Chapter 8 )
Significance of Spike Train Correlations e

George’s Stay in Tiibingen: Interactions Between Neurons
and with Some Untypical Germans

Giinther Palm

My encounter with George Gerstein was relatively short, only about a year, when
he was staying in Tiibingen to cooperate with us, i.e., the group of Valentino
Braitenberg with Almut Schiiz, Joseph Rauschecker, Ad Aertsen, and myself at that
time. Still I was deeply impressed by his character and his attitude to neuroscience.

Since I had joined the Max Planck Institute in Tiibingen and was drawn into
neuroscience, my strongest interaction had been with neuroanatomy. I did have the
chance to visit some physiology labs and was impressed but perhaps also confused
by the many things they had to worry about and take care of. In contrast to these
experiences, when I met George I was impressed by the clarity and simplicity of his
ideas. Contrary to most neurophysiologists, he seemed to be truly interested in how
the brain tissue he studied really works, rather than how to tell a nice and convincing
story about it.

When George came to Tiibingen, he was interested in measuring interactions
between neurons, possibly by synaptic connections, but essentially expressed in
spike correlations. I vividly remember discussions about the three basic “scenarios”
for creating a correlation: A influences B, B influences A, or A and B are both
influenced by a common cause C. This was accompanied by simple drawings
of 3 or 4 neuron networks and the resulting correlations. At that time, we were
also discussing George’s “gravity” method, so we also tried to imagine how the
neurons would move in “gravity space.” During these imaginative discussions, it
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was always clear (in the back of our minds) that we were vastly oversimplifying
the real situation, where the experimenter has recorded spike trains from a few
neurons among a nervous tissue containing many thousands of unobserved neurons.
Of course a single spike in one of the recorded neurons can hardly generate a spike
in another recorded neuron on its own, without the help of other neurons. And of
course a spike correlation from A to B (with a positive delay) can also be an indirect
effect via one or several intermediate neurons (or groups of neurons). And it is not
even unlikely that two or perhaps all three of the above scenarios for correlation
co-occur.

George’s modesty, admitting the vast amount of our ignorance while still trying
to find methods of measuring and quantifying the interactions between neurons, was
very impressive and convincing, so this is probably what I learned from him. It also
confirmed my own view of statistics that in order to show a significant interaction
(or some other kind of mechanism supposed to be at work), one does not need to
and perhaps should not employ any (more or less) detailed model of it, one should
rather invent an appropriate test statistics, which implies a set of predictions that are
very surprising under the hypothesis that there is no such mechanism (Palm 2012).
This hypothesis can usually be modeled much more easily. This line of reasoning
led to our papers on the significance of correlations or co-occurring spikes in the
JPSTH (Palm et al. 1988; Aertsen et al. 1989), and later also to investigating higher
order interactions (Martignon et al. 1993, 1995), and to simulations showing that
such correlations, sometimes called “functional connectivity,” have no simple direct
relation to real anatomical connectivity (Aertsen et al. 1994).
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On the Significance of Correlations Among Neuronal Spike Trains
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Abstract. We consider several measures for the corre-
lation of firing activity among different nenrons, based
on coincidence counts obtained from simultaneously
recorded spike trains. We obtain explicit formulae for
the probability distributions of these measures. This
allows an exact, quantitative assessment of signifi-
cance levels, and thus a comparison of data obtained in
different experimental paradigms. In particular it is
possible to compare stimulus-locked, and therefore
time dependent correlations for different stimuli and
also for different times relative to stimulus onset. This
allows to separate purely stimulus-induced corre-
lation from intrinsic interneuronal correlation. It fur-
ther allows investigation of the dynamic character-
istics of the interneuronal correlation. For the display
of significance levels or the corresponding proba-
bilities we propose a logarithmic mecasure, called
“surprise”.

Introduction

In the last years there has been an increasing interest in
multi-unit recordings of neuronal activity, i.e. simulta-
neous and separable observation of up to some 30
spike trains. Several groups have developed multi-
electrode set-ups for this purpose, using various re-
cording technologies (Gerstein et al. 1983; Kriiger
1983; Grinvald 1985).

The main advantage of multi-unit recordings in
comparison to single-unit recordings is the opportun-
ity to study the interactions among several neurons as
they react to a stimulus, rather than just the isolated
reaction of each single neuron to the stimulus. The
most important quantitative measure in extracellular
recordings for the strength of interaction between
neurons is the correlation of firing activity. Neuronal

spikes are regarded as stereotypic events; correlation
thus simplifies to counting near-coincident events. The
results are displayed as correlograms.

Coincidence of firing and correlation analysis of
multi-unit data has been discussed since the 1960s
(Perkel et al. 1967; Gerstein and Perkel 1969, 1972;
Perkel etal. 1975; Glaser and Ruchkin 1976), and
there are well-established procedures for interpreta-
tion of such calculations (Abeles 1982; Gerstein et
al. 1983; Kriiger 1983). When the results of several
different experiments are to be compared, it is essen-
tial to have procedures for correction and normaliza-
tion of the calculations. In particular it is necessary
to compensate for variations in individual neuron
firing rates, since these directly influence the observed
near-coincidence rates. These variations of individual
firing rates are conveniently measured with the Peri-
Stimulus-Time (PST) histogram. For ordinary cross-
correlation the usual procedure to compensate for
direct stimulus effects on firing rates is to subtract a
so-called “shift predictor” (or “PST histogram based
predictor”) from the raw correlogram. Residuals are
then interpreted as indication of “effective connectiv-
ity”. More complex normalizations are appropriate
for the Joint PST histogram, a particular stimulus-
locked temporal decomposition of the correlogram
(Gerstein and Perkel 1969, 1972): besides subtracting
a PST histogram based predictor, the matrix is scaled,
bin by bin, by the product of the variances of the two
PST histograms (Aertsen et al. 1988).

The kind of normalization procedures just de-
scribed offers a measure of deviation from a null
hypothesis; the size of such deviations is a measure of
their significance. In our case, where we want to
demonstrate neuronal interaction, the appropriate
null hypothesis is (1) two completely independent
neurons that (2) respond to the stimulus exactly as
shown by the two experimentally observed PST histo-
grams. More specifically: significance for positive
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deviation from the null hypothesis is determined from
the probability of having a near-coincidence count that
is at least as high as the observed count, and sig-
nificance for negative deviation is determined from the
probability of having a near-coincidence count that is
at most as high as the observed count.

In this paper we will show that these probabilities
for the Joint PST histogram (JPSTH) can be expressed
in closed form. These results also allow explicit calcu-
lation of the distributions of correlation values after
application of any of the various types of normali-
zation that have been proposed. These calculations
therefore provide a sound basis for the evaluation of
significance in correlation measurements and, hence,
for the significance of their interpretation. Procedures
for the analysis of firing correlations in multi-neuron
recordings have benefited from these developments.
Recent work along these lines is producing evidence for
dynamic cooperativity as an emergent property of
neuronal assembly organization in the brain (Gerstein
1987; Aertsen et al. 1988; Gerstein ct al. 1988).

1 Calculations of the Probability Densities
of Coincidence Counts

The experimental design is usually the following: A
certain stimulus is repeatedly presented for a number
of times, i=1,...,n. During each presentation of the
stimulus, spike trains are recorded from two neurons.

Our calculations are based on the following set of
assumptions:

1. Spikes are considered as identical events for
which only the time of occurrence is relevant.

2. We impose discrete time-bins, such that each
spike train is transformed into a 0-1 process. This
requires that the time-bin be so small that there will be
‘at most one spike in each bin. We will let the time
marker associated with each stimulus presentation fall
directly onto one such bin.

3. Firing activity during different (repeated)
stimulus presentations is statistically indistinguish-
able. This means there are no long term nonsta-
tionarities in the data.

The recording time T per stimulus presentation is
divided into J time-bins Bj,...,B,. Thus the total
recording time n- T is divided into n-J bins, and B"j
denotes the j-th bin during the i-th stimulus presenta-
tion (see Fig. 1). The activity of each neuron, averaged
over the many stimulus presentations, is given by the
corresponding PST histogram; counts are generally
different from bin to bin and reflect the stimulus-locked
firing rate modulation for that particular neuron.

Assumption 2 has the following mathematical
consequence: the numbers of spikes X*; observed in the
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Fig. 1. Scheme of time binning, applied to spike trains, recorded
during ive stimulus p tions. Further explanation in
text

bins B'; are random variables with values in {0,1}.
Assumption 3 means that the conditions at a particular
bin (lower index j) are the same for all successive
stimulus presentations (upper index i): the variables
X';,..,X"; are independent and identically dis-
tributed (iid.).

The mathematical problem can now be formulated
as follows: We want to analyze (delayed) coincidence
counts between two such variables (which usually
would be from two different, simultaneously recorded
neurons). We will use shorthand notation X and Y to
indicate the two variables at the selected bins; from
here on we will implicitly refer to this particular bin
selection. Over the sequence of stimulus presentations,
we then have two sequences of random variables
X',..,X" and Y!,...,Y", both independent and
identically distributed in {0,1}.

The null hypothesis for the following calculations is
that X’ and Y' are independent.

1.1 Calculation in Terms
of Single Unit Firing Probabilities

The distribution of X' is determined by the firing
probability p=pr[X*=1]; similarly the distribution of
Y is given by the probability g=pr[Y'=1]. In this
subsection we assume that these two probabilities are
given.

Note that normally these probabilities are not
given, and the best one can do is to assume that they
are identical to the average spike frequencies,
evaluated in the appropriate bins, of the two neurons
under the stimulation used in the experiment. This case
is treated more appropriately in the next
subsection (1.2).



Given pand git is straightforward to calculate both
the probability density and the (cumulative) distri-
bution of the coincidence count. First we note that for

the specific selected bins, X= Y. X'is the spike count
i=1
for the X'-sequence, Y= Y Y'is the spike count for
i1

the Y'-sequence, and Z= ¥ X'-Y' equals the coin-

i=1
cidence count. For the probability density of the
coincidence count we may write:

pr[Z:m]:lglpr[Z=m|X:k]-pr[X=k]. )

These conditional probabilities can be determined as

follows: if X=k we may as well assume that

X1,..,X*=1and X**1,.., X"=0, and therefore that
k

the coincidence count Z equals ' Y*and is binomially
distributed. =1
Thus we may write:

pz=mix=K=bim ko= ()-rt-at @
and

pr[Z=m]= ¥ blm; k,q)-blli ). 6

‘We can rewrite the probability density (3) into the
corresponding cumulative distribution, simply by ap-
propriate summation.

Equation (3) can be easily evaluated; some
examples of the cumulative distribution for different
values of n, p, and g are shown in Fig. 2a. Clearly every
value of Z between 0 and n occurs with non-zero
probability, but in fact the probability that Z is larger
thann-porn- g, is very low and therefore in Fig. 2a we
only displayed the curves for this lower range of
Z-values.

Next we calculate the expectation of Z and Z2, and
the variance of Z:

E[Z]= él E(Z| X =k)- pr[X =K]

= 3 gk priX=K]
=q-E[X]=n-p-q, @)

E[Z2]= ki E(Z2| X =k)-pr[X =k]

Y. (kq+k(k—1)g*)-prX =k]

=(g—9¢)E[X]+4*E[X?]
=q(1—q) n p+q*(np-+n(n—1)p%
=n’p*q*+nlpg—p°q?), Q]
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Fig. 2a and b. Examples of cumulative distribution function of
coincidence count Z for different numbers of stimulus presenta-
tions n and neuronal firing rates. a Calculation in terms of single
unit firing probabilities p and g. b Calculation in terms of
observed single unit spike counts k and |

and

Var(Z)=n(pg—p*q?). (©)

Actually, the probability given in (3) is not really
relevant in the typical experimental situation, because
there one does not know the underlying probabilities p
and g. One usually knows only the actual spike counts
in the selected bins. If additional information were
available, it could be used to make reasonable esti-
mates for p and ¢ for use in the above equations. For
example, if one may assume that the firing probability
is about the same in neighbouring bins, it is reasonable
to average over these bins to determine p and ¢. It may
sometimes be of interest to use this kind of neighbour-
hood sampling, especially for the variability correction
that is mentioned in the introduction. Another
example of additional information might be the avail-
ability of a model for the firing probabilities.
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1.2 Calculation from the Observed
Single Unit Spike Counts

In the usual experimental case, we do not have
additional information; it is only possible to make the
estimates in terms of the counts themselves, ie. by
using as estimates p=k/n and g=1I/n. In this case one
might as well work directly in terms of the counts,
rather than indirectly in terms of functions of these
same counts.

Thus the appropriate mathematical description of
the usual situation is that the experimenter just has
four counts available: X =k, Y=1, and Z=m and the
number of stimulus presentations n. From these four
numbers &, I,m,n we want to know the significance of
the coincidence count m, given the firing counts of the
two neurons are k and ! during the n stimulus
presentations. In this case one has to calculate the
distribution of Z under the condition that X =k and
Y=L

Without loss of generality we can assume that k<1
and, additionally, that Y',..,Y'=1 and
YL L Y =0.

The probability pr[Z=m|X =k and Y=I] is the
probability that m out of the k X'-s which are 1, occur
before I, while the remaining k —m of these k X*-s occur

after I, i.e. ([)(n—l)

pr[Z=m|X =k and Y=1]=»f*‘#. )
(J

In this expression it may happen that n—I<k—m, ie.

n+m<k+1; in that case we define

(=)

Expression (7) can be easily evaluated (see Fig. 2b for
some examples of the cumulative distribution for
different values of n, k, and I; observe the similarity to
Fig. 2a) and we can again calculate the mean and the
variance of the corresponding distribution:

EZ|X=k, Y=l)=%, ®)

kele—1)0—1) | k! ©

B2 | X=k Y=)="— 7 ,

and
Var(Z| X =k, Y=0)=1/(n—1)- k(1 —k/n)- i(1—1/n).
(10

If we express this in terms of rates, k =k/n and A=1/n,
we may write

EZ|X =k, y=D)=n-k-A (11)

8 Significance of Spike Train Correlations

and
Var(Z| X =k, y=D=n?/(n—1) k(1 —x)- M1—2). (12)

2 Normalized Correlations

Given the counts X =k, Y=I, Z=m and n as in the
preceding section, several formulae have been used in
the literature to normalize the coincidence counts (e.g.
Kuznetsov and Stratonovich 1956; Gerstein and Per-
kel 1969, 1972; Habib and Sen 1985; Boogaard et al.
1986; Aertsen et al. 1987, 1988). The aim of such
normalization is to allow interpretation within an
experiment and comparison across experiments.
Among these normalization procedures the earliest
idea was the so-called “shift or (shuffle) predictor”
(Perkel et al. 1967; Gerstein and Perkel 1969, 1972):
take any permutation of stimulus presentations
II:{1,..,n}—>{1,...,n} and form the shuffled corre-
lation Z'p=Y X'Y"® Now one can consider the
difference D'y;=Z—Z';; as a correlation that is cor-
rected for pure stimulus effects. Since this procedure
depends on the choice of the permutation II, an

"obvious idea is to average this over all possible

permutations 1. This leads to the expression
1 1 L)
D=—¥YDp=Z——- Xiyao
n! %‘ n n! % i=z1
=Z— ¥ X'Y=Z—(X-Y)/n. (13)
i1

In other words: the average over the set of all possible
“shift (or shuffle) predictors™ is equivalent to a predic-
tor based on the cross product of the PST histograms.

In the following we simply list the various ex-
pressions which have been suggested and which will be
considered here, also including one new suggestion (e).

(a) Subtraction of the expected coincidence [cf.

13)]:

D=Z—(X Y)/n. (14)
(b) Division by the expected coincidence:
Q0=Z-n[(X-Y). (15)

(c) Subtraction of the expected coincidence, fol-
lowed by division by the expected coincidence:
R=D-'n/(X"'Y). (16)

(d) Subtraction of the expected coincidence, fol-
lowed by division by the product of the estimated
standard deviations of X and Y. This leads to a
correlation coefficient:

C=D/{X(1—X/n)- Y(1 — Y/n)} "2 a7

In the quantity C, the difference D has been normalised
to values in the range [—1,1].



(e) Subtraction of the expected coincidence, fol-
lowed by division by the conditional standard devi-
ation of Z (given X =k and Y=1/) as determined in (10):

S=/(n—1)-D/{X(1—X/n)- Y(1— Y/n)}}/
=}/(n~1)-C. (18)

S is essentially the standardization of Z.

Note that, like the various counts X, Y, and Z, these
normalized correlations are stochastic variables. In the
following we will consider their distribution and first
and second moments.

2.1 Calculation in Terms
of Single Unit Firing Probabilities
Given the firing probabilities p and g as in Sect. 1.1, it
turns out to be a hard mathematical problem to
determine the distribution or moments of these sta-
tistics. In fact, only for D were we able to determine the
distribution in closed form.

Analogously to (1) we have

pr[D=d]=k§1pr[D=d|X=k]-pr[X=k]. (19)

If X =k, we may again assume that X%, ..., X*=1 and
X**1 ., X"=0. Thus for X =k we have

D=Z—X Yjn= 3 Yi—(kn)- il Y
i=1 i=

—(—kn)- 3 Yi—()- 3 ¥
i=1 i=k+1
—(1—Kjn)-§,—(fn)- 5. 0)

Under the condition that X =k, the variable D is
apparently a linear combination of two independent,
binomially distributed random variables S; and §,,
where the distribution of S, is b(s,; k, g) and that of S,
is b(sy;n—k,q). From these distributions one can
compute pr[D=d|X=k], and from (19) we then
obtain pr[D=d]. Some examples of the cumulative
distribution of D are shown in Fig. 3, which will be
discussed in Sect. 3.

2.2 Calculation from the Observed
Single Unit Spike Counts

In the case where we work with the conditional
probabilities given that X =k and Y=1as in Sect. 1.2,
we can easily determine the probability density of any
of the above correlation measures. Let us consider, for
example, the correlation coefficient C. Under the given
conditions for the individual spike counts X =k and
Y=1, the only remaining stochastic variable in the
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value of C is the coincidence count Z=m. Hence, we
may simply write:

= m—kl/n _ _
re = iy 1y X~ and =1
=pr[Z=m|X=k and Y=I]. 1)

Similar reasoning can be used to obtain probability
densities for the other correlation measures.

Equations (7)-(12) also lead us to the expectation
and variance of each of the above measures under the
condition that X =k and Y=1. In the following equa-
tions we will no longer explicitly indicate this
condition.

(a) E(D)=0; Var(D)=Var(Z), 22)
(b) E@Q)=1; Var(Q)=(1-x)(1-2/(xAn-1)),

- (23
(c) E(R)=0; Var(R)=Var(Q), @4
(d) E(C)=0; Var(C)=1/(n—1), (25)
(e) ES)=0; Var(S)=1. (26)

For large n, the measures C, Q, and R have decreasing
variance with increasing n. The correlation coefficient
C has the smallest variance as long as x and 4 are below
1/2 (which is the usual case for physiological data). The
standardized coincidence count S has to have variance
1 by definition: it therefore must have values outside
the range [ —1,1]. Z itself and of course D are the only
coincidence measures whose variance increases with n.

2.3 Significance of Experimentally
Observed Correlations

Having derived explicit expressions for the distri-
butions of the various normalized correlation mea-
sures, we can now address the significance of finding a
particular value for any of these measures. Here we can
use the ordinary approach to this problem. The
significance of downward deviation (negative corre-
lation measure) is the probability of finding that value
or alower one; this can simply be read off the lower end
of the plotted corresponding cumulative distribution
function. The significance of an upward deviation is the
probability of finding that value or a higher one; this
can simply be read off the upper end of the plotted
cumulative distribution function.

3 Comparison to the Gaussian Distribution

In this and the following sections we will concentrate
the discussion on the expressions in terms of observed
single unit spike counts (as in Sects. 1.2 and 2.2), since
only in this case can we explicitly calculate all relevant
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Fig. 3. Examples of cumulative distribution function of correla-
tion measure D for constant number of stimulus presentations n
and different single unit firing probabilities p=g. The cumulative
distribution function P(D) is plotted on Gaussian probability
paper

distributions without resorting to Gaussian appro-
ximations in the first place. Also this case is probably
the experimentally more relevant one. Of course, for
large n, all the measures of correlation will be approxi-
mately normally distributed. To the extent that such
an approximation is valid, the normal distributions
will then be fully characterized by the corresponding
mean and variance, as given in (22)-(26). Such mean
and variance can then be used directly for significance
statements.

In the usual experimental situation, however, the
number n of stimulus presentations will not be very
large — values of n <100 are a common case. Therefore
it is appropriate to study the departure from normality
of the various correlation measures as a function of the
parameters n, k, and [ (or n, p, and g). This can be done
by examining the exact distribution of the correlation
measures on Gaussian probability paper, ie. trans-
formed by the inverse of the cumulative normal
distribution function (as in Figs. 3 and 4). In such a
plot the normal distribution appears as a straight line,
going through the origin.

The most commonly used measure of correlation is
the correlation coefficient C, referred to as “cross-
correlation surface” by Habib and Sen (1985) and as
“normalized Joint Peri-Stimulus Time Histogram” in
Aertsen et al. (1988). For investigation of the departure
from Gaussian, however, it is more convenient to work
with the standardized correlation S (as in Fig. 4),
because in such a plot all curves should have the same
slope, independent of all parameters, in particular of n.
When we worked with the firing probabilities p and g,
we were unable to calculate the distribution of S;

8 Significance of Spike Train Correlations
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therefore for this case we display the distribution of D
(Fig. 3). In such a plot the curves will have different
slope for different parameters.

Let us start with the discussion of the expressions in
terms of single unit firing probabilities p and g (cf. Sects.
1.1 and 2.1). Figure 3 shows some cumulative distri-
butions of D for different values of p=gq and constant
n=100, plotted on Gaussian probability paper. The
frame in Figs. 3 (and 4) has been set to cover the range
of cumulative probability values between 10™*5 and
1—10" '3, corresponding to significance levels of up to
1075, As should be expected, the curves for higher
values of p have a lower overall slope and are closer toa
straight line. For p=0.5 the curve is symmetric around
D=0, and virtually indistinguishable from a straight
line (ie. from a Gaussian distribution). For lower



values of p, the curves becomes increasingly asym-
metric and skewed, with higher average slope for
negative D. Altogether, the deviations from the Gaus-
sian distribution appear to be rather small for the
relatively low value of n=100.

We now turn to the expressions in terms of
observed single unit spike counts k and I (cf. Sects. 1.2
and 2.2), which in general show a more pronounced
deviation from the Gaussian. Figure 4 shows some
cumulative distributions for the standardized correla-
tion S as plotted on Gaussian probability paper. Note
that in this figure we varied n, while keeping the
fractions x and A constant (0.1). Figure 4a shows a
superposition of four curves for n= 500, 1000, 2000,
and 3000; Figure 4b shows four separate plots of the
cases n=>50, 70, 100, and 150. Interestingly, the curves
in Fig. 4a (ie. for large n) can be reasonably well
approximated by a straight line. There is, however,
always a slight curvature to the right: decreasing slope
for increasing S. As was to be expected, the departure
from Gaussian increases for decreasing n. They are
worst at the smallest, but experimentally realistic
values of n used in Fig. 4b.

The probability of zero coincidences is given by the
size of the first step in the cumulative distribution
staircase plot; the probability of maximal number of
coincidences is given by the size of the last step. In each
case the position of the first step along the S-coordinate
is indicated by a symbol. Observe that these positions,
as well as the corresponding probabilities, do not reach
down to the lower left corner of the graph, especially
for smaller n. The position of the last step along the
S-coordinate is indicated by a symbol for small n
(Fig. 4b), for larger n (Fig. 4a) this last step is well
beyond the displayed S-range. The last step in the plot
is always much smaller than the first step; in fact it is
virtually zero, with the exception of the cases n=>50
and n=70. Furthermore the range of positive S-values
is always considerably larger than the range of nega-
tive S-values (note the asymmetry of the S-axis). This
means that the range of attainable S-values, as well as
probability values and, consequently, significance
values, for negative interaction is considerably smaller
than for positive interaction. In particular, very low
probabilities, i.c. very high levels of significance for
negative interaction cannot be reached, except for
unrealistically large values of n. Note that in the more
realistic cases shown in Fig. 4b, cumulative proba-
bilities smaller than 0.5 or negative S-values (i.c.
inhibition) can only be found in the extreme case of
zero coincidences.

The practical consequence of this positive-negative
asymmetry can be formulated in two ways. For a given
number of stimulus presentations n, there is a severe
limitation to the attainable deviation in the negative
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direction, and hence to the significance that can be
attained for negative interaction (“inhibition”); there is
no severe limitation for deviations in the positive
direction (“excitation”). Conversely, attaining a re-
quired level of significance requires a higher value of n
(i.e. more stimulus presentations) for deviations in the
negative direction than for deviations in the positive
direction. These consequences of the asymmetry have
already been noted in cross-corrclation analysis of
multi-neuron data: for neurons firing at typical rates,
inhibition is much harder to detect than excitation
(Aertsen and Gerstein 1985).

Figure 4 and the above comments are appropriate
for the case of typical parameter values k and [ which
are less than n/2. For k and I around n/2 the curves
become more symmetric and actually quite similar to a
normal distribution. This suggests another strategy for
enhancing detectability of inhibition: increase the
firing rates of the neurons by some means (e.g. by
sensory or pharmacological stimulation). For k and [
larger than n/2, the plots now become curved in the
opposite direction, and the asymmetry reverses: it is
now harder to attain significance for positive interac-
tion than for negative interaction.

4 Maximum and Minimum

of the Distribution of C, D or S

A simple way of quantifying the difference in sensitivity
of the correlation measures for “excitation” (positive
correlation) and for “inhibition” (negative correlation)
is to calculate their range. Let us consider, for example,
the correlation coefficient C. Theoretically, C values
are allowed to cover the range [ — 1, 1]. For any specific
set of numbers k,I,m,n, however, the positive and
negative tanges that are actually covered will in
general not be the same. For k and ! smaller than n/2
(the usual physiological case), we show below that the
positive range is larger than the negative range. For k
and / larger than n/2, the relationship between positive
and negative ranges is reversed.

Let Max(C) and Min(C) denote the maximum and
minimum of C. The ratio a=|Max(C)/Min(C)| can
then be taken as a measure for the asymmetry of the
positive and negative ranges. From the known range of
the coincidence count Z, the asymmetry a for measure
C can be easily calculated. Furthermore, the asymme-
tries for all measures C, D, R, and S are identical,
because these measures differ only in the denominator.
Since the range of D is the easiest to calculate, we shall
in the following determine a from

a=|[Max(D)/Min(D)|. 27
For counts k and [ such that k+1<n, it is clear that Z

ranges from 0 to the minimum of k and I. For k+1>n
there must be some coincidences: Z is at least k+/—n.
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A more general formulation can be obtained by
introducing the notation Inf(x, y) for the smaller of x
and y, and Sup(x, y) for the larger of x and y. Then for
the range of Z we have

Min(Z)=Sup(0,k+1—n), (28)
Max(Z)=Inf(k, ). (29)

To determine the range of D we have to subtract k- I/n
from Z, ie.

Min(D) =Sup(0, k+I—n)—k-U/n, (30)
Max(D)=Inf(k, ) —k-/n. (1)

Let us assume that k<[ and that k+I/<n. Then the
asymumetry is:

n—l 1—24
a= = (32)
and for k+I=n we have:
k K
kT Tox 9

For the experimentally relevant parameter range, we
always have k + =< n. According to (32) this means that
for firing rates below 10% the asymmetry is larger than
0.9/0.1=9. The asymmetry of sensitivities for ex-
citatory and inhibitory interactions for the normal
experimental situation thus is quite large indeed.

5 Discussion

In this paper we have examined the (delayed) coin-
cidence counts between the firings of two simulta-
neously recorded neurons as expressed in the (normal-
ized) Joint Peri Stimulus Time Histogram. This is
usually expressed as a matrix of values, where each
entry (bin) corresponds to a particular pair of time
delays of the two neurons with respect to a stimulus
time marker. We have derived analytic expressions for
the probability density of such coincidence counts,
under the null hypothesis of independent neurons with
the observed individual PST histograms.

These results allow the evaluation of the coin-
cidence probability densities after various normaliza-
tion procedures that have previously been introduced
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in the literature. For each of the normalized corre-
lation measures we have given explicit expressions for
the probability density, and from it, the expected value
and variance at each bin. The corresponding distri-
butions are non-Gaussian, and have an asymmetric
shape and range of values. With physiologically rea-
sonable counts, this asymmetry implies, as has previ-
ously been shown, that inhibitory processes are harder
to detect than excitatory processes. The given distri-
butions provide the necessary framework for formal
evaluation of significance in observed deviations of the
coincidence counts from values predicted under the
null hypothesis. This is a completely model free
approach which results only in a positive or negative
statement about the validity of the null hypothesis.
Later steps in the analysis process may require the
invocation of specific models of neuronal interaction in
order to quantify “connectivity” among the neurons
(Aertsen et al. 1988).

5.1 Display of Significance Values: Surprise

The usual application of significance testing is to state
the probability with which the actual observation
could occur under the null hypothesis (p=0.05 or 0.01,
for example). The significance value for a given count
can be read directly from the graph of the (cumulative)

. distribution function (cf. Sect. 2.3). However, since we

are interested in very small values of the probability, it
is appropriate to introduce a logarithmic scale for a
more effective display of this graph. Thus, instead of
plotting the direct distribution, we will use its negative
logarithm; this has been called entropy (¢.g. Boltzmann
1887; Shannon 1948; Billingsley 1965) or surprise
(Legéndy 1975; Palm 1981, 1988). The correspondence
between the usual significance statement and the
surprise measure is a straightforward scale transfor-
mation: for example p=0.05 corresponds to a surprise
value of 2.996 [ie. —In(0.05)]; p=0.01 mecans a
surprise of 4.605.

5.2 Extension of the Surprise to Events in Several Bins

Everything in this paper has so far been based on
counts in a single bin. As noted earlier, each such bin
corresponds to a particular choice of time delays in the

Fig. 5a and b. Correlation of firing activity among two neurons in the cat’s visual cortex (area 17) during stimulation with moving bars
(Kriiger 1982). a Joint PST histogram. Left: Matrix of “raw” coincidence counts Z, divided by the number of stimulus presentations n;
values coded according to grey scale above), together with both single unit PST histograms (along abscissa and ordinate); right:
histogram representation of values in narrow band along main diagonal of JPSTH (time course of near-coincident firing), and time
average of near-coincident firing as a function of relative time delay (upper right histogram across diagonal, obtained by integrating
JPSTH along diagonal (comparable to normal cross correlogram). b Significance of correlation: difference between surprise for
“excitation” and surprise for “inhibition” (display format of b as in a). Further explanation of the surprise measure is given in the text.
[See Aertsen et al. (1988) for a more elaborate discussion on this type of analysis and figures]
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firings of the two neurons with respect to a stimulus
marker. Normally, however, we are interested in the
complete matrix of such bins; with reasonable choice
of time resolution our attention is drawn to coherent
deviant regions (“features”) in such a matrix (for an
example see Fig. 5).

Figure 5 is obtained from spike sequences, simulta-
neously recorded from two neurons in the cat’s visual
cortex (area 17) during stimulation with moving bars
(Kriiger 1982). Each bin in the matrices corresponds to
the coincidence counts between spikes in a particular
pair of time bins, one for each neuron. Figure 5a
displays the “raw” coincidence counts Z; Figure 5b
displays the difference between the surprise for “exci-
tation” and the surprise for “inhibition”. Both surprise
values are calculated from the cumulative distribution
obtained from (7), evaluated for the observed counts of
X, Y, and Z at each pair of bins. [For a more
comprehensive discussion on the use of such matrices
and their interpretation, the reader is referred to
Aertsen et al. (1988).] In Fig. 5b we note a distinct,
broad region of high surprise values along the main
diagonal; this is certainly a more “significant” feature
than any of the isolated high surprise values, scattered
throughout the matrix.

From this viewpoint, isolated bins which show
highly significant deviations in the statistical sense, are
of less interest. If we require significant deviation over
some contiguous region of bins, we are in effect
imposing an extended requirement on significance.
(compare Palm 1988). Here we can make use of
another property of the surprise measure: it makes
sense to add the surprise values of different observa-
tions, because surprise is a logarithmic measure of
improbability. In our case this implies that we can
simply add the surprise values of individual bin
counts. Such an integration is, of course, also a
smoothing process applied to the surprise matrix.
Automatic detection of deviant features in the matrix
could utilize algorithms similar to those used for the
detection of surprising bursts of firing in the spike
trains of neurons (Legéndy and Salcman 1985): start-
ing from a bin with high surprise value, one keeps
adding adjacent bins which do not lower the average
surprise over the combined area.

5.3 Comparison of the Various Measures
of Correlation in Models and Experiments

Several normalised correlation measures were defined
in (14)—(18). Studies with spike trains originating from
simulated neuronal circuits show that normalizations
C (and S) are the most appropriate, in the sense that
they most directly allow recovery of the underlying
circuit from the correlation measures (Aertsen et al.
1988). The standardized correlation S differs from the
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normalized correlation C only by a factor containing
the number of sweeps: }/(n—1) [cf. (18)].

S has a fixed variance of 1, and, as a consequence, a
variable range of values which depends on the number
of stimulus presentations. We prefer the correlation
measure C, since its values are normalized to the fixed
range [—1,1]; this makes comparison across experi-
ments relatively straightforward.

In Fig. 4 we have shown that the coincidence count
distribution deviates from Gaussian. However, since in
the typical experimental situation these deviations are
not dramatic, it is appropriate to examine the applica-
bility of a Gaussian distribution for significance test-
ing. The obvious advantage would be that one can
work with the variance alone, rather than with the
complete distribution. The necessary variance in this
case would be computed in the usual manner, ie. by
averaging the appropriate squared difference over all
stimulus presentations. Therefore in this situation we
are computing the variance of the coincidence count
only over the current realization of the experiment.
In contrast, the distributions we have derived in this
paper refer to the ensemble of all possible realizations
of the coincidence counts under the null hypothesis.
Clearly the Gaussian approximation is a more re-
stricted measure, and hence, perhaps to be avoided for
these purposes.

The theoretical results given in this paper have
been applied in the analysis of correlation of firing in
both simulated and physiological spike trains. Such
analyses and discussion of their interpretations can be
found in (Aertsen et al. 1988; Gerstein 1987; Gerstein et
al. 1988). These studies of correlation in multi-neuron
firing show that — over a wide range of preparations
(both animals and brain arcas) -- neuronal assembly
organization is dynamic on several time scales (milli-
seconds to seconds), and depends on both stimulus and
context.
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