussian interference implies that a zero-mean

Gaussian codebook is the optimal encoding scheme [5], so the strategy set for
each agent k ∈ P is the set of positive semidefinite covariance matrices with
bounded power: Sk = {Qk ∈ H

Nt : Qk � 0,Tr Qk ≤ ck} . A joint action is
then a vector of all agent actions: Q = {Qk}k∈P . Let each user k have a utility
function equal to the mutual information between its transmitter and receiver
(as in [8]):

uk(Q) = log
∣
∣
∣

(

I + R
−1/2
k (Q)Hk,kQkH

†
k,kR

−1/2
k (Q)

)∣
∣
∣ , (1)

where Rk(·) is the noise-plus-interference from agents other than k:

Rk(Q) = I +
∑

j∈P\{k}
Hk,jQjH

†
k,j . (2)

The jammer, however, strives to minimize the total mutual information across
the network. This is equivalent to maximizing Ju(Q) = −∑

k∈R uk(Q).
To apply Rosen’s theorems on concave games played over real strategy sets

[6], we will frequently view Nt-dimensional Hermitian matrices as real 2N2
t vec-

tors using the reshaping for X ∈ H
Nt ,

−→
X = [vecT (Re X) , vecT (Im X)]T ∈ R

2N2
t ,

where vec(·) is the standard vectorization operator that vertically concatenates
the columns of its argument.

The existence and uniqueness of equilibria in this game with full-rank chan-
nel matrices and small interference levels in the absence of a jammer was shown
in [1]. Restricted to square nonsingular channel matrices, [7] provided sufficient
conditions for uniqueness—including explicit bounds on interference levels. Sim-
ilarly, [3] gave conditions for equilibrium uniqueness in the presence of a jammer
but restricted agents to orthogonal subchannels. This paper aims to bridge the
gaps between these works.

2 Existence of Equilibria

Not all games have pure Nash equilibria. In this section, we use results on concave
games [6] to guarantee the existence of pure equilibria for any channel condition.

Theorem 1. For any vector of costs and any set of channel matrices, the utility
game possesses a pure Nash equilibrium.

Proof. For all k ∈ P, the strategy set Sk is compact, convex, and nonempty.
Furthermore, uk(Q) is continuous in Q, concave in Qk, and convex in Q0 for all
k ∈ R. As the negative sum of these functions, Ju(Q) is continuous in Q and
concave in Q0. Thus the existence result for concave games in [6] applies.
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3 Uniqueness of Equilibria

The classical tool for showing the uniqueness of an equilibrium in concave
games is to employ Rosen’s sufficient condition for diagonal strict concav-
ity which requires the symmetrized pseudohessian matrix of a game be nega-
tive definite when evaluated at any point in the joint action set. The utility
game does not meet this (rather restrictive) sufficient condition. The pseu-
dohessian matrix, G(Q), for a utility game comprises blocks Gk,j(Q) where
Gk,j(Q) = ∇−→

Qj
∇−→

Qk
uk(Q), for all (k, j) ∈ R × P and G0,j(Q) = ∇−→

Qj
∇−→

Q0
Ju(Q),

for all j ∈ P. Even utility games with “nice” channel structure—invertible user
and jammer-user matrices with no user-user interference—may fail to meet this
condition. Under certain conditions, the set of joint actions in a utility game
that satisfy the KKT optimality conditions outlined in Rosen’s proof is a single-
ton. There is a natural split in this analysis between the case were users do not
interfere with each other—termed zero cross-talk—and the case in which each
user sees all manner of interference.

We define a zero cross-talk channel to be one which for every k ∈ R, Hk,j = 0
for all j ∈ R\{k}. In games played on these channels, each user sees ambient
noise and interference from the jammer but is unaffected by the other users.

Theorem 2. In addition to being a zero cross-talk channel, assume the channel
matrices meet the following conditions for all k ∈ R:

rankHk,k = Nt (3a)
rankHk,0 = Nt. (3b)

Then for any budget c the set of equilibria of the utility game will have one of
the following properties:

1. It is a singleton, Q̂, in which Q̂k � 0 for at least one k ∈ R, or
2. It may contain multiple equilibria, but no equilibrium will have positive defi-

nite user action for any user.

Proof. Assume there are two equilibria, Q0 and Q1 and that Q0 possesses a
nonempty set of users with positive definite equilibrium actions. Define Q(θ) =
θQ1 +(1−θ)Q0. The KKT conditions that must hold at both of these equilibria
require that

∫ 1

0

(−→
Q1 − −→

Q0
)T

[G(Q(θ) + G (TG(Q(θ))]
(−→
Q1 − −→

Q0
)

dθ = 0. (4)

To produce a contradiction, it suffices to show that Ḡ(Q(θ)) = G(Q(θ)) +
G (TQ(θ)) is a negative real quadratic form over vectors drawn from {−→Z : Z ∈
∏

k∈P H
Nt}. Under the zero cross-talk assumption, all off-diagonal blocks of Ḡ(·)

are zero. As in [1], for k ∈ R the k-th diagonal block of the pseudohessian is
negative definite for all joint actions.
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The directional derivative of the jammer’s component of the pseudogradient
when Q0 is perturbed in the direction Z0 ∈ H

Nt is

D (DJu(Q;Z0);Z0) =

−
∑

k∈R
Tr H†

k,0

(

R−1
k Hk,0Z0H

†
k,0R

−1
k − A−1

k Hk,0Z0H
†
k,0A

−1
k

)

Hk,0Z0,(5)

where Rk is defined in (2) and Ak = Rk + Hk,kQkH
†
k,k. From this summation,

select term k̂ where Q0
k̂

� 0 and write it as

Tr A
−1/2

k̂
Z̃0

(

A−1

k̂
− R−1

k̂

)

Z̃0A
−1/2

k̂
+ Tr R

−1/2

k̂
Z̃0

(

A−1

k̂
− R−1

k̂

)

Z̃0R
−1/2

k̂
, (6)

where we have substituted the Hermitian Z̃0 for Hk,0Z0H
†
k,0. Since rankHk,k =

Nt for all users, Ak̂(Q(θ)) � Rk̂(Q(θ)) over 0 ≤ θ < 1. Inversion reverses this
ordering so the k̂ term in the sum is strictly negative. Thus we can conclude that
(−→
Z0

)T

G0,0(Q(θ))
−→
Z0 < 0 for all 0 ≤ θ < 1, which means the two implications of

the theorem are mutually exclusive.

We now endeavor to generalize Theorem 2 to instances with nonzero cross-talk
between the users. For any collection of channel matrices the pseudohessian can
be decomposed: ḠCT(Q) = ḠZCT(Q)+G̃(Q), where ḠZCT(·) is the pseudohessian
from Theorem 2. The cross-talk channel matrices do not change the diagonal
blocks of the perturbation: G̃k,k(Q) = 0 for all k ∈ P. We will bound the effect
on ḠCT(Q) of the user-user interference channels with the largest maximum
singular value of those matrices: σc = max(k �=j)∈R×R σ(Hk,j).

Theorem 3. For any budget c, assume the channel matrices of the utility game
obey (3). For any ε > 0, there is a σ̂c > 0 such that if σc < σ̂c, there can be at
most one equilibrium Q with the property that λ(Qk) > ε for some k ∈ R.

Proof. Assume that there are two Nash equilibria, Q0 and Q1, that have
nonempty sets of users with minimum eigenvalues greater than ε, and again
define Q(θ) as the convex combination of Q0 and Q1. As in Theorem 2,
ḠZCT(Q(θ)) is negative definite with respect to Hermitian matrices for all
0 ≤ θ ≤ 1. To generate a contradiction with the KKT conditions in the nonzero
cross-talk case, it suffices to provide a tight enough bound on

(−→
Z

)T

G̃(Q(θ))
−→
Z ,

provided Z is drawn from a compact set. To this end, we use [2] to bound

σ(G̃(Q(θ))) ≤ max
k∈P

∑

j∈P\{k}
σ(G̃k,j(Q(θ))). (7)

For row k ∈ R and column j ∈ R\{k} we have

σ(G̃k,j(Q(θ))) ≤ σ2 (Hk,k) σ2 (Hk,j) + σ2 (Hj,j) σ2 (Hj,k) , (8)
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and the jammer’s block in this row can be bounded

σ(G̃k,0(Q(θ))) ≤
∑

j∈R
j �=k

σ2 (Hj,0) σ2 (Hj,k) . (9)

If all user-user channel matrices have singular values no larger than σc, then
(−→
Q1 − −→

Q0
)T

G̃(Q(θ))
(−→
Q1 − −→

Q0
)

(10)

can be resticted in magnitude without knowledge of Q0 and Q1 by appropriate
choice of σ̂c. This guarantees ḠCT(Q(θ)) remains negative definite with respect
to Hermitian matrices for all 0 ≤ θ ≤ 1, which produces a contradiction on the
assumption that two Nash equilibria exist with user actions more than ε away
from singularity.

Theorems 2 and 3 are consistent with the literature. In [3], the authors
observe that for their generalized iterative water-filling algorithm to converge
in a jammed multi-user MIMO network (limited to orthogonal subchannels),
the users should not play singular actions. In future work, we shall attempt to
provide distributed algorithm convergence results in the vein of [4] when the
equilibrium is unique.
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Abstract. The game-theoretic analysis of Energy Efficiency (EE) game
is known to be difficult due to the non-convexity of EE-utility, especially
for tracing the Nash Equilibrium in MIMO system. In this paper, The
existence and the uniqueness of the Nash Equilibrium (NE) is affirmed
for a MIMO multiple access channel (MAC) communication system and
a bisection search algorithm is designed to find this unique NE. Despite
being sub-optimal for deploying approximate best response, the policy
found by the proposed algorithm is shown to be more efficient than the
classical allocation techniques. Simulation shows that even the policy
found by proposed algorithm might not be the exact NE of the game,
the deviation w.r.t. to the exact NE is small and the resulted policy
actually Pareto-dominates the unique NE of the game.

Keywords: Energy efficiency · MIMO · Nash equilibrium

1 Introduction

Energy Efficiency (EE) is one of key performance of the next generation net-
work system (5G and beyond) due to the exponential increase of connected
devices. However, a proportional increasing of the power resulted by the goal of
increasing the transmission rate 1000 times than 4G will lead to an unimaginable
energy demand. Therefore energy-efficient design of the wireless system draws
both the attention of industrial and academic researchers. One of the pioneer
works of studying the maximization of EE in MIMO system is [6]. In [6], the
optimal precoding scheme is studied and divided into different cases with dif-
ferent assumptions on the systems. Till now the optimal precoding matrix for
general condition is merely conjectured and unproved. Then It is later widely

This work was funded by the RTE-CentraleSupelec Chair on “Digital Transformation
of Electricity Networks”.
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realized that the problem of EE maximization actually belongs to the category
of fractional programming. Techniques such as Dinkelbach’s algorithm (see [8])
is used to solve EE maximization in [10,11]. The main difficulty of EE maximiza-
tion OP is usually due to the non-convexity of the fractional structure of the EE
function. The situation is even worse involving the decentralized EE problems
or EE games. The main difficulty lies in the traceability of NE due to the high
non-convexity of EE-type utility function. To the best knowledge of authors, NE
is rarely considered and studied in EE games, especially for MIMO System. In
[4], it is shown that there always exists an unique NE for scalar power allocation
game in a relay-assisted MIMO systems due to the standard property of the best
response dynamics. Similar results will be given in a MAC-MIMO system latter.

The contribution of this paper is twofold: 1) we first extend the state-of-the-
art work from a scalar power situation to a more general situation where each
user is allowed to choose its covariance matrix to maximize its individual EE.
The existence and uniqueness of the NE is proved under some assumptions. 2) An
algorithm is proposed to find the unique NE of this MIMO-MAC game. When
the number of antennas of transmitter is equal the one of receiver, proposed
algorithm leads to exact NE. Otherwise it only leads to approximated solution
for replacing the exact best response dynamic by its linear approximation.

Notations: (·)H and (·)† denote matrix transpose and Moore-Penrose inverse
respectively. IN stands for identity matrix of size N . det (·) and Tr (·) denote the
determinant and the trace of a matrix respectively. Denote the natural number
set inferior or equal than N as [N ] � {1, . . . , N}.

2 System Model

Consider a multiple access channel (MAC) with one base station (BS) and K
users (players) to be served. BS is equipped with Nr receive antennas and each
user terminal is equipped with Nt transmit antennas. We assume a block fading
channel where the realization of channel remains a constant during the coher-
ence time of transmission and randomly generated according to some statistic
distribution from period to period. The received signal at BS is given by:

y =
K∑

k=1

Hkxk + z, (1)

where Hk ∈ C
Nr×Nt is the channel transmit matrix of k-th user. Each entry

is assumed to be i.i.d. complex Gaussian distributed according to CN (0, 1).
xk = (xk,1, . . . , xk,Nt

)T is the transmit symbol of k-th user and z is the noise
observed by the receiver with complex Gaussian distribution CN (

0, σ2INr

)
. For

the sake of simplicity, we assume that single user decoding is implemented for
each user. Then the capacity achieved by the k-th user is

Rk = log
det

(
σ2INr

+
∑K

j=1 HjQjHH
j

)

det
(
σ2INr

+
∑K

j �=k HjQjHH
j

) , (2)
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where Qk = E
[
xkx

H
k

] ∈ C
Nt×Nt is the covariance matrix of symbol xk and

Pc > 0 is the power dissipated in transmitter’s circuit to operate the devices.
It is reasonable to assume that each user has perfect knowledge about its own
channel, e.g., through downlink pilot training. Therefore user k is able to perform
the singular value decomposition (SVD) of its own channel Hk and its covariance
matrix Qk: Hk = UkΛkVH

k and Qk = WkPkWH
k respectively. To simplify

the problem, we assume that user k always adapts its covariance matrix to
Hk, i.e., choosing Wk = Vk. Pk is a diagonal matrix with Pk = diag (pk) =
diag (pk1, . . . , pkNt

) where we use diag (·) to generate a diagonal matrix from a
vector or vice versa. Thus user k’s only legal action is represented by pk or Pk

and the action set of k-th user is Pk =
{
pk

∣∣∣
∑Nt

i=1 pki ≤ P k, pki ≥ 0
}

with P k is

power budget of k-th user. Further more, we denote p =
(
pk,p−k

)
with p−k �(

p1, . . . ,pk−1,pk+1 . . . ,pK

) ∈ P−k and P−k � P1×· · ·×Pk−1×Pk+1×· · ·×PK .
In this paper energy efficiency defined as the ratio between a benefit function
and the power consumed by producing it has the following expression for user k
after some simplifications:

uk (Pk,P−k) =
log

det(σ2INr+
∑K

j=1 UjΛjPjΛ
H
j UH

j )
det(σ2INr+

∑K
j �=k UjΛjPjΛH

j UH
j )

Tr (Pk) + Pc
(3)

To this end, the MIMO MAC EE game is thus given by the following strategic
form in triplet:

G =
(K, (Pk)k∈K , (uk)k∈K

)
(4)

3 Main Results

Some important properties satisfied by individual utility function are resumed
in the following proposition:

Proposition 1. Rk is a concave functions w.r.t. pk and uk is a pseudo-concave
(quasi-concave) function w.r.t. pk for ∀k ∈ K; For any fixed p−k ∈ P−k and pkj

with j �= i, only one of following statements is true for all i ∈ [Nt]:

i) ∃ p�
ki > 0 s.t. uk is an increasing function in (0, p�

ki) and a decreasing function
in (p�

ki,+∞) w.r.t. pki.
ii) uk is a decreasing function in (0,+∞) w.r.t. pki.

Proof. The proof is omitted here for lack of space. For more details, see [1,3].

Before stating the best response dynamics of the game, we define the fol-
lowing boundary of set Pk indicated by an index subset E ⊂ [Nt] : Pk [E ] �
{pk ∈ Pk, pki = 0 for i ∈ E} and the non-positive index set for a given action
Pk: I (Pk) � {i ∈ [Nt] s.t. pki ≤ 0}. We having the following proposition con-
firming the existence of NE in this game:
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Proposition 2. For any given P−k and provided that the power budget P k is
sufficiently large, denote the unique solution of the following equation as P∗

k:

diag
(
ΛH

k

(
ΛkPkΛH

k + Fk + σ2Ir

)−1
Λk

)
= uk (Pk,P−k) INt

(5)

with Fk =
∑

j �=k Sj,kPjSH
j,k is the interference matrix of k-th user with Sj,k =

UH
k UjΛj. Then the BR of Pk w.r.t. P−k is standard and converges to the unique

NE admitted by game (4); The BR is the unique solution of (5) restricted to the
boundary of Pk indicated by I (P∗

k).

Proof. The proof is omitted here for lack of space. For more details, see [1,3].

4 Algorithm for Finding NE

Proposition 2 actually provides an approach for us to find the NE of the game
(4). One can easily deduce an iterative equation according to (5):

diag
(
ΛH

k

(
ΛkP

(t)
k ΛH

k + F(t−1)
k + σ2Ir

)−1

Λk

)
= uk

(
P(t−1)

k ,P(t−1)
−k

)
INt

(6)

However, due to Proposition 2, this stationary point might not be in the
feasible action set. Nevertheless, one can design the following basic algorithm
to find NE of the game (4) based on Proposition 2 summarized in Algorithm
1. However, Algorithm 1 is not a satisfatory way to find the NE of the game.

Algorithm 1. Basic Algorithm for finding NE of MAC-MIMO EE game

Initialization: P
(0)
k = 1

Nt
INt , ∀k. Choose T and ε

For t = 1 to T , do
For k = 1 to K, do

Compute P
(t)
k using (6)

If I
(
P

(t)
k

)
�= ∅

Compute P
(t)
k using (6) restricted to I

(
P

(t)
k

)

End If
End For
If

∑
k

∥∥∥P(t)
k − P

(t−1)
k

∥∥∥ < ε

Break
End If

End For
Output: PNE

k = P
(t)
k for ∀k.



12 H. Zou et al.

More precisely, to find the BR for given P−k, one actually need to solve an
optimization problem. However, if h = U (P−k) = maxPk∈Pk

uk (Pk,P−k) is
known as a priori information, (6) can be transformed into following equation:

diag
(
ΛH

k

(
ΛkP

(t)
k ΛH

k + F(t−1)
k + σ2Ir

)−1

Λk

)
= hINt

(7)

Introducing an auxiliary parameter h, one obtains an iterative equation of Pk.
Without loss of generality, we assume that the solution of (6) belongs to the
feasible action set for given P−k. Otherwise, similar analysis can applied for Pk

but restricted on a boundary given by Proposition 2. For the sake of simplicity,
we omit the discussion here and restrict ourselves to the situation where the
BR is strictly included in the interior of the feasible action set. Therefore for
all i ∈ [Nt], there exists p�

ki such that individual utility function uk (Pk,P−k)
is an increasing function in (0, p�

ki) and a decreasing function in (p�
ki,+∞) with

respect to pki, where p�
ki is the i-th component of user k’s BR for given P−k.

Then uk is also an increasing function in (0, U (P−k)) and a decreasing function
in (U (P−k) ,+∞) w.r.t. parameter h. In other words, to find Pk = BR (P−k), it
is sufficient to find U (P−k) by a bisection search due to the special monotonicity
of the utility function.

However, it is worth mentioning that it is still difficult to directly find the
solution of iterative Eq. (7). Because this solution is actually implicitly given.
We would like to further simplify (7) to facilitate the calculation of BR or NE.
To start with, we assume that Nt = Nr. Firstly, we remove the diagonal operator
of LHS of (7). Therefore we have:

P(t)
k =

1
h
INt

− Λ−1
k

(
F(t−1)

k + σ2INr

)
Λ−1

k (8)

If Nt > Nr or Nt < Nr then Λk is not directly invertible, then we should
consider the pseudo-inverse matrix of Λk. Without loss of generality, we assume
that Nt > Nr, denoting the right pseudo-inverse of Λk as Λ†

k, one thus obtain:

ΛH
k

(
ΛkP

(t)
k ΛH

k + F(t−1)
k + σ2Ir

)−1

Λk = hINt

(
ΛkP

(t)
k ΛH

k + F(t−1)
k + σ2Ir

)−1

= h
(
Λ†

k

)H

Λ†
k (9)

However, it is generally impossible to have Λ†
kΛk = INt

. Thus the equality

does not always holds when we multiply Λ†
k on left and

(
Λ†

k

)H

on the right
on both sides of the equation. Nevertheless, this operation will yield a linear
approximation of the BR dynamics:

P̂(t)
k =

Λ†
k

[(
Λ†

k

)H

Λ†
k

]−1 (
Λ†

k

)H

h
− Λ†

k

(
F(t−1)

k + σ2INr

) (
Λ†

k

)H

(10)

Similarly, if Nt < Nr we can obtain exactly same iterative equation as (10).
This type of dynamics belongs to the so-called ε-approximate best response. To
this end, we obtain a sub-optimal algorithm summarized in Algorithm 2 by using
the iterative equation deduced in (10) instead of using (6).
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Algorithm 2. Bisection Search Algorithm for find the NE of MAC-MIMO EE
game

Initialization: P
(0)
k = 1

Nt
INt , ∀k. choose T , ε1 and ε2

For t = 1 to T , do
For k = 1 to K, do

Initialization: h = 0 and h = hmax

Repeat Until h − h ≤ ε1

hM = h+h
2

, hL = max
{
0, hM − ε1

2

}
and hR = min

{
hmax, hM + ε1

2

}
Compute Pk (hi) using (10), i ∈ {L, M, R}
Ui = uk

(
Pk(hi),P

(t−1)
−k

)
, i ∈ {L, M, R}

If UL < UM < UR

h = hL

Else If UL > UM > UR

h = hR

End If
Else

h = hL and h = hR

End If
Compute P

(t)
k by (10) with h = hM

End For
If

∑
k

∥∥∥P(t)
k − P

(t−1)
k

∥∥∥ < ε2

Break
End If

End For
Output: PNE

k = P
(t)
k for ∀k.

5 Numeric Results

The goal of this part is to show the performance of the proposed algorithms.
Notice if Nt = Nr, (10) degenerates to (8) which conserves the optimality of
best response. For this situation, we choose Nt = Nr = 2 with K = 2 users.
A sufficient large power budget is chosen such that the BR is included in the
feasible action set P k = 10mW for ∀k ∈ {1, 2} and the circuit power is Pc =
1mW. The error tolerated for Algorithm 2 is ε1 = ε2 = 0.001. In Fig. 1, the
achievable utility region, the average performance under NE found by Algorithm
2 and the averaged performance achieved by uniform power allocation (UPA)
are depicted. All results are averaged over 1000 randomly generated channel
samples. It is observed that the performance achieved by deploying uniform
power allocation (UPA) is Pareto-dominated by NE which can be found by
Algorithm 2. Furthermore, the NE found by Algorithm 2 is close to the Pareto
frontier achieved by some centralized algorithms which suggest the efficiency
using Algorithm 2 is higher than UPA.

Moreover, define the social welfare for a given action profile as w (p) =∑
k∈K uk

(
pk,p−k

)
. Then the average social welfare as function of the power

budget of user in Fig. 2 respectively. There are two different regions for social
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Fig. 1. Energy Efficiency under NE and uniform power allocation with Nt = Nr = 2
for 2-user situation. Policy found by our algorithms outperforms than UPA policy.
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Fig. 2. Performance under NE and UPA as function of the power budget of user with
Nt = Nr = 2 for 2-user situation. There are two different regions: one corresponds
to Proposition 2. In the region uncovered by Proposition 2, proposed algorithm still
dominates UPA.

welfare. In the first region where the power budget is sufficiently large, the NE
found by our proposed algorithm is independent of the power budget while the
performance of UPA is decreasing w.r.t. the increase of the power budget. In the
second region where Proposition 2 is no more valid in this region. Nevertheless,
the performance achieved by our algorithm is still better than UPA. Then a
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more probable situation is considered where Nt < Nr meaning that the number
of antennas in user terminal is less than the one in base station. The discussion
in Sect. 4 shows that the proposed suboptimal algorithm is actually suboptimal
due to the usage of ε-approximate best response. For numeric demonstration,
we choose Nt = 2 < Nr = 4. The performance of Algorithm 2 is illustrated
in Fig. 3. The sub-optimality is clearly demonstrated in this figure. However,
the resulted policy actually Pareto-dominates the exact NE found by Algorithm
1 and the dispersion is relatively small in terms of average performance. This
remark entails that even the policy found by Algorithm 2 is not the NE of the
game in its sub-optimal region however its performance does slightly outperforms
the exact NE.
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Fig. 3. Performance achieved by Algorithm 1 (NE) and Algorithm 2 (Approximate
NE) and UPA with Nt = 2 and Nr = 4 for 2-user situation. Approximated solution
found by Algorithm 2 is very near to the exact NE and Pareto-dominates it. Moreover,
two policies found by proposed algorithms both outperform UPA.

6 Conclusions

In this paper, a game where the individual utility function is the energy efficiency
in a MIMO multiple access channel system is considered. The existence and the
uniqueness of Nash Equilibrium is proved and an exact algorithm and a sub-
optimal algorithm is proposed to find the NE of this game. Simulation results
show that performance under NE found by proposed algorithms is always better
than uniform power allocation policy for both inside or outside the range covered
by the main proposition of the paper. Besides, our sub-optimal algorithm by
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deploying an ε-approximate best response yields surprisingly a policy Pareto-
dominates the exact NE of the game. Other techniques such as pricing might be
useful to improve the efficiency of the overall system. The situation where each
user is allowed to freely choose its covariance matrix merely constrained to the
maximum power is the natural extension of this paper. Moreover, the discussion
over the effect of successive interference cancellation and multiple carrier seems
to be complicated and serve as the challenge of the future works.
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Abstract. In wireless communication, the full potential of multiple-
input multiple-output (MIMO) arrays can only be realized through opti-
mization of their transmission parameters. Distributed solutions dedi-
cated to that end include iterative optimization algorithms involving the
computation of the gradient of a given objective function, and its dissem-
ination among the network users. In the context of large-scale MIMO,
however, computing and conveying large arrays of function derivatives
across a network has a prohibitive cost to communication standards. In
this paper we show that multi-user MIMO networks can be optimized
without using any derivative information. With focus on the through-
put maximization problem in a MIMO multiple access channel, we pro-
pose a “derivative-free” optimization methodology relying on very lit-
tle feedback information: a single function query at each iteration. Our
approach integrates two complementary ingredients: exponential learn-
ing (a derivative-based expression of the mirror descent algorithm with
entropic regularization), and a single-function-query gradient estimation
technique derived from a classic approach to derivative-free optimization.

Keywords: Derivative-free optimization · Zeroth-order optimization ·
Exponential learning · MIMO systems · Throughput maximization ·
SPSA

1 Introduction

The appeal of multiple-input and multiple-output (MIMO) technologies in wire-
less communication is their ability to increase throughputs significantly and to
improve the systems’ robustness to ambient noise and channel fluctuations [1,7].
On this account, large-scale deployment of multiple-input and multiple-output
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(MIMO) terminals is perceived as one of the key enabling technologies for next-
generation wireless networks.

Releasing the full potential of large MIMO arrays requires, however, a princi-
pled approach to optimization, with the aim of minimizing computational over-
head and related expenditures.

An essential aspect of the emblematic throughput maximization problem
resides in the optimization of MIMO transmission parameters (such as the users’
signal covariance matrices) [2,5,15,16,18]. In multi-user networks, conventional
optimization methods involve the use of water-filling (WF) techniques [13,14,18],
which invariably rely on the availability of perfect channel state information at
the transmitter (CSIT), and are vulnerable to observation noise, asynchronici-
ties, and other operational impediments that arise in real-world networks.

More recently proposed in [12] as an alternative to water-filling, the matrix
exponential learning (MXL) algorithm proceeds incrementally by combining
(stochastic) gradient steps with a matrix exponential mapping that ensures fea-
sibility of the users’ signal covariance variables. In so doing, MXL guarantees fast
convergence in cases where WF methods demonstrably fail. On the negative side,
an important implementation bottleneck of MXL is the requirement to (i) invert
a relatively large matrix at the receiver; and (ii) broadcast the resulting matrix
to all connected users1. In consequence, the computation and communication
overhead of MXL quickly becomes prohibitive in larger MIMO systems.

In this paper, we focus on the problem (stated in Sect. 2) of throughput
maximization in a MIMO multiple access channel (MAC), with the objective to
overcome the above limitations of the MXL by means of zeroth-order optimiza-
tion, i.e., by making no gradient computations whatsoever. Following a classic
approach from the simultaneous perturbation stochastic approximation (SPSA)
framework [6,17], we devise in Sect. 3 a “gradient-free” optimization algorithm
by plugging into the chassis of the original MXL method a gradient estimator
based no longer on first-order feedback but on function queries (a single one at
each iteration). Our developments are followed by a discussion on the perfor-
mances and potential of gradient-free matrix exponential learning (Sect. 4).

Notation. We use bold capital letters for matrices, saving the letters k, l for user
assignments and t, s for time indices, so that e.g., matrix Qk relates to user k,
Qt to time t, and Qk,t to user k at time t.

2 Problem Statement

Consider a MIMO network where K users are transmitting simultaneously to a
wireless receiver equipped with N antennas over a shared Gaussian vector MAC,
modeled by

y =
K∑

k=1

Hkxk + z,

1 In a MIMO array with N = 128 receive antennas, this would correspond to trans-
mitting approximately 65 kB of data per frame, thus exceeding typical frame size
limitations by a factor of 50× to 500× depending on the specific standard [9].
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where y ∈ C
N is the signal at the reception, Mk, xk ∈ C

Mk and Hk ∈ C
N×Mk

respectively denote the number of antennas, the transmitted messages and the
channel matrix of user k (k = 1, . . . ,K), and z ∈ C models additive zero-mean
Gaussian noise with unit covariance. Without loss of generality, we assume every
user to possess at least two antennas (Mk ≥ 2). Let Pk be the maximum mean
power consumption of user k due to transmissions, and let

Qk =
1
Pk

E[xkx
†
k]

denote the normalized covariance matrix of xk. By definition, the matrix Qk is
Hermitian—we write Qk ∈ Herm (Mk)—and positive semidefinite.

Our goal is to maximize, under the maximum available transmit power con-
straint tr(Qk) ≤ 1 for k = 1, . . . ,K, the achievable sum rate under successive
interference cancellation (SIC),

R(Q) = log det

(
I +

K∑

k=1

Pk HkQkH
†
k

)
(1)

where the aggregate form Q = (Qk, . . . ,QK) contains all the unknowns of the
problem. Since the maximum sum rate is achieved at a boundary point Q where
tr(Q1) = · · · = tr(QK) = 1, the search domain of the problem is confined to the
Cartesian product set Q = Q1 × · · · × QK , where

Qk = {Qk ∈ Herm (Mk) : tr(Qk) = 1,Qk � 0}

is a compact subset of a dk-dimensional real subspace, with dk = M2
k − 1 > 0

for every user k.
The throughput maximization problem can be stated as the convex program:

maximize R(Q)
subject to Q ∈ Q.

(RM)

The structure of the feasible set Q makes the problem amenable to parallel
optimization settings where (RM) is regarded as a collection of K sub-problems

maximize R(Qk;Q−k)
subject to Qk ∈ Qk

(RMk)

to be solved in parallel by the users. Equivalently, (RMk) can be interpreted as
maximizing the achievable transmission rate of user k when single-user decoding
(SUD) is performed at the receiver,

Rk(Qk;Q−k) := R(Q) − R(Q1, . . . ,Qk−1, 0,Qk+1, . . . ,QK), (2)

given the covariance matrices of the remaining users, thus regarding the interfer-
ence due to the signals sent by other users as colored noise. Since the achievable
sum rate (1) is a concave potential function for the game defined by (2), the
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solutions of (RM) are the solutions of the Nash equilibrium problem defined
by (2), i.e. any solution Q� of (RM) satisfies, for k = 1, . . . ,K,

Rk(Q�
k;Q�

−k) ≥ Rk(Qk;Q�
−k) ∀Qk ∈ Qk, (NE)

and conversely. In other words, maximizing the achievable sum rate under SIC
is equivalent to equilibrating the individual transmission rates (2) under SUD.

Many optimization methods rely on derivative information. Differentiation of
the achievable sum rate (1) gives us the gradient ∇R = (∇1R, . . . ,∇KR) where,
for k = 1, . . . , K,

∇kR(Q) = PkHk
†
[
I +

K∑

l=1

Pl HlQlH
†
l

]−1

Hk. (3)

Making the derivatives ∇kR(Q) available to the users implies the inversion
of the N ×N Hermitian matrix I+

∑K
l=1 Pl HlQlH

†
l at the receiver, followed by

the broadcast of the result towards the users, which then are able to compute (3)
locally. On account that the communication overhead induced by the dissemina-
tion of the gradient may be prohibitive, we proceed under the assumption that
the gradient is not accessible to the users, which instead are required to compute
their own estimates of ∇kR, based no longer on derivative information but on
mere measurements of R(Q).

3 Derivative-Free Matrix Exponential Learning

3.1 The MXL Algorithm

Among the existing (derivative-based) methods of solution for (RM) is the matrix
exponential learning (MXL) [10], which in our developments will serve both as
reference and as a starting point. We refer to [3,11] for a characterization of
the MXL algorithm as an instance of the mirror descent algorithm implemented
with the von Neumann relative entropy for Bregman divergence. Given an initial
point Y0 = Y1 = (0, . . . , 0) in the space of the gradients Q∗ = Q∗

1 × · · · × Q∗
K ,

where Q∗
k =

{
Yk∈Herm (Mk) : tr(Yk) = 0

}
, the t-th step of the algorithm is

defined for t ≥ 1 by

Qt = Λ(Yt),
Yt+1 = Yt + γtV̂t,

(MXL)

where {Qt} denotes the issued sequence of estimates for the optimal configu-
ration, {Yt} is a sequence generated in the space of the gradients, {γt} is a
sequence of positive step-sizes, V̂t = (V̂1,t, . . . , V̂K,t) ∈ Q∗ is an estimate of the
gradient ∇R(Qt), and we set Λ = (Λ1, . . . ,ΛK), where the exponential learning
mapping Λk is defined by

Λk(Yk) =
exp(Yk)

tr(exp(Yk))
,

in which exp denotes the (matrix) complex exponential function.
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In contrast to the available implementations of MXL, which rely on
full/noisy [10] or partial [8] gradient feedback for the computation of V̂t, the
gradient estimates V̂t in this work are derived without gradient information, as
explained in Sect. 3.2.

3.2 Derivative-Free MXL

Description of the the Gradient-Free MXL. Our developments build on
an early approach to derivative-free optimization [6,17] which, in time, has been
seen as the cornerstone to the field of simultaneous perturbation stochastic
approximation (SPSA). After translation into our distributed, Hermitian set-
ting, the SPSA approach can be described as follows.

In the absence of any gradient feedback, each user k infers an estimate V̂k ≈
∇kR of their individual gradient, derived from randomized queries of the sum
rate R in the close neighborhood of the current iterate. For k = 1, . . . , K, let
ρk > 0 and Ck ∈ Qk such that the ball Ck + ρkBBBdk

is entirely contained
by Qk. Concretely, each user k draws randomly, uniformly, and independently,
a matrix Zk on the sphere SSSdk−1 = {Zk ∈ Q∗

k : ‖Zk‖2 = 1} living in the
dk-dimensional space Q∗

k, and we let Z = (Z1, . . . ,ZK) aggregate the random
matrices of all users. The gradient estimator for user k = 1, . . . ,K is then defined
as

V̂k(Q) =
dk

δ
R(Q̂)Zk, (SPSA)

where Q̂ = (Q̂1, . . . , Q̂K), and each test matrix

Q̂k = Qk + δ
ρk

(Ck − Qk) + δZk (4)

is derived from Qk after deviation by random quantity δZk, and prior shrinking
of Qk so as to keep the test configuration Q̂ inside the feasible set. The presence
in (SPSA) of the factor dk = M2

k − 1 can be explained as the ratio between
the volumes of the sphere SSSdk−1 (where Zk is picked) and the containing ball
BBBdk

= {Zk ∈ Q∗
k : ‖Zk‖2 ≤ 1}.

The distinguishing property of (SPSA) lies in that the bias of the gradient
estimator can be controlled by the parameter δ as this bias is uniformly bounded
over Q:

‖E[V̂k(Q,Z; ρ) − ∇kR(Q)]‖∗ = O(δ) (5)

Besides, the norm of the gradient estimator (SPSA) satisfies

‖V̂k(Q,Z; ρ)‖∗ = O

(
1
δ

)
(6)

uniformly on Q. Equations (5) and (6) thus unveil a tradeoff between the O(δ)
bias of the estimator and its O(1δ ) deviation from the true derivative. This bias–
variance tradeoff induces in the present context strict restrictions on the choice
of the query radius δ and of the step-size policy of the MXL algorithm, with
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Algorithm 1: Gradient-free MXL
Parameters : {γt}∞

t=1, {δt}∞
t=1

Init.: t ← 1, Y ← 0, ∀k: transmit with Qk ← Pk
Mk

Ik

1: Repeat until stopping criterion is reached
2: For k ∈ {1, . . . , K} do in parallel

Sample Zk uniformly in SSSdk−1

Transmit with Q̂k ← Qk + δt
ρk

(Ck − Qk) + δtZk

Receive feedback r ← R(Q̂)

V̂k ←
(

M2
k−1

δt

)
r Zk

Yk ← Yk + γtV̂k

Qk ← Λk(Yk)

3: t ← t + 1

consequences on the performance of the algorithm, as discussed towards the end
of the section.

See Algorithm 1 for a pseudocode description of the gradient-free optimiza-
tion algorithm obtained after combining MXL with (SPSA). Given a (typically
non-increasing) query radius sequence {δt} and a step-size sequence {γt}, the
task of user k at time step t consists of (i) sampling a random direction Zk,t ∈ Q∗

k,
(ii) implementing the test covariance matrix Q̂k,t obtained as in (4) by varia-
tion of the current covariance estimate Qk,t, (iii) receiving the value of the
achievable total transmission rate R(Q̂t), (iv) inferring an estimate V̂k,t of the
gradient along user direction k, and (v) updating Yk,t and Qk,t in accordance
with (MXL).

Convergence of the Gradient-Free MXL. The convergence of the gradient-
free version of MXL is guaranteed with probability 1 on condition that the
implementation parameters are chosen with care [3,4]. Indeed, if Algorithm 1 is
implemented with non-increasing step-size and query-radius policies satisfying
the conditions

(a)
∞∑

t=1

γt = ∞, (b)

∞∑

t=1

γ2
t

δ2t
< ∞, (c) δt ↓ 0, (d) δt < min

k

1√
Mk(Mk − 1)

(∀t), (7)

then the sequences of estimates {Qt} and of test configurations {Q̂t} converge
almost surely towards the optimum Q�.

Numerical Simulations. Figure 1 reports experimental results for a network
with 16 antennas at the receiver and 20 homogeneous users equipped with, on
average, 3 antennas. A comparison is made between the transmission rates iter-
atively realized by Algorithm 1 and those of the reference MXL algorithm with
perfect gradient feedback. The gradient-free algorithm is run with decreasing
step-size and query-radius sequences chosen in accordance with (7).
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1 10 102 103 104 105 106

0

1

t

(y −R(Q1))/(R� −R(Q1))

R(Q) : full-gradient MXL
R(Q̂) : gradient-free MXL

Fig. 1. Convergence of the gradient-free algorithm (N = 16, K = 20, E[Mk] = 3):
Algorithm 1 is run with policies (γt, δt) = (0.01 t−3/4, 0.1 t−1/4), while MXL with full
gradient feedback run with decreasing step size policy γt = 0.01 t−1/2.

It can be seen on Fig. 1 that the gradient-based algorithm finds optimal
configuration within a handful of iterations. If the gradient-free algorithm also
progresses towards the optimum, its convergence is less straightforward and
much slower than with full gradient feedback. This tendency to slowness, which
can be explained by the bias–variance tradeoff induced by the gradient esti-
mator (SPSA), is only exacerbated in networks of larger sizes, where high prob-
lem dimensionality creates a bottleneck implying prohibitively slow convergence.
In [3] it is shown that the convergence rate of Algorithm 1 is at best O(1/ 4

√
T )

after T iterations, in contast to the considerably faster O(1/
√

T ) rates that can
be expected from the first-order methods.

4 Discussion and Perspectives

Besides the very light nature of the feedback information it requires (a sin-
gle query of the objective function per iteration), the distributed, zeroth-order
(derivative-free) optimization methodology presented in this paper owes to the
MXL algorithm the desirable feature that it is both easy to implement, and
flexible in the sense that it can be run asynchronously for the users (cf. [3]). As
seen in the previous section, its major drawback is slow convergence compared
to gradient-based methods. The slowness issue is addressed in detail in our more
recent work [3], where the formulation of the gradient estimator (SPSA) is revis-
ited thoroughly in order to meet the O(1/

√
T ) convergence rate of the first-order

methods. The interested reader is referred to the developments and discussions
of [3] for an extensive analysis of the performances, possibilities, and guarantees
of single-query zeroth-order optimization methods in the vein of Algorithm 1.
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5. Cheng, R.S., Verdú, S.: Gaussian multiaccess channels with ISI: capacity region
and multiuser water-filling. IEEE Trans. Inf. Theory 39(3), 773–785 (1993)

6. Flaxman, A.D., Kalai, A.T., McMahan, H.B.: Online convex optimization in the
bandit setting: gradient descent without a gradient. In: SODA 2005: Proceedings
of the 16th annual ACM-SIAM Symposium on Discrete Algorithms, pp. 385–394
(2005)

7. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next
generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

8. Li, W., Assaad, M.: Matrix exponential learning schemes with low informational
exchange. IEEE Trans. Signal Process. 67(12), 3140–3153 (2019)

9. Liao, R., Bellalta, B., Oliver, M., Niu, Z.: MU-MIMO MAC protocols for wireless
local area networks: a survey. IEEE Commun. Surv. Tuts. 18(1), 162–183 (2016)

10. Mertikopoulos, P., Belmega, E.V., Moustakas, A.L.: Matrix exponential learning:
distributed optimization in mimo systems. In: 2012 IEEE International Symposium
on Information Theory Proceedings, pp. 3028–3032, July 2012. https://doi.org/10.
1109/ISIT.2012.6284117

11. Mertikopoulos, P., Belmega, E.V., Negrel, R., Sanguinetti, L.: Distributed stochas-
tic optimization via matrix exponential learning. IEEE Trans. Signal Process.
65(9), 2277–2290 (2017)

12. Mertikopoulos, P., Moustakas, A.L.: Learning in an uncertain world: MIMO covari-
ance matrix optimization with imperfect feedback. IEEE Trans. Signal Process.
64(1), 5–18 (2016)

13. Scutari, G., Palomar, D.P., Barbarossa, S.: Simultaneous iterative water-filling for
Gaussian frequency-selective interference channels. In: ISIT 2006: Proceedings of
the 2006 International Symposium on Information Theory (2006)

14. Scutari, G., Palomar, D.P., Barbarossa, S.: Asynchronous iterative waterfilling for
Gaussian frequency-selective interference channels. IEEE Trans. Inf. Theory 54(7),
2868–2878 (2008)

15. Scutari, G., Palomar, D.P., Barbarossa, S.: Optimal linear precoding strategies for
wideband non-cooperative systems based on game theory – part I: nash equilibria.
IEEE Trans. Signal Process. 56(3), 1230–1249 (2008)

16. Scutari, G., Palomar, D.P., Barbarossa, S.: Optimal linear precoding strategies for
wideband non-cooperative systems based on game theory – part II: algorithms.
IEEE Trans. Signal Process. 56(3), 1250–1267 (2008)

17. Spall, J.C.: A one-measurement form of simultaneous perturbation stochastic
approximation. Automatica 33(1), 109–112 (1997)

18. Yu, W., Rhee, W., Boyd, S., Cioffi, J.M.: Iterative water-filling for Gaussian vector
multiple-access channels. IEEE Trans. Inf. Theory 50(1), 145–152 (2004)

https://hal.archives-ouvertes.fr/hal-02861460
https://hal.archives-ouvertes.fr/hal-02861460
https://doi.org/10.1109/ISIT.2012.6284117
https://doi.org/10.1109/ISIT.2012.6284117


A Friendly Interference Game in Wireless
Secret Communication Networks

Zhifan Xu1 and Melike Baykal-Gürsoy2(B)

1 Department of Industrial and Systems Engineering, Rutgers University,
Piscataway, NJ 08854, USA
zhifan.xu@rutgers.edu

2 Department of Industrial and Systems Engineering, RUTCOR and CAIT,
Rutgers University, Piscataway, USA

gursoy@soe.rutgers.edu

Abstract. This paper considers a parallel wireless network in which
multiple individuals exchange confidential information through inde-
pendent sender-receiver links. An eavesdropper can intercept encrypted
information through a degraded channel of each sender-receiver link. A
friendly jammer, by applying interference to the eavesdropping chan-
nels, can increase the level of secrecy of the network. The optimal power
allocation strategy of the friendly jammer under a power constraint is
derived. A convex optimization model is used when all channels are under
the threat of an eavesdropping attack and a non-zero sum game model
is analyzed when the eavesdropper can only attack a limited quantity of
channels.

Keywords: Friendly jammer · Eavesdropping · Non-zero sum game

1 Introduction and Problem Formulation

Eavesdropping attacks are major threats for wireless communication networks
due to their multi-cast nature. Instead of depending only on encryption and ran-
domness in coding schemes [8,10,13], various efforts have been made to investi-
gate possibilities to facilitate the security of wireless communication networks.
Recent investigations reveal that intentionally generated interference signals
can decrease the eavesdropping capacity of communication channels [6], which
leads to the practice of employing a friendly jammer to counter eavesdropping
attacks [9,11,12].

Due to the limitations of battery and power technology in current state,
algorithms for efficient power control are crucial in wireless networks, and game
theory has been widely adopted when an intelligent adversary exists. Altman et
al. [1] obtained the base station’s optimal power allocation strategy in jamming
games. Garnaev and Trappe [4,5] investigated the optimal transmission power
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allocation problem against an eavesdropper using zero-sum games. Garnaev et
al. [3] described the interaction between a friendly jammer and an eavesdropper
using a zero-sum game. It is shown that Nash Equilibria of such games exhibits
a water-filling scheme [2,7].

This paper considers a wireless communication network consisting of n paral-
lel legitimate sender-receiver links where a friendly jammer can assign Ji amount
of power to interfere a potential eavesdropper at channel i. The total amount
of power that can be utilized by the friendly jammer is bounded by J . More-
over, the fact that it is almost inevitable for the interference signals to degrade
legitimate sender-receiver channels is taken into consideration.

For each legitimate sender-receiver link i ∈ {1, ..., n}, the communication
capacity that can be used to transmit messages under friendly jamming is

CLi
(Ji) = ln

(
1 +

gL
i Ti

σ + hL
i Ji

)
,

where Ti is pre-decided transmission power applied to channel i, σ is the Gaussian
noises, gL

i is the channel gain of transmission signals on channel i, and hL
i is

the channel gain of interference signals on channel i. At the same time, the
eavesdropper can intercept information transmitted through channel i using an
eavesdropping channel with capacity

CEi
(Ji) = ln

(
1 +

gE
i Ti

σ + hE
i Ji

)
,

where gE
i is the channel gain of transmission signals and hE

i is the channel
gain of interference signals on eavesdropping channel i. We assume that gL

i >
gE

i , ∀i = 1, ..., n to represent the fact that every eavesdropping channel is a
degraded version of the corresponding communication channel. We also assume
that hL

i < hE
i , ∀i = 1, ..., n to represent the fact that interference signals are

more effective on eavesdropping channels than communication channels. So a
power allocation policy for the friendly jammer is a vector J = (J1, ..., Jn) such
that

∑n
i=1 Ji ≤ J .

Without the threat of an eavesdropping attack, legitimate users can utilize
channel i’s full communication capacity CLi

(Ji) to transmit messages securely.
Meanwhile, channel i’s capacity that can be used to transmit secret messages
under an eavesdropping attack is defined as its secrecy capacity CSi

(Ji) (see
[8,9,13]), which is

CSi
(Ji) =

(
CLi

(Ji) − CEi
(Ji)

)+ =
(

ln
(
1 +

gL
i Ti

σ + hL
i Ji

) − ln
(
1 +

gE
i Ti

σ + hE
i Ji

))+

.

Note that CLi
(0) > CEi

(0), ∀i = 1, ..., n, under the assumption gL
i > gE

i , ∀i =
1, ..., n. Thus, CSi

(0) > 0, ∀i = 1, ..., n, which means all channels have positive
secrecy capacity without friendly interference. Also note that it is always true
that ln

(
1 + gL

i Ti

σ+hL
i Ji

)
> ln

(
1 + gE

i Ti

σ+hE
i Ji

)
, ∀Ji ≥ 0, i = 1, ..., n, since gL

i > gE
i
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and hL
i < hE

i , ∀i = 1, ..., n. Hence, the expression of a secrecy capacity CLi
(Ji)

w.r.t. Ji ≥ 0 can be simplified as

CSi
(Ji) = ln

(
1 +

gL
i Ti

σ + hL
i Ji

) − ln
(
1 +

gE
i Ti

σ + hE
i Ji

)
.

In addition, assume d
dJi

CSi
(Ji = 0) > 0, so that the friendly jammer has an

incentive to increase channel i’s secrecy capacity under an eavesdropping attack.
The structure of the paper is as follows: Sect. 2 discusses the key properties

of the secrecy capacity functions CSi
(Ji)’s and considers a single player power

allocation problem where all communication channels are under the threat of an
eavesdropping attack. Section 3 is the main part of the paper, which reveals the
water-filling structure of the Nash Equilibrium in a friendly interference game
where the eavesdropper can only attack a limited number of channels. Based on
these theoretical results, Sect. 3.2 presents a computational algorithm to deter-
mine the optimal power allocation strategy. Section 4 demonstrates numerical
examples. Section 5 summarizes the conclusions and discusses possible future
research.

2 Basic Optimization Model

This section considers the scenario in which communication channels are under
the threat of eavesdropping attacks all at the same time, so the friendly jammer
is the only decision maker. The friendly jammer aims to maximize the overall
secrecy capacity of this network.

2.1 Properties of CSi
(Ji)’s

The following lemmas present the key properties of the secrecy capacity functions
CSi

(Ji), ∀i = 1, ..., n.

Lemma 1. CSi
(Ji) is unimodal w.r.t. Ji ≥ 0 and has a unique maximum at

Ji = J̄i such that d
dJi

CSi
(J̄i) = 0.

Proof. Let ci(Ji) := d
dJi

CSi
(Ji), then,

ci(Ji) =
gE
i hE

i Ti

(gE
i Ti + σ + hE

i Ji)(σ + hE
i Ji)

− gL
i hL

i Ti

(gL
i Ti + σ + hL

i Ji)(σ + hL
i Ji)

=
Ai(Ji)

Bi(Ji)
,

where

⎧
⎪⎨

⎪⎩

Ai(Ji) = (gE
i hL

i − gL
i hE

i )hE
i hL

i TiJi
2 + (gE

i − gL
i ) · 2σhE

i hL
i TiJi + Ci,

Bi(Ji) = (gE
i Ti + σ + hE

i Ji)(σ + hE
i Ji)(g

L
i Ti + σ + hL

i Ji)(σ + hL
i Ji),

Ci =
[
gE
i hE

i (gL
i Ti + σ) − gL

i hL
i (gE

i Ti + σ)
]
σTi.

Note that Ai(0) > 0 since ci(0) > 0 and Ai(Ji) is a concave quadratic function
since gE

i hL
i − gL

i hE
i < 0, then there exists a unique value J̄i > 0 such that

Ai(J̄i) = 0. Also note that Bi(Ji) > 0, ∀Ji ≥ 0. Thus, Ji = J̄i is the unique
solution to ci(Ji) = 0 w.r.t. Ji ≥ 0.



28 Z. Xu and M. Baykal-Gürsoy

Moreover, note that Ai(Ji) > 0, ∀0 ≤ Ji < J̄i and Ai(Ji) < 0, ∀Ji > J̄i, so
ci(Ji) > 0, ∀0 ≤ Ji < J̄i and ci(Ji) < 0, ∀Ji > J̄i, since ci(Ji) = Ai(Ji)

Bi(Ji)
and

Bi(Ji) > 0, ∀Ji ≥ 0. Furthermore, ci(Ji) is also continuous w.r.t. Ji ≥ 0, so
ci(Ji) crosses the horizontal axis exactly once in [0,∞) at Ji = J̄i. Thus, CSi

(Ji)
is unimodal w.r.t. Ji ≥ 0 and it has a unique maximum at Ji = J̄i. �

Since CSi
(Ji) is unimodal w.r.t. Ji ≥ 0 and it has a unique maximum at

Ji = J̄i, then CSi
(Ji) < CSi

(J̄i), ∀Ji > J̄i. Hence, the friendly jammer will put
at most J̄i power to channel i if she aims to maximize channel i’s secrecy capacity.
To solve the friendly jammer’s power allocation problem, it is enough to consider
CSi

(Ji)’s properties w.r.t. the refined feasible region Ji ∈ [
0, J̄i

]
, ∀i = 1, ..., n.

Lemma 2. CSi
(Ji) is concave and strictly increasing w.r.t. Ji ∈ [

0, J̄i

]
for all

i = 1, ..., n.

Proof. Let ci(Ji), Ai(Ji) and Bi(Ji) be defined as in lemma 1. Note that:

(a) Ai(Ji) is a concave quadratic function and is strictly decreasing w.r.t. Ji ≥ 0
since gE

i hL
i − gL

i hE
i < 0 and gE

i − gL
i < 0,

(b) Bi(Ji) is strictly increasing w.r.t. Ji ≥ 0,
(c) Ai(Ji) ≥ 0 and Bi(Ji) > 0 for all Ji ∈ [

0, J̄i

]
.

Thus, ci(Ji) = Ai(Ji)
Bi(Ji)

is strictly decreasing w.r.t. Ji ∈ [
0, J̄i

]
, which implies

CSi
(Ji) is a concave function on Ji ∈ [

0, J̄i

]
.

Also, CSi
(Ji) is strictly increasing w.r.t. Ji ∈ [

0, J̄i

]
, since ci(Ji) > 0, ∀Ji ∈[

0, J̄i

)
as proved in Lemma 1. �

Although it is impossible for the friendly jammer’s optimal power allocation
policy J∗ to have J∗

i ≥ J̄i, we would like to present a full description of the shape
of CSi

(Ji) w.r.t. Ji ∈ [0,+∞) without going into tedious proofs of all details.
First, consider ci(Ji) w.r.t. Ji ∈ [

J̄i,+∞)
. Note that: (a) Ai(Ji) is concave,

quadratic, strictly decreasing and negative w.r.t. Ji > J̄i, (b) Bi(Ji) is quartic,
strictly increasing and positive w.r.t. Ji > J̄i. Thus, it can be seen that

lim
Ji→+∞

ci(Ji) =
Ai(Ji)
Bi(Ji)

= −0,

and it can be proved by the mean value theorem that there exists a point J̃i ∈
(J̄ ,+∞) such that d

dJi
ci(J̃i) = 0. Moreover, J̃i is actually the unique solution

to d
dJi

ci(Ji) = 0 w.r.t. Ji ∈ [0,+∞) given the properties of Ai(Ji) and Bi(Ji).
Since ci(Ji) is decreasing at Ji = J̄i, it can also be verified that ci(Ji) is strictly
decreasing in [J̄i, J̃i], and then strictly increasing in (J̃i,+∞). In summary, for
Ji ∈ [0,+∞), ci(Ji) has the following properties as shown in Fig. 1b:

– ci(Ji) ≥ 0, ∀Ji ∈ [
0, J̄i

]
, and ci(Ji) < 0, ∀Ji ∈ (J̄i,+∞).

– ci(Ji) is strictly decreasing w.r.t. Ji ∈ [0, J̃i], and is strictly increasing w.r.t
Ji ∈ (J̃i,+∞).
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Recall that ci(Ji) = d
dJi

CSi
(Ji) by definition, so CSi

(Ji) is concave w.r.t. Ji ∈
[0, J̃i], since ci(Ji) is strictly decreasing w.r.t Ji ∈ [0, J̃i]. In summary, for Ji ∈
[0,+∞), CSi

(Ji) has the following properties as shown in Fig. 1a:

– CSi
(Ji) > 0, ∀Ji ∈ [0,+∞).

– CSi
(Ji) is concave w.r.t Ji ∈ [0, J̃i] and reaches its maximum at Ji = J̄i < J̃i.

– CSi
(Ji) is convex and decreasing w.r.t Ji ∈ (J̃i,+∞).

(a) plot of CSi(Ji).
(b) plot of ci(Ji)

Fig. 1. Plots of CSi(Ji) and ci(Ji), with gL
i = 2, gE

i = 1, hL
i = 1, hE

i = 2, Ti = 1, σ = 1.

2.2 The Optimal Power Allocation Policy

To find the optimal power allocation policy for the network, the friendly jammer
needs to solve the following problem:

max
J

vJ(J) =
n∑

i=1

CSi(Ji) =
n∑

i=1

[

ln
(
1 +

gL
i Ti

σ + hL
i Ji

) − ln
(
1 +

gE
i Ti

σ + hE
i Ji

)
]

s.t.

n∑

i=1

Ji ≤ J,

0 ≤ Ji ≤ J̄i, ∀i = 1, ..., n.

(1)

Note that vJ(J) is a concave function on J ∈ J where J is the feasible
region of optimization problem 1. To prove it, simply let vi(J) := CSi

(Ji), then
vi(J) is concave on J ∈ J since CSi

(Ji) is concave on Ji ∈ [
0, J̄i

]
. Thus, vJ(J)

is concave on J ∈ J since it is a sum of vi(J)’s. So optimization problem 1 is a
convex optimization problem.

Theorem 1. The considered convex optimization problem has a unique optimal
solution J∗ = (J∗

1 , ..., J∗
n) that is subject to water-filling scheme. Let the sequence

of sender-receiver links be ordered according to ci(0) such that c1(0) > ... > cn(0)
assuming ci(0) �= cj(0), ∀i �= j for the sake of simplicity.
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a) If
∑n

i=1 J̄i ≥ J , then there exists w ≥ 0 and a threshold integer k > 0 such
that ⎧

⎪⎨

⎪⎩

c1(J∗
1 ) = ... = ck(J∗

k ) = w,
∑k

i=1 J∗
i = J,

ci(0) ≤ w, J∗
i = 0, ∀k < i ≤ n.

(2)

and J∗ is the solution of equations system 2.
b) If

∑n
i=1 J̄i < J , then k = n, w = 0, and J∗ is the solution to

c1(J∗
1 ) = ... = cn(J∗

n) = w = 0. (3)

and
∑n

i=1 J∗
i < J .

Proof. We provide a proof in the appendix. �
Based on Theorem 1, the optimal value of w in the system of Eq. 2 can be

determined using numerical methods such as bisection search.

3 A Friendly Interference Game

This section considers another scenario where the attacker can eavesdrop on only
one of n channels due to resource constraints. To intercept as much information
as possible, the attacker tries to maximize the expected eavesdropping capacity.
Let the attack strategy of the eavesdropper be y = (y1, ..., yn) where yi represents
the probability that the eavesdropper picks channel i as target. Naturally, we
have yi ≥ 0, ∀i = 1, ..., n and

∑n
i=1 yi = 1. Thus, the payoff for the attacker

under interference signals is

vE(J ,y) =
n∑

i=1

yiCEi
(Ji) =

n∑

i=1

yi ln
(
1 +

gE
i Ti

σ + hE
i Ji

)
. (4)

Meanwhile, the friendly jammer still tries to maximize the total capacity that
can be used to transmit messages securely, so the friendly jammer’s payoff is

vJ(J ,y) =
n∑

i=1

[CLi
(Ji) − yiCEi

(Ji)]

=
n∑

i=1

[
ln

(
1 +

gL
i Ti

σ + hL
i Ji

) − yi ln
(
1 +

gE
i Ti

σ + hE
i Ji

)
]

,

(5)

and the friendly jammer’s power allocation startegy J is still subject to the total
power constraint.

Now, we have a non-zero sum game with two players, namely the friendly
jammer and the eavesdropper. We shall look for the Nash Equilibrium, that is,
we want to find a strategy pair (J∗,y∗) such that

vJ(J ,y∗) ≤ vJ(J∗,y∗), ∀J ∈ J ,

vE(J∗,y) ≤ vE(J∗,y∗), ∀y ∈ Y,

where J is the region containing all possible power allocation strategies J and
Y is the region containing all probabilistic attack strategies y of this game.
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3.1 Theoretical Analysis

Consider the friendly jammer’s problem given a fixed attack strategy y∗ of the
adversary. It can be seen that ∂vJ (J ,y∗)

∂Ji
share similar properties with ci(Ji), and

interfering any channel i where ∂vJ (J ,y∗)
∂Ji

|Ji=0 ≤ 0 will be a dominated strategy

for the friendly jammer. Let I be the set of channels where ∂vJ (J ,y∗)
∂Ji

|Ji=0 > 0,

let J̄i(y∗) > 0 be a real value such that ∂vJ (J ,y∗)
∂Ji

|Ji=J̄i(y
∗) = 0, ∀i ∈ I, then

the friendly jammer needs to solve the following optimization problem:

max
Ji, ∀i∈I

∑

i∈I

[
ln

(
1 +

gL
i Ti

σ + hL
i Ji

) − y∗
i ln

(
1 +

gE
i Ti

σ + hE
i Ji

)
]

s.t.
∑

i∈I

Ji ≤ J,

0 ≤ Ji ≤ J̄i(y∗), ∀i ∈ I.

(6)

Optimization problem 6 is similar to optimization problem 1 but with a subset of
channels as targets and with smaller coefficients y∗

i ≤ 1 in the objective function.
So the objective function of optimization problem 6 is concave w.r.t. its feasible
region. Thus, an optimal power allocation strategy {J∗

i , i ∈ I} should still have
the properties implied by KKT conditions. That is,

∂vJ(J∗,y∗)

∂Ji
=

y∗
i gE

i hE
i Ti

(gE
i Ti + σ + hE

i J∗
i )(σ + hE

i J∗
i )

− gL
i hL

i Ti

(gL
i Ti + σ + hL

i J∗
i )(σ + hL

i J∗
i )

{
= wD, for J∗

i > 0, ∀i ∈ I,

≤ wD, for J∗
i = 0, ∀i ∈ I,

(7)

where wD ≥ 0, and wD(
∑

i∈I J∗
i − J) = 0.

Similarly, given the friendly jammer’s strategy J∗, the eavesdropper can find
his optimal strategy by solving a convex optimization problem where an optimal
solution y∗ should satisfy

∂vE(J∗,y∗)
∂yi

= ln
(
1 +

gE
i Ti

σ + hE
i J∗

i

)
{

= wA, for y∗
i > 0, ∀i = 1, ..., n,

≤ wA, for y∗
i = 0, ∀i = 1, ..., n,

(8)

where wA ≥ 0 and
∑n

i=1 y∗
i = 1.

Theorem 2. Define Θi(Ji) := ∂vE(J ,y)
∂yi

. Let the sequence of sender-receiver
links be ordered according to Θi(0) such that Θ1(0) > ... > Θn(0) assuming
Θi(0) �= Θj(0), ∀i �= j for the sake of simplicity. Let k > 0 be the largest integer
such that ⎧

⎪⎨

⎪⎩

Θ1(J1) = ... = Θk(Jk) = wA ≥ 0,
∑k

i=1 Ji = J,

Θi(0) ≤ wA, Ji = 0, ∀k < i ≤ n.

(9)

Let J
′
= (J

′
1, ..., J

′
n) be the solution of system of Eqs. 9.
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Define ΔJ
′
i
(yi) := ∂vJ (J ,y)

∂Ji
|Ji=J

′
i
. Let m > 0 be the largest integer such that

{
ΔJ

′
1
(y1) = ... = ΔJ

′
k
(ym) = wD ≥ 0,

∑m
i=1 yi ≤ 1.

(10)

a) If k ≤ m, a Nash Equilibrium strategy pair (J∗,y∗) can be found by solving
⎧
⎪⎨

⎪⎩

J∗ = J
′
,

ΔJ∗
1
(y∗

1) = ... = ΔJ∗
k
(y∗

k) = wD ≥ 0,
∑k

i=1 y∗
i = 1.

(11)

b) If k > m, there exists a positive integer h ≤ k such that a Nash Equilibrium
strategy pair (J∗,y∗) can be found where J∗ is the solution of

⎧
⎪⎨

⎪⎩

Θ1(J∗
1 ) = ... = Θh(J∗

h) = w
′
A > wA,

J∗
i = 0, ∀h < i ≤ n,

Θh(0) > w
′
A ≥ Θh+1(0),

(12)

and y∗ is the solution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ΔJ∗
1
(y∗

1) = ... = ΔJ∗
h
(y∗

h) = 0,
y∗

h+1 = 1 − ∑h
i=1 y∗

i , ΔJ∗
h+1

(y∗
h+1) ≤ 0,

y∗
h+1 = 0, if w

′
A �= Θh+1(0),

y∗
i = 0, ∀h + 1 < i ≤ n.

(13)

Proof. We provide a proof in the appendix. �

3.2 Algorithm to Find (J∗, y∗)

This sections presents an algorithm based on the bisection methods and Theorem
2 to approximate a pair of Nash Equilibrium strategies (J∗,y∗) within a given
tolerance factor, δ. An explicit value for δ is used to make the algorithm terminate
within reasonable CPU time.

Algorithm
Inputs. Parameters of the communication network: Ti, g

L
i , gE

i , hL
i , hE

i , ∀i =
1, ..., n. The background noise σ. And the explicit tolerance δ ≤ 0.01.
Step 1. Let k, wA and J

′
be the solution of system of Eq. 9.

Step 2. Let m, wD and y∗ be the solution of system of Eq. 10.
Step 3. If k ≤ m. Let J∗ ← J

′
. Let y∗ be the solution of system of Eq. 11.

(J∗,y∗) is a pair of NE strategies and the algorithm is terminated. Otherwise,
go to step 4.



A Friendly Interference Game in Wireless Secret Communication Networks 33

Step 4. If k > m. Let h ← k. Let wLB
A ← wA.

Step 4a. Let h ← h − 1 and then w
′
A ← Θh+1(0).

Step 4b. Let J
′

be the solution of system of Eq. 12. Let wD ← 0. Let
m and y∗ be the solution of system of Eq. 10 with the value of J

′
. Go to

step 5.
Step 5. If h = m. Let J∗ ← J

′
, then (J∗,y∗) is a pair of NE strategies and

the algorithm is terminated. Otherwise, go to step 6.
Step 6. If h > m. Let wLB

A ← Θh+1(0). Go to step 4a. Otherwise, go to step
7.
Step 7. If h < m. Let wUB

A ← Θh+1(0) and then h ← h + 1.
Step 7a. Let w

′
A ← 1

2 (wUB
A + wLB

A ). Let J
′
be the solution of system of

Eq. 12. Let wD ← 0. Let m and y∗ be the solution of system of Eq. 10
with the value of J

′
.

Step 7b. If h = m and y∗
h+1 ≤ δ. Let J∗ ← J

′
and y∗

h+1 ← 0. Then
(J∗,y∗) is NE strategies and the algorithm is terminated. Otherwise, go
to step 7c.
Step 7c. If h = m and y∗

h+1 > δ, or if h < m. Let wUB
A ← w

′
A. Go to

step 7a. Otherwise, go to step 7d.
Step 7d. If h > m. Let wLB

A ← w
′
A. Go to step 7a.

4 Numerical Illustrations

This section presents a few numerical examples. First, consider a 5 parallel chan-
nel communication network with gL

i = pi−1 for i ∈ [1, 5] where p ∈ (0, 1),
which corresponds to Rayleigh fading in orthogonal frequency-division multi-
plexing (OFDM) systems. Similarly, let gE

i = qi−1 for i ∈ [1, 5] where q ∈ (0, 1)
for the eavesdropper. Let p = 0.65 and q = 0.5 such that the assumption
gL

i > gE
i , ∀i = 1, ..., 5 is satisfied. Also set δ = 0.1 and Ti = 1, ∀i = 1, ..., 5.

Finally, we set hE
i = 0.45, hL

i = 0.05 for all i = 1, ..., 5 and J = 1 for the sake of
simplicity. The assumption ci(0) > 0, ∀i = 1, ..., 5 is satisfied.

Following the algorithm in Sect. 3.2, we get k = 3 and m = 4. So the threshold
index is h = 3. The approximated NE strategies are found in 0.0313 CPU time,
with J∗ = (0.731, 0.254, 0.016, 0, 0), y∗ = (0.535, 0.305, 0.16, 0, 0), wA = 1.204
and wD = 0.074. It can be clearly seen that (J∗,y∗) is subject to water-filling
scheme where both players focus on the channels with higher initial eavesdrop-
ping capacities.

Now increase hL
i ’s by 50%, meaning that the legitimate users suffer more

from the interference signals. Using the algorithm in Sect. 3.2, we get k = 3 and
m = 2 in 0.0469 CPU time. And the final threshold index is h = 2, with J∗ =
(0.667, 0.222, 0, 0, 0), y∗ = (0.541, 0.339, 0.12, 0, 0), wA = 1.253 and wD = 0.
Compared to the previous example, the friendly jammer protects fewer channels
and leaves channel 3 with no protection under attack even though there is unused
jamming power (Fig. 2).
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(a) hL
i = 0.05. (b) hL

i = 0.075

Fig. 2. Plots of J∗ and y∗.

5 Conclusions and Future Research

In this paper, we consider a friendly interference game where a friendly jammer is
employed to interfere eavesdroppers in a wireless network. We prove the existence
of the optimal power allocation strategy of the friendly jammer as part of a pair
of Nash Equilibrium strategies in a non-zero sum game. It turns out that the
optimal power allocation strategy will be subject to a water-filling scheme. An
algorithm to approximate the optimal power allocation strategy to within a given
tolerance is presented. We also show that the effect of interference signals on
legitimate users is a key parameter that affect the performance of this approach.
The interference signals should be carefully tuned such that no interference power
will be wasted.

Of interest for future research is an extension of this model to include the
legitimate users as decision makers. For instance, a base station controlling trans-
mission power among multiple channels may cooperate with a friendly jammer.

Appendix

Proof of Theorem 1. Consider the KKT conditions of convex optimization
problem 1. A vector J∗ = (J∗

1 , ..., J∗
n) is the optimal solution if there exists a

group of non-negative numbers w, λ1, ..., λn, μ1, ..., μn such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n
i=1 J∗

i − J ≤ 0,

w(J − ∑n
i=1 J∗

i ) = 0,
λiJ

∗
i = 0, μi(J̄i − J∗

i ) = 0, ∀i = 1, ..., n,

w = ci(J∗
i ) + λi − μi, ∀i = 1, ..., n.

(14)
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It should be noted that actually we must have μi = 0 for all i = 1, ..., n. To show
that, suppose μi > 0 for some i, then we have J∗

i = J̄i, which leads to λi = 0.
Thus, we must have w = ci(J̄i) − μi = −μi < 0, which is impossible. Thus, the
KKT condition can be simplified to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n
i=1 J∗

i − J ≤ 0,

w(J − ∑n
i=1 J∗

i ) = 0,
λiJ

∗
i = 0, ∀i = 1, ..., n,

w = ci(J∗
i ) + λi, ∀i = 1, ..., n.

(15)

a) Given
∑n

i=1 J̄i ≥ J , it must be true that
∑n

i=1 J∗
i − J = 0. To show that,

suppose
∑n

i=1 J∗
i −J < 0, then w = 0. Thus, λi = 0, ci(J∗

i ) = 0, ∀i = 1, ..., n.
Then J∗

i = J̄i, ∀i = 1, ..., n follows. Hence,
∑n

i=1 J∗
i =

∑n
i=1 J̄i ≥ J , which

is against the assumption
∑n

i=1 J∗
i − J < 0. So

∑n
i=1 J∗

i − J = 0 must be
true given

∑n
i=1 J̄i ≥ J .

The equality condition
∑n

i=1 J∗
i − J = 0 implies that there must exist some

i’s such that J∗
i > 0. Let k > 0 be the largest index i such that J∗

i > 0, then
we have λk = 0 and

0 ≤ w = ck(J∗
k ) < ck(0) < cj(0), ∀1 ≤ j < k.

Now, to satisfy w = cj(J∗
j ) + λj , ∀j = 1, ..., k − 1 knowing λj ≥ 0, we must

have J∗
j > 0, ∀j = 1, ..., k − 1, which leads to λj = 0, ∀j = 1, ..., k − 1 and

w = ck(J∗
j ), j = 1, ..., k − 1. So J∗ can be an optimal solution when system

of Eq. 2 has a solution with w ≥ 0. It is easy to verify that the solution will
be unique if it exists.

b) Given
∑n

i=1 J̄i < J , it must be true that
∑n

i=1 J∗
i −J < 0 since J∗

i ≤ J̄i, ∀i =
1, ..., n. Then w = 0 follows, and J∗ must satisfy 0 = ci(J∗

i )+λi, ∀i = 1, ..., n,
which leads to J∗

i > 0, ∀i = 1, ..., n and λi = 0, ∀i = 1, ..., n. So J∗ can be
an optimal solution when system of Eq. 3 has a solution and it is easy to
verify that you can’t have a solution of system of Eq. 2 at the same time.

Proof of Theorem 2. We will first show that a NE strategy pair (J∗,y∗) of
this non-zero sum game will be subject to a water-filling scheme.

Let (J∗,y∗) be a NE strategy pair and let h be the largest integer such that
J∗

h > 0. According to condition 7, it is true that h ∈ I and y∗
h > 0. Then, by

condition 8,

wA = Θh(J∗
h) < Θh(0) < Θi(0), ∀i = 1, ..., h − 1,

which implies J∗
i > 0, ∀i = 1, ..., h − 1, in order for condition 8 to be satisfied.

Then, by condition 7 again, one has y∗
i > 0, ∀i = 1, ..., h − 1.

In summary, a NE strategy pair (J∗,y∗) should be subject to a water-filling
scheme with a threshold index h such that

{
J∗

i > 0, y∗
i > 0, ∀i = 1, ..., h,

J∗
i = 0, ∀i = h + 1, ..., N.

(16)
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a) If k ≤ m, the solution to system of Eqs. 9 and 11 satisfy conditions 7, 8
and 16, which defines the NE strategy pair (J∗,y∗) of this game. Thus,
I = {1, ..., k} in this case.

b) If k > m, there is no feasible solution to system of Eqs. 9 and 11 since it is
impossible to have ΔJ∗

k
(y∗

k) = wD ≥ 0. Besides, by the definition of k, it is
impossible to have h > k.

Notice that solving system of Eq. 9 instead with w
′
A > wA and

∑k
i=1 Ji ≤ J

will provide solutions containing smaller J
′
i ’s and threshold index h ≤ k, and

smaller J
′
i ’s lead to larger m as defined by system of Eq. 10. Thus, one can find

a NE strategy pair (J∗,y∗) by increasing the value of wA until conditions 7, 8
and 16 are satisfied.

Now, one can search for the threshold index h ≤ k with an increased w
′
A > wA

as shown in system of Eq. 12. Clearly,
∑n

i=1 J∗
i < J in this case, which leads to

wD = 0 by constraint wD(
∑n

i=1 J∗
i − J) = 0. Also, under condition 8, it is

possible to have y∗
h+1 = 1 − ∑h

i=1 y∗
i > 0 if and only if w

′
A = Θh+1(0), but the

constraint ΔJ∗
h+1

(y∗
h+1) ≤ wD = 0 must be satisfied at the same time as implied

by condition 7 and J∗
h+1 = 0.

In summary, the solution of system of Eqs. 12 and 13 form a Nash Equilibrium
strategy pair (J∗,y∗) of this game in this case.
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Abstract. In this paper, we propose a link adaptation algorithm for
slow-fading half-duplex orthogonal multiple access multiple relay chan-
nel under a centralized node scheduling approach. During the first phase,
the sources transmit in turn. During the second phase, a scheduled
node (relay or source) transmits incremental redundancies on its cor-
rectly decoded source messages. The proposed algorithm aims at max-
imizing the average spectral efficiency under individual QoS targets for
a given modulation and coding scheme family. The main principle of
the algorithm is to reduce the complexity, and this is achieved using
Best-Response Dynamics (BRD) tools. The rates are first initialized and
then an iterative rate correction is applied. The resulting scheduling
offers a tractable complexity under practical knowledge of channel states
and yields performance close to the corresponding exhaustive search
approaches as demonstrated by Monte-Carlo simulations.

Keywords: Slow-link adaptation · Best-response dynamics ·
Multi-source multi-relay wireless network · QoS target · Spectral
efficiency

1 Introduction

1.1 Research Context

Spectral efficiency of wireless networks is one of the main concerns of differ-
ent researches nowadays. Cooperative communication is one promising con-
cept, which aims at increasing the efficiency in order to answer the increas-
ingly challenging demands from users. Its principle is to allow users to share
their resources, so that they can improve their transmission and reception. Fun-
damental principles and general problems of cooperative communications are
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introduced in [1], where the three-terminal Relay Channel (RC) is studied. Inner
and outer bounds for the capacity of different relay channels are derived in [2],
many of those still not being surpassed today. The corresponding bounds for
Multiple-Access Relay Channel (MARC) are derived in [3].

In this paper, we study a Multiple Access Multiple Relay Channel (MAMRC),
which can be viewed as a generalization of previously mentioned models. In par-
ticular, a centralized link adaptation (rate allocation) algorithm is proposed for
Orthogonal Multiple Access Multiple Relay Channel (OMAMRC), where a time-
slotted communication is adopted. The algorithm here is based on two steps: step
one, choosing the initial source rates; and step two, using Best-Response Dynam-
ics (BRD) method to correct the previous selected initial rates. Briefly speaking,
best-response dynamics work in a way, where each user will try to choose the
best rate choice, which optimizes the same profit function defined to all users.
When all rates reach a value, and tend not to change it, we reach our convergence
point where no more modifications are needed to the allocated rates.

In OMAMRC, at least two sources communicate with a single destination
with the help of at least two relaying nodes. A relaying node can be either a
dedicated relay, which does not have its own message to transmit, or a source
itself, which does have its own message and that can relay the messages of
the other sources in some cases. The latter case is often referred to as user
cooperation and, thus, falls into the scope of the paper. Relaying nodes are half-
duplex, meaning that they cannot listen to source messages and transmit at the
same time.

Channel State Information (CSI) is available at the receiver for each direct
link. This means that the centralized scheduler located at the destination only
has the CSI of source-to-destination and relay-to-destination links. On the other
hand, CSI of source-to-relay, relay-to-relay and source-to-source links is not avail-
able. Our main focus is a design of a link adaptation algorithm under the scenario
where the Channel Distribution Information (CDI) of all links (e.g., average SNR
of all links) is reported to the destination on a long-term basis in order to derive
the (slow) rate allocation of the sources. This kind of scenario typically corre-
sponds to fast varying radio conditions, e.g., for high mobility conditions.

1.2 Scope of the Paper

Our main contribution is the proposal of a slow-link adaptation algorithm,
which aims at maximizing the average spectral efficiency after a fixed number
of retransmissions subject to Quality of Service (QoS) constraints on individ-
ual Block Error Rate (BLER) per source. The decisions of the algorithm are
based on CDI of all the links in the network, while the utility metric is obviously
conditional on the node scheduling (selection) strategy used.

To solve the multi-dimensional rate allocation optimization problem, we fol-
lowed the best-response dynamics tools [4]. Such game theoretic based algo-
rithms are widely used in several wireless problems like power control in cellu-
lar networks[5] and wireless systems in general [6,7]. First, each source rate is
derived independently in a certain arbitrary strategy. Then, the choice of each
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Fig. 1. Cooperative Orthogonal Multiple Access Multiple Relay Channel (OMAMRC)
with feedback.

source rate depends on the previous choices of all other sources rates, in the aim
to achieve the optimal total average spectral efficiency. Accordingly, we modify
these choices dynamically, and iteratively, until we reach a convergence point
where any change in the set of source rates will make the efficiency worse.

2 System Model

A slow-fading OMAMRC is considered, where sources belonging to the set
S = {1, . . . , M} communicate with a common destination with the help of
the other sources, which perform user cooperation, and a set of relays R =
{M + 1, . . . ,M + L} (see Fig. 1). A message us ∈ F

Ks
2 of a source s has a length

of Ks information bits. That length depends on the selected Modulation and
Coding Schemes (MCS) for that source. The messages of all sources are mutu-
ally independent. Relays operate in half-duplex mode and they do not have
their own messages to transmit. We define the set of all source and relay nodes
as N = S ∪ R = {1, . . . , M + L}. In other words, a source si will be the node i
in set N , and a relay ri will be the node i + M in set N .

CSI is available at the receiver of each link and is assumed perfect. That
means that a priori, only the CSI hdir = [hs,d,hr,d] = [h1,d, . . . , hM+L,d] of
source-to-destination (S-D), and relay-to-destination (R-D) links are perfectly
known by the destination, while the CSI of source-to-source (S-S), source-to-
relay (S-R) and relay-to-relay (R-R) links are unknown.

We assume that the radio-links between the different nodes are fixed within
a frame transmission (slow fading assumption). It is assumed that all nodes
transmit with the same power, where each node is equipped with one antenna
only. In the rest of the paper, the following notations are used:

– xa,k ∈ C is the coded modulated symbol for channel use k, sent from node
a ∈ S ∪ R, whose power is normalized to unity.

– ya,b,k is a received signal at node b ∈ S ∪ R ∪ {d}\{a}, originating from node
a described previously.

– γa,b is the average signal-to-noise ratio (SNR) that captures both path-loss
and shadowing effects.
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– ha,b are the channel fading gains, which are independent and follow a zero-
mean circularly symmetric complex Gaussian distribution with variance γa,b.

– na,b,k are independent and identically distributed AWGN samples, which fol-
low a zero-mean circularly-symmetric complex Gaussian distribution with
unit variance.

Using the previous notation, the received signal at node b ∈ S ∪R∪{d}\{a},
originating from node a ∈ S ∪ R can be represented as:

ya,b,k = ha,bxa,k + na,b,k, (1)

where k denotes a given channel use. During the first phase, k ∈ {1, . . . , N1},
while during the second phase, k ∈ {1, . . . , N2}, where N1 and N2 represent the
number of channel uses in each phase respectively.

3 Problem Formulation

Let us define the initial transmission rate of source s as Rs = Ks/N1 in bits per
complex dimension or bits per channel use [b.c.u]. In the slow-link adaptation
scenario, the long-term transmission rate R̄s per source is defined as the number
of transmitted bits over the total number of channel uses spent:

R̄sla
s =

Ks

MN1 + N2E(Tused)

=
Rs

M + αE(Tused)
,

(2)

where we take into account the average number of retransmission rounds used
in the second phase: E(Tused) =

∑T
t=1 tPr{Tused = t} (for a number of frames

that tends to infinity), and α = N2/N1. Note that the denominator of Eq. 2
represents the number of channel uses corresponding to both transmission and
retransmission phases. The transmission phase corresponds to M time slots, each
with N1 channel uses, and the retransmission phase corresponds to Tused time
slots, each with N2 channel uses.

In the same scenario, the average spectral efficiency, which is used as a per-
formance metric in this work, can be defined as:

ηsla =
M∑

i=1

R̄sla
i (1 − Pr{Oi,T }), (3)

where Os,T is the event that source s is not decoded correctly at the destination
after round T , called the “individual outage event of source s after round T”
in the following. This metric is chosen since it describes how well the spectral
assets are utilized in the MAMRC model adapted. It is composed of the sum
over all sources participating in each frame transmission. The sum will include
the transmission rate per source multiplied by the probability of transmission
success of this source message.
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The individual outage event Os,t(at,Sat,t−1|hdir,Pt−1), of source s after
round t, depends on selected node at ∈ N and associated decoding set Sat,t−1.
It is conditional on the knowledge of hdir and Pt−1, where Pt−1 denotes the set
collecting the nodes âl which were selected in rounds l ∈ {1, . . . , t − 1} prior
to round t together with their associated decoding sets Sâl,l−1, and the decod-
ing set of the destination Sd,t−1 (Sd,0 is the destination’s decoding set after
the first phase). Similarly, we define the “common outage event after round t”
Et(at,Sat,t−1|hdir,Pt−1) as the event that at least one source is not decoded cor-
rectly at the destination at the end of round t. In the rest of the paper, in order
to simplify the notation, the dependency on hdir and Pt−1 is omitted.

Analytically, the common outage event of a given subset of sources is declared
if the vector of their rates lies outside of the corresponding MAC capacity region.
For some subset of sources B ⊆ S̄d,t−1, where S̄d,t−1 = S\Sd,t−1 is the set of non-
successfully decoded sources at the destination after round t − 1, for candidate
node at this event can be expressed as:

Et,B(at,Sat,t−1) =
⋃

U⊆B

[ ∑

i∈U
Ri >

∑

i∈U
Ii,d +

t−1∑

l=1

αIâl,d[Câl
] + αIat,d[Cat

]
]
, (4)

where Ia,b denotes the mutual information between the nodes a and b, [P ] rep-
resenting the Iverson bracket which gives 1 if the event P is satisfied, and 0 if
not, and where Câl

and Cat
have the following definitions:

Câl
=

[
[Sâl,l−1 ∩ U �= ∅] ∧ [Sâl,l−1 ∩ I = ∅]

]
,

Cat
=

[
[Sat,t−1 ∩ U �= ∅] ∧ [Sat,t−1 ∩ I = ∅]

]
.

(5)

In (5), the sources that belong to I = S̄d,t−1\B are considered as interference,
with ∧ standing for the logical and. In (4), for each subset U of set B, we
check if the sum-rate of sources contained in U is higher than the accumulated
mutual information at the destination (since IR-type of HARQ is used). The
accumulated mutual information is split into three summations, which originate
from the direct transmissions from sources contained in U , the transmission of
previously activated nodes during the second phase:

∑t−1
l=1 αIâl,d[Câl

], and the
transmission of the candidate node at during the second phase: αIat,d[Cat

].
The individual outage event of source s after round t for candidate node at

can be defined as (check [8] prop. 1):

Os,t(at, Sat,t−1) =
⋂

I⊂S̄d,t−1,B=Ī,s∈B
Et,B(at, Sat,t−1),

=
⋂

I⊂S̄d,t−1

⋃

U⊆Ī:s∈Ī

[ ∑

i∈U
Ri >

∑

i∈U
Ii,d +

t−1∑

l=1

αIâl,d[Câl ] + αIat,d[Cat ]
]
,

(6)
where Ī = S̄d,t−1\I.
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The individual outage probability Pr{Os,t} = Pr{Os,t(ât,Sât,t−1)} stands
in practice for the average BLER of source s after t retransmissions. In the
following, we denote it either Pr{Os,t} or BLERs,t.

4 Link Adaptation Best-Response Algorithm

Let the source s transmit with the rate Rs, and let us denote the average BLER
after T rounds with BLERs,T (Rs). In the point-to-point link scenario, the indi-
vidual throughput of the source s is given by ηs = R̄s × (1 − BLERs,T (Rs)).
In order to maximize it, the usual practice would be to find the optimal pair
(Rs,BLERs,T (Rs)). In the MAMRC setup however, BLERs,T depends on the
vector of rates (R1, . . . , RM ). The reason for the dependence of BLERs,T on
all sources’ rates lies in the fact that the decoding set of the selected node
in the given round depends on all the rates, which influences the probability
of non-successful decoding of the message of the source s. Hence, in theory, all
(R1, . . . , RM ) need to be optimized jointly in order to reach the optimal solution.

In order to be precise with the notation, we distinguish hereafter R̂s, the rate
of source s after the optimization, and Ri, one possible value of R̂s taken from
the set of possible rates {R̃1, . . . , R̃nMCS}, where nMCS is the number of different
modulation and coding schemes.

In general, the optimization problem that is needed to be solved under the
given individual QoS constraints for slow-link adaptation is given by (7). It
should be noted that Pr{Os,T } is conditional on the node activation sequence.

(R̂1, . . . , R̂M ) = argmax
(R1,...,RM )∈{R̃1,...,R̃nMCS}M

M∑

i=1

Ri

M + αE(Tused )

(
1 − Pr{Oi,T }

)
,

subject to Pr{Oi,T } ≤ BLERQoS,i, ∀i ∈ {1, . . . , M}.
(7)

Solution for the given problem is analytically intractable to the knowledge of the
authors. Namely, it is hard to predict what is the decoding set of each node in
a given round, as it depends on the rates of sources, which we are trying to find
in the first place. The same conclusion holds even in the case where the node
activation sequence is pre-determined and known in advance.

Concerning the starting point of our BRD algorithm, we can resort to an
approach that is based on a “Genie-Aided” (GA) assumption, where all the
sources s ∈ S\i = {1, 2, . . . , i−1, i+1, . . . ,M} except the one for which we want
to allocate the rate, i, are assumed to be decoded correctly at the destination and
relaying nodes. Such an assumption can reduce the complexity of the problem,
and helps us start with a clever starting point. In this paper, we mainly focus on
the BRD algorithm, rather than the GA approach. For this reason, and for the
sake of brevity, the detailed explanation, as well as the step by step algorithm
of the GA approach will be omitted.

After setting the starting point of the rates, our BRD algorithm starts. In a
given iteration t, all the sources’ rates are updated in a cyclic fashion. The rate
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Algorithm 1. Best-Response algorithm under the QoS constraints on individual
BLER targets BLERQoS,i,∀i ∈ {1, . . . , M}.
1: t ← 0. � Counter of iterations.
2: Set the candidate rates: {R̃1, . . . , R̃nMCS}.
3: Rate initialization under GA assumption with a random node selection:

[R̂1(0), . . . , R̂M (0)] ← [RGA
1 , . . . , RGA

M ].
4: R̂i(−1) ← 0 for all i ∈ {1, . . . , M} � To force loop to start
5: while (|R̂i(t) − R̂i(t − 1)| > 0), for some i ∈ {1, . . . , M} do
6: t ← t + 1.
7: for i ← 1 to M do � for all sources, choose:
8: R̂i(t) ← argmaxRi∈{R̃1,...,R̃nMCS}ηsla

(
R̂1(t), . . . R̂i−1(t), Ri, Ri+1(t −

1), . . . , R̂M (t − 1)
)

� the rate which maximizes η
such that Pr{Oi,T } ≤ BLERQoS,i � while satisfying the constraint

9: end for
10: end while

of source i is a function of the sources’ rates updated in the same iteration prior
to source i (sources with index i′ < i), and the rates updated for the last time
in the previous iteration, t − 1 (sources with index i′′ > i). Since our goal is to
maximize the total average spectral efficiency, we recall that our profit function
for each user i is the performance metric defined in Eq. (3).

Comparing with Eq. (7) where the multivariate optimization problem is con-
sidered, here, the problem is relaxed such that every source will only work with
the source rate allocated to it particularly, where other sources’ rates are fixed at
a current iteration. Following the BRD tools, and in an iterative algorithm and
a circular manner, each user will choose the most suitable rate, which optimizes
the associated profit function. We recall that each user is subjected to a QoS
constraint Pr{Oi,T } ≤ BLERQoS,i for i ∈ {1, . . . , M}, and thus has no right to
break any of these constraints while choosing its rate. In other words, a source
has no right to change its source rate to one which increases the spectral effi-
ciency but breaks any of the QoS constraints. Following this description, each
user will have to choose the optimal rate that meets the constraints. Note that
this procedure is repeated until no user tends to change its source rate, where
at this point, we reach convergence because any change will either decrease our
profit function or break the QoS constraints.

The principle of the update function for source i is to check whether the
average spectral efficiency ηcurrent increases if we choose another source rate
from the available source rates set. Additionally, we check if the condition of the
individual BLER is below the corresponding target, BLERcheck, is true. If both
conditions are met, we choose the source rate which maximizes the efficiency and
meets the BLER target. Once we reach our “optimal” source rate for a given
user, we proceed to the next user, following the same steps.

The complexity of the proposed iterative rate correction algorithm (see algo.
1) is much smaller than in the case of the exhaustive search approach algorithm.
In the latter, the calculation of each individual BLER is performed nMCS

M
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times, while in the proposed algorithm, in one iteration the same calculation is
performed nMCS × M times. The complexity of an iteration corresponds to the
argmax expression mentioned in algorithm 1, in step 8. Since each source node
will pass through all possible values of nMCS, we reach the result of nMCS × M .
Finally, we mention that due to the nature of the rate-efficiency relationship,
and as the simulation results showed, the number of iterations used in the BRD
algorithm will be on average between one or two iterations.

5 Numerical Results

In this section, we validate the proposed slow-link algorithm by performing
Monte-Carlo simulations. We consider (3, 3, 1)-OMAMRC, with T = 4 and
α = 0.5. The allocated rates are chosen from a discrete MCS family whose
rates belong to the set {0.5,1,1.5,2,2.5,3,3.5} [b.c.u]. We assume independent
Gaussian distributed channel inputs (with zero mean and unit variance), with
Ia,b = log2(1 + |ha,b|2). Note that some other formulas could be also used for
calculating Ia,b but they would not have any impact on the basic concepts of
this work [9].

Asymmetric link configuration is assumed, where the average SNR of each
link is set as follows. First, the average SNR of each link is set to γ. Second,
the average SNR of each link that includes source 2 is reduced by 4 dB and
which includes source 3 is reduced by 7 dB. Finally, the average SNR of the
link between the sources 2 and 3 is set to γ − 5 dB. In that way, we have set
on purpose the source 1 to be in the best propagation conditions, while the
source 3 is in the worst ones. Here, we validate the performance of the slow-
link adaptation algorithm under the constraint on the individual BLER target
after T retransmissions for each source set to BLER(1)

QoS = 1. This kind of choice
for the individual BLER targets corresponds to a pure maximization of the
average spectral efficiency. Figure 2 shows the average spectral efficiency that
can be obtained using the allocated rates that result from different algorithms,
as a function of γ. Five different algorithms are considered: the proposed best-
response dynamics algorithm, the algorithm based solely on GA assumption
with random node selection (referred to as “Genie-Aided approach”), two trivial
algorithms where the rates are predetermined and set to the minimum (“Min
rates: R1 = 0.5, R2 = 0.5, R3 = 0.5 [b.c.u.]”) and the maximum (“Max rates:
R1 = 3.5, R2 = 3.5, R3 = 3.5 [b.c.u.]”) possible ones, and the exhaustive search
approach algorithm. We observe that the average spectral efficiency obtained by
the proposed slow-link adaptation algorithm coincides with the one obtained by
the exhaustive search approach algorithm, for each γ. This indicates that our
proposed algorithm is converging to the optimal solution. In addition we see that
our first step GA approach lacks this convergence. Also, our algorithm provides
the gain of approx. 2 dB compared with the strategy of predetermined maximum
possible allocated rates, the difference becoming lower as γ grows (it converges to
zero for γ = 15dB). The performance of the strategy of predetermined minimum
possible allocated rates quickly becomes highly non-optimal starting already
from γ = −4 dB, as γ grows.
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Fig. 2. Average spectral efficiency that corresponds to different slow-link adaptation
algorithms s.t. BLER

(1)
QoS target.

6 Conclusion

In this paper, a slow-link adaptation algorithm is proposed for slow-fading
orthogonal multiple access multiple relay channel. The relays are half-duplex
and the orthogonal multiple access is performed in time under the scheduling
control of the destination. During the first phase, the sources transmit in turn.
The proposed slow-link adaptation algorithm aims at maximizing the average
spectral efficiency under individual QoS targets for a given modulation and cod-
ing scheme family. To reduce the complexity of proposed algorithms found in
the literature, a best-response dynamics algorithm is performed to correct itera-
tively the previously chosen rates. The resulting scheduling and link adaptation
algorithm offers a tractable complexity under practical knowledge of the chan-
nel qualities and yield performance close to corresponding exhaustive search
approaches as demonstrated by Monte-Carlo simulations.
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Abstract. We analyze a virus propagation dynamics in a large popula-
tion of agents (or nodes) with three possible states (Susceptible, Infected,
Recovered) where agents may choose to vaccinate. We show that this sys-
tem admits a unique symmetric equilibrium when the number of agents
goes to infinity. We also show that the vaccination strategy that mini-
mizes the social cost has the same threshold structure as the mean field
equilibrium, but with a shorter threshold. This implies that, to encourage
optimal vaccination behavior, vaccination should always be subsidized.

1 SIRV Dynamics

A large number N of agents (that can be nodes in a communication network,
persons in a crowd, or abstract players in a mathematical game) are subject to
interactions: they meet (or communicate with) each other according to a uniform
process, described in the following. Each agent (or player1) has 3 possible states:
Susceptible, Infected, Recovered (S, I,R).

When an agent in state S meets an agent in state I, it gets infected. An
agent in state I will eventually recover and go to state R. An agent in state R
stays in R forever. This is a classical SIR model of virus propagation among the
agents.

This model can be seen as over-simplistic but actually, it has a good predic-
tive power for human epidemics and other diffusion processes. This model was
introduced as early as in 1927 by Kermack and McKendrick in a series of papers
[1] and “because of their seminal importance to the field of theoretical epidemi-
ology, these articles were republished in the Bulletin of Mathematical Biology in
1991” (from wikipedia). This so-called SIR model has been studied ever since,
being the subject of papers in mathematics, computer science, health studies
and bio-mathematics.

Here, we consider a stochastic evolution of the population, whose state
changes are driven by Poisson events and players can decide to vaccinate (hence
the V in the name of our model).

– A player encounters other players with rate γ (activity of the player). A slight
generalization is possible without any impact on the following analysis. The

1 Both terms will be used in the following, interchangeably.

c© Springer Nature Switzerland AG 2021
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rate of encounters with susceptible players is equal to γ1 and the rate of
encounters with infected players is equal to γ2(< γ1) to take into account
a lesser activity of infected players. If the first player is Susceptible and the
second is Infected in an encounter, then the first one becomes Infected.

– An Infected agent Recovers at rate ρ.
– A Susceptible agent can decide to get vaccinated. It chooses its vaccination

rate π(t) ∈ [0, θ].
– Once an agent is vaccinated or recovered, its state becomes R in both cases

and does not change after this point.

Similar models have been studied in [2,3], although the vaccination policies in
these papers do not depend explicitly on the susceptible population.

Let (mS(t),mI(t),mR(t)) be the proportion of the agents in states S, I,R
respectively at time t. The Markovian evolution of one player is given by a
non-homogeneous continuous time Markov chain displayed in Fig. 1.

S I R
γmI(t)

π(t)

ρ

Fig. 1. Markov chain driving the evolution of one agent in the population

2 Cost Functions and Objectives

In addition to the state evolution, the system is endowed with cost functions.
The cost of being infected is cI per time unit.
The vaccination cost is linear in its rate: For one player, the cost to vaccinate

at rate π is cV π.
We are now ready to state the problem to be solved: under full information

and common knowledge (the state of all players at time t and their vaccination
strategy is known to all), each player wants to choose a vaccination strategy that
minimizes its cost up to a time horizon T .

This is not a well defined problem because the optimal strategy of any player
depends on the strategy of any other player, who in turn is trying to optimize
its vaccination strategy that depends on the first player’s strategy. One classical
way to get around this difficulty is to consider “stable points”, that is Nash
equilibria and social optimum.

Definition 1 (Symmetric Nash Equilibrium (SNE)). A Symmetric Nash
Equilibrium is a vaccination strategy πNE such that if all the players use πNE,
then any player’s optimal strategy is to use πNE.

Definition 2 (Social Optimal). A social optimal is a vaccination strategy πSO

imposed upon all players that minimizes the sum of the costs of all the players.
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SNE always exist in our SIRV model (the proof is based on Kakutani fixed
point theorem, not detailed here). SO always exist in our SIRV model (The
proof uses the compacity of the strategy space for the weak topology and is not
detailed here). For more details on these two proofs of existence, see [4].

Unfortunately both strategies are very hard to compute when N is large
because of the combinatorial explosion of the state space.

3 Mean Field Limit

Since the players are indistinguishable, the state of the system is given by the
population distribution, (mS(t),mI(t),mR(t)).

When N → ∞, (mS(t),mI(t),mR(t)) behaves as a fluid, whose evolution fol-
lows the Kolmogorov equations of the individual Markov chain (see for example
[4,5]). Under a given vaccination strategy π.

⎧
⎪⎨

⎪⎩

ṁS(t) = −γmS(t)mI(t) − π(t)mS(t)
ṁI(t) = γmS(t)mI(t) − ρmI(t)
ṁR(t) = ρmI(t) + π(t)mS(t).

(1)

There are some technicalities here, because π(t) may not be continuous. In
this case, one can still use the Carathéodory Existence Theorem to show that the
solution of these equation is well defined and unique once (mS(0),mI(0),mR(0))
are given (see [4] for a rigorous proof).

When π(·) ≡ 0, this yields the classical SIR dynamics of Kermack and McK-
endrick (1927). Even in this simple case, completely closed form solutions have
not been found (see the recent results in [6]). However, the mean field frame-
work is still easier to analyze qualitatively than the case with a finite number of
players because, at the limit, the strategy chosen by a single player will not alter
the behavior of the whole population. To make this more precise, we introduce
the best response correspondence in the mean field case.

3.1 Best Response

Let us pick one player among the infinite population (it is called player 0 in the
following). Let us define the state probabilities (p0S , p0I , p

0
R) of Player 0 as follows:

For X ∈ {S, I,R},

p0X(t) = P( Player 0 is in state X at time t ).

If player 0 uses strategy π0 while the population uses strategy π, then the state
probabilities (p0S , p0I , p

0
R) of Player 0 has an evolution given by its local Kol-

mogorov equation:
⎧
⎪⎨

⎪⎩

ṗ0S(t) = −γp0S(t)mI(t) − π0(t)p0S(t)
ṗ0I(t) = γp0S(t)mI(t) − ρp0I(t)
ṗ0R(t) = ρp0I(t) + π0(t)p0S(t).
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The population distribution (mS(t),mI(t),mR(t)) used in these equations
are the solutions of the mean field limit Eq. (1) and do not depend on the
strategy chosen by Player 0.

Using the foregoing notations, the expected individual cost for Player 0 is:

W (π0, π) =
∫ T

0

(

cV π0(t)p0S(t) + cIp
0
I(t)

)

dt,

where cV is the vaccination cost and cI is the unit time cost of being infected,
as defined earlier.

A best response of Player 0 to a population using strategy π is a strategy π∗
0

that minimizes its cost.
This best response can be computed using a Bellman optimality equation. If

we denote by W ∗
X(t) the optimal total cost from t to T of Player 0 when it is in

state X at time t, they satisfy

W ∗
R(T ) = W ∗

S(T ) = W ∗
I (T ) = 0.

and

− Ẇ ∗
S(t) = min

π0(t)
[π0(t) (cV − W ∗

S(t)) + γmI(t)(W ∗
I (t) − W ∗

S(t))] (2)

−Ẇ ∗
I (t) = cI − ρW ∗

I (t). (3)

The best response strategy when in state S at time t is given by

π∗
0(t) = arg min

π0(t)

[π0(t) (cV − W ∗
S(t)) + γmI(t)(W ∗

I (t) − W ∗
S(t))] . (4)

Let us denote by BR(π) = π∗
0 , the best responses of Player 0 to π.

Definition 3 (Mean Field Equilibrium (MFE)). If π ∈ BR(π) then π is a
mean field equilibrium.

3.2 Threshold Policy

By analyzing the Bellman Equations (2)–(3), we can show that the best response
strategy is unique and has a specific structure.

Lemma 1. For any population strategy π, the best-response π∗
0 ∈ BR(π) is a

threshold strategy: There exists a critical time t0c(π) s.t.

π∗
0(t) =

{
θ if t < t0c(π),
0 if t > t0c(π).

The full proof is available in [7], is essentially based on the analysis of

π∗
0(t) = arg min

π0(t)

[π0(t) (cV − W ∗
S(t)) + γmI(t)(W ∗

I (t) − W ∗
S(t))] ,

which implies that π0(t) must be 0 whenever cV > W ∗
S(t) and θ whenever cV <

W ∗
S(t).
This induces the following theorem.



Vaccination in a Large Population 55

Theorem 1. SIRV has a unique mean-field equilibrium. This equilibrium is
deterministic (players do not randomize their decisions) and is a threshold strat-
egy. The threshold will be denoted by τMFE

c .

In 2004, Francis ([2] showed that the stable point for each player in the SIRV
equations has a threshold. This result precedes the introduction of mean field
games and mean field equilibria, only defined in 2007 in [8]. It is quite remarkable
(and also natural) that the two notions should coincide.

Theorem 1 is proved in the long version of this paper, available as a Research
Report [7].

We believe that tMFE
c cannot be computed in closed form as a function of

T, cI , cV , θ, ρ and γ. However, the complexity reduction from finding a stable
strategy (whose domain has an infinite dimension) to determining one real num-
ber makes numerical computations feasible (see Sect. 5).

4 Social Optimal Strategy

We denote by C(π) the average cost incurred by the population under strategy
π, i.e.,

C(π) =
∫ T

0

(cImI(t) + cV π(t)mS(t)) dt.

A social optimal strategy minimizes the total cost:

πopt ∈ arg min
π

C(π).

It is known that the solution of this problem is a bang-bang strategy [9] (only
vaccination rates 0 and theta will be used). A further analysis of the dynamics
shows the following result:

Proposition 1. The strategy that minimizes the total cost is a threshold strat-
egy: There exists a critical time τopt s.t.

πopt =
{

θ if t < τopt,
0 if t > τopt.

Proof. (Sketch) The proof is based on the Pontryagin maximum principle: If
πopt is an optimal strategy, then there exist two Lagrange multipliers λS(t) and
λI(t) such that λS(T ) = 0, λI(T ) = 0 and for any t < T ,

−λ̇S = cV πopt(t) + (−γmopt
I (t) − πopt(t))λS + γmopt

I (t)λI

−λ̇I = cI − γmopt
S (t)λS + (γmopt

S (t) − ρ)λI

πopt(t) = arg min[cV π(t)mopt
S (t) + cIm

opt
I (t)

+ (γmopt
S (t)mopt

I (t) − π(t)mopt
S (t))λS

+ (γmopt
S (t)mopt

I (t) − ρmopt
I (t))λI ],
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where mopt
I (t),mopt

S (t) are the proportions of the population in states I and S
respectively, at time t, under the optimal strategy. By straightforward simplifi-
cations, one gets

− λ̇S = inf
π

(
π(t)(cV − λS) + γmopt

I (t)(λI − λS)
)

(5)

−λ̇I = cI − ρλI + γmopt
S (t)(λI − λS) (6)

πopt(t) = arg min
(
π(t)mopt

S (t)(cV − λS)
)
. (7)

One can notice a similarity between Eqs. (5)–(6) for the Lagrange multipliers
and Eqs. (2)–(3) for the costs of the best response.

This induces a similar shape for the strategy that optimizes the social cost:
There exists a critical time τopt s.t.

πopt(t) = θ if t < τopt and 0 if t > τopt.

Proposition 2. The threshold of the optimal social cost is larger than the
threshold of the mean field equilibrium: τopt ≥ τMFE.

Proof. Again, the proof is based on the fact that Eqs. (5)–(6) and Eqs. (2)–(3)
are similar up to the additional term γmopt

S (t)(λI − λS) for λI . Using this, the
comparison between the optimal strategy and the mean field equilibrium bowls
down to the comparisons of the Lagrange Multipliers λS , λI and the costs JS , JI .

One easy case is when cV is larger than cI/ρ. In this case, for all t, λS ≤
λI ≤ cI/ρ ≤ cV so that the jump time of the mean field equilibrium is τeq = 0.
Therefore, the socially optimal jump time τopt can only be larger than τeq.

Let us now consider the case when cV < cI/ρ. In this case, τopt is the
time when λS gets below cV . By examining the Lagrange multipliers λS and λI

between τopt and T , one can show that they must satisfy the following properties:

– λS(T ) = 0, λI(T ) = 0,
– ∀t ∈ [τopt, T ], λS(t) ≤ λI(t).

Indeed, if there is a time t such that λS(t) = λI(t), then their deriva-
tives become comparable (λ̇S(t) ≤ λ̇I(t)). Therefore, the additional term
γmopt

S (t)(λI − λS) in (5) remains positive so that λI(t) ≤ JI(t), ∀τopt ≤ t ≤ T .
In turn this implies that λS(t) ≥ JS(t), ∀τopt ≤ t ≤ T .

This implies that JS(τopt) ≤ λS(τopt) = cV . Finally, this implies that τMFE

(the time when JS crosses level cV ) is smaller that τopt, with equality only when
τopt = 0.

This result should be intuitive: Each member of the population has a personal
incentive to stops vaccinating when the individual risk becomes low enough,
while the social planner has a higher standard for the virus disappearance before
deciding to stop the vaccination.
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5 Numerical Comparisons

5.1 Comparison of MFE and Social Optimum

In this section, we report a numerical evaluation of the threshold of the two
strategies2. We consider the same system parameters as in [3], which is based
on the epidemiological study of the H1N1 epidemic of 2009–2010 in France :
ρ = 36.5, γ = 73, θ = 10, cI = 36.5 and cV = 0.5. Besides, we consider that
the proportion of susceptible and infected population at time 0 are both equal
to 0.4.

For these parameters, we compute the optimal strategy and the mean field
equilibrium over a time horizon of a year, that is, T = 1. The results are reported
in Fig. 2a where the population state space is divided into three regions that
represent the decisions taken by both strategies at time 0, as a function of the
initial state. In the white region, both strategies vaccinate at maximum rate.
In the dark gray region, the strategy of the social optimum is to vaccinate at
maximum rate and the strategy of the equilibrium is to not vaccinate. In the
light gray region, both strategies are to not vaccinate.

We also plot the trajectories corresponding to both strategies when the pro-
portion of infected population and of susceptible population at time 0 are both
equal to 0.4. In Fig. 2a (see Fig. 2b for a zoomed figure), we plot with a solid line
the behavior of the equilibrium vaccination strategy, and with a dashed line, the
behavior of the social optimum. The obtained cost for the equilibrium vaccina-
tion strategy for the parameters under consideration is 0.6824, whereas for the
social optimum vaccination strategy is 0.6818.

5.2 Mechanism Design

For any vaccination cost cV , while the other parameters remain fixed, we denote
by τopt(cV ) (resp. τMFE(cV )) the jump time of the socially optimal strategy
(resp. equilibrium strategy). It can be shown that in both cases, the jump times
are decreasing in cV : the more costly is the vaccination, the less people vaccinate
(for the socially optimal situation as well as for the mean field equilibrium).
Figure 3 confirms that the jump times decrease with cV and also shows that the
jump times are never equal for this range of parameters.

Therefore, if the vaccination decisions are let to individuals, then vaccination
should be subsidized, by offering a subsidy g off the vaccination cost so that both
jump times coincide, i.e.,

τMFE(cV − g) = τopt(cV ).

For example, with the same parameters as in the simulation of Fig. 2, and for
cV = 0.8, the jump time of the social optimum is 0.0106, while the jump time of
the equilibrium is 0. When cV = 0.65, the jump time of the equilibrium is 0.034.
This simulation shows that the subsidy required to encourage selfish individuals
to vaccinate optimally consists of a reduction of the vaccination cost of g = 0.15.
2 The codes to reproduce these experiments are available at https://github.com/
josudoncel/MeanFieldGameAnalysisSIRModelVaccinations.

https://github.com/josudoncel/MeanFieldGameAnalysisSIRModelVaccinations
https://github.com/josudoncel/MeanFieldGameAnalysisSIRModelVaccinations
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(a) Population dynamics. (b) Pop. dynamics (zoomed).

Fig. 2. Population dynamics under the equilibrium strategy (dashed line) and the
socially optimal strategy (solid line). Three zones are displayed: (i) in the white region,
the social optimum and the equilibrium vaccinate with maximum rate; (ii) in the dark
gray region, the social optimum vaccinates with maximum rate, while the equilibrium
does not vaccinate; and (iii) in the light gray region, neither the social optimum nor
the equilibrium vaccinates. mI(0) = mS(0) = 0.4.

Fig. 3. Jump times comparison when cV varies from 0.01 to 1. The jump time of the
mean field equilibrium (MFE) is represented with a solid line and the jump time of the
social optimum (OPT) with a dotted line. The horizontal distance is the subsidy to be
granted to incentive players to use the optimal vaccination strategy.
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Abstract. Many systems require frequent and regular updates of cer-
tain information. These updates have to be transferred regularly from
the source(s) to a common destination. We consider scenarios in which
an old packet (entire information unit) becomes completely obsolete, in
the presence of a new packet. We consider transmission channels with
unit storage capacity; upon arrival of a new packet, if another packet is
being transmitted then one of the packets is lost. We consider the control
problem that consists of deciding which packet to discard so as to max-
imise the average age of information (AAoI). We derive drop policies that
optimize the AAoI. We show that the state independent (static) policies
like dropping always the old packets or dropping always the new packets
are optimal in many scenarios, among an appropriate set of stationary
Markov policies.

Keywords: Age of information · Freshness of information · Lossy
systems · Renewal processes · Dynamic and static policies

1 Introduction

The performance measures that have been studied traditionally in queueing sys-
tems have been related to delays and losses. Recently, with the advent of appli-
cations demanding frequent and regular updates of a certain information, there
is also significant focus towards the freshness of information. Timely updates of
the information is an important aspect of such systems, e.g., sensor networks,
news feed (social network) over mobile networks or remote control/monitoring of
autonomous vehicles etc. Many more such applications are mentioned in [3,7,8].
Most of the times the regular updates are transferred from the source of infor-
mation to the destination using wireless communication systems.

To measure the freshness of information, the concept of age of information
(AoI), has been introduced. AoI is defined as the difference between the current
time and the generation time of the latest available information [3]. Peak age
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of information (PAoI) and Average age of Information (AAoI) are the relevant
performance measures, introduced recently in [3,7]. The study of AAoI/PAoI
differs significantly from the conventional performance metrics, such as expected
transmission delay, expected number of losses etc.

There has been considerable work in this direction since its recent introduc-
tion, we discuss a relevant few of them. In [3] authors discuss the optimal rate
of information generation that minimizes the AAoI for various queuing systems.
They showed that the smallest age under FCFS can be achieved if a new packet
is available exactly when the packet in service finishes service. In [1] the authors
consider AoI only for the packets waiting to be transferred/processed. When the
queue is empty their AoI is zero, their definition accounts for the oldness of the
information waiting at the head of the line. In [2] authors study PAoI and gen-
eralize the previously available results to the systems with heterogeneous service
time distributions. The authors consider update rates that minimize the max-
imum PAoI among all the sources. In [8] authors discuss attempt probabilities
for slotted aloha system that optimize AAoI.

Most of the work, discussed above, considers lossless systems, where all the
packets are transferred (possibly after some delays). However often in systems
that require regular updates of the same information, the old packet1 becomes
obsolete once a new one is available. Then the old packet may be dropped. Thus
it is appropriate to consider lossy systems, for such scenarios. As an example, in
sensor networks the information is consolidated (to generate data packets) from
random sets of nodes at random instances of times. Further the transmission of
information to the final destination can be over wireless links, which is again
random. Further more in some sensor-based applications, the update rates could
be significantly high leading to possible availability of a new packet(s) before the
old one is completely transferred and then the later becomes obsolete.

If a new packet arrives at source while an old packet is being transferred,
it appears upfront that the transfer of the old packet (entire information unit)
has to be abandoned. But if the transfer of the old packet is on the verge of
getting completed, and since the new packets may require considerable time
for transmission, it might be better to discard the new packet and continue
the transmission of old packet. Further, the packet transfer times have large
fluctuations when the packets are transferred through wireless medium. Thus it
is not clear as to which packet is to be discarded. In this work we study the way
in which the choice of the packet to be dropped influences the freshness of the
information.

We showed that dropping the old packets (always) is optimal for AAoI, when
the packet transfer times are distributed according to exponential or hyper
exponential distribution. This is a static policy as the drop decision does not

1 Throughout we refer an entire information unit as a packet, that could stand for
message or a post or a frame, which needs to be updated frequently. Here are
few examples: messages describing weather forecast, or cricket score, or the sensed
events related to the entire area in a sensor network, or the information from stock
exchanges etc.
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depend upon the state of the system, but is optimal among all the stationary
Markov and randomized (SMR) policies. The SMR dynamic policies depend
upon the age of information at an appropriate decision epoch. We also estab-
lish certain conditions under which dropping the new packets (always) is opti-
mal among SMR policies. For transfer time distributions like uniform, Weibull,
Poisson, log-normal etc., one of the two static policies is optimal (even among
dynamic/Markov policies) based on the parameters. The AAoI cost is the ratio
of two time-average costs resulting in non standard Markov decision processes
(MDPs), and the above conclusions were obtained by solving these. With the
aid of numerical computations we showed for almost all cases that, one of the
two static policies is near optimal.

2 System with Losses and Fresh Updates

Consider source(s) sending regular updates of a certain information to a desti-
nation. The information update packets (entire information units) arrive at any
source according to a Poisson process with rate λ. The packets are of constant
length or of random lengths, and the transfer times depend upon the (random)
medium. In all, the source requires IID (independent and identically distributed)
times {Ti} to deliver the packets to the destination, which are equivalently the
job times in the queue. Our focus is on measures related to the freshness of
information available at the destination.

Age/Freshness of Information. The age of information (AoI), from the given
source and at the given destination, at time t is defined

G(t) := t − rt,

where rt is the time at which the last successfully received packet (at destina-
tion) before time t, is generated. Our aim is to study the (time) average age of
information (AAoI), defined as below2:

ā := lim
T→∞

∫ T

0
G(t)dt

T
. (1)

We consider freshness of information in a lossy system, and our focus is on
the packet to be dropped when there are two simultaneous packets. We begin
with analysis of the system that drops new packets, when busy.

2.1 Drop the New Packets (DNP)

The source does not interrupt transmission of any packet. If a new update packet
arrives, during transmission, it is dropped. Once the transfer is complete (after

2 Limit exists almost surely in all our scenarios, as will be shown in respective proofs.
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random time T ), the source waits for new packet, and starts transmission of the
new packet immediately after. And this continues (see Fig. 1).

The age of the information G(t) grows linearly with time at unit rate, at
all time instances, except for the one at which a packet is just received at the
destination. At that time epoch the age drops to Tk, because: a) Tk is the time
taken to transfer the (new) packet from source to destination, after its arrival at
the source queue; and b) this represents the age of the new packet at destination.

Fig. 1. DNP scheme, renewal cycles Fig. 2. DOP scheme, a renewal cycle

Thus we have a process (resembling a renewal process) as in Fig. 1. Here
{Rk} are the epochs at which a message is transferred successfully (these would
become the renewal instances in two concatenated processes, see footnote 3),
while {Ak} are the arrival instances of the packets (at the source and of those
transferred) governed by Poisson point process (PPP). Let {ξk} represent these
(residual) inter-arrival times, note ξk = Ak − Rk−1 for each k. As seen from
the figure, the age of the information is given by sawtooth waveform. Further
more, clearly, the alternate renewal cycles are independent of one another, thus
by RRT3 the long run time average of the age of the information (1) equals:

3 The adjacent cycles (e.g., intervals between Rk, Rk+1 and Rk+1, Rk+2) are not
independent, because of Gk = Tk, however the alternate ones are. Concatenate odd
and even cycles to obtain two separate renewal process, observe that Rk → ∞ as
k → ∞ and apply (Renewal Reward Theroem) RRT to both the processes to obtain:

ā = lim
k→∞

∑
l≤k

∫ Rl
Rl−1

G(t)dt

Rk

= lim
k→∞

⎛

⎜
⎜
⎝

∑
2l≤k

∫ R2l
R2l−1

G(t)dt

∑
2l≤kR2l−R2l−1

∑
2l≤kR2l−R2l−1

Rk

+

∑
2l+1≤k

∫ R2l+1
R2l

G(t)dt

∑
2l≤kR2l+1−R2l

∑
2l≤kR2l+1−R2l

Rk

⎞

⎟
⎟
⎠

=
E

[
∫ R2
R1

G(s)ds

]

E[R2 − R1]

1

2
+

E

[
∫ R3
R2

G(s)ds

]

E[R3 − R1]

1

2
=

E

[
∫ R2
R1

G(s)ds

]

E[R2 − R1]
a.s., as the two processes are identical.

For renewal process with even cycles, the time intervals between two successful packet
receptions {(R2k −R2k−1)}k form the renewal periods and the time integral of the costs
in (1) for each of even renewal periods,

{
∫ R2k
R2k−1

G(s)ds

}

k
, form the rewards.
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ā =
E

[∫ Rk

Rk−1
G(s)ds

]

E[Rk − Rk−1]
, almost surely (a.s.), and with Gk := G(Rk).

=
E[Gk−1(Rk − Rk−1)] + 0.5E[(Rk − Rk−1)

2]

E[Rk − Rk−1]
=E[Gk−1] +

E[(Rk − Rk−1)
2]

2E[Rk − Rk−1]
a.s.

(2)

The last line follows by independence (Fig. 1) and memoryless property of PPP.
For DNP, Gk−1 = Tk−1, and

āDNP = E[Tk−1] +
1

2

E[(Tk + ξk)2]

E[Tk + ξk]
a.s.,

where ξk, the inter-arrival time, is exponentially distributed with parameter λ
and is independent of the transfer times Tk, Tk−1. Simplifying

āDNP =E[T ] +
1

λ
+

E[T 2]

2E[T ]

ρ

1 + ρ
with ρ := λE[T ]. (3)

2.2 Drop the Old Packets (DOP)

When source receives a new message, the ongoing transfer (if any) of the old
packet is stopped and the old packet is dropped. The source immediately starts
transfer of the new packet. The new message would imply a more fresh informa-
tion, but might also imply longer time (because we now require the transfer of
the entire message) before the information at the destination is updated. How-
ever the variability in transfer times {Tk} might imply interruption is better for
average freshness under certain conditions, and we are studying this aspect.

The renewal points (as in footnote 3) will again be the instances at which a
message is successfully received. But note that only when a message transfer is
not interrupted by a new arrival, we have a successful message reception. Thus
the renewal cycles in Figure (1) get prolonged appropriately (see Fig. 2). Let
Ak,1 be the first arrival instance after the (k − 1)-th renewal epoch Rk−1. Let
ξk,0 be the corresponding inter-arrival time (which is exponentially distributed).
Its service (i.e., message transfer) starts immediately and let Tk,0 be the job size,
or the (random) time required to transfer this message. In case a second arrival
occurs (after inter-arrival time ξk,1) within this service, we start the service of
the new packet by discarding the old one. This happens with probability 1 − γ
where γ := P (Tk,0 ≤ ξk,1). The renewal cycle is completed after second transfer,
in case the second message transfer is not interrupted. The second can also
get interrupted, independent of previous interruptions and once again with the
same probability 1−γ, because of IID nature of the transfer times and the inter
arrival times. If second is also interrupted the transfer of the third one starts
immediately and this continues till a job is not interrupted (i.e., with probability
γ). And then the renewal cycle is completed.

Once again the alternate cycles are IID, RRT can be applied to AAoI given by
(1) and AAoI is given by equation (2). However the renewal cycles {Rk −Rk−1}k
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are more complex now, and we proceed with deriving their moments. The k-
th renewal cycle can be written precisely as below, using the arrival sequence
{ξk,i}i≥0 and transfer times sequence {Tk,i}i≥0 belonging to k-th renewal cycle:

Rck := Rk − Rk−1 = ξk,0 +

Nk−1∑
i=1

ξk,i + Tk,Nk−1 = ξk,0 + Γk, (4)

Γk:=

Nk−1∑
i=1

ξk,i + Tk,Nk−1, and Nk := inf
{
i ≥ 1 : ξk,i > Tk,i−1

}
. (5)

In the above N is the number of interruptions before successful transfer, and
it is geometrically distributed with parameter 1 − γ and Γ (given by (5)) is
the time taken to complete one packet transfer, in the midst of interruptions by
new arrivals. The above random variables are specific to a given renewal cycle,
but are also IID across different cycles. Further, Gk = G(Rk) is now a ‘special’
transfer time (represented by T ): one which is not interrupted. Thus

Gk = T k := Tk,Nk−1, and, E[Gk] = E[T k] = E[T |T ≤ ξ] for any k. (6)

Hence the AAoI of DOP scheme (again by independence of alternate cycles,
exactly as in footnote 3) equals (see (2)):

āDOP = E[T |T ≤ ξ] +
E[(ξ + Γ )2]
2E[ξ + Γ ]

almost surely (a.s.). (7)

To complete the analysis we require the first two moments4 of Γ (see equation
(4)) and finally the AAoI for DOP scheme is obtained in the following (Proof in
Appendix A):

Lemma 1. The first two moments of the renewal cycle are (with γ = E[T < ξ]):

E[Rc] =
1

λγ
and E[R2

c ] =
2

λ2γ2
− 2E[Te−λT ]

λγ2
. (8)

Further, the AAoI for DOP scheme equals:

āDOP =
1

λγ
= E[Rc]. (9)

�
Thus the AAoI with DOP scheme exactly equals the expected renewal cycle,

while that with DNP scheme is strictly bigger than the expected renewal cycle
(from (3), āDNP = E[Rk − Rk−1] + E[T 2]

2E[T ]
ρ

1+ρ ). It is not guaranteed that the
expected renewal cycle with DOP scheme is smaller than that with DNP scheme.
Thus it is not clear upfront as to which scheme is better. But it is equally (or
more) important to understand if any scheme with controlled drops can perform
better than these two schemes.
4 At first glance Γ may appear like busy period of M/G/∞ queue, but it is not true.
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3 Controlled Drops

In the previous section two ‘extreme’ and static schemes are considered: in one all
the old packets are dropped while in the other all the new packets are dropped.
Now we investigate if there exists a better scheme with partial/controlled drops.
We also study the conditions under which DOP is better than DNP. With mes-
sage successful transfer epochs {Rk}k as the decision epochs, we consider a
dynamic decision about the (DOP/DNP) scheme to be used. The dynamic deci-
sion depends upon the state5, the age of information Gk, at decision epoch Rk.

Threshold Policies: We initially restrict ourselves to special type of dynamic
policies, called threshold policies: DNP scheme is selected if age (Gk) is above
a threshold (say θ ≥ 0) and DOP is selected other wise. With DNP scheme,
new packets are dropped (other than the first one in that renewal cycle) till the
message transfer is complete. With DOP decision, old packets are dropped and
transmission of new packet starts immediately, whenever the former is inter-
rupted. This continues till a message is transferred completely. Further dropping
of (old/new) packets depends upon the decision at the next decision epoch.

In contrast to the previous subsections, the length of renewal cycles {Rck}k

are no more identically distributed. The distribution of Rck depends upon the
scheme chosen at the decision epoch Rk. It is easy to observe that the length of
the renewal cycle Rck does not depend upon the absolute value of state Gk, but
only upon the state dependent binary (DOP/DNP) decision. Thus the distribu-
tion of Rck can be one among two types and precisely equals (see (4)):

Rck+1 =
{

ξk+1,0 + Tk+1,0, with DNP (i.e., with Gk > θ)
ξk+1,0 + Γk+1 else, and using (6), (10)

Gk+1 =
{

Tk+1,0, with DNP (Gk > θ)
T k+1, other wise. (11)

Observe that θ = 0 implies DNP, while DOP is obtained by considering
θ → ∞. For ease of notation we say θ = ∞ when DOP is selected for all Gk.

For every θ, the random variables {Gk}k and {Rck}k constitute a Markov
chain. Using these, one can rewrite AAoI (1) as:

ā(θ) = lim
k→∞

∫ Rk

0
G(t)dt

Rk
a.s.,

because Rk → ∞ a.s., as k → ∞, and this is because

Rk =
∑

l≤k

Rcl ≥
∑

l≤k

ξl,0 for all k and
∑

l≤k

ξl,0
k→∞→ ∞ a.s.

5 The source can easily have access to {Gk}, as it can easily keep track of success-
ful/unsuccessful prior transmissions.
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Thus,

ā(θ)= lim
k→∞

∑
l≤k

(
Gl−1Rcl + 0.5Rc

2
l

)

k

k∑
l≤k Rcl

. (12)

As already discussed, the distribution of Rck (for any k) can be of two types
depending only upon the event {Gk < θ} (see (10). Let G∗ and Rc∗ represent
the random quantities corresponding to stationary distributions of Gk and Rck

respectively. As before, the stationary distribution Rc∗ depends only upon the
stationary event {G∗ < θ}. Thus it suffices to obtain the stationary distribution
of {Gk}k. In fact the transitions of {Gk} given by (11) also depend only upon
the events {Gk−1 < θ}. Thus it further suffices to study the two state Markov
chain Xk := 1{Gk<θ} (1A is the indicator of the event A) and the rest of the
random quantities can be studied using this two state chain. The Markov chain
has the following evolution

Xk+1 =
{

1{Tk+1,0<θ} if Xk = 0,
1{T k+1<θ} else. (13)

When θ = ∞, Xk ≡ 1 for all k. The transition probabilities (with θ �= ∞)
are:

P (Xk+1 = x′|Xk = x) =
{

pθ if x = 0, x′ = 1
qθ if x = 1, x′ = 0 where (14)

pθ := P (T < θ) and qθ := P (T > θ) = P (T > θ
∣
∣T ≤ ξ).

This chain has unique stationary distribution given by

πθ(0) =
qθ

qθ + pθ
1{θ �=∞} = 1 − πθ(1), and P (X∗ = 0) = πθ(0), (15)

where X∗ is the random quantity corresponding to stationary distribution of
{Xk} (see [12]). The stationary distribution of the remaining quantities is dic-
tated by that of {Xk}: for example the stationary distribution of G∗ is the same
as that of T , a typical transfer time when X∗ = 0 and equals that of T = T |T ≤ ξ
(conditional distribution) when X∗ = 1.

The Markov chain {Xk} is clearly ergodic, the rest of the stationary random
quantities Rc∗, G∗ depend just upon X∗, hence strong law of large numbers
(SLLN) (e.g., [9]) can be applied6 separately to the numerator and denominator
of (12) to obtain:

ā(θ) =
Eπθ

[Gl−1Rcl] + 0.5Eπθ
[Rc

2
l ]

Eπθ
[Rcl]

a.s. ,

6 One can not apply the usual renewal theory based analysis, as the process is (the
odd/even cycles are also) Markovian and can not be modelled as a Renewal process,
with IID renewal cycles.
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where Eπθ
[·] is the stationary expectation. It is easy to verify (see (10)) by

appropriate conditioning that:

Eπθ [Gl−1Rcl] = Eπθ [Gl−1Rcl; Xl−1 = 1] + Eπθ [Gl−1Rcl; Xl−1 = 0]

=

(
1

λ
+ E[T ]

)
E[G∗; G∗ > θ] + E[G∗ ; G∗ < θ]

(
1

λ
+ E[Γ ]

)
and

E[G∗; G∗ > θ] = E[T ; T > θ]πθ(0) + E[T ; T > θ|T ≤ ξ]πθ(1).

Using similar logic,

Eπθ [Gl−1Rcl] +
1

2
Eπθ [Rc

2
l ] = dnE[G∗; G∗ > θ] + doE[G∗ ; G∗ < θ] + 0.5E[Rc

2
∗]

= βθ(0)πθ(0) + βθ(1)πθ(1), (16)
Eπθ [Rcl] = dnπθ(0) + doπθ(1),

with the following definitions:

βθ(0) := dnE[T ;T > θ] + doE[T ;T ≤ θ] + 0.5cn,

βθ(1) := dnE[T ;T > θ|T ≤ ξ] + doE[T ;T ≤ θ|T ≤ ξ] + 0.5co,

cn := E[(ξ + T )2], co := E
[
(ξ + Γ )2

]
and

dn := E[T + ξ], do := E[ξ + Γ ].

Thus the AAoI equals

ā(θ) =
βθ(0)πθ(0) + βθ(1)πθ(1)

dnπθ(0) + doπθ(1)
a.s. (17)

Optimal Threshold θ: We are interested in optimal threshold, θ∗ and hence
consider:

min
θ≥0

ā(θ). (18)

The objective function depends upon θ in a complicated manner, further the
dependence is influenced by the distribution of the transfer times. However one
can derive the optimal policies by using an appropriate lower bound function.

We first consider the case: E[T ] > E[Γ ], ordn > do. From (16) and the defi-
nitions following (16) and because of positivity of the terms:

ā(θ) ≥ fo(θ) for any θ ≥ 0, with function,

fo(θ) :=
do

(
bnπθ(0) + boπθ(1)

)
+ 0.5(cnπθ(0) + coπθ(1))

dnπθ(0) + doπθ(1)

=
do

(
(bn − bo)πθ(0) + bo

)
+ 0.5(cn − co)πθ(0) + 0.5co

(dn − do)πθ(0) + do
, with

bn := E(T ), bo := E(T |T < ξ) =
E[Te−λT ]
E[e−λT ]

. (19)



Controlling Packet Drops to Improve Freshness of Information 69

Further using (7) we have7 (e.g., πθ(0) → 0 as θ → ∞):

lim
θ→∞

fo(θ) = lim
θ→∞

ā(θ) = āDOP . (20)

If the DOP scheme is optimal for the lower bound function fo(θ), i.e., if

min
θ

fo(θ) = lim
θ→∞

fo(θ), (21)

then DOP would be optimal for AAoI, because then using (20):

āDOP ≥ min
θ

ā(θ) ≥ min
θ

fo(θ) = lim
θ→∞

fo(θ) = āDOP .

We prove that (21) is true when DOP renewal cycle is smaller, and hence show
the optimality of DOP (proof in Appendix A and in [12]):

Theorem 1. If dn ≥ do then DOP is optimal, i.e.,

min
θ≥0

ā(θ) = lim
θ→∞

ā(θ) = āDOP . �

It is clear from (3) and (7) that the DOP scheme is better than the DNP scheme
when its expected renewal cycle is smaller, i.e., when dn ≥ do. Theorem 1 proves
much more under the same condition, the DOP scheme is better than any other
threshold scheme.

We now study the reverse case, i.e., when dn < do or equivalently when
E[T ] < E[Γ ]. In this case ā(θ) > fn(θ) where

fn(θ) :=
dn(bnπ(0) + boπ(1)) + 0.5cnπ(0) + 0.5coπ(1)

dnπ(0) + doπ(1)
.

As in the previous case, if DNP is proved optimal for this lower bound function,
then DNP is optimal for controlled AAoI, and this is proved in the following
(proof in Appendix A and in [12]):

Theorem 2. If dn < do and (note that8 1 − λE
[
Te−λT

]
> 0)

ρ
E[T 2]
2E[T ]

− (1 + ρ) (do − dn)
(
1 − λE

[
Te−λT

]) ≤ 0, (22)

then DNP is optimal,

min
θ≥0

ā(θ) = ā(0) = āDNP . �

7 It is not difficult to establish the continuity of the relevant functions as θ → ∞ and
it is not difficult to show that the limit equals that with DOP scheme.

8 because ξ is exponential,

1 − λE
[
Te−λT

]
= λ(E[ξ] − E[T ; T ≤ ξ]) = λ(E[ξ; T > ξ] + E[ξ − T ; T ≤ ξ]) > 0.

.
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Stationary Markov Randomized Policies: We now generalize the results to
Stationary Markov Randomized (SMR) policies. As seen from (12) the objective
function AAoI is the ratio of two average costs and hence the usual techniques
of Markov decision processes may not be applicable. Nevertheless we could use
exactly the same techniques as in previous subsection to show the optimality of
DNP/DOP policy even under SMR policies. This is true under the assumptions
of Theorems 1–2.

Let α∞ be any Stationary Markov Randomized policy: α(G) represents the
probability with which DNP scheme is selected when the state Gk = G, and
this is true for all decision epochs k (∞ implies same state-dependent decision
for all decision epochs). Re define Xk = 1 if DOP scheme is selected (i.e., if
old packet is dropped), else Xk = 0. Like before, the random variables Xk, Rck

and Gk depend mainly upon Xk−1, and same is the case with their stationary
distributions. Let πα represent the stationary probability that {X∗ = 0}, when
policy α∞ is used and note that:

πα := πα(0) =
qα

qα + pα
with (23)

qα := E[α(T )] = E[α(T )|T ≤ ξ] and pα = E[1 − α(T )].

As before, the stationary expectation (see (12))

Eπα [Gl−1Rcl] = Eπα [Gl−1Rcl; Xl−1 = 1] + Eπα [Gl−1Rcl; Xl−1 = 0]

= dnE[G∗E[X∗ = 1|G∗]] + doE[G∗E[X∗ = 0|G∗]]

= dnE[G∗α(G∗)] + doE[G∗(1 − α(G∗))]

= dn

(
E[Tα(T )]πα(1) + E[Tα(T )|T ≤ ξ]πα(0)

)

+ do

(
E[T (1 − α(T ))]πα(1) + E[T (1 − α(T ))|T ≤ ξ]πα(0)

)
.

Similarly

Eπα
[Rc

2
k] = Eπα

[Rc
2
k;Xk−1 = 0] + Eπα

[Rc
2
k;Xk−1 = 1] = coπα(1) + cnπα(0),

Proceeding exactly as in the case of threshold policies:

ā(α) =
βα(0)πα(0) + βα(1)πα(1)

dnπα(0) + doπα(1)
with

βα(0) := dnE[Tα(T )] + doE[T (1 − α(T ))] + 0.5cn and
βα(1) := dnE[Tα(T )|T ≤ ξ] + doE[T (1 − α(T ))|T ≤ ξ] + 0.5co.

Using the lower bound functions, fo(·) and fn(·), and following exactly the same
logic one can extend Theorems 1–2:

Theorem 3. a) If dn ≥ do then DOP is optimal among SMR policies, i.e.,

min
α∞∈SMR

ā(α) = āDOP .
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b) If dn < do and (22) of Theorem 2 is true then DNP is optimal,

min
α∞∈SMR

ā(α) = āDNP . �

We thus have that the static policies DOP/DNP are optimal among stationary
Markov (dynamic) policies for all the conditions, except when dn < do and (22)
of Theorem 2 is not true. Using numerically aided study of the next section, we
will show that these ‘exception conditions’ are ’rare’.

3.1 Numerically Aided Study

DOP Optimal Among SMR Policies. We considered several distributions
for transfer times and tested the conditions required for DOP/DNP optimality.
The results are summarized in Table 1. By direct substitution one can show that
dn = do for exponential and dn > do for hyper exponential distribution. Thus
by Theorem 3, DOP is optimal for these transfer times.

DNP/DOP Is Almost Optimal. When dn < do, but (22) is not satisfied, we
do not have theoretical understanding of the optimal policy. We study such test
cases by numerically optimizing (17) over threshold policies. One such example
is plotted in Fig. 3, which considers Erlang distributed transfer times. The AAoI
is plotted as a function of θ, it decreases as θ → ∞, hence confirming that the
AAoI is minimized by DOP scheme.

A second example is considered in Fig. 4 with uniformly distributed transfer
times, distributed between (0, φ). Here again AAoI ā(θ) is plotted as a function of
θ for two different parameters. An intermediate θ∗ ∈ (0,∞) is optimal in both the
examples of this figure, however DOP and DNP perform almost similar. Further
AAoI at θ∗ is close to that at DNP/DOP (Fig. 4). We considered many more
such case studies and observed similar pattern: DOP/DNP scheme is (almost)
optimal. These examples include truncated exponential, Log normal, Poisson
distributed and Erlang transfer times etc.

Best Among DNP/DOP. Thus either DNP or DOP scheme is (almost) opti-
mal among the threshold policies. Hence it is important to derive the conditions
that suggest the best among the two. One can find the best among DNP/DOP
schemes by directly using (3) and (9), i.e., DNP is better than DOP iff (recall
ρ = λE[T ])

E[T ] − 1 − γ

λγ
+

E[T 2]

2E[T ]

ρ

1 + ρ
< 0 or iff 1 >

(
E[T 2]

2(E[T ])2
ρ2

1 + ρ
+ 1 + ρ

)
γ. (24)
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Fig. 3. When do = 13.19 > dn = 12.97
and condition (22) negated: optimizer
is DOP

Fig. 4. AAoI versus θ for uniform
transfer times: Intermediate θ optimal
but DNP/DOP almost optimal

Table 1. Criterion for āDOP ≤ āDNP , for different types of T

Distribution CDF (P (T � x)) āDOP ≤ āDNP when

Uniform (0,φ)
[

x
φ

]
1x>0

1
1−e−λφ <

(
1
3

λφ
2+λφ

+ 1
λφ

+ 1
2

)
, approx.

when λφ < 2.356

Weibull (μ, k)
[
1 − e−(x/μ)k

]
1x>0

ρ2w2
k

2(1+ρw1
k
)
+ (1 + ρw1

k) > 1
wk

ρ

wi
k = Γ (1 + i

k
) ρ = λμ

wk
ρ = Ek[e−ρT ]

Exponential (μ)
[
1 − e−μx

]
1x>0 all μ

Hyperexpo({μi, pi})
[
1 −

n∑
i=1

pie
− x

μi

]
1x>0 all {μi, pi}i

Note that E[T 2] = Var(T ) + (E[T ])2 and we have the following important
conclusions:

– DNP is the best for large update rates: as the update rate λ → ∞, with
distribution of T fixed and with E[1/T ] < ∞, the above condition is satis-
fied (RHS converges to 0). Note λγ = E[λe−λT ] → 0 using L’Hopital’s rule
(applied point-wise) and dominated convergence theorem.

– DOP is the best for small update rates: as the update rate λ → 0, with the
distribution of T fixed, the above condition is negated (RHS is approximately
1 + ρ).

– The range of λ for which DNP is optimal is influenced by the variance. ’DOP
scheme becomes optimal as the variance of the transfer times increases, for
bigger range of λ’.

For uniform transfer times we derived the conditions under which DOP performs
better than DNP, using (24), and the condition is tabulated in the first row of
Table 1. Approximately, DOP is optimal if λφ < 2.35. Weibull is also tabulated
in the second row.
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Based on this theoretical and numerical case studies we have the following:

• AAoI is (almost) optimized either by DOP scheme or by DNP scheme. No
other threshold policy performs significantly better than the best among these
two static policies.

• If expected renewal cycle with DOP is smaller than that with DNP, DOP
scheme optimizes AAoI over all SMR policies.

• When DNP has smaller renewal cycle, DOP may still be the optimal (in some
test cases).

The Fig. 3 also plots the Monte-Carlo estimates of AAoI along with formula
(17). For Monte-Carlo estimates we generate several random sample paths and
compute the time average of AAoI. As anticipated, the formula well matches the
estimates (see Fig. 3).

Future Directions: We consider multiple sources in [12] and have some initial
results; with multiple sources the drop decision should also include the differ-
ential priority that needs to be given to different sources. We also consider the
case of multiple resources transferring information to single destination using
ALOHA type protocol ([12]).

As of now our analysis considers memory less packet arrivals, it would be
interesting to consider more general arrival processes (e.g., renewal processes).
It would be interesting to investigate if the static policies (dropping always the
new/old packets) are again optimal.

One can also think of more general decision epochs, one can think of dropping
at maximum K packets and K can also be controlled etc. One can consider one
storage option along with DNP protocol.

4 Conclusions

We considered problems related to freshness of information, for scenarios in
which the destination is regularly updated with a certain information. In such
cases, old information can become completely obsolete once a new update is
available. The systems naturally become lossy, in the sense that, some pack-
ets would be discarded. We developed a methodology to study the freshness of
information, using average age of information (AAoI) as performance metric,
for lossy systems. A packet at destination can automatically be discarded once
a new update is available. However a new packet at source, while the source is
transferring an older packet, demands an important decision: which packet to be
discarded. Older packets can be transferred faster to the destination, while the
new packet may have fresh information but may require more time to reach the
destination. It may be better to base these decisions on the state of the system,
the age of the previous update of the same information at destination. However
two static policies, drop always the new packets (DNP) or drop always the old
packets (DOP), are optimal among a class of stationary Markov policies, for
many scenarios.
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Appendix A: Proofs

Proof of Lemma 1: By conditioning on ξk,1, Tk,0:

E[Γk] = E [Γk ; ξk,1 > Tk,0] + E [Γk ; ξk,1 ≤ Tk,0]

= E [Tk,0 ; ξk,1 > Tk,0] + E
[
ξk,1 + Γ̃ ; ξk,1 ≤ Tk,0

]

= E [Tk,0; ξk,1 > Tk,0 + ξk,1 ; ξk,1 ≤ Tk,0] + E
[
Γ̃ ; ξk,1 ≤ Tk,0

]
,

where Γ̃ is an IID copy of Γk, which is independent of Tk,0 and ξk,1. By indepen-

dence, E[Γk]−E
[
Γ̃ ; ξk,1 ≤ Tk,0

]
= E [Γ ] (1 − P (ξ ≤ T )) , and thus by further

conditioning on T we have the following:

E(Γ ) =
E [T ; ξ > T + ξ ; ξ ≤ T ]

P (T ≤ ξ)
=

E[Te−λT ] + (1 − E[e−λT ])/λ − E[Te−λT ]

P (T ≤ ξ)
=

1 − γ

λγ
. (25)

Using exactly similar logic:

E[Γ 2] = E[min{T0, ξ1}2] + E[Γ̃ 2](1 − γ) + 2E[Γ̃ ]E[ξk,1 ; Tk,0 > ξk,1].

Using (25),

E[Γ 2] =
E[min{T0, ξ1}2] + 2E[Γ ]E[ξk,1 ; Tk,0 > ξk,1]

γ

=
2(1 − γ)

λ2γ
− 2E[Te−λT ]

λγ
+

2E[Γ ]

γ

(
1 − γ

λ
− E[Te−λT ]

)

=
2(1 − γ)

λ2γ
− 2E[Te−λT ]

λγ2
+

2(1 − γ)2

λ2γ2
=

2(1 − γ)

λ2γ2
− 2E[Te−λT ]

λγ2
. (26)

Using (25) and (26), the first two moments of the renewal cycle are:

E[Rc] =
1

λ
+

1 − γ

λγ
=

1

λγ
and

E[R2
c ] = E

[
ξ2k,0 + 2ξk,0Γk + Γ 2

k

]
=

2

λ2γ2
− 2E[Te−λT ]

λγ2
.

�
Proof of Theorem 1: As a first step, one can easily observe that the coefficients
of the lower bound function fo depend upon θ only via the stationary distribution
πθ, in particular only via πθ(0), i.e., fo(θ) = fo(πθ(0)). Further the function
θ 	→ πθ(0) is ONTO (see (15)) and hence one can equivalently optimize fo using
π := πθ(0):
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fo(θ) = fo(π) =

do

(
(bn − bo)π + bo

)
+ 0.5(cn − co)π + 0.5co

(dn − do)π + do
.

The first derivative for the lower bound function is:

f ′
o(π) =

0.5(cndo − codn) + do(bndo − bodn)

(π(dn − do) + do)2
. (27)

From (28) of Appendix B:

cndo − codn =
E[T 2]

λγ
+

(
1

λ
+ E[T ]

) (
E[Te−λT ] − (1 − γ)

λ

)
2

λγ2
.

Thus the numerator of the derivative (27) is proportional to,

cndo − codn + 2do(bndo − bodn) =
E[T 2]

λγ
+

(
1

λ
+ E[T ]

)
E[Te−λT ]

(
2

λγ2
− 2

1

λγ2

)

− 1

λγ

((
1

λ
+ E[T ]

)
2(1 − γ)

λγ
− E[T ]

2

λγ

)

=
E[T 2]

λγ
+

2

λ2γ
(E[T ] − E[Γ ]) > 0, when dn ≥ do.

Thus the derivative f ′
o(θ) > 0 for all θ, hence the lower bound fo is increasing

with π, and thus the unique minimizer of fo is at π∗ = 0. This implies the DOP
scheme (see (15)) is optimal for AAoI ā(�). �
Proof of Theorem 2: As before it suffices to show that the numerator of
derivative of fn (with respect to π) is negative. Recall the following:

cndo − codn =
E[T 2]

λγ
+

(
1

λ
+ E[T ]

) (
E[Te−λT ] − (1 − γ)

λ

)
2

λγ2
,

do =
1

λγ
, bo =

E[Te−λT ]

γ
, dn =

1

λ
+ E[T ]

The numerator of derivative of fn is proportional to,

cndo − codn + 2dn(bndo − bodn)

=
E[T 2]

λγ
+

(
1

λ
+ E[T ]

)
E[Te−λT ]

(
2

λγ2
− 2

γ

(
1

λ
+ E[T ]

))

− 2

λγ

(
1

λ
+ E[T ]

) (
1 − γ

λγ
− E[T ]

)

=
E[T 2]

λγ
− 2

λγ

(
1

λ
+ E[T ]

) (
1 − λE[Te−λT ]

)
(do − dn).

Thus the theorem follows from hypothesis. �
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Appendix B: Some Useful Terms Used in the Proofs

The estimate of the term cndo − dnco:

cndo − dnco =

(
2

λ2
+ E[T 2] +

2E[T ]

λ

) (
1

λ
+

1 − γ

λγ

)

−
(

1

λ
+ E[T ]

) (
2

λ2
+

2(1 − γ)

λ2γ
− 2E[Te−λT ]

λγ2
+ 2

(1 − γ)2

λ2γ2
+

2(1 − γ)

λ2γ

)

=

(
2

λ2
+ E[T 2] +

2E[T ]

λ

) (
1

λγ

)

−
(

1

λ
+ E[T ]

) (
2

λ2γ
− 2E[Te−λT ]

λγ2
+ 2

(1 − γ)2

λ2γ2
+

2(1 − γ)

λ2γ

)

= E[T 2]

(
1

λγ

)
−

(
1

λ
+ E[T ]

) (
−2E[Te−λT ]

λγ2
+ 2

(1 − γ)2

λ2γ2
+

2(1 − γ)

λ2γ

)

=
1

γ

(
E[T 2]

λ
+

(
1

λ
+ E[T ]

) (
2E[Te−λT ]

λγ

))

− 1

γ

((
1

λ
+ E[T ]

) (
2(1 − γ)

λ2γ
((1 − γ) + γ)

))

=
1

γ

(
E[T 2]

λ
+

(
1

λ
+ E[T ]

) (
2E[Te−λT ]

λγ

)
−

(
1

λ
+ E[T ]

)
2(1 − γ)

λ2γ

)

=
E[T 2]

λγ
+

(
1

λ
+ E[T ]

) (
E[Te−λT ] − (1 − γ)

λ

)
2

λγ2
. (28)
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Abstract. There is a fast growing demand for mobile telephones. These
rely on batteries to provide the power needed for transmission and for
reception (up and downlink communications). Considering uplink, we
analyse how the characteristics of the battery affect the amount of infor-
mation that one can draw out from the terminal. We focus in particular
on the impact of the charge in the battery on the internal resistance
which grows as the battery depletes.

1 Introduction

In the design of power control algorithms, often one takes into account the level
of depletion of the battery. When the battery is almost empty, a power saving
mode is often applied. While this allows to extend the battery life, it is of interest
to compare the benefits of this algorithm with one obtained from mathematical
formulation of the problem as an optimisation one. In this paper we propose
such a model that takes into account dynamic behavior of the battery and the
fact that the internal battery resistance changes as a function of the battery’s
charge. Indeed, it is stated in that

“Li-ion has higher resistance at full charge and at end of discharge with a
big flat low resistance area in the middle. Alkaline, carbon-zinc and most pri-
mary batteries have a relatively high internal resistance, and this limits their use
to low-current applications such as flashlights, remote controls, portable enter-
tainment devices and kitchen clocks. As these batteries deplete, the resistance
increases further”. We shall use the latter behavior in our modeling.

Our goal is to combine the dynamic behavior of the battery as function of its
charge with capacity limits on transmission throughput from information theory
to obtain limits on the amount of data that can be transmitted by mobiles that
are powered with a battery.

2 Model

We assume that a fully charged battery has F Coulombs The figures in [1]
reference suggests that the battery internal resistance R is linear decreasing in
the battery’s charge c and is thus given by
c© Springer Nature Switzerland AG 2021
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R(t) = R0 − ρc(t)

for some constants ρ and R0. The current i satisfies

dR(t)
dt

= ρi(t)

since dc/dt = −i.
We model the battery by a source of V volts with the internal resistance of

R. Another resitor r is then connected in series to the two other elements and
it represents the terminal equipment (TE).

i =
V

R + r

Thus
dR(t)

dt
=

ρV

R(t) + r

3 Analysis and Results

The solution of this differential equation is

R(t) =
√

2ρtV + (r + R0)2 − r

for some constants ρ and R0. We could easily verify that R(0) = R0 and that
dR(t)

t = ρV
R(t)+r . And so, i(t) = V√

2ρtV +(r+R0)2
.

We can then compute the time T (x) the battery takes to discharge from
F to x as the solution of F − x =

∫ T (x)

0
i(t)dt. We finally get the closed form

expression of T (x) = 1
2V (F − x)[2(r + R0) + ρ(F − x)]. The power spent at the

TE is given by

P (t) = ri(t)2 =
rV 2

(r + R0)2 + 2ρV t

Assume that all this power is transmitted and that the channel gain to the
base station is h. Then assuming a single user and that the throughput Θ is
given by Shannon capacity, we have for some constants W and N ,

Θ(t) = W ln(1 +
P (t)h

N
) = W ln(1 +

rhV 2

N((r + R0)2 + 2ρV t)
)

and the total amount of data that can be transmitted is
∫ T (0)

0
Θdt, denoted TA.

In practice a terminal has to use some constant power Δ for its electronic
circuit which reduces the amount of data transferred.

TA(0) =

∫ T (0)

0
Θ(t)dt − ΔT (0) =

∫ T (0)

0
W ln(1 +

rhV 2

N((r + R0)2 + 2ρV t)
)dt − ΔT (0)

= W [

∫ T (0)

0
ln[N(r + R0)

2
+ 2NρV t + rhV

2
]dt −

∫ T (0)

0
ln[N(r + R0)

2
+ 2NρV t]dt] − ΔT (0)

(1)
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Using d
dx

1
a ((ax + b) ln(ax + b) − (ax + b)) = ln(ax + b) and computing the TA,

we get that

TA(0) = W

(
1

2NρV
N(r + R0)2 ln

(
1 − 2NρV T (0)rhV 2

(rhV 2 + N(r + R0)2)(N(r + R0)2 + 2NρV T (0))

)

+
1

2NρV
rhV 2 ln

(
1 +

2NρV T (0)

rhV 2 + N(r + R0)2

)

+ T (0) ln
(
1 +

rhV 2

2NρT (0) + N(r + R0)2

))
− ΔT (0)

4 Maximization of the Average Throughput

Previously we had a closed form expression of the time T (x) that the battery
takes to discharge from an initial charge F to a x level.

T (x) =
(F − x)[2(r + R0) + ρ(F − x)]

2V

TA(x) =
∫ T (x)

0

(W ln(1 +
rhV 2

N(r + R0)2 + 2ρNV t
) − Δ)dt

We also had a closed form expression of the total amount of data transmitted
until we reach a x level of battery, TA(x). Here the objective is to maximize the
average throughput before charging the device, denoted AP (x). Mathematically,
the program can be written as

max
x∈[0;F ]

AP (x) =
TA(x) − TC(x)

T (x)
(2)

Let L(x, λ) = TA(x)−TC(x)
T (x) +λ(F −x) be the Lagrangian of the program. Solving

it leads to
{

∂
∂xL(x, λ) = 0
∂

∂λL(x, λ) = 0

We consider a case in which the total cost of charging the device is the same
whether the battery is empty or almost full, denoted TC(x) = γ.

⇐⇒
{

T ′(x)
(
Θ(T (x)−Δ−TC′(x))T (x)−(TA(x)−TC(x))

)

T (x)2 − λ = 0
F − x = 0

Considering the case of a border solution where λ > 0, we have x∗ = F . Meaning
that an agent charges the device, every time his battery full. In the case of an
internal solution, where λ = 0, the first equation leads to either T ′(x) = 0 or
Θ(T (x))T (x)−ΔT (x)−TA(x)+γ = 0. The corresponding solution to T ′(x) = 0
is x = F + r+R0

ρ > F therefore impossible considering the program. Using the
software Maple(Maplesoft) for the second equation, the time necessary to reach
an optimal level of battery before charging the device T (x∗) given by,
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T (x∗) =
eRoot

2ρNV

Where Root is the solution of the following equation in terms of z,

2W (N(r + R0)2 + 2ρNV ) ln(rhV 2 + N(r + R0)2)
+W (ez − 4ρNV ) ln(rhV 2 + N(r + R0)2 + ez)

− 2W (N(r + R0)2 + ez) ln(rhV 2 + ez) + 2WN(r + R0)2z
−Wez ln(N(r + R0)2 + ez) + 2(Wz − Δ)ez

− 2WN(r + R0)2 ln(N(r + R0)2) + 2γρNV = 0

In order to compute the internal solution x∗, the inverse function of T (x) must
be computed, and finally, the optimal level of battery is given by,

x∗ =
ρF + r + R0

ρ
−

√
eRoot + N(r + R0)2

ρ
√

N

This solution has sense since it belongs to [0;F ] and that the agent charges his
device only once his battery is at a lower level than the full level.

5 Numerical Applications

We have looked up real values for our various parameters, which make sense.
We consider a battery life of 24 h, to simplify future computations. In general, a
mobile phone’s battery is a source of ca. 3, 7 V, has an initial internal resistance
of ca. 105 mΩ, and when fully charged, has 7200 Coulombs. The second resistor
has often a resistance of ca. 20.9 Ω (Fig. 1).

Fig. 1. Internal Resistance as a function of the remaining battery life
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As stated in our model, a high level of charge means the internal resistance
is low. We consider ρ as the restriction coefficient of the battery. As ρ is small
as the power delivered by the battery is less constrained, the battery encounters
less restrictions in delivering power, as shown in Fig. 2. In general, the restriction
coefficient is ca. 0.006 (between 0.004 and 0.008) for most mobile phone battery’s.

Fig. 2. Power potentially spent as a function of the remaining battery life

Fig. 3. Total amount of data transmitted as a function of the level of battery

Similarly, the total amount of data that can be transmitted in a full cycle
of depletion is higher for smaller restriction coefficients, as shown in Fig. 3. And
so, in a full cycle of depletion, the total amount of data that can be transmitted
(i.e. TA(0)) is 49.78 for ρ = 0.004, 42.82 for ρ = 0.006, and 37.80 for ρ = 0.008.
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Furthermore, assuming that recharging the battery is costly. We have opti-
mized the average throughput over the level of remaining charge in the battery
at which recharging would begin. We have assumed that the cost of charging the
device was the same whether the battery was empty, almost empty, almost full
or full. Here, with no loss of generality, we suppose that the cost is around 10 to
20% of the total amount of data that can be transmitted.

The figure on the left (respectively right) represents the average throughput,
with a cost of 10% (resp. 20%) of the total amount of data that can be trans-
mitted. We observe that, all other things being equal, a higher cost of charging
drives the optimal battery level at which charging should begin to a lower level
and so, leads to less cycles of charge.

6 Rising Internal Resistance

It is of interest to compare the amount of data that can be transmitted consider-
ing a constant resistance and a resistance as a function of the remaining battery
life, like in our model. In [1] and [2], it is suggested that the battery’s internal
resistance R is an increasing function of used battery life and that a high level
of resistance causes heating of the battery and less power can be spent, which
ultimately leads to reducing the battery’s life. As the battery’s life is reduced,
the total amount of data that can be transmitted decreases, the phenomenon
through which rising internal resistance reduces performance of the device. As
to show the phenomenon of rising internal resistance, we have plotted the dif-
ference between the throughput we would have if there was no rising effect and
the average flow of data transmitted. Mathematically,

∫ 7200

0

Θ(0) − TA(x)
T (x)

dx.

In our model with our data, as shown in Fig. 4, we notice that the through-
put with a constant resistance (i.e.

∫ 7200

0
Θ(0)dx) is of approximately 14 arbitrary
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Fig. 4. Effect of Rising Internal Resistance

units and the average flow of data transmitted (i.e.
∫ 7200

0
TA(x)
T (x) dx) is of approx-

imately 7.01 in the same units. This difference is the physical phenomenon of
rising internal resistance.

7 Conclusions

We have derived closed form solutions to the amount of information that a bat-
tery powered terminal can deliver. We made simplifying modelling assumptions,
namely that the antenna can be represented as a resistor. In practice, it may
be represented as an impedance that may vary in the frequency used. Also note
that we did not model Alternative Current powers and the losses due to Direct
Current/Alternative Current transformation. The next thing to do is to add a
cost function that would penalize using the battery as a function of its charge
so as to penalize operating it when the internal capacity of the battery is large.
Indeed, as R increases, the efficiency of the battery decreases: most of its remain-
ing power is spent on heating the battery as it is spent on R. Assuming that
recharging the battery is costly, we have optimized over the level x of remaining
charge in the battery at which the charging would begin so as to minimize the
cost per cycle of depletion and recharging. We also plan to investigate interfer-
ence and competition that may arise when more that one terminal is connected
with a common base station. This is the objective of our future work.
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1 Orange, Paris, France
aurelien.bechler@orange.com

2 IMT Atlantique, Nantes, France
{isabel.amigo,loutfi.nuaymi}@imt-atlantique.fr,

patrick.maille@imt.fr

Abstract. Licensed shared access is a new sharing concept that allows
Mobile Network Operators (MNOs) to share the 2.3–2.4 GHz bandwidth
with its owner. This sharing can be done after obtaining a license from
the regulator. The allocation is made among groups such that two base
stations in the same group can use the same spectrum simultaneously. In
this context, different auction schemes were proposed, however they are
all one-shot auctions. In this paper, we propose an ascending implemen-
tation of the well-known Vickrey-Clarke-Groves mechanism (VCG) when
the regulator has K identical blocks of spectrum to allocate. The imple-
mentation is based on the clinching auction. Ascending auctions are more
transparent than one-shot auctions because bidders see the evolution of
the auction. In addition, ascending auctions preserve privacy because
bidders do not reveal necessarily their valuations.

1 Introduction

In order to accommodate data traffic for 5G networks, Mobile Network Oper-
ators (MNOs) need more radio spectrum. At the same time many holders of
exclusive licenses –which we call incumbents– might not utilize all of their spec-
trum resources: usage varies with respect to time and location. Therefore the
idea of Licensed Shared Access (LSA) has emerged. LSA is a new concept of
spectrum sharing in which the holder of the 2.3–2.4 GHz bandwidth can share
his spectrum with MNOs. This concept was proposed by the radio spectrum
policy group (RSPG) in November 2011 [1]. Sharing is done after obtaining a
license from the regulator. This license guarantees a certain quality of service
to both the incumbent and the LSA licensees (MNOs). This differs from the
traditional concept of sharing in which MNOs have no guarantees on finding
the spectrum free for their own usage and have to use some techniques (such as
cognitive radio) before accessing the spectrum.

In this context, since the regulator ignores the value of the LSA spectrum,
then by auctioning that spectrum he can have an idea about the valuations of
c© Springer Nature Switzerland AG 2021
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MNOs for that spectrum. A well designed auction mechanism should be truthful
i.e., each player should not be able to play the system by bidding strategically.
Also, in the case of LSA, it has to take into account the spacial reusability of
spectrum i.e., two base stations can use the same spectrum if they do not cause
interference to each other.

In [2–4], authors designed mechanisms which could be applied in the case
where there is one and only one block to allocate. On the other hand, in [5]
we have designed and analyzed a truthful scheme when spectrum is infinitely
divisible. A more realistic assumption is to suppose that spectrum can be split
in several sub-bands or blocks, that have a predetermined size. Therefore, in this
paper we suppose that the regulator has K identical blocks to allocate. Identical
means that besides being of the same width, there is no preference over blocks
from the point of view of base stations [6,7].

All the previous mentioned mechanisms are one-shot auctions in which bid-
ders reveal all their valuations. Contrary to one-shot auctions, ascending auctions
preserve the privacy of the winning bidder(s) because the winner(s) do(es) not
need to reveal all his valuations. Hence in this paper we focus on ascending
auctions. Since the objective of the regulator (the auctioneer) is to optimize
the use of spectrum, we propose to implement an ascending version of Vickrey-
Clarke-Groves mechanism (VCG). To the best of our knowledge, this is the first
ascending mechanism for LSA context. In fact, we propose to implement VCG
using two approaches: the first approach is by adding representatives so that the
auction will be between the auctioneer and those representatives and the second
approach is by removing those representatives i.e., base stations communicate
directly with the auctioneer. In this paper we use player, bidder and base station
interchangeably.

The rest of this paper is organized as follows: Sect. 2 presents the system
model. In Sect. 3, we present the clinching mechanism and show how it can be
adapted for the LSA context using two approaches. In Sect. 4, we evaluate the
performances of our proposition. Section 5 concludes the paper.

2 System Model

We consider N base stations of different MNOs in competition to obtain K blocks
of spectrum at a certain time and geographical area. We suppose that blocks
are identical. As it was presented in [4,8], the problem can be modeled using
an interference graph. In order to optimize the use of spectrum, the regulator
constructs from the interference graph M groups such that two base stations of
the same group do not interfere with each other (and so they can use the same
spectrum block simultaneously). So finally, the competition between the N base
stations is transformed into a competition between M groups. In this paper we
suppose that groups are constructed before the auction takes place.
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2.1 Preferences of Base Stations

We assume that each base station i has a private valuation vi vector of size K,
each element vi,k representing the willingness-to-pay for the k-th extra resource
block. The valuation of a block can be interpreted as the revenue from that
block. As in [9], we suppose that the value of an extra block, for a base station,
decreases with the number of blocks already obtained. This corresponds to a
discretization of concave valuation function for spectrum [9], as illustrated in
Fig. 1. Finally, we adopt a quasi-linear utility model: if a base station i obtains
ni blocks and pays pi, its utility then is

ui =
ni∑

n=1

vi,n − pi.

In particular, a base station obtaining no block gets a utility equal to zero.

V
al
ua

ti
on

Obtained spectrum (MHz)

vi,1

vi,2

vi,3

vi,4
vi,5

vi,6
Block
size

Fig. 1. An example of a concave valuation function of obtained spectrum, and the
corresponding block valuations vi,n for a player i.

2.2 Why Implementing VCG?

In this paper, we suppose that the regulator wants to implement the ascending
version of VCG motivated by the following features:

1. Efficiency: Efficiency is defined as the sum of the valuations served∑N
i=1

∑ni

n=1 vi,n [10]. This means that the social value of the good being
sold equals the maximum of the potential buyers’ individual valuations.

2. Truthfulness: This property means that bidders’ best strategy is to behave
sincerely, i.e., lying about one’s preferences is not beneficial. The strongest
version is when truth-bidding is a dominant strategy, but it can also be a
(weaker) ex-post Nash equilibrium strategy: when truthful bidding is an ex-
post equilibrium, each player knows that bidding truthfully is a best strategy
if all other players also bid truthfully and without knowing the other players’
valuations [11].

3. Individual rationality: A mechanism is individually rational if each player has
an incentive to participate in the auction, i.e., it has a strategy guaranteeing
it a non-negative utility [12].
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3 VCG Ascending Implementation for the LSA Context

In this section, we start by presenting the general framework of the clinching app-
roach, then we show how to adapt it to the LSA context using two approaches.

3.1 Background

The clinching auction [13] is an ascendant auction for K homogeneous goods,
where bidders have valuations as described in Sect. 2. At each round t, the auc-
tioneer declares a price P t and each bidder i responds by demanding a quantity,
if demand is higher than supply, then the auctioneer increases the price at the
next round P t+1 = P t + 1. The auction ends when demand is not higher than
supply. Bidder’s payments are computed during the auction. We detail in the
following how the clinching auction works. The cumulative clinch Clti of player i
at round t is defined as:

Clti = max{0,K −
∑

j �=i

dt
j}, (1)

with dt
j the demand of player j at round t. The current clinch at round t of

player i (the number of blocks obtained at round t) is denoted by clti:

clti = Clti − Clt−1
i . (2)

When the auction ends, each bidder i obtains a quantity equal to its cumulative
clinch Cli, and its payment pi is:

pi =
T∑

t=0

P tclti. (3)

It was proven in [13] that the clinching auction achieves the outcome of VCG i.e.,
it ensures an efficient allocation, charges each player with its Vickrey payment
and bidding truthfully is an ex post Nash equilibrium. Here bidding truthfully
means that each player reports its demand with respect to its valuations: di(P ) =
max{n such that vi,n > P}, for a given declared price P .

Remarks

1. We illustrate in the following example why truthful bidding is not a dominant
strategy. We suppose we have two blocks and two players, where valuations
of the first player are {3, 2} and the second {2, 1}. Suppose that the second
player uses the following strategy: if the first player demands two blocks at
the first round then it will continue to demand 2 blocks until the end of the
auction (even though it will obtain a negative utility), otherwise it demands
one block. Clearly, given that strategy, player one has to demand only one
block at the first round so at the second round (P = 1) player two demands
one block. Thus the auction ends at the second round (since the total demand
is two). Each player gets one block, the utility of player one is 3 − 1 = 2.
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2. We denote by {fi,1, .., fi,K} the highest K valuations, extracted in a non
decreasing order, of other players facing player i. There is a relation between
clinching prices and those valuations: if player i clinches its nth block at price
P then that price is the minimum price such that the sum of demands of all
other players is K − n. This corresponds to the situation in which P = fi,n.

Table 1 summarizes the notations used throughout the paper. In the follow-
ing, in order to implement the ascending version of VCG, we propose at a fist
time to add a representative part per group, that part will represent the mem-
bers of that group. After that, we show how to implement VCG without those
representatives.

Table 1. Notations

K Number of blocks on sale

vi,n valuation of base station i for an nth block.

di(P ) demand of player i at price P

gh group h

nh number of players of group h

Dh(P ) demand of group h (or representative h) at price P

(Dh(P ))−i demand of group h at price P when player i is absent

Bh,n group-bid of representative h for its nth block

B−i
h,n group-bid of representative h for its nth block when player i is absent

Fh,n The nth highest group-Bids of other representatives facing representative h

3.2 VCG Implementation with a Representative per Group

In this section, we show how to implement the clinching approach for the LSA
concept when a representative part per group is introduced. It can be an interface
between base stations and the auctioneer. There is no communication between
base stations and the auctioneer. The auction will be between the M represen-
tatives and the auctioneer. Before the auction takes place, each base station i
transmits to the representative of its group its bid vector bi (which can be dif-
ferent from vi), then each representative h constructs the group-bid vector Bh

based on the received bids (Bh,n =
∑N

i=1 bi,n1i∈gh
). At each round and for each

price P each representative h demands a quantity Dh(P ) with respect to the
group-bid vector (the demand corresponds to the number of components that
are higher than P ) as showing in the following equation .

Dh(P ) = max{n,Bh,n > P}

If a representative obtains a block then it charges each base station of that group
an amount. The auction clears when the sum of demands of all representatives
is equal or lower than K. The steps of the auction can be summarized as follows:
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1. Each base station reports to the corresponding representative its bids vector.
2. The representative constructs the group-bid vector.
3. At each round, each representative reports its demand Dh(P ) to the auction-

eer.
4. The auctioneer computes the cumulative clinch Clth of each representative h

at round t which is defined as:

Clth = max{0,K −
∑

j �=i

Dt
j}, (4)

with Dt
j the demand of representative j at round t. The current clinch (the

number of blocks obtained at round t) of representative h is denoted by clth:

clth = Clth − Clt−1
h . (5)

5. If a representative clinches (obtains) a block at a price P then it charges each
base station i of its group a price and sends that amount to the auctioneer.

6. If the demands of all representatives is higher than K, then the auctioneer
increases P at the next round, otherwise the auction ends.

Clearly, if each base station reports to the corresponding representative its true
valuations then the allocation is efficient (the procedure is similar to the original
one). However, reporting true valuations depends on the payment that will be
made, the question is how to charge each base station in a manner that guar-
antees truthful bidding? i.e., reporting its true valuations to the representative
is a dominant strategy. We denote by pi,n the payment of base station i for its
nth block and by Fh the vector of the K highest valuations of the other rep-
resentatives (extracted in a non decreasing order) facing representative h. The
following proposition proposes a payment rule ensuring truthful bidding.

Proposition 1. The following payment rule ensures a truthful bidding (as dom-
inant strategy):

pi,n = [P − B−i
h,n]+

Where B−i
h,n = Bh,n − bi,n.

Proof. Suppose that by reporting its true valuations, player i obtains ni blocks
and pays pi. Any other reported bids may:

1. Increase the number of obtained blocks n′
i, in this situation it will pay the

same amount for the first ni blocks (because its payment is independent of his
bids), however it will pay an amount higher than its valuation for the other
blocks: for each j in {ni+1, .., n

′
i} we have Fh,j > B−i

h,j + vi,j (otherwise group
h would have obtained that block) thus Fh,j − Bh,j > vi,j i.e., pi,j > vi,j

which leads to reduce its utility.
2. Obtain the same number of blocks, player i obtains the same utility.
3. Decrease the number of obtained blocks. In this situation it will decrease its

utility since those blocks are charged below its valuation for them.
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We denote by BS the vector composed of all the group-bid vectors sorted in
a non increasing order. The size of BS is M × K. Please note that blocks are

allocated to the groups with the first K components of BS (efficiency is
K∑

i=1

BS
i ).

We now illustrate how the mechanism works for a given configuration.

Example 1. Suppose we have three group g1, g2 and g3, and three blocks.

– g1 is composed of three players with the following bids respectively {5, 3, 2},
{10, 6, 4} and {10, 6, 3}.B1 = {25, 15, 9}

– g2 is composed of two players with the following bids respectively {10, 6, 3}
and {8, 4, 2}. B2 = {18, 10, 5}

– g3 is composed of one player with bids {17, 11, 4}. B3 = {17, 11, 4}.

Applying the clinching approach with representatives leads to:

1. At P = 11, D1(P ) = 2, D2(P ) = 1 and D3(P ) = 1, thus group one clinches
his first block. Player one pays [11 − 20]+ = 0, similarly for player two and
three, each one pays zero.

2. At P = 15 we have D1(P ) = 1, D2(P ) = 1 and D3(P ) = 1. The auction ends.
The second and the third group obtain their first block each. The first player
of the second group pays 15− 8 = 7, the second player pays 15− 10 = 5. The
player of the third group pays 15.

Also, here BS = {25, 18, 17, 11, 15, 10, 9, 5, 4} and efficiency is 25+18+17 = 60.

In the following we study the convergence rate (the number of rounds that
the auction takes to end).

Efficiency and Convergence Rate Trade-Off. The convergence speed of the
auction depends on the increment. A possible way to accelerate the convergence
of the auction is by increasing the increment from round to another i.e., P will
be increased by an amount q > 1. Before studying the impact of changing the
increment from 1 to q > 1, let us first introduce the following proposition:

Proposition 2. When the increment is equal to 1, the auction concludes after
BS

K+1 rounds.

Proof. At each price P the demand of each representative corresponds to the
number of components that are higher than P . In particular if P = BS

K+1 then
the sum of demands of all representatives is exactly K, also P = BS

K+1 is the
first price at which the sum of demands is exactly K, for P = BS

K+1 −1 the sum
of demands is K + 1. Therefore, the auction ends after BS

K+1 rounds.

In the following proposition, we show that by increasing the increment we may
accelerate the convergence rate but this may lead to loss in terms of efficiency.
Please note that if the final price is higher than a component from the set
{BS

1 , .., BS
K} then that component will not be demanded: suppose that we have

two blocks and two bidders with valuations {7, 5} and {4, 1}. Suppose that q = 3.



94 A. Chouayakh et al.

The auction ends at the second round when P = 6 and the total demand is 1
(bidder one will not demand two blocks because his valuation for the second
block is lower than the final price) efficiency is therefore 7.

Proposition 3. After introducing an increment m > 1, the auction ends after

Tc rounds such that Tc = �∗�BS
k+1
q (where �∗�x is the least integer greater than

or equal to x) and the efficiency is
K∑

i=1

BS
i 1BS

i >Tc×q

Proof. The auction ends when P reaches a value higher than BS
K+1. That value

is reached after Tc rounds such that Tc ×q > BS
K+1. Therefore Tc = �∗�BS

K+1
q . In

terms of efficiency, since if the final price is higher than a component from the set

{BS
1 , .., BS

K} then that component will not be demanded then
K∑

i=1

BS
i 1BS

i >Tc×q.

Note that A necessarily condition to obtain the optimal efficiency is to have
BS

K+1 < Tc × q < BS
K

One may wonder if we can reduce the increment if the demands fall down
rapidly from round t to another t + 1 i.e., we reduce P at t + 2 and ask bidders
for their demands. By doing so the auction will not be truthful anymore because
bidders may reduce their demands in order to reduce their payments. So the
increment must be the same during the auction. Next, we set q to 1 in order to
obtain an efficient implementation.

In the original version of clinching [13] (without groups), clinching prices
represent also the payment of players. However, in our context, if a group clinches
a block at a price P , then P is the maximum amount that it may pay. We prove
that in the following proposition.

Proposition 4. If a group (representative) clinches its nth block at price P then
the sum of payments of players of that group can not be higher than P .

Proof. We can distinguish two cases:

1. There exists a player such that bi,n > P , then in this situation, each player j

except i pays zero because B−j
h,n > P , for player i it will pay [P −B−i

h,n]+ < P
thus the revenue in this situation is lower than P .

2. ∀ i, bi,n < P , we take any set Sh of group h such that the sum of bids of its
members is higher than P and lower than P when removing any player of the
set i.e.,

∑
i∈Sh

bi,n ≥ P and ∀ j ∈ Sh

∑
i∈Sh,i �=j

bi,n ≤ P , we can obtain that set

as follows: we sort bids of group h in a non increasing order. In the beginning
Sh is composed of the player with the highest bid. We keep extending Sh

by adding players until both conditions hold. In this situation, each player
of group h which does not belong to Sh pays zero, payment of group h is
given by:
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Ph,n =
|Sh|∑

i=1

(P −
nh∑

j �=i

bj,n) (6)

= |Sh|P −
|Sh|∑

i=1

nh∑

j �=i

bj,n) (7)

Since

|Sh|∑

i=1

nh∑

j �=i

bj,n =
|Sh|∑

i=1

(
nh∑

j �=i

bj,n + bi,n − bi,n) (8)

= |Sh|Vh,n −
|Sh|∑

i=1

bi,n (9)

We obtain

Ph,n = |Sh|P − |Sh|Vh,n +
|Sh|∑

i=1

bi,n (10)

≤ |Sh|P − |Sh|
|Sh|∑

i=1

bi,n +
|Sh|∑

i=1

bi,n (11)

= (|Sh| − 1)(P −
|Sh|∑

i=1

bi,n) + P (12)

≤ P (13)

This first implementation has the following advantages: first, truthful bidding
is a dominant strategy. Second, the auctioneer could not have a precised idea
about valuations of base stations, it may have only an idea about the total
valuation of group h for an nth block but he can not see the valuation of each
base station. In practice, it may be difficult to introduce those representatives
because we may have “the black box effect”: from the point of view of players,
they can not see the evolution of the auction (they are just asked to pay an
amount for an obtained block). For the auctioneer, he can not see how each
base station is charged. Thus in the following we show how to implement the
ascending version when removing those representatives so that the auction will
be held between the auctioneer and base stations directly.

3.3 VCG Implementation Without Representatives

In this section, we propose to implement the ascending VCG auction when repre-
sentatives are removed. In this scenario, the auction will be between the regulator
and base stations. Similarly to what was presented before, the auctioneer fixes a
price P and keep increasing P until demands of groups is no higher than supply.
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The question here is how to compute the demand of groups? We propose to
introduce a price ph per group, for each price P , the auctioneer keep increasing
ph and ask each player of group h its demand di(ph), until he can compute the
demand of group h Dh(P ) which is defined as:

Dh(P ) = max{n : ∃ ω ⊂ gh and (r1, ..., r|ω|) ∈ R
|ω|

s.t. di(ri) = n and
|ω|∑

i=1

ri > P ∀i ∈ ω}

Intuitively this demand means that there is a set of players of group h which
will pay P in order to obtain n blocks and there is not a set of players which are
willing to pay P for n + 1 blocks. Here demands of group is computed directly
by the auctioneer instead of the representatives. Also this demand is the same as
it was presented before. Therefore, if we assume truthful bidding we obtain an
efficient allocation. The question now, is how to compute the payment of each
player? In fact, the introduction of ph is not only to compute the demand of a
group as a function of demands of its members but also to compute payments
of players. We denote by

(
Dh(P )

)−i the demand of group h without player i.
We propose to operate as follows: if group h clinches its nth block at price P

then, for each player i, we keep increasing ph until:

1. Either
(
Dh(P )

)−i
> 0, in this situation player i pays zero.

2. Or achieving the maximum amount (could be computed from demands) that
all players (without counting i) of group h can pay in order to obtain n blocks
i.e.,

(
Dh(m)

)−i=n−1 and
(
Dh(m−1)

)−i = n, i.e., m = V −i
h,n. In this situation

player i pays P − m.

Thus we can see that payment is the same as the one of the previous implemen-
tation (with representatives).

In the following proposition we show that truthful bidding (demanding a
quantity with respect to the valuations) is an ex post Nash Equilibrium.

Proposition 5. In the proposed auction mechanism, truthful bidding is an ex
post-Nash equilibrium.

Proof. Let us fix a base station i, suppose that all other base stations report their
demand truthfully during the auction, by reporting its true demand player i will
obtain the same utility as in the auction with the representatives. we denote by
u1 that utility. Now we have to show that any other strategy of demanding for
player i will reduce his utility i.e., it obtains a utility u2 ≤ u1. Suppose that
strategy generates a higher utility, this means that player i could obtain the
same utility in the first implementation (with representatives) by proposing a
bids vector with respect to its reported demands. This is a contradiction because
in the first implementation, proposing the valuation is dominant strategy. Thus
u1 ≥ u2.

We illustrate in the following example how the auction works.
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Example 2. We take the same configuration of example 1, applying the clinching
approach without representatives leads to:

1. At P = 11, D1(P ) = 2 (could be obtained when p1 = 5, r1 = 2.5, r2 = r3 =
4.5), D2(P ) = 1 (p2 = 6) and D3(P ) = 1 (p3 = 11), thus group one clinches
its first block. The first player of that group pays zero because without it and
for r2 = r3 = 5.5 (p1 was increased until 6) the second and the third players
can always obtain that block. Similarly for player two, it pays zero because
without it player one and three can obtain that block for r1 = 3 and r3 = 8
(p1 was increased till 8). Similarly for player three it pays zero.

2. At P = 15 we have D1(P ) = 1, D2(P ) = 1 and D3(P ) = 1. The second and
the third group obtain their first block each group. For the second group we
keep increasing p2 till 10 in order to compute the payments of players of that
group. The first player of the second group pays 15−8 = 7, the second player
pays 15 − 10 = 5. The player of the third group pays 15.

In the following section, we evaluate the performance of our proposed ascending
version VCG. Note that both approaches have the same performances but we
prefer the second approach (without representatives) since it is more transparent.
Also, we set the increment to 1.

4 Performance Evaluations

We compare VCG with TLSAA and TLSAA2 [14], two truthful variants of LSAA
[4] that we have proposed in previous work. LSAA is the first auction mechanism
which was proposed as candidate for the LSA context. LSAA outperforms other
potential candidate mechanisms such as TAMES [2] and TRUST [3] in terms of
efficiency. However LSAA is not truthful.

Note that for LSAA, TLSAA and TLSAA2 all the available spectrum is
allocated as a one block for only one group via a single round auction. Each
bidder submits a bid which represents the maximum amount that it is willing to
pay in order to obtain all the available spectrum. Then the auctioneer computes
the group-bid of each group which is a positive real obtained via a function.
Spectrum is allocated to the group with the highest group-bid.

We compare our implementation with TLSAA and TLSAA2 in terms of
revenue of the auctioneer, efficiency and fairness of the allocation. In order to
quantify the fairness of the allocation, we use Jain’s index [15] which is a con-
tinuous function on the closed interval [ 1

N , 1] and measures the fairness of the
allocation between N players. In particular, that index achieves its maximum (1)
when all players obtain the same amount and achieves its minimum ( 1

N ) when
all the available spectrum is allocated to only one player.

4.1 Simulation Settings

We have fixed M = 10 groups, the number of players in each group is chosen
randomly from the discrete uniform distribution of integer values in the interval
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[1 ; 30]. We suppose that there is a quantity of LSA spectrum that could be
divided into 100 blocks. For TLSAA and TLSAA2 that quantity is allocated as
a single block. We create the bid vector which is composed of 100 elements: the
first element is drawn from the uniform distribution over the interval [0, 100] and
the n-th element (n > 1) is drawn from the uniform distribution [0, bi,n−1] (For
TLSAA and TLSAA2, the bid is the sum of those components). The average
fairness, revenue and efficiency are computed over 1000 draws.

4.2 Simulation Results

In terms of efficiency, by construction VCG is more efficient than the other
mechanisms. This result is confirmed by Table 3. Also, the more blocks we divide
the spectrum into, the more efficient the allocation is. In terms of fairness of the
allocation, VCG is fairer than the other two mechanisms as its shown in Table 4,
this is natural since blocks will be distributed among groups and will not be
allocated to one and only one group. If the auctioneer wants only to increase his
revenue then our proposition is not the best as it is shown in Table 2. However,
our proposition offers a good trade-off between fairness, efficiency and revenue:
by splitting spectrum into five blocks. Compared to LSAA2 we lose 62% of the
revenue but we win more than 300% in terms of efficiency and more than 500% in
terms of fairness. In addition, we add transparency, price discovery and privacy
to the auction.

Table 2. Average revenue as a function of the number of blocks for M = 10

K 100 10 5 4 2 1

VCG 3.82 1.5 422 458 488 368

TLSAA – – – – – 380

TLSAA2 – – – – – 1304

Table 3. Average efficiency as a function of the number of blocks for M = 10

K 100 10 5 4 2 1

VCG 15574 15487 11337 9962 5469 2945

TLSAA – – – – – 2887

TLSAA2 – – – – – 2558

Table 4. Average fairness as a function of the number of blocks for M = 10

K 100 10 5 4 2 1

VCG 0.98 0.99 0.71 0.6 0.33 0.18

TLSAA – – – – – 0.17

TLSAA2 – – – – – 0.11
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5 Conclusion

In this paper we have proposed two ways in order to implement the ascending
version of VCG for the LSA context. For the first approach, we have introduced
a representative per group. At each round, each representative transmits to the
regulator the demand of its group based on bids of its members. Each base sta-
tion is charged a price computed by the representative of its group. There are
two advantages of this implementation. First, truthful bidding is a dominant
strategy and second we preserve privacy of valuations of base stations. How-
ever, it can be difficult to introduce those representatives in practice. Thus, at a
second time, we have proposed another ascending implementation of VCG with-
out those representatives and in which communication is directly between the
auctioneer and base stations. We have introduced a price per group and show
how to compute the payment of each player. In the second approach truthful
bidding is an ex post Nash equilibrium. Transparency is the main advantage of
the second approach because each base station sees the evolution of the auction.
In addition, we have shown by simulations that our proposition offers a good
trade-off between fairness, efficiency and revenue compared to other mechanism
proposed for the LSA context.
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truthful mechanism for 5G dynamic spectrum allocation. In: Proceedings of the
IEEE PIMRC (2018)

6. Zhou, X., Gandhi, S., Suri, S., Zheng, H.: eBay in the sky: strategy-proof wireless
spectrum auctions. In: Proceedings of the ACM MobiCom, pp. 2–13 (2008)

7. Wang, W., Liang, B., Li, B.: Designing truthful spectrum double auctions with
local markets. IEEE Trans. Mob. Comput. 13(1), 75–88 (2014)

8. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions i. Math. Program. 14(1), 265–294 (1978)

9. Enderle, N., Lagrange, X.: User satisfaction models and scheduling algorithms
for packet-switched services in UMTS. In: Vehicular Technology Conference, 2003.
VTC 2003-Spring. The 57th IEEE Semiannual, vol. 3, pp. 1704–1709. IEEE (2003)

10. Roughgarden, T., Sundararajan, M.: Is efficiency expensive. In: Third Workshop
on Sponsored Search Auctions (2007)



100 A. Chouayakh et al.

11. Roughgarden, T.: Ascending and ex post incentive compatible mechanisms (2014).
https://theory.stanford.edu/tim/w14/l/l21.pdf. Stanford Lecture notes CS364B:
Frontiers in Mechanism Design

12. Krishna, V.: Auction Theory. Academic Press, Cambridge (2009)
13. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. Am. Econ.

Rev. 94(5), 1452–1475 (2004)
14. Chouayakh, A., Bechler, A., Amigo, I., Maillé, P., Nuaymi, L.: Designing lsa
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Abstract. Recently, non-orthogonal multiple access (NOMA) small cell
networks (SCNs) have been studied to meet the stringent requirements
for spectral efficiency and massive connectivity in the emerging 5G net-
works. This paper aims at addressing the overall resource orchestration
issue in 5G SCNs, by considering the problem of joint user to small cell
association and uplink power allocation, employing NOMA technology.
In particular, the power allocation is performed under an incomplete
information scenario, where the users’ channel conditions are unknown
to the small cell. To treat this issue in an effective manner, contract
theory is adopted in order to incentivize each user to select the power
level that optimizes its own utility, while each small-cell base station
(SBS) rewards them inversely proportionally to their respective sensed
interference. The proposed framework is complemented by a distributed
user-cell association mechanism based on reinforcement learning (RL).
Indicative numerical results are provided to validate the operation and
effectiveness of the proposed contract-theoretic approach.

Keywords: Small cell networks (SCNs) · Non-orthogonal multiple
access (NOMA) · Reinforcement learning (RL) · Contract theory ·
Incomplete information · User association · Power allocation

1 Introduction

The deployment of small cells co-existing with the legacy macrocell network,
constitutes a straightforward and effective approach to support the deluge of
data traffic induced in the uplink of 5G wireless networks. Though small cells
are typically low power, low cost, short range wireless transmission systems (base
stations), they have all the basic characteristics of conventional base stations and
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are capable of handling high data rate for individual users [1,2]. Accordingly,
they can efficiently reuse the spectrum across different geographical areas, thus,
improving spectrum efficiency and enhancing network coverage and capacity.
Towards the same direction of contributing to improved spectral efficiency and
massive connectivity, non-orthogonal multiple access (NOMA) technology has
been adopted by 5G networks, allowing multiple users to multiplex in the power
domain over the same time/frequency/code resources. The successive interfer-
ence cancellation (SIC) technique is, then, applied at the receiver to mitigate
part of the interference, by sequentially decoding the received signals based on
their signal strength [3].

One of the key problems and challenges in this emerging environment, is
the inter-user interference caused by different users transmitting over the same
resources. The latter heavily depends on the joint user to small cell association
and corresponding power allocation problem. Therefore, the development of effi-
cient resource allocation schemes that deal with this problem in NOMA small
cell networks (SCNs) is of significant research and practical importance.

1.1 State of the Art and Motivation

Several research works (e.g., [4,5]) have addressed the emerging resource orches-
tration problem in NOMA SCNs, and in particular the joint problem of user
association and power allocation. For instance, in [4], the problem is formu-
lated as a coalition formation game that associates users with the small cell, for
which the total power is minimized in the optimal partition of users. In [5], a
similar problem focusing on the joint user clustering and power allocation, is
treated in two iterative stages to avoid the exhaustive search of user clusters.
Nevertheless, the majority of existing works on the topic of user association
and/or interference mitigation, presume perfect knowledge of the global chan-
nel and/or network information (e.g., channel state information (CSI)), which
is either impossible to have or impractical to obtain. Considering the situa-
tion when only statistical CSI is available at the small base stations (SBSs),
the private information of the user devices regarding their experienced channel
conditions could be utilized to ease the resource allocation procedure. In this
context, contract theory, enables the modeling of an incentive mechanism in 5G
SCNs under a practical scenario of incomplete information, where the users’ pri-
vate information (i.e., transmission power, wireless channel characteristics) are
not known by the SBSs. Based on contract theory, the negotiations among the
SBSs and the users are modeled under a network economics framework aiming
to identify the SBSs’ optimal rewards provided to the users in order the latter to
determine their optimal transmission power. Indicatively, we note that the work
in [6] has attempted to deal with the specific CSI incompleteness problem based
on contract theory principles, for heterogeneous long-term evolution advanced
(LTE-A) networks. Nonetheless, the proposed approach assumes a central entity
determining the optimal user association and contracts, while it is targeting
orthogonal frequency division multiple access (OFDMA) environments in order
to mitigate or eliminate interference, which in turn reduces the spectral efficiency
due to the requirement of channel access orthogonality.
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1.2 Contribution and Outline

Targeting both spectral efficiency and application feasibility, it is practically ben-
eficial to assume that the total system available bandwidth is subdivided into
orthogonal frequency chunks (i.e., channels). In this regard, adjacent small cells
are allocated to different frequency chunks that do not interfere with each other.
Within such communication environment, our contribution aims at introduc-
ing a resource orchestration framework through a distributed user association
and power allocation scheme which reduces computational complexity, while
accounting for the CSI incompleteness. Specifically, we propose a contract-based
approach, in which the small cell, acting as a monopolist, determines the users’
transmit power level so as to be able of decoding their signals, and rewards
them inversely proportionally to their interference in order to incentivize them
to accept the proposed contract. The key idea is to offer the right contract item
to each user, so that all users have the incentive to truthfully reveal their CSI.
Furthermore, the determination of the small cell to which each user is associated
with, is performed by the users individually based on the evaluation of the con-
tract items, through a reinforcement learning (RL) algorithm. In a nutshell, our
work offers a resource orchestration framework applicable in SCNs that differs
from previous existing efforts in the literature, in the sense that it: a) consid-
ers an interference-limited wireless environment, adopting the use of NOMA
technology that has arisen as a promising access technology in 5G networks,
b) formulates the overall resource orchestration problem under an incomplete
CSI scenario, and c) promotes the use of distributed approaches in the decision
making, eliminating the need for centralized decision making entities.

The rest of the paper is organized as follows. Section 2 contains the considered
system model and the introduced SBSs’ and users’ utility functions. In Sect. 3,
we present the optimal contract design under incomplete information, while we
determine the SBSs’ optimal rewards to incentivize the users to transmit with
their optimal uplink transmission powers. The users’ association to the small cells
based on reinforcement learning is highlighted in Sect. 4. In Sect. 5, indicative
numerical results validating the operation of the contract theoretic framework
are presented, while Sect. 6 concludes the paper.

2 System Model

We consider a heterogeneous dense wireless network consisting of a set of users
U = {1, . . . , |U |} and a set of SBSs C = {1, . . . , |C|}. A set Uc of cardinal-
ity |Uc| users represents the users associated with cell c. The channel gain of
user u communicating with the SBS c is denoted by Gc

u = ku/(dcu)a, where
ku is a lognormal distributed random variable with mean 0 and variance σ2,
dcu [m] is the distance between user u and SBS c and a is the corresponding
path loss exponent. To consider realistic scenarios, the SBS lacks specific infor-
mation of users’ transmission characteristics, i.e., CSI, type of user. Adopting
the principles of contract theory [7], each SBS aims at incentivizing the users
to exhibit their improved transmission characteristics by providing them some
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Fig. 1. System model & operation framework.

transmission-related rewards. The goal is to determine an equilibrium point,
where both the SBS and the users maximize their utilities, in terms of collecting
and transmitting information, respectively. The type of the user is defined as
tcu = (Gc

u ·∑{1/Gc
u})−1/2, tcu ∈ (0, 1], and without loss of generality, we consider

|Uc| types of users with tc1 < · · · < tcu < · · · < tc|Uc|. Adopting the NOMA tech-
nique and by applying SIC at the receiver in the uplink, the users with worse
channel gain conditions are alleviated by the interference caused by the users
with better channel conditions, as the signals of the latter are decoded first at
the receiver and excluded from the interference sensed by the users with worse
channel conditions. Thus, the SBS c rewards the user u with rcu = ρ/Icu, where
ρ ∈ R

+ is the reward factor and Icu is the interference that user u senses, while
being associated with SBS c. The physical meaning and interpretation of the
reward is that the SBS provides a greater reward to users that experience less
interference. Thus, a user of higher type tcu (i.e., worse channel conditions), senses
less interference and it is rewarded more by the SBS (for fairness purposes), as
it is expected to transmit with higher power (i.e., invest greater effort).

Figure 1 summarizes the overall operation of the proposed framework. At the
beginning of each time slot, the users select an SBS to be associated with in a
distributed manner following a reinforcement learning approach (Sect. 4). Then,
the optimal contracts are determined by each SBS for the corresponding users
residing within each small cell (Sect. 3). The overall nested procedure is executed
over the time guaranteeing the smooth operation of the 5G SCNs.

3 Optimal Contract Design

The considered heterogeneous dense network is characterized by asymmetry of
information, as the exact users’ types and transmission powers are unknown to
each SBS. Instead each SBS c only knows the probability Prcu that the user u

is of type tcu and
|Uc|∑

u=1
Prcu = 1. The utility that SBS c experiences from user

u is defined as Uu
c = P c

u − C · rcu, expressing the SBS’s satisfaction in terms of
its operation by receiving a signal with high power strength P c

u, while being
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charged with the cost C · rcu of providing incentives through the rewards to the

user. Thus, the overall SBS’s utility is Uc =
|Uc|∑

u=1
[Prcu · (P c

u − C · rcu)]. On the

other hand, the user’s utility is defined as U c
u(P c

u) = tcu · e(rcu) − C′ · P c
u, which

expresses the user’s satisfaction tcu · e(rcu) from receiving the reward rcu from the
SBS c, while considering its personal transmission cost C′ ·P c

u. It is noted that the
user’s satisfaction depends on its type tcu and on the evaluation function e(rcu)
(with e(0) = 0, e′(rcu) > 0, e′′(rcu) < 0), which captures the user’s perception and
personal satisfaction from the reward.

Following the principles of contract theory, the SBS establishes a personalized
contract (rcu, P c

u) with each user in the small cell, where the user invests its
personal effort P c

u (i.e., uplink transmission power) and the SBS rewards the
user with rcu. A contract is feasible if the following conditions hold true: (i) the
Individual Rationality (IR), i.e., the contract should guarantee that the user’s
utility is non-negative U c

u(P c
u) ≥ 0,∀u ∈ Uc; and (ii) the Incentive Compatibility

(IC), i.e., each user must select that contract which is designed for its type
tcu · e(rcu) − C′ · P c

u ≥ tcu · e(rcu′) − C′ · P c
u′ ,∀u, u′ ∈ Uc, u �= u′. Additionally, the

following three conditions must hold true in order the contract to be feasible.

Proposition 1. For any feasible contract (rcu, P c
u), the following must hold true:

rcu > rcu′ ⇐⇒ tcu > tcu′ and rcu = rcu′ ⇐⇒ tcu = tcu′ .

Proposition 1 can be proven by arguing as follows. We can prove separately
the sufficiency and the necessity of the described condition. Regarding the suffi-
ciency, we can write the incentive compatibility condition for two types of users,
e.g., tcu > tcu′ , add the inequalities, and exploit the strictly increasing property of
the evaluation function e(rcu) to conclude that rcu > rcu′ . Regarding the necessity,
we can work backwards by considering the strictly increasing property of e(rcu),
build the summation of the incentive compatibility constraints for two users,
and conclude that tcu > tcu′ . Similarly, we can show rcu = rcu′ ⇐⇒ tcu = tcu′ .

Proposition 2. A user of higher type, i.e., tc1 < · · · < tcu < · · · < tc|Uc| (i.e.,
worse channel conditions), will receive a greater reward from the SBS c to be
incentivized to be served by this SBS, i.e., rc1 < · · · < rcu < · · · < rc|Uc|, and it will
transmit with greater power (i.e., effort), i.e., 0 < P c

1 < · · · < P c
u < · · · < P c

|Uc|.

The proof of this proposition intuitively stems from Proposition 1, given that
tc1 < · · · < tcu < · · · < tc|Uc|.

Proposition 3. A user of higher type, i.e., tc1 < · · · < tcu < · · · < tc|Uc|, receives
higher utility to be incentivized by the SBS c, i.e., U c

1 < · · · < U c
u < · · · < U c

|Uc|.

Proposition 3 proof can be concluded based on the following steps. We con-
sider the incentive compatibility constraint for one user, and we analyze the
inequality by considering a user of lower type, i.e., tcu > tcu′ , and sequentially
we conclude that U c

u > U c
u′ . Due to space limitations only the key arguments

required for the proofs of Propositions 1–3 are provided here, while the detailed
intermediate steps of the proofs are presented in [8,9].
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Each SBS aims at maximizing its overall utility in order to be able to collect
and properly decode the users’ transmitted signals (as dictated by the received
SINR). In parallel, each user should satisfy all of its personal constraints, as
they have been described above, in order to be willing to be associated with the
specific cell. Thus, the following distributed optimization problem is solved at
each SBS, by jointly considering the SBS and corresponding users’ sides.

P1: max
(rcu,P

c
u)∀u∈Uc

Uc =
|Uc|∑

u=1

[Prcu · (P c
u − C · rcu)] (1a)

s.t. tcu · e(rcu) − C′ · P c
u ≥ 0,∀u ∈ Uc (1b)

tcu · e(rcu) − C′ · P c
u ≥ tcu · e(rcu′) − C′ · P c

u′ ,∀u, u′ ∈ Uc, u �= u′ (1c)
0 ≤ rc1 < · · · < rcu < · · · < rc|Uc| (1d)

The optimization problem P1 is non-convex, thus, in order to solve it, we reduce
its constraints. By performing appropriate derivations we can easily show that
the constraints (1b) and (1c) can be reduced to (2b) and (2c) [8,9]. In particular,
to show that the constraint (1b) can be reduced to (2b), we consider the incentive
compatibility constraint for a user and by considering the strictly increasing
property of the evaluation function, as well as the monotonicity of the users’
types (proposition 2), we can sequentially rewrite the incentive compatibility
constraint to be reduced to the inequality tcu · e(rcu) − C′ · P c

u ≥ tc1 · e(rc1) − C′ ·
P c
1 . Then, by exploiting the individual rationality condition, we can conclude

to the constraint (2b). Moreover, in order to show that the constraint (1c) is
reduced to (2c), we consider the downward (i.e., u, u′, u′ ∈ {1, . . . , u − 1}), the
upward (i.e., u, u′, u′ ∈ {u + 1, . . . , |Uc|}), and the local downward (i.e., u, u −
1,∀u, u − 1 ∈ Uc) incentive compatibility constraints. Then, we can show that
all the downward incentive compatibility constraints can be represented by the
local downward incentive compatibility constraint, while all the upward incentive
compatibility constraints can be equivalently captured by the local downward
incentive compatibility constraints. Thus, the optimization problem P1 can be
rewritten as:

P2: max
(rcu,P

c
u)∀u∈Uc

Uc =
|Uc|∑

u=1

[Prcu · (P c
u − C · rcu)] (2a)

s.t. tc1 · e(rc1) − C′ · P c
1 = 0 (2b)

tcu · e(rcu) − C′ · P c
u = tcu · e(rcu′) − C′ · P c

u′ ,∀u, u′ ∈ Uc, u �= u′ (2c)
0 ≤ rc1 < · · · < rcu < · · · < rc|Uc| (2d)

We can easily prove that P2 is a convex programming problem by checking the
Hessian matrix. Thus, P2 can be solved by applying the KKT conditions, and
accordingly the optimal users’ transmission power vector P∗

c = [P c∗
1 , . . . , P c∗

|Uc|]
and the optimal SBS’s rewards vector r∗

c = [rc∗1 , . . . , rc∗|Uc|], can be determined.
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4 Users’ Association Based on Reinforcement Learning

In order to support the operation of the aforementioned framework, users are
enabled to autonomously select the specific cell to be associated with, based
on a reinforcement learning (RL)-based approach. In this work, we adopted the
reinforcement learning mechanism of the stochastic learning automata (SLA) to
realize this process in a distributed manner, though other alternatives may be
considered as well (e.g., Max-logit, Binary-logit) [10]. In particular, each user
acts as a learning agent, where at each iteration of the SLA algorithm makes a
probabilistic-based selection of an SBS to be associated with, following a sim-
ple probabilistic rule. To realize this, each cell is characterized by a reputation
function REPc depending on socio-physical characteristics, e.g., average users’
distance from an SBS, average users’ transmission power invested to communi-
cate with an SBS, average users’ received rewards, etc., similarly to [11]. Accord-
ingly, the cell’s reputation functions are incorporated within the RL algorithms
to enable the users to probabilistically learn their best cell association.

5 Numerical Results

In this section, we present some numerical results that validate the operation
and performance of the contract-theoretic component of our proposed frame-
work, obtained through modeling and simulation. Given that adjacent cells do
not interfere with each other, we focus on the operation of one indicative cell,
assuming that users have already performed their association with each SBS. In
the following, we consider a small cell of 500-meter radius with an SBS placed in
the center of the cell and |Uc| = 10 users placed in increased distance from the
SBS (with a step of 50-meters). Specifically, we define one type for each user as
analyzed in Sect. 2, presuming that all users have the same probability Prcu of
belonging to each type. As mentioned earlier, the channel gain of user u commu-
nicating with the SBS c is modeled as Gc

u = ku/(dcu)a, where ku is assumed to be
a lognormal distributed random variable with mean 0 and variance σ2 = 8dB,
and the corresponding path loss exponent is a = 4. Furthermore, the maximum
uplink transmission power of the users is P c

u,max = 0.7 [W], while the reward
factor is ρ = 10−15, the SBS’s unit cost is C = 0.7, the user’s unit power cost is
C′ = 0.4, and the user’s evaluation function is assumed e(ru) =

√
ru.

Figure 2a presents the users’ effort, i.e. optimal uplink transmission power,
and reward vs. their index, while similarly Fig. 2b shows the achievable utilities
for both the users and the cell. Logarithmic scale is used to better visualize the
curves’ trend and differences in the values. The results in both Fig. 2a and 2b,
validate the monotonicity behavior in the offered contracts. That is the higher the
user type, the more effort is required and thus, the more the reward it receives,
leading to larger utility for the user itself and the cell. This is well aligned with
the fact that the measured interference at the receiver after performing the SIC
technique for the user with the lowest channel gain (i.e., the highest type user)
is impacted only by the background noise, which is very low. Moreover, from
Fig. 2b it can be seen that all types of users receive a non-negative utility, being
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consistent with the individual rationality constraint imposed. To complement
the evaluation of the contract feasibility, the utilities of two selected users (i.e.
users with type 5 and 8) are examined in Fig. 2c, for different possible contracts
offered by the SBS (represented in the horizontal axis by user types). Observing
these results we note that following the proposed approach, each user achieves
equal or higher utility from the other types, if and only if selects the contract
item intended for its own type (dictated by the red dashed vertical line in the
graphs), demonstrating the satisfaction of the incentive compatibility constraint.
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User reward

(a) User effort & reward vs. user index.
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(b) Cell & user utility vs. user index.

1 2 3 4 5 6 7 8 9
User index

2.2

2.25

2.3

2.35

2.4

2.45

2.5

10-3

User type 5 utility
Max value

1 2 3 4 5 6 7 8 9
User index

5.8

6

6.2

6.4

6.6

6.8
10-3

User type 8 utility
Max value

(c) User type 5 and 8 utility vs. different contract items.

Fig. 2. Operation validation of the proposed contract-theoretic framework.

6 Conclusions and Future Work

In this paper, the problem of resource orchestration, in terms of user to small cell
association and power allocation, in the uplink of 5G NOMA-based small cell
networks is studied. A reinforcement learning technique is adopted to enable the
users to select the optimal small cell to be connected with, in an autonomous and
distributed manner. Thereafter, a contract-theoretic approach is introduced to
design user specific contracts in terms of determining the users’ optimal uplink
transmission power and the small cell’s optimal rewards provided to the users,
to incentivize them to perform in an interference limited manner in the network.
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Our current and future work contains the extension of this framework by
considering multiple reinforcement learning approaches for the user associa-
tion and comparing them in terms of efficiency and computation complexity.
Finally, a natural extension of this work focuses on the use of the proposed
contract-theoretic framework for the end-to-end study of the network operation,
by including the backhauling communication of the SBSs to the macro base
station.
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Abstract. We study in this paper the transport of Ultra-Reliable Low-
Latency Communications (URLLC) in the presence of multiple tenants
in a system composed of unlicensed and licensed spectrum, the former
being shared by the tenants. Due to the stringent reliability and latency
constraints of URLLC, the more expensive 5G licensed spectrum is used
to serve the traffic that is not served by the unlicensed spectrum within
a certain time budget. In a competitive scenario, where each tenant tries
egoistically to minimize its share of the licensed spectrum, this may result
in the tragedy of the commons like situation. We formulate the problem
using a game-theoretic approach to model the non-cooperative multi-
tenant scenario. We model the medium access of the combined unlicensed
and licensed system to quantify the performance of the system, in terms
of the overall probability of failure, and validate the model against sim-
ulations. We then derive the strategies that minimize individual cost
functions. Our work gives insights about the existence of Nash equilibria
and identify them numerically. Finally, we quantify the so-called price of
anarchy, i.e., ratio of the utility yielded by the competitive setting to the
outcome of a cooperative scenario.

Keywords: URLLC · Unlicensed spectrum · Multi-tenant

1 Introduction

The use of unlicensed spectrum for mobile communications is possible since
3GPP release 13, when Licensed-Assisted Access (LAA) LTE was first proposed
in the downlink only, to be followed by the enhanced LAA (eLAA) for uplink and
downlink in release 14 and the de-facto Multefire standard [1]. Afterwards, 3GPP
worked on the definition of 5G New Radio (NR) which includes several unlicensed
bands, illustrating the importance of unlicensed spectrum for 5G [2]. However,
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a main drawback for unlicensed spectrum is that operators cannot guarantee
the Quality of Service (QoS) for their users when multiple tenants are operating
in the same area due to interference among them. A tenant may be a mobile
network operator or a vertical operating a network for its users. This limitation is
especially true for Ultra-Reliable Low Latency Communications (URLLC) which
transport critical information with stringent latency and reliability requirements,
on the order of 1 to 5 ms end-to-end and 99.999% respectively [3]. Nonetheless,
unlicensed spectrum is being discussed for some URLLC services [4], notably
for some smart factory use cases that are to be deployed in industrial areas
where the environment can be controlled, e.g., by reducing the sources of outside
interference. This may be true in environments managed by a single operator,
but not in multi-tenant environments where several verticals manage plants in
direct proximity. These co-existing networks operating in unlicensed spectrum
create interference which degrades the QoS and compromises the value-add of
unlicensed spectrum for verticals.

In this paper, we study the usage of unlicensed spectrum for URLLC services
and advocate the combined usage of it along with licensed spectrum to ensure
the stringent latency and reliability targets. In particular, a generated packet
attempts transmission in unlicensed spectrum during a time budget shorter
than the delay constraint; if it does not succeed then it is redirected to the
licensed 5G spectrum. This scheme drastically decreases the need for licensed
spectrum resources compared to a classical licensed-only system, as illustrated
in [5]. However, in a multi-tenant environment, each of the verticals wants to
maximize its economic gain from using unlicensed spectrum, which increases the
overall system interference and decreases the value-add of unlicensed spectrum
for all tenants, leading to a tragedy of the commons like situation. We model
this situation as a game between tenants, where each tenant strategy consists in
using the unlicensed resources more or less aggressively and the objective is to
minimize its demand for the expensive licensed ones.

The literature on URLLC is becoming rich. There has been early works which
study the transport of URLLC over LTE, for instance [6], but the majority of
papers deal with URLLC on 5G’s licensed NR, considering grant-free fast uplink
access, where neither issuing a scheduling request nor waiting for a scheduling
grant are required [7]. This approach is often associated with the blind replica-
tion of packets, where the packet is sent several times within the delay budget
without waiting for negative acknowledgement (NACK) to increase reliability
[8,9]. However, only few papers considered the use of unlicensed spectrum, such
as [4], mainly because of the existence of other technologies such as WiFi on
the same unlicensed bands, which decreases the reliability of the system. This
paper is based on our work in [5], where we proposed a new model for unlicensed
medium access and quantified the cost of deploying the joint unlicensed/licensed
transmission scheme in terms of licensed bandwidth. In this paper, we focus on
another aspect of the problem which is the existence of multiple tenants and the
impact of each one’s strategy on their and others’ performance.
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In the remainder of this paper, Sect. 2 describes the system model and for-
mulates the corresponding non-cooperative game. We analyze in Sect. 3 the per-
formance of the system in terms of loss rate and requested licensed spectrum
resources for a given strategy from the viewpoint of one tenant. Based on this
analysis, Sect. 4 derives the Nash equilibrium of the system and Sect. 5 is ded-
icated for numerical results and illustrates the existence of pure-strategy Nash
equilibria and the associated price of anarchy of the system. Section 6 eventually
concludes the paper.

2 System Description and Problem Formulation

We consider an industrial area containing several smart factories operated by dif-
ferent tenants. Each tenant deploys an unlicensed Access Point in its premises
connected to a central controller, and uses a Base Station of a mobile network
operator covering the factory as a relay for the packets back to the controller. In
the sequel, we denote by 5G-U and 5G-L the parts of the system which use unli-
censed and licensed resources, respectively. We denote the transmitting machine
by station and assume that all stations are equipped with both 5G transmis-
sion systems. We focus on uplink URLLC traffic generated by machines where
URLLC packets share the same latency and reliability requirements, denoted
by T and R, respectively. We also assume the absence of foreign communica-
tions in 5G-U band in this area, such as personal Wi-Fi networks (only networks
deployed by tenants exist) and if other types of services such as eMBB or mMTC
exist, then they would use different slices from the ones dedicated for URLLC
in 5G-L.

The proposed transmission mechanism is that when a packet is generated, it
is transmitted through 5G-U during a time budget TU < T . If it is successfully
transmitted then the process stops, if not, the packet is switched to 5G-L and is
transmitted within the remaining time budget TL = T − TU . With this method,
we decrease the load on 5G-L and hence the amount of licensed bandwidth (BW )
that the tenant has to buy from the operator.

Assuming now the existence of M tenants operating in proximity, from the
viewpoint of one tenant there is a non-negligible interference in unlicensed spec-
trum, and if every tenant tries to use it selfishly (without considering neigh-
bouring interfering stations) then the overall interference could increase and the
gain is reduced. We denote a given tenant by v1 (for vertical) to which we eval-
uate the system performance under interference from other tenants, denoted by
vi : i ∈ {2, ...,M}. v1 deploys a URLLC transmission strategy with time division
T 1

U , likewise other tenants deploy other strategies with equal or different time
divisions; T i

U : i ∈ {2, ...,M}.
This situation can be represented by a non-cooperative game with triplet

G = (V, {Si}i∈V , {ui}i∈V ) where V = {v1, v2, ..., vM} is the finite set of players,
Si is the set of strategies of vi represented by the set of possible values of T i

U ∈
]0, T [, and ui is the utility function of vi which is the inverse of its cost function
represented by the required bandwidth BWi on the licensed access to satisfy the
reliability and latency requirements, which we determine next.
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3 Performance Analysis of Medium Access

3.1 Performance Analysis of Unlicensed Medium Access

In 5G-U, channel occupancy is managed by sensing the medium before transmis-
sion according to a random backoff procedure, called Listen-Before-Talk (LBT).

We consider N = N1 + N2 + ... + NM stations inside a coverage area trans-
mitting in the uplink, where Ni denotes the number of vi stations in this area,
and i ∈ {1, ...,M}. Without loss of generality, we focus on a transmitted packet
belonging to v1. v1’s coverage includes all its N1 stations and a partial number of
other tenants’ stations. In non-cooperative games, players do not communicate
directly, so interference can be assessed from sensing the medium. When a packet
from v1 is generated, it is associated to a backoff counter chosen randomly from
the integer set {0, ...,W0 − 1} where W0 is the maximum contention window
size and identical for all tenants. Then the station senses the medium during
one time slot, which is the smallest period required to sense the medium. If the
medium is sensed idle then the backoff counter is decremented by one, else it is
halted. This process is repeated until the counter reaches zero and the packet
is sent without sensing, a positive or negative acknowledgment ACK/NACK is
expected within a given time. Its absence is considered as a NACK. If the trans-
mission is successful then the process ends here, else it is repeated for a number
of attempts m1, called stages.

We denote the number of time slots needed for transmitting a URLLC packet
by x and it is identical for all tenants, it comprises the time of packet transmission
until the reception of ACK/NACK (or its absence). Since no collision avoidance
mechanism is considered in our case to limit the delay, the duration of a collision
is equal to a successful transmission. Assuming a perfect channel, stations sense
x consecutive busy slots every time the medium is sensed busy. In our case, we let
the packet attempts as long as its delay respects the time constraint T 1

U , hence
we can deduce the maximum number of stages when b(t) = 0 in all stages:

m1 =
⌊

T 1
U

x + 1

⌋

where �.� is the floor function. We consider x + 1 time slots for every collision
because according to LBT, all stations in backoff need to sense at least one idle
time slot before decrementing their b(t) and start transmission (if b(t) = 0).

We note that we deploy LBT cat3 with fixed contention window size in every
stage instead of LBT cat4 deployed in most Wi-Fi-like systems which adapts the
contention window according to collisions. This makes LBT cat3 more suitable
to delay-constrained applications.

Timer-Based Modified Bianchi Model. Many mathematical models were
proposed to model LBT, the most famous one is based on discrete time Markov
chains, proposed by Bianchi [10]. We modify the latter to suit our context where
we add: i. a timer to track time evolution until T 1

U and ii. two novel states:
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Success and Failure; the latter refers to unsuccessful transmission within time
budget T 1

U . This Markov chain is transient and describes the lifecycle of a packet
from the moment it enters the system until it is either successfully transmitted
or handed to the licensed band. This model is introduced in Fig. 1 for the case
of T 1

U = 3x and W0 = 4.

Fig. 1. Example of Timer-based modified Bianchi model

Each state of the 3-dimensional Markov chain is composed of three stochastic
processes {s(t), b(t), d(t)}, representing the stage, the backoff counter and the
delay at time t, respectively. We denote by pc,1 the probability of collision seen
by the transmitting station in one slot, in other words pc,1 is the probability that
at least one of the other N − 1 stations is transmitting during the current time
slot. pc,1 is considered independent of the state in every time slot.

Figure 1 illustrates the fact that every busy period is followed by at least one
idle slot. The chain is built dynamically depending on the values of T 1

U and x,
i.e., in every state we test if the constraint T 1

U is still respected and generate
next states by adding 1 or x to the current delay, hence the number of stages is
determined by the last possible state with d(t) = T 1

U .
The chain begins from stage 0 and a random backoff counter, generating the

first row of states {0, b(0), 0} : b(0) ∈ {0, ...,W0 − 1}, then every state has two
possibilities to proceed depending on the sensed medium: idle or busy, except
for states with b(t) = 0 where the packet is immediately transmitted without
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medium sensing. If the medium is sensed idle, then b(t) is decremented by one
and d(t) is incremented by one, otherwise, the medium is busy for a duration of
x consecutive time slots and b(t) remains unchanged. The chain is terminated
when all its paths reach one of the absorbing states: Success or Failure. The state
Success is reached when b(t) = 0 and the medium is idle having d(t) < T 1

U , while
Failure is reached when d(t) ≥ T 1

U for any value of s(t) and b(t). We assume in
this example that x > W0 − 1 to get the illustrated chain, otherwise we would
obtain another set of states. Due to difficulty of displaying a large number of
states, we illustrate in Fig. 1 the states of first stage only and gather the rest of
the chain in one state: Next stage.

Approximate Timer-Based Modified Bianchi Model. The existence of
two possible increments of d(t) complicates the problem at hand because this
generates a huge number of states for practical values of W0, T 1

U and x, mak-
ing the solution prohibitive. If we neglect the change in d(t) after sensing an
idle slot, then the states of different branches can be combined and the chain
becomes more compact. This approximation affects the precision in calculating
the probabilities of the chain, but the complexity reduction tips the balance in
its favor. The approximate model for the previous example is shown in Fig. 2.

Fig. 2. Example of approximate timer-based modified Bianchi model
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In Fig. 2, we simplify the notation of d(t) to express now the multiples of x+1
slots when the medium is sensed busy followed by an idle slot. This chain is no
longer built dynamically state by state, where it can be generated by knowing
m1 and W0 only.

The sporadic nature of URLLC implies that the stations are not saturated,
we denote by q the probability of having a URLLC packet to transmit (identical
for all tenants). The interval between two consecutive packet arrivals for the same
station is larger than T 1

U then q is small enough to consider that the packets are
not enqueued. In this case, we can assemble states Start, Success and Failure in
one state: Inactive, represented in Fig. 3.

Fig. 3. Complete model with inactive state

We note that when m1 > W0, T 1
U is not always attained in first stages because

we have W0 busy periods at most. With the help of Fig. 3, we can derive the
balance equations of the Markov chain for general values of m1 and W0. We
arrange the balance equations in a three-dimensional matrix Π with dimensions
of m1 × W0 × m1, where nonexistent states are replaced with zeros. We denote
the probability of state Inactive by Πin. We start by filling the elements of the
matrix in a recursive manner row by row starting from states with smaller d(t)
and higher b(t) in every stage, as follows:
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Π0,W0−1,0 = q
Πin

W0

Π0,W0−j,0 = q
Πin

W0
+ (1 − pc,1)Π0,W0−j+1,0, 2 ≤ j ≤ W0

Π0,W0−j,k = pc,1Π0,W0−j+1,k + (1 − pc,1)Π0,W0−j+1,k−1,
1 ≤ k ≤ m1 − 1
k + 1 ≤ j ≤ W0

We note that the delay in one stage cannot be less than its number of stage,
the first rows in the next stages remain zeros.

Πl,W0−1,k =
pc,1

W0
Πl−1,0,k−1,

1 ≤ l ≤ m1 − 1
l ≤ k ≤ m1 − 1

Πl,W0−j,k =
pc,1

W0
Πl−1,0,k−1 + (1 − pc,1)Πl,W0−j+1,k

+ pc,1Πl,W0−j+1,k−1,
1 ≤ l ≤ m1 − 1
l ≤ k ≤ m1 − 1

2 ≤ j ≤ W0

Πin is obtained by applying the normalization condition: the sum of all state
probabilities equal to 1. Based on the definition of pc,1 we can write the following
equation:

pc,1 = 1 − (1 − τ1)N1−1(1 − τ2)N2 ...(1 − τM )NM

where τi is the probability of transmission in one time slot for a station of tenant
vi which is equal the sum of all states with b(t) = 0 of the corresponding chain
of tenant vi and depends on its policy T i

U , given by:

τi =
mi−1∑
l=0

mi−1∑
k=0

Πl,0,k (1)

For tenant vi, we get:

pc,i = 1 − (1 − τi)Ni−1
∏
j �=i

(1 − τj)Nj (2)

The solution requires solving numerically the set of fixed-point equations of
every tenant: (1) and (2), until all pc,i values converge to their solution.

Finally, back to Fig. 2, we quantify the reliability of the system under delay
constraint T 1

U by evaluating the hitting probability of state Failure starting from
state Start, which can be calculated directly from the balance equations by
replacing Πin = 1 after obtaining the value of pc,1, where the reliability is
ΠSuccess = 1 − ΠFailure:

ΠFailure = pc,1Πm1−1,0
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We denote ΠFailure by PU
1 (T 1

U , ..., TM
U ) the probability of failure of tenant v1

in transmitting the packet through 5G-U within a delay budget T 1
U , as a function

of transmission policies of all tenants T i
U .

PU
1 (T 1

U , ..., TM
U ) = pc,1(T 1

U , ..., TM
U )

m1(T
1
U )−1∑

l=0

W0−1∑
j=0

Πl,j,m1(T 1
U )−1

3.2 Performance Analysis of Licensed Medium Access

Existing methods to access the licensed medium in uplink are Grant-based (GB)
scheduling and Grant-free (GF) on a common pool. GB scheduling is time con-
suming and does not meet URLLC constraint on latency. This leaves us with the
less reliable solution, GF, where resources are accessible without prescheduling.
The GF system we consider in our study deploys a simple replica-transmission
mechanism, as for the standardized Transmission Time Interval (TTI) bundling
for URLLC [11]. The stations are required to be synchronized at the beginning
of TTIs. A reserved frequency bandwidth for tenant vi: BWi is divided into Ki

blocks, each of width w, where we call the combination of TTI-w a Resource
Block (RB) which is the required resource for one URLLC packet transmission.
When the station has a packet to transmit on 5G-L, as advocated by [8], it
chooses uniformly at random from the Ki available RBs in each TTI to transmit
the packet. Depending on the available delay budget on 5G-L T i

L and the length
of TTI, the station can transmit δi replicas of the packet over δi consecutive
TTIs, where δi corresponds to T i

L/TTI, without waiting for any ACK/NACK,
limiting by that the delay and increasing reliability. A collision occurs if two or
more packets are transmitted on the same RB, and the packet is lost if and only
if all its replicas are in collision.

Our aim here to evaluate the reliability of 5G-L for tenant v1, as we did for
5G-U; the maximum number of stations here is N1, contrary to 5G-U where it
is N , since each tenant has its own licensed access. The random medium access
mechanism is as follows: the packet under study chooses its RB in one TTI
with probability 1/K1, if another packet in the system chooses to transmit in a
different RB from the latter, it is chosen with probability 1− 1/K1. Considering
the number of other packets in the system is n ∈ {1, 2, ..., N1 − 1} (excluding
the case of n = 0 because it is collision free), the probability of collision with at
least one other packet is shown in Eq. (3), which represents the probability of
the complementary event to choosing different RBs from the one under study,
where An is the event of having n active packets simultaneously.

P(C|An) = 1 − (1 − 1
K1

)n (3)

The probability of having n packets from the N1 − 1 other stations is given
by Equation (4), where Pa is the probability that a packet arrives to 5G-L,
calculated in next sub-section depending on 5G-U’s performance.

P(An) =
(

N1 − 1
n

)
Pn

a (1 − Pa)N1−1−n (4)
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The packet is lost when all its δ1 replicas collide with other transmissions:
P(F |An) = P(C|An)δ1 . The probability of failure in 5G-L for v1 is thus as follows:

PL
1 =

N1−1∑
n=1

P(F |An)P(An)

PL
1 (δ1, ..., δM ) =

N1−1∑
n=1

(
N1 − 1

n

)
Pa(δ1, ..., δM )n(1 − Pa(δ1, ..., δM ))N1−n−l(1

− (1 − 1
K1

)n)δ1(T
1
U )

3.3 Combined Unlicensed and Licensed Transmission

When combining 5G-U and 5G-L systems, we have to be careful about their time
units. 5G-U operates in Ts unit which is considerably smaller than TTI used in
5G-L. To unify the units of the combined system, we assume that TTI = zTs

where z is an integer. To adapt the aforementioned arrival probability q per Ts

to TTI, and considering that a station generates one packet at most during δ1
TTIs, the packet arrival probability to 5G-L is given by Pa = 1 − (1 − q)δ1z.
For the case of combined 5G-U then 5G-L transmission, packets arrive at 5G-L
after failing the transmission on 5G-U with probability PU

1 (T 1
U , ..., TM

U ), which
can be written equivalently as PU

1 (δ1, ..., δM ) since T i
U = T − δiz, resulting:

Pa(δ1, ..., δM ) = 1 − (1 − qPU
1 (δ1, ..., δM ))δ1z (5)

Since TTI bundling requires synchronization among stations, and since pack-
ets arrive randomly in time, if a packet reaches 5G-L amid the TTI, then it is
postponed till the beginning of the next one, which may cause a maximum delay
of the packet of (z − 1)Ts but its impact is small and is neglected in our analysis
for simplification.

We derive now the formula of total probability of loss for the combined 5G-U
and 5G-L system for tenant v1, denoted by P1(δ1, ..., δM ), which quantifies the
reliability R of the system under delay constraint T :

(6)
P1(δ1, ..., δM ) =

N1−1∑
n=1

(
N1 − 1

n

)
Pa(δ1, ..., δM )n(1 − Pa(δ1, ..., δM ))N1−n−l[1

− (1 − 1
K1

)n]δ1

Using this formula, we determine numerically the minimum bandwidth cost
K1 which satisfies P1(δ1, ..., δM ) ≤ R for a given δ.
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4 On Nash Equilibrium

In non-cooperative games, each player aims to maximize its own utility over its
strategy set, thus player i chooses the strategy si which maximizes its utility ui

for a given vector of strategies �s = (s1, ..., sM ). Thereafter, player vi waits for
others to change/keep their strategies, and then it changes/keeps its strategy
accordingly. If there exists a vector of strategies �s∗ = (s∗

1, ..., s
∗
M ) which satisfies

∀i ∈ V,∀s
′
i ∈ Si, ui(s∗

i , �s
∗
−i) ≥ ui(s

′
i, �s

∗
−i) where �s∗

−i refers to the set of strategies
for all players except for player i, then the game has Nash equilibria [12]. In the
previous section, we determined ui(s1, ..., sM ) in the form of BWi(T 1

U , ..., TM
U )

for our game.
The existence of Nash equilibria is a very important criterion for games,

because it indicates that the system is able to operate in multi-player environ-
ment. Our game has a finite number of players {v1, ..., vM} and corresponding
set of transmission policies {T 1

U , ..., TM
U }, where T i

U can take values from an
infinite range ]0, T [. T i

U is equivalent to δi which takes values from a finite set
{1, 2, ..., δmax − 1} where δmax = T/TTI. Therefore, our game is a finite game
and it has been proven by Nash in [13] that it has at least one mixed strategy
equilibrium.

To determine whether our game has pure Nash equilibria or not, we propose
to investigate next this question numerically, because our model has a fixed point
that cannot be solved analytically.

5 Numerical Results

5.1 Model Validation

In our scenario, 5G-U properties are considered similar to those defined in the
latest IEEE 802.11 systems operating on the 5GHz unlicensed band, regarding
the time slot duration Ts, SIFS, DIFS and bit rate Rb. The transmission uses
the whole available unlicensed band of spectrum, hence only one transmission can
take place in a given time. The data packet size including all headers is denoted
by Ldata and the acknowledgment packet size by Lack. The station receives the
ACK/NACK after a duration of SIFS then all stations backoff during a period
of DIFS before starting to contend again for medium access. The duration x is
then calculated as: x = � (Ldata+Lack)/Ra+SIFS+DIFS

Ts
	, where �.	 is the ceiling

function.
The system deploys LBT-cat3 with a fixed contention window size of W0.

We consider that the station generates a packet every 10ms following a Poisson
distribution, then we can estimate the probability of packet arrival q per time
slot. The latency and reliability requirements are set to T = 1ms and R =
1 − 10−5, respectively. Table 1 shows the considered numerical values.

Transmission in licensed spectrum has become more flexible in 5G than 4G.
Depending on the application, it is now possible to choose TTI length from a
range of values. For delay constrained applications, like URLLC, we prefer to
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Table 1. Numerical values of the system

Ts 9μs Rb 100 Mbps x 7

SIFS 16μs Ldata 32Bytes W0 16

DIFS 34μs Lack 14Bytes q 0.001

choose the smallest length of TTI defined in the standards: TTI = 0.125ms,
albeit larger bandwidth needed for the same transmission.

We assume that a URLLC packet fits in one conventional LTE RB of 0.5ms
duration and 180KHz bandwidth (12 subcarriers with carrier spacing of 15KHz),
having that TTI = 0.125ms, the bandwidth of our RB is then w = 720KHz.

We consider two tenants in the area and N1 = 0.75N because it is logical
to have the majority of stations belonging to the tenant itself. We compare
the results obtained from the analytical model with an event-driven simulation
realised using MATLAB. The simulation output is calculated from the viewpoint
of a designated station which is always active, the other N − 1 stations generate
a packet every Ts with probability q. Every packet in the system is tagged
with a contention window and a timer T i

U which depends on the tenant. Every
station with a packet performs LBT-cat3, and in every time slot all timers are
checked for time-out. In our analysis we considered that pc,1 is independent in
every time slot, which is not the case in the simulation since we are tracking
all packets, which will lead eventually to a difference in the results. For the rest
of the simulation, if the designated packet times-out, it is transferred to 5G-L
in the remaining time budget. pc,1 is calculated by enumerating all collisions
of the designated packet divided by the total number of transmissions (success
or collision). P1 is also calculated by enumerating the number of lost packets
(timed-out in 5G-U and all replicas collided in 5G-L) over the total number of
generated packets.

We illustrate in Fig. 4 pc,1 and P1 for different values of N , where we fix
the transmission policies for the tenants to δ1 = 5 and δ2 = 3. The number of
available RBs is also fixed to K1 = 5.

Fig. 4 shows a good match between analysis and simulation, the difference is
due to the correlation of pc,1 as stated above.

5.2 Nash Equilibria Illustration

For the case of two tenants, we illustrate Nash equilibria by evaluating the cost of
all possible combinations of the pair (δ1, δ2). We first consider v1 as the tenant
of interest with N = 180: N1 = 135 and N2 = 45. We show in Table 2 the
corresponding cost for every pair (δ1, δ2), then we consider v2 as the tenant of
interest with N1 = 45 and N2 = 135, which yields to a symmetrical scenario for
both tenants. Note that in our example we limit the number of RBs to 99.

We observe from Table 2 that we have multiple equilibrium points, which cor-
respond to the set of pure-strategy Nash equilibria: (δ1, δ2) = (4, 4), (4, 5), (5, 4).
If the game begins at any of these strategies, it is not in the interest of either
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Fig. 4. Model validation in two-tenant case

Table 2. Nash equilibrium illustration

δ1

δ2 1 2 3 4 5 6 7

1 99, 99 56, 99 24, 99 18, 99 19, 99 23, 99 34, 99

2 99, 56 56, 56 24, 56 18, 55 19, 54 23, 51 34, 46

3 99, 24 56, 24 24, 24 18, 24 18, 23 23, 23 34, 21

4 99, 18 55, 18 24, 18 18, 18 18, 17 23, 17 34, 16

5 99, 19 54, 19 23, 18 17, 18 18, 18 23, 18 34, 17

6 99, 23 51, 23 23, 23 18, 23 18, 23 22, 22 32, 21

7 99, 34 46, 34 21, 34 16, 34 17, 34 21, 33 32, 32

players to change their strategy because it does not improve its payoff (mini-
mizes its cost). Neighbouring values of δi can lead to the same cost due to the
quantization granularity where multiple close values of P1 lead to the same value
of K. Table 2 illustrates the fact that decreasing the time budget in 5G-U for
one player (increasing its δi) improves the performance for the other player.

By this, we conclude that our game has pure-strategy Nash equilibria.

5.3 Price of Anarchy

It is interesting to discuss the notion of price of anarchy in non-cooperative
games, which measures the efficiency deterioration of the system in the presence
of multiple non-cooperative players, compared to a centralized cooperative sys-
tem. We evaluate in Fig. 5 the cost in terms of number of RBs in the licensed
band for the case of one player with N stations versus the case of two players
with N/2 stations each; the cost in the second case is K1 + K2.

Fig. 5 illustrates the difference of cooperative games versus non-cooperative
ones, which confirms that a centralized system achieves higher gain than a decen-
tralized one.
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Fig. 5. Price of anarchy

6 Conclusion

We studied in this paper the transport of URLLC traffic in the uplink in a
multi-tenant scenario, where the transmission is considered on both unlicensed
and licensed spectrum. The unlicensed spectrum is shared among the tenants,
which degrades its value-add in case of over solicitation; on the licensed spectrum
however, each tenant reserves a certain bandwidth to reach a target reliability.

We modeled the MAC access of the combined unlicensed and licensed system
incorporating a timer corresponding to the delay budget for URLLC traffic using
Markov chains and obtained the overall performance of the system, in terms of
overall probability of failure.

We modeled the multi-tenant system as a non-cooperative game where play-
ers are the tenants, the strategies are their usage policies of the unlicensed system
and the objective of each tenant is to minimize its usage of the licensed spectrum.
We showed that the game has pure-strategy Nash equilibria and illustrated these
points numerically.

Our model gives insights on the usage of unlicensed spectrum for URLLC
and shows that it is still valuable for verticals even in a multi-tenant scenario.
However, as indicated by our analysis for the price of anarchy, a situation where a
common operator manages the unlicensed spectrum access for all tenants would
lead to better overall utilities.
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Abstract. Cognitive radio technology brings a lot of interesting fea-
tures which affect the transmission and reception properties of modern
communication devices. Dynamic spectrum sensing, channel hopping,
allocation and strategically nullifying adversarial attacks are among the
few. In the presence of primary users (PUs), we inspect the secondary
user (SU) pair behavior in decentralized, ad hoc cognitive radio networks,
before and after adversarial attacks. We have taken into consideration
the power radius of each SU pair to calculate the payoffs which decide if
they should participate in a coalition or not. We propose algorithms for
coalition formation for the SU pairs and the adversaries. We also pro-
pose two attack strategies for the adversaries: smart or naive. Overall, we
propose a game-theoretic framework to study the multi-SU-pair multi-
adversary scenario. We investigate the effect of adversarial attacks on the
proposed framework. We show that the decrease in the average utilities
of the SU pairs after attack varies from 66% to 75% with adversary count
increasing by 14.2%. We study how the channels are allocated if there is
an attack and how the payoffs of those SU pairs vary with increasing or
decreasing number of channels. We also show that the payoffs decrease
by 14.66%, if adversaries adopt a smart strategy instead of a naive one.

1 Introduction

A Cognitive Radio Network (CRN) typically consists of two types of users [9]:
licensed primary users (PUs) and unlicensed secondary users (SUs). The PUs are
the ‘owners’ of the spectrum, while SUs are smart, opportunistic users, exploit-
ing unoccupied licensed spectrum. In the United States, according to Federal
Communications Commission (FCC) [4,12], most of the radio spectrum is used
inefficiently, resulting in over-utilization of some of its bands [10]. In a CRN, it is
very important for an SU to predict with a high probability when the PU arrives
so that it can vacate its band without much impact on the PU. In [1,3,7,13], the
authors have focused on centralized and distributed spectrum sensing models,
showing a novel power allocation scheme that uses dynamic sub-channel method
based on a Nash Bargaining game. Saad et al. [11] studied cooperative spectrum
c© Springer Nature Switzerland AG 2021
S. Lasaulce et al. (Eds.): NetGCooP 2021, CCIS 1354, pp. 125–135, 2021.
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sensing in CRNs with single PU. Here, the SUs increase their sensing accuracy by
participating in a coalitional game. The authors explored the trade-off between
the probability of actual detection of the PU and the probability of false alarm
on the SU network topology and its dynamics. They reduced the interference on
the PU through collaborative sensing. However, to our knowledge, the case of
multiple users and multiple adversaries has not been considered.

The class of CRNs where an SU transmitter and an SU receiver work in tan-
dem, is called Ad Hoc Cognitive Radio Networks (AHCRNs), which we mainly
focus on. In AHCRNs, each user transmits based on its transmission power bud-
get. For simplicity, we consider an SU transmitter and SU receiver to be a single
entity, henceforth referred to as an ‘SU pair’. We also consider PU activity in
our system. There are a fixed number of PUs which are always present and are
constantly accessing their own channels. The remaining channels are allocated
to the SU coalitions, based on their payoffs. When the SU pairs work together
to maximize their overall payoffs, we can say that they have formed a coalition.
Also, the adversaries considered in the system, are capable of only attacking the
SU pairs, and not the PUs, following the FCC mandated rules [5]. We consider
the problem of tuning transmission power of such SU pairs under the presence
of multiple adversaries. We use this transmission power criterion to decide the
coalition formation of the SU pairs. We present a game-theoretic framework to
study the multi-SU-pair multi-adversary scenario. The main contributions of this
paper are:

1. We propose an intelligent coalition formation algorithm without overlapping
transmission power radii, ensuring communication interference is avoided.

2. We devise an adversarial coalition formation algorithm, keeping in mind the
smart and naive attack strategies of the proposed framework.

3. We present a stability criterion for the convergence of the coalition formation
algorithm, so that the users maintain coalitions according to their payoffs.

Key insights from our study include:

1. We show that the decrease in the average utilities of the SU pairs after attack
varies from around 66% to 75% with adversary count increasing by 14.2%.
We also demonstrate that coalition utility increases by 28.5% with increasing
channels, for constant number of SU pairs and adversaries.

2. For the same number of SU pairs and channels, we observe average coalitional
utilities decrease with increasing adversary count.

3. Finally, we observe that smart attack strategy unleashes 14.66% more damage
on the proposed framework than the naive one.
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2 System Model and Assumptions
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Fig. 1. SU pair coalition formation

We consider a geographical area with
radios of varying designated power
budget. Each of the transmitter and
the receiver of the SU pairs cover a
portion of the area according to their
power radii. We assume that each SU
has a single transceiver which imposes
the requirement of having pairs of SUs
when forming a coalition. When two
SUs are exchanging data they have to
dedicate their transceivers to only one
wireless link. Overall, this requires the number of SUs that are actively trans-
mitting/receiving data to be in multiples of 2. In Fig. 1, we show how SU pairs
form coalitions. If an SU pair, e.g., with the biggest combined power radii in the
figure, were to be a singleton, which is actually the smallest unit considered in
this paper, then the cumulative power radius of that SU pair would be the outer
boundary of the overlapped circles.

When an SU pair is singleton, then, the transmitter is communicating with
the receiver on their own allocated channel. When multiple such SU pairs form a
bigger coalition, it means that the member SU pairs will be allocated channels.
When the SU pairs become a part of different coalitions, all of them still can
access their Common Control Channel (CCC). This is necessary because, for
decision making about coalition formation in the event of an attack, the SU pairs
must have a communication medium. For example, a singleton SU pair might
want to be part of a bigger coalition when it feels that it might be vulnerable
to adversarial attacks. An adversarial attack could signify that the attacked SU
pair might be left without any channel to communicate. If it joins the bigger
coalition, then it is likely that the bigger coalition has more channels assigned to
it. It is also likely that the newcomer finds a channel to transmit, which becomes
an incentive to join a bigger coalition.

Fig. 2. Coalition formation among SU
pairs (Color figure online)

As described in [8], the SUs partic-
ipate in spectrum sensing and access
jointly, in a cooperative manner. A
typical scenario of such cooperative
behavior is presented in Fig. 2, where
we show the SUs (devices) forming
three different coalitions. Looking at
the coalition marked in red, we see
that there are three CR devices in it.
According to the system model, this
cannot happen, because even in a sin-
gleton, there must be at least two SUs, as we have considered an SU pair to
be a single entity. Hence, the red coalition is not feasible. The remaining blue
coalitions are feasible because both of them have SUs in multiples of two.
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3 Proposed Game-Theoretic Framework

Our system is deployed on a plane containing T PUs, N SU pairs (legitimate
user pairs) and A adversaries. A total bandwidth of W is available, divided
into C independent and identically distributed (i.i.d.) channels. The PUs stay
on their designated channels. In this section, we discuss the proposed coalition
formation games for both SU pairs and adversaries. The SU pairs work jointly to
communicate their channel vacancy knowledge with their peers, such that they
can improve the channel capacities accessed by them as a coalition. The goal of
the SU pairs is to maximize their channel usage, while the goal of the adversaries
is to block as many channels as possible, on which the SU pairs are working.
The game that we design is a cooperative hedonic game, in which players may
want to join or leave a coalition, or even stay alone. Let N = 1, 2, 3, ..., N be
the set of players. If there is a subset S of N , then the subset S is called ‘a
coalition’. A function v(.) assigns a value to every subset of players. If all the
members inside the subset S of N act in unison, then v(S) is the payoff to all
members of the subset. In other words, the value of the coalition is v(S). At the
starting of the game, there is no coalition, hence v(φ) = 0. As the members start
forming coalitions, based on their common interests, we have v(S) > 0,∀S ⊆ N .
A detailed discussion in [2] presents the ideas of cooperative game theory. In
characteristic form, an outcome of a game consists of: (i) A coalition structure,
which is essentially a partition of N players into smaller coalitions, and (ii) a
payoff vector to distribute the value of each coalition among its members. A
non-empty collection of non-empty non-overlapping subsets can be referred to
as a coalition structure (CS), CS = S1, S2, S3, ..., Sk where Si ⊆ N represents
coalition i and k is the total number of coalitions, which satisfies the followings:

k⋃

i=1

Si = N ; Si ∩ Sj = φ if i �= j (1)

3.1 Stability Criteria of Coalitions

For our proposed coalitional game, we consider two types of stability criteria:
inner and outer. When no SU pair has incentive to leave its current coalition
to become a singleton, we say that the players within that coalition have inner
stability. Similarly, when no SU pair has any incentive to join another coalition,
or in other words, no coalition in a CS has any incentive to merge with another
coalition, we refer to it as outer stability. For example, consider a CS with two
coalitions S1 and S2. The inner stability conditions will be:

v(S1) > v(i),∀i ∈ S1 and v(S2) > v(i),∀i ∈ S2 (2)

The outer stability conditions will be:

v(S2) > v(S1 ∪ S2) and v(S1) > v(S1 ∪ S2) (3)

For the rest of the paper, we will express the value function v(.) of joining a
coalition as the payoff function, quantifying the data rate achieved by joining
that coalition.
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3.2 Payoff Function Formulation

For a broader applicability, we consider Gaussian fading channel for our proposed
framework. Hence, the transmission parameters are modelled based on Gaussian
complex channel. The achievable data rate R in a Gaussian complex channel of
bandwidth W is given by the Shannon’s information capacity formula [6]:

R = W log2

(
1 +

Pt|h|2
N0W

)
(4)

where Pt is the transmission power, h is the channel gain, and N0W is the
cumulative noise of that channel. The payoff or the bit rate of a singleton is:

Rsingleton
i = W log2

(
1 +

Pi|h|2ii
N0W

∑
j∈N,j �=i hjiPj

)
(5)

where hii is the channel gain between the transmitter and receiver of SU pair i.
hji is the channel gain between SU pair j’s transmitter and SU pair i’s receiver.
Pi is the transmission power of SU pair i. Extending this concept for a whole
coalition Si, we have:

Rcoalition
i = μiW log2

(
1 +

Pi|h|2ii
N0W

∑
j∈Sc,j �=i hjiPj

)
(6)

where μi is the number of channels of the total bandwidth W that is being used
by coalition Si. Sc is the complement of coalition S, which are the other coalitions
in the CS. The term

∑
j∈Sc,j �=i hjiPj means the total interference power which is

the summation of the power received from all members in other coalitions. After
the coalition formation algorithm has converged, the set of coalitions will be
CoA = S1, S2, S3, ..., Sζ , where ζ is the total number of formed coalitions. When
ζ is less than or equal to that of number of channels (C), then all coalitions
will get at least one channel. Whereas, if ζ > C then, there will be at least one
coalition which will not get any channel. Therefore, the second case may not
converge. Further, ζ or the size of the set CoA should lie between 1 and N , i.e.,
1 ≤ ζ ≤ N . Naturally, the second case of ζ > N is unrealistic.

3.3 Coalition Formation Algorithm

The power radius of each SU pair (a randomly generated positive real number in
our case; a constant in reality, unique to a transmitter) means the geographical
area that can be covered by each SU pair with its omni-directional antenna
range. It is to be noted that the transmitter SU of the SU pair is at the center
of the said area and the receiver SU can reside anywhere within that area. A
pictorial representation of a certain coalition formation scenario is presented in
Fig. 3.

We present the methodology for SU pair coalition formation in Algorithm 1.
The coalition is formed based on the product of the probability of each SU pair
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Algorithm 1 Algorithm for SU pair
coalition formation

Inputs: total number of PUs (T ), total number
of SU pairs (N), total number of channels (NC),
probability of SU pairs picking up a channel
(P ).
Output: List of Coalitions of (CoA)

/*Phase 1: Finding the potential SU pairs for
coalition formation or Initialization*/
/*Phase 2: Coalition Formation*/
while SUi and SUj do not change their
coalitions do

Check and compare their payoffs with each
other;
if (SU pair i’s payoff is less than the com-
bined payoff of SU pair i and SU pair j)
AND (SU pair j’s payoff is less than the
combined payoff of of SU pair j and SU
pair i) then

max pay = combined payoff of SU pair
i and SU pair j else

max pay = payoff of individual SU
pair i

end

end
Formation of intermediate coalition list CoA
based on max pay. /*Phase 3: Check stability
criteria*/
Maxpay = MAX(payoff of coalition k with all of
its member SU pairs, payoff of coalition k with
all of its member SU pairs along with one mem-
ber SU pair from coalition j, payoff of singleton
coalition k).
if Maxpay = payoff of coalition k with all of
its member SU pairs then

Continue
else if Maxpay = payoff of coalition k with all
of its member SU pairs along with one member
SU pair from coalition j then

Remove the SU pair from coalition j and
merge it with coalition k

else
Remove the SU pair coalition j and main-
tain it as singleton.

end
Return the final stable coalition list (CoA)

Algorithm 2 Algorithm for modelling
adversarial attack
Inputs: SU pair coalition list (CoA)
Output: SU pair coalition list after adversarial
attack (CoA)

/*Phase 1: Initiating the adversaries in the
same way as the SU pairs*/
/*Phase 2: Attack strategy*/
if Smart Strategy: then

1. Communicate the potential target list to
other adversaries through adversaries’ dedi-
cated CCC.
2. Attack a SU pair from the potential tar-
get list.
3. Broadcast the attacked target to other
adversaries through CCC such that the
other adversaries may remove the already
attacked SU pairs from their attack list.

else
4. Attack a SU pair from the potential target
list without updating the other adversaries.

end
Return the updated coalition list (CoA)

Fig. 3. Randomly deployed SU pairs and
adversaries

picking up a channel and the incentive or value function associated with each
coalition. The initialization phase of the algorithm includes initializing the PUs
and the SU pairs on the plane, randomly initializing the power radii of each SU
pair, calculating the Euclidean distance between the given SU pair and other SU
pairs, and based on these, forming the potential coalition list. This information
is broadcasted over CCC and the number of available channels is updated as:
C = N − CT . Probability P is also updated after each of N SU pairs picks a
channel from the available C channels. In most of the cases, the incentive for
an SU pair to join the biggest coalition is the highest as there are already more
SU pairs in a bigger coalition and more channels are assigned. Then, again, it
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is imperative that all the SU pairs will judge their own incentive and decide to
join the biggest coalition, resulting in a grand coalition.

Ideally, the communication between an SU pair of a coalition should not
prevent another SU pair of the coalition from successful communication. This is
the reason we decided to introduce the factor of power radius, so that the SU
pairs only form an alliance with other pairs who are far enough from each other.
This factor results in non-overlapping power radii, which in turn, creates the
basis of a healthy communication mechanism. The point to be noted here is that
the total combined power radius of an SU pair cannot overlap that of another
SU pair. If the combined power radii of two or more SU pairs overlap with each
other, then there will be probable communication loss. One could argue that if
multiple channels are allocated to a coalition, then in spite of overlapping power
radii, different SU pairs could choose different channels and the communication
could be carried out successfully. But, we do not always have abundant channels
and the proposed algorithm also helps in overcoming the problem of shortage of
available channels.

3.4 Checking for Stability Criterion for the Coalition

Once initial coalition is formed by checking the max pay value, we then try to
evaluate the stability of a coalition k as follows:

1. Find the maximum payoff max pay of coalition k with all of its members.
2. If max pay of coalition k is the greatest, then the coalition is already stable.
3. If max pay of coalition k is the greatest if one SU pair member comes in from

coalition j, then the new member is incorporated into k, which then becomes
stable.

4. If the max pay value of the member SU pair of coalition j, alone is greater
than that of coalition k itself, then we remove that member from coalition j
and put it as a singleton.

These calculations are repeated for all the combinations of coalitions and their
members, and the final combination with the maximum max pay value is chosen
as the stable coalition(s).

3.5 Adversarial Attack Model

The adversaries in our case are SUs, capable of transmitting white noise and
disrupting the transmission of one SU pair at a time. For the adversaries, being
successful means being able to block or jam any SU pair’s communication, or
in other words, forcing the legitimate SU pairs to adopt a different strategy to
keep going on with their transmission. In Fig. 3, the yellow dots are the adver-
saries introduced into the system. We have followed the concept of Euclidean
distance between an adversary and any one of the SU pairs. If the power radius
of the said adversary is able to overlay (partially or fully) that of the said SU
pair, then we assume that the adversary will be able to unleash some amount of
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devastating effect upon the SU pair. In Algorithm 2, we propose how the adver-
saries can effectively hamper the stable transmission. We present two types of
attack strategies, where adversaries can act either smartly or naively rendering
to different destructive effect on the proposed framework.

3.6 Channel Allocation

Next, we allocate the available channels to the formed coalitions where the num-
ber of allocated channels is directly proportional to the number of SU pairs
present in that particular coalition. Ideally, if there are 10 SU pairs, 10 channels
and 5 coalitions, each coalition consisting of 2 SU pairs, then each coalition will
also get 2 channels. But in reality, such is not always the case, as the coalition for-
mation depends on the value of the incentive function, which in turn depends on
the terms in the Rcoalition

i . The transmission power factor is randomly generated
by a pseudo-random number generator, so the value of the incentive function is
also random. All of this leads to the fact that channel allocation might not be as
expected, and in some cases, coalitions can end up receiving a very small number
of channels compared to the number of SU pairs present in them. However, if
the number of channels is greater than or equal to the number of SU pairs, then
we can expect a good channel allocation number for most of the coalitions. If the
number of channels is fewer than the number of SU pairs, they will have to rely
on techniques like Time Division Multiple Access (TDMA) to utilize the fewer
channels in turn, in consecutive timestamps.

4 Simulation Results

The simulation for the multi-channel, multi-SU-pair and multi-adversary game
has been performed under geographical boundary conditions. There are 10 PUs
in the system, each using their own designated channel. We study how the aver-
age utilities of the coalitions vary when we introduce more adversaries into the
system keeping the number of SU pairs and channels constant. The results that
we discuss here are obtained through simulations run 10 consecutive times and
then averaging them out. In Fig. 4(a), we show the general decrease in average
utility of SU pairs after adversarial attack. In Fig. 4(b), we have shown how the
average utility for 50 SU pairs decreases with increasing number of adversaries
in the system from 20 to 50 (also represented in tabular form in Table 1). This
set of simulations converged to generate 25 coalitions. Now, it is evident that
when the number of adversaries deployed becomes large enough, they can render
the entire system of CRN useless. We also investigate how the total utility of the
25 coalitions vary with increasing number of channels, keeping the number of
SU pairs and the number of adversaries constant, represented in Fig. 4(c) and in
tabular form in Table 2. As we increase the number of channels from 45 to 60, we
calculate the total utility of the 25 coalitions increase by 28.5%. This happens
because, now, under attack, the SU pairs have more leeway to switch to other
channels and continue with their communication.
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Smart vs. Naive Attack Strategies by the Adversaries. Now, we have
done a comparative study of the adversarial behaviour. The adversaries can
choose to be smart. If they act smart, they should be communicating among
themselves through their dedicated CCC and broadcast their SU communication
blocking information to others. The potential targets for an adversary are decided
by its power radius. Any of the SU pairs falling under that power radius could
be chosen by the adversary to block. Now, based on the random geographical
position in which all the SU pairs and adversaries are deployed, it could so
happen that another adversary might have the same SU pair in its potential
blocking list as the previous one. If both of them end up blocking the same one,
then they will be wasting their resources and their payoffs as a whole adversarial
group will drop. Hence, a smart adversary should always choose an SU pair and
communicate its choice to other adversaries (over dedicated CCC), so that they
can concentrate on blocking others. In this way, the adversaries as a coalition will
be able to wreck a bigger havoc. On the other hand, adversaries working naively
without communication will not be able to do as much damage as compared to
them working smartly. In Fig. 4(d), we have compared the payoffs of all the 25
formed coalitions, based on the attack strategy. From experimental results, the
coalition utilities decreased additionally after attacking with the smart strategy
when compared to naive strategy by 14.66%.

Fig. 4. (a) Plot showing the decrease in coalition utility after attack, for 50 SU pairs
and 60 channels (10 channels being used by the PUs), (b) Change in average Utili-
ties for increasing adversaries, (c) Change in average utilities for increasing channels,
(d) Utility comparison for smart attack strategy vs. naive strategy, Table (a) shows
decrease in avg. utility with increasing adversaries, Table (b) shows increase in total
utility with increasing channels.
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5 Conclusions

In this paper, we showed how SUs in an ad-hoc CRN can create coalitions
autonomously in the absence of base stations to increase their payoffs. We pre-
sented an intelligent coalition formation algorithm and formulated the payoff
function for the calculation of the utilities of the SU pairs in terms of SNR. We
have devised a coalition formation algorithm which can be used by SUs in the
CRN to find potential partners for coalition formation. Using these potential
coalitions, we have come up with the final coalition model. We also introduced
adversaries in the proposed framework and modelled an algorithm for adversar-
ial attack against the legitimate SUs. Next, we presented the data which shows
percentage decrease in the average utilities with varying number of adversaries,
keeping the number of SUs and channels constant. Then, we showed the increase
in coalition utility with increasing number of channels, keeping the number of
SUs and number of adversaries as constant. Finally, we presented the difference
in coalition utilities for smart and naive adversarial attack strategies. We envi-
sion to extend this work by introducing significant PU activities and therefore
to carry forward the idea of adversarial attack in the case of PUs as well.
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Abstract. The time gap between two successive buses is called headway
in transport systems. In moderate/high frequency routes, with moder-
ate/small headways, the random perturbations (traffic conditions, pas-
senger arrivals, etc.), can alter the headway along the route significantly
which possibly leads to bunching of buses. Two or more (successive)
buses may start travelling together. Bus bunching results in inefficient
and unreliable bus service and is one of the critical problems faced by
bus agencies. Thus it is imperative to reduce the bunching possibilities
(probability). Another important aspect is the expected time that a typi-
cal passenger has to wait before the arrival of its bus. If one increases the
headway, the bunching chances might reduce, however, may significantly
increase the passenger waiting times. We precisely study this inherent
trade-off and derive a bus schedule optimal for a joint cost related to
all the trips, which is a weighted combination of the two performance
measures.

We consider a system with Markovian travel times, fluid passenger
arrivals and derive dynamic headways which control the bus frequency
based on the observed system state. The observation is a delayed infor-
mation of the time gaps between successive bus arrivals at various stops,
corresponding to two earlier (previous to previous) trips. We solve the
relevant dynamic programming equations to obtain near-optimal poli-
cies, and the approximation improves as the load factor reduces. The
near-optimal policy turns out to be linear in previous headway and the
(earlier) bus-inter-arrival times. Using Monte Carlo based simulations,
we demonstrate that the proposed dynamic policies significantly improve
(both) the performance measures, in comparison with the previously pro-
posed partial dynamic policies that only depend upon the headways of
the previous trips.

1 Introduction

Public transport plays an important role in any system. We consider public
transport systems like that of buses, trams, metros, local trains etc., for brevity
we refer them as bus transport systems. In fact in the later cases, bunching
(buses travelling together) is a major issue. Bus agencies desire to provide the
best service to the passengers due to heavy competition from other transport
services and would strive hard to reduce/eliminate the bunching possibilities.

c© Springer Nature Switzerland AG 2021
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We consider a bus-transport system, where the buses travel repeatedly along
a fixed route consisting of a fixed number of stops. Each bus starts at the depot,
traverses all the stops and returns to the depot, while facilitating the transfer
of the (encountered) passengers from their origin to their destination. Typically
successive buses are designed to depart at depot, according to a pre-designed
time-table. The time period between two successive bus-departs is referred to as
headway (at depot).

The randomness of travel times, load conditions, etc., leads to random head-
ways at bus stops. These random delays can lead to bunching of two or more
buses; the leading bus can get delayed excessively due to a large number of pas-
sengers and or due to heavy random traffic en-route, and the trailing bus may
have relatively lesser load which can eventually lead to both of them coming
close to each other somewhere along the path.

The larger headways at depot reduce the bus bunching, but leads to an
increase in the passenger waiting times. Thus one needs to design the headways
optimally, to ensure proper trade-off between these two important performance
aspects. Hence, one needs to design T -successive depot headways (with (T + 1)-
trips), and hence a need for a finite horizon headway policy. We considered such
optimal headway policies in [2,10], and these policies depend at maximum on the
headways of the previous trips. Static/stationary policies (constant headways)
are considered in [10] while a variety of non-stationary and dynamic policies
(including the policies of this paper) are available in [2].

One can do much better if one has access to a better system state that is
influenced by the random fluctuations governing the system. For example, if one
can observe the number of passengers waiting in various stops (at bus arrival
instances) or an equivalent information of the previous trips, a better headway
policy can be designed using this knowledge. In this paper we consider that the
bus-inter-arrival times between various stops (of previous trips) are observable,
based on which the headway times of the future trips are decided.

The natural tool to design such policies is the theory of Markov decision
processes [11]. However in this system, one will have access only to delayed
information: the headway decision for the current bus has to be made imme-
diately after the previous bus departs the depot, the information related to the
previous bus trajectory (no delay) is obviously not available for this decision
epoch. Further one may not even have the information about some of the trips,
previous to the trip that just started. For notational simplicity we assume that
1-delay information is available and derive the optimal policies. One can easily
extend this analysis to any arbitrary delay, we provide some initial suggestions
regarding the same (the exact details in [2]).

We obtained closed form expressions for an ε-optimal policy, that is ε-optimal
under small load factors. Interestingly the policy is linear in the previous trip
headways and the bus-inter-arrival times at various stops of the previous trip
(information about which is available). We showed numerically that this dynamic
policy has significant improvement in comparison with respect to the optimal
policy of [2] that dynamically adapts the headways only based on previous trip
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headways. This improvement is significant even for considerable load factors
(up to 0.5). We used Monte-Carlo based simulations to estimate the two perfor-
mance measures. Thus one can do much better, if there is a possibility to observe
more details related to the previous trips. The observation process might be com-
plicated, but, the complexity of proposed policy is negligible.

Related Literature

Bus bunching is a critical issue faced by bus agencies and this problem has been
thoroughly investigated over past few decades. However to the best of our knowl-
edge none of the literature studies the important trade-off between the bunching
chances and the passenger waiting times (see [10] for details on this observation).
Other than [2,10], none of the papers study/consider the probability of bunch-
ing. As already mentioned, work in [2,10] does not consider the fully dynamic
policies.

There is a vast literature that studies other topics related to bus bunching
and we discuss a few of them here. Existing control strategies are based on ideas
like skipping some bus stops (e.g., [4,7,13]), limited boarding (e.g., [5,6]) or
forcibly holding the buses at some stops (e.g., [4,5,14]) etc. Skipping some stops/
holding control at intermediate bus-stops are not passenger friendly policies. In
this paper, we applied holding control only for the depot.

In [5], authors consider minimizing the total sojourn time (travel time
between the boarding stop and the destination stop) of all the passengers. In
papers like [5,6,12,14], authors control the error variance between ideal and
proposed schedules when the number of buses and stops increases to infinity.
They assume no bunching. Stochastic models that optimize the holding times to
minimize passenger waiting times (defined via sum of squared headways), using
the real-time information, are discussed in [3]. They avoid bus bunching, while
maintaining the frequency of the buses as high as possible for the next few trips.
In many scenarios with high randomness, it is not possible to completely avoid
bunching nor is it possible to adhere to the ideal schedules. In such scenarios,
it is rather important to reduce the probability of bunching, and we precisely
consider this probability. Further we consider a more realistic definition of the
passenger waiting times: as the time difference between their arrival and the
arrival of their bus.

2 System and Problem Description

We consider a bus-transport system in which the buses travel in a loop, traversing
the given path of M stops and repeating this for (T+1) number of trips. We begin
with the description of the details of the system considered and the required
assumptions.

2.1 Bus Travel and (Stop) Inter-arrival Times

Let Si
k be the time taken by the k-th bus to travel between the stops (i− 1) and

i. We consider Markovian (correlated) travel times, between any two stops. To
be precise we assume that
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Si
k = Si

k−1 + W i
k, for any, k ≥ 0, and Si

0 = si,

where W i
k is the random difference between two successive travel times and {si}i

are the sojourn times of the first trip. We assume {W i
k}k are IID (Independent

and Identically distributed) Gaussian random variables with mean 0 and variance
ε2 and this is true for all stops i. Further these are independent across the stops.

The boarding time of (all) the passengers at any stop majorly constitutes the
dwell time of the bus. We assume the following:

A.1: Gated service: Only the passengers that arrived to a stop before the
arrival of the bus can board.
A.2: Parallel boarding and de-boarding: We neglect the time taken to
de-board while computing the dwell times.
A.3: Fluid arrivals and boarding: The number of passengers arrived to a
stop, during a period t equals λt, where λ > 0 is the arrival rate. More details
about this modelling is provided in the next section. The time taken to board
X number of passengers equals bX, where b > 0 is the boarding rate.

These assumptions are not very restrictive, and are satisfied by most of the
commonly used practices in bus transport systems. The fluid arrivals can be
justified owing to Elementary Renewal theorem, and because typical (bus) inter-
arrival times at any stop would be significant; passenger arrival (e.g., Poisson)
process can be modelled as renewal process with rate λ and then the number
of passenger arrivals in a large time interval [0, t] (during one bus inter-arrival
time), approximately equal λt. Further, usually negligible number of passengers
arrive during the boarding process, thus gated service assumption is not very
restrictive.

We require the following additional assumptions:

A.4: Surplus number of buses: For any trip, there exists a bus (at depot)
to start after the prescribed headway (without having to wait for the return of
the previous buses).
A.5: Order of buses is maintained throughout the journey, i.e., even if
the buses are bunched the next bus will board and depart the stop after the
previous bus. Thus overtaking is not allowed.
A.6: There is no constraint on capacity of the bus.

The system may require one or two additional buses to satisfy A.4, which
is a normal practice to cater for any eventuality. The systems usually operate
with small bunching probabilities, as such the event in assumption A.5 is a rare
event. Further this is a common practice in Tram, metro, local train etc., systems;
the vehicles respect the order without overtaking. Even if not, our analysis will
go through by interchanging the bus numbers whenever there is a overtaking.
Assumption A.6 can be restrictive, but is a commonly made assumption in
literature [7–9,13,14].

Because of the above assumptions, the passengers boarding a bus in any trip
k and at any stop i equals the ones that arrived during the bus-inter arrival time
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Ii
k := Ai

k − Ai
k−1, where Ai

k is the arrival instance of k-bus at stop i. Thus the
total number of passengers Xi

k waiting at stop i, at bus arrival instance, equals
λIi

k. Thus the dwell time of k-th bus at stop i equals1:

V i
k = Xi

kb = bλIi
k = ρIi

k with ρ := λb. (1)

In the above ρ represents the load factor of the stop2.
Let hk be the headway between (k − 1)-th and k-th bus at depot. Then the

inter-arrival times are given by:

I1k =
(
hk + S1

k

)− S1
k−1 = hk + W 1

k for first stop, similarly

Ii
k = hk +

∑

1≤j≤i

Sj
k +

∑

1≤j<i

V j
k −
⎛

⎝
∑

j≤i

Sj
k−1 +

∑

j<i

V j
k−1

⎞

⎠

= hk +
∑

1≤j≤i

W j
k + ρ

∑

1≤j<i

(
Ij
k − Ij

k−1

)
for any stop i. (2)

The last equality follows by fluid arrival and gated service assumptions as in (1).
The analysis of these inter-arrival times are instrumental in obtaining the

results of this paper. In Lemmas 2–3 provided in Appendix, it is shown that the
inter-arrival times are Gaussian and their expectations, variances are computed.

We now describe the Markov decision process based problem formulation
that optimizes a given weighted combination of the two performance measures,
the bunching probability and the passenger-average waiting times.

3 Markov Decision Process (MDP)

3.1 Decision Epochs, State and Action Spaces

When the (k − 1)-th bus leaves the depot, the system needs to determine the
headway for the k-th bus. A decision at this epoch, can depend upon the available
system state. One will have access only to delayed information: the headway
decision for the current bus has to be made immediately after the previous bus
departs the depot, the information related to the previous bus trajectory (no
1 Since bunching is a rare event we neglect the affects of A.5 in this part of the mod-

elling. There would be differences in the travel time and dwell time estimates when
the buses bunch at a stop (with or without overtaking). But since the bus systems
operate typically with small bunching probabilities, not considering these effects into
the models does not introduce drastic errors in the performance measures; besides
making it mathematically tractable. In sections dealing with numerical examples
in [2], we established for many examples using exhaustive (and realistic) numerical
simulations, that the theoretical performances well match with the corresponding
Monte-Carlo estimates.

2 One can easily consider the case with different load factors at different stops, for
notational simplicity we consider the same load factor at all stops. We consider stop
dependent load factors in [2].
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delay) is obviously not available. Further one may not even have the information
about some of the trips, previous to the trip that just started also.

We assume the availability of 1-delayed information3; the bus-inter-arrival
times {Ij

k−2}1≤j≤M−2 at various stops related to (k − 2)-th trip are known at
k-th decision epoch. One can also have access to the information about the
headways of all the previous trips {hk−l}l≥1; there is no delay in this component
of the information. We will observe later that one requires only the headways
of the unobserved trips, that of 1-previous trip. Thus, in all, at (k − 1)-th bus
departure (i.e., at k-th decision epoch), we have access to the following state
(see Eq. (2)):

Yk = (hk−1, {Ij
k−2}1≤j≤M ), (3)

By fluid arrivals and gated boarding, this state is equivalent to the number of
passengers boarding the bus at various stops corresponding to the latest available
trip (see Eq. (1)).

Remark: In (3), it is interesting to observe that we require only the information
related to first (M − 2) stops of the (k − 2)-th trip; it becomes evident from
Theorem 1 (given below) that such a state is sufficient if one has access (at
maximum) to 1-delay information; from Lemmas 2–3 of Appendix the random
components (Ii

k and Ii
k − ρIi

k−1), that define the required performance measures
related to the k-th trip, depend at maximum upon the information related to
stops 1, 2 · · · i − 2, when 1-delay information is available.

It is easy to observe (see Eq. (2)) that the random vector sequence {Yk}k

forms a controlled Markov Chain, whose evolution depends upon the headway
(of the current trip that needs to be decided) and the previous state.

Trips Prior to the Controlled Trips. Initial trips may have light load condi-
tions (passenger arrival rates) and can be subjected to small variations in traffic,
load conditions. Alternatively, in some cases the initial trips can be subjected
to high load conditions. Further, one may consider controlling some of the trips
and not all, probably ones that have maximum fluctuations. It is clear that some
of the trips (just prior) to the controlled ones also influence the performance.

By abuse of notation, we call all the previous trips that influence the con-
trolled trips (the one whose headways are to be controlled) as initial trips. One
can show that only some t0 (to be more precise (at maximum) previous (M +1)-
trips can influence) previous trips would influence. We assume that the buses
operate during these initial trips (say t0 of them) at some fixed headway h0. We
consider controlling the depot-headway starting from trip t0+2, and to keep the
notations simple, we refer (t0 + 2 + k)-th trip by index k. Alternatively one can
consider controlling the buses starting from the first trip as in [2].

3 General d-delay information case is discussed briefly at the end of the paper and
more details are in [2].
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Table 1. Notations and constants

θj = ρ2

2

M∑

i=j+2

(i − j − 1)(1 + ρ)i−j−2, θ := 1
2

M∑

i=1

(1 + ρ)i−1 = (1+ρ)M−1
2ρ

,

θ̄ := ρ
2

M∑

i=1

(i − 1)(1 + ρ)i−2, ψ = (1 + ρ)M−1, ψ̄ := ρ(M + ρ)(1 + ρ)M−2

ψj = ρ2
(
(1 + ρ)M−2−j(M − j + ρ)1j<M−1 + 1j=M−1

)
,

ω2 = ε2

(
M∑

j=1

(1 + ρ)2(M−j) +
M−1∑

j=1

ρ2(1 + ρ)2(M−1−j)[M − j + 1 + ρ]2 + ρ2

)

ηT−k =
(θ+ηT−k+1)ψ̄

ψ
− θ̄ −

M∑

j=1

(1 + ρ)j−1γj
T−k+1,

aT−k = ω

√

−2 log
(

(θ+ηT−k+1)
√
2πω

ψα

)
,

γj
T−k =

(θ+ηT−k+1)

ψ
ψj −

(

θj + ρ
M−1∑

i=j+1

(1 + ρ)i−1−jγi
T−k+1

)

1j<M−1,

δT−k =
(θ+ηT−k+1)aT−k

ψ
+ α [1 − Φ (aT−k)] + δT−k+1.

3.2 Performance Measures

Passenger Waiting Times. The waiting time of a typical passenger is the
time gap between its arrival instance at the stop and the arrival instance of its
bus (to the stop). Let W i

n,k be the waiting time of the n-th passenger that boards
the k-th bus at stop i. The customer average of the waiting times corresponding
to trip k and stop i equal (e.g., [2,10]):

w̄i
k � W̄ i

k

Xi
k

with W̄ i
k :=

Xi
k∑

n=1

W i
n,k.

Recall Xi
k is the number of customers that board the k-th bus at i-th stop and

hence the above is the average of the waiting times of all the customers that
belong to stop i and that correspond to trip k.

Fluid Approximation/Arrivals: The passengers are assumed to arrive at
regular intervals (of length 1/λ), with λ large. The waiting time of the first
passenger during bus inter-arrival period (Ii

k) is approximately4 W i
1,k ≈ Ii

k, that
of the second passenger is approximately W i

2,k ≈ Ii
k − 1/λ and so on. Thus as

λ → ∞, the following (observe it is a Riemann sum) converges:

W̄ i
k

λ
=

1
λ

λIi
k∑

n=0

(
Ii
k − n

λ

)
→
∫ Ii

k

0

(Ii
k − x)dx =

(Ii
k)2

2
. (4)

4 The residual passenger inter-arrival times at bus-arrival epochs get negligible as
λ → ∞.
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Thus for large λ,

w̄i
k ≈ Ii

k

2
because W̄ i

k ≈ λ
(Ii

k)2

2
and Xi

k ≈ λIi
k. (5)

We refer this approximation, as the fluid approximation.
The trip average of the waiting times is given by:

1
T

T∑

k=1

M∑

i=1

E[w̄i
k] =

1
T

T∑

k=1

M∑

i=1

E[Ii
k]

2
,

which is one of the components to be optimized. By Lemma 2 (Appendix), the
conditional expectation given the state Yk and the depot-headway decision hk

equals (see (3)):

E
[
Ii
k

∣
∣
∣Yk, hk

]
= hk(1 + ρ)i−1 − hk−1(i − 1)ρ(1 + ρ)i−2

+
i−2∑

j=1

Ij
k−2(i − j − 1)ρ2(1 + ρ)i−j−2 for any k ≥ 1. (6)

Bunching Probability. Starting from the depot, the buses travel on a sin-
gle route with some headway (time gap between successive arrivals to the same
location) between successive buses. If these headways were maintained constant
thought their journey, the successive buses would not meet each other. However,
because of variability in load/traffic conditions, the above is not always true. A
bus can get delayed (to some stop) significantly because of the random fluctu-
ations. The delayed bus has larger number of passengers to board and hence is
further delayed for the next stop. The trailing bus has lesser number of passen-
gers and hence departs early from the stop. This continues in the subsequent
stops, and there is a possibility of the headway between the two buses becoming
zero. This is called bus bunching.

Bus bunching increases the waiting times (and their variability) of passengers,
further and more importantly wastes the capacity of the trailing buses. Thus
the system becomes inefficient. The larger depot headway times decreases the
chances of bunching but, however, increases the passenger waiting times. Thus
one needs an optimal trade-off.

The bunching probability is the probability that a bus arrives to a stop before
the departure of the previous bus. It is easy to verify that this is the probability
that the dwell time of (k − 1)-th bus, V i

k−1 given by (1) is greater than the inter
arrival time between (k − 1) and k-th buses, Ii

k given by (2):

P i
Bk

= P (V i
k−1 > Ii

k) = P (Ii
k − ρIi

k−1 < 0). (7)

We consider optimizing the bunching probability of the last stop, as this stop
experiences maximum variations5. Conditioned on Yk, hk the value IM

k − ρIM
k−1

5 One can alternatively consider bunching probability of an initial stop or that of an
important stop, and, the optimal policy could be derived in exactly the same manner
as in this paper.
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is Gaussian distributed (see (2)) and from Lemma 3 of Appendix, we have for
any k ≥ 1 (constants are given in Table 1):

Pφ
(
IM
k − ρIM

k−1 < 0
∣
∣
∣Yk, hk

)
= 1 − Φ

⎛

⎝ψhk − ψ̄hk−1 +
M−1∑

j=1

ψjIM
k−2

⎞

⎠ ,

Φ(x) :=
∫ x

−∞

1√
2πω2

exp
(−t2

2ω2

)
dt, (8)

where Φ is the cdf of a normal random variable with mean 0 and variance ω2.
Observe that the variance ω2 does not depend upon headway policy, rather only
depends upon the load factors of various stops and traffic variability. However,
also observe that the bunching probability depends upon the headway policy.

3.3 The MDP Problem

Let φ = (d1 · · · , dT ) be any Markov policy, in that dk(y) represents the depot
headway for the k-th bus if the system observes the state y. We choose a headway
in the range [0, h̄] for some h̄ < ∞. The expected values of the above two cost
components depend upon the policy φ and the initial trajectories specified by
(t0, h0) (see Subsect. 3.1). To be more specific, given (t0, h0) one has probabilistic
description of the system state Y1. Let Eφ

t0,h0
represent the expectation given the

policy and the initial conditions, at times we omit the subscript and superscript
to keep notations simple. We have multi-objective (two) optimization and a
natural way is to optimize the following weighted combination of the two costs
(6), (8):

J(φ;h0, t0) =
T∑

k=1

Eφ
[
w̄i

k

]
+ αPφ

(
IM
k − ρIM

k−1 < 0
∣
∣
∣Yk, hk

)

=
T∑

k=1

Eφ
t0,h0

[r(Yk, hk)] with

r(Yk, hk) =
M∑

i=1

E[Ii
k|Yk, hk] + αPφ

(
IM
k − ρIM

k−1 < 0
∣
∣
∣Yk, hk

)

= hkθ − hk−1θ̄ +
M−2∑

j=1

θjIj
k−2

+ α

⎡

⎣1 − Φ

⎛

⎝ψkhk − ψ̄khk−1 +
M−1∑

j=1

ψj
kIj

k−2

⎞

⎠

⎤

⎦ ,

where α > 0 is the trade-off factor and the constants are in Table 1. Our objective
is to obtain a policy that optimizes the following for any given (t0, h0):

v(t0, h0) := inf
φ

J(φ; t0, h0).
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It is easy to verify that the above value function equals:

v(t0, h0) = Et0,h0 [v(Y1)] ,

and this can be solved by solving the MDP problem for any given initial condition
y1 = (h0, {Ij

−1}j), i.e., by deriving the value function v(y1) for any y1 (e.g., [11]).
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Fig. 1. Comparison between
partial dynamic and dynamic
policies.

Table 2. Performance for various configurations with
initial trip details: ρ0 = 0.2, h0 = 100, t0 = 12 and
the controlled trip details: M = 10 T = 36 sj = 10
λ = 200.

Configuration Bunching probability Waiting times

Dynamic Partial Dynamic Partial

ε = 0.3, ρ = 0.3, α big 1.95e−02 2.1e−02 18.42 25.29

ε = 0.3, ρ = 0.3, α small 1.52e−01 1.51e−01 11.33 14.01

ε = 0.4, ρ = 0.3, α big 1.78e−02 1.77e−02 24.41 34.15

ε = 0.4, ρ = 0.3, α small 1.36e−01 1.37e−01 14.85 18.95

ε = 0.2, ρ = 0.5, α big 2.64e−01 2.66e−01 144.23 185.81

ε = 0.2, ρ = 0.5, α small 6.54e−02 6.51e−02 242.68 380.01

4 Optimal Policies

The optimal policy is obtained by solving dynamic programming (DP) equations
using backward induction. The DP equations, for any k < T are given by [11]:

vk(Yk) = inf
hk∈[0,h̄]

{rk(Yk, hk) + E [vk+1(Yk+1)|Yk, hk]} , and,

vT+1(YT+1) = 0.

From the trip wise running costs (6)–(8), these equations are rewritten as (con-
stants are given in Table 1):

vk(Yk) = inf
hk∈[0,h̄]

{

hkθ − hk−1θ̄ +
M−2∑

j=1

θjIj
k−2

+α

⎡

⎣1 − Φ

⎛

⎝ψhk − ψ̄hk−1 +
M−1∑

j=1

ψjIj
k−2

⎞

⎠

⎤

⎦+ E [vk+1(Yk+1)|Yk, hk]

}

. (9)

One can derive optimal policies by solving these DP equations and there are
many known numerical techniques to do the same (e.g., [11]). In the following
we derive the structure of near optimal policies (closed form expressions) for the
case with small load factors:
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Theorem 1. Assume T > M + 1. We define the coefficients {ηk}k, {γj
k}k,j

and {ak}k backward recursively: first set ηT+1 = 0, δT+1 = 0, γj
T+1 = 0 for all

1 ≤ j ≤ M and then set the rest of them as in Table 1. There exists a ρ̄ > 0,
such that for all ρ ≤ ρ̄: the following is an ε-optimal policy6 with7 ε = O(ρ):

h∗
T−k(YT−k) = max

{
0, min

{
h̄, huc

T−k(YT−k)
}}

, (10)

huc
T−k(YT−k) :=

1
ψ

⎡

⎣ψ̄hT−k−1 −
M−1∑

j=1

Ij
T−k−2ψ

j + aT−k

⎤

⎦ .

The expected value function (for any k, YT−k−1, hT−k−1) equals:

E[vT−k(YT−k)|YT−k−1, hT−k−1] = E

[
ηT−khT−k−1

−
M−1∑

j=1

Ij
T−k−2γ

j
T−k + δT−k

∣
∣
∣
∣YT−k−1, hT−k−1

]
+ O(ρ).

Proof: The complete proof is in [1] as well as in [2]. �

Remark: Thus the ε-optimal policy is affine linear in the previous trip head-
ways and the bus-inter-arrival times. By the above theorem, the policy well-
approximates the optimal one, as ρ the load factor reduces. We will notice that
the policy works well even for nominal load factors (in some examples even up to
ρ = 0.5) in the next section. One can have a much simplified approximate algo-
rithm as in [2], which is constructed using some asymptotic arguments for partial
dynamic policies (also described below).

5 Numerical Analysis

5.1 Partial Dynamic Policies [2]

As already mentioned, in [2] we derive policies that depend only on previous
headways. We refer them as ‘partial-dynamic’ policies, as they do not con-
sider the random component of the system state Yk. It is obvious that one
can improve with the ‘fully’ dynamic policies of Theorem 1. In this section, we
study the extent of improvement provided by the extra information. Towards
this we reproduce the optimal policies of [2], for the purpose of completion.
For all load factor ρ ≤ ρ̄ (for some ρ̄ > 0, the optimal policy is given
by (hT−k := [hT−k−1, · · · hT−k−M ]):

6 The cost under this policy is within ε radius of the optimal cost.
7 Big O notation: f = O(ρ), as ρ → 0, implies f(ρ) ≤ Cρ for some constant C > 0,

for all ρ sufficiently small.
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h∗
T−k(hT−k) =

[

−
M∑

l=1

hT−k−lψ
p
l + ap

∗

]

, with (11)

ap
∗ =

σM
M

(1 + ρ)M−1

√√
√
√−2 log

(
M

√
2πσM

M

2(1 − ρ)α

)

. (12)

ψp
l =

1
(1 + ρ)M−1

(

(−1)l

(
M − 1

l

)
ρl(1 + ρ)M−1−l

−(−1)l−1

(
M − 1
l − 1

)
ρl(1 + ρ)M−l1l>0

)

.

In the above, the constant σM
M is given by [2]:

(σM
M )2 = ε2

⎛

⎝
M−1∑

l=0

M−l∑

j=1

(
γ̃M−j+1

l

)2
+

ρ2(1 − ρ2M )
1 − ρ2

⎞

⎠ with

γ̃i
l � γi

l − ργi
l−11l>0, and,

γi
l � (−1)l

(
i − 1

l

)
ρl(1 + ρ)i−1−l, with

(
n

r

)
:= 0 when n < r.

5.2 Experiments

We conduct many Monte Carlo based simulations to compare the proposed
dynamic policies with the partial dynamic policies of [2]. We basically generate
several sample paths of transport system trajectories, where each sample path
is generated using a sample of the random walking times between the stops and
the random passenger arrivals at various stops for all the T -trips. We dispatch
the buses according to one of the two policies for different values of trade-off
factors α and obtain the estimates of the bunching probability and the average
passenger waiting times using the sample means.

In Fig. 1, we plot the estimates of average passenger waiting times versus
the estimates of the bunching probability for different values of α and for both
the policies. The details of the experiment are mentioned in the figure itself.
We notice a significant improvement with fully dynamic policies. The curve of
bunching probability versus expected waiting time obtained with fully dynamic
policy is placed well below that with partial dynamic policies. This implies that
one can simultaneously improve both the performance measures, when one has
access to the more information about the system state. We conducted many
more experiments and the observations are similar.

In Table 2 we consider various system configurations, which is described in
the first column. We choose different values of α for the two policies such that
the bunching probabilities are almost equal (under both the policies) and these
values are reported in next two columns. We then tabulate the corresponding
average passenger waiting times in the last two columns. These are the estimates
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averaged across all the T trips. The different configurations span across different
levels of traffic variability (ε), different load factors during controllable trips (ρ)
and or different level of α/trade-off factors. In all the configurations, we notice
a good improvement with fully dynamic policies. Since α were chosen such that
the bunching probabilities of both the policies are almost equal, one can study
the improvement via the improvement in average passenger waiting times. We
observe that improvements are in the range of 21% to 44%.

Extension to Arbitrary Delays

One can easily extend this analysis to arbitrarily delayed information, i.e., for
the case when the observation is d-delayed we have, Yk = (hk−1, hk−2 · · · , hk−d,
{Ij

k−d}j) with 1 ≤ d < M . Basically the Lemmas 2–3 can easily be extended and
the rest of the proof can be completed after some changes. We conjecture the
following would be an ε-optimal policy for some appropriate coefficients {ψ̄r},
{ψj} and {aT−k}:

h∗
T−k(yT−k) = min

{
h̄,max

{
0,

d∑

r=1

ψ̄rhT−k−r −
M−d∑

j=1

Ij
T−k−d−1ψ

j + aT−k

}}
.

Note that the above matches with the partial dynamic policy of [2] reproduced
in (11) as well as the fully dynamic policy (10) proposed in this paper. The
proof of this result is derived recently and is available in [2]. It would be further
interesting to consider the case where one has partial information (only for some
stops) related to some (delayed) trips.

6 Conclusions

Unlike the popular models considered in literature, we directly studied the inher-
ent trade-off between the two most important aspects of any bus transport sys-
tem, the bunching possibilities and the passenger waiting times. Further, we for-
mulated a Markov decision processes based problem to derive optimal (depot)
dispatch (i.e., headway) policies that depend upon the random state observed
at various bus stops of the previous trips. The observation is that of the time
gaps between arrivals of the successive buses at the same stop.

We consider systems with Markovian travel times, fluid passenger arrivals
and with delayed (one delay) information. The objective function optimized is
the sum of a weighted combination of the two performance measures, correspond-
ing to all the trips of the given session. We obtained a near-optimal dynamic
policy for small load factors by solving the corresponding finite horizon dynamic
programming equations, using backward induction. This policy is linear in pre-
vious trip headway and the bus-inter-arrival times corresponding to the earlier
trips. We conducted Monte-Carlo based simulations to plot the estimates of the
average passenger waiting times and the bunching probability for various trade
off factors. We also observed that the proposed dynamic policy performs signifi-
cantly better than the previously proposed partial dynamic policies of [2]. These
partial dynamic policies depend only upon the headways of the previous trips.
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A Appendix

Only lemma 2 and lemma 3 statements are provided here. While the rest of the
details including the proofs are in Technical report [1] or in [2].

Lemma 2. The conditional expectation of inter arrival times given the state Yk

(from (3)) and hk equals:

E
[
Ii
k

∣
∣
∣Yk, hk

]
= (1 + ρ)i−1hk − (i − 1)ρ(1 + ρ)i−2hk−1

+
i−2∑

j=1

(i − j − 1)ρ2(1 + ρ)i−j−2Ij
k−2. (13)

�

Lemma 3. For any 2 ≤ i ≤ M we have:

Ii
k − ρIi

k−1 = (1 + ρ)i−1hk − (i + ρ)ρ(1 + ρ)i−2hk−1 +
i∑

j=1

(1 + ρ)i−jW j
k

−
i∑

j=1

(
(i − j + 1 + ρ)ρ(1 + ρ)i−j−11j<i + ρ1j=i

)
W j

k−1

+
i−1∑

j=1

(
ρ2(1 + ρ)i−2−j(i − j + ρ)1j<i−1 + ρ21j=i−1

)
Ij
k−2. (14)

The bunching probability of (k − 1) and k-th bus at stop i given the state Yk

(from (3)) and hk equals:

P
(
Ii
k − ρIi

k−1 < 0
∣
∣Yk, hk

)
= 1 − Φ

⎛

⎝ψhk − ψ̄hk−1 +
i−1∑

j=1

ψjIj
k−1

⎞

⎠ ,

where the constants are given in Table 1. �
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Abstract. Cloud computing is an innovative process that delivers on-
demand services over the internet. Virtualization is considered as the
key concept of cloud computing since it handles running multiple vir-
tual resources in a single physical resource. Mapping the virtual machine
(VM) to the appropriate physical machine (PM) is called virtual machine
placement (VMP). In this context, the dilemma of placing VMs in the
cloud environment presents a significant challenge that has been wholly
addressed but not yet totally fixed. This paper provides a multi-objective
decision-making approach for VMP in a cloud computing infrastruc-
ture. We propose a conic scalarization method to solve the optimization
problem. Simulation results prove that the offline algorithm yields good
results compared to online deterministic algorithms.

Keywords: Cloud computing · Virtual machine placement

1 Introduction

Nowadays, cloud computing is considered as an emerging technology that regu-
larly evolves towards a significant field of computer science. Cloud services are
continually being expanded to meet customer demands where the Infrastructure
as a Service (IaaS) package is the most requested by cloud users. The cloud
service provider delivers hardware services (i.e., CPU, memory, storage, network
bandwidth, etc.) using virtualization technology. To execute or serve a task in the
cloud, the first process to be performed is the Virtual Machine (VM) allocation,
which is the process of allocating or mapping a VM with a specific configuration
where the assigned VM must meet the Quality of Service (QoS). The next step
is the VM placement process, which is the process of placing or mapping the
VM to its best fit physical machine (PM), as presented in Fig. 1. By analogy,
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we can see this problem as a “Tetris” game whose goal is to place the arrived
shapes in the right places properly. From the provider’s point of view, energy
consumption, cost, and resource wastage are the main objectives that need to
be optimized. At the same time, the QoS and the quality of experience are the
critical elements to be maximized from the customer perspective. In this con-
text, many algorithms and policies were proposed to solve the VM allocation
and placement problems.

The traditional VM mapping approaches were treated as single-objective,
whereas the recent ones address the VMP as a multi-objective optimization
problem. Moreover, this placement process can be accomplished either offline
(static) or online (dynamic). On the one hand, for offline placement, the data
center (DC) providers consolidate data and make placement decisions to meet
the consumer requests considering different constraints. On the other hand, for
online placement, the DC suppliers gather data periodically then decide whether
a rescheduling of the placement procedure is required.

Virtualization gives the possibility to conveniently move a Virtual Machine
(VM) from a specific host to another without turning it off; therefore, this can
offer a dynamicity on VM placement optimization with a negligible impact on
performance. Despite its numerous benefits, these dynamics may result in sub-
optimal or unstable configurations of the virtual networks. Moreover, VMs may
experience some fluctuations within the resource utilization (e.g., a mobile appli-
cation server and a web server may possess identical patterns of the incoming
workload while using the same CPU). In this context, several challenges hin-
der the efficient placement of the virtual machine, which can be dealt with as
multi-objective optimization approaches; Considering various trade-offs between
energy consumption, reliability and performance degradation [7,10], power con-
sumption and resource utilization [13], cost and QoS [1,21], network traffic and
resource utilization [6,8,18], etc.

Accordingly, to handle these combinatorial optimization problems, we model
the VM placement problem as a multi-objective decision making (MODM) app-
roach aiming to simultaneously optimize five objective functions: energy con-
sumption, cost, network traffic, resource utilization, and QoS. Therefore, to solve
this optimization model, we transform the problem into a single objective func-
tion using a scalarization method.

This paper is structured as follows; the next section presents the related
works. Section 3 presents the problem formulation analyzed as a multi-objective
decision making (MODM) approach. In Sect. 4, we describe the scalarization
method proposed to solve the MODM problem. Section 5 presents the test envi-
ronment to evaluate our model and examine the most appropriate algorithm
among proposals.

2 Related Works

Several approaches in the literature have studied the VMP problem in both
static and dynamic environments. In the following, we cite some references that
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Fig. 1. Cloud computing architecture

have dealt with this placement problem in different ways, mono-objective or
multi-objective optimization in online or offline settings. From 2007 to 2030,
global energy consumption will increase by 76%, referring to energy outlook 2030.
Therefore, we should think about the methods to be followed to reduce the energy
consumption in the cloud; since cloud data centers included thousand of servers
that consume an enormous amount of power. Therefore, to save energy consump-
tion, it’s preferable to place VMs on as few PMs as possible. However, if VMs are
placed densely in a server, this can cause an occurrence of heat islands, which
can affect the reliability of the device. In this context, [7] proposes a bi-objective
optimization algorithm that considers energy-saving and server reliability. This
algorithm aims to minimize the total power consumption of all servers as a
function of resource utilization and simultaneously achieves reliability by adding
backup servers when the number of working servers exceeds a redundancy ratio.
Simulation results prove the performance of the recommended algorithm in terms
of power consumption in both working and backup servers compared to online
deterministic heuristics as First-Fit-Decreasing (FFD), Modified FFD (MFFD)
and Thermal Aware Workload Scheduling Algorithm (TASA).

In the same regard, unbalanced resource usage may lead to resource wastage,
SLA violation, and high power consumption. Authors in [13] propose a multi-
objective virtual machine placement algorithm for IaaS cloud named (MOVMP).
This model allows reducing the number of active PMs through migrating VMs
and achieving a more balanced use of resources, which minimizes the energy
consumption and resource wastage. The experiment setup of the proposed algo-
rithm yields good results compared to First-Fit (FF) and Power-Aware Best Fit
Decreasing (PABFD).

The quality of service (QoS) in cloud computing is another challenge for cloud
providers to attract and satisfy users. Authors in [1] treated the VMP problem
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as a tradeoff between QoS and cost. They propose a two-layer model, where
the first one considers the allocation problem in a cost-effective way using linear
programming for load balancing. The second one regards the VM placement by
proposing a Genetic Algorithm Based Virtual Machine Placement (GABVMP)
algorithm as a solution to the optimization problem. Simulation results show that
GABVMP is more performant than two greedy heuristics (Random placement
and FF placement).

Several papers study the problem of minimizing network traffic [6,8,18]
to enhance the performance of a DC by selecting the most suitable physical
machines for virtual machines. Daniel et al. [9] present a VMP algorithm to
reallocate virtual machines in DC Server contingent on the memory usage, the
traffic matrix network, and the overall CPU. The first phase of this VMP algo-
rithm considers collecting data from VMs and DC topology. The second one
focuses on partitioning servers with a higher level of connectivity. The last one
consists of clustering VMs by defining the amount of purchased traffic using
graph theory to manage all the virtual servers. Simulation results prove that
this solution improves network traffic quality and the availability of bandwidth
at DC.

3 Multi-objective Decision Making: Problem Formulation

Based on our literature survey in [3], we analyze the different problems that
may interrupt the VM placement. We classify the existing solutions into five pri-
mary objective functions based on multiple performance metrics such as energy
consumption, quality of service, service level agreement, resource usage, and
incurred cost.

In this paper, we form the problem of virtual machine placement as a multi-
objective decision making (MODM) approach, by optimizing the five objective
functions: (1) Energy consumption minimization, (2) cost optimization, (3) Net-
work traffic minimization, (4) Resource utilization and (5) Quality of service
maximization simultaneously. We consider the available PMs specifications, the
requested VMs, the network traffic between VMs and their current placement
as Inputs, and the new convenient placement as Output. This section presents
a theoretical approach to solve the VMP problem (see Fig. 2).

Given a set of physical machines S = S1, S2..., Sn and a set of virtual
machines V = V1, V2, .., Vm. We are looking for new placement of VMs V on
a set of PMs S while satisfying the constraints and simultaneously optimizing
the five objective functions cited above in a pure multi-objective context.

Each physical machine Si is characterized by a specific processing resources
CPU, RAM memory, storage, and maximum power consumption represented as:

Si = [Scpu
i , Sram

i , Sstor
i , Spmax

i ]; ∀i ∈ {1, 2, .., n} (1)

Each virtual machine Vj needs processing resources of CPU V cpu
j , RAM

V ram
j , and storage V stor

j , providing economic revenue Rj and attributing SLA
to each VM. Consequently, a virtual machine Vj will be represented as:
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Fig. 2. Multi attribute decision making approach

Vj = [V cpu
j , V ram

j , V stor
j , Rj , SLAj ]; ∀j ∈ {1, 2, ..,m} (2)

The network traffic between the requested VMs is represented as follows:

Tj = [Tj1 , Tj2 , .., Tjm ]; ∀j ∈ {1, ..,m} (3)

where Tjk represents the average communication rate in [Kbps], between the
virtual machine Vj and the virtual machine Vk. Note that we can consider Tjj =
0.

3.1 Objective Functions

The five objective functions are mathematically formulated as follows:

Energy Consumption Minimization

Based on [4], the energy consumption of a resource is defined as the sum of the
power consumption of each PM considering a linear relationship with the CPU
utilization:

min g1(x) =
n∑

i=1

[
(Pmax

i − Pmin
i ) · U cpu

i + Pmin
i

] · Ai (4)

where

• g1(x): the total energy consumption of the PMs;
• Pmax

i : is the power consumption at the peak load;
• Pmin

i : is the minimum power consumption in the inactive mode;
• U cpu

i : is the utilization ratio of CPU resources used by Si

• Ai: is a binary parameter equal to 1 if PM turned on, 0 otherwise.
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Cost Optimization

Cloud service providers avoid economic loss generated by failures. Therefore,
based on [22], we adopt the proposed approach of maximizing cloud provider’s
revenue regarding SLA violation cost. We have two cases:

• if Vj is finished without failure: provider will receive revenue:

Rj = cj · tj − Ej (5)

where cj is the price of Vj ; Ej is the execution cost of Vj that can be estimated
through paying site infrastructure Capex and energy costs overall machines,
and tj is the lifetime of VM Vj .

• if Vj is failed: the customer is eligible to receive a refund from the provider,
which is equal to Dj = cj · tj · pSLA, where pSLA is a constant parameter and
indicates the part of the entire invoice that the provider has to deliver.

The expected revenue generated from placing Vj on Si is defined as the following:

Fj = Rj(1 − f i
j) − (Ej + Dj) · f i

j , (6)

where f i
j is the probability of at least one failure occurring on Si in tj .

The problem of maximizing cloud provider’s revenue (minimizing total cost)
is expressed by:

min g2(x) =
n∑

j=1

F̂j · Bj ; (7)

where:

• g2(x): is the total economical revenue for placing VMs; F̂j = −Fj

• Bj : is a binary variable equals to 1 if Vj is located on PM, 0 otherwise.

Network Traffic Minimization

Based on [16], the total network traffic among VMs is defined as the sum of
average network traffic Tjk generated by each VM Vj , which is located to run
on any PM, with other VMs Vk that are located to run on different PMs.

min g3(x) =
n∑

j=1

n∑

k=1

(Tjk · Xjk) (8)

where:

• g3(x): is the total network traffic between VMs;
• Xjk: A binary variable equals to 1 if Vj and Vk are located in different PMs

and 0 otherwise.
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The traffic between two VMs Vj and Vk which are located on the same PM
do not contribute to increase the total network traffic given by Eq. (8).

Resource Utilization

To make effective use of the resources in all dimensions and balance the resource
utilization on each server along different dimensions, we adopt the resource
wastage model proposed in [15]. The unused resources available on each server
may change considerably with different VM placement solutions. The following
equation is adopted to compute the implied cost of wasted resources:

Wi =
|Y p

i − Y m
i | + ε

Zp
j + Zm

j

(9)

where:

• Wi: denotes the resource wastage of the i-th server;
• Y p

i and Y m
i represent the normalized CPU and memory resource usage (i.e.,

the ratio of used resource to total resource);
• Zp

j and Zm
j represent the normalized remaining CPU and memory;

• ε is a very small positive real number and its value is set to be 0.0001;

The related objective function of resource wastage can be expressed by:

min g4(x) =
m∑

i=1

Wi (10)

Quality of Service Maximization

Quality of Service maximization is achieved when locating maximum number
of VMs with highest SLA level of priority. We use the same equation proposed
in [16] aiming to minimize SLA violations by using the highest level of priority
SLAi:

min g5(x) =
n∑

j=1

CSLAj · SLAj · Bj . (11)

where:

• g5(x): is the total QoS function for a given placement;
• C: is a constant, sufficiently large, to give priority to services with a higher

SLA over those with a lower SLA. Otherwise, if the constant C had small
value, g5(x) might choose a large number of VMs with a lower priority, which
is not correct, considering the intended purpose in Eq. (11).

3.2 Constraints

PMs Capacity. A PM must have sufficient available resources to meet the
requirements of all VMs. The capacity constraints can be mathematically for-
mulated as:
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h1(x) :
m∑

j=1

V cpu
j · Pji − Scpu

i � 0 (12)

h2(x) :
m∑

j=1

V ram
j · Pji − Sram

i � 0 (13)

h3(x) :
m∑

j=1

V stor
j · Pji − Sstor

i � 0 (14)

SLA Provisioning. A virtual machine Vj with decisive SLA (i.e., SLAj = 1)
must certainly be located to run on a physical machine Si. Consequently, this
restriction is expressed as:

h4(x) :
n∑

i=1

Sji = 1 ∀j such that SLAj = 1 (15)

Where:

– SLAj : Service Level Agreement SLAj = 1 if Vj is critical, or 0 otherwise.

Unique Placement of VMs. A VM Vj should be located to run on a single
PM. Alternatively, it could not be located in any PM if the associated SLAj is
not the highest level of priority. Consequently, this constraint is expressed as:

h5(x) :
n∑

i=1

Sji − 1 � 0 (16)

where Sji is a binary variable that equals 1 if Vj is located to run on PM;
otherwise, it is 0.

3.3 Output Parameters

Solution should indicate the placement of each virtual machine Vj on the neces-
sary physical machine Si, considering the multi-objective optimization criteria.
A placement is represented as a matrix S = Sji of dimension (m × n), where
Sji ∈ {0, 1} indicates if the virtual machine Vj is located (Sji = 1) or not
(Sji = 0) for execution on a physical machine Si (i.e., Sji: Vj → Si).

4 Solving MODM Problem

4.1 Scalarization Method

The general multi objective decision making problem can be presented as follows:
{

g(x) = [g1(x), g2(x), g3(x), g4(x), g5(x)]
Subjectto hi(x) with i ∈ {1, 2, 3, 4, 5} (17)
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The idea of finding a solution for (18) would be challenging since a single
point that minimizes all objective functions simultaneously often doesn’t exist. In
this context, we normalize each objective function by computing the normalized
objective function cost ĝi(x) as:

ĝi(x) =
gi(x) − gi(x)min

gi(x)max − gi(x)min
(18)

Based on previous works [12], different scalarization methods can be used to
solve the multi-objective optimization approaches as Benson’s method, Weighted
Tchebyshev method, Pascoletti-Serafini method, Weighted sum method (WS),
Euclidean Distance (ED), etc. In [5], the efficient method for VMP placement
was ED, while in [12], authors recommend the Tchebychev method, and as per
[19] and [16], the often-used method is Weighted sum. In this paper, we consider
the Conic Scalarization (CS) method detailed in [14]. The concept of this method
is straightforward: (i) choosing preference parameters which consist of weights
of objective functions and a reference point for these objectives and (ii) solving
the scalar optimization problem.

Consider the multi-objective virtual machine placement that aim to simul-
taneously minimize the five objective functions as follows:

Minimise g(x) = [g1(x), g2(x), g3(x), g4(x), g5(x)]
First, choose preference parameters:

– Weight vector ω = ωi: denotes the importance degree associated to each i-th
objective function for decision maker, where i ∈ {1, .., 5}.

– Reference point r = (r1, r2, .., r5): identified by decision maker to compute
the minimal elements and can be chosen arbitrarily.

Second, choose an augmentation parameter α such that (ω, α) ∈ C, where:
C = ((ω1, .., ω5), α) : 0 � α � ωi, ωi > 0, i = {1, .., 5}
The scalar problem for the given parameters (ω, α) and r is:

min
5∑

i=1

ωi(ĝi(x) − ri) + α

5∑

i=1

|ĝi(x) − ri| (19)

In this work, the weight ωi is constant ( 15 ). In the case where α = 0, the scalar-
ization method (20) becomes that of the weighted sum method.

4.2 Algorithms

This subsection presents the proposed alternatives used in our experiments to
solve the VMP problem comparing the four online algorithms (FF, FFD, BF,
BFD) against the offline algorithm ACO based memetic algorithm with VM
migration.

• First-Fit (FF): This algorithm places VMs according to the first in first
out (FIFO) basis where requested VMs are allocated on the first host with
available resources [11].
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• First-Fit-Decreasing (FFD): The FFD algorithm works in a similar way
to the FF algorithm presented above. It aligns VMs in the decreasing order,
then finds and places servers with available resources to place VMs [2].

• Best-Fit (BF): This algorithm assigns the VMs required on the first PM
with the available capacity from a sorted list of PMs in ascending order by a
rating associated to each PM [2].

• Best-Fit-Decreasing (BFD): This algorithm is similar to BF. The dif-
ference is only on selecting VM lists in decreasing order by inquired CPU
resources [2].

• Memetic Algorithm (MA): The term Memetic Algorithm describes popu-
lation based hybrid evolutionary algorithms that are coupled with local refine-
ment strategies, more details are presented in [20].

• Ant Colony Optimization (ACO): The ACO based algorithm is intro-
duced as an instance of the multi-dimensional bin-packing problem [17].

5 Test Environment

Fig. 3. Test environment

Experiments were conducted on a GNU Linux System with an Intel(R) Xeon(R)
E3-1505M at 2.80 GHz CPU and 32 GB of RAM. Figure 3 shows an overview
of the test environment. The proposed algorithms were developed by Java pro-
gramming language. Unfortunately, it’s not feasible (at least expensive) to test
the VM placement based on real traces for a large-scale environment. In this
paper, we use uncertain workload traces similar to real-world ones. We import
data files of a particular format, to convert workload traces to the given format,
and create test data in the given format. Physical resources comprise a diver-
sified IaaS cloud, taking into account four categories of physical machines (i.e.,
small, medium, large, and xlarge), as presented in Table 1.
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In this paper, we compare different algorithms in online and offline envi-
ronments for various CPU load types. Simulation results presented in Table 2
prove the performance of BFD in both medium and high CPU load compared to
other dynamic placement algorithms, while BF is the best one for low CPU load.
On the other hand, one can see the ACO algorithm yields good results for all
CPU load sizes. We can conclude that ACO based memetic algorithm is better
then deterministic algorithms, otherwise the offline placement outperforms the
online one. In Fig. 4, we compare the results of the conic scalarization method for
MODM problem, considering different values of the augmentation parameter α
(0.01, 0.05, 0.1,0.15, 0.2) less than ω = 1

5 . We see that the more α tends towards
ω, the better results are obtained for all algorithms.

Fig. 4. Normalized objective functions for different values of augmentation parameter
α (scale x100)

As a perspective, in the future work, we propose to combine the online and
offline placement, and compare the CS method to other scalarization methods.

Table 1. Types of physical machines

PM characteristics CPU RAM Network Pmax(W )

S.small 32 128 1000 500

S.medium 64 256 1000 1000

S.large 256 512 1000 2000

S.xlarge 512 1024 10000 4000
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Table 2. Normalized objective functions of evaluated algorithms

Algorithm Low CPU load Medium CPU load High CPU load

First-Fit 0.675 0.733 0.972

First-Fit decreasing 0.703 0.742 0.965

Best-Fit 0.653 0.723 0.846

Best-Fit decreasing 0.685 0.721 0.837

ACO 0.595 0.654 0.683

6 Conclusion

We consider the VMP problem as a multi-objective decision-making approach
that aims to optimize simultaneously five objective functions: energy consump-
tion, cost optimization, network traffic, resource utilization, and QoS. The opti-
mization problem is solved based on a conic scalarization method. Simulation
results show that ACO based-memetic gives good results compared to FF, BF,
FFD, and BFD. However, offline algorithms can’t be used in a pure dynamic
environment. Therefore, our future will consider a combination of both offline
and online placement algorithms.
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Abstract. We model the tradeoff between the monitoring costs and gain
in throughput for overlay-based routing in the Internet. A Markovian
model is shown to fit the real throughput traces quite well. The tradeoff
problem is formulated as Markov decision process and it is observed
that the myopic policy that maximizes the immediate utility is close to
optimal on the real traces.

1 Introduction

More than two decades ago, it was observed that the performance of network
flows could be improved by choosing other paths than those computed by IP
routing protocols (see, e.g., [7]). Routing overlay networks were then proposed
as a solution for achieving spectacular performance improvements, without the
need to re-engineer the Internet (see [1] and references therein). An overlay
network is composed of Internet end-hosts which can monitor the quality of
Internet paths between themselves by sending probe packets. Since all pairs
of nodes are connected, the default topology of a routing overlay is that of a
complete graph. Although the monitoring cost is highly variable depending on
the metric to be probed, it is usually not possible to discover an optimal path by
probing all links in large overlay networks (see [2] for a graph-theoretic analysis
of this issue). An alternative approach is to devise a parsimonious monitoring
approach making the trade-off between the quality of routing decisions and the
monitoring cost. Given a source and a destination node in the overlay, the idea
is to probe only a small number of overlay paths between the two nodes at each
measurement epoch, but to choose those paths so as to make the best routing
decision.

Assuming known Markovian models for path delays, this trade-off problem
was formulated as a Markov Decision Process (MDP) in [8]. Using delay data
collected over the Internet, it was shown that the optimal monitoring policy
enables to obtain a routing performance almost as good as the one obtained
when all paths are always monitored, but with a modest monitoring effort.

In this paper, we adopt the theoretical framework introduced in [8], but focus
on data throughput rather than RTT. We note that efficient parsimonious mon-
itoring strategies are even more important for the throughput metric. Indeed,
although lightweight methods for estimating the available bandwidth between
c© Springer Nature Switzerland AG 2021
S. Lasaulce et al. (Eds.): NetGCooP 2021, CCIS 1354, pp. 167–171, 2021.
https://doi.org/10.1007/978-3-030-87473-5_15
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two Internet end-hosts were proposed in [4,5], in practice the only accurate
method is to transfer a large file between the two endpoints. It turns out that
the MDP formulation for maximizing the data throughput is equivalent to the
MDP formulation for minimizing the RTT. The contribution of the present paper
is therefore not on the theoretical side, but rather to investigate the applicability
of the approach proposed in [8] for optimizing throughput in overlay networks.
To this end, we use we use throughput measurements that were made between
9 AWS (Amazon Web Services) data centres.

2 MDP Formulation

The problem formulation in this section is essentially the same as in [6,8] except
that the quantity of interest is bandwidth instead of delay. Consider a single
origin-destination pair and {1, 2, . . . , P} a set of P paths between the origin and
the destination. The network topology is thus that of parallel links. At time step
t, path i is assumed to be have a bandwidth Xi(t), where Xi(t) is a discrete-time
Markov chain taking values in a finite set. The transition matrix for path i will
be denoted by Mi.

At each time step, the routing agent has to decide on which path it should
send data. For this, the agent has at its disposal the last observed bandwidth for
each path. Further, it can choose to measure the bandwidth on one or more paths
and update its state information before taking the routing decision. The agent
incurs a cost of ci for probing path i independently of time step. The decision-
maker must find a compromise between paying to retrieve information from the
system to get a higher bandwidth and not retrieving information leading to a
lower bandwidth.

Let u(t) ∈ {0, 1}P whose ith component indicates whether path i is moni-
tored in time step i or not. The total cost paid for action u(t) is

∑
i|ui(t)=1 −ci =

−c · u(t) with c = (c1, · · · , cP ). Let r(t) be the path chosen in time step t. A
policy θ can be defined by the sequence {(u(t), r(t))}t≥0. Just as in [8], it can
be seen that knowing only the last observed bandwidth for a link is not enough
to determine the distribution the bandwidth that will be obtained in a given
step. The state can be made Markovian by incorporating the age of the last
observed bandwidth as well. That is, the pair (yi(t), τi(t)), where yi(t) is the last
observed bandwidth of link i at time t and τi(t) is the age of the last observation
is sufficient as the state variable for a Markovian representation of path i. All
this information is summarized in a vector s(t) = (s1(t), s2(t), . . . , sP (t)) where
si(t) = (yi(t), τi(t)).

Since the state is now Markovian, the problem can be formulated as a Markov
Decision Process (MDP). This MDP can be further simplified by noting that in
the model, the routing decision does not have any impact on the evolution of
the state. Thus, a locally greedy routing decision conditioned on u(t) and the
current state will be optimal. In other words, for a given u(t), it will be optimal
to choose the path that maximizes the expected bandwidth. With this in mind,
the decision problem can be reduced to determining which paths to monitor in
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each time step. For a given state s ≡ (y, τ) of path i, define the belief on the
bandwidth being z of this path as follows: bi(z|s) := P(Xi(τ) = z|Xi(0) = y),
which is just the probability of path i transitioning from y to z in τ steps, and
can be computed by choosing the corresponding element of Mτ

i .
If path i is measured, then its actual bandwidth, Xi(t), will be known and

can be used in the routing decision. Otherwise, it is its expected conditional
bandwidth E[Xi|si] =

∑
x∈Xi

x · bi(x|si) that will be used. The locally greedy
routing decision will be to choose r(t) that maximizes (uiXi+(1 − ui)E[Xi|si]).
Note that this decision is taken after performing the action of monitoring the
subset of selected links. This leads to maximum bandwidth conditioned on s
and u of B(X|s,u) = maxi (uiXi+(1 − ui)E[Xi|si]), and an expected maximum
bandwidth of:

B̄(s;u) =
∑

x

(
P∏

i=1

bi(xi|si)

)

B(x|s;u). (1)

Here the product measure is used because Xis evolve independently.
Now that the routing decision is known, the final MDP takes the form:

max
θ

E
θ
s0

{ ∞∑

t=0

ρt
[
B̄(s(t);u(t)) − c · u(t)

]
}

. (2)

where θ ≡ u(t)t≥0, is limited to monitoring decisions only.
We remark that the above problem formulation resembles the multi-armed

bandit (MAB) framework. However, unlike standard MABs in which the cost
function is decomposable in the individual costs of the bandits, in our problem
the overall cost is not decomposable.

3 Numerical Results

In order to validate our approach on real data, for which the Markovian assump-
tion is not perfectly met, we use throughput measurements that were made
between 9 AWS (Amazon Web Services) data centres located in several places
around the world. In summer 2015, we measured the available throughput
between all pairs of data centres every five minutes, by transferring a 10 MB
file through the Internet, for a period of four days. We thus collected some
8.3×104 measurement data over the 4 days period. Assuming that the available
throughput over a path is the minimum of the throughputs of its constituent
links, the analysis of these data revealed that the IP route is the maximum
throughput route only in 23% of the cases, and that most of the time, the max-
imum throughput overlay route passes through 1 or 2 intermediate nodes (see
[1] for details).
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We selected three origin-destination (OD) pairs: Virginia/Ireland, Vir-
ginia/Frankfurt and Frankfurt/Tokyo. For the first two pairs, in addition to the
IP path, we selected two alternative paths which were sometimes better than
the IP path, whereas for the last example there was one alternative path.

For each path, we fitted a Markov model using a clustering method called,
Hierarchical Agglomerative Clustering [3]. This method creates a hierarchy
between clusters, like a tree. At the beginning, each value of bandwidth is a
cluster. The algorithm agglomerate one by one the closest data (in term of a
distance metric chosen) together in a new cluster, until it creates one big clus-
ter. On our data, we use the Euclidean distance between the bandwidth values.
After that, we decided where to cut the tree and obtain a certain number of
clusters.

Now that we have our different states, we have to determine the transition
probability matrices, Pi. We elaborate this matrix by counting the number of
transition between each pair of states. Finally, we search the minimum value
τmaxi

which satisfy max(P lim
i − P

τmaxi
i ) < 10−2. It appears that, on real data,

the τmax per link is lower than 10 and the number of states per link is between
2 and 12.

We evaluate the average utility (see (2)) for four policies: optimal, myopic
policy that optimizes the immediate cost only, a receding horizon policy (with a
horizon of 3) and a decomposition based heuristic. For a description of the last
two policies, we refer the reader to [6].

First, we check that the Markov models we fitted are representative of the
real traces. For this, for each OD pair, using the transition matrices, we generate
a sample path of throughputs on each of the paths. On these sample paths, we
apply the three heuristics (but not the optimal) and compute the average utility
for each policy. We then apply the policies on the real traces and compute
the average utilities. Table 1 shows the percentage relative error between the
average utility computed on a sample path and that on the corresponding real
trace. The relative error is less than 2% which indicates a good match. Finally,
Table 2 shows the utilities of the four policies for varying monitoring costs. One
surprising observation from these examples is that the myopic policy is almost
optimal.

Table 1. Percentage relative error between utility computed using Markov model and
on real trace.

(a) Virginia/Ireland.

c 1 2 3 4 5

Myopic 1.38 1.14 0.52 0.95 0.01

RH 1.38 0.98 0.50 0.62 0.01

H2 1.73 1.81 1.84 1.90 1.97

(b) Virginia/Frankfurt.

c 1 2 3 4 5

Myopic 1.36 0.91 0.6 1.07 0.03

RH 1.34 1.046 0.62 1.067 0.03

H2 1.63 1.90 1.92 1.97 2.06
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Table 2. Utilities for different policies as a function of the monitoring cost.

(a) Virginia/Ireland.

c OPT Myopic RH H2

1.0 41.98 41.98 41.98 40.45

2.0 39.42 39.40 39.43 38.72

3.0 37.90 37.89 37.90 36.98

4.0 36.99 36.92 36.97 35.25

5.0 36.43 36.43 36.43 33.52

(b) Virginia/Frankfurt.

c OPT Myopic RH H2

1.0 41.91 41.91 41.91 40.77

2.0 39.45 39.47 39.45 38.84

3.0 38.02 38.03 38.03 36.97

4.0 37.11 37.11 37.11 35.13

5.0 36.38 36.36 36.36 33.30

(c) Frankfurt/Tokyo.

c OPT Myopic RH H2

1.0 58.44 58.44 58.44 57.83

2.0 57.71 57.67 57.71 56.59

3.0 57.20 57.20 57.20 55.35

4.0 57.20 57.20 57.20 54.11

5.0 57.20 57.20 57.20 53.09

4 Conclusion and Future Work

The results indicate that Markovian models are a good fit for throughput on
paths in the Internet. Further, a myopic policy is nearly optimal for minimizing
a linear combination of the throughput and monitoring costs.

As future work, we would first like to understand why the myopic policy
works well on these examples. It would be interesting to obtain conditions under
which this is true. Next, we would like to generalize these models to multi-agent
settings in which each node of the overlay can be seen as an agents. These agents
can be either cooperative or be non-cooperative. Another possible improvement
of the setting would be to allow the routing decision to influence the future
evolution of the bandwidth of the path and to get state information from the
current routing decision.
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Abstract. We consider a heterogeneous cellular network wherein mul-
tiple small cell millimeter wave (mmW) base stations (BSs) coexist with
legacy sub-6GHz macro BSs. In the mmW band, small cells use mul-
tiple narrow beams to ensure sufficient coverage and User Equipments
(UEs) have to select the best small cell and the best beam in order to
access the network. This process usually based on exhaustive search may
introduce unacceptable latency. In order to address this issue, we rely
on the sub-6GHz macro BS support and propose a deep neural network
(DNN) architecture that utilizes basic components from the Channel
State Information (CSI) of sub-6GHz network as input features. The
output of the DNN is the mmW BS and beam selection that can provide
the best communication performance. In the set of features, we avoid
using the UE location, which may not be readily available for every
device. We formulate a mmW BS selection and beam selection prob-
lem as a classification and regression problem respectively and propose
a joint solution using a branched neural network. The numerical com-
parison with the conventional exhaustive search results shows that the
proposed design demonstrate better performance than exhaustive search
in terms of latency with at least 85% accuracy.

Keywords: Millimeter wave · Beam selection · Deep neural network ·
Heterogeneous network · sub-6GHz

1 Introduction

Millimeter Wave (mmW) communication is considered as a promising technique
to solve the unprecedented challenge of increasing demand for high data rates
in future cellular networks. However, it suffers from limited coverage and in the
ultra-dense environment it is significantly prone to blockages such as high density
objects like walls, glass, humans, etc. Thus, in-order to provide flexible coverage
and minimize the infrastructural cost, it is proposed that mmW networks will
be deployed in a multi-tier heterogeneous network, where multiple small cell
mmW base stations (BSs) coexist with multiple legacy sub-6GHz macro BSs [9].
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The legacy network operating in sub-6GHz frequencies can handle operations
like resource allocation, mobile data offloading, control signalling etc., while the
potential mmW BSs can handle massive data traffic [9,13]. In this paper, we
propose a solution for optimal resource allocation for a heterogeneous cellular
network that enables reliable communication while leveraging the benefits of
high data rates from mmW bands.

Beamforming is important in mmW systems in order to overcome the path
loss due to shorter wavelength. With the large number of antenna elements asso-
ciated with mmW transceivers, multiple beams are possible, which can perform
directional beamforming and achieve high gain. Thus to ensure high perfor-
mance, choosing the suitable BS to user equipment (UE) beam-pair from the set
of all the possible directional beams is a crucial task. Beam selection has been
conventionally addressed using exhaustive search or multi-level selection app-
roach as in [12,15]. However, with these techniques, large number of beams at
mmW BSs leads to large beam training overhead and hence unacceptable latency
to access the mmW network. Access latency is in turn significantly lower in case
of communication at sub-6GHz frequencies. To overcome this challenge, out-of-
band spatial information has been used for reducing beam-selection overhead
[1]. In recent years, in order to predict the optimal beam and significantly over-
come the training overhead, the use of deep learning (DL) and machine learning
(ML) tools has proved to be very promising in establishing mmW links [3]. In
this paper, we thus propose a deep neural network (DNN)-based mmW BS and
beam selection for heterogeneous network by utilizing basic features from the
Channel State Information (CSI) available only at sub-6GHz BSs.

DL and ML techniques have been hugely explored for various communica-
tion applications which include, channel estimation, design of auto-encoders,
spectrum allocation, etc. [7]. In the context of mmW communications, such
techniques have been reported for applications such as beam selection, blockage
detection, channel estimation, or proactive handover. Various DL and ML tech-
niques to reduce the beam selection overhead in mmW communications use loca-
tion information, channel information, out-of-band information or measurements
from different sensors such as LIDAR, camera, or GPS. Specifically, authors in [6]
and [5] have proposed the use of deep convolutional neural networks to perform
beam selection task in distributed and centralized architecture respectively. In
[11], authors have considered the use of situational knowledge about the environ-
ment and location of UEs and proposed the use of ensemble learning-based clas-
sification to identify the optimal mmW beam. Later, in [4], authors proposed the
applicability of deep learning techniques such as k-nearest neighbours (KNN),
support vector classifier (SVC) and multi-layer perceptron by using angle of
arrival information to perform the beam-selection task. All these works however
assume single-layer networks and ignore the macro-layer of sub-6GHz BSs that
will be required for a continuous connectivity. Only two references are dealing
with ML/DL-based beam selection in heterogeneous networks [3,14]. Authors
in [14] have considered the CSI over sub-6GHz and kernel-based ML algorithms
to assist handovers for target vehicle discovery problem and overcome coverage
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blindness. In [3], authors have proposed the use of sub-6GHz channel and loca-
tion information for performing the beam-selection and blockage prediction task.
However, the solution in [3] is limited to a single BS - single UE communication
scenario, where the BS employs co-located sub-6GHz and mmW transceivers. In
this paper, we extend the work done in [3] by considering multiple coordinating
sub-6GHz and mmW BSs to perform resource allocation for each UE in the
network.

Furthermore, location is an important feature that independently can be
utilized to perform the task. Most of the previously discussed work on beam
selection including [3], considers the availability of the UE location. However, this
information may not always be readily available for many cellular devices. Also,
location sensors usually has low accuracy and can result in incorrect outputs [8].
Hence, we aim to intentionally eliminate the availability of location information
from the set of input features and design the proposed DNN based BS and beam
selection framework for a heterogeneous mmW network.

The main contributions of this paper are listed as follows:

1. To guarantee reliable communication and enhanced coverage in mmW com-
munication, we consider the heterogeneous architecture and propose DNN-
based BS and beam selection by leveraging basic signal components extracted
from the sub-6GHz channel as the input features. We consider multiple coor-
dinated sub-6GHz BSs for optimal mmW resource allocation in order to serve
any UE in the network.

2. We propose a branched DNN-structure, which divides the problem into two
sub-problems of BS selection and beam selection and is well-adapted for this
application.

3. We eliminate the use of location information from the set of input features
to perform the considered task. The feature vector considered as input to the
network include: the azimuth and elevation angle of arrival (AoA) from the
BS, the receive signal power, the signal phase and the propagation delay.

The remainder of this paper is organized as follows. Section 2 describes the
network and transceiver model. The proposed problem is formulated in Sect. 3
and then the deep neural network model is discussed in Sect. 4. Section 5 presents
the simulation environment and performance evaluation and finally Sect. 6 con-
cludes the paper.

Notations: Throughout this paper, we use bold-faced lowercase letters to denote
column vectors and bold-faced uppercase letters to denote matrices. For any
matrix X, XT denotes the transpose operation.

2 System Model

We consider a heterogeneous cellular network wherein multiple sub-6GHz BSs
and mmW BSs operate together in order to serve UEs in the network as shown
in the Fig. 1. We assume that there are Bμ sub-6GHz BSs, each equipped with
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Fig. 1. System model: heterogeneous network architecture with mmW small cells coex-
isting with sub-6GHz macro BSs. Dashed lines represent the connection of coordinating
sub-6GHz BSs with a central cloud processor whereas solid lines represent the connec-
tion between any sub-6GHz and mmW BS in a network.

Nμ antenna elements. All the sub-6GHz BSs operate in a coordinated manner for
their processing such as channel estimation or precoder design, along with DNN
computations being performed at a central cloud processor unit. We assume that
there are Bm mmW BSs distributed in the network region that are coordinated
with the sub-6GHz BSs to provide high speed data transfer to the UEs in the
network. Each of the mmW BS is assumed to be equipped with Nm transceiver
antennas. We assume that UEs have a single antenna in both bands1.

The communication scenario that we study is as follows. A UE is initially
connected to a sub-6GHz BS and periodically transmits pilot signals to all macro
BSs. Whenever the UE is approaching towards mmW BSs, the coordinated sub-
6GHz BSs command the best mmW BS and the best beam that maximizes the
achievable rate for this user.

Based on this scenario, the signal received by the macro sub-6GHz BSs at
the k-th OFDM sub-carrier, k = 1, 2, · · · ,K can be given by:

yμ[k] = hμ[k]ds + nμ[k], (1)

where ds is the uplink pilot transmitted over the hμ sub-6GHz channel gain
matrix and nμ is the additive Gaussian noise vector with zero-mean and covari-
ance matrix σ2

μI at the sub-6GHz BS antenna arrays. The processing at the
sub-6GHz is performed in the baseband domain as the macro BSs are assumed
to employ fully-digital architecture.

However, due to the high cost and power consumption of mixed signal RF
components at mmW frequencies, mmW transceivers are assumed to employ
either fully-analog architecture where the transceiving unit is associated with
1 UEs may be equipped with several antennas but we don’t address in this paper the

beam alignment problem and we focus on the beam selection at the BS. Once the
BS beam is known, the UE may for example perform exhaustive search to select its
own beam.
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single RF chain or it employs hybrid analog-digital architecture with a number
of RF chains less than Nm. In this work, mmW BSs adopt fully-analog beam-
forming architecture where, at a given time instant, the signal is transmitted
through a single beam which is selected from a finite set V of M predefined
beams, where V is the codebook. The total transmit power at the mmW BS
is PT . Thus for the downlink transmission, where the mmW BS communicates
with the UE, the signal received at the UE can be given as:

ym[k] = Hm[k]vm[k]dm + nm[k], (2)

where Hm is the mmW channel gain matrix, vm is the beamforming vector, dm

is the data transmitted by the mmW BS and nm is the additive Gaussian noise
at UE with zero-mean and covariance matrix σ2

mI.
We assume that the mmW channel is modelled as a geometric channel [2]

which can be given as:

Hm[k] =
L∑

l=1

√
ρl

K
ej(κl+

2πk
K ΓlBm)a(θl, φl) (3)

where
√

ρl

K is the path gain for the l-th channel path in the k-th OFDM sub-
carrier and κl and Γl represents the path phase and propagation delay for the
l-th channel path respectively. L is the total number of channels paths. The
array response vector at the BS is denoted by a(θl, φl), where θl and φl is the
azimuthal and the elevation AoA respectively. The detailed study of the utilized
channel model can be obtained in [2]. The sub-6GHz channel is modelled in the
same way.

3 Problem Formulation

Given the uplink channel information at sub-6GHz BSs, we aim at designing an
optimal mmW BS and beam predictor such that it maximizes the achievable
sum-rate for each user in the network. Thus the optimal beamforming vector
vo

m can be obtained as:

vo
m = arg max

vm∈V

K∑

k=1

log2 (1 + γ|Hm[k]Tvm|2) (4)

where γ = PT /Kσ2
m. To design this optimal predictor we aim to find a map-

ping from sub-6GHz channel to mmW BS and beam selection. [3] has shown
that, under the assumption that there is a bijective mapping between sub-6GHz
channel and user location, there also exists a bijective mapping between sub-
6GHz channel and mmW channel. Motivated by this result, we rely on sub-6GHz
channel features to deduce the resources in mmW band. We can thus define two
mapping functions ζBS , ζb as follows:

ζBS : fμ → PBS (5)
ζb : fμ → rb (6)
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Fig. 2. Deep Neural Network (DNN) model for optimal mmW BS and beam selection.

where fμ is a feature vector of size nf extracted from the CSI in the sub-6GHz
band, PBS is a probability mass function on the set of mmW BSs and rb is a
vector of achievable rates for every possible beam out of M at a mmW BS. To
find this mapping, we utilize the DNN-based approach which are well-suited for
obtaining the non-linear relationships between different data distributions [10].
The ζBS mapping is formulated as a classification problem, in which each input
feature is mapped into a finite set of labels; each label representing candidate
mmW BSs, while ζb mapping is obtained by solving this sub-problem as a regres-
sion task wherein, a real valued achievable rate is obtained for each beam for the
selected BS from ζBS mapping. The proposed DNN based solution is presented
in details in Sect. 4.

4 Deep Neural Network Model

In this section, we discuss the DL model adopted to learn the mapping from sub-
6GHz channel information to mmW-BS identifier and its beam for a given user.
In an environment with multiple mmW BSs and large number of beams, it is
important to have flexibility in the network to incorporate new BSs or beams for
future requirements. To allow this scalability, the overall beam selection problem
can be divided into two sequential sub-problems: optimal mmW BS selection and
then optimal beam selection. In order to incorporate the two sub-problems in
a single neural network, we consider a branched network which takes feature
vectors fμ from sub-6GHz CSI as input and predicts both mmW BS and beams
for that user as shown in Fig. 2.
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4.1 Base Network

We consider a base network for both the sub-problems to learn the common
feature vectors. The input of this base network is a matrix of dimension Bμ ×nf

which gathers all the features for every sub-6GHz BS. We consider a convolution
layer as the first layer of the base network with the kernel of size 1×nf . This layer
acts as a shared weight perceptron layer which is intended to find the correlation
within the feature vector of each coordinating sub-6GHz BS. The output of this
layer is passed through another convolution layer having kernel size Bμ×32. The
second convolution layer is intended to learn the correlation between the different
macro BSs. We then flatten the output and pass the learned features through a
stack of two fully-connected dense layers of size 128 and 256 respectively. All the
layers are with Rectified Linear Unit (ReLU) non-linearity activation function
as in Fig. 2. The output of the final layer of the base network is branched into
two sub-networks that are designed to solve each of the sub-problem of mmW
BS and beam selection as discussed in following subsections.

4.2 mmW BS Selection Network

This sub-network is designed to predict the optimal mmW BS in order to serve
the desired UE in the communication area. The input to this network are the fea-
tures learned from the base network. This input vector is further passed through
two fully-connected dense layers of size 128 and 64 respectively, for the optimal
BS selection specific feature learning. These learned features are then projected
onto the Bm feature space using a final dense layer. The output of this layer is
then fed to a softmax activation which results in a probability distribution over
the number of mmW BSs. The BS with the highest probability is selected as the
optimal BS.

4.3 Beam Selection Network

The beam selection sub-network utilizes the learned features from the base net-
work in order to predict the best beam. We incorporate two fully-connected
dense layers of size 128 and 64 respectively, each of which is followed by ReLU
activation. Moreover as selection of the best beam also depends or gets impacted
by the selected BS, we concatenate the feature from the hidden layer of the BS
selection network with the output of the previous dense layer from this network
as depicted in Fig. 2. These concatenated features provide added information and
hence result in better performance. The output of this layer is further passed
through a fully-connected dense layer of size 128, to learn the correlation within
the concatenated features. Finally, we project these learned features to M dimen-
sional space and pass it though a ReLU activation layer to get the regression
output for the achievable sum-rate at each beam. The index with maximum sum-
rate value is the selected beam for the selected BS from the mmW BS selection
network.
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4.4 Discussions

The proposed branched neural network architecture has been obtained after
experimenting several DNN configurations. In this section, we discuss these
experimented models and provide reasons for adapted changes in the final DNN
model. We initially considered a multi-layer sequential DNN with single output
vector. We took a concatenated vector of features from all sub-6GHz BSs as
input and expected a single vector of achievable rates for each beam at each
mmW BS as an output. Though this network architecture is simple and per-
forms the task directly, we observed that this network show large variations for
small changes in the environment. Moreover, when the number of mmW BSs
increases, the number of output nodes increases dramatically and the system
thus requires extensive training to achieve good performance.

To overcome this issue, we adopted a branched network, where we separately
selected the optimal mmW BS and then the optimal beam by solving both
mappings as a classification problem. Branching the complete problem to two
sub-problems helped in the learning of the system and also showcased small vari-
ations for small changes in the environment. The consideration of BS selection
as a classification problem performed well. It was however much less efficient
for beam selection. The reason lies in the fact that due to the large number of
narrow beams at mmW BSs, the angular difference between any two adjacent
beams is very small, implying that multiple beams can be selected as best beam
for certain user locations. We observed that this overlapping beam behaviour
could not be solved by classification and the network was unable to converge to
a solution.

To tackle this issue, we modified our branched network where this time, we
considered the beam selection as a regression problem. To further improve the
performance of the overall system, we formed a link between the BS selection
branch and the beam selection branch as both of these operations are not mutu-
ally independent.

We adopt a soft decision for the BS selection process, i.e., we compute for
every BS the selection probability and retain the one with the highest proba-
bility. In contrast, a hard decision would have selected a BS with a probability
higher than a certain and given threshold. Hard decision has been observed to
be training data centered and can guarantee to provide good solutions for fea-
tures within the bounded range of the training data. However, a hard decision
may fail to give good solutions for feature values outside these bounds. A soft
decision however, will still provide a solution. Also, when all the BSs are equally
probable for selection, a hard decision threshold greater than 1/Bm will not pro-
vide any solution, while a soft decision will select any one of them. Furthermore,
beam selection task is also modelled with soft decision, where the best beam is
selected as the one with highest achievable sum-rate. This allows for multiple
beams selection (by considering the first highest sum-rates), a characteristic we
will use to improve the accuracy of the results, as shown in the next section.
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Fig. 3. Simulation environment [2].

5 Simulation Results and Evaluation

In this section, we illustrate the performance of the proposed DNN based BS
and beam selection in a heterogeneous mmW networks. We first describe the
setting of a simulation environment considered throughout the simulations in
Subsect. 5.1 and then discuss the performance results in Subsect. 5.2.

5.1 Simulation Environment

We consider the outdoor simulation environment provided with the available
open source DeepMIMO dataset [2]. From the dataset, we consider two differ-
ent ray tracing scenarios ‘O1 3p5’ and ‘O1 28’ operating at 3.5 GHz and 28 GHz
frequencies respectively, in order to construct a heterogeneous simulation envi-
ronment. We consider two sub-6GHz coordinated BSs and eight mmW BSs. The
deepMIMO dataset generates the channel at these frequencies. Given the CSI,
we extract the basic components and construct the feature vectors from utilizing
only the sub-6GHz channel, which acts as the input to our proposed DNN model.
Essentially, we consider the azimuthal and elevation AoA, signal power, path loss
and signal phase as the extracted features from the sub-6GHz CSI. Intentionally,
we don’t assume the availability of the UE location, as this information may not
be available at the device. The hyperparameters considered for the generation of
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Table 1. Dataset parameters for mmW BSs operating at 28 GHz and macro sub-6GHz
BSs operating at 3.5 GHz.

Parameters 28 GHz scenario 3.5 GHz scenario

Active BSs 2, 3, 4, 5, 6, 7, 8, 17 1, 18

Active users 1651–2200, 3500–5203 1651–2200, 3500–5203

Number of BS antennas 256 16

Antenna spacing (×wavelength) 0.5 0.5

Bandwidth (GHz) 0.5 0.02

Number of OFDM subcarriers 1024 1024

OFDM sampling factor 1 1

OFDM limit 64 64

Number of paths 1 1
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Fig. 4. Performance evaluation of the BS selection, beam selection and total accuracy
Vs varying ratio of training data with respect to total training dataset.

the dataset for training and testing are given in Table 1. The outdoor simulation
environment we considered is given in Fig. 3. It is an urban environment with the
BSs placed along the side of the road. We considered a subset of BSs and users
for our experiments, the list of which is given in Table 1. Users are considered
to be present on the road and are densely populated for better data generation.
Building of varying height, width and material are placed along the road pro-
viding blockages and reflections. For both scenarios, we considered 1024 OFDM
subcarriers with an OFDM sampling factor of one, where sampling factor is the
rate at which we can sample the OFDM subcarriers. Furthermore, the OFDM
limit specifies the number of sampled subcarriers to be considered. We set this
limit to 64 for both scenarios, which implies that we calculate the channels only
at the first 64 sampled subcarriers. Detailed explanation about the simulation
environment can be referred in [2].
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Fig. 5. Accuracy vs number of epochs comparing proposed DNN architecture based
beam selection predicting best 1 beam and best 3 beams without considering location
information in features and proposed DNN architecture predicting best beam while
considering the location information.

5.2 Performance Evaluation

In this subsection, we present the simulation results demonstrating the per-
formance of the proposed scheme, while analyzing the effect of the number of
selected beams, the training dataset selection, and the location parameter on
accuracy and latency.

In Fig. 4, we evaluate the performance of the proposed DNN-based BS predic-
tion, best beam prediction and overall prediction accuracy, where the total accu-
racy is obtained by correct prediction of both BS and beam against the varying
size of the training dataset. We divide the overall data with a 80:20 ratio where
80% of the total data is used for training whereas the remaining 20% dataset
is used for validation/testing purpose. Out of this total available 80% training
dataset, we utilise varying training data ratios and observe the performance in
terms of accuracy for the proposed system. The system performance illustrates
that the network is able to achieve high accuracy for both BS and beam selection
tasks. The achievable BS selection accuracy is around 97% whereas the beam
can be predicted with 88%. The total accuracy of correctly predicting both the
optimal BS and beam is close to 86% when we use complete training dataset.
We observe comparable performance with 50% of training data as compared to
complete training dataset. This means that we can quickly obtain good results
offline and apply the algorithm online and then improve the performance by
training over the time.

We compare the performance of the proposed DNN architecture while now
considering the UE location as one of the input features. Figure 5 shows this
performance as a function of the number of epochs. We compare the performance
for the best beam and the best three beams with and without location. As
expected, we observe that the location-aided design performs better. However,
the performance can be improved by selecting the best b beams, b = 1...M , hence
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Fig. 6. Accuracy vs number of predicted beams by the proposed DNN beam selection
with varying training dataset.

reducing the performance gap between the architecture with or without location
parameter. In Fig. 6, we demonstrate the beam selection accuracy with respect to
number of beams predicted for the proposed DNN for varying size of the training
dataset. As expected, it is observed that the beam selection accuracy increases
with the increasing number of predicted beams as well as with the increasing
size of the training data. From this figure, we can further observe and analyse
the effect of latency for the proposed system. Indeed, an exhaustive search would
require to perform M received power measurements (64 in our case), while with
our solution, we can achieve 85% accuracy by measuring only the best three
beams selected by the network.

6 Conclusion

In this paper, we propose a branched DNN model that jointly performs the mmW
BS prediction and beam selection task in a heterogeneous network architecture.
We consider that multiple mmW BSs coexist with multiple legacy sub-6GHz
BSs to serve the UE in the network area. The sub-6GHz BSs are assumed to
function in a coordinated manner and are supported by the central cloud proces-
sor. We formulate the mmW BS prediction as a classification problem whereas
the optimal beam selection is mapped into a regression problem. For both the
tasks, we utilize the channel components available only at the sub-6GHz BSs
as a set of input features. As the location information may not be always avail-
able or it can be inaccurate due to sensor errors, we intentionally eliminate
the use of location as an input feature for the proposed problem. We compare
the performance of the proposed DNN based design with conventional exhaus-
tive search and observe the success probability close to 1 for allocating optimal
mmW BS and beam while using reduced computational resources. Comparable
performance can be achieved with and without user location available provided
that the three best beams are considered. At last, we show that much fewer
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beam power measurements are required compared to exhaustive search, which
results in lower latency.
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Abstract. This paper addresses the multi-period problem of fixing the
energy charging price at a set of charging stations deployed to support
long journeys of electric vehicles along highways. In order to model the
problem, we propose a non-linear bilevel program, in which the leader (a
single centralized operator) fixes the charging price over the time hori-
zon to maximize its profit and the follower (the operator of the electric
vehicles) chooses the optimal assignment of the electric vehicles to the
stations so to minimize a cost function. To solve the resulting model, we
suggest to adopt an adaption of the Branch-and-Cut algorithm for Mixed
Integer Linear Bilevel Programming proposed by Fischetti et al. (2018).
Preliminary computational results are provided to show the interesting
performance of the new modeling and algorithmic approach.

Keywords: Electrical vehicles · Bilevel programming ·
Branch-and-Cut algorithm

1 Introduction

Recently, with the EV driving range1 (up to 300 km in a single ride) and the
deployment of rapid charging stations along highways, the long journey trip
1 Between the two Renault Zoe delivered respectively in 2012 and 2016, the cost of a
unit of battery storage (1 kWh) has been divided by two, while the energy density
has been doubled by 2. For a same battery size and a same price, Zoe 40 has a
doubled driving range.
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becomes more and more possible [2]. The main problem, tackled in this article,
is how to deal with the dimensioning of those rapid charge stations. In fact,
the autonomy is not sufficient for a long trip without recharging. Therefore,
the problem of managing such stations considering how EV customers react is
considered in this work. Such complex system involves a two levels hierarchical
structure and a specific mathematical problem has to be considered where the
manager of the charging station will be at the upper level and the set of EV at the
lower level (the decisions of the EV are managed by a single operator, centralized
context). In the past few decades, there have been many advances in the field of
Operations Research applied to the transport sector to solve planning or pricing
problems [3]. In many cases, these applications do not take into account the
feedback effects - also called reactions to the optimum- of the third parties of
the organ subject to the problem. Typically, this means optimizing the profit of
a service provider without taking into account the beneficiary’s reaction, whose
decision can potentially vary according to the service provider optimum. Hence,
decision problems need to take into account simultaneously two different actors
(or agents) who do not have the same objective. The corresponding model has to
imply both decision agents interacting sequentially and hierarchically. This type
of process can be formulated as a bilevel program [4] where a decision agent,
called the leader, integrates explicitly the reaction of another agent, named the
follower, when the leader has to make optimal choices. At the upper level, the
leader can be for instance faced to a pricing problem as in [5]. At the lower level,
on the other hand, the followers can interact in terms of a congestion problem as
in [8]. Bilevel models have been proposed recently to address EV problematic. In
[9] the authors propose a bilevel optimization framework for designing optimal
charging strategies for a fleet of EV. In [10], the authors propose also a bilevel
model (here a Stackelberg game), where EV charging station operators compete
at the upper level, offering charging prices to attract EV to their station. The
present paper proposes an approach for the modeling of the best pricing for
charging stations taking into account a set of EV whose decisions are made by
a single operator (centralized model). We make this first strong assumption of
centralized model because of the following two reasons: (i) the centralized context
gives an optimum social bound very interesting in terms of user performances
and recharging system; (ii) this bound will help us, for future work, to quantify
the price of anarchy obtained in a incitation/information decentralized model.
Most of new vehicles, and particularly EV, are basically equipped with GPS
driving facilities. Then, it is plausible, and in fact already present in particular
EV brands like Tesla, that such GPS system can provide information to drivers
on where and how much to charge during the trip. This driving aided system can
be computed in a centralized way by an operator of a fleet of EV. Two actors are
thus considered, one being the Charging Station Manager (CSM) whose objective
is to maximize his profit, the other being the Set of Electric Vehicles (SEV)
responsive to the prices assigned to recharging stations and to the waiting times
at the charging stations. The SEV is managed by a single operator. The paper
is organized as follows. We first state the studied problem in Sect. 2. Section 3
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details the bilevel model proposed to formulate both CSM and SEV problems.
We establish in Sect. 4 the adaptive exact algorithm implemented to solve our
problem. Section 5 is dedicated to numerical experiments. We finally conclude in
Sect. 6.

2 Problem Statement

The study of this paper addresses the problem of determining the unit charging
price at each charging station (CS) in order to influence EV stops in a multi-
dimensional case (several CS and several EV), modeling long travel on highways
with EV. The pricing adopted by the Charging Station Manager (CSM) is con-
sidered to follow a single objective: to maximize its profit by taking into account
the unit charging price and the waiting time at its CS. Inline with the case of
highways, we consider we consider a rectilinear road that the EV can use.

In this situation, it is essential to take into account the behavior of the
SEV since the unit charging price is implicitly dependent on the distribution
of vehicles to charging stations. Therefore, it is primordial to know the SEV’s
reaction to a pricing decision.

The work here presents a large framework and thus some assumptions limit
the complexity of the analysis and allow to focus on implicit CSM/SVE negoti-
ation through an applied Intersection Cuts method [6]. Such method has been
recently proposed and is very efficient to solve bilevel problems. The authors sug-
gest the use of basic Branch-and-Bound algorithm first employed for the relaxed
bilevel problem (i.e. for a single level problem concerning the upper level where
the optimization problem of the lower level is relaxed) called High Point Relax-
ation (HPR) problem and then an exploration at the node of the search tree is
done in order to find a feasible bilevel solution. In addition, the authors suggest
for the first time, the use for bilevel program of intersection cuts, initially devel-
oped by Balas [1] for Integer Linear Programming. The following hypotheses
are then considered: Prices are considered as natural integers and they are also
bounded; Time is discrete; Each charging station has only one charging point;
EV decisions are managed by a single operator (centralized context).

The main problem for the operator of the SEV is to determine, a priori, where
each EV has to stop during his long trip (assuming that each EV has necessary
the need to stop in order to reach its destination), considering pricing decisions
(the unit charging price) proposed by charging stations operator. In addition,
such optimization problem depends on the state-of-charge (SoC) of each vehicle.
It also involves a bilevel approach. We present in the next section the bilevel
model we have proposed to formulate the problem mentioned. Figure 1 gives an
overview of the considered problem. Let us consider S = 6 Charging Stations
(denoted by S on the figure) and 6 EV (denoted by EV on the figure). Each EV
can reach several CS according to its battery level, i.e. its SoC. The decision
of each EV will be taken according to the charging price and the waiting time
before service at each CS. For instance, let us focus on EV1. EV1 can reach S1 or
S2. Then, from S1 the EV1 can reach S3 or from S2 can reach S3 or S4 and so on,
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until EV1 reaches the last station S6. However, each station has its own charging
price, making them more or less attractive, and as a consequence, generating
more or less demand. This difference of attractiveness induces different queues
between the CS, which is another cost for EV.

Fig. 1. Possible stopping scenarios for EV1 where initial SoC for EV 1 is 10 units of
energy which is the maximum value.

3 The Proposed Bilevel Model

In this section, the bilevel model is established and notations are given. The
problem is concerned with two decision makers: a recharging station manager
(RSM) (the leader) and a Set of EV (SEV) (the follower). The output of the
model are the following:

1. Leader’s problem: The leader (RSM) manages a set of charging stations S
and a unit charging price ps has to be assigned to station s on the overall
time duration T , in order to maximize his benefit. This price is assumed
to be stationary which is more acceptable for customers in general like flat
rate pricing schemes in telecom, but the model can be simply enriched by
considering dynamic prices without too much complexity.

2. Follower’s problem: The follower (operator of the SEV) has to decide an
optimal repartition of the EV over the stations in order to minimize the total
charging cost and the waiting time; that is to minimize the cost.

Following notations are considered:

• T is the time interval (time horizon) of the model.
• I is the fleet of EV indexed by i. The EV are initialized to random position

(entrance of the road) and SoC within the discrete set E := {0, . . . , E}.
• S is the discrete set of charging stations (CS) indexed by s and geographically

positioned such that the distance between two consecutive CS is d distance
units uniformly located on the rectilinear considered road.

• All EV are identical and the maximal SoC is denoted by E. The SoC of EV
i at time t is denoted by ei,t such that 0 ≤ ei,t ≤ E.

• When EV i stops at a charging station s at time slot t, the EV charging time
is denoted by Ci,s,t and is equal to Ci,s,t := αC × (E − ei,t) (recovering full
battery level), where αC represents the ratio of the time needed for a full
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charge (when at CS) to the one for full discharge (when driving). αC ≤ 1,
and in the context of highways typical values lie in the range [1/20, 1/3]2.

• Each charging station s has an unit charging price ps in the discrete ordered
set P = {p0, p1, ..., pP } with p0 = Pmin and pP = Pmax.

The proposed bilevel model aims to explore the tradeoff between the charging
price and waiting time at the charging station. The pricing approach is inspired
from [5] which is standard for congestion control. More precisely our model is
based on the following decision variables:

– Pricing of charging stations: the decision variables ps (upper level) are integer
representing the pricing applied at station s per unit of charging time,

– Decision variables of the EV: the variables yi,s,t (lower level) are binaries and
determine if EV i has to stop at charging station s, knowing that the vehicle
will reach it at time t.

Taking ordering indices for the decision variables allows to determine the
stops of an EV along his travel and then deduce the arrival time at each station
corresponding to the stopping decision.

Let us describe the objective function of the leader (upper level optimization
problem), which is dependent on the stopping decision of the SEV (for charging).
The benefit of the leader for one particular charging station s is:

∑

i

yi,s,t × Ci,s,t × ps. (1)

This benefit, coming from EV i who stops at time t in station s, depends on the
charging time of this EV that is Ci,s,t. The maximization problem of the leader
who manages all CS is then expressed by:

maxp:=(p1,...,pS)

I∑

i

S∑

s

T∑

t

yi,s,t × Ci,s,t × ps. (2)

Concerning the follower (the manager of the SEV), it aims to minimize the
total charging cost for EV as well as the waiting times at the charging stations
(we make a sum of both follower’s objectives). We denote by �s the total waiting
time of all EV who stop at station s, which gives the following objective function:

miny(
I∑

i

S∑

s

T∑

t

yi,s,t × Ci,s,t × ps +
S∑

s

�s) (3)

where

�s =
I∑

i

T∑

t

δi,s,t (4)

2 This ratio being mainly dependent on the (ultra)fast charging power available cur-
rently in the range 50–350 kW in this use-case; the driving part being a “physical
constant”.
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This last expression represents the waiting time of EV i arrived at station
s at time t, before starting to get served (i.e. to start charging energy). More
precisely, if an EV, for example EV i arrives after EV k at the same station s
at time t, and if EVk is still charging then the waiting time for EV i at station
s depends on the remaining charging time of EV k like in a queueing system. In
addition, �i,s,t is the travel time for EV i given its position at time t, to reach
station s such that station s is in front of him but not the next one on the travel,
and it is determined by:

�i,s,t = di,s,t +
s−1∑

s′=1

T∑

t

Ci,s′,tyi,s′,t +
s−1∑

s′=1

T∑

t

δi,s′,t, (5)

with di,s,t = s × d − pos(i, t) is the distance between station s and the current
position of EV i at time t denoted by pos(i, t). Indeed, this variable has to take
into account the waiting and charging times for EV i in any other charging
stations s′ where the EV has stopped before reaching station s. If station s is
the next one on the travel, the travel time for EV i to reach s is simply:

�i,s,t = d − pos(i, t).

Let us now describe the constraints of our model. We have to guarantee that only
one travel can be taken by an EV. The yi,s,t are the decision variables related
to the decision that EV i stops at station s at time t and the order corresponds
to the t-th visited charging station since the beginning of the travel. This order
allows to guarantee that an EV can not turn back on the road. Let us give a
simple example to illustrate our constraints. Let us consider for example EV 1.
Let us assume that EV 1 stops at the station 1 at time 1 and then at station
3 at time 3 (recall that d = 1), consequently y1,1,1 = y1,3,3 = 1, and y1,s,t = 0
∀s, t, that is y1,2,4 = 1 is forbidden. More formally, this constraint can be stated
as follows: ∑

s

yi,s,t0 = 1 ∀ i. (6)

That is at t0 EVi has to choose one and only one station s. Nevertheless, after
t0 it has the choice to stop or not to a possible station. The constraints can be
expressed as follows:

(yi,s,t ×
S∑

s′=s+1

yi,s′,t+1) + (¬yi,s,t × (
S∑

s′=s+1

¬yi,s′,t+1)/S) = 1. (7)

If EVi stops at the station s at time t then it has to visit one and only one station
s′ (corresponding to accessible stations from station s) at time t + 1 otherwise
if EVi does not visit station s at time t (expressed by ¬yi,s′,t+1) then EVi can
not stop at any station s′ with ¬yi,s′,t+1). Finally constraints which allow link
between waiting time and charging price at CS are described hereafter:

ps ≤ (Δmax − Δs)
Δmax

× (Pmax − Pmin) + Pmin ∀s ∈ S. (8)
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Indeed, the constraint below aims to fix a price if and only if the waiting time
at station s allows it. It can be noticed that if, for instance, the waiting time at
station s is such that Δs = 0 then the charging price will be set at maximum
value Pmax. On the contrary, the bigger the waiting time is at station s, the
lower the charging price at this station. In addition, note that since Δs includes
a product of yi,s,t decision variables, those constraints are quadratic. Note that
Δmax, which is the maximum waiting time at a CS can be pre-calculated. We
are now able to establish the proposed non-linear bilevel problem (NLBLP ) as
follows:

Note that the proposed bilevel model includes characteristics which make it
non-standard:

– the objective functions of the leader (2) and follower (3) are not linear;
– constraints (8) relative to the relation between of the price and waiting time

are quadratic.

Consequently, the recent exact solution method developed in [6] has been
used by linearization of quadratic constraints in order to consider our non-
standard (NLBLP ). The algorithm is described in the next section.

4 Solution Algorithm for the NLBLP

Our bilevel program solution method is an adaptation of the Branch-and-Cut
algorithm proposed by [6] for our non linear problem. The authors have sug-
gested a general exact solution method dealing with Mixed-Integer Bilvel Pro-
gram (MIBLP ) where both objective functions and constraints for leader and
follower are linear. The decision variables of the leader which influence the deci-
sion of the follower have to be pure integer and bounded. The other decision
variables of the leader can be integer or continuous, and the one of the follower
are integers. The general (MIBLP ) studied in [6] can be written as follows:

min F (x, y) (9)

s.t.

G(x, y) ≤ 0 (10)

g(x, y) ≤ 0 (11)

x, y ∈ Rn (12)

f(x, y) ≤ φ(x) (13)

where for a given x ∈ Rn1 the follower value function is:

φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0} (14)

When constraint (14) is relaxed, the program is called High Point Relaxation
(HPR) which is assumed to be feasible. This is a strong property that our
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model has to satisfy. The authors suggest a finitely-convergent branch-and-bound
algorithm based on the two following assumptions: (i) the variables x and y have
finite lower and upper bounds in (HPR) and in the follower (MILP ); (ii) the
continuous leader variables (if they exist) do not appear in the follower problem.

We apply [6] to our bi-level program. Actually, even if the objective func-
tion of the leader is non-linear, it is convex then it can be dealt by CPLEX. In
addition, since we deal with (HPR) the problem concerning the non linearity of
the objective function of the follower disappears. Concerning the quadratic con-
straints, a linearization is possible by the use of classical and well-known crossed
quadratic terms linearization techniques developed by Glover [7]. Consequently,
both assumptions (i) and (ii) established by Fischetti et al. are satisfied in our
context, we are then allow to use their Branch-and-Cut algorithm.

5 Preliminary Experiments

In this last section, preliminary experiments are conducted in order to illus-
trate the performance of the Branch-and-Cut algorithm used to solve our non-
standard (NLBLP). MILP problems have been solved using IBM ILOG CPLEX
12.6.3 using callbacks. We have implemented the algorithm in C++ language.
Numerical examples were run on a bi-xeon 3.4 Ghz with 4Go of main memory
computer. For all instances, maximal SoC is E = 17 kWh, d = 5 Km for the
distance between two consecutive stations, αC = 1 (that is one unit of energy is
consumed when traveling and one unit is recharged when charging, per unit of
time) and all initial SoC have been randomly determined. We have conducted
several tests with a number of EV and CS taking respectively their value in the
following discrete sets {2; 4; 8; 16; 32; 64} and {2; 4; 6; 8; 10}.

Table 1 displays: (i) the CPU times (in seconds) required by the exact algo-
rithm (B&C) we have coded, (ii) the CPU times (in seconds) needed by a fea-
sible solution method (HEUR) and (iii) the relative gap in percentage (Gap =
(Optimum – Lower Bound)/Lower Bound). The Lower Bound is provided by
the heuristic denoted by (HEUR) which corresponds to the first feasible bilevel
solution found in the Branch-and-Bound algorithm. Each line of Table 1 is an
average on ten random instances. The (B&C) and the heuristic are very fast on
small instances (2 EV). Moreover, the lowest relative gap (≤1%) is obtained for
this size of instances. Such good performance comes from the first step consist-
ing in finding a first feasible solution very quickly, which is a key step here in
our approach. When the number of EV increases, both methods become more
time consuming and the relative gap between the solutions of both methods also
increases. Note that our heuristic can be helpful when the exact solution can
not provide the optimum solution like for the instance (#EV,#CS) = (8, 4).
Obviously, more experiments have to be conducted in future work in order to
provide a precise size limit of the instances.
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Table 1. Average computational time (in sec.) of the B&C algorithm and our heuristic

Method (# EV, # CS) B&C HEUR Gap (%)

(2,2) 0.12 0.119 0.7

(2,4) 4.418 1.645 0.8

(2,6) 11.1 7.223 1

(2,8) 35.732 13.739 1.2

(2,10) 86.919 21.280 1.5

(4,2) 0.24 0.182 1

(4,4) 23.9 3.431 1.2

(4,6) 2995.201 123.667 1.4

(8,2) 0.715 0.221 3

(8,4) – 124.931 –

(16,2) 3.233 2.487 10

(32,2) 113.727 98.64 20

(64,2) 1370.292 1114.387 30

6 Conclusion

This work deals with the problem of managing a set of EV into different charging
stations, taking into account the charging and the waiting costs. The charging
price at each station is settled by a central controller, with the aim to induce an
optimal profit. The global problem is a non-linear bi-level problem (NLBLP).
The use of a recent tool is possible in our context and significant speedup of the
computational time of our heuristic has been obtained without losing the per-
formance. This work then shows on a simple example that managing optimally
many EV for long distance travel is possible trough the use of bi-level programs.
Many perspectives are possible, for example to take into account a network
topology and also to integrate decentralized decision taken by EV individually.
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Abstract. We consider a network with Massive Multiple Input Mul-
tiple Output (M-MIMO) base stations using a Grid of Beams (GoB)
for data and control channels. 5G allows to establish interference rela-
tions between beams of neighboring cells. Such relations can be used to
automatically generate a beam relation matrix, denoted as Automatic
Neighbor Beam Relation (ANBR) matrix that can be very useful for
optimizing different resource allocation processes. This paper shows how
the ANBR matrix can be used to coordinate scheduling of neighboring
cells with a small amount of information exchange. The coordination
is performed by judiciously muting or reducing the bandwidth of cer-
tain beams in the process of Multi-User (MU) Proportional Fair (PF)
scheduling. Numerical results show how the coordination approach can
bring about significant performance gain.

Keywords: Beam relations · ANBR · Massive MIMO ·
Coordination · Multi-user scheduling · Interference management · 5G

1 Introduction

M-MIMO is among the pillars of 5G technology that allows to significantly
improve user rates, system capacity and Energy Efficiency (EE) [1]. The concept
of GoB has been introduced to allow beamforming of control channels that are
used among others to transmit synchronization signals and to broadcast system
information to allow initial access and mobility procedures [9]. Beam sweeping
is used in conjunction with GoB by switching rapidly the beams one by one
in a manner that covers the entire cell surface. Similarly, data channels can be
transmitted using the beams of the GoB. In this case the GoB can be seen as a
predefined codebook of beams that can be selected by a MU scheduler to serve
users.

Beam management is an important feature introduced in 3rd Generation
Partnership Project (3GPP) for 5G networks. It is part of the New Radio (NR)
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Automatic Neighbor Relation (ANR) and is considered as a central Self- Orga-
nizing Network (SON) function. NR ANR allows to automatically establish dif-
ferent types of relations involving gNodeBs (gNBs) and/or beams [7]: (i) gNB
to gNB relations that consist of establishing connectivity over the Xn interface
between neighboring gNBs. Such relations are necessary to support mobility,
load and traffic sharing or multi-connectivity and were already standardized for
4G networks [4]; (ii) gNBs to Beam relations; and (iii) beam to beam relations,
intra- and inter-cell.

The feature of automatically establishing relations between beams is denoted
as ANBR. The association of user traffic Quality of Service (QoS), serving and
interfering beams, and input from the ANBR enables the exploitation of the
beam level spatial resolution to further optimize resource management functions.

This paper investigates the use of ANBR to optimize MU-Multiple Input
Multiple Output (MIMO) scheduling. We assume that the ANBR feature is avail-
able and provides a binary static matrix, denoted as ANBR matrix, with non-
zero elements representing beam relations. The way to define relations between
beams is not standardized. It can be derived as in classical ANR, e.g. by cal-
culating the average interference users of beam i experience from beam j of
a neighboring cell during a long period of time, and comparing it to a prede-
fined threshold. We show how the ANBR matrix can be used to coordinate the
MU schedulers of neighboring cells in a manner to minimize collisions between
potentially interfering beams, while taking into account the distribution of the
traffic.

Traditional approaches for collaboration between adjacent cells with M-
MIMO deployment such as Coordinated Multipoint transmission (CoMP) [5]
require signaling and computation in both the PHY and the MAC layer and
are thus demanding an intensive signal processing and the exchange of impor-
tant amount of information. They also have strict requirements on the backhaul
capacity. In the proposed approach, the coordination is performed at the MAC
level and requires little information exchange and processing power.

The paper is organized as follows. Section 2 presents the system model.
Section 3 develops a coordinated MU scheduling solution relying on the ANBR.
The architecture supporting the solution is also described. Numerical results are
presented in Sect. 4 followed by concluding remarks in Sect. 5.

2 System Model

Consider a hexagonal network with tri-sectoral sites, each with M-MIMO system
in the Down Link (DL). GoB with beam sweeping is used for initial access (to
attach users to the Base Station (BS)) and for synchronization. Data transmis-
sions use the (fixed) beams of the GoB, and the choice of users to be served is
made by the MU-scheduler.

Each sector (BS or cell) m is equipped with a M-MIMO antenna with N =
Nx ×Nz radiating elements, and is serving Nm mobiles, each with one receiving
antenna (the beam generation and antenna modeling is explained in details in
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[8]). Figure 1 presents the coverage area provided by GoBs of two adjacent cells
for the case of Nx = Nz = 16. The color code is used to simplify visualization
and has no physical meaning. Fading is removed for clarity. It is noted that the
zeros of the beam radiation patterns in the azimuth axis close to the BSs is due
to the zeros in the beam radiation patterns and the fact that reflections and
fading are omitted. It is recalled that beams for control channels are activated
one by one (via beam sweeping) whereas several beams for data channels can be
scheduled simultaneously.

We consider two BSs (i.e. macro cells) m and m′ which interfere each other,
each of which having a GoB denoted by Bm and Bm′ respectively as shown in
Fig. 1. We assume that a cell can serve up to K users in a time slot, with at
most one user per beam b. The users are selected according to a PF criterion.

Fig. 1. GoBs of two neighboring cells projected on the surface

Assume that the BS serves k users at a given time slot with k ≤ K and
denote by pmax the maximum transmission power of the BS. The power pm that
the BS m transmits to user u, equals pmax

k . Denote by Cm,b
u the useful signal

received power of user u from beam b of BS m, by du,m - the distance between
m and u, and by σ - the thermal power. Cm,b

u can be written as a function of
the channel gain hm

bu
(u):

Cm,b
u = pm|hm

b (u)|2. (1)

|hm
bu

(u)|2 is modeled as the product between the pathloss, the antenna gain
Gm

bu
(u) of the beam bu serving user u and measured at the direction of user u,

and the fast fading term Z(u). The latter is modeled as a realization (per user)
of a Nakagami distribution, and can be parameterized for different propagation
environment [2].

|hm
bu(u)|2 =

c

dγ
u,m

Gm
bu(u)Z(u) (2)
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where c and γ are constants that depend on the type of environment. The inter-
ference generated by a cell m′ on u is written as the sum of interferences from
its active beams Ib′

u :
Im′
u =

∑

b′∈Bm′

Ib′
u (3)

where
Ib′
u = pm′

∑

u′∈b′,u′ �=u

|hm′
b′
u′

(u)|2 (4)

The Signal to Interference plus Noise Ratio (SINR) of a user u attached to
cell m is written as:

Sm
u =

pm|hm
bu

(u)|2
∑
m′

Im′
u + σ2

(5)

A full buffer traffic model is assumed. The baseline scheduler is based on PF
without coordination.

3 Coordinated Self-organizing Scheduling

3.1 Architecture Framework

The architecture supporting the ANBR based coordination is shown in (Fig. 2).
A centralized ANBR SON function is deployed at the management and orches-
tration plane as an application (but can be implemented in a distributed manner
as well). It provides a static matrix Am,m′

for any two cells m and m′, with ele-
ments Am,m′

b,b′ . For simplicity of notations we omit the superscripts m and m′

from the matrix A in the rest of the sequel. Ab,b′ = 1 if the beam b of cell m and
beam b′ of cell m′ interfere each other (as mentioned in Sect. 1), and 0 otherwise.
The matrix A is calculated and updated (not often) according to the operator
policy and is considered here as constant.

The Distributed Unit (DU) (i.e. Radio Link Control (RLC), Media Access
Control (MAC) and Physical (PHY)-High control protocol stack), hosts a new
functional block denoted in Fig. 2 as D-ANBR. The D-ANBR. receives and pro-
cesses measurements from the Radio Units (RUs). It dynamically updates the
beam relations’ matrix A and keeps only those relations corresponding to the
present traffic distribution (as described in the next subsection). The resulting
sparser matrix, Q, is transmitted to the schedulers of BSs m and m′ and is used
to coordinate them. The time scale for generating the matrix Q is that of the
traffic dynamics, e.g. of the order of a second.

It is noted that the introduction of new control, Radio Resource Management
(RRM) or machine learning algorithms is currently studied in standardization
fora the ORAN Alliance which is standardizing new interfaces and protocols to
support deployment of such algorithms in different network nodes [6].
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Fig. 2. System architecture

3.2 ANBR-Assisted Coordinated Scheduling

We first describe the generation of the matrix Q and then explain how it is used
to coordinate the MU schedulers of BSs m and m′.

Denote by Userv
b,m the set of users served by beam b of BS m:

Userv
b,m = {u ∈ m|b = argmax

b∈Bm

Cm,b
u } (6)

We define two indicators used to generate the matrix Q using A. The first,
A1(b, u′), indicates whether user u′ achieves low Signal Interference Ratio (SIR)
that is below a predefined threshold γth and is thus likely to experience strong
interference from beam b:

A1(b, u′) =
{

1 if Cm′
u′

Ib
u′

< γth

0 otherwise
(7)

For clarity of notation the beam b′ serving user u′ is not included in (7).
Denote by U int

b the set of users u′ ∈ m′ for which A1(b, u′) = 1, namely
the set of users that could benefit the most from reducing the interference from
beam b:

U int
b = {u′ ∈ m′|A1(b, u′) = 1}. (8)

The cardinality of Userv
b and U int

b are denoted by nserv
b and nint

b respectively,

nint
b = |U int

b | (9)
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nserv
b = |Userv

b | (10)

The second indicator, A2(b), is used to verify whether the ratio between the
number of users that beam b interferes and the number of users it serves is
above a threshold ηth. The rational is that the benefit from muting or limiting
the allocated resources to a beam during a Transmission Time Interval (TTI)
increases with the amount of users it interferes and decreases with the amount
of users it serves.

A2(b) =
{

1 if nint
b

nserv
b

> ηth

0 otherwise.
(11)

The matrix element Qb,b′ of Q is defined as follows:

Qb,b′ = Ab,b′ × 1{A2(b)=1} × 1{A2(b′)=1} (12)

The threshold values of ηth and γth are determined using a simple optimiza-
tion procedure (see details is Sect. 4).

The rationale for (12) is the following: consider the case where coordination
is based on constraining the MU schedulers, namely not to schedule users served
by beams b and b′ in the same TTI for which Qb,b′ = 1 (see Algorithm 2). From
Eq. (12), the coordination is performed if both users served by b and b′ can
benefit from coordination. The algorithm for generating the matrix Q is given
by Algorithm 1.

Algorithm 1. Code Generation
Input: A
Init: Q =[0], matrix of the same dimension as A
for all couples (b, b′) for which Ab,b′ = 1 do

nint
b ← |U int

b |, nserv
b ← |Userv

b |
nint
b′ ← |U int

b′ |, nserv
b′ ← |Userv

b′ |
Qb,b′ = Ab,b′ × 1{A2(b)} × 1{A2(b′)}

end for

The MU scheduling uses a known beam selection feature known as beam
skipping technique that is applied independently in each cell. It allows to reduce
intra- and inter-beam interference and to improve users’ rates. It is noted that
the ANBR based coordinated scheduling is independent of the beam skipping
feature and can be applied without it. Each user is attached to the beam of
the GoB achieving the best SINR. The user attachment provides certain spatial
information that is exploited by the scheduler to mitigate interference: (i) by
avoiding scheduling two users attached to the same control beam and (ii) by
avoiding scheduling two users attached to adjacent beams of the GoB, both in
the same TTI.

We first present a time based ANBR coordination scheme, denoted for sake
of brevity as time-ANBR scheme. In this scheme, coordination is achieved by
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muting of certain beams during certain TTIs as explained below. For sake of
simplicity, delay has been ignored but can be easily incorporated into the coor-
dination scheme.

Denote by Rb
u,tM+1

the instantaneous rate of a user u ∈ m when it is sched-
uled at tM+1. The average rate at tM+1 is calculated using exponential moving
average (or Abel average) with a small parameter ε [3].

Ru,tM+1 = (1 − ε)Ru,tM + εRu,tM+1 (13)

Denote by Ucandidates the set of users that can still be scheduled and by UK

- the set of users already selected for scheduling, both at tM+1.
Consider next the scheduling algorithm of cell m (or m′) (see Algorithm 2).

In the initialization phase, Ucandidates contains all the users attached to m (or
m′). The scheduler ranks the users in Ucandidates with respect to a PF criterion,

namely
Rb

u,tM+1

Rb
u,tM

+d
.

All beams b ∈ Bm for which Qb,b′ = 1 are muted at an even TTI, whereas
the beams b′ ∈ Bm′ are muted at an odd TTI. The users of a muted beam are
removed from Ucandidates. The scheduler selects the top-ranked candidate. Then,
it removes the selected users attached to the adjacent beams from the candidate
list (following the beam skipping scheme). We repeat the above two operations
until K candidates are selected or until the set of candidates is empty.

Algorithm 2. ANBR-assisted MU Scheduler
Input : Q
Init: UK = {}, Ucandidates = {u ∈ m}
if TTI is even then

for all b for which Qb,b′ = 1 do
Remove u ∈ b from Ucandidates

end for
end if
while |Uk| < k or Ucandidates �= ∅ do

uselect ← argmaxu∈Ucandidates

Rb
u,tM+1

Rb
u,tM

+d

Uk ← Uk ∪ uselect

Remove users attached to the beam of uselect and to the adjacent beams from
Ucandidates

end while

The second coordination scheme is denoted as frequency based ANBR coor-
dination scheme and is denoted for sake of brevity as frequency-ANBR scheme.
This scheme is similar to the time-ANBR namely instead of consecutively mut-
ing beams for which Qb,b′ = 1, we allocate to these beams half of the available
non-overlapping resources. It is noted that in spite of being very simple, both
time- and frequency-ANBR coordination schemes achieve high performance with
little computational efforts.
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Lastly, the generalization of the coordinated scheduling to the case where
beams from three cells interfere with each other is straightforward. Sparse three
dimensional matrices A and Q need to be generated, and non-overlapping
resources (e.g. Physical Resource Blocks (PRBs) in the frequency-ANBR) should
be allocated to the beams. One should bear in mind that significant co-located
interference from several cells should be minimized in the cell-planning phase
and not by the scheduler.

4 Numerical Results

4.1 Simulation Scenario

Consider a network comprising 19 sectors (cells): a central sector and two tiers of
18 neighboring sectors (6 sites located on a hexagonal grid) surrounding it. Each
base station is equipped with a M-MIMO antenna as described in Sect. 2. The
central sector and one of its direct neighbors denoted hereafter as cell 1 and cell
2 (respectively upper left and lower right in Fig. 1), implement the coordinated
scheduling. The reference scenario with no coordination serves as a baseline. It
implements a PF based MU-scheduler with the beam skipping feature. Both
the time- and frequency-based ANBR coordinated scheduling are simulated and
compared to the baseline scenario. The simulation parameters are summarized
in Table 1.

The traffic distribution of cells 1 and 2 is shown in Fig. 3. A red rectangle
surrounds a hotspot zone with high traffic located around the cell edge area of
the two cells. Each cell has 35 users in the hotspot area and 10 users in the rest
of the cell, drawn according to a uniform distribution in each zone. The users’
color code in Fig. 3 is the following: red and blue squares are the users outside
of the hotspot and belonging to the cell 1 and 2 respectively, green and yellow
are the users of cell 1 and 2 located in the hotspot.

The best values for the thresholds ηth and γth are determined by means of
an exhaustive search. We define a uniform grid of 10 × 10 points (ηth, γth),
with ηth varying from 1/10 to 1 and γth - from 1 to 10. For each point of the
grid we compute the Mean User Throughput (MUT) gain using the time-ANBR
coordination scheme as depicted in Fig. 4. The gain increases with the decrease
in ηth while the MUT gain is not sensitive to variations in γth except for small
values. Too small value of γth results in too few mobiles that can benefit from the
coordination between the two cells. Similarly, a small value of ηth allows more
beam relations to be included in the matrix Q and more users will participate
in the coordinated scheduling. In the rest of the paper, the thresholds’ values of
γth = 2.5 and ηth = 1/6 are set. A gain of 105% in MUT with respect to the
baseline is achieved on a plateau of 27 points in the γth ηth plane, indicating
little sensitivity of the thresholds (see Fig. 4).

Figure 6 presents the distribution of the served - and interfered users per
beam for both cells using equations (10) and (9) respectively.
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Table 1. Network and Traffic characteristics

Network parameters

Number of BSs 2

Number of interfering macros 6 × 3 sectors

Macro-cell layout Hexagonal trisector

Number of beams b per macro cell 16

Bandwidth 20 MHz

Channel characteristics

Thermal noise −174 dBm/Hz

Path Loss (d in km) 128.1 + 37.6 log10(d) dB

Nakagami-m shape parameter 5

Intersite distance 500m

Traffic characteristics

Number of user in the hotspot zone of each cell 35

Number of user outside the hotspot zone in each cell 10

Traffic distribution in hotspot zone Uniform

Traffic distribution outside hotspot zone Uniform

Service Type Full buffer, data

4.2 Performance Analysis

Figures 5 and 7 compare MUT results for the two coordination schemes, the
time- and frequency-ANBR and the baseline. The average results per cell are
depicted in Fig. 5 and the time evolution of the MUT for both cells is shown
in Fig. 7. The improvement brought about by the coordination schemes is very
significant, of the order of 100%. One can see that the time-ANBR performs a
bit better than the frequency-ANBR based coordination. This is explained by
the fact that when a beam is muted, time resources will be used by users served
by other beams. In the case of frequency-ANBR, the coordinated beams are
allocated non-overlapping frequency resources and hence not all the available
resource are used.

In the following results, we consider the frequency-ANBR coordination
scheme compared to the baseline. We divide the users into two groups as a
function of their locations, namely outside and inside the hotspot area. The
users’ throughput are presented in the form of horizontal bars, in an increasing
order of throughput values in the baseline case (in blue). The same order is kept
for the coordinated scheduling case (in red) to ease comparison.

Figures 8 and 10 present the throughputs of the users outside the hotspot zone
of cells 1 and 2 respectively. In cell 1 (Fig. 8) certain users see their throughput
grows significantly since they benefit from the cells coordination, while other
users see their throughputs slightly decreased. In cell 2 (Fig. 10) a non-significant
throughput reduction is observed.
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Fig. 3. Traffic map

Fig. 4. Comparison of MUT as a func-
tion of the thresholds γth and ηth

Fig. 5. MUT for frequency(in red)- and
time(in yellow)-MUT and baseline(in
blue) (Color figure online)

Fig. 6. Number of served and interfered users per beam
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Fig. 7. Time evolution of the MUT of the network

Fig. 8. Throughputs of users outside
the hotspot zone in cell 1

Fig. 9. Throughputs of users in the
hotspot zone in cell 1

Figures 9 and 11 show the throughputs of the users in the hotspot area of
cells 1 and 2 respectively. One can clearly see that most of the users benefit from
the coordinated scheduling and see their throughputs significantly increased.
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Fig. 10. Throughputs of users outside
the hotspot zone in cell 2

Fig. 11. Throughputs of users in the
hotspot zone in cell 2

5 Conclusion

This paper has shown how ANBR can be used to coordinate MU scheduling of
a pair of neighboring cells with M-MIMO deployment. The strong interference
at cell edge motivates the coordination approach. Two solutions have been pro-
posed, a time- and a frequency based coordinated scheduling. The coordination
solution exploits the capability to derive beam relations of neighboring cells,
which is supported by 5G technology. The dynamic beam relations are updated
at the time scale of arrival and departure of users, namely in the order of a
second. It makes this approach attractive with respect to traditional techniques
such as CoMP which operates at a millisecond time scale and requires high pro-
cessing capabilities. The coordinated scheduling solution brings about significant
throughput gains to users located close to cell edge or in highly interfered area.
The ANBR feature has an important potential for other resource allocation and
optimization problems such as mobility or load balancing.
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Abstract. We consider a random financial network with a large number
of agents. The agents connect through credit instruments borrowed from
each other or through direct lending, and these create the liabilities. The
settlement of the debts of various agents at the end of the contract period
can be expressed as solutions of random fixed point equations. Our first
step is to derive these solutions (asymptotically), using a recent result on
random fixed point equations. We consider a large population in which
the agents adapt one of the two available strategies, risky or risk-free
investments, with an aim to maximize their expected returns (or sur-
plus). We aim to study the emerging strategies when different types of
replicator dynamics capture inter-agent interactions. We theoretically
reduced the analysis of the complex system to that of an appropriate
ordinary differential equation (ODE). We proved that the equilibrium
strategies converge almost surely to that of an attractor of the ODE.
We also derived the conditions under which a mixed evolutionary sta-
ble strategy (ESS) emerges; in these scenarios the replicator dynamics
converges to an equilibrium at which the expected returns of both the
populations are equal. Further the average dynamics (choices based on
large observation sample) always averts systemic risk events (events with
large fraction of defaults). We verified through Monte Carlo simulations
that the equilibrium suggested by the ODE method indeed represents
the limit of the dynamics.

Keywords: Evolutionary stable strategy (ESS) · Replicator
dynamics · Ordinary differential equation · Random graph · Systemic
risk · Financial network

1 Introduction

We consider a financial network with large number of agents. These agents are
interconnected to each other through financial commitments (e.g., borrowing -
lending etc.). In addition they make investments in either risk-free (risk neutral)
or risky derivatives. In such a system the agents not only face random economic
shocks (received via significantly smaller returns of their risky investments),
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they are also affected by the percolation of the shocks faced by their neighbours
(creditors), neighbours of their neighbours etc. In the recent years from 2007–
2008 onwards, there is a surge of activity to study the financial and systemic
level risks caused by such a percolation of shocks [1,3–5]. Systemic risk is the
study of the risks related to financial networks, when individual or entity level
shocks can trigger severe instability at system level that can collapse the entire
economy (e.g., [3–5]). In this set of papers, the author study the kind of topology
(or graph structure) that is more stable towards the percolation of shocks in
financial network, where stability is measured in terms of the total number of
defaults in the network.

In contrast to many existing studies in literature related to systemic risk, we
consider heterogeneous agents and we consider evolutionary framework. In our
consideration, there are two groups of agents existing simultaneously in the net-
work; one group of agents invest in risk-free instruments, while the other group
considers risky investments. The second group borrows money from the other
members of the network to gather more funds towards the risky investments
(with much higher expected returns). These investments are subjected to large
(but rare) economic shocks, which can potentially percolate throughout the net-
work and can even affect the ‘risk-free’ agents; the extent of percolation depends
upon relative sizes of the two groups. We consider that new agents join such a
network after each round of investment; they choose their investment type (risky
or risk-free) based on their observations of the returns (the surplus of the agents
after paying back their liabilities) of a random sample of agents that invested
in previous round. The relative sizes of the two groups changes, the network
structure changes, which influences the (economic shock-influenced) returns of
the agents in the next round, which in turn influences the decision of the new
agents for the round after. Thus the system evolves after each round. We study
this evolution process using the well known evolutionary game theoretic tools.

In a financial network perspective, this type of work is new to the best of
our knowledge. We found few papers that consider evolutionary approach in
other aspects related to finance; in [7], the authors study the financial safety net
(a series of the arrangement of the firms to maintain financial stability), and
analyze the evolution of the bank strategies (to take insurance or not); recently
in [6] authors consider an evolutionary game theoretic model with three types
of players, i) momentum traders ii) contrarian traders iii) fundamentalists and
studied the evolution of the relative populations. As already mentioned, these
papers relate to very different aspects in comparison with our work.

Evolutionary Stable Strategies. Traditionally evolutionary game models have
been studied in the literature to study animal behaviour. The key ingredients of
the evolutionary game models are a) a large number of players, b) the dynam-
ics and c) the pay-off function (e.g., see the pioneering work [10]). Replicator
dynamics deals with evolution of strategies, reward based learning in dynamic
evolutionary games. Typically it is shown that these dynamics converge to a
stable equilibrium point called Evolutionary Stable Strategy (ESS), which can
be seen as a refinement of a strict Nash Equilibrium [10]; a strategy prevailing in
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a large population is called evolutionary stable if any small fraction of mutants
playing a different strategy get wiped out eventually. Formally, in a 2-player
symmetric game, a pure strategy ŝ is said to be evolutionary stable if

1. (ŝ, ŝ) is a Nash Equilibrium; i.e., u(ŝ, ŝ) ≥ u(s
′
, ŝ) ∀s

′
and

2. If (ŝ, ŝ) is not a strict NE (i.e., ∃ some s
′ �= ŝ such that u(ŝ, ŝ) = u(s

′
, ŝ)),

then u(ŝ, s
′
) > u(s

′
, s

′
).

We study the possible emergence of evolutionary stable strategies, when peo-
ple choose either a risky or a risk-free strategy; the main difference being that the
returns of either group are influenced by the percolation of shocks. The returns
of the portfolios depend further upon the percolation of shocks due to layered
structure of financial connections, and not just on the returns of the investments,
i.e., not just on economic shocks. Our main conclusions are two fold; a) when
agents consider large sample of data for observation and learning, the replicator
dynamics can settle to a mixed ESS, at which the expected returns of the two
the groups are balanced; b) in many other scenarios, through theoretical as well
as simulation based study, we observed that the replicator dynamics converges
to one of the two strategies, i.e., to a pure ESS (after completely wiping out the
other group).

The analysis of these complex networks (in each round) necessitated the study
of random fixed point equations (defined sample path-wise in large dimensional
spaces), which represent the clearing vectors of all the agents ([1,3–5] etc.). The
study is made possible because of the recent result in [1], which provided an
asymptotically accurate one dimensional equivalent solution.

2 Large Population Finance Network

We consider random graphs, where the edges represent the financial connection
between the two nodes. Any two nodes are connected with probability pss > 0
independent of the others, but the weights on the edges depend on (the number
of) neighbors. This graph represents a large financial network where borrowing
and lending are represented by the edges and the weights over them. The mod-
eller may not have access to the exact connections of the network, but random
graph model is a good approach to analyse such a complex system. In particular
we consider the graphs that satisfy the assumptions of [1].

The agents are repeatedly investing in some financial projects. In each round
of investment, the agents borrow/lend to/from some random subset of the agents
of the network. Some of them may invest the remaining in a risk-free investment
(which has a constant rate of interest rs). While the others invest the rest of
their money in risky investments which have random returns; we consider a
binomial model in which returns are high (rate u) with high probability δ and
can have large shocks (rate d), but with small probability (1− δ); it is clear that
d < rs < u. We thus have two types of agents, we call the group that invests
in risk-free projects as ‘risk-free’ group (G1), the rest are being referred to as
‘risky’ group (G2).
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New agents join the network in each round of investment. They choose their
investment type, either risk-free or risky, for the first time based on the previous
experience of the network and continue the same choice for all future rounds of
investment. The new agents learn from network experience (returns of agents of
the previous round of investments) and choose a suitable investment type, that
can potentially give them good returns. The new agents either learn from the
experience of a random sample (returns of two random agents) of the network or
learn from a large number of agents. In the former case, their choice of investment
type depends upon the returns of the random sample in the previous round.
While in the latter case the decision can also depend on the average utility of
each group of the agents, obtained after observing large number of samples.

Two Strategies: As mentioned before, there are two strategies available in
the financial market. Risk-free agents of G1 use strategy 1; these agents lend
some amount of their initial wealth to other agents (of G2) that are willing to
borrow, while the rest is invested in a government security, for example, bonds,
government project etc. Risky agents of G2 are adapting strategy 2, wherein they
borrow funds from the other agents and invest in risky security, for example,
derivative markets, stocks, corporate loans etc. These agents also lend to other
agents of G2. Let εt be the fraction of the agents in G1 group and let n(t) be
the total number of agents in round t. Thus the total number of agents (during
round t) in group 1 equals n1(t) := |G1| = n(t)εt and n2(t) := |G2| = n(t)(1−εt).

We consider that one new agent is added in each round1, and thus size of
the graph/network is increasing. The agents are homogeneous, i.e., they reserve
the same wealth w > 0 for investments (at the initial investment period) of each
round. Each round is composed of two time periods, the agents invest during the
initial investment period and they obtain their returns after some given time gap.
The two time period model is borrowed from [1,3,4] etc. The new agents make
their choice for the next (and the future) round(s), based on their observations
of these returns of the previous round.

Initial Investment Phases: During the initial investment phases (of any round
t), any agent i ∈ G1 lends to any agent j ∈ G2 with probability pss and it lends
(same) amount2 w/(n(t)pss) to each of the approachers based on the number that
approached it for loan; let Iij be the indicator of this lending event. Note that for
large n(t), the number of approachers of G2 approximately equals n(t)(1−εt)pss,
and, thus any agent of G1 lends approximately w(1 − εt) fraction to agents of
G2. The agents of G1 invest the rest wεt in risk-free investment (returns with
fixed rate of interest rs).

Let w̃ be the accumulated wealth3 of any agent of G2 out of which a positive
fraction α is invested towards the other banks of G2 and (1 − α) portion is
1 This approach can easily be generalized to several other types of dynamics and we

briefly discuss a few of them towards the end.
2 This normalization, (after choosing the required parameters, like w, appropriately)

is done to derive simpler final expressions.
3 These amounts could be random and different from agent to agent, but with large

networks (by law of large numbers) one can approximate these to be constants.
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invested in risky security. Thus the accumulated wealth of a typical G2 agent is
governed by the following equation,

w̃ = w + wε
︸ ︷︷ ︸

Initial wealth + Borrowed from G1

+ w̃α
︸︷︷︸

Lend/borrow G2

and thus w̃ =
w(1 + ε)
(1 − α)

.

(1)
Thus the total investment towards the risky venture equals w̃(1−α) = w(1+ ε).
The G2 agents have to settle their liabilities at the end of the return/contract
period (in each round) and this would depend upon their returns from the risky
investments. Thus the total liability of any agent of G2 is y = (wε+ w̃α)(1+ rb),
where rb is the borrowing rate4; by simplifying

y =
w(ε + α)(1 + rb)

(1 − α)
.

Similarly, any agent of G2 lends the following amount to each of its approachers
(of G2):

αw̃

n(t)(1 − εt)pss
=

αw(1 + ε)
n(t)(1 − εt)pss(1 − α)

. (2)

Return and Settling Phases, Clearing Vectors: We fix the round t and
avoid notation t for simpler notations. The agents of G2 have to clear their
liabilities during this phase in every round. Recall the agents of G2 invested
w(1 + ε) amount in risky-investments and the corresponding random returns
(after economic shocks) are:

Ki =

{

w(1 + ε)(1 + u) =: ku, w.p. (with probability) δ

w(1 + ε)(1 + d) =: kd, otherwise
(3)

This is the well known binomial model, in which the upward moment occurs
with probability δ and downward moment with (1−δ). The agents have to return
y (after the interest rate rb) amount to their creditors, however may not be able
to manage the same because of the above economic shocks. In case of default,
the agents return the maximum possible; let Xi be the amount cleared by the
ith agent of group G2. Here we consider a standard bankruptcy rule, limited
liability and pro-rata basis repayment of the debt contract (see [3,4]), where the
amounts returned are proportional to their liability ratios. Thus node j of G2

pays back XiLji/y towards node i, where Lji the amount borrowed (liability)
during initial investment phases equals (see the details of previous subsection
and Eq. (2)):

Lji =

{

Iji
w

npss
, if i ∈ G1

Iji
αw(1+ε)

npss(1−α)(1−ε) , if i ∈ G2.
(4)

4 For simplicity of explanation, we are considering constant terms to represent all these
quantities, in reality they would be i.i.d. quantities which are further independent
of other rounds and the asymptotic analysis would go through as in [1].
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Thus the maximum amount cleared by any agent j ∈ G2, Xj , is given by the
following fixed point equation in terms of the clearing vector {Xi}i∈G2 composed
of clearing values of all the agents (see [3,4] etc.):

Xi = min

⎧

⎨

⎩

(

Ki +
∑

j∈G2

Xj
Lji

y
− v

)+

, y

⎫

⎬

⎭

, (5)

with the following details: the term Ki is the return of the risky investment, the
term

∑

j∈G2
Xj Lji/y equals the claims form the other agents (those borrowed

from agent i) and v denotes the taxes to pay. In other words, agent i will pay
back the (maximum possible) amount Ki +

∑

j∈G2
Xj

Lji

y −v in case of a default,
and in the other event, will exactly pay back the liability amount y.

Surplus of any agent is defined as the amount obtained from various invest-
ments, after clearing all the liabilities. This represents the utility of the agent in
the given round. The surplus of the agent i ∈ G2:

R2
i =

⎛

⎝Ki +
∑

j∈G2

Xj
Lji

y
− v − y

⎞

⎠

+

, (6)

while that of agent i ∈ G1 is given by:

R1
i =

⎛

⎝wε(1 + rs) +
∑

j∈G2

Xj
Lji

y
− v

⎞

⎠

+

. (7)

In the above, the first term is the return from the risk free investment. The
second term equals the returns or claims form G2 agents (whom they lent) and
v denotes the amount of taxes.

3 Asymptotic Approximation of the Large Networks

We thus have dynamic graphs whose size increases with each round. In this
section, we obtain appropriate asymptotic analysis of these graphs/systems, with
an aim to derive the pay-off of each group after each round. Towards this, we
derive the (approximate) closed form expression of the Eqs. (6) and (7), which
are nothing but the per-agent returns after the settlement of the liabilities.

The returns of the agents depend upon how other agents settle their liabilities
to their connections/creditors. Thus our first step is to derive the solution of the
clearing vector fixed point Eqs. (5). Observe that the clearing vector {Xj}j∈G2

is the solution of the vector-valued random fixed point Eqs. (5) in n-dimensional
space (where n is the size of the network), defined sample-path wise.

Clearing Vectors Using Results of [1]: Our financial framework can be analysed
using the results of [1], as the details of the model match5 the assumptions of
5 Observe that α(1 + ε)/(α + ε) < 1.
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the paper. By [1, Theorem 1], the aggregate claims converge almost surely to
constant values (as the network size increases to infinity):

(claims of agents of G1),
∑

j∈G2

Xj
Lji

y
→ (1 − α)(1 − ε)

α + ε
x̄∞ a.s., and

(claims of agents of G2),
∑

j∈G2

Xj
Lji

y
→ α(1 + ε)

(α + ε)
x̄∞ a.s.,

where the common expected clearing value x̄∞ satisfies the following fixed point
equation in one-dimension:

x̄∞ = E

[

min

{
(

Ki +
α(1 + ε)
α + ε

x̄∞ − v

)+

, y

}
]

. (8)

Further by the same Theorem, the clearing vectors converge almost surely to
(asymptotically independent) random vectors:

Xi → min

{
(

Ki +
α(1 + ε)
α + ε

x̄∞ − v

)+

, y

}

, for each i ∈ G2. (9)

By virtue of the above results, the random returns given by Eqs. (6) and (7),
converge almost surely:

R1
i →

(

wε(1 + rs) +
(1 − α)(1 − ε)

(α + ε)
x̄∞ − v

)+

, for each i ∈ G1 (10)

R2
i →

(

Ki +
α(1 + ε)
α + ε

x̄∞ − v − y

)+

, for each i ∈ G2. (11)

Probability of Default is defined as the fraction of agents of G2 that failed to
pay back their full liability, i.e., Pd := P (Xi < y). For large networks (when
the initial network size n0 itself is sufficiently large), one can use the above
approximate expressions and using the same we obtain the default probabilities
and the aggregate clearing vectors in the following (proof in Appendix).

Lemma 1. The asymptotic average clearing vector and the default probability
of G2 is given by:

(x̄∞, Pd) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(y, 0) if cε > y−w
y

(

δy+(1−δ)w
1−(1−δ)cε

, 1 − δ
)

if y−w
y−(1−δ)(w−w) < cε < y−w

y
(

kd(1−δ)+kuδ−v
1−cε

, 1
)

if cε < y−w
y−(1−δ)(w−w)

(12)

where, cε = α+αε
α+ε , E[W ] = δku + (1 − δ)kd − v , w = kd − v and w = ku − v. �
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Expected Surplus: By virtue of the Theorem developed in [1, Theorem 1] we
have a significantly simplified limit system, whose performance is derived in the
above Lemma. We observe that this approximation is sufficiently close (numerical
simulations illustrate good approximations), and assume the following as the
pay-offs of each group after each round of the investments:

φ1(ε) := E(R1
i ) =

(

wε(1 + rs) +
(1 − α)(1 − ε)

α + ε
x̄∞ − v

)+

, for any agent of G1

φ2(ε) := E(R2
i ) = E

(

Ki +
(1 + ε)α
α + ε

x̄∞ − v − y

)+

, (13)

=
(

ku +
α(1 + ε)
α + ε

x̄∞ − v − y

)+

δ +
(

kd +
α(1 + ε)
α + ε

x̄∞ − v − y

)+

(1 − δ),

for any agent of G2. Observe here that the aggregate limits are almost sure
constants, hence the expected surplus of all the agents of the same group are
equal, while the random returns of the same group are i.i.d. (independent and
identically distributed).

4 Analysis of Replicator Dynamics

In every round of investments, we have a new network that represents the liability
structure of all the agents of that round formed by the investment choices of
the agents, and, in the previous two sections we computed the (asymptotically
approximate) expected returns/utilities of each agent of the network. As already
mentioned in Sect. 2, new agents join the network in each round, and choose
their strategies depending upon their observations of these expected returns of
the previous round.

These kind of dynamics is well described in literature by name replicator
dynamics (e.g.,[2,6,9] etc.). The main purpose of such a study is to derive asymp-
totic analysis and answer some or all of the following questions: will the dynamics
converge, i.e., would the relative fractions of various populations settle as the
number of rounds increase? will some of the strategies disappear eventually? if
more than one population type survives what would be the asymptotic fractions?
etc. These kind of analysis are common in other types of networks (e.g., wire-
less networks (e.g., [9]), biological networks [2]), but are relatively less studied
in the context of financial networks (e.g., [6]). We are interested in knowing the
asymptotic outcome of these kind of dynamics (if there exists one) and study the
influence of various network parameters on the outcome. We begin with precise
description of the two types of dynamics considered in this paper.

4.1 Average Dynamics

The new agent contacts two random (uniformly sampled) agents of the previous
round. If both the contacted agents belong to the same group, the new agent
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adapts the strategy of that group. When it contacts agents from both the groups
it investigates more before making a choice; the new agent observes significant
portion of the network, in that, it obtains a good estimate of the average utility
of agents belonging to both the groups. It adapts the strategy of the group with
maximum (estimated) average utility.

Say it observes the average of each group with an error that is normally
distributed with mean equal to the expected return of the group and variance
proportional to the size of the group, i.e., it observes (here N (0, σ2) is a zero
mean Gaussian random variable with variance σ2)

φ̂i(ε) = φi(ε) + Ni with N1 ∼ N
(

0,
1
c̄ε

)

and N2 ∼ N
(

0,
1

c̄(1 − ε)

)

,

for some c̄ large. Observe by this modeling that: the expected values of the obser-
vations are given by (φ1(ε), φ2(ε)) and are determined by the relative proportions
of the two populations, while the variance of any group reduces as its proportion
increases to 1 and increases as the proportion reduces to zero. We also assume
that the estimation errors {N1,N2} (conditioned on the relative fraction, ε) cor-
responding to the two groups are independent. Then the probability that the
new agent chooses strategy 1 is given by

Prob(φ̂1(ε) − φ̂2(ε) > 0) = Prob(N2 − N1 ≤ φ1(ε) − φ2(ε)),

which by (conditional) independence of Gaussian random variables equals6

g(ε) :=
∫ (φ1(ε)−φ2(ε))

√
c̄ε(1−ε)

−∞
e−x2/2 dx√

2π
. (14)

Let (n1(t), n2(t)) respectively represent the sizes of G1 and G2 population
after round t and note that εt = n1(t)

n1(t)+n2(t)
. Then the system dynamics is given

by the following (g(·) given by (14)):

(n1(t + 1), n2(t + 1)) =

{ (
n1(t) + 1, n2(t)

)
w.p. ε2t + 2εt(1− εt)g(εt)(

n1(t), n2(t) + 1
)
w.p. (1− εt)2 + 2εt(1− εt)(1− g(εt)).

(15)

It is clear that (with ε0 and n0 representing the initial quantities),

εt+1 =
n1(t + 1)
t + n0 + 1

=
(t + n0)εt + Yt+1

t + n0 + 1
= εt +

1
t + n0 + 1

(Yt+1 − εt) where

Yt+1 =

{

1 wp ε2t + 2εt(1 − εt)g(εt)
0 wp (1 − εt)2 + 2εt(1 − εt)(1 − g(εt)), for all t ≥ 1.

One can rewrite the update equations as

εt+1 = εt +
1

t + n0 + 1
(h(εt) + Mt+1) , with, Mt+1 := Yt+1 − εt − h(εt), where,

h(ε) := E
[
Yt+1 − εt|εt = ε

]
= ε(1 − ε) (2 g(ε) − 1) for any 0 ≤ ε ≤ 1.

6 Because 1
ε

+ 1
1−ε

= 1
ε(1−ε)

.
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and observe that (with Ft the natural filtration of the process till t)

E[Mt+1|Ft] = E[Mt+1|εt] = 0 and E[M2
t+1|Ft] ≤ C for some constant C < ∞.

Further observe that 0 ≤ εt ≤ 1 for all t and all sample paths.
Thus our algorithm satisfies assumptions7 A.1 to A.4 of [8] and hence we

have using [8, Theorem 2] that

Theorem 1. The sequence {εt} generated by average dynamics (15) converges
almost surely (a.s.) to a (possibly sample path dependent) compact connected
internally chain transitive invariant set of ODE:

ε̇t = h(εt). (16)

�

The dynamics start with initial condition ε0 ∈ (0, 1) and clearly would remain
inside the interval [0, 1], i.e., εt ∈ [0, 1] for all t (and almost surely). Thus we
consider the invariant sets of ODE (16) within this interval for some interesting
case studies in the following (Proof in Appendix).

Corollary 1. Define r̄r := uδ +d(1− δ). And assume w(1+d) > v and observe
that u > rb ≥ rs > d. Assume ε0 ∈ (0, 1). Given the rest of the parameters of the
problem, there exists a δ̄ < 1 (depends upon the instance of the problem) such
that the following statements are valid for all δ ≥ δ̄:

(a) If r̄r > rb > rs then φ2(ε) > φ1(ε) for all ε, and εt → 0 almost surely.
(b) If φ1(ε) > φ2(ε) for all ε then εt → 1 almost surely.
(c) When rb > r̄r > rs, and case (b) is negated there exists a unique zero ε∗ of

the equation φ1(ε) − φ2(ε) = 0 and

εt → ε∗ almost surely; further for δ ≈ 1, ε∗ ≈ rb − r̄r

r̄r − rs
.

�

From (13) and Lemma 1, it is easy to verify that all the limit points are evolu-
tionary stable strategies (ESS). Thus the replicator dynamics either settles to a
pure strategy ESS or mixed ESS (in part (c) of the corollary), depending upon
the parameters of the network; after a large number of rounds, either the fraction
of agents following one of the strategies converges to one or zero or the system
reaches a mixed ESS which balances the expected returns of the two groups.

In many scenarios, the expected rate of return of the risky investments is
much higher than the rate of interest related to lending/borrowing, i.e., r̄r > rb.
Further the assumptions of the corollary are satisfied by more or less all the
scenarios (due to standard no-arbitrage assumptions) and because the shocks
are usually rare (i.e., δ is close to 1). Hence by the above corollary, in majority

7 The assumptions require that the process is defined for the entire real line. One can
easily achieve this by letting h(ε) = 0 for all ε /∈ [0, 1], which still ensures required
Lipschitz continuity and by extending Mt+1 = 0 for all εt /∈ [0, 1].
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of scenarios, the average dynamics converges to a pure strategy with all ‘risky’
agents (i.e., εt → 0). The group G1 gets wiped out and almost all agents invest
in risky ventures, as the expected rate of returns is more even in spite of large
economic shocks. One can observe a converse or a mixed ESS when the magnitude
of the shocks is large (d too small) or when the shocks are too often to make
r̄r < rb.

4.2 Random Dynamics

When the new agent contacts two random agents of different groups, its choice
depends directly upon the returns of the two contacted agents. The rest of the
details remain the same as in average dynamics. In other words, the new agents
observe less, their investment choice is solely based on the (previous round)
returns of the two contacted agents. In this case the dynamics are governed by
the following (see (10)–(11)):

(n1(t + 1), n2(t + 1)) =

⎧

⎪
⎨

⎪
⎩

(n1(t) + 1, n2(t)) wp ε2t
(n1(t), n2(t) + 1) wp (1 − εt)2

(n1(t) + G(εt), n2(t) + (1 − G(εt))) else, with

G(εt) = 1{R1≥R2} (17)
= 1{

(wε(1+rs)+
(1−α)(1−ε)

(α+ε) x̄∞−v)+≥(Ki+
α(1+ε)

α+ε x̄∞−v−y)+
},

where x̄∞ = x̄∞(εt) is given by Lemma 1. Here we assume people prefer risk-free
strategy under equality, one can easily consider the other variants. Once again
this can be rewritten as

εt+1 = εt +
Zt+1 − εt

t + n0 + 1
with Zt+1 =

⎧

⎪
⎨

⎪
⎩

1 wp ε2t
0 wp (1 − εt)2

G(εt) else.
(18)

As in previous section the above algorithm satisfies assumptions8 A.1 to A.4 of
[8] and once again using [8, Theorem 2], we have:

Theorem 2. The sequence {εt} generated by average dynamics (17) converges
almost surely (a.s.) to a (possibly sample path dependent) compact connected
internally chain transitive invariant set of ODE:

ε̇(t) = hR(ε(t)), hR(ε) := Eε

[

Zt+1 − εt|εt = ε
]

= ε(1 − ε)(2E[G(ε)] − 1). (19)

�

One can derive the analysis of this dynamics in a similar way as in average
dynamics, however there is an important difference between the two dynamics;
we can never have random dynamics converges to an intermediate attractor, like

8 In the current paper, we consider scenarios in which hR(·) is Lipschitz continuous,
basically under the conditions of Corollary 2.
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the attractor in part (c) of Corollary 1 (unique ε∗ satisfying φ1 = φ2). This is
because Eε[G] = P (R1(ε) > R2(ε)) equals 0, 1 − δ or 1 and never 1/2 (unless
δ = 1/2, which is not a realistic case). Nevertheless, we consider the invariant sets
(corresponding to pure ESS) within [0, 1] for some cases (Proof in Appendix):

Corollary 2. Assume ε0 ∈ (0, 1). Given the rest of the parameters of the prob-
lem, there exists a 1/2 < δ < 1 (depends upon the instance of the problem) such
that the following statements are valid:

(a) If Eε[G] = 0 for all ε or 1 − δ for all ε, then εt → 0 almost surely.
(b) If Eε[G] = 1 for all ε, then εt → 1 almost surely.
(c) When w(1 + d) > v and u > rb ≥ rs > d, there exists a δ̄ < 1 such that for

all δ ≥ δ̄, the default probability Pd ≤ (1 − δ) and E[G] = 1 − δ and this is
true for all ε. Hence by part (a), εt → 0 almost surely. �

Remarks: Thus from part (c), under the conditions of Corollary 1, the random
dynamics always converges to all ‘risky’ agents (pure ESS), while the average
dynamics, as given by Corollary 1, either converges to pure or mixed ESS further
based on system parameters (mainly various rates of return).

From this partial analysis (corollaries are for large enough δ) it appears that
one can never have mixed ESS with random dynamics, and this is a big contrast
to the average dynamics; when agents observe sparsely the network eventually
settles to one of the two strategies, and if they observe more samples there is a
possibility of emergence of mixed ESS that balances the two returns. We observe
similar things, even for δ as small as 0.8 in numerical simulations (Table 4). We
are keen to understand this aspect in more details as a part of the future work.

To summarize we have a financial network which grows with new additions,
in which the new agents adapt one of the two available strategies based on the
returns of the agents that they observed/interacted with. Our asymptotic anal-
ysis of [1] was instrumental in deriving these results. This is just an initial study
of the topic. One can think of other varieties of dynamics, some of which could
be a part of our future work. The existing agents may change their strategies
depending upon their returns and observations. The agents might leave the net-
work if they have reduced returns repeatedly. The network may adjust itself
without new additions etc.

5 Numerical Observations

We performed numerical simulations to validate our theory. We included Monte-
Carlo (MC) simulation based dynamics in which the clearing vectors are also
computed by directly solving the fixed point equations, for any given sample
path of shocks. Our theoretical observation well matches the MC based limits.

In Tables 1, 2 and 3 we tabulated the limits of the average dynamics for
various scenarios, and the observations match the results of Corollary 1. The
configuration used for Table 1 is: n0 = 2000, ε0 = 0.75, rs = 0.18, rb = 0.19, w =
100, v = 46, α = 0.1, while that used for Table 2 is: n0 = 2000, ε0 = 0.5, rs =
0.17, rb = 0.19, w = 100, v = 40, α = 0.1. For both these tables risky expected
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Table 1. When the shocks are
too large along with larger taxes
(v = 46), the average dynamics
converges to a configuration with
all ‘risk-free agents’ !

u d δ φ1 φ2 ε∗

0.2 −0.05 0.8 72 0 1

0.2 −0.1 0.8 72 0 1

0.2 −0.15 0.8 72 0 1

0.2 −0.2 0.8 72 0 1

0.2 −0.25 0.8 72 0 1

Table 2. Average dynamics converges to
mixed ESS, at which both populations survive
with φ1 = φ2.

u d δ φ1 φ2 ε∗

0.2 −0.1 0.95 78.33 78.27 0.3326

0.2 −0.11 0.95 78.24 78.31 0.3791

0.2 −0.12 0.95 78.14 78.14 0.4288

0.2 −0.13 0.95 78.04 78.04 0.4820

0.2 −0.14 0.95 77.92 77.92 0.5385

Table 3. Average Dynamics con-
verges to all ‘risky-agents’; Config-
uration: n0 = 2000, ε0 = .5, rs =
0.10, rb = 0.12, w = 100, v = 30,
α = 0.5

u d δ φ1 φ2 ε∗

0.15 −0.1 0.9 0 82.12 0

0.16 −0.1 0.9 0 83.24 0

0.17 −0.1 0.9 0 84.29 0

0.18 −0.1 0.9 0 85.19 0

Table 4. Average and Random dynamics,
Comparison of MC results with theory Con-
figuration: n0 = 2000, u = 0.2, rs = 0.17, rb =
0.19, w = 100, α = 0.1

Config ε∗(Theory) ε�(Monte Carlo)

(d, δ, v) Avg Rndm Avg Rndm

0.10, 0.95, 40 0 0 .0016 0.0011

−0.10, 0.95, 40 0.33 0 .3214 0.0004

−0.15, 0.95, 40 0.6 0 .5988 0.0014

0.10, 0.80, 46 1 0 .9896 0.0065

rate of returns r̄r is smaller than rb and the dynamics converges either to ‘all
risky’ agents configuration or to a mixed ESS. In Table 3, the risky expected
rate of returns r̄r = .1250 which is greater than rb and rs, thus the dynamics
converges to all risky-agents, as indicated by Corollary 1.

In Table 4 we considered random dynamics as well as average dynamics.
In addition, we provided the Monte-Carlo based estimates. There is a good
match between the MC estimates and the theory. Further we have the following
observations: a) random dynamics always converge to a configuration with all
‘risky’ agents, as given by Corollary 2; b) when r̄r > rb, the average dynamics
also converges to ε∗ = 0 as suggested by Corollary 1; and c) when r̄r < rb,
the average dynamics converges to mixed ESS or to a configuration with all
‘risk-free’ agents, again as given by Corollary 1.

As the ‘risk increases’, i.e., as the amount of taxes increase and or as the
expected rate of return of risky investments r̄r decreases, one can observe that
the average dynamics converges to all ‘risk-free’ agents (last row of Table 4)
thus averting systemic risk event (when there are large number of defaults, Pd).
While the random dynamics fails to do the same. As predicted by theory (the
configurations satisfying part (b) of Corollary 2), random dynamics might also
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succeed in averting the systemic risk event, when the expected number of defaults
is one for all ε > 0. It is trivial to verify that the configuration with w(1 + u) <
v, is one such example. Thus, average dynamics is much more robust towards
averting systemic risk events.

6 Conclusions

We consider a financial network with a large number of agents. The agents are
interconnected via liability graphs. There are two types of agents, one group
lends to others and invests the rest in risk-free projects, while the second group
borrows/lends and invests the rest in risky ventures. Our study is focused on
analysing the emergence of these groups, when the new agents adapt their strate-
gies for the next investment round based on the returns of the previous round. We
considered two types of dynamics; in average dynamics the new agents observe
large sample of data before deciding their strategy, and in random dynamics the
decision is based on a small random sample.

We have the following important observations: a) when the expected rate
of return of the risky investments is higher (either when the shocks are rare
or when the shocks are not too large) than the risk-free rate, then ‘risk-free’
group wipes out eventually, almost all agents go for risky ventures; this is true
for both types of dynamics; b) when the expected rate of risky investments
is smaller, a mixed ESS can emerge with average dynamics while the random
dynamics always converges to all risky agents; at mixed ESS the expected returns
of both the groups are equal; more interestingly, when the risky-expected rate is
too small, the average dynamics converges to a configuration with all risk-free
agents.

In other words, in scenarios with possibility of a systemic risk event, i.e.,
when there is a possibility of the complete-system collapse (all agents default),
the average dynamics manages to wipe out completely the risky agents; the
random dynamics can fail to do the same. Thus when agents make their choices
rationally and after observing sufficient sample of the returns of the previous
round of investments, there is a possibility to avoid systemic risk events. These
are some initial results and we would like to investigate further in future to make
more affirmative statements in this direction.

Appendix

Proof of Lemma 1: We consider the following:
Case 1: First consider the case when downward shock can be absorbed, in this
case the clearing vector x̄∞ = yδ + y(1 − δ) = y, default probability is Pd = 0.
The region is true if the following condition is meet i.e., if

kd − v + ycε > y =⇒ cε >
y − w

y
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Case 2: Consider the case with banks receive shock will default and the corre-
sponding average clearing vector x̄∞ = yδ + (w + cεx̄

∞)(1 − δ) which simplifies
to:

x̄∞ =
yδ + w(1 − δ)
1 − cε(1 − δ).

This region lasts if the following conditions hold to be true

kd − v + cεx̄
∞ < y, and ku − v + cεx̄

2∞ > y.

Substituting x̄∞ = yδ+w(1−δ)
1−cε(1−δ) we have,

y − w

y − (1 − δ)(w − w)
< cε <

y − w

y
.

In this regime the default probability is Pd = (1 − δ). Case 3 can be proved
similarly, more details are in [11]. �
Proof of Corollary 1: First consider the system with δ = 1, i.e., system without
shocks. From Lemma 1, Pd ≤ (1 − δ) for all ε because (with δ = 1)

y

(
cε − y − w̄

y

)
= w(1+ε)(1+u)−v−wε(1+rb) = w(1+u)−v+wε(u−rb) ≥ w(1+u)−v,

for all ε (the lower bound independent of ε). Under these assumptions, there
exists δ̄ < 1 by continuity of the involved functions such that

y

(

cε − y − w̄

y − (1 − δ)(w̄ − w)

)

> 0 for all δ ≥ δ̄ and for all ε.

Thus from Lemma 1 x̄∞ = y or x̄∞ = δy+(1−δ)w
1−(1−δ)cε

for all such δ ≥ δ̄. We would
repeat a similar trick again, so assume initially x̄∞ = y for all ε and consider
δ ≥ δ̄. With this assumption we will have:

R1(ε) =
(

wε(1 + rs) +
(1 − α)(1 − ε)

(α + ε)
y − v

)+

(20)

= (wε(1 + rs) + w(1 − ε)(1 + rb) − v)+

= (w(1 + rb) − v + wε(rs − rb)) , under the given hypothesis, and

R2(ε) =
(

Ki +
α(1 + ε)
α + ε

y − v − y

)+

= (Ki − wε(1 + rb) − v)+ (21)

=
{

R2
u w.p. δ where R2

u := w(1 + u) − v + wε(u − rb)
(

R2
d

)+ w.p. 1 − δ where R2
d := w(1 + d) − v + wε(d − rb).

Note that R2
u ≥ w(1 + u) − v > 0 (for any ε) under the given hypothesis.

Proof of part (a): When r̄r > rb, from (13), it is clear that (inequality only
when R2

d is negative)

φ2(ε) − φ1(ε) ≥ R2
uδ + R2

d(1 − δ) − φ1(ε) = w(r̄r − rb) + wε(r̄r − rs) > 0.
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Thus in this case φ2 > φ1 for all ε and hence

g(ε) < 1/2 and 2g(ε) − 1 < 0 for all 0 < ε < 1.

Therefore with Lyaponuv function V0(ε) = ε/(1−ε) on defined on neighbourhood
[0, 1) of 0 (in relative topology on [0, 1]) we observe that

dV0

dε
h(ε) =

ε

1 − ε
(2g(ε) − 1) < 0 for all 0 < ε < 1 and equals 0 for ε = 0.

Further V0(ε) → ∞ as ε → 1, the boundary point of [0, 1). Thus ε∗ = 0 is the
asymptotically stable attractor of ODE (16) (see [8, Appendix, pp.148]) and
hence the result follows by Theorem 1.

For all δ ≥ δ̄, from Lemma 1, we have the following

sup
ε

|y − x̄∞| = sup
ε

(1 − δ)
∣

∣

∣

∣

y − cε − w

1 − (1 − δ)cε

∣

∣

∣

∣
<

1 − δ

δ
η (22)

for some η > 0 , which decreases to 0 as δ → 1. ( The last inequality is due
to cε < 1 and then taking supremum over ε). By continuity of the above upper
bound with respect to δ and the subsequent functions considered in the above
parts of the proof, there exists a δ̄ < 1 (further big if required) such that all the
above arguments are true for all δ > δ̄.

Proof of part (b): The proof follows in similar way, now using Lyaponuv
function V1(ε) = (1 − ε)/ε on neighbourhood (0, 1] of 1, and by observing that
g(ε) > 1/2 for all ε < 1 and hence

dV1

dε
h(ε) = −1 − ε

ε
(2g(ε) − 1) < 0 for all 0 < ε < 1 and equals 0 for ε = 1.

Proof of part (c): It is clear that φ1(ε) = R1(ε) decreases linearly as ε increases:

φ1(ε) = w(1 + rb) − v + wε(rs − rb).

For ε in the neighbourhood of 0, φ2(ε) > 0 and is decreasing linearly with
slope r̄r − rb, because R2

d(0) = w(1 + d) − v > 0 and thus for such ε

φ2(ε) = w(1 + r̄r) − v + wε(r̄r − rb).

From (21), R2
d(ε) is decreasing with increase in ε. There is a possibility of an ε̄

that satisfies R2
d(ε̄) = 0, in which case φ2 increases linearly with slope δw(u−rb),

i.e.,
φ2(ε) = δ [w(1 + u) − v + wε(u − rb)] for all ε ≥ ε̄.

When r̄r < rb we have,

φ1(0) = w(1 + rb) − v > w(1 + r̄r) − v = φ2(0).

By hypothesis φ1(ε) < φ2(ε) for some ε, hence by intermediate value theorem
there exists at least one ε∗ that satisfies φ1(ε∗) = φ2(ε∗). Further the zero is
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unique because φ2 is either linear or piece-wise linear (with different slops),
while φ1 is linear.

Consider Lyaponuv function V∗(ε) := (ε − ε∗)2/(ε(1 − ε)) on neighbourhood
(0, 1) of ε∗, note V∗(ε) → ∞ as ε → 0 or ε → 1 and observe by (piecewise)
linearity of the functions we will have

φ1(ε) > φ2(ε) and thus (2 g(ε) − 1) > 0 for all 0 < ε < ε∗ and
φ2(ε) > φ1(ε) and thus (2 g(ε) − 1) < 0 for all 1 > ε > ε∗.

Thus we have9,

dV∗
dε

= 2
ε − ε∗

ε(1 − ε)
+

(ε − ε∗)2(2ε − 1)
ε2(1 − ε)2

and hence

dV∗
dε

h(ε) = (ε − ε∗)
(

2 +
(ε − ε∗)(2ε − 1)

ε(1 − ε)

)

(2 g(ε) − 1) < 0 for all ε /∈ {0, 1, ε∗}.

Thus ε∗ is the asymptotically stable attractor of ODE (16) and hence the result
follows by Theorem 1. The result can be extended for δ < 1 as in case (a) and
the rest of the details follow by direct verification (at δ = 1), i.e., by showing
that φ1(ε∗) = φ2(ε∗) at δ = 1 and the equality is satisfied approximately in the
neighbourhood of δ = 1. �
Proof of Corollary 2: For part (a), hR(ε) = −cGε(1 − ε), where the constant
cG = 1 (or respectively cG = 2δ − 1). Using Lyanponuv function of part (a) of
Corollary 1, the proof follows in exactly the same lines.
For part (b), hR(ε) = ε(1 − ε), and proof follows as in part (b) of Corollary 1.
For part (c), first observe (using equations (20)–(21) of proof of Corollary 1)

R2
u(ε) − R1(ε) ≥ w(1 + u) + wε(u − rs) − y + x̄∞

(

2α + ε − 1
α + ε

)

= w(1 + u) + wε(u − rs) + (x̄∞ − y) − x̄∞
(

1 − α

α + ε

)

= w(u − rb) + wε(u − rs) + (x̄∞ − y)
(

1 − 1 − α

α + ε

)

> 0.

The last inequality is trivially true for δ = 1 (and so x̄∞ = y) for the given
hypothesis, and then by continuity as in proof of Corollary 1, one can consider

9 When ε < 1/2 and ε < ε∗ then clearly (ε−ε∗)(2ε−1)
ε(1−ε)

> 0. When ε > 1/2 we have

(2ε − 1)/ε < 1/2 and with ε < ε∗ we have ε∗ − ε < 1 − ε and thus

2 +
(ε − ε∗)(2ε − 1)

ε(1 − ε)
≥ 3/2 > 0 for all ε < ε∗.

In a similar way ε > ε∗, then we will have that the above term is again positive.
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δ̄ < 1 such that for all δ ≥ δ̄, the term (x̄∞ − y)
(

1 − 1−α
α+ε

)

(uniformly over
ε) can be made arbitrarily small. When Pd = 0, i.e., x̄∞ = y for some ε, then
R2

d(ε) − R1(ε) = w(d − rb) + wε(d − rs) < 0 for all such ε. When Pd �= 0, then
R2

d = 0 ≤ R1. Thus in either case R2
d(ε) ≤ R1(ε) for all ε.

By virtue of the above arguments we have Pd ≤ (1 − δ) and E[G] = 1 − δ
and this is true for all ε, for all δ ≥ δ̄. The rest of the proof follows from
part(a). �
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Abstract. In the Bayesian persuasion setting, the sender aims at per-
suading the decision maker, so called the decoder, to choose a certain
action among a set of possible actions. This paper considers two Bayesian
persuasion games: one that involves the observation of a private signal
by the decoder in addition to the signal transmitted by the encoder,
and another version where no private signal is accessible by the decoder.
Our goal is to examine the impact of this private signal on the encoder’s
optimal utility. In order to do so, we investigate an example involving
a binary state, a binary private signal and a binary receiver’s actions
set. We identify the optimal splitting of the decoder’s beliefs satisfy-
ing the information constraint imposed by the restricted communication
channel, and we compute the encoder’s optimal utility value, with and
without private signal. Varying the parameters such as the prior belief,
the precision of the private signal and the channel capacity, we aim at
determining which of the two settings is more favorable to the encoder.

Keywords: Bayesian persuasion · Strategic communication · Side
information

1 Introduction

In [5], Kamenica-Gentzkow investigate a persuasion game in which the sender
observes the realization of a state variable and commits to some signalling mech-
anism, then the receiver chooses the best-reply action corresponding to its pos-
terior belief. Communication in persuasion games may be constrained by a lim-
ited channel’s capacity and messages distorted by some source of noise, as in [9].
Moreover, the receiver may privately observe a signal correlated to the state, as
in the source coding problem of Slepian-Wolf and Wyner-Ziv, in [12] and [13].
In such settings, the persuasion problem is hard to solve even for simple mod-
els. Tools from information theory, involving entropy and mutual information,
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provided a solution for certain scenarios of repeated persuasion problems. The
optimal solution to the noisy persuasion problem relies on a specific concavifica-
tion involving an auxiliary utility function for the sender that accounts for the
private observation of the receiver as in [8,9] and [10].

P E T

Z

D

φd(u, v)φe(u, v)

V
U X Y

Fig. 1. Bayesian persuasion game with noisy channel T (y|x), with or without decoder’s
side information Z. The utility functions of the encoder E and decoder D are denoted
by φe(u, v) and φd(u, v).

1.1 State of the Art

Channel coding and communication problems originally introduced in [11] have
been studied in several settings, particularly with the side information setting as
in [1] where a hierarchical communication game is considered to treat informa-
tion disclosure problems originated in economics and involving different objec-
tives for the encoder and the decoder. In [2], Alonso-Cãmara provide necessary
and sufficient conditions under which a sender benefits from persuading decoders
with distinct prior beliefs. The computational aspects of the persuasion game
are considered in [4], where the impact of the channel’s capacity on the optimal
utility is investigated. Persuasion of a privately informed receiver was also inves-
tigated in [6], in which the optimal persuasion mechanisms are characterized. In
[7], Laclau-Renou depicted the constraints imposed on the sender when multiple
receivers have multiple beliefs.

1.2 Contributions

In this paper, we consider a persuasion game with binary source/state and binary
decoder’s actions and we investigate the effect of the decoder’s side observation
on the encoder’s optimal utility. We compute numerically the two values of the
persuasion problems, with and without decoder’s side information, depending
on two keys parameters, 1) the channel capacity and 2) the precision of the
decoder’s side information. Depending on these two parameters, the decoder’s
side information may increase or decrease the encoder’s utility.

The paper is organized as follows. The notations are defined in Sect. 2. In
Sect. 3, we formulate the two concavification problems. In Sect. 4, we introduce
the example of a binary source and state, and we formulate the optimal solutions
for the case with no private observation in Sect. 4.1, and for the case where
private observation is available at the decoder Sect. 4.2. In Sect. 5, we provide
the results of our numerical simulations.



Impact of Private Observation in the Bayesian Persuasion Game 231

2 Notations

This paper considers a communication model that is illustrated in Fig. 1. Let
E denote the encoder and D denote the decoder. Notations U , Z, X, Y, and
V denote the random variables of information source u ∈ U , side information
z ∈ Z, channel inputs x ∈ X , channel outputs y ∈ Y, and decoder’s actions
v ∈ V respectively. Calligraphic fonts U , Z, X , Y, and V, denote the alphabets
and lowercase letters u, z, x, y, and v denote the signal realizations. Notation PU

stands for the probability distribution of the state U of the game. The private
observation Z of the receiver is correlated to U according to the conditional prob-
ability distribution PZ|U . We will denote the beliefs of the decoder by p ∈ Δ(U)
whereas p(u) belongs to [0, 1] for each u ∈ U . The i.i.d. memoryless channel dis-
tribution will be denoted by TY |X . We denote by Δ(X ) the probability simplex,
i.e. the set of probability distributions over X . We denote by QX the probability
distribution over X , i.e. the posterior beliefs of the decoder. The joint probabil-
ity distribution QXV ∈ Δ(X × V) decomposes as follows, QXV = QX × QV |X .
The channel’s capacity will be denoted by C. Notations H(U), H(U |Z) and
I(X;Y ) refer to Shannon’s entropy, conditional entropy and mutual information
respectively [3, pp. 12], and are given below.

H(U) =
∑

u∈U
p(u) log2

1
p(u)

, H(U |Z) =
∑

z∈Z

∑

u∈U
p(z, u) log2

1
p(u)

, (1)

I(X;Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log2

p(x, y)
p(x)p(y).

, C = max
P(x)

I(X;Y ). (2)

3 Concavification Problems

Given a capacity value C ≥ 0, we consider the two concavification problems
below, stated in [10, Def. III.1] and [9, Def. 2.4].

Γ0 = sup
(λw,pw)w∈W

{
∑

w∈W
λw · Φe(pw) s.t.

∑

w∈W
λw · pw = PU ,

∑

w

λw · H(pw) ≥ H(U) − C, |W| = min(|U| + 1, |V|)
}

, (3)

Γ = sup
(λw,pw)w∈W

{
∑

w∈W
λw · Ψe(pw) s.t.

∑

w∈W
λw · pw = PU ,

∑

w

λw · h(pw) ≥ H(U |Z) − C, |W| = min(|U| + 1, |V||Z|)

}
, (4)

where

Φe(p) =Ep

[
φe(U, v�(p))

]
, H(p) = H(U), (5)
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v�(p) = arg min
v∈argmaxEp

[
φd(U,v)

]Ep

[
φe(U, v)

]
, (6)

and

∀z ∈ Z, qz ∈ Δ(U), qz(u) =
p(u) · P(z|u)∑
u′ p(u′) · P(z|u′)

, ∀u ∈ U , (7)

Ψe(p) =
∑

u,z

p(u) · P(z|u) · Φe

(
qz

)
, (8)

h(p) =
∑

u,z

p(u) · P(z|u) · log2

∑
u′ p(u′) · P(z|u′)
p(u) · P(z|u)

. (9)

The notation v�(p) ∈ V stands for the decoder’s best reply action with
respect to its posterior belief p ∈ Δ(U). If several actions maximize the utility of
the decoder, we assume that it chooses the one that minimizes the encoder’s
utility. Thus, the encoder’s expected utility Φe(p) is evaluated with respect
to the decoder’s belief p ∈ Δ(U). In the presence of side information z ∈ Z,
the decoder’s belief is denoted by qz ∈ Δ(U). As a consequence, the encoder’s
expected utility Ψe(p) is a convex combination between the utilities Φe

(
qz

)
eval-

uated at different possible beliefs (qz)z∈Z . The supremum in (4) and (3) are
taken over the set of splittings (λw, pw)w∈W of the prior probability distribution
PU ∈ Δ(U), that satisfy the cardinality bound, either |W| = min(|U|+1, |V|) or
|W| = min(|U| + 1, |V||Z|).

Formulas (3) and (4) are solutions to the persuasion game with noisy chan-
nel. The value Γ corresponds to the persuasion problem in which the decoder
has a private observation Z correlated with the state U according to the con-
ditional probability distribution PZ|U , whereas the value Γ0 corresponds to the
persuasion problem in which the decoder has no access to a side information, or
equivalently, has a private observation Z that is independent from the state U .
When removing the entropy-based constraints in Γ0, the concavification problem
boils down to the optimal solution provided by Kamenica-Gentzkow in [5].

4 Example with Binary Source and State

In this section, we will illustrate a particular scenario of a strategic communi-
cation involving binary source and state and decoder’s action. Let U = {u0, u1}
the state space, V = {v0, v1} the action space, and p0 = P(U = u1) ∈ [0, 1]
the decoder’s prior belief. We consider a binary symmetric noisy channel where
X = {x0, x1} denotes the set of channel inputs, Y = {y0, y1} denotes the set
of channel outputs. The channel’s capacity for noise level ε ∈ [0, 1

2 ] is given by
C = 1−Hb(ε) where Hb(p) denotes the binary entropy. Utility functions of both
encoder and decoder are given in Tables 1 and 2.
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Table 1. Encoder’s utility

v0 v1

u0 0 1

u1 0 1

Table 2. Decoder’s utility

v0 v1

u0 9 0

u1 4 10

As shown in the decoder’s expected utility graph Fig. 2a, the red lines rep-
resent the decoder’s best reply action. Therefore, the action of the decoder will
only change from v0 to v1 depending on the utility threshold γ.
In this example, we consider the prior p0 = 0.4 and the utility threshold γ = 0.6.

4.1 Persuasion Without Side Information (Equation for Γ0)

The optimal number of posterior beliefs when no side information is available at
the decoder is two [9, lemma 6.1]. These posterior beliefs of the decoder need to
satisfy the splitting condition and information constraint

λq1 + (1 − λ)q2 = p0 ⇐⇒ λ =
p0 − q2
q1 − q2

⇐⇒ 1 − λ =
q1 − p0
q1 − q2

, (10)

λHb(q1) + (1 − λ)Hb(q2) ≥ Hb(p0) − C. (11)

Assuming the information constraint is binding at the optimal, we get

λHb(q1) + (1 − λ)Hb(q2) = Hb(p0) − C (12)

⇐⇒Hb(q1) =
p0Hb(q2) − q2(Hb(p0) − C)

(p0 − q2)
+ q1

(−Hb(q2) + Hb(p0) − C)
(p0 − q2)

(13)

The encoder’s expected utility function Φe depicted in Fig. 2b is defined over
[0, 1] by Φe(q) = 1q∈[γ,1]. For each q2 ∈ [p0, 1], we denote by q1(q2) the unique
solution of (13) for a given pair (p0, C) . We assume that the decoder’s threshold
γ > p0, hence at the optimum q2 = γ, thus

Γ0 = sup
q2∈[0,1]

(
λΦe(q1(q2)) + (1 − λ)Φe(q2)

)
=

q1(γ) − p0
q1(γ) − γ

. (14)

Figure 2b shows an unrestricted communication without decoder’s side informa-
tion. The green dotted line is the concavification of the encoder’s expected utility
function represented in the red lines. The optimal utility value corresponds to
the evaluation of this concavification at the prior belief p0.

4.2 Persuasion with Side Information (Equation for Γ )

When side information Z = {z0, z1} is observed by the decoder, then [9, Lemma
6.3] ensures that the optimal number of posterior beliefs is three. The posterior
distributions (q1, q2, q3) from observing the message delivered by the encoder,
must satisfy the information constraint given by

λ1 · h(q1) + λ2 · h(q2) + λ3 · h(q3) ≥ H(U |Z) − max
P(x)

I(X;Y ) (15)
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v1

v0

γ 1

9

p0

4

10

P(u1)

(a) Decoder’s expected utility

v1

v0

γp0

1

q1

Γ0 = 0.667

P(u1) = q

(b) Encoder’s expected utility and optimal pay-
off with p0 = 0.4, δ = 0.5 and γ = 0.6.

Fig. 2. Encoder and Decoder’s Expected Utilities

Thus (λ1, λ2, λ3) can be computed from the above information constraint, the
splitting lemma λ1q1 + λ2q2 + λ3q3 = p0 and the fact that λ1 + λ2 + λ3 = 1. We
assume that the information constraint is binding. From [10, Eq. (57)-(59)], we
have

λ1 =
IC · (q2 − q3) + h(q2) · (q3 − p0) + h(q3) · (p0 − q2)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
, (16)

λ2 =
IC · (q3 − q1) + h(q3) · (q1 − p0) + h(q1) · (p0 − q3)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
, (17)

λ3 =
IC · (q1 − q2) + h(q1) · (q2 − p0) + h(q2) · (p0 − q1)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
. (18)

Given a interim belief parameter q ∈ [0, 1], the decoder’s side information might
be z0 or z1, thus inducing the two following posterior beliefs

p1(q) =
q.δ

(1 − q).(1 − δ) + q.δ
, p2(q) =

q.(1 − δ)
(1 − q).δ + q.(1 − δ)

. (19)

The decoder’s threshold γ induces the two corresponding threshold ν1 and
ν2 for the interim belief parameter q ∈ [0, 1]

ν1 =
γ.(1 − δ)

δ.(1 − γ) + γ(1 − δ)
, ν2 =

γ.δ

γ.δ + (1 − δ).(1 − γ)
. (20)

Thus the encoder’s utility function Ψe(q) represented by the red lines in Fig. 3
and the conditional entropy h(q) reformulate as

Ψe(q) =0 · 1{q∈]0,ν2]} + ((1 − q) · δ + q · (1 − δ)) · 1{q∈]ν2,ν1] + 1 · 1{q∈]ν1,1]},
(21)

h(q) =((1 − q) · (1 − δ) + q · δ) · Hb(p1(q)) + ((1 − q) · δ + q · (1 − δ))Hb(p2(q).
(22)
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v1

v0

γ

1

1p0ν2 ν1

1

h(0.4) − 0.25

1

q

Γ2 = 0.433

Fig. 3. Splitting over 2 posteriors (q1 = 0; q2 = 0.4468) with C = 0.25, p0 = 0.4, δ =
0.35, γ = 0.6.

The encoder’s optimal utility value is given by

Γ = sup
q1∈[0,ν2],q2∈[ν2,ν1],

q3∈[ν1,1]

(
λ1 · Ψe(q1) + λ2 · Ψe(q2) + λ3 · Ψe(q3)

)
(23)

= sup
q1∈[0,ν2],q2∈[ν2,ν1],

q3∈[ν1,1]

(
(h(p0) − C)

(
(q3 − q1) ·

(
q2 · (1 − 2δ) + δ

)
+ (q1 − q2)

)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)

+

(
h(q3) · (q1 − p0) + h(q1) · (p0 − q3)

)
·
(
q2 · (1 − 2δ) + δ

)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)

+
h(q1) · (q2 − p0) + h(q2) · (p0 − q1)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)

)
(24)

v1

v0

γ

1

1p0ν2 ν1

1

h(0.4) − 0.25

1

q

Γ = 0.4815

Fig. 4. Optimal Splittings over 3 posteriors (q1 = 0.012; q2 = 0.4468; q3 = 0.7358) with
C = 0.25, p0 = 0.4, δ = 0.35, γ = 0.6.
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In some cases, the optimal splitting has only two posterior instead of three.
Fig. 3 and Fig. 4 represent the optimal utility of the encoder depending on belief
parameter q over a constrained communication channel with capacity C = 0.25
and with decoder’s private observation δ = 0.35. Splitting over three posteriors
instead of two, improves the encoder’s optimal payoff.

5 Numerical Simulations

In this section we investigate the impact of the private observation on the
encoder’s optimal utility. Numerical simulations over (C, δ) regions are per-
formed for both concavification problems Γ0 and Γ , revealing the encoder’s
optimal payoff values with and without decoder’s private observation.

5.1 Encoder’s Optimal Payoff Values

The optimal splitting of the prior over 3 posterior beliefs results in the encoder’s
optimal payoff values shown in Fig. 5 with respect to the (C, δ) regions.

Fig. 5. Encoder’s optimal payoff evaluated with three posteriors w.r.t. δ and C for
p0 = 0.4 and γ = 0.6.

As the channel’s capacity increases, the encoder’s utility is improved without
decoder’s side information. This is due to the fact that more capacity allows the
transmission of more information and hence information can be optimally dis-
closed. However; with low capacity, the decoder’s side observation can enhance
the utility of the encoder until the encoder has no capacity at all, it becomes
optimal to have private information up to some threshold δ� evaluated in Propo-
sition 1 below.

5.2 Impact of the Decoder’s Private Signal

Proposition 1. Let C = 0.

• If p0 < γ and δ ∈ [0, p0·(γ−1)
p0·(−1+2γ)−γ ] ∪ [ γ·(1−p0)

p0·(1−2γ)+γ , 1], then Γ > Γ0.

• If p0 ≥ γ then Γ0 ≥ Γ.
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Fig. 6. (δ, C) regions for encoder’s optimal utility with (blue) and without (green)
decoder’s private observation for p0 = 0.4 and γ = 0.6. (Color figure online)

5.3 Impact of the Number of Posteriors

The encoder could potentially achieve a greater payoff by splitting the prior over
three posterior beliefs instead of splitting over two posteriors only (Fig. 7).

Fig. 7. Difference between optimal utility values obtained by splitting with three pos-
teriors and two posteriors.
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Abstract. We address formally the problem of opinion dynamics when
the social network composed of conformists and contrarians are not only
influenced by their neighbors, but also by an external influential entity
referred to as a marketer. The population of contrarians tries to have an
opinion that is the opposite of the opinion held by the conformists. The
influential entity tries to sway the overall opinion as close as possible
to the desired opinion by using a specific influence budget. The main
technical issue addressed is finding how the marketer should allocate its
budget among the agents such that the agents’ opinion will be as close as
possible to the desired opinion while taking into account the behavior of
the contrarian population. Our main results show that the marketer has
to prioritize certain agents over others based on their initial condition,
their influence power in the social graph and the population class they
belong to. Numerical examples illustrate the analysis.

1 Introduction

During the last decade, social networks gained increasing importance in our daily
life. Consequently, more and more companies are using digital social networks to
promote specific goods and/or ideas. This motivated the scientific community to
give more attention to the analysis of opinion dynamics in social networks. This
is a challenging task since human behavior is very different from one individual
to another and the interactions in the network can change over time. Various
mathematical models [1,4,6,7,9,10] have been proposed in order to capture dif-
ferent features of this complex dynamics. Empirical models based on in vitro
and in vivo experiments have also been developed [5,13,16].

Some mathematical model target consensus as collective asymptotic behavior
of the network [7,9] while some others lead to the network clustering [1,10,14]. In
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order to enforce consensus some recent studies propose the control of one or few
agents (see [3,8]). Besides these methods of controlling opinion dynamics towards
consensus, we also find few attempts to control the discrete-time dynamics of
opinions such that, as many as possible reach a certain set after a finite number
of influences [11]. In very recent work ([15]) the authors developed a formal
method for the optimal space-time allocation of a budget allowing an influencer
to bring the consensus value of the network as close as possible to a desired
value.

It is noteworthy that most of the proposed mathematical models consider
that the opinions of two interacting individuals are approaching one to another.
Although this behavior seems to be sociologically accepted, one can also pro-
vide real-life situations in which interactions are antagonistic. In this case, the
distance between the opinions of two interacting individuals will increase (see
[1,12,17]). To the best of our knowledge, there exists no attempt to control
this kind of opinion dynamics, and only analysis of the asymptotic behavior is
reported.

In this paper, we consider the challenging problem that requires to mini-
mize the distance between the average of opinions and a desired value using
a given control/marketing budget over a social network split into two groups.
Basically, this social network with the contrarian population represents a model
for real cases such as supporters of competing teams, parties, etc. On top of this
assumption on the network structure, we also assume that the maximal market-
ing influence cannot instantaneously make the opinion of one individual to be
equal with the desired value.

To provide a mathematical model we consider that the opinion dynamics
is fast enough such that we can assume it evolves in continuous time and we
want to design a marketing strategy that minimizes the distance between the
average of the opinions and the desired value after a campaign with certain
budget constraints. This results in a linear-impulsive closed-loop dynamics in
which the jumps are controlled by the influencer. Our main result shows that
the optimal control strategy consists of influencing as much as possible the most
central/popular (see [2] for a formal definition of centrality) individuals of the
network.

It is worth highlighting that in this study we do not control the state of
the influencing entity which is assumed to be constant. Instead, we control the
influence weight that the marketer can have on different individuals of the social
network. It was shown in [15] that this approach allows highlighting the effective-
ness of targeted marketing with respect to broadcasting strategies when budget
constraints are present.

Notation. Let R := (−∞,∞), R≥0 := [0,∞), and Z≥0 := {0, 1, 2, . . .}. We use
E for the expectation taken over the relevant stochastic variables and 1(·) for
the indicator function, taking the value 1 when the condition is satisfied and 0
otherwise.
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2 Problem Statement

We consider a social network populated by agents belonging to the set V :=
{1, 2, . . . , N} with the connections given by ai,j indicating the influence of agent
j on agent i. All agents belong to the class of conformists denoted by the set
V+ or to the class of contrarians denoted by V−. We use cn ∈ {1,−1} to denote
the agent class with cn = 1 for all n ∈ V+ and cn = −1 for all n ∈ V−. These
two sets are non-intersecting and may be interpreted as two hostile camps as
considered in [17].

The opinion of all agents belongs to the interval [−1, 1] and we denote the
collection of all opinions by x ∈ [−1, 1]N . The internal opinion dynamics of the
network is given by

ẋi =
∑

j∈V
ai,jxj − |ai,j |xi (1)

for all i ∈ V. The above dynamics is similar to a standard consensus model as
in [6] but ai,j may be positive or negative depending on the interaction type.

In this work, we focus on antagonistic interaction between agents that belong
to different classes and standard consensus interactions among agents of the same
class, i.e., contrarians or conformist. Basically, this implies that ai,j = cicj |ai,j |.
As a result of this extra term, agents i and j will have a consensus only if i, j
belong to the same class. If they belong to different classes, agent i will try to
have an opinion in opposition to agent j. We can write the overall dynamics for
all agents as

ẋ = −Lx (2)

where L is a Laplacian-like matrix with

Li,j =

{∑
k∈V |ai,k| for all i = j ∈ V,

−ai,j for all i �= j ∈ V (3)

The influence of the external entity (marketer) with a desired opinion d is
limited to a campaign occurring at t = 0. We model this influence through an
impulsive control/jump at t = 0. Due to the contrarian population, the marketer
may also desire to bring some agents closer to the opinion −d but has must select
the best agents due to budget constraints. We, therefore, model the impulsive
control as follows

xn(0+) = (1 − |un|)xn(0) + und (4)

for all n ∈ V with un ∈ [−ū, ū], with ū denoting the control saturation and∑
n∈V |un| ≤ B is the budget constraint.
The main objective of this paper is to provide an optimal control u such that

the distance between the average opinion of all agents and the desired opinion
d ∈ {−1, 1}, given by

∣∣∣ 1
�
Nx
N −d

∣∣∣ is minimized asymptotically. Given x0 ∈ [−1, 1]N ,
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the optimization problem can be stated formally as follows

MinimizeuJ(u) := limt→∞
∣∣∣ 1

�
Nx(t)
N − d

∣∣∣
where ẋ(t) = −Lx(t), x(0) = x0 ∀t > 0,

under (4) with un ∈ [−ū, ū]∀n ∈ V
and

∑
n∈V |un| ≤ B.

(5)

3 Analysis

To begin our analysis, we first characterize the asymptotic opinions of the agents
under the dynamics (2). For this purpose, we rely on results established in [17].

Proposition 1. Given the opinions x(0+) formed after the campaign, we have

lim
t→∞ x(t) = cv�x(0+) (6)

where v is the left eigen-vector of the matrix L associated with eigenvalue 0 with∑
n∈V |vn| = 1 and sign(vn) = sign(cn).

Proof. First, we use Lemma 1 in [17] to conclude that if (2) establishes modular
consensus (consensus in absolute value of each xn, then

lim
t→∞ x(t) = ρv�x(0+) (7)

where ρn ∈ {1,−1} for all n ∈ V. By construction in (3), we have that ai,j is
positive for i �= j only when they both belong to the same set V+ or V− and is
negative otherwise. This implies that V+ or V− form hostile camps as defined in
[17], allowing us to apply Lemma 2 from [17]. This states that modular consensus
is established for quasi-strongly connected graphs with ρi = −ρj for all i, j in
opposite camps. Since we pick sign(vn) = sign(cn), we have that ρn = cn. ��

Proposition 1 allows us to study the impact of the control on the cost function
in 5. We provide the optimal control u which will minimize this cost in the
following. We define a sorting index

γn := |vn||cnd − xn(0)| (8)

Theorem 1. If card(V+) = card(V−), the final cost is invariant to the control
and J(u) = 1 for all u. If card(V+) > card(V−) and the desired opinion be d,
then the optimal control u∗ is given by

u∗
o(n) =

⎧
⎨

⎩

co(n)ū if n ≤ ⌊
B
ū

⌋

Bco(n) − co(n)ū
⌊

B
ū

⌋
if n =

⌊
B
ū

⌋
+ 1

0 otherwise
(9)

where o : V → V is a bijection such that γo(1) ≥ γo(2) ≥ · · · ≥ γo(N). When
card(V+) < card(V−), setting −d as the desired opinion and applying u∗ mini-
mizes the cost J(u).
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Proof : First, we rewrite the minimization (5) problem as follows

Minimizeu limt→∞
∣∣∣ 1

�
Nx(t)
N − d

∣∣∣
where ẋ(t) = −Lx(t), ∀t > 0,

xn(0+) = (1 − u+
n − u−

n )xn(0) + u+
n d − u−

n d, ∀n ∈ V
u+

n , u−
n ∈ [0, ū], such that u+

n u−
n = 0, ∀n ∈ V,∑

n∈V u+
n + u−

n ≤ B.

(10)

in order to separate the positive and negative control action. Note that we have
that

lim
t→∞ x(t) = cv�x(0+) (11)

since the dynamics in (0,∞) is given by ẋ = −Lx and using [1].
Denoting x∗ := v�x(0+), which is a scalar and belongs to the interval [−1, 1],

we have that the final cost is given by

J =
∣∣∣∣

∑
n∈V cn

N
x∗ − d

∣∣∣∣ =
∣∣∣∣
card(V+) − card(V−)

N
x∗ − d

∣∣∣∣ . (12)

We use G :=
∣∣∣ card(V+)−card(V−)

N

∣∣∣. Therefore,

1. if card(V+) = card(V−), we have J = d for any x∗,
2. if card(V+) > card(V−), we have J = |Gx∗ − d|,
3. and if card(V+) < card(V−), J = |Gx∗ + d|.

This implies that minimizing the final cost J is equivalent of minimizing
(x∗ − d)2 for case 2 and (x∗ + d)2 for case 3. We have

∂((d−x∗)2)
∂u+

n
= −2(d − x∗)vn, ∂((d−x∗)2)

∂u−
n

= 2(d − x∗)vn,
∂((d+x∗)2)

∂u+
n

= 2(d + x∗)vn, ∂((d+x∗)2)
∂u−

n
= −2(d + x∗)vn.

(13)

In the two cases, 2(d−x∗) and 2(d+x∗) are respectively positive functions which
hold true for all n. Applying Lemma 1 (provided in the AppendixA) for each
case, we have the result by setting un = u+

n − u−
n . �

Theorem 1 provides the control strategy to be implemented in order to min-
imize the cost J(u), which implies minimizing the distance between the average
final opinion and the desired opinion. When the number of contrarians and
conformists are the same, the opinions are polarised around 0 in a symmetric
fashion. Therefore, the final average opinion is always 0, leading to a fixed cost
of J(u) = |d|.

Nominally, we assume that the set of contrarians is a minority, i.e.,
card(V+) > card(V−). In this case, we select the most influential agents based
on the index γ which depends on the vector centrality v as well as the distance
to the desired opinion. However, since the contrarians oppose the conformists,
the optimal strategy is to push the contrarians closer to −d and the conformists
closer to d. Since the conformists are a majority, the minimal cost is when all
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conformists are at d and all contrarians at −d. The control in Theorem1 pre-
cisely achieves this, i.e. it brings the conformists as close as possible to d and
the contrarians as close as possible to −d, under the budget constraints.

Note that when card(V−) = 0, i.e. there are no antagonistic relations, the
optimal control u∗ in Theorem 1 matches the result in [15] (which considers
ai,j ≥ 0 for all i, j) as expected. When the population of contrarians are larger,
i.e. card(V+) < card(V−), the minimal cost occurs when all conformists are at
−d and all contrarians at d. This is achieved by simply setting the new desired
opinion to be −d and applying the control in Theorem1.

4 Numerical Illustration

To demonstrate and compare the numerical results the following budget alloca-
tion strategies are adopted:
Strategy 1: Optimal Budget Allocation, where the budget is allocated to agents
according to Theorem 1.
Strategy 2: Uniform Budget Allocation, where budget is allocated uniformly
to all the agents with negative control for contrarians, i.e. ui = ci

B
N .

Strategy 3: Positive Budget Allocation, where budget is allocated uniformly
and an identical control is applied to all the agents, i.e. ui = B

N .

Strategy 3 corresponds to traditional advertising campaigns through Televi-
sion or radio broadcasts as the same advertising action is applied to all agents
regardless of their individual characteristics. The network structure we consider
is a strongly connected directed graph with 10 nodes (N=10) and the number of
conformists is greater than that of the contrarians (|V |+ > |V |−). The strongly
connected graph is represented in Fig. 1. The initial opinions are uniformly cho-
sen between [−1, 1] and represented in Table 1.

Fig. 1. Red and cyan nodes represent
conformists and contrarians, respec-
tively with the size scaled based on vec-
tor centrality v. (Color figure online)

-1 0 1 2 3 4 5
Time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
pi

ni
on

s

Fig. 2. Opinion dynamics with the
control applied impulsively at t =
0, red and cyan plots represent con-
formists and contrarians. (Color figure
online)
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In Fig. 1, the red and cyan nodes represent the conformist and the contrarian
agents, respectively and the size of the nodes represents the agent’s centrality.
The centralities of all the agents are also represented in Table 1. As stated in
Sect. 2, positive and negative values of c represents conformists and contrarians
respectively. Consider that the budget B = 4, the maximum control that can
be allocated to each agent ū = 0.7, and opinions before the campaign as given
in Table 1. When no control action is applied, we see that J(0) = 0.8877. Using
strategy 1, budget allocation is performed based on the influence power of an
agent γ (represented in Table 1) while satisfying the budget constraints. The
budget of [0.7, 0.7, 0.7, 0.7, 0.7, 0.5] is allocated to the agents [3–5,8–10] and the
resultant cost J(u∗) = 0.7331 (Fig. 2). To better understand the advantage of the
designed marketing strategy (strategy 1), the results obtained are compared with
the ones obtained from strategy 2 and 3. Using strategy 2, the total available
budget B = 4 is allocated uniformly among N agents and the resultant cost is
0.7728. Next, with strategy 3, the positive budget is uniformly allocated to all
the agents and the cost obtained is 0.8646.

Table 1. Data

Agents 1 2 3 4 5 6 7 8 9 10

c 1 1 1 1 −1 1 −1 1 1 −1

Initial Opinion 0.8 0.7 0.5 0.3 −0.3 0 −0.4 0.2 −0.5 0.6

Centrality 0.075 0.054 0.224 0.095 −0.111 0.052 −0.108 0.160 0.057 −0.064

Gamma (γ) 0.015 0.016 0.112 0.067 0.078 0.052 0.065 0.128 0.085 0.101

Finally, we consider a large-scale network with 300 nodes, formed by 279 con-
formists and 21 contrarians. The graph is constructed in the following manner,
among the 300 agents, 25 nodes are taken to be central and influence 30 to 60
agents, while the remaining 275 have 1 to 30 agents they influence. The initial
opinion of the agents are generated by the formula xi(0) = −1 + 2i

N .
As seen in Fig. 3, the cost with no control (or when budget B = 0) is the same

for all strategies i.e., J(0) = 1. It is clear from the plot that the cost is smaller
using Strategy 1 (based on Theorem1) for any budget between 0 and Nū = 210
compared to the other strategies. Note that when B = Nū, there is enough
budget to allocate the maximum control to all agents, making Strategy 1 and
2 equivalent. However, for strategy 3, due to positive budget allocation even to
contrarians, the cost is significantly higher (J = 0.48) even when B = Nū = 210.
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Fig. 3. Cost vs Budget.

5 Conclusion

In this work, we have shown how an optimal campaign strategy can be designed
for the control of opinion dynamics over a social network. The main novelty of
this work, with respect to previous works on control of opinion dynamics is that
we consider the presence of contrarians in the network, which have an antag-
onistic relationship with the other agents. The external entity or the marketer
wants to bring the average opinion of all agents as close as possible to a desired
opinion d. Interestingly, we see that the optimal strategy involves bringing the
conformists closer to d and the contrarians closer to −d, and allocating the avail-
able budget among the best agents sorted according to a centrality measure and
the distance of their initial opinions to d or −d. The future directions to this
work would involve considering multiple-campaigns or a continuous control as
well as the presence of a competing marketer, resulting in a non-cooperative
game.

A Appendix

Lemma 1. Given an optimization problem (OP) under the following standard
form

minimize
y∈RN

C(y+, y−)

subject to ys
i − ȳ ≤ 0, ∀i ∈ {1, ..., N}, s ∈ {+,−}

−ys
i ≤ 0, ∀i ∈ {1, ..., N}, s ∈ {+,−}

−B +
N∑

i=1

y+
i + y−

i ≤ 0

(14)
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where N ∈ N, N ≥ 1, ȳ < 1, B ≥ 0 and C(y) is a decreasing convex function
in yi such that the following condition holds.
For all i ∈ {1, . . . , N}, ∃g(y) ≥ 0 such that

∂C(y)
∂y+

i

= −kig(y) and
∂C(y)
∂y−

i

= kig(y)

for some ki ∈ R.
Then an optimal solution y∗ to this OP is given by water-filling as follows

y+∗
o(i) =

⎧
⎪⎪⎨

⎪⎪⎩

ȳ if i ≤
⌊

B
ȳ

⌋
and ko(i) > 0

B − ȳ
⌊

B
ȳ

⌋
if i =

⌊
B
ȳ

⌋
+ 1 and ko(i) > 0

0 otherwise

(15)

and

y−∗
o(i) =

⎧
⎪⎪⎨

⎪⎪⎩

ȳ if i ≤
⌊

B
ȳ

⌋
and ko(i) < 0

B − ȳ
⌊

B
ȳ

⌋
if i =

⌊
B
ȳ

⌋
+ 1 and ko(i) < 0

0 otherwise

(16)

where o : {1, . . . , N} �→ {1, . . . , N} represents an ordering function which can be
any bijection for Case 2 and, one satisfying |ko(1)| ≥ |ko(2)| ≥ · · · ≥ |ko(N)| for
Case 1.

Proof: Note that all the constraint functions of the considered OP are affine,
which corresponds to sufficient conditions for applying KKT conditions. Since
the OP is convex, KKT conditions are necessary and sufficient for optimality.
By denoting the Lagrangian by

�(y, λ+, λ̄+, λ̂, λ−, λ̄−) = C(y) +

⎛

⎝
N∑

i=1

∑

s∈{+,−}
λ̄s

i (y
s
i − ȳ) − λs

i y
s
i

⎞

⎠

+ λ̂+

(
−B +

N∑

i=1

y+
i + y−

i

)
.

(17)

Let us assume that ∂C(y)
∂yi

= kig(y), in this case the first necessary and suffi-
cient condition for optimality can be simplified to write

kig(y�) = λ+�
i − λ̄+�

i + λ̂� + λ−�
i − λ̄−�

i (18)

which must hold for all i ∈ {1, . . . , N}. The primal feasibility conditions write

0 ≤ ys�
i ≤ ȳ ∀i ∈ {1, . . . , N}, s ∈ {+,−},

and
N∑

i=1

y+�
i + y−�

i ≤ B. (19)
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All the KKT multipliers must satisfy the dual feasibility conditions: λs�
i ≥ 0,

λ̄s�
i ≥ 0, λ̂s� ≥ 0 for all i ∈ {1, . . . , N}, s ∈ {+,−}. At last, the complementary

slackness conditions are given by

λ̄s�
i (ys�

i − ȳ) = 0,

λs�
i y�

i = 0,

λ̂�

[(
N∑

i=1

y+�
i + y−�

i

)
− B

]
= 0.

Since g(y�) is identical for all i ∈ {1, . . . , N} and s ∈ {+,−} and is non-
negative, we must have λs�

i , λ̄s�
i and λ̂∗ chosen so that (18) holds. We get y+

i y−
i =

0, ∀i ∈ {1, ..., N}.
Take y� from (16). Set λs�

j = λ̄s�
j = 0 for j =

(
O

⌈
βk

ū

⌉)
and s = + if kj > 0

and s = − if kj < 0 as it is the only component with a non-saturated solution.
For any n, y+∗

n = 0 if kn < 0 and y−∗
n = 0 if kn > 0 can be imposed as the

left hand side of (18) will be negative and positive correspondingly and letting
λs

n �= 0 will be possible.
For any i such that O(i) < j, we have ki ≥ kj and this can be satisfied by

setting y
sign(ki)�
i = ȳ and having λ̄

sign(ki)�
i > 0 and λs

i = 0. On the other hand,
for any i such that O(i) > j, we set y∗

i = 0 and the KKT conditions are satisfied
if λ̄s

i = 0 and λs�
i > 0. The solution from (16) can also be verified to satisfy (19)

and therefore, we have it satisfying all the KKT conditions.

�
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4. Chowdhury, N.R., Morărescu, I.C., Martin, S., Srikant, S.: Continuous opinions and
discrete actions in social networks: a multi-agent system approach. In: Proceedings
55th IEEE Conference on Decision and Control (2016)

5. Davis, J.H.: Group decision making and quantitative judgments: a consensus
model. In: Understanding Group Behavior: Consensual Action by Small Groups,
vol. 1, pp. 35–60. Lawrence Erlbaum Associates (1996)

6. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among inter-
acting agents. Adv. Complex Syst. 3, 87–98 (2000)

7. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)
8. Dietrich, F., Martin, S., Jungers, M.: Control via leadership of opinion dynam-

ics with state and time-dependent interactions. IEEE Trans. Autom. Control 63,
1200–1207 (2017). https://doi.org/10.1109/TAC.2017.2742139

https://doi.org/10.1109/TAC.2017.2742139


Optimal Campaign Strategy for Social Media Marketing 251

9. Friedkin, N.E., Johnsen, E.C.: Social influence and opinions. J. Math. Sociol. 15,
193–206 (1990)

10. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models,
analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)

11. Hegselmann, R., Kurz, S., Niemann, C., Rambau, J.: Optimal opinion control: the
campaign problem. J. Artif. Soc. Soc. Simul. 18(3) (2015)

12. Hendrickx, J.M.: A lifting approach to models of opinion dynamics with antago-
nisms. In: IEEE Conference on Decision and Control. IEEE (2014)

13. Kerckhove, C.V., Martin, S., Gend, P., Rentfrow, P.J., Hendrickx, J.M., Blondel,
V.D.: Modelling influence and opinion evolution in online collective behaviour.
PLoS ONE 11(6), 1–25 (2016)
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Abstract. This paper considers the case where the opinion of agents in
a social network is influenced not only by the other agents, but also by
two marketers in competition. The main contributions of this work is to
propose a dynamical game formulation of the problem and to conduct the
corresponding equilibrium analysis. Due to the competition between the
marketers, the opinions never reach consensus but are spread between
the desired opinions of the two marketers. Our analysis provides practical
insights to know how a marketer should exploit its knowledge about the
social network to design the control of opinions using results from optimal
control theory. Numerical examples illustrate the analysis.

1 Introduction

A duopoly is a standard problem in economics, politics, and marketing that
considers the competition between two (dominant) players over a market, for
example, see [10]. Illustrative examples of real-life duopolies are Airbus/Boeing
in the market of large commercial airplanes, Republican/Democratic parties in
the American politics.

Traditional research on competitive games between marketers assumes a
homogeneous population of consumers [6,7]. Unlike these works, we propose
a marketing resource allocation based on the influence power that each indi-
vidual has over the (physical or digital) social network. Basically, we consider
that the advertising is done in two steps: the first is done by the marketer that
allocate her resources to sway some individuals/agents on her opinion and the
second is done by the agents of the social network who influence each other.
Consequently, each marketer has to target appropriate influential agents in the
network in order to optimize her revenue. Since the focus of the paper is on
the resource allocation of the marketer, the second step is modeled by a simple
opinion dynamics model introduced in [4].

In this paper we consider the challenging problem that requires to minimize
the distance between average of opinions and a desired value using a given con-
trol/marketing budget over a social network split in two groups. Basically, this
c© Springer Nature Switzerland AG 2021
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social network with contrarian population represents a model for real cases such
as supporters of competing teams, parties, etc. On top of this assumption on the
network structure we also assume that the maximal marketing influence cannot
instantaneously make the opinion of one individual to be equal with the desired
value.

In the literature on viral marketing, the idea that members of a social network
influence each other’s purchasing decisions have been studied, with the goal
being to select the best set of people to market to such that the overall profit is
maximized by propagation of influence through the network [5]. This problem has
since received much attention, including both empirical and theoretical results
[1], but these results often consider a single entity influencing the network.

In this paper, we consider two competing marketers who want to use their
marketing budget in order to sway on their side as many individuals of the net-
work as possible. Thus, the natural framework to exploit is that of game theory
and a reasonable solution concept (for arguments see e.g., [8]) for analyzing such
a competition situation is the Nash equilibrium (NE). In [9], the authors consider
multiple influential entities competing to control the opinion of consumers under
a game theoretical setting. However, this work assumes an undirected graph and
a voter model for opinion dynamics resulting in strategies that are independent of
the node centrality (i.e., agent influence power). On the other hand, the recently
published work [11] considers a similar competition with opinion dynamics over
a directed graph but with no budget constraints and by considering the average
agents’ opinion instead of the final one; these two differences change the problem
significantly.

Notation. Let R := (−∞,∞) and R≥0 := [0,∞). We use In for the identity
matrix, 1n for the column vector of 1 and 0n for the column vector of 0, n ∈ N.
In the sequel, the symbol ||.|| corresponds to the norm2 and x� stands for the
transpose of x, x ∈ R

n.

2 Problem Statement

We consider a social network populated by agents belonging to the set V :=
{1, 2, . . . , n}. The parameters ai,j characterize the influence of agent j on agent
i, i �= j and i, j ∈ V. The opinions of agent i at time step k is denoted by xi(k)
and evolves according to

xi(k + 1) = xi(k) + δ

⎛
⎝∑

j∈V
ai,j(xj(k) − xi(k))

⎞
⎠ , (1)

due to their interaction with other agents in the social network. In our prob-
lem, we consider the case where these agents are also influenced by the market-
ing/advertising of two marketers. The desired opinion of Marketer m is dm ∈ R,
m ∈ {1, 2}. As a result of these interactions, the opinion dynamics for x(k), the
collective vector of all opinions is given by

x(k + 1) = Dx(k) + B1u1(k) + B2u2(k), (2)
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where D = In − δL is the row stochastic matrix defining the internal dynamics
of the network with L ∈ R

n×n being the Laplacian matrix associated with
adjacency ai,j , Bm denotes the manner in which the Marketers influence the
agents and um is the action of Marketers m on the agents. We concentrate on
two influence models:

1. Uniform broadcasting (UB) with Bm = (1, 1, . . . , 1)� which implies that all
agents in the network receive the same control. This influence model corre-
sponds to traditional advertising/marketing done on television or radio where
the control is applied uniformly on all agents.

2. Targeted advertising (TA) with Bm = In which implies that the advertising
control can be designed for each individual in the network. This model corre-
sponds to modern social media marketing as done by companies like Facebook
or Google.

Let um denote the sequence of control actions applied by Marketer m. We
define the infinite horizon cost for Marketer m as

Jm(u1,u2) :=
∞∑
k=0

αk
(||x(k) − dm1n||2 + um(k)TRmum(k)

)
, (3)

where α ∈ (0, 1) is a discount factor which is often related to inflation
rates/interest rates in economic literature. We assume that the revenue gen-
erated by the firm associated to Marketer m at time k depends on the market
share captured by the firm. As the distance between the opinions of agents in
the social network and the desired opinion dm decreases, the revenue increases.
Alternately, we say that the loss incurred by not capturing the entire market is
characterized by

∑
i∈V ||xi(k) − dm||2. On the other hand, advertising to agent

i incurs a cost which we take to be uT
mRmum. The term Rm is like the price for

advertisements.

3 Analysis

Unlike standard control theory problems, in our framework, we have two com-
peting marketers who attempt to bring xi(k) to a desired opinion dm ∈ R with
d1 �= d2. If d1 = d2, the problem can be seen as a distributed optimal control
problem. However, when d1 �= d2, each marketer has its own objective resulting
in a non-cooperative game. Due to the cost function depending on x(k) and its
dynamics, we have a dynamic game [2].

The problem we consider corresponds to a difference-game as introduced in
[2]. However, since these games are hard to analyse in the most general case, we
make the following assumption.

Assumption 1. We assume that each marketer applies a static state feedback
strategy,

um(k) = Gm(dm1n − x(k)) − Mm, (4)
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where Gm ∈ R
n×n is a fixed feedback gain and Mm ∈ R

n is an offset applied
to balance the opposing marketer resulting in the strategy given by Km :=(
G1 M1

) ∈ R
n×n+1.

We can redefine the cost Jm in terms of the static feedback strategy Km as

Jm(K1,K2) :=
∞∑
k=0

αk
(||x(k) − dm1n||2 + um(k)TRmum(k)

)
, (5)

where x(k) follows (2) and um(k) is given by (4).
Under Assumption 1, we can reformulate the dynamic game with actions um

as a static one-shot game with the action space of each player corresponding to
being the control gain and offset. Formally, we define the game G in strategic
form as follows

G := ({1, 2}, {K1,K2}, {J1, J2}) , (6)

where:

1. {1, 2} is the set of players or Marketers;
2. Km is the set of pure actions for player m, specifically, we have Km =(

G1 M1

) ∈ Km = R
n×(n+1);

3. Jm(K1,K2) as defined in (5) is the cost function for player m;

A natural solution concept for a game is that of the Nash equilibrium. For
convenience, we use −m to denote the other player, i.e. 3−m for all m ∈ {1, 2}.
A pure Nash equilibrium (NE) is defined for the game G as follows.

Definition 1. We say that (K∗
1 ,K∗

2 ) form a NE of the game G if and only if

Jm(Km,K∗
−m) ≥ Jm(K∗

m,K∗
−m), (7)

for all Km ∈ Km and for all m ∈ {1, 2}.
The NE is a suitable notion to study player interactions in a non-cooperative

game when all players behave rationally and are capable of computing the best
decisions to make for a given opponent strategy. However, this assumption on
player behavior may not always hold and some players may behave differently
or play simpler/naive strategies.

As a first step, we consider the case where player 2 is naive, i.e. it plays a
given strategy K2. In the following, we compute the best response player m can
do for a given strategy player K−m played by −m.

3.1 Best Response to a Given Opponent Strategy

Let βm(K−m) denote the best response function defined as

βm(K−m) = arg min
Km

Jm(Km,K−m). (8)

In general, the best response function is set valued as the arg min is not
unique. However, the following proposition provides a unique best response and
the method to find this value.
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Proposition 1. The best response function is unique and can be evaluated as

βm(K−m) = α(B̃�
mPmB̃m + Rm)−1B̃�

mPmD̃m, (9)

where D̃m =
(

D − B−mG−m B−m(G−m1n(d−m − dm) − M−m)
0�
n 1

)
, B̃m =

(
Bm

0�
n

)
and Pm is the solution to the Algebraic Riccati equation

Pm = D̃�
m(αPm − α2PmB̃m(αB̃�

mPmB̃m + Rm)−1B̃�
mPm)D̃m + Qm, (10)

where Qm =
(

In 0n.
0�
n 1

)

Proof. Here, we search for u∗
1 minimizing the cost J1(u1, u2) supposing u2 is

known. The reasoning is still the same to find u∗
2 for u1 known. Under Assump-

tion 1, we have

x(k + 1) = Dx(k) + B1u1(k) + B2G2(d21n − x(k)) − B2M2. (11)

Let e1(k) = x(k) − d11n be the error for the desired opinion d1. The error
dynamics is

e1(k + 1) = (D − B2G2)e1(k) + B1u1(k) + B2G21n(d2 − d1) − B2M2, (12)

where B2G21n(d2 − d1) − B2M2 is a constant affine term. We modify (12) by
including the affine term in the state variable and we use an algorithm from the
Sect. 4.2 of Vol. II, 4th Ed. of [3], to solve (10). The modified system is

(
e1(k + 1)

1

)
= D̃1

(
e1(k)

1

)
+ B̃1u1, (13)

where D̃1 =
(

D − B2G2 B2G21n(d2 − d1) − B2M2

0�
n 1

)
and B̃1 =

(
B1

0�
n

)
.

Finally, the optimal control u∗
1 depending on u2 is

u∗
1(x) = −α(αB̃�

1 P1B̃1 + R1)−1B̃�
1 P1D̃1

(
e1
1

)

= − (
G1 M1

) (
e1
1

)
= −G1(x − d1) − M1,

(14)

which is consistent with Assumption 1. Thus, the the best response is
βm(K−m) =

(
G1 M1

)
. The uniqueness of the solution comes from the uniqueness

of the Riccati solution.

3.2 Nash Equilibrium

We propose the following iterative asynchronous best response algorithm to find
a Nash equilibrium of the game G. While the convergence of the iterative best
response dynamics, i.e., Algorithm 1 is not guaranteed for all game classes, our
numerical tests show that this property holds as illustrated in the next section.
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Algorithm 1. Sequential Gain computation
Data : α = 0.999; ε = 10−6;
Initialization : K0

1 ,K0
2 , k = 0;

while ||Kk+1
1 − Kk

1 || > ε or ||Kk+1
2 − Kk

2 || > ε do
Kk+1

1 = β1(K
k
2 );

Kk+1
2 = β2(K

k+1
1 );

k = k + 1;
end while
Result : (Kk

1 , Kk
2 ) is a NE of the game G.

4 Numerical Illustration

In this section, we will study the performance of targeted advertising (TA) when
compared to uniform broadcasting (UB). For all our numerical tests, we will
consider the graph presented in Fig. 1. We take d1 = 2 and d2 = −2. When
player m is implementing TA, we take Rm ∈ {In, 2In}, and Rm ∈ {n, 2n} while
implementing UB. We consider the following initial conditions

xA = (1, 2,−3, 0, 6,−5, 4, 3,−2, 4)� and xB = (4,−2,−2,−3, 2, 0, 2,−1, 1, 0)�.

As a first step, we consider the situation when both marketers apply the NE
strategy, but when Marketer 1 applies TA and Marketer 2 UB. Since for UB,
the control u2 is applied to all n agents, we take R2 = n and R1 = In to look
at a symmetric situation in terms of the Marketer revenue and cost. If we take
a graph where all agents have the same centrality, we notice that the opinions
of all agents converge to 0 which lies at the middle of d1 and d2 due to the
symmetry.

However, if we consider the graph as in Fig. 1 with x(0) = xA, the opinions
evolve as seen in Fig. 2 with the average final opinion being closer to d1, the
desired opinion of Marketer 1. This demonstrates the advantage of TA and
Table 1 further illustrates how Marketer 1 prioritizes advertising the agents
with a higher centrality (vector centrality associated to the Laplacian matrix).

Table 1. Centrality of each agent

Agent 1 2 3 4 5 6 7 8 9 10

Centrality 0.476 0.068 0.006 0.011 0.231 0.003 0.003 0.006 0.162 0.034

xi(t �→ ∞) 2.484 0.959 0.550 0.418 1.692 0.024 -0.864 0.206 1.188 -0.144

In Fig. 3 and Fig. 4, we plot the evolution of average opinion when both
Marketers apply TA or UB respectively. Interestingly, consensus is reached
when TA is applied only when R1 = R2 and in this case all the opinions converge
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Fig. 1. Directed graph of 10 agents.
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Fig. 2. Opinion dynamics with R1 = In and
R2 = n.

to 0 which lies halfway between d1 and d2. However, taking R2 = 2R2 results in
the opinions converging to

lim
t→∞ x(t) = (2.48; 0.96; 0.55; 0.42; 1.69; 0.02;−0.86; 0.2055; 1.19; −0.14)T .

We notice that for all Rm, UB vs UB results in consensus. The corresponding
costs are provided in Table 2.
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Table 2. Costs depending on the scenario and the initial condition

Scenario R1 R2 Cost with K∗

J1(xA) J2(xA) J1(xB) J2(xB)

TA In In 86 453 102 759 87 233 98 272

In 2In 30 731 127 644 31 428 122 783

UB n n 77 755 97 619 78 200 97 093

n 2n 29 549 122 263 30 163 120 843

TA vs UB In n 54 367 120 470 56 075 115 919

5 Conclusion

In this work, we have studied the behavior of two competing firms/marketers
that control the opinions of a set of consumers interacting over a social network.
We consider a linear interaction model and quadratic costs for each firm related
to the revenue earned and the amount they spent in order to control the net-
work (via advertisements or other marketing strategies). As a first step, we find
the optimal static state feedback control which must be applied by a marketer
assuming that the other marketer applies a given strategy. Next, we provide an
iterative algorithm, which we observe to converge to the Nash equilibrium after
extensive numerical tests. We provide numerical examples which illustrate the
advantage of viral marketing techniques (targeted advertising based on the social
graph) when compared to traditional advertising strategies (uniform broadcast).
Future work will focus on theoretically studying the existence and uniqueness of
the Nash equilibrium of the game we have studied.
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Abstract. We introduce and analyse a three-body consensus model
(3CM) for non-linear consensus dynamics on hypergraphs. Our model
incorporates reinforcing group effects, which can cause shifts in the aver-
age state of the system even in if the underlying graph is complete
(corresponding to a mean-field interaction), a phenomena that may be
interpreted as a type of peer pressure. We further demonstrate that for
systems with two clustered groups, already a small asymmetry in our
dynamics can lead to the opinion of one group becoming clearly domi-
nant. We show that the nonlinearity in the model is the essential ingre-
dient to make such group dynamics appear, and demonstrate how our
system can otherwise be written as a linear, pairwise interaction system
on a rescaled network.

Keywords: Consensus · Diffusion · Non-linear dynamics · Networks ·
Group dynamics · Multi-body interactions · Opinion formation

1 Introduction

Networks provide a powerful framework for the modelling of dynamical systems.
Many networked dynamical systems can be described by a set of differential
equations describing pairwise interactions between the nodes:

ẋi =
∑

j

Aijf(xi, xj) for i ∈ {1, . . . , N}. (1)

where xi is the state of node i, A ∈ R
N×N is the adjacency matrix of the underly-

ing graph (Aij = 1, if node i connects to node j, and 0 otherwise), and f(xi, xj)
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is a function describing the interactions between nodes i and j. Important exam-
ples of the above type of dynamics include diffusion [11] or oscillator dynamics
[1]. In particular, the dynamics of opinion formation have been considered in
the context of dynamical processes on networks [15,16], including opinion for-
mation models such as the de Groot model [6], bounded-confidence models [5]
and threshold models [20].

However, it is increasingly realized that such pairwise interaction models may
not be sufficient to describe a range of important phenomena, ranging from col-
laborations of authors [14] to neuronal activity [7]. Accordingly, various models
that focus on the importance of group interactions, i.e., situations when the
basic unit of interaction involves more than two nodes have been proposed in
the literature [2,8,17].

These multi-body interaction models are particularly relevant for social
dynamics, which have long been argued to be emergent phenomena that are
not merely based on pairwise interactions between members of a community,
but often include complex mechanisms of peer influence and reinforcement. Such
group dynamics, which may lead to ‘higher-order’ dynamical effects, may indeed
be essential to better understand phenomena such as hate communities, echo
chambers and polarisation in society.

2 A Multi-body Interaction Model for Non-linear
Consensus

Motivated by the above discussed scenarios, we here introduce a simple multi-
body interaction model for opinion formation within social systems. As a first
step towards studying the higher-order effects of multi-body dynamics, we con-
centrate on a three-body consensus model (3CM), in which the interactions
between triplets of nodes are governed by the following differential equations:

ẋi =
N∑

j,k=1

Aijkg
{j,k}
i (xi, xj , xk) for i ∈ {1, . . . , N}. (2)

Here Aijk describes the adjacency tensor of node triplets {i, j, k}, where Aijk = 1
if the group of nodes interact and Aijk = 0 otherwise. We further model the
group (multi-body) interaction function g

{j,k}
i (xi, xj , xk) as:

g
{j,k}
i (xi, xj , xk) = s(‖xj−xk‖) [(xj−xi) + (xk−xi)] . (3)

For each triplet {i, j, k}, this function comprises (a) the joint influence of the
node-pair j, k on node i, modeled by the linear term [(xj −xi)+(xk −xi)], which
is (b) modulated by an influence function s(‖xj − xk‖) of their state differences.
In the following we assume g

{j,k}
i is the same for each interacting node triplet,

for the sake of simplicity.
Note that if the modulation function s(x) is monotonically decreasing, nodes

j and k reinforce their influence on i if they have similar states xj , xk, whereas



Opinion Dynamics with Multi-body Interactions 263

the influence of nodes j, k on node i is diminished if their states are very different.
This property is reminiscent of non-linear voter models for discrete dynamics [9],
where voters change opinion with a probability depending non-linearly on the
fraction of disagreeing neighbours.

In addition to the ability to describe a reinforcing dynamics, the functional
form of our model has some further desirable symmetry properties. In particular,
we remark that (2) is invariant to translation and rotation of all node states. This
is a desirably property for many opinion formation process, as it ensures that the
opinion formation is only influenced by the relative position of the node states
xi and independent of a specific global reference frame. This property can be
shown by observing that any rotation is norm preserving, and thus s(‖xj −xk‖)
is rotational and translational invariant. Since the term [(xj − xi) + (xk − xi)]
is translation invariant and linear, any translation and rotation applied to all
states will leave (2) invariant. Note that this ‘quasi-linearity’ of the interaction
function g

{j,k}
i (xi, xj , xk) is in close correspondence to the necessary and suffi-

cient conditions for translation and rotational invariance for pairwise interaction
systems [19]. In the following we will restrict our scope to scalar states xi. In
this case, the above described invariance simply implies an invariance under a
change of signs or a global shift of all states.

3 Results

3.1 Reduction to Network Model and Higher-Order Effects

Interestingly, it can be shown that the above dynamics can be rewritten in terms
of a (in general) time-varying and state dependent weighted adjacency matrix
W(t, x,A), whose entries describe the three-body influence on node i exerted
over the ‘pairwise link’ (i, j):

(W)ij =
∑

k

Aijks(‖xj − xk‖) =
∑

k∈Iij

s(‖xj − xk‖). (4)

Here Iij is the index-set of nodes that interact in a triplet with nodes i, j; and
for simplicity we have written W = W(t, x,A), omitting the dependencies of W.
Accordingly, we can rewrite the dynamics (2) as:

ẋi = 2
∑

j

Wij(xj − xi) =: −2
∑

j

LW
ij xj , (5)

where we have defined the Laplacian LW of the 3CM model via LW
ij = −Wij for

i �= j, and LW
ii =

∑
j Wij .

As discussed above, the entries of the weighted adjacency matrix W (and thus
of LW) are in general time-varying, state and topology dependent for a general
modulation function s(t), and so the above rewriting does not imply that the
system can be understood via pairwise interaction of the form (1). There is one
important exception, though. If s(x) is constant, the group interaction function
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g is linear and the three-body dynamical system can therefore be rewritten as a
rescaled pairwise dynamical system defined on a graph. The weighted adjacency
matrix W and corresponding graph Laplacian LW are then constant in time.
In fact, in this case LW becomes the so-called motif Laplacian proposed by [3]
for community detection in higher-order networks: the entries of LW count the
nodes involved in interaction triplets (triangles on the corresponding graph).
This emphasizes that multi-body dynamical effects beyond rescaled pairwise
interactions can only appear for non-linear interaction functions, regardless of
topology of the multi-body interactions encoded in A.

3.2 Convergence to Consensus and Average-Opinion Dynamics

From our above rewriting (5), it is easy to see that a global consensus, in which
xi(t) = xj(t) for all i, j, is a fixed point of our model. Using standard arguments,
it can be shown that convergence to consensus is guaranteed as long as the scaling
s(‖xj − xk‖) is positive. For generic initial conditions this is only the case if the
modulation function s(x) is positive definite. We will therefore focus on this
scenario in the following.

Despite the fact that in our model the 3-body interactions as undirected,
i.e., the adjacency tensor A is completely symmetric in all pairs of indices, the
average opinion x̄ = (

∑
i xi)/N is however not invariant over time, in general.

To see this observe that

˙̄x(t) =
1
N

N∑

i=1

ẋi(t) = − 2
N

N∑

i,j=1

LW
ij xj(t), (6)

which is zero only (i) when there is global consensus, or (ii) when the Laplacian
LW (interpreted as a graph Laplacian of a directed graph) corresponds to a
balanced graph, i.e., the in-degree equals the out-degree for every node and
thus

∑
i L

W
ij = 0. While the former condition is dynamically trival, the latter

condition will in general depend on a complex interplay between the states xi,
the structure of the node-triplet interaction and the form of the interaction
function. One exception here is again the case in which the modulation function
s(x) is constant and the dynamics therefore becomes linear. In this case LW

will be a symmetric matrix and therefore trivially correspond to a balanced
(undirected) graph. Note that if at any instance of time t0 the Laplacian LW

becomes balanced, the average opinion will be conserved for all t ≥ t0.

3.3 Shifts Towards Majority Opinions on Complete Graphs

To exhibit how the non-linear reinforcing diffusion dynamics (2) can lead to a
shift of the average state over time, we first study the dynamics on a structurally
featureless ‘complete’ hypergraph in which all triplet interactions are present.
We split the nodes into two factions with binary opinions xi = 0 or xj = 1,
respectively. In this case, for initial distributions with average x̄(0) = 0.5, the
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Fig. 1. 3CM dynamics on a hypergraph with all-to-all connectivity. We display sim-
ulations for a modulation function s(x) = exp(λx) for different values of λ, and an
unbalanced initial condition in which 80% of the nodes have opinion 0 and 20% have
opinion 1 (x̄(0) = 0.2) Dotted red lines indicate the initial value of the average node
state. Black (grey) solid lines represent the evolution of the state of nodes whose initial
configuration is one (or zero). (a) The setting λ < 0 will results in a final consensus
value that is shifted away from the initial average. (b) In contrast, the average state is
conserved for λ = 0 no matter what the initial average was (as the dynamics is linear).
(Color figure online)

Laplacian LW will correspond to a balanced graph for which in-degree equals
out-degree for all nodes, and accordingly the final consensus value will be the
average of the initial opinions, which is invariant in this case. In contrast, initial
distributions with x̄(0) �= 0.5, necessarily lead to an unbalanced graph Laplacian
LW. We remark that these conditions depend on the regular topology of the
system and will not hold for systems with more general interaction structure.

Note that if x̄ �= 0.5 the initial groups must have different size, with one
group being a relative majority or minority, respectively. Let us now consider
a decreasing modulation function s(x) = exp(λx) with λ < 0, such that the
opinions of similar nodes reinforce each other. In this case, any deviation from
an initial average x̄(0) = 0.5 grows in time, with a drift towards the majority.
This is shown in Fig. 1. In the context of opinion dynamics, this type of dynamics
may be interpreted as a kind of peer-pressure, which causes the average opinion
in the system to shift towards the initial majority opinion.

3.4 Opinion Dynamics in Clustered Systems

To gain some insight into the interplay between the system structure and our
dynamics, we consider a system defined on simple modular hypergraph as dis-
played in Fig. 2. Here the system consists of two fully connected equally sized
clusters of 10 nodes, i.e., Aijk = 1 for all triplets (i, j, k) that are in the same
cluster and Aijk = 0, otherwise. In addition, the clusters are connected by 80
randomly chosen triplet interactions, of which a fraction p ∈ [0, 1] is oriented
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Fig. 2. Schematic: 3CM dynamics on a modular hypergraph. We consider a binary
initialisation of two clusters, above indicated as black and white node colours. For a
triplet interaction (i, j, k) oriented towards cluster B (top), the fact that there is a
close consensus in cluster A between nodes i, j accelerates the rate of change of node
k in B. In contrast, the influence on the nodes i, j in A is small, since the nodes in the
pairs (i, k) and (j, k), belong to different clusters and are thus in relative disagreement,
which decreases the effect of cluster B on A.

towards cluster B, and the remainder towards cluster A. Here we say a triplet
interaction (i, j, k) is oriented towards a specific cluster if two of its nodes are in
the oppositve cluster (see Fig. 2). For instance, if nodes i, j are in cluster A and
node k is in cluster B, the triplet interaction is oriented towards cluster B (recall,
however, that all nodes of the triplet interact, i.e., there is no ‘directionality’ in
the coupling tensor A). We consider an initially polarized state of opinions such
that nodes in cluster A have initial state xA(0) = 0 and nodes in cluster B have
initial state xB(0) = 1.

In contrast to the fully connected system described in the previous section,
here an initial average of x̄(0) = 0.5 does not guarantee that the average is
invariant over time (i.e., the induced graph is not balanced). This is due to the
reinforcing group effects which result in asymmetric interactions as encoded by
the induced graph described by W. To see this, consider a triplet interaction
oriented towards cluster B (see Fig. 2. Since there is (local) consensus in cluster
A, for monotonically decreasing s(x) the influence of the nodes from A onto the
node in B is increased, whereas the opposite influence is decreased. Following
this reasoning, the relative influence of cluster A on B (and vice versa) thus
depends on the relative number of triplet interactions oriented towards each
cluster, which is determined by parameter p: for small p most of the ’cross-cluster’
triplet interactions will be oriented towards A, for large p most interactions will
be oriented towards B.

In Fig. 3, we show how the relative number of oriented triplet interactions
measured by p affect the final consensus value and the convergence towards
consensus. For these results we averaged our 20 simulations with varying p. As
seen in Fig. 3(a), we observe a shift in the final consensus value towards the
initial value in cluster A or in cluster B, depending on the percentage of triplet
interactions oriented away from that cluster. The asymmetry also influences
the rate of convergence towards consensus, as shown in Fig. 3(b), i.e., a relative
increase in oriented triplets leads to a faster rate of convergence. Our simulations
also reveal higher fluctuations in the asymptotic state for values close to p = 0.5.
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Fig. 3. 3CM dynamics on a modular hypergraph. Simulations of 3CM on two inter-
connected clusters of 10 nodes, with the modulation function s(x) = exp(−100x). All
results are averaged over 20 simulations, where the error bars denote one standard
deviation. (a) Final consensus value as a function of the directionality parameter p. As
the fraction of triplet interactions oriented from cluster A to cluster B increases, so does
the consensus value towards the initial state in cluster A. (b) The rate of convergence
is significantly faster when the triplet interactions are mostly oriented towards one
cluster, i.e., for extreme values of p.

This result indicates that the process is sensitive to small deviations from balance
in the initial topology, which can lead to comparably large differences in the
consensus value.

Note that similar observations can also be made if one cluster forms a “minor-
ity” and is comparably smaller than the other cluster (the majority). Indeed,
depending on the relative number of triplets oriented towards the majority, the
opinion of the minority cluster may have a much stronger influence on the final
consensus value than the majority. An example of this situation is shown in
Fig. 4. Here the opinion of the minority cluster A with 5 nodes ‘dominates’ the
opinion of the majority cluster B with 10 nodes for a non-linear reinforcing
modulation function s(x) (left). In the context of opinion dynamics, this type of
behavior is akin to a “minority influence”, in which small groups can dominate
the formation of an opinion not because of their size, but due to their inter-
nal cohesion. In contrast, if we remove the effect of opinion reinforcement and
consider a linear coupling the initial opinion of majority will have the strongest
effect on the final consensus state (as expected from a distributed averaging).

3.5 Time-Scale Separations in Clustered Systems and Multi-body
Interactions

Finally, we investigate interplay between the topology in a clustered hypergraph
and our multi-body interaction dynamics for initial conditions that are not piece-
wise constant. Specifically, we are interested in examining the different time
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Fig. 4. Minority influence through reinforcing opininon. We display simulations for a
modulation function s(x) = exp(λx) for λ = −10 and two biased clusters of different
sizes, which are connected with a single triplet interaction oriented towards cluster A.
Cluster A comprises the majority of nodes (10 nodes) whereas cluster B consists only
of 5 nodes. (a) While intuition may suggest a final consensus that is leaning towards
the initial opinion 0 of the majority cluster A, we observe the opposite behavior due
to opinion reinforcing effect of the nonlinear coupling, which leads to an (effectively)
oriented connection between B and A. (b) If the dynamics are linear (right), the initial
average opinion is conserved and therefore the majority opinion dominates the final
consensus value.

scales in the dynamics induced by the clustered topology (as is also well known
for pairwise interaction systems in the fixed [4] and time-varying case [10]). The
different time-scales are here associated to a fast convergence of states inside
clusters, followed by a slower convergence towards global consensus.

For simplicity, we consider here again the setting of a clustered hypergraph
with 2 clusters described above for p = 1 (cf. Fig. 2 and Fig. 3). This time,
however, the nodes in each cluster may have different states initially. For our
experiments, we initialise nodes in different clusters uniformly at random over
disjoint intervals, such that nodes of cluster A have random initial states in
the interval IA = [0, 0.5] and nodes in cluster B have random initial states in
IB = [0.5, 1] (see Fig. 5). The initial cluster averages of the node states are thus
far apart.

Now two effects lead to a fast multi-body consensus inside each cluster. First,
each of the clusters are internally fully-connected. Second, the inter-cluster-
dynamics will generally have a weaker effect since the difference of the initial
conditions means that s(‖xi − xj‖) will be small if nodes i and j are in differ-
ent clusters. As a result, we first observe a fast dynamics within the clusters
in which nodes approach the cluster-average state (Fig. 5, bottom) and then a
slower dynamics between the two clusters (Fig. 5, top).

However, the final outcome of this process critically depends on the modula-
tion function s(x). For s(x) = exp(λx), with λ = −100, we observe an asymmet-
ric shift towards cluster B for p = 1, the final opinion as shown in Fig. 5 (left).
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Fig. 5. Time-scale separation in clustered systems and the influence of the modulation
function s(x). We simulate the dynamics of two clusters A and B connected with 80
(random) triplet interactions all oriented towards nodes in A. The nodes states xi are
initialised uniformly at random over two separate intervals IA, IB with IA ∩ IB = ∅,
such that xi(0) ∈ IA if i is in cluster A and xi(0) ∈ IB if i is in cluster B. The left
figures correspond to the exponential modulation function s(x) = exp(λx) for λ =
−100. The right figures correspond to a Heaviside modulation function with threshold
φ = 0.2. In both cases, we observe a timescale separation with a fast, symmetric
dynamics inside the clusters, followed by a slow dynamics in which cluster B exhibits
a disproportionate influence compared to its size (both cluster have the same size).
For the Heaviside function, the process becomes linear when the values in the two
clusters are less separated than the Heaviside-threshold. The fast transient inter-cluster
dynamics is shown in the bottom figures, with qualitatively similar results for both
modulation functions.

If we consider other modulation functions, however, the results can be different.
For instance we may consider a coupling via a (shifted) heaviside function of the
form:

s(‖xj − xk‖) = H(‖xj − xk‖ − φ) =

{
0 if ‖xj − xk‖ < φ

1 otherwise,
(7)

which switches between a zero interaction and linear diffusion when the difference
of the neighbouring triangle nodes becomes smaller than a threshold φ ∈ (0, 1).

If we consider the Heaviside function with threshold φ = 0.2 as the modu-
lation function, the dynamics between the clusters behaves initially very simi-
lar to the exponential case (see Fig. 5). This behavior continues until the two
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cluster means are less separated than φ. As shown in Fig. 5 (right), the dynam-
ics between the clusters then become linear and therefore the average opinion
remains constant from then onwards.

We remark that the Heaviside function is not positive-definite, so that the
above dynamics do not necessarily converge to a global consensus asymptot-
ically. Indeed, consider a setting with three clusters that are connected by a
triplet interaction with exactly one node in each cluster. If the initial states
are separated more than the Heaviside constant, all inter-cluster interactions
would be zero and therefore the system would at most converge to a decoupled
‘polarised’ state with three independent opinions, one for each cluster.

4 Conclusion

We have explored a model for opinion formation with multi-body interactions,
defined on hypergraphs, in order to identify the impact of reinforcing opinions
on the dynamics. We found that these non-linear multi-body interactions can
cause dynamical phenomena such as shifts in the average opinion that would not
appear in a corresponding pairwise system. In situations with two connected,
polarised groups the dynamics can lead to the opinion of one group clearly dom-
inating the other. These findings are important to better understand processes
governed by reinforcing group effects in society.

In standard linear opinion formation models with two-body dynamical system
such as the de-Groot model [6] or consensus dynamics [13,18], it is known that
the asymptotic behavior of the dynamics is dominated by the networks structure.
For instance, the mixing time is determined by the spectral gap. In contrast,
in our model knowing the structure alone is not sufficient to understand the
asymptotic behavior. Indeed, we have shown the initial node states can lead
to an effectively oriented flow in the dynamics and thus lead to an opinion
formation process that can be dominated, even by relatively small groups of
nodes—provided, they have a coherent opinion. In real-world setings, such an
insight could be exploited to steer the opinion towards a desirable outcome by
modifying the balance in the dynamical system by seeding (i.e., changing the
initial states) or eliminating components (i.e. changing the topology). Future
work will consider such issues in more detail. A specific challenge in this context
will be the derivation of simple, computable (heuristic) strategies that would
enable for such a control, without having to assees all minute details of the
hypergraph and initial condititions. For instance, deriving some form of higher-
order generalization of network centralities, related to the dynamical properties
of such multi-body interaction systems, would be an interesting avenue to pursue.
As a first attempt one may make use of the matrix representation W of the 3CM
system to derive appropriate centrality values. However, this would assume a
fixed initialisation is known—one thus would need to generalize this notion to
identify the important actors and connections in the 3CM system.
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Abstract. This work explores models of opinion dynamics with opinion-
dependent connectivity. Our starting point is that individuals have lim-
ited capabilities to engage in interactions with their peers. Motivated
by this observation, we propose an opinion dynamics model such that
interactions take place with a limited number of peers: we refer to these
interactions as topological, as opposed to metric interactions that are
postulated in classical bounded-confidence models.

Keywords: Opinion dynamics · Limited attention · Nonsmooth
dynamical systems

1 Introduction

Driven by the evolution of digital communication and social networking services,
there is an increasing interest for mathematical models of opinion dynamics
in social networks. Among the many models proposed in the literature, a few
have become popular in the control community [26,27]. In the perspective of
the control community, opinion dynamics distinguish themselves from consensus
dynamics because consensus is prevented by some other feature of the dynamics.
In many popular models, this feature is an opinion dependent limitation of the
connectivity. Chief examples are bounded confidence models [16,22], where social
agents influence each other iff their opinions are closer than a threshold.

This way of defining influence assumes that agents have always access to
the opinions of all fellow agents and may lead to agents being influenced by a
large number of their fellows, possibly the whole population. Instead, the number
of possible interactions is bounded in practice by the limited time and efforts
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that individuals can devote to social interactions. Similar limitations of attention
are well documented in psychology and sociology, for instance by the notion of
Dunbar number [18], and become evermore crucial in today’s age of information
bonanza [21]. Indeed, in online social media, natural limitations of attention
interplay with the way the online platforms are designed. Users interact via the
contents they share: out of the pool of fresh contents, the online platform selects
for each user the best contents in order to maximize engagement, mainly based
on similarities between users [23]. As the notion of Dunbar number was originally
defined with reference to primates, the reader will not find surprising that similar
ideas have also been fundamental in the study of flocking in animal groups, as
testified by numerous theoretical and experimental works [3,5,15,20,24]. The
importance of considering networks where the number of neighbors is limited
has also been understood by graph theorists, who have studied the properties of
what they call k-nearest-neighbors graph: for instance, it is known that k must
be logarithmic in n to ensure connectivity [4].

However, few works have incorporated this important observation in suitable
models of opinion dynamics. Before surveying these important references, we
briefly describe the contribution of this paper. In our effort to make the case
for limited attention in opinion dynamics, we study a simple continuous-time
model (first appeared in the survey paper [2]) in which every agent is influenced
by her closest k nearest neighbors. In this paper, we provide some preliminary
results about this continuous-time dynamics. Our results concentrate on two
axes: studying the main properties of its equilibria, including their robustness
to disruptions, and proving convergence results in special cases. We describe the
equilibria of the dynamics, distinguishing a special type of clusterization equi-
libria that are constituted of separate clusters, and we discuss the robustness of
clustered equilibria to disruptions, such as the addition of new agents. Regarding
the question of convergence, we are able to provide a proof in two cases: when
the total number of agents n is small enough compared to number of neighbors
k, namely n ≤ 2k + 1, and when k = 1, that is, agents are only influenced by
one “best friend”.

The difficulties in studying k-nearest-neighbors dynamics originate from two
key features: (1) interactions are not reciprocal; (2) whether two agents interact
does not only depend on their two states, but also on the states of all the other
agents. In the literature, models with any of these features are still relatively
few. In classical bounded confidence models [16,22], interactions are reciprocal
as long as the interaction thresholds are equal for all agents [7–10,22], and any
lack of reciprocity makes the analysis much more delicate [12,14,25]. In our
model, not only interactions are non-reciprocal, but they are also non-metric:
whether two agents interact is not solely determined by the distance between
their two opinions. For this reason, we follow a consolidated tradition [5] and
refer to our connectivity model where agents can interact with their k nearest
neighbors as topological.

Topological interactions are becoming increasingly popular in the applied
mathematics community, especially for second order models [13]. Kinetic and



274 F. Ceragioli et al.

continuum models with topological interactions are also actively studied [6,17,
31]. Among first order “opinion” models, [1] has recently used Petri nets to define
a class of models where interactions depend on the opinions of multiple agents:
despite some similarities, our model does not belong to this class. In our recent
papers [28,29], we have studied two dynamics with asynchronous updates (with
and without sub-sampling, respectively) that are discrete-time counterparts of
the model we propose here. Finally, our contribution here differs from the one
of [2] as the latter focuses on specific properties of the equilibria, such as the
distribution of their clusters’ sizes, studied by extensive simulations, whereas we
are interested in analytical results about dynamical properties like convergence
to the equilibria and about their robustness to perturbations. Our robustness
analysis is inspired by the approach taken in [7] for bounded confidence models.

The rest of this paper has the following structure. Section 2 introduces the
model, Sect. 3 develops its analysis, and Sect. 4 discusses our results.

2 Mathematical Model

Let n and k be two integers with

1 ≤ k < n,

and let V = {1, . . . , n} be the set of agents. Each agent is endowed with a scalar
opinion xi ∈ R. For every agent i ∈ V , her neighborhood Ni is defined in the
following way. The elements of V \{i} are ordered by increasing values of |xj−xi|;
then, the first k elements of the list (i.e. those with smallest distance from i) form
the set Ni of current neighbors of i. Should a tie between two or more agents
arise, priority is given to agents with lower index. Note that Ni depends on the
state, namely one should write Ni(x(t)): nevertheless, we omit to explicitly write
the dependence of Ni on the state. Based on the current definition of Ni, agent
i’s opinion evolves according to

ẋi =
∑

�∈Ni

(x� − xi) (1)

We denote by F (x) the righthand side of (1). In order to describe the inter-agent
interactions allowed by a state x ∈ R

n, it is convenient to define the directed
graph

G(x) = (V,E(x)) with E(x) =
⋃

i∈V

{(i, j), j ∈ Ni} ,

where Ni is the set of neighbors of i. Clearly, if k = n − 1 the graph G(x) is
complete (up to self-loops). In using some simple graph theory in this paper, we
take some background and standard jargon for granted: a concise summary can
be found in [19, Ch. 1]. The chosen tie-breaking rule makes the right-hand side
F (x) well defined for any x ∈ R

n. The neighborhoods depend on the current state
and, therefore, on time. This fact makes dynamics (1) a piecewise-continuous
system [11]. Its solutions shall be intended in a semi-classical sense, that is, as
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piecewise-smooth solutions φ(t) such that the right-derivative of the solution is
equal to the right-hand side at all times, that is,

lim
h→0+

φ(t + h) − φ(t)
h

= F (φ(t)) for all times t.

We conjecture that a forward complete and unique solution exists from every
initial condition: a rigorous verification of this fact, which is assumed to hold
true in the rest of this paper, is left to future work. Note that choosing a more
general notion of solutions, e.g. Caratheodory’s, would prevent unicity and the
produced multiple solutions would make the subsequent analysis more delicate.

3 Analysis

This section details our results on dynamics (1). We first study equilibria, then
convergence properties, and finally reconsider equilibria to study their stability.

3.1 Equilibria

A cluster is a subset of agents that have the same opinion: C ⊂ V such that
xi = xj for all i, j ∈ C. A state x is called clusterization if every agent belongs
to a cluster of at least k + 1 elements. Finally, a clusterization with only one
cluster is said to be a consensus.

A state x ∈ R
n is said to be an equilibrium for (1) when the right-hand side

F (x) is zero. For any i ∈ {1, . . . , n}, it is immediate to see that ẋi = 0 if i
belongs to a cluster of at least k + 1 elements. This condition is also necessary
when i is the index of the smallest or of the largest component. Therefore, all
clusterizations are equilibria and all non-consensus equilibria have at least two
clusters of at least k + 1 elements, but not all equilibria are clusterizations. It is
possible to obtain a simple counterexample by considering k = 2 and n = 7 with

x1 = x3 = x5 = 0 , x7 =
1
2

, x2 = x4 = x6 = 1. (2)

Note that this example exploits the tie-breaking rule. However, this is not nec-
essary, as the following example shows: consider k = 4 and n = 14 with

x1 = x2 = x3 = x4 = x5 = 0 ,

x6 = x7 =
2
5

, x8 = x9 =
3
5

,

x10 = x11 = x12 = x13 = x14 = 1.

3.2 Dynamical Properties

We can readily observe that, for any two agents i and j,

d
dt

(xi − xj) =
∑

�∈Ni\Nj

(x� − xi) −
∑

m∈Nj\Ni

(xm − xj) − |Ni ∩ Nj | (xi − xj). (3)
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This formula allows us to derive a few consequences. First, we observe that if
Ni(t) = Nj(t) for all t ≥ t0, then xi − xj → 0. Second, we can deduce that the
dynamics preserves the order of the agents.

Proposition 1 (Order preservation). If xi(t0) > xj(t0), then xi(t) > xj(t)
for all t ≥ t0.

Proof. Observe that (3) can be rewritten as

d
dt

(xi − xj) =
∑

�∈Ni\Nj

x� −
∑

�∈Nj\Ni

xm − k(xi − xj)

≥ −k(xi − xj),

where the inequality holds because |Ni \ Nj | = |Nj \ Ni| and x� ≥ xm for any
� ∈ Ni \Nj and m ∈ Nj \Ni. By this bound and Gronwall lemma, xi −xj cannot
reach zero in finite time. �	
As a consequence of this property, we can assume from now on with no loss
of generality that the agents are sorted in ascending order of opinions, that is,
xi(t) ≤ xi+1(t) for all i ∈ {1, . . . , n − 1} and all t ≥ 0. The following proposition
formally justifies this fact.

Proposition 2 (Re-ordering agents). Let x(t) be a solution and σ be a per-
mutation on the index set {1, . . . , n}. Assume that for all pairs of distinct indices
i, j the permutation satisfies σ(i) < σ(j) if either xi(0) < xj(0) or xi(0) = xj(0)
and i < j. Then, the following facts hold true:

1. xσ(i)(t) = xi(t) for all i ∈ {1, . . . , n} and for all t ≥ 0;
2. if σ(i) < σ(j), then xσ(i)(t) ≤ xσ(j)(t) for all t ≥ 0.

Proof. To verify the first claim, notice that the definition of σ does not interfere
with the tie-breaking rule that is used in the definition of the neighborhoods,
therefore the dynamics of the agents is unchanged.

To verify the second claim, observe the following facts. If xσ(i)(0) < xσ(j)(0),
then xσ(i)(t) < xσ(j)(t) for t > 0 by Proposition 1. If xσ(i)(0) = xσ(j)(0), then
Nσ(i) = Nσ(j) and therefore xσ(i)(t) = xσ(j)(t) also for t > 0 by (3). �	

From now on we will assume that agents are sorted in ascending order. We
can now deduce a convergence result for small groups.

Proposition 3 (Consensus for small groups). If n ≤ 2k + 1, then x(t)
converges to a consensus.

Proof. Since n ≤ 2k + 1, the two agents with lowest and highest opinion share
at least one neighbor. Therefore, their difference evolves according to

d
dt

(xn − x1) =
∑

�∈Nn\N1

(x� − xn) −
∑

�∈N1\Nn

(x� − x1) − |N1 ∩ Nn| (xn − x1)

≤ −(xn − x1),

which implies exponential convergence to zero by Gronwall lemma. �	
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Simulations suggest that the dynamics converge also for larger groups, though
not necessarily to consensus; see Fig. 1.
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Fig. 1. Two typical evolutions of the dynamics with k = 3 from random initial condi-
tions. We observe convergence to consensus for n = 7 (left) and to a clusterization for
n = 30 (right). The non-smooth nature of the trajectories is also very visible.

3.3 Special Case k = 1

In the case k = 1, the dynamics takes the form

ẋi = xcl[i] − xi i ∈ {1, . . . , n},

where cl[i] denotes the index of the closest agent to i. This specific form has
three important consequences.

Lemma 1. If k = 1, then the following facts hold true.

1. All equilibria are clusterizations.
2. For every x ∈ R

n, the interaction graph G(x) is the union of weakly con-
nected components, such that each component contains exactly one circuit of
length 2 and the two nodes of the circuit can be reached from all nodes of the
component.

3. Two disconnected components cannot become connected in the evolution.

Proof. Claim 1: We observe that the only possibility for the right-hand side to
be zero is that xcl[i] = xi for all i.

Claim 2: Observe that cl[i] can only be equal to either i−1 or i+1, except for
the extreme agents, for which necessarily cl[1] = 2 and cl[n] = n − 1. Therefore,
the sequence δi = cl[i] − i is such that δ1 = 1 and δn = −1 and must therefore
change sign an odd number of times. Where it changes from positive to negative,
there is a pair of reciprocal edges; where it changes from negative to positive,
there is a disconnection. Therefore, every connected component has a pair of
nodes that are connected to each other and that can be reached through a
directed path from all other nodes. See Fig. 2 for an illustrative example.
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Claim 3: Let there be a disconnection between j and j + 1. Then,

d
dt

(xj+1 − xj) = (xj+2 − xj+1) + (xj − xj−1) ≥ 0,

implying that the distance xj+1 − xj cannot decrease. Moreover,

d
dt

(xj − xj−1) = −(xj − xj−1) − (xcl[j−1] − xj−1) ≤ 0,

because the second term either is negative or, if positive, must be smaller or
equal in magnitude than xj − xj−1. Therefore, xj − xj−1 cannot increase. Since
an analogous reasoning implies that xj+2 − xj+1 cannot increase, the two com-
ponents cannot become connected in the future. �	

1 2 3 4 5 6

Fig. 2. Example of weakly connected component of graph G(x).

These facts allow to draw a conclusion about convergence.

Proposition 4 (Clusterization). If k = 1, then x(t) converges to a clusteri-
zation.

Proof. The third statement of Lemma 1 implies that weakly connected compo-
nent can only split. Since the number of individuals is finite, the splitting process
terminates with a finite number of constant weakly connected components. After
that termination time, the topology does not change. Since each connected com-
ponent has a globally reachable node, then each group of agents is guaranteed
to converge to consensus [19, p. 61], therefore producing a clusterization. �	

Unfortunately, the idea of the proof of Proposition 4 does not extend to k > 1,
because in general disconnected components can become connected.

3.4 Stability and Robustness of Equilibria

It is easy to see that non-clusterization equilibria are not stable in general. For
instance, consider example (2) with a small perturbation on agent 7: the ensuing
dynamics leads to a clusterization with two clusters. Instead, clusterizations
exhibit several stability properties.

We shall begin by considering small perturbations of the opinions. We say
that a clusterization state is structurally stable if, after a perturbation, the
dynamics converges to another clusterization that has the same clusters (though
not necessarily taking on the same opinion values). More formally, the clusteri-
zation x̄ is said to be structurally stable if there exists a neighborhood of x̄ such
that, for every y′ in that neighborhood, any solution issuing from y′ converges to
a clusterization ȳ that has the following property: for any pair i, j of individuals,
x̄i = x̄j if and only if ȳi = ȳj .
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Proposition 5 (Structural stability of small clusters). A clusterization is
structurally stable if and only if all of its clusters have cardinality not larger than
2k + 1.

Proof. If all clusters have cardinality not larger than 2k+1, then after the pertur-
bation Proposition 3 can be applied. To prove the opposite implication, observe
that if one cluster has cardinality at least 2k+2, then a suitable perturbation can
split it into two separate clusters of cardinality at least k + 1, thereby creating
a clusterization with different structure. �	

We shall also consider different kinds of disruptions, namely the addition or
removal of one agent. We say that a clusterization is stable to these disruptions
if, after the addition or removal of an agent, the other agents do not change their
opinion.

Proposition 6 (Stability to removals). A clusterization is stable to removals
if and only if all of its clusters have cardinality larger than k + 1.

Proof. It is clear that agents in a cluster remain at equilibrium after the removal,
unless the cluster size goes below the threshold k + 1. �	
Proposition 7 (Stability to additions). Every clusterization is stable to
additions.

Proof. Agents within a cluster of size at least k+1 will not be influenced by any
new arrival. �	

4 Conclusion

The stability properties of the equilibria of dynamics (1) should be contrasted
with the lack thereof shown by the equilibria of the corresponding metric
bounded confidence model, which reads as

ẋi =
∑

�:|x�−xi|<d

(x� − xi), (4)

where d > 0 is an interaction radius. It is well-known [8,10] that this dynamics
converges to clusterizations. If a new agent is added to such a clusterization,
either the new agent is too far apart from the original agents and nothing hap-
pens, or the new agent falls within the visibility radius from a cluster. In the
latter case, the new agents and the agents in the cluster influence each other
and therefore change their opinions, converging to a common intermediate value.
Actually, if the new agent falls within the visibility radius of two clusters, the
two clusters eventually merge.

In contrast, clusters produced by (1) are much more stable. In our opinion,
this stability intriguingly reminds the stability that is exhibited by norms and
organizations in societies. Indeed, sociologists and ethologists have observed since
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a long time [30,32,33] that social norms and social structures are typically rather
stable across time, despite the fact that the composition of the social groups
evolve, notably with the arrival of new members. Our insights about k-neighbor
interactions suggest that limitations of attention can have stabilizing effects in
societies.
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Abstract. Real-time pricing is considered as a promising strategy to
flatten the power consumption provided with perfect knowledge of con-
sumers’ demand level. However, the gathering of full information of
demand levels might be cumbersome or even impossible for the provider
in practical scenarios. In this paper, instead of assuming the perfectly
known demand levels, we investigate the problem where the provider has
the sole knowledge of the probabilistic distribution of the demand lev-
els. Furthermore, a penalty term caused by the prediction error of the
consumption prediction is introduced due to the incomplete information.
By solving the stochastic optimization problem, the optimal consump-
tion prediction and optimal price to maximize the expected social welfare
is derived analytically. Numerical results show that the degradation on
the social welfare brought by the partial information can be less than
1% when the price and consumption prediction are well designed.

Keywords: Real-time pricing · Demand response · Consumption
prediction

1 Introduction

An essential goal of smart grids is to create reliable communications between
many components. the exchange and control of information can provide more
effective generation and transmission of electricity, resulting in flattening the
power consumption. To reduce the power consumption during the peak time,
demand side management (DSM) has been proposed and shown to be a promis-
ing strategy in certain scenarios [1,2].

Pricing-based demand response (DR) is one of the most widely used DSM
methods, where the electricity price designed by the provider is related to the
overall demand (or aggregate load) of the served consumers. In a smart grid
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system, the energy provider can send the tariff information to the energy con-
sumption controller (ECC) unit located at the consumer’s devices (e.g., the smart
meters), and thus the consumers can schedule their activities to low price peri-
ods. To shift the power consumption from the rush hours, the dynamic pricing
is in accordance with the overall demand levels. Several different pricing have
been proposed recently. For instance, the time of use pricing has on-peak tariff
and off-peak tariff [3], the day-ahead pricing predicts the following day’s con-
sumption and propose a tariff according to its consumption prediction [4]. Due
to the large deployment of smart meters, the real-time pricing can be imple-
mented by communicating the demand of current period and feeding back the
real-time tariff to the consumers. Under the ideal communication environment,
the real-time price can be designed to maximize the social welfare or the benefit
of the provider [5,6].

However, due to the limitation of available resources in the communication
channels, the perfect observation of the demand levels can be prohibitive. In this
paper, we consider the case where only partial information can be acquired by
the provider. More precisely, the provide has the sole knowledge of the demand
level statistics instead of knowing its instantaneous realizations. Moreover, the
information shortage about the demand levels in provider’s side leads to the
uncertainty of total power consumption of the system. As a consequence, the
procurement (or generation) of electricity in advance will be affected and thus a
penalty term has been introduced in this paper to model this impact. Knowing
the statistics of demand and the penalty term to the provider’s cost function,
the stochastic optimization problem has been studied here. The rest of the paper
is organized as follows. The system model is introduced in Sect. 2. The problem
is formulated and The optimal price and optimal load prediction are derived in
Sect. 3 and Sect. 4 respectively. The paper ends by numerical results.

2 System Model

In this paper, we consider a smart power system consisting of an unique energy
provider and several consumers. It is assumed that there is an ECC unit embed-
ded in each consumer’s smart meter. The role of the ECC is to control the power
consumption such that the consumer’s utility can be maximized.

Let N = {1, . . . , N} denote the set of all the consumers. For each consumer
i ∈ N , denote xk

i as the power consumption of consumer i at time slot k. In
fact, considering the problems during several time slots K = {1, . . . , K}, the
solutions can be found separately in each time-slot. Without loss of generality,
we consider our problem for one given time-slot and remove the index k for all
the definitions. For each consumer i. the available power consumption interval
Ii is defined as

Ii = [mi,Mi] (1)

and thus mi ≤ xi ≤ Mi.
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2.1 Utility Function of Consumers

The energy demand of each consumer depends on several parameters, e.g., the
climate condition, tariff, the variation of the energy demand over different time
of the day. For all consumers, we denote the utility function as U(x, ω), where
x represents the power consumption and ω is a parameter representing the sat-
isfaction level (based on climate, time and so on). Here we choose the utility
function proposed in [5] defined as:

U(x, ω) =

⎧
⎪⎪⎨

⎪⎪⎩

ωx − α
2 x2, if 0 ≤ x ≤ ω

α

ω2

2α , if x > ω
α .

(2)

2.2 The Cost Function of the Provider

Denoting the total power consumption L as L =
∑N

i=1 xi, the cost function
C1(L) for the provider, representing the cost of providing L units of energy, is
chosen as [5]:

C1(L) = aL2 + bL + c (3)

Different from most of the existing works, we also consider the cost caused by
the prediction error of the power consumption. Note that it is assumed that
the provider has imperfect knowledge of ωi. The imperfect information can
be induced by privacy issue, or the bad quality of communication channels.
Indeed, in the worst case (all consumer want to keep its private information),
it is assumed that the provider knows solely the probability density function
(p.d.f.) of the ωi, which is possible to be acquired by knowing the past real-
izations (values) of the ωi. As a consequence, the provider needs to predict the
total consumption by L̃ and thus brings a penalty term depending on L− L̃. For
instance, the provider purchased L̃ units of energy in advance from the energy
generator. If L̃ > L, the provider will sell the superfluous energy to the Trans-
mission System Operator (TSO) with a lower price. If L̃ < L, the provider needs
to purchase more energy from the TSO with a higher price to satisfy the energy
need by all the consumers. Define the penalty term as C2(L − L̃), with C2 (·)
fulfilling the following properties:

1) The penalty function is non-negative.

C2(x) ≥ 0 (4)

2) The penalty function is non-decreasing when L − L̃ > 0 and non-increasing
otherwise.

∂C2(x)
∂x

≥ 0 if x > 0 (5)

∂C2(x)
∂x

≤ 0 if x < 0 (6)
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In this paper, we choose the absolute value function to describe the penalty
term as follows:

C2(L − L̃) = d|L − L̃| (7)

Hence, the total cost of the provider can be expressed as:

C(L, L̃) = C1(L) + C2(L − L̃) (8)

3 Problem Formulation

3.1 Demand Side Response of Consumers

For user i ∈ {1, . . . , N}, consuming xi kW electricity with a tariff Pi dollars per
kWh needs to pay Pixi dollars to the provider, its utility can be expressed as:

Wi(xi, ωi) = U(xi, ωi) − Pixi (9)

To maximize its own utility, the optimal power consumption can be written as:

x�
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mi, if ωi−Pi

α ≤ mi

ωi−Pi

α , if mi ≤ ωi−Pi

α ≤ Mi

Mi, if ωi−Pi

α ≥ Mi

(10)

For the sake of clarify, we assume the power consumption interval is sufficient
large so that the condition mi ≤ ωi−Pi

α ≤ Mi is always met. Hence, the optimal
consumption can be simplified to

x�
i =

ωi − Pi

α
(11)

.

3.2 Expected Social Welfare Maximization Problem

When the communication channel between consumers and the provider is
assumed to be perfect (lossless information can be exchanged), the social wel-
fare can be optimized by using the algorithm proposed in [5]. However, for the
scenario with no available communication channels unreliable communication
channels, the maximization problem becomes totally different. In our case, it
is assumed that the provider has the sole knowledge of the p.d.f. of all the ωi.
Hence, due to the lack of information, it is difficult to optimize the instantaneous
social welfare. Consequently, we propose to maximize the expected social welfare
as follows:

Exi,ωi
[
∑

i∈N
U(xi, ωi) − C(L, L̃)] (12)
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Note that the power consumption xi has been determined by (11) in the con-
sumer’s side. Plug (11) into (12), the expected social welfare can be rewritten
as:

W (P1, . . . , PN , L̃)

=Eωi
[
∑

i∈N
U(x�

i , ωi) − C(L�, L̃)]

=Eωi
[
∑

i∈N
U(

ωi − Pi

α
, ωi) − C(L�, L̃)]

(13)

where L� =
∑

i∈N x�
i . To maximize the expected social welfare defined by (13),

the provider can optimize the tariff Pi and the prediction of total power con-
sumption L̃ as follows:

max
P1,...,PN ,˜L

Eωi
[
∑

i∈N
U(

ωi − Pi

α
, ωi) − C(L�, L̃)] (14)

Additionally, from the following proposition, it can be seen that the expected
welfare can be optimized by using a common tariff P for all consumers rather
than a different tariff for each consumer.

Proposition 1. For any given tariff P̃1, . . . , P̃N , the following inequality always
hold:

W (P̃1, . . . , P̃N , L̃) ≤ W (P c
1 , . . . , P c

N , L̃) (15)

where P c
i = 1

N

∑N
j=1 P̃j for every i ∈ N .

Proof. It can be calculated that

W (P̃1, . . . , P̃N , L̃) − W (P c
1 , . . . , P c

N , L̃)

=
1
2α

(
N∑

i=1

(P c
i )2 −

N∑

i=1

P̃ 2
i )

(16)

Note that
∑N

i=1 P̃i =
∑N

i=1 P c
i . Furthermore, it can be found that

(P c
1 , . . . , P c

N ) = arg min
∑N

i=1 Pi=C

N∑

i=1

P 2
i (17)

As a consequence, it can be seen that

N∑

i=1

(P c
i )2 −

N∑

i=1

P̃ 2
i ≤ 0. (18)

Our claim is proved.
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According to Prop. 3.1, the optimization problems (14) can be further simplified
to the following problem:

max
P,˜L

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C(L�, L̃)] (19)

The provider will find the optimal price and the optimal power consumption
prediction to maximize its expected social welfare. The approach to derive them
will be presented in the subsequent section.

4 Optimal Consumption Prediction and Price

In this section, we proposed one approach to derive the optimal power con-
sumption prediction and the optimal price. One can easily observe that these
two variables are correlated. Without loss of optimality loss, the optimization
problem (19) can be solved in two steps. Firstly, we focus on find the optimal
consumption prediction for a given price P , i.e.,

L̃�(P ) ∈ arg max
˜L

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C(L�, L̃)] (20)

When the L̃�(P ) has been derived, the optimal price can be obtained by solving
the following problem:

P � ∈ arg max
P

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C(L�, L̃�(P ))] (21)

4.1 Optimal Prediction of the Total Power Consumption

We notice that only the term C2(L� − L̃) is related to the prediction L̃, thus the
optimization problem (22) is equivalent to the following problem:

L̃�(P ) ∈ arg max
˜L

Eωi
[|

N∑

i=1

ωi − P

α
− L̃|] (22)

Proposition 2. For a given price P , the optimal prediction of the total power
consumption can be written as

L̃�(P ) = MED(ω) − NP

α
(23)

where MED(.) represents the median of the variable and ω =
∑N

i=1
ωi

α .

Proof. The proof is omitted because of the lack of space.

According to the Prop. 4.1, the optimal prediction decreases when the price rises.
This can be explained by the fact that the rise of price will bring a degradation of
the power consumption, and further the prediction of total power consumption
will decline.
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4.2 Optimal Price

Knowing the optimal prediction for a given price, the second step can be done
by solving the optimization problem (21). Interestingly, according to (23), the
problem can be further simplified. We notice that the term C(L�, L̃�(P )) can be
rewritten as:

C(L�, L̃�(P ))

=C1(L�) + d|
N∑

i=1

ωi − P

α
− L̃�(P )|

=C1(L�) + d|
N∑

i=1

ωi

α
− MED(ω)|

.

(24)

Since d|∑N
i=1

ωi

α −MED(ω)| is independent of P, the optimization problem (21)
can be further simplified as:

P � ∈ arg max
P

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C1(L�)] (25)

Therefore, when the prediction has been optimized, the pricing problem is inde-
pendent of the optimal prediction L̃�.

Proposition 3. The optimal price to maximize the expected social welfare can
be derived by solving (25) and written as:

P � =
2aαE[ω] + αb

α + 2aN
(26)

Proof. The proof is omitted because of the lack of space.

Knowing the optimal price P �, the optimum prediction of the total power
consumption can be calculated. Plug (26) into (22), the optimal consumption
prediction can be written as:

L̃�(P �) = MED(ω) − 2NaαE[ω] + Nαb

α2 + 2Naα
(27)

5 Simulation Results

In this section, numerical results are shown to evaluate the performance of our
approach. We consider a system with an unique provider and N = 10 con-
sumers. For the sake of simplicity, we assume each ωi is identically independent
distributed (i.i.d.) and remains fixed during one time-slot. Each ωi is uniformly
distributed over the interval [ωmin, ωmax]. The scenario with asymmetric ωi can
be treated in the same way. The parameter d to define the penalty term is set to
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be 0.1. For other parameters, they are chosen same as [5], i.e., α = 0.5, a = 0.01,
b = 0, and c = 0.

Firstly, we assess the performance degradation by using our approach com-
pared with the algorithm proposed in [5]. The reason for the degradation is
twofold: the imperfect knowledge of ωi in our scenario leads to the sub-optimal
power consumption solution, and also the deviation between the real power con-
sumption and predicted power consumption brings the penalty to the provider.
Assume ωmin = 2.5−σ and ωmax = 2.5+σ, Fig. 1 represents the expected social
welfare against σ. It can be observed that the performance degradation induced
by the imperfect knowledge is quite small. Even with largest σ, the optimal-
ity loss is close to 1%. Furthermore, the performance degradation rises when
σ increases. Indeed, larger σ leads to higher variance of ωi. When ωi changes
faster, knowing the real value of ωi becomes more important. As a consequence,
when the provider has limited resource to communicate with the consumers, it
is better to communicate with the consumer which has higher variance of its ωi.
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Fig. 1. Even have the sole knowledge of the p.d.f. of ωi, the relative optimality loss is
less than 1% under typical scenarios.

In Fig. 2, the optimal price against the expectation of ωi is shown. Assume
ωmin = E[ωi] − 1.5 and ωmax = E[ωi] + 1.5. The optimal price is derived by
computing the expected utility defined in (25) with exhaustive search. From this
figure, it can be seen that the optimal price is linear to E[ωi], which verified our
analytical result shown in Prop. 4.2. When ωi increases, the consumer prefers
to respond with a higher power consumption to maximize its individual welfare.
Therefore, the provider needs to increase the price to avoid the high load for
the system. Therefore, it is better to have a rise in price in the evening since
consumers are more demanding and have a drop in price after midnight since
consumers are much less demanding at that time.
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Fig. 2. When consumers are more probably to have higher power consumption, the
price of the electricity designed by the provider will rise.
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Abstract. We study price formation in intraday electricity markets in
the presence of asymmetric information and intermittent generation. We
use stochastic control theory to identify optimal strategies of agents with
market impact and exhibit the Nash equilibrium in closed form for a
finite number of agents as well as in the asymptotic setting of Mean field
games. We show that our model is able to reproduce some empirical facts
observed in the market (price impact, volatility), and allows producers
to deal with risks and costs related to intermittent renewable generation.

Keywords: Stochastic games · Renewable energies · Electricity
markets

1 Introduction

The world electricity markets are presently undergoing a major transformation
driven by the transition towards a carbon-free energy system. The intraday mar-
kets are increasingly used by the renewable producers to compensate forecast
errors. This improves market liquidity and at the same time creates feedback
effects of the renewable generation on the market price, leading to negative
correlations between renewable infeed and prices, and, negative impact on the
revenues of renewable producers.

The aim of this paper is to build an equilibrium model for the intraday elec-
tricity market, to understand the price formation and identify optimal strategies
for renewable producers in the setting where renewable generation forecasts may
affect market prices. We consider renewable producers, optimizing their revenues
based on imperfect forecasts of terminal production. The actions of each agent
impact the market, leading to a stochastic game where players interact through
the market price. We exhibit a closed-form Nash equilibrium for this game in
the linear-quadratic setting, first for a finite number of agents with perfect infor-
mation, and then in the asymptotic Mean field game setting, with imperfect
information. We then show by numerical simulations that our model reproduces
the observed stylized features of the market price, such as the volatility patterns
and the market impact.
c© Springer Nature Switzerland AG 2021
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Correlations between renewable infeed and intraday market prices have been
studied by a number of authors. Kiesel and Paraschiv [10] perform an economet-
ric analysis of the German intraday market and show that a deeper penetration
of renewable energies increases market liquidity and price-infeed correlations.
Karanfil and Li [9] draw similar conclusions on the Danish market, and exhibit
the impact of renewable energies on price and volatility. Gruet, Rowińska and
Veraart [14] establish a negative correlation between the wind energy penetra-
tion and the day ahead market prices. Jonsson et al. [8] show not only prices are
negatively correlated with the penetration of intermittent energies but also that
the latter modifies significantly the spot price distribution.

Optimal strategies in the intraday market for a single wind energy producer
have already been studied. In the price-taker setting, Garnier and Madlener
[6] solve a discrete optimal trading problem to arbitrate between immediate
and delayed trading when price and production forecast are uncertain. In [13],
Morales et al. consider a multimarket setting to derive an optimal bidding strat-
egy in the day ahead and adjustment markets while minimizing the cost in the
balancing market. This approach has been enhanced by Madsen et al., [16] and
then by Delikaraoglou et al. [5] , where the wind energy producer is first a price
maker in the balancing market , and then in both the spot and balancing markets.
Still in the price-maker setting, continuous approaches have also been developed.
Aı̈d, Gruet and Pham [1], consider the optimal trading rate and power gener-
ation for producer with uncertain terminal residual demand. Tan and Tankov
[15] develop an optimal trading model with a quantified evolution of forecast
uncertainty and exhibit optimal strategies depending on forecast updates. We
differ from the latter by considering an equilibrium setting with many agents
and determining the market price as the result of their interactions.

Explicit results for dynamic equilibria are often difficult to obtain. In partic-
ular, Nash equilibria often lead to coupled Partial Differential Equation (PDE)
systems. In the imperfect information setting, the problem may be simplified by
assuming a continuum of agents and using the Mean field game (MFG) approach.

The Mean field games are stochastic differential games with a large number
of symmetric agents, which were originally studied by Lions and Lasry [12] and
Huang, Caines, and Malhamé [7]. The equilibrium of such a game is characterized
through a coupled system of a Hamilton-Jacobi-Bellman and a Fokker-Planck
equation. Carmona and Delarue [3] proposed an alternative way to formalize
the system inspired by the Pontryagin principle and relating the Mean field
game solution to a McKean-Vlasov Forward Backward Stochastic Differential
Equation (FBSDE). From the Mean field game solution one can derive an ε-
Nash equilibrium of the corresponding N -player game.

Financial markets and energy systems are a natural domain of applications
of MFG. Alasseur, Tahar and Matoussi [2] develop a model for the optimal man-
agement of energy storage and distribution in a smart grid system through an
extended MFG. Casgrain and Jaimungal [4] apply it to optimal trade execution
with price impact and deterministic terminal liquidation condition. They dealt
with incomplete information and heterogeneous sub-populations of agents.
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The paper is organized as follows. Section 2 describes the main elements of the
model. Section 3 is devoted to the setting of complete information, where each
agent observes the production forecast of all other agents. In Sect. 4, we consider
a more realistic setting, where each agent observes only its own production fore-
cast as well as the national production forecast. In Sect. 5 we perform empirical
analysis of intraday market and confront it to the theoretical results obtained.
Section 6 concludes the paper.

2 The Model

We place ourselves in the intraday market for a given delivery hour starting at
time T , where time 0 corresponds to the opening time of the market. We assume
that market participants can trade during the entire period [0, T ].

To model the price and the forecasts, we introduce a filtered probability
space (Ω,F ,F := (Ft)t∈[0,T ],P) to which all processes are adapted. As the
agents’ strategies may impact the market price, we distinguish the price with-
out price impact or fundamental price S := (St)t∈[0,T ] from the market price
P := (Pt)t∈[0,T ], where the market impact is included.

We consider small renewable energy producers that use the intraday mar-
ket to manage the volume risk associated to the imperfect production forecast.
They observe a common national production forecast. In addition, each agent has
access to the individual production forecast, which may or may not be observed
by other agents. We assume that the forecast process of ith renewable producer
at time t is given by Xi

t := Xt + X̌i
t , where X := (Xt)t∈[0,T ] is common for all

agents (one can see this component as the national forecast), and the processes
X̌i := (X̌i

t)t∈[0,T ] for i = 1, . . . , N represent the individual production forecast
of each renewable producer. Each small renewable producer aims to maximise
her gain from trading in the market where they take their positions denoted
φi := (φi

t)t∈[0,T ] for i = 1, . . . , N . The agents control their positions by choosing
the trading rate, denoted by φ̇i

t, i = 1, . . . , N , at time t. They also face a termi-
nal volume constraint φi

T = Xi
T , which is enforced as a penalty. In Sects. 4, we

use a generic agent to model the renewable producers in the Mean field setting.
The agent has the same characteristics and goals as the ones of the small renew-
able energy producers above. The forecast process of this producer at time t is
denoted Xt = Xt + X̌t, her state process position is given by φ := (φt)t∈[0,T ]

and controlled by φ̇ := (φ̇t)t∈[0,T ].
In the following sections, we say that a strategy φ̇i, i = 1, . . . , N (resp φ̇), is

admissible if it is F-adapted and square integrable.

3 A Complete Information Game

In this section we place ourselves in a complete information setting to find the
unique Nash equilibrium. We assume that there are N identical agents in the
market and they all observe the individual production forecast of the other
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agents. The filtration F := (Ft)t∈[0,T ] models the information available to all of
them. Without loss of generality, we assume that the initial position is φi

0 = 0
for all i = 1, . . . , N , so that the position of the ith agent at time t is given by
φi

t =
∫ t

0
φ̇i

sds. The strategies impact the market price P as follows:

PN
t = St + aφ̄N

t , ∀t ∈ [0, T ], (1)

where φ̄N
t = 1

N

∑N
i=1 φi

t is the average position of the agents and a is a constant.
The agents trading in the market at time t incur an instantaneous cost,

φ̇i
tP

N
t +

α(t)
2

(φ̇i
t)

2, ∀t ∈ [0, T ]

for ith agent. The first term represents the actual cost of buying the electricity,
and the second term represents the cost of trading, where α(.) is a continuous
strictly positive function on [0, T ] reflecting the variation of market liquidity at
the approach of the delivery date.

The processes S and (Xi)N
i=1 satisfy the following assumption.

Assumption 1. The processes S and (Xi)N
i=1 are square integrable martingales

with respect to the filtration F.

Each producer wishes to maximize the objective function:

JN,i(φi, φ−i) := −E

[∫ T

0

{
α(t)
2

(φ̇i
t)

2 + φ̇i
t(St + aφ̄N

t )
}

dt +
λ

2
(φi

T − Xi
T )2

]

,

(2)
where λ determines the strength of the imbalance penalty and φ−i :=
(φ1, . . . , φi−1, φi+1, . . . , φN ) is the vector of all positions except ith agent’s one.

The optimal strategy of each player depends on other players’ actions and we
want to describe the resulting dynamical equilibrium, which we define formally
below.

Definition 1 (Nash equilibrium). We say that (φ̇i∗)N
i=1 is a Nash equilibrium

for the N-player game if it is a vector of admissible strategies, and for each
i = 1, . . . , N ,

JN,i(φi, φ−i∗) ≤ JN,i(φi∗, φ−i∗) (3)

for any other admissible strategy φ̇i of player i in the market.

The following theorem characterizes the Nash equilibrium of the N -player
game. In the theorem, we denote the average forecast process by X

N

t :=
1
N

∑N
i=1 Xi

t and use the following shorthand notation:

Δs,t :=
∫ t

s

η(u, t)
α(u)

du with η(s, t) = e− ∫ t
s

a
α(u)du and Δ̃s,t :=

∫ t

s

α−1(u)du.

(4)
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Theorem 2. Under Assumption 1, the unique Nash equilibrium in the complete
information N -player game is given by

φi∗
t =

∫ t

0

Δs,t
λdX

N

s − dSs

1 +
(

a
N + λ

)
Δs,T

+ Δ0,t
λX

N

0 − S0

1 +
(

a
N + λ

)
Δ0,T

+
∫ t

0

Δ̃s,t
λd(Xi

s − X
N

s )

1 +
(

a
N + λ

)
Δ̃s,T

+ Δ̃0,t
λ(Xi

0 − X
N

0 )

1 +
(

a
N + λ

)
Δ̃0,T

.

The equilibrium price has the following shape:

PN∗
t = St + aφ

N∗
t , φ

N∗
t =

∫ t

0

Δs,t
λdX

N
s − dSs

1 +
(

a
N

+ λ
)
Δs,T

+ aΔ0,t
λX

N
0 − S0

1 +
(

a
N

+ λ
)
Δ0,T

(5)

From the expression of the equilibrium price (5) in Theorem 2, we observe
that the price impact is composed of a deterministic part, a path dependent
stochastic part relying on the past values of S and X. These processes both play
a symmetric role in the price impact up to some coefficients.

Let us consider a finite number of players and let the penalization parameter
λ go to infinity. Then, from the expression (5) of φ

N∗
, we can derive, that the

price impact depends only on the aggregate production forecast and the final
aggregate position matches exactly with the final production forecast:

φ̄N∗
t

P−→
λ−→∞

∫ t

0

Δs,t

Δs,T
dX

N

s +
Δ0,t

Δ0,T
X0, φ̄N∗

T
P−→

λ−→∞
X

N

T

The complete information setting is questionable since one could argue that,
in practice, the producers do not observe the individual forecasts of other play-
ers. The complexity of determining a Nash equilibrium in a partial information
setting motivates us to consider the partial information problem in the Mean
field setting.

4 An Incomplete Information Game

In this section we assume that the agents do not observe each other’s individual
production forecasts and consider the associated Mean field game. We then inves-
tigate on the existence of an ε-Nash equilibrium approximation in the N -player
incomplete information game.

We consider a generic agent, and the filtration F contains the information
available to this agent. In addition we introduce a smaller filtration, containing
the common noise and denoted by F

0. This filtration contains the information
about the fundamental price and common part of the production forecast of the
generic agent.

Throughout the paper and for any F-adapted process (ζt)t∈[0,T ], we will
denote ζ̄t = E[ζt|F0

t ]. The game is now modeled by the interaction of agents
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through the conditional distribution flow μφ
t := L(φt|F0

t ) of the state process.
In the price impact function defined in the previous section, expectation with
respect to the empirical measure, will be replaced by an integral with respect to
the measure flow such that the market price is now given by:

Pt = St + aφ̄t. (6)

The generic agent wants to maximize the objective function:

JMF (φ, φ̄) := −E

[∫ T

0

α(t)
2

φ̇2
t + φ̇t(St + aφ̄t)dt +

λ

2
(φT − XT )2

]

, (7)

We now define what is meant be a Mean field equilibrium and make some
additional assumptions:

Definition 2 (Mean field equilibrium). An admissible strategy φ̇∗ is a Mean
field equilibrium if it maximizes (7) and φ̄ = φ̄∗.

Assumption 3.

– The process X is a square integrable martingale with respect to the filtration
F.

– The process S and the process X, defined by Xt := E[Xt|F0
t ] for 0 ≤ t ≤ T ,

are square integrable martingales with respect to the filtration F
0.

Note that if X is an F-martingale, then X is by construction an F
0-martingale,

but it may not necessarily be a martingale in the larger filtration F.
The following theorem characterizes the Mean field equilibrium in our setting.

In the theorem we use the same shorthand notation (4) as before.

Theorem 4. Under Assumption 3, the unique Mean field equilibrium is given
by

φ∗
t =

∫ t

0

Δs,t
λdXs − dSs

1 + λΔs,T
+ Δ̃s,t

λdX̌s

1 + λΔ̃s,T

+ Δ0,t
λX0 − S0

1 + λΔ0,T
+ Δ̃0,t

λX̌0

1 + λΔ̃0,T

.

The equilibrium price has the following shape:

Pt = St + a

∫ t

0

Δs,t
λdXs − dSs

1 + λΔs,T
+ aΔ0,t

λX0 − S0

1 + λΔ0,T
.

We now would like to construct an approximate equilibrium in the N -player
setting and quantify how close this approximate equilibrium will be to the true
solution. To address this question, both the N -agent problem and the Mean field
problem must be defined on the same probability space.

Assumption 5.

– The process S is a square integrable martingale with respect to the filtration
F
0.
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– The process X̄ and the processes (Xi)N
i=1 are square integrable martingale

with respect to the filtration F.
– For i = 1, . . . , N , almost surely, E[Xt|F0

t ] = E[Xi
t |F0

t ] := Xt, i = 1, . . . , N .
– The processes (X̌i)N

i=1 defined by X̌i
t = Xi

t − Xt for t ∈ [0, T ], are orthog-
onal square integrable martingales with respect to the filtration F, which are
identically distributed.

Definition 3 (ε-Nash equilibrium). We say that a strategy (φ̇i∗)N
i=1 is an

ε-Nash equilibrium for the N-player game if it is admissible and:

JN,i(φi, φ−i∗) − ε ≤ JN,i(φi∗, φ−i∗), ∀i ∈ {1, ..., N},∀t ∈ [0, T ]

for any other admissible control φ̇i.

Proposition 1. Under assumption 5, we define an admissible strategy for the
N -player game as follows.

φi∗
t =

∫ t

0

Δs,t
λdXs − dSs

1 + λΔs,T
+ Δ̃s,t

λdX̌i
s

1 + λΔ̃s,T

+ Δ0,t
λX0 − S0

1 + λΔ0,T
+ Δ̃0,t

λX̌i
0

1 + λΔ̃0,T

Then, for any ε > 0, there exists Nε with Nε = O( 1
ε2 ), such that for all N with

N ≥ Nε, this strategy is an ε-Nash equilibrium of the N-player game.

To complete the analysis led in the previous part, we would like to numerically
confront the model results to some empirical findings.

5 Numerical Illustration

Volatility and price impact showed to be characteristics of interest in empirical
studies. As they affect strategies of the agents, we want the model to capture
these patterns in order to manage the risks and costs related to renewable pro-
duction uncertainty.

5.1 Data Presentation

We use the limit order book data from the intraday EPEX market of January
2017 for the Germany delivery zone to perform the analyses on the market price.
To exhibit a linear price impact and calibrate the volatility of the market price
P defined in the theoretic model, we used the observed midquote price that we
denote P̃ . The volatility of the production forecast that we denote X̃, is also
calibrated from empirical wind energy forecasts over January 2015.

In order to conduct these empirical studies we assume the following dynamics
for P̃ and X̃:

dP̃t = μtdt + σtdW P̃
t , dX̃t = σ̃tdW X̃

t ∀t ∈ [0, T ], (8)
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where W P̃ ,W X̃ are F-Brownian motions, and μ, σ, σ̃ are F-adapted processes.
For the simulated data, we assume all through Sect. 5 the following dynamics:

dSt = σs
t dW 0

t , dXt = σ0
t dB0

t , dX̌i
t = σx

t dBi
t, i = 1, . . . , N, ∀t ∈ [0, T ]

where σs,σ0 and σx are deterministic functions and W 0, B0, Bi are F-Brownian
motions in the complete information setting (respectively F

0 for W 0, B0 and F
i

for Bi in the incomplete setting). We also assume all through Sect. 5 the liquidity
function α(.) is given by:

α(t) = α × (T − t) + β, ∀t ∈ [0, T ], α > 0, β > 0. (9)

The model parameters are specified in Table 1.

5.2 Price Impact

In this section, we compare the simulated price impact of the model to the
empirical one. In the empirical data, the market price is identified to the observed
midquote price, and we make the simplifying assumption that we can derive the
price impact from this single variable. We regress the midquote price shift just
before and just after a transaction on the traded volumes:

ΔP̃t = P̃t+ − P̃t− = a ∗ sign(Volumet) ∗ Volumet, ∀t ∈ [0, T ],

as the empirical analogous of the linear price impact in the model given by
expression (1). The volume sign corresponds to the side of the order that trigger
the transaction: if it is sell order then the sign is −, if it is a buy order it is +.

The results of this study are available in Fig. 1. We present the price impact
for several delivery hours, the regression was made over more than 4750 data
points for each of them. The price shifts are heteroscedastic and seem to be less
significant for small volumes. Despite the small volume effect, the p-value and
the R2 indicate a significant regression coefficient and are coherent with the price
impact assumption. In Fig. 2, we draw a trajectory of the fundamental price S
starting from t = 0 an hour before the delivery time, to the delivery time T . We
also draw the market price P associated with the different homogeneous settings
studied in the paper: the N -player Nash equilibrium, the ε-Nash equilibrium,
and the Mean field one.

The price impact matches with the production forecast changes. If producers
think they have underestimated their production forecast with respect to their
supply commitment (negative values of the production forecast changes process),
there will be an excess of sell positions in the market, thus the price impact is
negative. On the contrary, if they think they overestimated the final production
forecast, there will be a lack of supply in the market and a negative price impact.

5.3 Volatility

We want to investigate whether or not the uncertain production forecast has
an impact on the market price variations, and show that the volatility observed
empirically in the intraday market can be explained by this phenomenon.
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We are interested in estimating the instantaneous volatility σ of P̃ , intro-
duced in the dynamics (8). Following [11], we use a kernel-based non parametric
estimator of the instantaneous volatility:

σ̂2
t =

∑n
i=1 Kh(ti−1 − t)ΔP̃ 2

ti−1∑n
i=1 Kh(ti−1 − t)(ti − ti−1)

,

where Kh(x) = 1
hK(x

h ) and K(.) is the Epanechnikov kernel. We used a generic
choice: h = 0.1 hour for all the delivery dates and hours of January. We also
estimate the volatility σ̃ of the empirical wind production forecast X̃ introduced
in the dynamic (8) using the same method with h = 1 hour, and use it to
calibrate the volatility of the production forecasts σ0 and σx in the model.

In Fig. 3, the first graph and the second graph represent respectively the
empirical volatility of the midquote P̃ and the estimated variations of the Nash
equilibrium market price P , for different hours in function of the time to delivery.
During peak hours, activity and thus liquidity in the market is more important.
In order to adapt the liquidity to the delivery hour considered in the model, we
chose different levels of the liquidity coefficients α and β for the function α(.)
defined in (9), available in Table 2. Apart from these coefficients, all the other
parameters are the same as in Table 1. The model reproduces the increasing
shape of the empirical market price volatility when we approach the delivery
time. Moreover, by adapting the liquidity coefficients, the model also captures
the different levels of volatility according to the delivery hour.

6 Conclusion

We developed a linear quadratic model and derived a dynamic price equilibrium
in the intraday electricity market. We focused on the integration of renewable
energies in the energy supply system. We considered intermittent energy produc-
ers first in a complete information setting, then, in a more realistic incomplete
information one.

The model provides closed form optimal strategies for agents taking into
account their own incertitude. It leads to a dynamic equilibrium on the market,
and reproduces some important empirical patterns such as the price impact and
the volatility. For these reasons, a practical use of this mathematical tool might
help to better optimize the renewable furniture system.
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0003/Labex Ecodec/ANR-11-LABX-0047), FIME Research Initiative and Agence
Nationale de Recherche (ANR project EcoREES) is gratefully acknowledged.
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A Appendix

Fig. 1. Price impact over January 2017 for different delivery times

Table 1. Parameters of the model

Parameter Value Parameter Value

S0 40e/MWh a 1 e/MWh2

σs 10 e/MWh.h
1
2 λ 100e/MWh2

X0, X̌
i
0 0 MWh N 100

σx 73 MWh/h1/2 α 0.3 e/s.MW2

σ0 73 MWh/h1/2 β 0.1 e/MW2

Fig. 2. Theoretical price impact and common production forecast changes associated
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Fig. 3. Instantaneous market volatility and wind energy production forecast impact

Table 2. Liquidity coefficients in function of the hour trading activity

Hours Coefficients

α ( e/s.MW2) β (e/MW2)

2h00 1.2 0.5

8h00 0.5 0.2

12h00 0.7 0.3

18h00 0.3 0.1
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Abstract. This paper addresses the problem of Current Sharing (CS)
and Average Voltage Regulation (AVR) in Direct Current (DC) micro-
grids composed of several interconnected Distributed Generation Units
(DGUs), power lines and loads. To achieve the control objectives (CS
and AVR), the system is augmented with distributed integral actions. A
distributed-based static state feedback control architecture is proposed.
This latter guarantees the global asymptotic convergence of the system
state to the set of all equilibrium points for which the control objectives
are achieved, thanks to the passivity property of the DGU with local
controller. Simulation results are provided to illustrate the effectiveness
of the proposed methodology.

Keywords: Distributed control · Multi-agent systems · DC microgrids

1 Introduction

Microgrids (MG) are a novel concept of distributed electrical network that can
be composed of several interconnected power supplies and loads. This concept
represents an efficient key component to simplify the integration of renewable
energy sources. Moreover, Direct Current (DC) MGs have received an increasing
interest in power system control engineering community. This growing interest
is due to its efficiency, simplicity and wide range of applicability [2,4].

Effective control strategies are needed to achieve high performance opera-
tion and ensure the stability of the MG. These objectives require not only local
management but also cooperation between the interconnected Distributed Gen-
eration Units (DGUs) and loads [4].
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Common problems in the control of DC MG are Current Sharing (CS) and
Voltage Regulation (VR). CS or, equivalently, load sharing aims to share pro-
portionally the current demand between the different DGUs taking into consid-
eration their power capacity. VR aims to guarantee a certain voltage level for the
loads since this latter must be supplied by a nominal value of voltage under any
perturbation [9]. Achieving these goals is an arduous and generally impossible
task as the CS requires a voltage deviation from its reference values. Therefore,
an alternative is to provide an average voltage regulation (AVR), i.e., the aver-
age values of voltages at the Points of Common Coupling (PCC) is equal to the
average of its references [1].

Many works are presented in the literature to control DC MGs. Generally,
the main difficulty is to guarantee global stability when CS and AVR objectives
are simultaneously considered. In [7] and [9], only voltage stabilization is con-
sidered. Moreover, in [10] and [5], the aforementioned objectives are considered
but without proof of global convergence.

In this paper, a new distributed methodology to control DC-MG is proposed
where each element of the MG has its controller and exchanges information with
its neighbors over a communication network. The novelty of this work is the use
of two distributed integral actions to achieve both AVR and CS objectives. In
addition, the proposed control approach is LMI-based which makes it attractive
numerically. Finally, the use of passivity of interconnected systems to prove the
global asymptotic convergence allows to extend the result to more general MG-
problems, e.g., MG with Storage Units, etc.

The paper is organized as follows: in Sect. 2, some notation and preliminaries
are given. In Sect. 3, the general framework of the studied DC-MG model is
presented. The control objectives are detailed in Sect. 4. In Section sec5, integral
actions are considered to deal with the control objectives, the design of the
proposed distributed control is presented. In Sect. 6, the simulation results are
presented. Finally, Sect. 7 concludes the paper.

2 Notation and Preliminaries

Notation: The symbols, R and R>0 stand respectively for the set of real and
positive real numbers. To simplify notation we denote a column vector as an
n-tuple (x1, x2, · · · , xn) whose entries xi can be also column vectors or equiva-
lently (x1, x2, · · · , xn) =

[
xT
1 xT

2 · · · xT
n

]T . The notation In is used to denote the
identity matrix of the size (n × n). The transpose of a matrix A is denoted by
AT . The vector of dimension n with all components equal 1 is denoted 1n. 0m×p

stands for the zero matrix of the size (m×p). The empty set is represented by ∅.
The symbol ⊗ represents the Kronecker product. The notation diag(A1, ..., An)
denotes the block diagonal matrix having the matrices A1 to An on the diagonal
and 0 every where else.

Convergence to a Set: If d(x, y) denotes a distance in a metric space, the
distance of a point x to a set S is defined by: d(x, S) = infy∈S d(x, y). A trajectory
x(·) is said to converge asymptotically to a set S if lim

t→+∞ d(x(t), S) = 0.
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Passivity Theory: A linear system (A,B,C) is strictly passive [3] if there exists
a matrix P = PT > 0 and a scalar ε > 0 s.t.: AT P + PA < −εP , PB = CT .

3 DC Microgrid Model

In this work we consider, a DC-MG composed of N distributed Generation Units
(DGUs) connected through q resistive power lines. A simple electrical scheme
example of the considered model is shown in Fig. 1. The generic energy source of
each DGU is modeled as a DC voltage source that supplies a local load through a
DC-DC converter. The local load is connected to the Point of Common Coupling
(PCC) through an RLC (low-pass) filter. Furthermore, two types of local load
are considered, Resistive load RLi and unknown constant current source ILi.
The model of the DGUi is described by the following dynamic equations:

DGUi

⎧
⎨

⎩

Liİi = −RiIi − Vi + ui,

CiV̇i = Ii − ILi − Vi

RLi
− ∑

j∈N pow
i

1
Rlij

(Vi − Vj), (1)

where Ii is the generated current, Vi is the voltage at the PCC near the DGUi, Ilij

is the power line current, Li and Ri are, respectively, the output filter inductance
and resistance, Ci is the output shunt capacitor, RLi is the local resistive load,
Rlij

is the power line resistance and N pow
i denotes the set of nodes connected,

respectively, by power lines to the i-th DGU.
The DC power network is represented by a connected and undirected graph

Gpow = (Vpow,Lpow) (see [6] for more details about graph theory). The nodes,
Vpow = {1, ..., N}, represent the DGUs. The topology of the power network is
represented by a weighted Laplacian matrix Lpow ∈ RN×N whose elements are
related to the coupling term

∑
j∈N pow

i

1
Rlij

(Vi − Vj) in (1).

Ri Ii Li

Rlij
Ilij

Rlij′Ilij′

Ci

+

−
Vi RLi

PCCi

ILi

DC/DC

DGUi Power lineij

−

+

ui

Fig. 1. The considered electrical scheme of the DC Microgird with DGUs and power
lines.
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The overall microgrid system for all the DGUs can be written, compactly,
as:

MG

{
Lİ = −RI − V + u,

CV̇ = I − R−1
L V − LpowV − IL,

(2)

where I, V , IL, u ∈ RN . As well, C, RL, R, L ∈ RN×N are positive definite
diagonal matrices, e.g., L = diag(L1, · · · , LN ).

4 Motivation and Problem Formulation

First, we present the considered control objectives. When sharing current
between several supplies, the current demand should be shared proportionally,
but not necessarily equally.

Objective 1 (Current Sharing). At steady state, currents need to fulfill the
following requirement

lim
t→∞ ωiIi = ωiI

e
i = ωjI

e
j ∀i, j ∈ Vpow,

where the weight ωi, i = 1, · · · , N are given parameters.

In fact, ω−1
i can be chosen as the corresponding DGUi rated current. Hence,

a relatively small value of ωi corresponds to a relatively large generation capacity
of DGUi.

Generally, achieving Objective 1 does not permit to attend an equilibrium
voltage V e = V ref at the same time. Hence, as in [8] an average voltage reg-
ulation is considered, where the aim of the controller is to have the weighted
average value of V e equal to the weighted average value of the desired reference
voltages V ref . Assuming that there exists a reference voltage V ref

i at the PCC,
for all DGUi, the second control objective can be stated as

Objective 2 (Average Voltage Regulation)

lim
t→∞ 1T

NW−1V (t) = 1T
NW−1V e = 1T

NW−1V ref ,

where W = diag(ω1, · · · , ωN ), ωi > 0, for all DGUi.

The choice of the weights for voltages as ω−1
i is motivated by the fact that

the DGUi with the highest capacity should impose the voltage of the MG [8].
Now, we are able to state the control problem as:

Control Problem: For a given reference voltage V ref and an unknown load
current IL, design a distributed-based control scheme s.t. the state of system ( 2)
in closed-loop converges globally and asymptotically to a set of equilibrium points
Se whose elements satisfy Objectives 1–2.
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5 Distributed Controller Design

In this section, a solution to the control problem defined in Sect. 4 is provided.
First, we assume the following:

Assumption 1 (communication network). A communication network mod-
eled as a connected and undirected graph Gcom = (Vcom,Lcom) where Vpow =
{1, ..., N} represent the DGUs and Lcom ∈ RN×N is a symmetric positive
semidefinite Laplacian matrix, allows to exchange voltage Vi and current Ii mea-
sured at each DGUi, i = 1, ..., N .

Assumption 2 (Nominal Model). All the DGUs have the same nominal val-
ues of parameters, i.e., Li = L∗, Ci = C∗, Ri = R∗ and RLi = R∗

L ∀i = 1, · · · , N
with L∗, C∗, R∗, R∗

L ∈ R>0 represent the nominal values. Thus, L = L∗IN ,
C = C∗IN , R = R∗IN and RL = R∗

LIN .

Our aim is to determine a controller including N integral actions in order
to achieve Objectives 1–2. Consider system (2), let us introduce an augmented
state X = (I, V, φ, γ) whose dynamics is given by the following equations:

Σ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lİ = −RI − V + u,

CV̇ = I − (R−1
L + Lpow)V − IL,

τφφ̇ = WT LcomWI,

τγ γ̇ = −WT LcomWγ + (V − V ref ),

(3a)

(3b)

(3c)

(3d)

where τφ, τγ ∈ R>0 and where Lcom is defined in Assumption 1.

Definition 1 (Set of Equilibrium Points). For a given reference voltage
V ref and an unknown load current IL, the set of all the equilibrium points is
defined by Se(IL, V ref ) = {X e = (Ie, V e, φe, γe) ∈ R4N and ue ∈ RN s.t.:
0 = −RIe − V e + ue, 0 = Ie − (R−1

L + Lpow)V e − IL, 0 = WT LcomWIe, and
0 = −WT LcomWγe + (V e − V ref ).}

For a given reference voltage V ref and an unknown load current IL, one can
easily prove that the set Se(IL, V ref ) is not empty and that Objectives 1–2 are
always achieved in this set. The next part concerns the design of a state feedback
controller of the form

u = −K(I, V, φ, γ), (4)

with K ∈ RN×4N and s.t. the state X = (I, V, φ, γ) converges asymptotically to
the set Se.

5.1 Local Controllers Design

Since the controller u should be distributed, the local controllers ui i = 1, ..., N
should depend only on local variables xi = (Ii, Vi, φi, γi). Hence, the gain matrix
K (see (4)) should be restricted to the form:

K = (KI ,KV ,Kφ,Kγ), (5)
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where KI , KV , Kφ, Kγ ∈ RN×N are diagonal matrices. The main difficulty to
find a gain matrix of this form for system (3) is the existence of physical (Lpow)
and communication (Lcom) coupling terms. Hence, to simplify the design let us
introduce the following change of coordinates:

(Ĩ , Ṽ , φ̃, γ̃) = (I4 ⊗ UT )(I, V, φ, γ), (6)

where U ∈ RN×N is a unitary matrix s.t.:

L̃com = UT WT LcomWU = diag(0, λ2, . . . , λN )

where λi < λj ∀ i < j. The matrix U exists because WT LcomW is a symmetric
matrix and λ1 = 0 since the graph Gcom is connected. In this new basis, system
(3) can be rewritten as follows:

Σ̃

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L ˙̃I = −RĨ − Ṽ + ũ,

C ˙̃V = Ĩ − (R−1
L + L̃pow)Ṽ − ĨL,

τφ
˙̃
φ =

⎡

⎢
⎢
⎢
⎣

0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
L̃com

Ĩ ,

τγ
˙̃γ = −L̃comγ̃ + (Ṽ − Ṽ ref ),

(7a)

(7b)

(7c)

(7d)

where L̃pow = UT LpowU and (ũ, ĨL, Ṽ ref ) = (I3 ⊗ UT )(u, IL, V ref ). Note that
the matrices L, C, R and RL remain unchanged by Assumption 2. Consider a
controller ũ of the form:

ũ = −K̃(Ĩ , Ṽ , φ̃, γ̃), (8)

where K̃ = (K ⊗ IN ) and K =
[
kI kV kφ kγ

] ∈ R1×4. Let us remark that system
Σ̃ with the control law (8) is composed of N interconnected subsystems which
can be written using a permutation matrix as follows, for i = 1, · · · , N :

Σ̃i : ˙̃xi = Aclix̃i + di − Bp

∑

j∈N pow
i

li,jCp(x̃i − x̃j), (9)

where x̃i = (Ĩi, Ṽi, φ̃i, γ̃i), di = −(0, C∗−1ĨLi, 0, 1
τγ

Ṽ ref
i ), Bp = (0, C∗−1, 0, 0),

Cp =
[
0 1 0 0

]
, li,j for 1 ≤ i, j ≤ N denotes the elements of L̃pow and

Acli =

⎡

⎢
⎣

A 02×2
λi

τφ
0 0 0

0 1
τγ

0 −λi

τγ

⎤

⎥
⎦ −

[
L∗

t
−1

03×1

]
K,

and where A =
[−R∗L∗−1 −L∗−1

C∗−1 −(C∗R∗
L)−1

]
.

(10)
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In this basis, it can be noticed that the local variables x̃i = (Ĩi, Ṽi, φ̃i, γ̃i) i =
1, ..., N are only coupled by the term Bp

∑
j∈N pow

i
li,jCp(x̃i − x̃j) (related to the

matrix L̃pow). The next theorem shows how it is possible to determine the unique
gain matrix K in (10) for all the subsystems by removing the last coupling terms
in the right member of (9) and using some passivity arguments.

Theorem 1 (Main result). If there exists a static state feedback
K =

[
kI kV kφ kγ

]
s.t. the triples (Acli, Bp, Cp) for i = 2, ..., N and

(Ăcl1, B̆1, C̆1) are strictly passive where:

Ăcl1 =
[

A 02×1

0 1
τγ

0

]
−

[
L∗−1

02×1

]
[
kI kV kγ

]
,

B̆1 = (0, C∗−1, 0), C̆1 =
[
0 1 0

]
, (11)

and where Acli, Bp, Cp and A are given with subsystems (9), then the state of
the augmented system (3) in closed-loop with

u = −(K ⊗ IN )(I, V, φ, γ)

converges asymptotically to an equilibrium X e ∈ Se(V ref , IL) for which the con-
trol objectives 1–2 are satisfied.

6 Simulation

In this section we aim to validate the proposed controller by simulation. We
consider a MG composed of 4 DGUs with non-identical electrical parameters
and communication links (see Fig. 2). The controller was designed using the
nominal parameter of the MG and then applied on the MG model with the
real parameters. The system is initially at a steady state with load current
IL(0) = [5 10 30 20] A. Then, at the time instant t = t1 the load current
is stepped up with ΔIL = [10 15 20 30] A. As we can see in Fig. 3 and 4,
the weighted average voltage converges to the weighted average value of the
reference voltages (see Objective 2). Furthermore, the voltages at the PCC
converge, without oscillations, to a steady state near to the reference voltage

Power line

Communication link

DGU 1DGU 1 DGU 2

DGU 3 DGU 4

Fig. 2. MG with 4 DGUs, power lines, and communication links.
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V ref = 380V . Moreover, Fig. 4 shows clearly that the weighted currents converge
to the same consensus value achieving Objective 1 and the generated currents
converge asymptotically to the desired steady state, asymptotically.

The results illustrate the robust performance of the proposed controllers
under the change in the load current and the presence of parametric discrep-
ancies from the nominal values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
370

371

372

373

374

375

376

377

378

379

380

t
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
368

370

372

374

376

378

380

382

t
1

Fig. 3. From the left: weighted average voltage at the PCC and the weighted average
reference voltage value (dashed line); voltage at the PCC of each DGU together with
the reference value (dashed line).
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Fig. 4. From the left: the weighted generated currents of the DGUs; generated currents.

7 Conclusion

A distributed-based Static-State-feedback control scheme, including integral
actions to achieve both proportional Current Sharing and Average Voltage Reg-
ulation in DC power-networks has been proposed. Distributed integral actions
have been used to achieve the control objectives by exploiting a communica-
tion network. The simulation results clearly show that the control objectives
are achieved with unknown load and even with significant discrepancies between
nominal and real parameters of the DGUs.
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1 Télécom Paris, Paris, France
diego.kiedanski@telecom-paristech.fr

2 Technion, Haifa, Israel

Abstract. Local energy markets allow neighbours to exchange energy
among them. Their traditional implementation using sequential auctions
has proven to be inefficient and even counterproductive in some cases. In
this paper we propose a combinatorial double auction for the exchange
of energy for several time-slots simultaneously. We suppose that partici-
pants have a flexible demand; flexibility being obtained, for example, by
the usage of a battery. We show the benefits of the approach and we pro-
vide an example of how it can improve the utility of all the participants
in the market.

Keywords: Auction · Smart grids · Local energy markets

1 Introduction

Local energy markets (LEMs) have been proposed as a paradigm to better exploit
the benefits of distributed local energy generation [3]. The various proposed
market mechanisms target to encourage neighbours to exchange energy locally
- within the same low voltage distribution grid, for example - in order to reduce
their energy bill or even to generate revenue. In most implementations, the mar-
ket mechanisms consist of a sequence of auctions that allow the participants to
trade energy for the next time-slot (usually 15 or 30 min long). For a review of
different proposals and implementations, the reader is referred to [12], [8,9] and
the references therein. LEMs are usually implemented as double auctions, with
players (households) submitting both buying and selling bids. In particular, a
house with renewable generation can be a buyer or a seller, depending on the
time-slot.

In addition, if households have flexibility in their consumption profiles (for
example, thanks to energy storage systems), they will schedule their load to
obtain the most out of the market. In spite of this, it is known that the system
architecture involving sequential auctions does not fully exploit the available
flexibility and can even be counterproductive in some cases [6]. For example,
when players are subject to Time-of-Use tariffs (ToU), their beliefs about future
market prices can lead them to postpone their demand, only to follow it with
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a huge peak in consumption before a change in the price from the cheap ToU
period to the most expensive one [5].

In this paper, we put forward the design of an approach based on a combinato-
rial double auction [7,11,13] that improves the utility of all players and increases
the total traded energy. Even though combinatorial auctions have already been
proposed [1,10] the design presented here is the first to exploit the structure of
flexible demand derived from energy storage.

2 Mathematical Model of Players

Let N = {1, . . . , N} denote the set of players and T = {1, . . . , T} the set of time-
slots in a given day. Each player can consume energy by using appliances (water
heater, A/C, charging electric vehicles, TV, etc.) and might produce energy (e.g.
photovoltaic generation). Let xi

t denote the demand of player i at time-slot t,
where a positive value of xi

t represents excess of consumption while a negative
value stands for a surplus of renewable energy (the definition of x is independent
of possible flows with a battery, those flows will be introduced through additional
variables). The demand profile xi = (xi

1, . . . , x
i
T ) of player i is assumed fixed and

known.
To simplify the presentation, we suppose that the flexibility of each player is

introduced only by batteries (for example, the demand of the appliances is not
shifted in time). Let Si denote the total capacity of player i’s battery (possibly 0),
Si
0 the initial state of charge and si

t the amount of charged (si
t ≥ 0) or discharged

(si
t < 0) energy at time-slot t. The feasible set of charging/discharging decisions

F i is given by Eq. (1).

F i =

{
si : Si

0 +
j∑

t=1

si
t ∈ [0,Si], ∀j ∈ T ; si ∈ R

T

}
(1)

The state of the battery at time-slot t is precisely: Si
0 +

∑t
j=1 si

j .
Furthermore, we will denote by ni = si + xi, with si ∈ F i, the net consump-

tion of player i as seen from the grid.
In addition to trading in the market, households can trade with their tradi-

tional electricity company (TEC). Each player’s contract with the TEC stipu-
lates a price for buying energy βi

t and a price for selling energy back to the grid
ζi
t at time-slot t. Consequently, the cost faced by player’s i at time-slot t when

consuming a load of wi
t is given by:

Ci
t(w

i
t) = βi

t max{wi
t, 0} − ζi

t max{−wi
t, 0}.

As it is with most tariffs that allow for injecting back into the main grid, we
will assume that the price of buying βi

t > ζi
j , ∀t, j so that buying and re-selling

to the TEC is never optimal.
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2.1 Utility of Players Trading in the Market and with the TEC

We introduce here the definition we use of the utility of any given player when
trading in the local market.

At time-slot t, player i might be able to trade a fraction λi
t ∈ [0, 1] of her net

load ni
t in the local market. If player i trades λi

tn
i
t in the local market, then it will

have to trade the quantity (1−λi
t)n

i
t with the TEC. Denoting Pi the payment of

player i associated with the total quantity traded in the local market (positive
if buying, negative if selling) among all time-slots, the utility of player i is given
by:

ui(xi, si, λi,Pi) =

{
−Pi −

∑T
t=1 Ci

t((1 − λi
t)n

i
t) if (ni − xi ∈ F i)

−∞ otherwise
(2)

An interpretation of the above is as follows: if players do not manage to
consume their desired energy consumption profile xi, then they are dissatisfied
beyond repair. Otherwise, their utility is simply their total cost, which is given
as the cost associated with the market and the cost associated with trading with
the TEC.

The maximum utility that a player can obtain without participating in the
market and only trading with the TEC is given by:

αi = max
si∈Fi

ui(si + xi, 0, 0) (3)

The optimization problem specified in (3) coincides with the optimal con-
trol of a battery subject to a fixed price tariff and it is equivalent to a linear
programming problem [2].

3 Auction Model

We put forward the design of a combinatorial double auction that exploits the
flexibility available for players. Unlike the traditional auctions used for LEMs in
which players bid the quantity they want to buy or sell for a single time-slot,
we allow players express in their bids their desire to acquire specific profiles of
energy spanning multiple periods. We proceed to explain the bidding format,
the allocation and the pricing rules.

3.1 Bidding Format and Allocation Rule

In the proposed auction, each player expresses all her acceptable trading profiles
and the utility associated with each one of them. To do so, each player bids a
feasible set of consumption profiles F̂ i (this can be done by bidding the battery
capacity, initial state of charge and the player’s demand x̂i) and her utility
function ui, such as the one defined in Eq. (2). Here, we use the ĥ notation to
emphasize that the bid needs not to be truthful. From the bids, we can obtain



318 D. Kiedanski et al.

α̂i, the maximum utility that player i can guarantee without trading in the local
market, according to her reported information.

Observe that to bid the utility function ui, it suffices to bid the set of buying
and selling prices βi, ζi.

Regarding the allocation rule, it will be derived from the optimal solution
of optimization problem (4a)–(4e). As the objective function of the allocation
problem, we decided to use Eq. (4a), which maximizes the value of all the local
trades. The value is defined as the price that players would have to pay to the
TEC to buy (sell) the same amount of energy. That way, the maximum amount
of profit can be distributed among the market participants. This is analogous to
finding the clearing price in a double auction such as [4].

max
ni,λi,Pi

∑
i∈N

∑
i∈T

Ci
t

(
λi

tn
i
t

)
(4a)

subject to:
∑
i∈N

Pi ≥ 0 (4b)

Pi +
∑
t∈T

Ci
t

[
1 − λi

tn
i
t

]
≤ −α̂i ∀i ∈ N (4c)

∑
i∈N

λi
tn

i
t = 0 ∀t ∈ T (4d)

ni ∈ F̂ i + x̂i ∀i ∈ N (4e)

The first constraint (4b) ensures that if the equality holds, all the money is
redistributed among the participants according to the market decisions, while
if the inequality is strict, the market maker obtains a profit. Constraint (4c)
guarantees that the auction is individually rational, i.e., each players is at least
as good as if she had not participated in the local market. It’s important to note
that encoding all of the N constraints (4c) requires a total of NT additional
binary variables. Equalities (4d) ensure that the amount of sold energy is equal
to the energy bought in every time-slot. The last constraint guarantees that only
feasible net consumption profiles are used. Finally, the amount of energy traded
by player i at time-slot t is given by λi∗ni∗, where λi∗ and ni∗ are the optimal
solutions of optimization problem (4a).

3.2 Payment Rule

As a payment rule, one alternative is to use the value of Pi∗ in the optimal
solution of (4a). For the cases in which the values of Pi∗ will not be unique, a
predefined rule can be used to choose among the possible values. One such could
be to select the values of Pi∗ that maximize a given fairness criterion.

We proceed to illustrate our proposal with an example.

3.3 A Simple Example

Consider two players 1 and 2 such that: x1 = (0,−1, 0), x2 = (0, 0, 1), β1 = β2 =
(2, 3, 3), ζ1 = ζ2 = (1, 1, 1), S1 = S2 = 1, S1

0 = S2
0 = 0.
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If player 1 does not trade in the market, she will sell all her energy at price
1, for a total utility of α1 = 1, net consumption profile n1 = (0,−1, 0) and no
need to user her battery s1 = (0, 0, 0). Analogously, player’s 2 utility is −2 as
she charges her battery during the first time-slot and discharges it in the last
one (s2 = (1, 0,−1)) to obtain a net consumption profile n2 = (1, 0, 0).

We will now assume that the two players decide to participate in the auction
and they do so truthfully. In the optimal solution of the allocation problem
defined by their bids, it holds that n1 = (0,−1, 0) = −n2, λ1 = λ2 = (0, 1, 0).
Furthermore, the maximum value is attained at: 3 × (1) + 1 × (−1) = 2.

Regarding the payments, we have that for player 1: P1∗ ≤ −1 and for player
2: P2∗ ≤ 2. Consequently, any payment from player 2 to player 1 in the interval
P2∗ ∈ (1, 2) will leave both players better off than before.

3.4 General Properties of the Solution

First, observe that in (4a), the scenario without trades (Pi
t = λi

t = 0,∀i ∈
N , ∀t ∈ T ) is always feasible and therefore, a solution exists. This solution
needs not to be unique, as discussed in Subsect. 3.2. Secondly, when all players
bid truthfully, the proposed auction obtains the consumption and trading profiles
that maximize the value of the trades. The obtained allocation outperforms the
results obtained when players maximize their individually utility and attempt
to trade later using sequential auctions. An example of this was given in the
previous subsection. There, the total utility of players went from −1, had they
tried to trade in sequential auctions using the net profiles that maximized their
individual utilities, to 0 by trading in the proposed auction.

4 Conclusion

In this paper we introduced a combinatorial double auction to be used in local
energy markets as a replacement to run several sequential auctions in the same
day, one for each time-slot. The proposed model maximizes the value of the trades
in the local market by exploiting the latent flexibility of the players, given that
players bid truthfully. Future lines of research include variations of the proposed
mechanism that are strategy-proof or that require less binary variables.
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