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Searching for Significance of Repeating Spike Patterns
Moshe Abeles

I met George for the first time in 1969 at the Second Intensive Study Program
organized by Francis O. Schmitt in Boulder Colorado. I was a very young faculty at
the Hebrew University of Jerusalem and was invited as such to attend the program.
At the registration, there were several bins each with a range of participant names.
After getting my badge and program, a young person approached me and with a
kind smile asked “how did you like that?” pointing to the registration desk stating
“Abeles to Goy.” At first, I did not get what was the punch. But, after a short
pause I got it. “GOY” is the Hebrew word for a non-Jewish believer and also has a
connotation of a simple minded person. That was George who was recruited to help
with the organization of the program. His presence, the young physicist who moved
into “wet” neurophysiology but used very sophisticated analysis tools, was evident
throughout the workshop.

His kind and friendly attitude spanned our entire encounters. Back in Jerusalem,
I started to record form auditory cortex using advanced spike sorting techniques
for isolating in parallel several spike trains (Abeles and Goldstein 1977). I used ex-
tensively the analysis methods devised by Don Perkel and George to quantitatively
study the dynamic firing properties of single neurons and pairs of neurons (Perkel
et al. 1967a,b; Gerstein and Perkel 1969). However, I felt there is room for studying
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more complex interactions. Looking at the literature, the only thing I found was
their “snowflake” method for studying 3-fold interactions (Perkel et al. 1975).

When measuring times of 3 spikes, say at 1, t2, 13, there are 3 intervals to be
considered: (# — t1), (13 — t2), and (#; — #3). However, they are not independent
as: (p — 1) + (13 — 1) + (t1 — 13) = 0. They found an elegant way to present
the 3 intervals on a plane by using the Einthoven’s Triangle (used in medicine to
present the activity vector of the electrocardiogram). If the maximal allowed delay
was some fixed value, the dots fall within a hexagonal area looking similar to a
“snowflake.” This display provided a qualitative impression of the relations among
the 3 spike trains. I could convert this display into a quantitative one by tessellating
the area with triangular bins, counting the number of points that fell in each bin, and
finding various ways of normalization (Abeles 1983).

While studying the 3-fold correlations with this method, I encountered several
cases in which 1 or 2 bins stood up with a lot of counts. Such cases represented a
situation where 3 spikes were repeating again and again with almost precisely the
same intervals (see Abeles (1982 Chapter 6)). While searching the literature for
such phenomena, I found the impressive work of Dayhoff and Gerstein (see also
Chap. 5 this Volume). They looked on intervals between successive spikes within a
spike train as “characters” and searched for “words” that repeated many times.

George was interested in my way of quantifying the “snowflakes,” while I was
interested in his method of finding repeating structures within a spike train. So, I
paid him a visit in Philadelphia to discuss these issues. I felt this to be very useful
and asked whether he would host me for a sabbatical. George agreed and very kindly
offered to supplement my somewhat inadequate university salary from his grant
money.

George was also very kind in helping us to find a house to rent at Haverford
just outside Philadelphia. We (my spouse, two little daughters, and me) spent a
wonderful year there. My main interest was to find a way for detecting complex
spatio-temporal patterns that repeat many times. I had numerous discussions
with George in which we examined several alternatives. But, they all seem too
cumbersome to implement with the computing power available at the time.

One morning George came up with the following analogy: Suppose we represent
the spike times of a neuron as holes along a line in a punched paper tape. If we
recorded several neurons in parallel, their spiking times would be represented as
holes along parallel lines. Take two copies of such a punched paper tape and slide
them past each other. Any repeated patterns of holes will show up at some point
of sliding. I coded this magnificently simple idea in Fortran and added ways to
estimate what might be found by chance. When data was analyzed this way, it often
showed a significant excess of repeating spatio-temporal firing patterns (Abeles and
Gerstein 1988). This algorithm serves me for detecting such patterns to this very
day (although the Fortran was replaced by C and now by Matlab).

A couple of years later, in an international workshop in Jerusalem, I presented
my synfire chain model and the results on repeated spatio-temporal patterns. As
supporting evidence, I showed the number of patterns found in surrogate spike trains
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that were very close to the estimated chance occurrence. At the end of my talk, van
Essen said:

— Can you show the table for the surrogate data?

I showed it.

— The numbers you found are too close to the expected, and this cannot be true.

I was stunned! A famous scientist accuses me, a young and unknown researcher, of
faking data. It took me a while to recover and then.

— Here the expected was 39 patterns and I found 38. I assume that had I found 31
you would be happier.

— Ah hah.

— But the probability of finding 31 when the expected is 39 is much smaller than the
probability of finding 38 when 39 is expected.

— Silence.

A somewhat similar case arose many years later in an international workshop in
France where both George and I participated. The organizers scheduled a talk by
Roger Lemon to immediately follow mine, without warning me of what is coming.
After giving my talk about repeated spatio-temporal patterns in recordings from
the cortex of behaving monkeys, Roger described his very elegant experiments on
recording pyramidal tract neurons in monkeys performing a precision motor task. In
these data, he searched for repeating spatio-temporal patterns and found many with
a high number of repetitions. This number was much higher than expected based
on surrogate trains generated with Poisson statistics. However, Roger claimed, the
spike trains are not Poissonian. When using the appropriate Gamma distribution
of inter-spike intervals (ISI), the number of patterns found was much larger than
the number in the experimental data. All my “friends” were happily grinning. The
fallacy of these results was immediately clear to me. But now, being more mature,
I did not want to offend him publicly. So I suggested we discuss his findings over
lunch. At lunch, I told him that he showed an expected number of & 100 patterns,
while in the data there were only 35. The probability of finding 35 or less when
100 is expected is well below 10713, (Note: I do not recall the exact numbers,
but the principle of the above description is correct). Thus, if the surrogates were
appropriate, there should be some special mechanism that avoids the repetition of
any firing patterns that were already generated.

The moral of these two incidences is: Do not mess with statistics and probabilities
unless you have a profound grasp of these issues.

Following that talk, George told me you gave a hell of a lecture. Maybe I am
taking an unjustified credit, but following this incident, George took enhanced
interest in synfire chains and the precisely repeating spatio-temporal patterns. One
of the first studies he made was to find what would be the appropriate statistics to use
for surrogate spike trains (Gerstein 2004), followed by work on how to decompose
complex patterns into sub-patterns and several works with Markus Diesmann, Sonja
Griin, and their students on how to detect repeated patterns in massively parallel
spike trains (see also Chap. 14 in this Volume).

For me, the most illuminating conclusion that emerged from these studies was
that if multiple synfire chains were embedded in a small cortical volume you would
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need to record from at least 200 neurons in parallel to detect such synfire activities.
Recording from over 100 neurons in parallel is now available, and getting to over
200 is coming. However, such recordings are now either spread over a too large of
area or have a too low time resolution. Yet the time that such recordings will be
possible from a small volume of cortical tissue is fast approaching. Only then it will
be possible to establish or refute the synfire chain model.
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SUMMARY AND CONCLUSIONS

1. A particular firing pattern among simul-
taneously observed neurons represents a par-
ticular sequence of activity. If any multineu-
ron pattern repeats significantly more than
expected by chance, we may be observing a
repeated state of a neural assembly as it pro-
cesses similar units of information.

2. We present here an algorithm that rap-
idly finds all single or multineuron patterns
that repeat two or more times within a block
of data, as well as equations for calculating
the number of patterns of given length and
repetition that would be expected. The com-
plexity of patterns for which it is practical to
compute expected numbers is three to six
spikes (inclusive).

3. Confidence limits are based on these ex-
pected numbers of patterns, so that it is possi-
ble to identify groups of patterns that are wor-
thy of further analysis.

4. These methods are tested against simu-
lated multineuron data that has various types
of known nonstationarities, with good agree-
ment between observed and expected values.

5. Application to real spike trains shows a
large excess of observed repeating patterns, of
which some, but not all, are shown to be due
to bursts of high frequency firing.

6. It should be possible to apply the new
method as a filter in real time in order to
search for an association between repeated
pattern events and externally observable
events (stimulus, behavior, etc.). Any re-
peated pattern events which cannot be so as-
sociated may represent a new indicator of in-
ternal events in the nervous system.
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INTRODUCTION

In 1949, Hebb (8) suggested that cell as-
semblies are the building blocks that carry
out higher brain functions. According to
Hebb, cell assemblies are formed by strength-
ening of particular synaptic connections be-
tween cells, thereby forming circuits in which
only some of the neurons in a given region
may participate. Such cell assemblies are dy-
namic entities that become functional when
activated by the appropriate spatiotemporal
firing patterns at their input. When activated,
the cell assembly produces some appropriate
spatiotemporal firing patterns at its output.

Although the concept of information pro-
cessing by such cell assemblies is popular,
there has been very little direct experimental
research on the level of cell assemblies. The
reason for this deficiency is probably the
difficulty and relatively primitive capabilities
of current experimental methods for identify-
ing and analyzing neural assemblies. Stan-
dard recording of single neurons sequentially
is of little help because with such data it is
impossible to detect the interactions between
individual neurons that are part of the assem-
bly process. With such data only the timing
relations between a single neuron and exter-
nal events may be studied, as with the peri-
stimulus time histogram. Even this fails if the
process of interest is not accurately time
locked to an external event. (This would be
the case for internal processes like recalling a
memory or planning a movement.)

In principle, a cell assembly could be stud-
ied experimentally by monitoring the activity
of all its members simultaneously. This is an
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impractical goal with the present recording cases might be associated with the repeated
techniques because the number of neurons  pattern.
involved in (mammalian) neural assemblies There have been some previous investiga-
is likely to be very large, perhaps many thou-  tions of repeating patterns in both single and
sands. Present techniques do allow recording  parallel spike train recordings in which some
from about 30 single neurons in parallel [see  repeating patterns were found in each case.
(7) and (11) for reviews]; this is a small and  Some investigators (4, 5, 9) studied only pat-
usually a relatively random sample of the pu-  terns generated by intervals between succes-
tative neuronal assembly. sive spikes in a recording of one single unit.
Let us now assume, whenever an assembly  In Ref. 9 patterns were defined in terms of
is engaged in a particular computational pro-  relative size of successive intervals rather
cess (which need not be time locked to any  than in the more usual terms of absolute in-
external event), that a unique wave of activity  terval lengths. Other investigators (2, 3) have
passes among the neurons. If the same infor-  studied single unit patterns made up only of
mation is repeatedly processed, we would ex- 3 spikes. Still others (6, 12) have started with
pect some particular wave of activity to ap-  simple seed patterns of 2 or 3 spikes (across
pear repeatedly, representing some particular  two neurons) and looked for more complex
repeated “state” of the assembly. Conversely  patterns in which the seeds were embedded.
if a particular wave of activity is observed to  Legendy and Salcman (13) examined firing
repeat, we might assume that thisisan indica- bursts in each of several spike trains and
tor that the neural assembly is repeatedly in - found that occasionally they contained em-
some particular state, corresponding to the bedded multineuron patterns. However, the
repetition of some particular computational  detecting techniques used by most of these in-
process. Note that this one-to-one relation-  vestigators required enormously prolonged
ship is probably an oversimplification: We computations (many hours) and did not even
might expect that some range of processes detect all the repeating patterns. Basically, the
will correspond to some range of patterns or  brute force calculations for this problem are
states, i.e., that these are noisy quantities. Let  intrinsically unsatisfactory. We note that in
us assume, however, that these ranges of simi-  parallel to the new work reported here, two
larity are small, so that the one-to-one rela-  other groups have made alternate approaches
tionship is approximately valid. We are delib-  to the pattern problem (Perkel, private com-
erately leaving the nature of the underlying munication of working notes and Johan-
computational process vague at this point; a  nesma, private communication); it is prema-
partial strategy for identifying the type of in-  ture to compare and contrast these different
formation that is involved will be proposed in  ideas.
the DISCUSSION. In the present paper we describe a new al-
In the context of practical simultaneous re-  gorithm that detects all possible patterns that
cording, only a small part of the repeated repeated twice or more within a section of re-
wave of activity could be observed. This sam- corded multineuron data. The algorithm is
ple would take the form of a repeated se- fast enough to be carried out during an exper-
quence of firing among some of the observed  iment, so that it is possible to consider an in-
neurons. Thus by experimentally detecting  teractive search for the events associated with
(possibly noisy) repetitions of multineuronal given repeated patterns. We also describe
firing patterns, we mark the occurrence of methods for statistical estimation of the num-
particular repeated states in the underlying ber of patterns of a given length and repeti-
neuronal assembly. tion that is expected to appear by chance.
Detection of repeating patterns per se is
only the beginning of such investigations. i rryops
Patterns can and do repeat by chance, so that
itis essential to develop a significance test for  The detection algorithm
the experimental detections. If the entire The detection of all patterns that repeated at
analysis process becomes fast enough, itisin  jeast twice may be described by the following met-
principle possible to search for the repeated  aphor. Suppose the multineuron spike data were
sensory or behavioral event which in some  represented in the form of a long punched-paper
wiloaded from www.physiology.org/journal/jn by 8 {individualUser.givenNames} ${individualUser.sumame] (134.094.045.216) on June 27, 201
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tape. Each row represents the activity of a particu-
lar neuron, and each of its spikes is represented by
a hole; time runs along the tape. (Old-fashioned
paper teletype tape could represent the activities
of 8 neurons in this metaphor.) Let us take a sec-
ond copy of the same tape and slide it past the sta-
tionary original tape. At a given displacement we
examine the superimposed tapes against a light
source. A region which contains any pattern that
repeats at this particular tape displacement will be
much brighter than average. Note that by selecting
appropriate threshaolds for length (duration) of re-
gion and brightness (number of spikes matched),
any pattern can be investigated for match to any
degree of accuracy, including both extra and omit-
ted spikes. Note also that regions of very fast
(burst) activity will tend to match any pattern; we
will deal with this problem separately below.

A straightforward application of this algorithm
with a digital computer will consume a lot of time.
As an illustrative example, take a case where 10
single neurons are observed in parallel for 100 s,
The average firing rate in each spike train is 5/s,
and the spike times are measured with accuracy of
I ms. (These are typical values for single neurons
recorded in mammalian cortex.) The sliding copy
of the tape has to be shifted by 100,000 steps (num-
ber of ms in 100 s), and after each such shift the
position of all 5,000 spikes (10 spike trains x
5/s % 100 5) would have to be examined for pattern
matches with the stationary copy. This means 500
million comparisons. Even a supermini computer
which is dedicated to this process would take many
minutes to make all these comparisons.

In order to expedite this search process, we have
developed the following algorithm. Let us con-
struct interval histograms for the time between ev-
ery spike in the stationary tape and the next spike
of the same train in the sliding copy. This creates
N histograms, one for each of the simultaneously
observed spike trains.

Initially, when the two tapes are in exact regis-
ter, the histograms are identical to ordinary inter-
spike interval histograms. Note that at each subse-
quent step in the tape sliding process, the entries
in each bin remain unchanged, but the time value
of each bin is reduced by one bin time. In other
words, at each sliding step each current histogram
is shifted left by one bin. Ata given step, the entries
that have just reached zero time (i.e., the leftmost
bin) correspond to all those spikes of the stationary
tape that fall exactly over a spike (of the same
train) in the sliding tape. The final step in updating
the histograms after each sliding step is to recalcu-
late interval values only for the spikes to which the
zero bin points.

For each such spike in the stationary tape, we
measure the time to the next spike of the same
train in the sliding tape, and increment the appro-
priate bin of the corresponding histogram.

wnloaded from www.physiology.org/journal/jn by ${individualUser.givenName:

Now, instead of just keeping a tally for each bin
of a histogram, we also maintain a pointer list.
These pointers define the location along the tape
(i.e., the time of occurrence) of all the events (in-
tertape spike intervals of a particular length for a
particular spike train) that contributed to that
tally. The pointers also identify which particular
spike train they describe.

As a final step of the algorithm, we merge the
N histograms, bin by bin, into a single compound
histogram. In this process all pointers belonging to
each particular bin of the compound histogram
are sorted into a time ordered list. The new point-
ers created in updating the events in the zero bin
must of course be inserted at the correct place into
whichever of these lists (bins) is appropriate,

It is now trivial to examine the time ordered
pointer list at the zero bin with a shiding time win-
dow whose duration is the chosen pattern dura-
tion. Whenever the count of pointers falling
within such a window exceeds the criterion chosen
to define pattern “complexity”, we have identified
a repeated pattern. Its location and details are
spelled out by the pointers.

For the typical data situation described above,
on the average only 25 spikes would overlap at
each sliding step. Thus only 2.5 million rather
than 500 million comparisons are needed. On a
Data General MV 10000 it takes ~ | min to detect
all the repeating patterns in such typical data, a
calculation time comparable to the data collection
time. Thus a typical personal computer will not
suffice for this purpose.

1f one wishes to use bins wider than the time res-
olution at which the data was collected, one can
use one of the following methods: /) convert the
data into coarser time grain, or 2) use the spikes
that are within the first # bins of the interval histo-
grams as pointers to patterns whose match is
within n time units,

Simudated data

In order to evaluate our detection scheme and
to obtain some experience with the numbers of
patterns that might be generated by chance, we
simulated the activity of 10 spike trains in the fol-
lowing form. The simulation advanced in 1-ms
steps. After each step the probability of firing for
each cell was determined (so as to generate various
types of nonstationarity and correlations, as de-
scribed in A through G, below), and then a deci-
sion of whether the cell fired at this step was taken
by drawing a random number.

It is important to be cautious with random
number generators. Using the commercial ran-
dom number generator supplied with our com-
puter produced huge numbers of repeated pat-
terns. Only when we wrote a special random gen-
erator which combines an additive generator (£q.
7, p. 26 of Ref. 10) with randomizing by shuffling

Copyright © 1988 American Physiological Society. All rights reserved.
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(Algorithm B, p. 32 of Ref. 10) did the results seem
random. (Note that we did not experiment exten-
sively with various forms of random number gen-
erators: we used the first satisfactory generator we
came across.) A recent review article on the merits
and testing of random number generators can be
found in Ref. 14.

Seven simulations were used for the data de-
scribed in this paper. All the simulations were run
for 100 s of simulated time with 10 parallel spike
trains,

A (sim.002a): Spike trains were realizations of
independent and stationary Poisson processes. All
spike trains were firing at 5/s. B (sim.003a): Spike
trains were realizations of independent and sta-
tionary Poisson processes. Firing rates were be-
tween 10 and 1/s. (Averaged over cells, the firing
rate was 4.8/s.) C (sim.004a): Spike trains were re-
alizations of independent and nonstationary Pois-
son processes. The firing rates in each spike train
fluctuated slowly between 9 and 22 spikes/s (aver-
age firing rate 3.8/s and standard deviation of the
fluctuations 4. 1/s). The ime constant of the firing,
rate fluctuations was 2 s. D (sim.005a): Spike
trains were realizations of independent but non-
stationary Poisson processes. The firing rates in
each spike train fluctuated rapidly between 0 and
50 spikes/s (average firing rate 4.0/s and standard
deviation of the fluctuations 6.7/s). The time con-
stant of the firing rate fluctuations was 0.05 s. E
(sim.006a): Spike trains were realizations of corre-
lated and nonstationary Poisson processes, The
firing rates in cach spike train fluctuated slowly
just as in C above, but in addition the cells were
divided into five pairs (1 and 2, 3and 4, S5and 6, 7
and 8, 9 and 10). In each pair the firing rate fluc-
tuations as a function of time were precisely the
same. F(sim.007a): Spike trains were realizations
of correlated and nonstationary Poisson processes.
The firing rates in each spike train fluctuated rap-
idly between 0 and 28 spikes/s (average firing rate
4.3/s and SD of the fluctuations 4.7/s). The ume
constant of the firing rate fluctuations was 0.05 s,
The cells were divided into five pairs (1 and 2, 3
and 4, 5and 6, 7 and 8, 9 and 10). In each pair the
firing rates as a function of time were precisely the
same. (7 (sim.007h): Spike trains were realizations
of correlated and nonstationary Poisson processes.
The spike trains were similar to those in F except
that the rates of fluctuations were larger, asin D).

Experimental data

The detection scheme was applied to four 100-s
recordings of spontaneous activity from eight sin-
gle units measured in parallel. The recordings were
made with metal microelectrodes inserted into the
primary auditory cortex of a cat anesthetized with
nitrous oxide. The eight units were recorded from
six electrodes; at most two units could be isolated
from a single electrode. The distance between ad-

jacent electrodes was 2.5 mm, and the distance be-
tween the two furthest electrodes was 5.6 mm. De-
tailed description of the recording procedures and
stimulus conditions between the periods of record-
ing that are analyzed here are given in Ref. 3.

RESULTS

The expected number of repeating patterns

Even if there were no special brain pro-
cesses that increase the occurrence of re-
peated firing patterns in the recorded data,
some number of patterns might repeat just by
chance. We have developed several equations
for estimating the expected number of such
repeating patterns, with detailed derivations
given in the APPENDIX; here we shall describe
some of the final equations and their applica-
bility.

First let us assume a very simple random
process in which there are n spike trains each
firing at A spikes per second. The firing times
follow a stationary Poisson process and the
spike trains are independent. Within this pro-
cess we look for patterns made out of ¢ spikes
with r repetitions of the pattern in the T sec-
onds of recording. Let us denote by w the
maximum allowed delay between the first
and last spike in a pattern and by A the time
accuracy with which the firing time is mea-
sured (e.g., | ms). In this case Egs. A6 and A8
are reduced to

NI = [(wfAY e — DITAT N e 7 (1)

where N, is the expected number of patterns
of complexity ¢ that repeat r times.

Although the conditions for which this
equation was derived hardly hold in any
physiological recordings of real spike trains,
it does illustrate several important properties
of pattern repetition. The number of ex-
pected repetitions is most sensitive to the fir-
ing rate A, since it depends on the firing rate
raised to the power r-c. (Note that the argu-
ment of the exponential is very small, about
—1072, for typical parameter values). Thus if,
for instance, the firing rate of the cells in-
creases from 5/s to 8/s, the number of pat-
terns of 4 spikes that repeat 2 times will in-
crease 43-fold (8/5%). We must be extremely
careful with data that involve high and vari-
able spike rates.

The next critical parameter in Eg. [ is the
“hin width™ A, i.e.. the time resolution used
for defining spikes. The number of patterns

Copyright ©2 1988 American Physiological Society. All rights reserved.
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that repeat by chance is proportional to A
raised to the power of (¢ — 1)-(r — 1). This
suggests using the highest possible time reso-
lution (minimum A) that is physiologically
reasonable. In all the examples illustrated in
this paper we have used | ms.

Real spike trains frequently show firing

rate fluctuations that exceed those predicted
for a stationary Poisson process. Such large
rate fluctuations may be interpreted as the re-
sult of nonstationary processes of some ap-
propriate time scale. Note that Eq. | predicts
many more chance repeating patterns during
periods of high firing rate. For real nonsta-
tionary neurons, the use of average firing
rates in Eg. { or A8 would lead to a gross un-
derestimate of the expected number of pat-
terns that repeat by chance. Accordingly, for
real spike trains we have developed two alter-
nate ways to estimate the expected number of
repeating patterns: the “ad hoc™ method for
triplet and quadruplet patterns, and the
“bootstrap™ method for patterns made up of
five or more spikes. A brief description of
these methods follows.
AD HOC METHOD. Rather than assuming
some kind of Poisson process as a basis for
calculation, this method actually counts the
number of patterns that occur in a given piece
of data. If, for example, we are interested in
patterns of 3 spikes (2 intervals) we should
count the number of patterns composed of 3
firings, respectively from neurons (1, 1, 1), (1,
1, 2),...,etc. (ie. all combinations of three
names). For each such set of ordered names
we can calculate the number of possible
different time combinations (including inter-
vals of zero) that could occur in a pattern win-
dow duration w and time resolution A, For
pattern complexity (length) 3 Eg. A3 be-
comes

n{ds) = (wjAy2

where D, is the set of all possible time combi-
nations for a particular ordered name list of
complexity 3. For the present example, if we
have a time resolution of 1 ms and we are in-
terested in triplet patterns that may last up to
500 ms, then we could have 125,000, i.e.,
500-500/2 different possible time delays be-
tween firings of, e.g., neurons 1, 2, and 3 in
that order.

Assume that the observed counts are dis-
tributed uniformly among all the possible

different time delay combinations that can
occur for each set of names. (The assumption
is testable if we wish.) For every list of neuron
names 5., we divide the number of patterns
actually observed for these ordered names,
m(S.), by the number of possible different
time delays n(D,). This yields x(5,), the ex-
pected number of occurrences of any one
particular delay pattern with these names in
this particular data set. (This calculation is
similar to sampling with replacement in an
urn problem.) For instance, if we observed
1,250 cases where neurons (1, 2, 3) fired in
that order within 0.5 s, then the expected
number of occurrences for any particular de-
lay pattern of this same firing sequence will be
0.01 (1.e., 1,250/125,000) under the uniform
distribution assumption. From this small ex-
pected count we can compute the probability
of seeing a given pattern rtimes, using Fg. A1,
For our example, the probability of seeing a
particular pattern twice is 0.00005. By adding
up such probabilities over all possible ¢-fold
names, we can find the expected number of
all ¢-spike patterns which repeat r times
(again for this particular data set)

" 1
L ¥ e xSy ()

N =
e— 1 oo

THE BOOTSTRAP METHOD. The ad hoc
method described above requires counting
the number of times that every possible pat-
tern S, occurs. Such a counting process is not
practical for patterns which are longer than 4
spikes. With the bootstrap method we calcu-
late the expected number of repeating 5-spike
patterns from the expected number of repeat-
ing 4-spike patterns. In turn the expected
number of 6-spike patterns is calculated from
the expected number of 5-spike patterns. Al-
though this method might be carried on also
to patterns of =7 spikes, it is not advisable to
do so. because the inaccuracies (introduced
by the assumption that the added spike trains
are Poissonian) accumulate and yield an un-
derestimate of the expected numbers. Thus
for cortical units the bootstrap method is use-
ful only for two steps beyond what is obtained
with the ad-hoc method. The APPENDIX de-
scribes Egs. 418 and 419 which are used for
these computations.

In Table 1, for data taken from control
simulations A-(7, we compare the number of
repeating patterns that are actually found

Copyright © 1988 American Physiological Society. All rights reserved.
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TABLE 1.

Comparison between the number of repeating patterns that were found

and the expected number for simulated spike trains

Complexity: 3 4 5 &
Repetition: 2 3 4 5 2 3 2 2
A found 9,710 48 0 402 0 13 0

A expected 9,515 39.7 0.125 400 0.008 12.5 0.3
B found 21,703 390 4 1] 1,367 0 53 2
Bexpected 21,640 353 5.34 0.073 1,327 018 531 1.74
C found 11,443 103 4 a 814 0 45 2
Cexpected 11,970 954 0.83 0.0078 877 0.0649 23 0.48
D found 4,357 14 0 175 0 3

Dexpected 4171 13.1 0.034 169 0.003 3164

E found 8,868 59 0 721 0 51 2
Eexpected 8,961 68.5 0.60 750 0.076 15.45 0.25
Ffound 4,120 13 0 150 0 2 0
Fexpected 4,108 11.7 0.025 150 0.002 3.33 0.059
O found T.133 28 0 359 0 13

G expected 6,538 24.7 0.074 294 0.007 7.68

For patterns of 3 and 4 spikes the expected number was computed by the ad hoe method, whereas for § and &
spikes it was computed by the bootstrap method. The parameters of the simulations 4 through  were described in
METHODS, Window length was (1.5 s. Data were included only when the expected number of repeating patterns was

=0.001 or when patterns were actually found,

with the number of repeating patterns that
are expected from the calculations described
here. In most cases the estimates are quite ac-
curate, even though various forms of nonsta-
tionarity were included in the simulations.
Thus we should be able to detect excess num-
bers of repeating patterns in real data if they
are present.

The assumptions used to derive the ad hoc
method held only in simulations A, B, and C
where the firing rates were either stationary
or changed slowly. In the other simulations,
the firing rates were changing rapidly, or pairs
of spike trains had (various independent) co-
variation of rate, or both. Nevertheless, the
estimations of counts are quite good. The as-
sumptions used to derive the bootstrap
method held only in simulations 4 and B,
where the firing rates were stationary. Indeed,
the bootstrap method gives inaccurate pre-
diction in simulations C and F where the fir-
ing rates fluctuated slowly but with large am-
plitudes (0-22 spikes/s).

Figure | gives some insight into the degree
of fluctuation and correlation (from covaria-
tion of rates) that can be tolerated by these
calculations. Satisfactory results were ob-
tained with the degree of cross-correlation
(from covariation of rate in pairs of neurons)

as in Fig. 1, 4 and C, or alternatively, in the
absence of cross-correlation with the degree
of auto-correlation shown in Fig. 1 B. Inaccu-
rate (low) predictions of the expected number
of repeating patterns occurred if the firing of
the individual neurons showed the degree of
autocorrelation shown in Fig. 1B and in ad-
dition there was cross-correlation (from co-
variation of rates in pairs) of the degree in
Fig. 1D.

Finding which patterns did not appear
by chance

In simulation ( (Table 1), we found 13
quintuplet patterns that repeated twice,
whereas only 7.68 were expected to repeat
twice. Is this difference significant? Those
quintuplet patterns that did appear twice are
an extremely small fraction of the many pos-
sible quintuplet patterns (given a time resolu-
tion and window duration). For the particu-
lar values in this example there are 1.3-10"7
possible quintuplet patterns; each of these has
an extremely low probability of appearing
twice. These are appropriate conditions for
using the Poisson formula (Eg. A1) to com-
pute the probability of getting =13 repeating
patterns when 7.68 are expected. The result
is 2.5%, so that these numbers represent a not
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FIG. 1. Auto (B) and cross-correlations (4, C. D) of spikes in the several simulations with rate fluctuations. The

cross-correlations are from simulations in which pairs of “neurons™ had covarying rates. The auto-correlation is from
a simulation where each neuron had independent rate fluctuations. Dashed lines show the 99% confidence limits for
a comparable correlogram of a stationary Poisson process of the same mean rate. The expected number of repeating
patterns calculated by the ad hoc method agreed with the observed number of all simulations that had less covariation

of pair rates than shown in D.

very significant excess in the number of re-
peating quintuplet patterns.

Confidence limits for any expected num-
ber of patterns can be obtained by calculating
the corresponding probabilities for all possi-
ble observed numbers of patterns with the
Poisson formula. For 99% confidence limits
we would sum the probabilities for low num-
bers until we achieve a total probability of
0.005; we would then continue summing
probabilities for higher counts until we reach
a total probability of 0.995. This determines
the upper and lower integers that set the 99%
confidence limit. When the expected number
of patterns is large, the normal approxima-
tion to the Poisson formula was used (see Ref.
| for a more detailed description).

We emphasize that Fig. 2 and all similar
figures in this paper compare observed and

expected number of patterns that meet the
stated criteria of repetition, complexity, win-
dow, and in some cases specific name or delay
list. The expected counts are calculated from
the number of single occurrences of the pat-
terns that meet the same stated criteria (ex-
cept, obviously for the repetition). These fig-
ures do not show the observed and expected
counts of repetitions for particular patterns;
such measure are not appropriate at this stage
of the analysis.

MNormally we would plot vertical bars (e.g.,
for 99% confidence limits) of ecach point in
these graphs. If such a bar does not reach the
line where observed and expected numbers
are equal, then the observation falls outside
the stated limits. Since this procedure would
produce a rather messy graph we have instead
plotted a vertical 99% confidence region
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FIG. 2. Comparison of the number of patterns found versus the expected number that repeated two or more times.
The triangles describe triplets; the squares describe quadruplets. The jagged lines give the 99% confidence limits, 4: 7
simulations described in Table 1. B: 4 experimental data files described in Table 3.

around the observed equals expected line.
The limit values are indicated as next outer
half integers, so that there is no doubt when a
particular point (which must have an integral
observed value) falls beyond the confidence
limits. Fig. 2.4 shows in this manner the trip-
lets and quadruplets of the simulation data
in Table 1. Only a few points (mostly from
Simulation G) fall outside the 99% limits.
These results suggest that the ad hoc and the
bootstrap methods give reasonable estimates
for the expected number of repeating patterns
in “random” control data. The confidence
limits, in turn, can therefore be used on un-
known data to focus our attention on those
types of repeating patterns that appear in ex-
cessively large numbers.

When the number of repeating patterns is
small, the confidence limits may be sufficient
to point out candidate patterns which do not
occur by chance. However, when the number
of repeating patterns is very large, the mere
knowledge that there is an excess number of
such patterns is not enough. For example, in
Table 1 we see that in simulation G there
were 7,133 different triplets that appeared
twice, while the expected number was 6,538.
This difference is certainly significant, but we
wish to know which of the 7,133 triplets are
most likely to be nonrandom. This can be
done by dividing the 7,133 triplets into sub-
groups and looking whether there are sub-

groups in which the number of triplets ex-
ceeds the confidence limits. One way for such
a division is 1o separate the triplets by the
names of the single units that make up these
patterns (e.g., all triplets made of single units
1, 2, and 3; all triplets made of single units 1,
2, and 4; etc.). Equation A5 can be used for
getting an estimate of the expected number
of occurrences for any particular list of single
unit names. This expected count can then be
used to compute confidence limits.

Figure 34 shows graphically such a divi-
sion of all the triplets that repeated twice in
simulation B. The jagged line gives, as in Fig.
2, the 99% confidence limits. In simulation B
there were 10 single units, so that there were
1,000 different triplet names [such as (1, 1, 1),
(1, 1,2),(1, 1, 3), ..., (10, 10, 10)]. When
using 99% confidence limits one can expect
that 10 out of the 1,000 points will exceed the
limits. This is roughly what happens in Fig.
34. Note also, that even the points that fall
outside the confidence limits are not placed
very far away from the limits.

Experimental data

When experimental data were analyzed it
became evident immediately that the num-
ber of repeating patterns was far beyond what
could be expected by chance. Table 2 shows
the data for 100 s of “spontaneous™ activity
of eight single units which upon shallow ex-

Copyright © 1988 American Physiological Society. All rights reserved.
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FIG. 3. Breaking triplets into subgroups. All the patterns of 3 spikes that appeared twice are divided into subgroups
according to the names of the single units that participated in the patterns. A: simulated data (1,000 subgroups). £:

experimental data (512 subgroups).

amination looked reasonably stationary and
not heavily correlated. Among the striking
differences between the observed and the ex-
pected number of repeating patterns were
one pattern of seven spikes that repeated
twice, a pattern of four spikes that repeated
four times and two patterns of three spikes
that repeated seven (!) times.

Figure 38 shows the division of 9,330 trip-
lets that occurred twice in this record, into all
possible triplet names. Both Fig. 38 and Ta-

ble 2 show great excess of repeating patterns.
Close examination of these unusual patterns
revealed that they are associated mostly with
bursting cells. For instance the two triplets
that repeated seven times were (using the no-
menclature S,, D, of the APPENDIX, in which
a pattern is defined by a list of single unit
names followed by a list of delays from the
first spike): (4, 4, 4), (0, 2, 4)and (4. 4, 4), (0,
2, 6). This means that when single unit 4
emits a high-frequency burst, the detailed

TABLE 2. Effect of eliminating bursts and high firing rates on the number of patterns found

Patterns All spikes Filtering
Complex. Repeat Found Expected Found Expected
k} 2 9,330 8,785 3134 3011
k] 263 195 39 30
4 12 4.7 | 0.29
5 4 0.1 0 0.003
6 2 0.0023
7 2 <0.0001
4 2 635 554 a4 95.3
3 3 0.159 0 0.007
4 1 <0.0001
5 2 0 15.3 2 2.6
6 2 9 0.337 0 0.05
7 2 1 0.0062
Data taken from a record ¢ ining 100 s of activity of 8 single units. Filtering means eliminating

all spikes around which (within 500 ms) there were > 10 other spikes from the same single unit {i.e., all time sections
in which a single unit fired at a high rate) and all the spikes before which another spike from the same single unit
occurred within 5 ms (i.e., eliminating all but the first spike in a burst).
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structure of the burst tends to repeat. It is pos-
sible that such a burst is a highly significant
event in the overall activity. Its detailed struc-
ture may reflect some interesting organiza-
tion of the excitation which drives the cell,
but it may be also a reflection of the internal
changes of excitability in the driven unit it-
self, If the latter mechanism is true, excessive
numbers of patterns associated with high fre-
quency bursts may obscure other patterns
which are more likely to represent significant
organization of activity in the cortical net-
work.

Periods in which a spike train fired at high
rates contributed a large fraction of the re-
peating patterns produced by these neurons.
For instance in another recording from the
same single units as described in Table 2 we
got >120,000 triplets that repeated twice.
About 100,000 of these came from periods in
which some single unit(s) fired at rates > 20/
s. We can detect that there is an excess num-
ber of repeating patterns under the particular
conditions, but it is obviously quite difficult
to identify which patterns are candidates for
further analysis in these circumstances.

We have examined the effect of eliminating
bursts and periods of high firing rates from
the data. This elimination, which will be
called filtering, was carried out in the follow-
ing manner: a burst was defined as a group
of spikes from the same single unit following

A NO FILTERING
1000 4
0 -G21C16. 027

FOUND
=

100 1000

EXPECTED
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each other with interspike intervals that did
not exceed some minimal time (e.g., 5 ms).
When a burst was found, only the first spike
was considered in the search for patterns. The
low-pass frequency filtering was achieved by
setting a window (e.g., 500 ms) around each
spike and counting how many more spikes
from the same single unit occurred within
this window. If the number of spikes ex-
ceeded some threshold (e.g., 10) the spike
around which the window was set was not
considered by the pattern searching routines.

The right half of Table 2 shows what hap-
pens when such a filtering scheme is applied
to experimental data. The number of ob-
served patterns at each complexity and repe-
tition are very close to what can be expected
by chance. Figure 48 shows the separation of
the 3,134 triplets that occurred twice accord-
ing to single unit names. Figure 4.4 shows the
data from the same record when all the spikes
were considered. It is evidence that most of
the excessive patterns were removed by this
filtering scheme. However some of the cell
combinations still tend to produce more pat-
terns than can be expected by chance.

For instance, the single units (3, 1, 4) gener-
ated one pattern that appeared twice [at de-
lays (0, 177, 266)], while the expected num-
ber of patterns appearing twice by chance was
0.021, or the single units (4, 2, 2) generated
two patterns that repeated twice [at delays (0,

B AFTER FILTERING

R=500/10 B=5/1
1000

D -G21CI1E. 027

100

<0, 02 0.1 1 10

EXPECTED

F1G. 4. The effect of filtering on the number of triplets that repeated twice. A: all the spikes in the recordings were
considered when searching for patterns. B: only spikes which were not embedded in periods of high firing rates or
which were not embedded in a burst were considered. See legend of Table 2 for the exact definition of the spikes that

were filtered out.
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TABLE 3.  Observed and expected repeating patterns
Complexity: 3 4 5 6
Repetition 2 K} 4 ) 2 3 2 2

1 found 8,209 120 6 1 396 1 13 0

1 expected 7.789 119 1.74 0.023 358 0.044 26.5 1.57

2 found 3,134 39 1 0 94 0 2 0

2 expected 3011 30 0.29 0.003 95 0.007 26 0.05

3 found 14,542 355 8 0 759 0 27 I

3 expected 13,710 328 7.1 0.14 701 0.15 30 1.03
4 found 2406 24 o 0 69 1] 0

2.248 18.5 0.14 0.001 70 0.004 3.74

4 expected

Data from 4 records of “spontaneous”™ activity each of 8 single units in the primary auditory cortex of cat. All

records were filtered as described in the legend of Table 2.

160, 182) and (0, 317, 332)], while the ex-
pected number of patterns appearing twice by
chance was 0.097.

Table 3 and Fig. 28 show the number of
repeated patterns found in 4 recordings of ex-
perimental data after filtering (as described in
Table 2). When comparing Table 3 to Table
1, Fig. 2, A to B, and Fig. 34 to 4B, it is evi-
dent that the experimental data tend often to
have more repeated patterns than were found
in comparable simulations. One may wonder
whether more drastic filtering would cause
these patterns to disappear. We found that al-
though one can reduce the number of repeat-
ing patterns by more strict filtering of the
data, there are always some single-unit com-
binations that generate excess numbers of re-
peating patterns.

At this stage one cannot say whether this
excess is due to large deviation from the as-
sumptions made while developing the
equations used to compute the expected
number of patterns that repeat themselves by
chance, or due to the presence of some special
neural processes that make the cells fire re-
peatedly in the same pattern. Some clue as to
whether the excess of patterns is real may be
obtained by merging the list of detected pat-
terns from all four records and looking for
patterns that were detected in more than one
record. When this procedure was carried out
on the data described in Table 3, it was found
that indeed some patterns appeared twice (or
three times) in more than one record. For ex-
ample, the pattern (2, 2, 2), (0, 14, 23) ap-
peared three times in record 1 and twice in
record 2; the pattern (1, 6. 1), (0, 125, 234)

Copyright € 1988 American Pl

appeared twice in record | and twice in re-
cord 3. Altogether there were 51 patterns of
this sort.

DISCUSSION

We began this paper with the notion that
excessively repeating patterns could be used
to indicate some sort of repeating state of the
nervous system. Since we are examining only
a very limited number of neurons, any re-
peating pattern which we detect probably is a
(small) portion of a larger pattern which in-
volves neurons that are not under observa-
tion. It is entirely possible that different states
(different large patterns) could be associated
with the same observed subpattern. Thisisan
intractable sampling problem and ultimately
sets limits on the breadth of inference that
can be drawn from detection of repeating pat-
terns in the spike trains of a limited number
of simultaneously observed neurons.

We have presented algorithms and confi-
dence limit methods that detect all repeating
spatiotemporal firing patterns in a given
stretch of multineuron data and which subse-
quently show which pattern classes are ap-
pearing in excess. [t should be noted that our
method seeks exact pattern matches (to
within the time resolution). A missing spike
in a “repetition” would cause the remaining
spikes to be treated as a different pattern, pos-
sibly of another class. On the other hand, our
matches ignore extra spikes; this means that
firing bursts cause excess and possibly mean-
ingless matches. We have demonstrated the
effects of filtering bursts out of the data.
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It is possible, of course, to take the view
that firing bursts are themselves highly sig-
nificant events whose pattern of occurrence
marks particular states of information pro-
cessing. In this case one can implement a re-
versed scheme for selection of the data: filter
out the isolated spikes and leave the bursts.
The methods of this paper can then be used
to study patterns made up of or within bursts.
Identification of bursts for purposes of elimi-
nation, as in this paper, can be made simply
on a criterion of spikes following each other
with interspike intervals shorter then some
minimal delay. If instead the bursts are to be
kept and studied, it would probably be more
appropriate to use a more rigorous method to
define bursts in the context of an ongoing
spike train. One excellent approach to this is
the Poisson surprise calculation used by Leg-
endy and Salcman (13).

Other approaches to the repeated pattern
detection problem can be envisioned. For ex-
ample, during the detection phase, matches
could be made “inexact” according to some
continous measure so that missing and excess
spikes are both equally penalized (Perkel, pri-
vate communication of working notes). This
approach is computationally expensive.
However, once templates have been made
out of candidate patterns detected rapidly by
the methods presented here, such continuous
measures of fit are feasible and appropriate.

When the various algorithms described
here were developed, we had the following ex-
perimental situation in mind. Suppose that
the activity of several single units is being re-
corded in parallel. Initially the units are stud-
ied, possibly under some set of stimulus con-
ditions, for a period of about 100 5. These re-
corded data are submitted to the pattern
searching routines. The computer compares
the number of observed repeating patterns of
a given description (repetition, complexity,
name, or delay list, etc.) with the number of
such patterns expected by chance. Presum-
ably repeating patterns of certain descriptions
will be singled out as occurring in excess
numbers.

If the number of such patterns of a particu-
lar description is relatively small, then all of
them can be chosen as candidates for further
attention. For instance, if we examine the re-
sults of expt. / in Table 3, we see that only
1.74 patterns of 3 spikes were expected to re-

peat 4 times while 6 were found. All these 6
patterns are candidates to serve as templates
for further search. Similarly, by looking at
Fig. 48 we see that in this experiment there
were 4 points outside the 99% confidence
limits at the level of 1. That means that there
were 4 different unit combinations [these
were (1, 2, 3), (3, 4, 5), (1, 8 1), and (7, 7,
7)] for which <0.1 patterns are expected to
repeat twice but for which 1 pattern actually
repeated twice. These 4 patterns are also can-
didates for templates. The experience of one
of us (M. Abeles) from analysis of records ob-
tained from the auditory and the prefrontal
cortex of unanesthetized monkeys is that
such patterns can be singled out in about half
of the records.

If, however, the number of patterns of a
particular description is large, it isimpractical
to designate them all as candidates for further
analysis. The experimenter must devise ex-
ternal criteria to make a selection. Alterna-
tively, different subgroupings in the analysis
can be attempted (as in the breakdown by
name list in Fig. 3) which might single out
repeating patterns which are in excess, but
which form a smaller group. This selection
process is extremely important and deserves
considerable future attention.

Once the list of candidate patterns is deter-
mined, the computer can generate a corre-
sponding set of templates; all further incom-
ing data from the experiment is examined
against the templates with some appropriate
criterion of fit. The computer is programmed
to announce the further occurrences of any
of the candidate patterns (e.g., with a beep).
The experimenter may now manipulate the
environment (stimuli, behavioral conditions,
motor responses, etc.) in a search for the situ-
ation, if any, in which some of the candidate
patterns reappear.

This type of experiment is analogous to the
early experiments on single neurons. Once
the single unit was isolated, the experimenter
tried to determine the adequate stimulus for
firing of that unit. In our case, instead of
studying the conditions that result in single
unit firing, the experimenter studies the “re-
ceptive field” properties of the generator pro-
ducing the repeated spatiotemporal firing
pattern events.

There is no technical difficulty in building
several tens of templates that would detect
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the reappearance of candidate firing patterns
in real time, assuming that we solve the selec-
tion problem discussed above, The algorithm
seribed here Tor detecting repeating pat-
is very fast and will automatically recog-
nize all patierns that repeal twice or more.
The confidence limits developed here should
help focus the experimenter’s attention on
those patterns which are less likely to be gen-
erated by chance. The entire process of de-
tecting patterns, sorting them according to
spike names, and computing confidence lim-
its for a typical multineuron recording would
take ~ 10 min on a fast minicomputer. This
is a vast improvement on past approaches to
this problem.

The next step, then, is to install the pattern
detecting ““machine” as a routine filter in on-
going multineuron experiments. This will al-
low a continual study of temporal association
between repeating patterns and externally ob-
servable events. Repeating patterns which
continue to occur in an experiment, but for
which such an association can not be found,
may be a new indicator of repeating internal
events in the workings of the observed por-
tion of the nervous system.

APPENDIX

Symbols

¢ Complexity of a pattern. The number of
spikesin apattern.c=1,2,...

DD, Alistof cdelays, D= (0, 72, 73, ..., Te)

The delay 7, is the time elapsed from
the first to the sth spike in a pattern.
Therefore 7, is always 0

D, The set of all possible D,.. E.g., D5 = (0,
0,00, (0,0, 4),(0,0, 24). .. }

A The accuracy of the time measurement
in seconds. E.g., 0.001 s

A The firing rate of the ith single unit, in

spikes per second

The total number of cases in which the
spike sequence S, = (i;, i, ..., i) ap-
peared regardless the delays, except
that the total duration of the pattern
was less than w

n The number of recorded single neurons.

n(D)  The number of different time delays D,
that can be fitted in a time window w
seconds wide

The expected number of patterns made
from spike trains S, = (i}, ia, ..., i)
which repeated r times

The expected number of patterns of
complexity ¢ which repeated them-

m(S)

NY(S,)

N

wwiiloaded from www.physiology.org/journal/jn by § {individualUser.givenNames] § {individualllse

selves r times. All possible ways of
wriling ¢ names are allowed

! Fhe number of repeated appearanees ol
the siume pattern e 2,3+ -

Ay A st of e single umit mames. S, (L 6

) Bl Sy (LS 60 1) The d,

ssigned  any  names  from
mong the wrecorded neurons

[ The set of all possible S,.. Eg., {3 = (1,
L (L L2, (0, 1, 3), -}

T The total duration of single unit record-
ing, in seconds. E.g., 100 s

t Time

T The delay between the first and the ith

spike, in seconds
or x(S, D) The expected number of repe-
titions of a particular pattern 8, I
W The window duration. The maximal al-
lowed delay between the last and first
spikes in a pattern, in seconds. E.g.,
w=035s

Expected number of repeating patterns

In this section we shall develop equations for
evaluating the number of different patterns that
are expected to appear repeatedly. We shall as-
sume that for any particular predetermined pat-
tern (e.g., a spike from cell | followed, after 0.015
s, by a spike from cell 3, etc.) we can compute the
expected number of occurrences x. In the follow-
ing sections we shall develop several ways 10 esti-
mate this x; here we assume that x is known,

Let us denote the list of single-unit names that
appear in a pattern of ¢ spikes by 5, S, = (i}, f»,
... 1., and the list of delays between these spikes
and the first spike by D, D. = (0, 72, 75, ..., 7o)
where i > jimplies 7, = 7yand . < w. Let usdenote
the expected number of appearances of the pattern
S, Dby x(S,, D,).

We can think of the appearances of the sequence
Se, D as successes of a trial that is repeated many
times in the following way. At time ¢ = 0 we look
whether this particular pattern occurred, that is
whether spike i, fired during the time interval [0,
A) and spike #; fired during the time interval [r;,
72+ A) and spike /3 fired during the time [73, 73 +
A), etc. Then we try again to find this pattern at
times ¢ = A and so on for T/A umes. The probabil-
ity of getting these spikes at any one trial is very
low, but since we repeat this trial many times, we
may succeed sometimes.

Because the few successes that we might get are
due to repeating the experiment a great many
times with an extremely low probability of success
on any one trial, we may compute the probability
of getting r successes in this experiment by the
Poisson probability density which tells the proba-
bility of getting r successes when x successes are
expected

x,x(8)

prinx}=e"x"r! (Al
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It is important to note that the validity of Lg. Al
does not rest on the assumption that the spike
trains behave like Poisson processes, but just on
the as ption that at any tme nstance { the
probability of getting once prespecilicd pattern s
very low,

Under the conditions of interest to us (low liring
rates, small and weak correlations between the
cells) thas prf s ) will be always very small. Thus,
there is no point in asking what is the probability
of finding rrepetitions of one particular pattern S,
D.. But we can ask what is the expected number
of different patterns made out of spikes from cells
5.= (i, I1,. .., i)thatappeared repeatedly rtimes
in our record. This expected number [N"(5,)] can
be obtained by adding Eg. A1 over all possible de-
lays D,

NSy = 5 [e™.x(8,, DYir) (A2)

nep,

Note that since time is measured with a finite accu-
racy, 4, and the maximal delay is limited to w, the
total number of terms on the summation is finite
and is given by the following considerations: if we
combine together all spike patterns S, starting with
the same (i) spike we shall have (¢ — 1)! different
S.s included. In this set of patterns each of 5, 73,
..., 7. may obtain w/A different values. There
would be (w/A) " different delay lists. Thus for
each particular S, there are

_ (wjay!
{e—=1)

nlin) (A43)
different time delays.

If we wish to know what is the expected number
of patterns of complexity ¢ (regardless of which
particular spikes are involved in the pattern)
which appeared r times in our record we would
have to sum FEg. 42 over all possible spike names

NY= E NYS)

seg,

(A4)

In some situations it may be possible to show that
the expected number of occurrences x(S, ) is in-
dependent of D. That is, all time delays between
the spikes in a pattern are equally probable. In
such cases we may write: x(S, ) = x(5), and the
sum over D in Eq. A2 is just this expectation times
the number of different time delays that one can
have among ¢ cells
2 XS5 D)= (D )x(S)

neD,

By using Eq. A3 we get from Eg. 42 that the ex-
pected number of patterns from cells S, that re-
peated rtimes is

[CVEYa

NS -
oo (c=1)

I (Sy (A45)
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and from Eg. A4 we get that the expected number
of patterns of ¢ spikes that repeated r times is

N njay | pOR CRARRY A /] (Any
T

Equations A2 and A4 or A5 and A6 give astraight-
Torward way of’ 2 the number of repeating
patterns that one expects to get by chance, but they
rely on a valid way for getting x(S,, 1,) the ex-
pected number of occurrences of every specific
pattern S, D.. In the following four sections we
develop ways to estimate this x.

Stationary Poisson processes

In this section we assume that our record is a
realization of n parallel stationary Poisson pro-
cesses, recorded for T seconds. Let us denote the
firing rate of the ith single unit by A;. We assume
also that the single units fire independently. The
time of events is assumed to be quantized by units
of A seconds, We assume that A is small enough
s0 that the probability of getting two spikes from
the same train within A seconds is negligibly small.

Atevery time f we can ask what is the probabil-
ity of getting the pattern 5., D.. This probability is
given by multiplving the probabilities of getting
the first spike exactly at ¢ by the probability of get-
ting the second spike during the interval [ + 75,
1+ 73 + A) by the probability of getting the third
spike during the interval [t + 73, 7 + 73 + A) and
so on. We get the following probability

PriSe, Dot} = hdt-AA-MA- -0 M A (A7)
Note that here we assumed that the pattern started
exactly on ¢ and therefore the probability of find-
ing there the first spike (i,) is A; df and not ; A.

By integrating Eg. A7 over all the available time
(1) we get the expected number of occurrences of
Se, Do during T

XS, DY = x(5) = Ta™" IT M (48)

kES,

Note that the expected number of occurrences x is
not a function of the delays D.. This is so because
we assumed that the spike trains behaved like in-
dependent and stationary Poisson processes. Thus
we can substitute the expected count of £q. A8 in
A3 to get, for any list of single unit names S, the
expected number of patterns made of S, which re-
peat r times.

Similarly, by substituting Eg. A8 in A6 we geta
simple way to compute the expected number of
patterns of ¢ spikes that repeated r times by
chance.

However, these equations are of limited value
for physiological spike data, mostly because the
firing rates of neurons tend to fluctuate excessively
so that stationary Poisson processes are poor ap-

Copyright © 1988 American Physiological Society, All rights reserved.
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proximations to the statistics of neuronal firing
times.
Nonstationary Peisson processes

Let us assume that the liring times of the single
units are realizations of independent Poisson pro-
cesses with varying firing rates. Let us denote by
A, (1) the firing rate of the ith single unit at time /.
All the other assumptions are as stated in the previ-
ous section. Then the probability of getting a spe-
cific pattern S,, D, at time { is given by

PriSe, Dt = A (n0de- 0+ ra)Ae oo (4 7)A
(A49)

and the expected number is given by .cgrating
overl.

e

x(8., D) = a! L II M+ o)de (A1)
i=1

This is not a practical equation to compute for all

possible D, and S,. If the fluctuations of the firing

rates are slow (relative to the maximal pattern du-

ration w) then Mt + 7) = A{r) and Eq. 410 can be

simplified to

Tc
x(5., D) = x(8) = A"‘L IT M(edde  (AID
i=1

Again in this form x(5., D.) is not a function of
D, or of 1. Therefore, Eg. A1l can be used in A5
and A6 to get the expected number of patterns of
cells S, that repeated r times, or the expected num-
ber of patterns of ¢ cells that repeated r times.

In most cases the firing rates A,(r) are not known
a priori because they fluctuate in apparently ran-
dom fashion. Evaluating them from the same re-
cord in which patterns are searched will usually re-
sult in under estimations of N. Nevertheless these
equations can be useful for firing times obtained in
simulations (where A(¢) are known), and for some
cases where the only variations in firing rates are
brought about by stimuli, the poststimulus time
(PST) histograms for the stimuli are known, and
the units respond in a stable fashion.

Ad hoc method

We know from Eq. 41/ that if the firing times
behave like independent Poisson processes whose
firing rates change slowly with time then x(S,, D)
(the expected number of occurrences of the pat-
tern S., D) 1s independent of D,.. Usually we can-
not use Eq. 411 because we do not know the firing
rate functions A(f). However, we may estimate x
by counting all the occurrences of the sequence S,
(with delays that are less than w seconds) in the
data. This number m(S,) is approximately the sum
of x(5., D) over all the possible delays D.. If we
assume that all the x(S,, D,) for a given sequence
of spike names (S,) are identical, we have

X(85.) = m(SH[w/a) " fic = 1)) (A12)
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where mi(S,) is obtained by counting haow many
times S, appeared in the data. When mtS, ) is large
we may assume equality in fg. 412 and substitute
n A5 and A6, Thus we get an ad hoc estimation ol
the number of patterns made of 5, that repeated ¢
tmes and ol the wtal number of patterns of com-
plexity ¢ that repeated rtimes.

This ad hoc method of estimation was proven
to be fairly accurate for both simulated and real
data (see RESULTS). However, the process of
counting all the occurrences of 5, for all possible
combinations of c-spike names becomes very te-
dious for ¢ = 5. Thus we found it practical to use
the ad hoc method for patterns of 3 or 4 spikes, but
had to resort on the next method for patterns of
=5 spikes.

The hootstrap method

We shall develop here estimations for the ex-
pected number of patterns of complexity ¢ + 1 that
appeared repeatedly r times from the expected
number of patterns of complexity ¢ that appeared
repeatedly r or more times. This kind of estima-
tion is possible because any pattern S, Do, can
be generated from the pattern S, D, by appending
a spike name to S, and a delay to D,. Furthermore
a pattern of complexity ¢ + | cannot appear r
times unless the subpattern S, D, {in which 5, is
the list of the first c-spike names of S, and D, is
the list of the first ¢ delays from D) appeared also
for at least r times,

Therefore, we may compute for every pattern
5., D, that appeared k times, the probability that it
would produce r (r = k) repetitions of a particular
pattern of ¢ + 1 spikes whose names are S, i,
and whose delays are D, 7.y, where 7. = 7.4 <
w. Given that a subpattern S,, I, has occurred at
time f, what is the probability of finding a spike
from i.,, at the time interval [r + 7, f + 7 +
A)? To compute this probability we assume that
the i, single unit is firing according to Poisson
statistics with a firing rate of A, .

Then the probability that it fired is

priia fired} = A A (A415)
and the probability that it did not fire is
priices did not fire} = 1 — &, A, (416)

We know that the subpattern S, D, occurred &
times and we wish to know what is the probability
that in exactly r times it was followed by a spike
from i.,, at the appropriate time. This probability
is given by the binomial term

prii fired exactly rtimes} = (f)(h,m-.\)’(l - A A

(AI7)

On the average there are w/cA different time delays
after the last spike of 5., D, at which the i, spike

Copyright © 1988 American Physiological Society, All rights reserved.
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might fire, and we expect 1o have N™(8) cases in
which the subpattern S, repeated & times, so that
the expected number of patterns 5 that repeated r
Tmes s

w i3 i
NS ) = — (N, AT 2 A A NS
(A8

The term N™(S) falls off very fast as k increases,
s0 that there is no practical value for summing up
all the way from r to infinity.

The total number of patterns of ¢ + | spikes that
repeated r times is computed as in Eq. 44, by add-
ing all the S.,, that repeated r times

‘\.‘r_lm = Z ‘;\:m‘s-’

SEfay

(A19)

MNow that we have N5, ) and N, ,"" we can ap-
ply Eqgs. 418 and 419 to these estimates to obtain
N"(S,.2) and N.,2™, and so on.

These estimates are based on the assumption
that the ¢ + 1 neuron in the pattern can be re-
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garded as a Poisson process. As discussed carlier
this s a poor approximation. However, when ap-
phicd for only one or two steps beyond cand il the
Paseline estinates NS ) are poaodd, the errors in-
troduced by the Poisson approximations are not
oo bad. In the analysis discussed in the results we
applicd the ad hoe method for patterns ol 3 and 4
spikes and the bootstrap method for patterns of 3
and 6 spikes, The agreement with the number of
patterns found both in simulated and experimen-
tal data were quite good.
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Searching for significance in
spatio-temporal firing patterns

George L. Gerstein

Dep of N i University of Pennsylvania, 210 Stemmler Hall,
3450 Hamilton Walk, Philadelphia, PA 19104-6074, USA

Abstract. We examine a specific candidate for temporal coding of
information by spike trains, the occurrence of a temporal firing pattern among
some number of neurons that repeats more often than expected by chance.
Methods for detection of repeating patterns have long been available, but
there are no analytic hods for caleulating the exp d bers of
repeating patterns to enable assignment of significance to the results from the
experimental data. The expected numbers can be caleulated by Monte-Carlo
methods by repeatedly modifying the original data spike trains. Ideally the
surrogates produced by such changes should destroy all patterns and
cross-correlations but preserve other aspects of the trains such as rate, interval
structure ete. We present here a novel variant of the "dither surrogate” (Date
et al. 1998) and use surrogates generated by this algorithm to evaluate
repeating pattern significance in data recorded in monkey motor cortex during
behavior. Although we can demonstrate high statistical significance for the
excess repetition of some spike patterns, it is not obvious that this has
physiological meaning or that such patterns are used for information transfer.

Key words: neuron firing patterns, multi-neuron, synchrony, cortex,
synfire-chains, coding, statistical significance
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The basic problem. The nervous system certainly
uses firing rate coding to represent information, but it is
not clear whether and to what extent specific spike tim-
ing is used despite many papers on this topic. Perhaps
the simplest timing structure would be firing synchrony
of two or more neurons. This can have an amplified ef-
fect on downstream neurons because of nonlinear addi-
tion of the EPSPs. The extent and circumstances in
which such "unitary” synchrony events exceed ex-
pected rates by significant amounts have been thor-
oughly investigated in a series of papers by Griin et al.
(2001) with the conclusion that excess synchrony can be
temporally associated with behavioral events. In this pa-
per we will examine a more complicated type of tempo-
ral firing structure consisting of'a firing pattern of some
length among some number of neurons that repeats
more than expected by chance. Such repeating patterns
are at least potentially a carrier of information. Also in
terms of Abeles’ concept of synfire chains (Abeles
1991) they could represent the repeated activation of a
particular synfire chain from which we record some
number of neurons.

Available methods. Short patterns consisting of two
intervals among the firings of one to three neurons (i.e.,
three successive spikes) have been studied by a variant
of the Joint Peri-Stimulus Time Histogram (JPSTH)
(Aertsen et al. 1989, Gerstein and Perkel 1972) where
the accurrence of a spike in a particular train is used as
reference (instead of stimulus) and the delayed occur-
rence of the next two spikes (of the other trains being an-
alyzed) are represented along the x and y axes of the
JPSTH. If a particular interval pattern is repeating more
than other interval sequences there will be a hot spot in
this variant JPSTH. The method and appropriate signifi-
cance tests were worked out in a series of papers by Prut
et al. (1998). Again it was possible to demonstrate a
fairly loose time locking of such excess pattern repeti-
tions to behavioral events, (Note that the "snowflake"
(Perkel et al.1975) could be used in a similar way.)

Repetitions of more complex patterns of arbitrary
length and membership can be found by a method of
Abeles and Gerstein (1988). This is easily visualized by
representing the data as an old fashioned punched paper
tape. Each line of holes along the tape represents the fir-
ing of a particular neuron, quantized time (bins) repre-
sented along the tape. Simultaneous firings to within the
bin time are represented by more than one hole across
the tape at a particular temporal location. Now make a
second copy of the tape. With the two tapes superim-

9  Spatio-Temporal Spike Patterns

posed over a light source, start shifting one relative to
the other in steps of one bin. We choose a window for
maximum pattern length, and at each shift we scan the
entire overlaid tapes for superimposed holes. For each
tape shift and widow position we keep track of the num-
ber and identity of superimposed holes. This identifies
patterns of any complexity (number of firings involved)
and with any temporal structure within the chosen pat-
tern length window that repeat two or more times in the
data. In the original paper significance of counts was ob-
tained by analytic calculation on Poisson and
inhomogeneous Poisson trains. This is a poor match to
most real data, so that other tests for significance are
needed.

Significance tests. Other analytic tests have not yet
been developed, so that it is necessary to use surrogate
and Monte-Carlo calculation after the original data has
been analyzed with the two tapes method. One such ap-
proach has been made by Baker and Lemon (2000). For
each of the N neurons in the data they obtained firing rate
function by convolution of the spike train with a suitable
kemnel. This rate function was used to generate a spike
train with intervals drawn from rate modulated gamma
functions of order 1 to 30. For each of these surrogate
candidates an interval histogram (IH) was calculated, and
the order which best matched the corresponding data IH
was used in generating all further surrogates of that spike
train. The process was repeated for each spike train in the
data set. Unlike Poisson trains this approach replicates
the refractory period and lack of short intervals that is
typical of most data. The pattern search computation was
then calculated for each set of N surrogates, and the pro-
cess of generating surrogates and pattern scarch was re-
peated until adequate statistical significance could be
assigned to events in the pattern analysis of the original
data. Baker and Lemon’s conclusion was that the number
ofrepeating patterns in the surrogate data was the same as
or even higher than in the original data, and therefore that
patterns could not have any physiological significance
(Baker and Lemaon 2000).

However, Baker's method of generating surrogates
has some problems. When we applied it to artificial data
consisting of rate modulated gamma functions, the sur-
rogate generating procedure always produced surro-
gates at least two orders larger than the original. The
order parameter is connected to regularity — the higher
the order the more repeating patterns are expected. Thus
these were inappropriate surrogates and would produce
inappropriately high pattern counts.



A completely different class of surrogates can be gen-
erated by dithering the time of each spike. This is an idea
first developed by Date et al. (1998), Hatsopoulos et al.
(2003) and used in Abeles and Gat (2001). Such a surro-
gate completely destroys any original patterns, but pre-
serves the overall rate structure of the spike train. In this
original formulation the distribution of dithers was flat
over some appropriate window (+ 8 ms). Such a surro-
gate however does change the original IH by adding
short intervals and lowering the peak. In terms of
gamma distributions, such a surrogate is a move to
lower order and hence produces an inappropriately low
number of patterns.

A modified result can be obtained by defining the
dither distribution on the original Joint Interval Histo-
gram (JIH) for adjacent intervals. Dithering a spike on
such a 2 dimensional surface corresponds to movement
along a trajectory perpendicular to the principal diago-

sartjint dither; N = 40000: gamma order 4; base rate 49 rectangular rate modulation
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nal (for each three spikes as we dither the middle spike
the first interval gets shorter and the second interval gets
longer, or vice versa). The values of the JIH surface
along this trajectory can are used to define the actual
dither distribution. For typical parameter values the re-
sulting surrogate also destroys any pattern structure, but
creates an IH with less short intervals and a higher peak
than in the IH of the original data. In terms of gamma
distributions such a surrogate is a move to higher order
and hence produces an inappropriately high number of
patterns (as in the Baker and Lemon surrogate method).
It turns out that the same 2 dimensional procedure
carried out on the surface which represents the square
root of the JIH produces a surrogate with IH and JIH re-
markably similar to the original. This version of dither
algorithm has no obvious mathematical foundation, but
because of the good IH fits we have used it extensively
to make surrogates for pattern searches. The IH perfor-
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Fig. 1. Performance of the +/ JIH dither for data generated by a rate varying gamma process of order 4. The rate modulation cycle
is indicated at lower right. Note that the theoretical [H, its realization and its dither all superimpose. Theoretical IH for gamma
processes of order 3 and 5 are included for comparison. Joint IH are shown at upper right for original and dithered, and also

show little if any distortion.
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mance of the JJ[T dither method for a data file gener-
ated with a rate modulated gamma process of order 4 is
shown in Fig. 1. The superposition of theoretical, gener-
ated and dithered IH is obvious. The graph also shows
theoretical IH for gammas of order 3 and 5 for calibration.

Pattern search results. Before analyzing the origi-
nal data we filter it to remove bursts of activity. These
may be defined as three or more consecutive intervals
shorter than some criterion like 10 ms. Such bursts pro-
duce many repeating patterns that are essentially unin-
teresting (the recurrence of bursts per se as a potential
carrier of information has been studied by Legendy and
Salcman 1985). Application of the overlaid paper tape
pattern search algorithm to burst filtered data is rela-
tively straightforward, but this is a brute force computa-
tion that requires considerable time even with today’s
fast computers. We have generally processed the burst
filtered original data and then made and processed 20
surrogate sets. Results can be summarized in a two di-
mensional histogram of number of patterns as a function
of complexity (how many spikes are involved in the pat-
tern) and of number of repetitions. We call this the pat-
tern spectrum. Details of individual patterns, their
repetition score and their location in time are of course
also available for further analysis.
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The pattern spectra for the 20 surrogates are aver-
aged, and the standard deviation at each point is calcu-
lated. We then compute the difference between the
pattern spectrum of the original data and this average
surrogate spectrum, and express the final result normal-
ized at each point by the corresponding standard
deviation of the surrogate average.

We show the analysis of a data set of six neurons simul-
taneously recorded in M1 cortex of a monkey doing a re-
petitive thumb-finger grasp task with both hands (Baker
laboratory, methods as in Baker and Lemon 2000). Indi-
vidual spikes within a pattern are defined to 2 ms, and total
pattern duration is < 300 ms. The count difference plane in
Fig. 2 at the left is shown from above (original pattem
counts > average surrogate counts); the view from below
the difference plane is at the right. Bar heights are in units
of standard deviation of the average count at those coordi-
nates. There are clearly more small differences in the posi-
tive direction (original > average of surrogates) than in the
negative direction. Among the larger differences there is
one bar at 5 SD and one bar at 3 SD in the positive direc-
tion; the largest bar in the negative direction is 2 SD

The 5 SD bar represents patterns of 4 spikes that re-
peat 8 times in the data set. There are 10 such patterns in
the original data. We should now examine whether the

Pattern Count Difference Spectrum

tamall3dbsq (original - average of 20 surrogates)/std

std units

tamall3dbsq (original - average of 20 surrogates)/std

std units

Fig. 2. An example of pattern count difference spectrum in units of standard deviation of the surrogate average. Data consisted
of 6 well isolated neurons simultaneously recorded from left M1 of a monkey executing a repeating thumb-finger grasp task
with both hands (Baker laboratory). Left panel shows view from above the plane, corresponding to original pattern counts >
surrogate average counts; right panel is view from below the plane corresponding to original pattern counts < surrogate average

counts. See text.



repeating occurrences of any of these patterns are re-
lated to particular behavioral events in the monkey’s
task.

Another test that compares the pattern occurrences in
original and surrogate average is to compute the total
number of repeating patterns, i.e., to sum all bars in the
original and average surrogate pattern spectra. For the
data set used for Fig. 2:

Total repeating patterns in ORIGINAL: 1,624,787
Total repeating patterns in SURROGATE: 1,612,632
DIFFERENCE: 12,155

DIFFERANCE / YSURROGATE: 9.6

Thus the total number of repeating patterns in the
original data set would seem to exceed those in the aver-
age of the surrogates by a statistically very significant
amount.

Discussion. Does the pattern excess in the original
data indicate that patterns are used for information
transfer? The question of physiological significance is
much harder to answer. In fact the numbers are rather
discouraging. In the data example shown here there
were more than 10° total patterns that repeated 2 or more
times, with under 1% excess count over the correspond-
ing surrogate average. What physiological mechanism
could be used to single out this under 1% of excess pat-
terning in order to use it for communication between
neurons or domains?

Another possible interpretation of multi-spike pat-
terns is that some such events are a signature of activity
in an underlying synfire chain, while others are just ran-
dom noise. Information would now lie in whether and
which particular synfire chain is activated, not in the
pattern per se. The numbers might be less daunting,
since it is not unreasonable to suppose that many inter-
secting synfire chains could come through the region
where the observed neurons are located.

One possible approach to testing the physiological sig-
nificance of patterns, cither directly or as evidence for a
synfire chain, would be to perturb. If spikes are added (or
subtracted) from a pattern by local electrical or chemical
stimulation will there be any observable behavioral con-
sequence? Certainly appropriate electrically imposed
rate changes in cortical area MT can affect behavioral
judgment of movement direction in the visual scene
(Michols and Newsome 2002). Related experiments to
perturb specific patterns rather than rates have as yet not
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been carried out, are probably very difficult, and
ultimately, because large populations of neurons are in-
volved in typical task behavior, may produce effects far
smaller than any observable behavioral changes.

So, for the present, although we have demonstrated a
much better surrogate than previously used in such pat-
tern computations, it is as yet impossible to assess the
physiological significance of excess patterning. We
might just be studying surrogates of different proper-
ties, some producing more, some fewer patterns than
their original data.
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