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1 Introduction

In this paper we want to exploit a supersymmetric representation of scalar stochastic
differential equations (SDEs) with additive noise and nonlinear drift V ′ in order to
prove the well known relation between the invariant law of these SDEs and the Gibbs
measure e−2V (x)dx .

The supersymmetric representation of SDEs or more generally SPDEs was first
noted by Parisi and Sourlas [15, 16] and it is well known and used in the physics lit-
erature (see, e.g. [21]) where the relation between supersymmetry, SDEs and Gibbs
measures (called dimensional reduction) was formally established [7, 10]. In the
case of elliptic SPDEs these formal arguments have been rigorously exploited and
proved [3, 14] and applied to the stochastic quantization program of quantum field
theory [2, 11]. In the present paper we want to propose a similar rigorous version
of dimensional reduction for one dimensional SDEs. The proof proposed here fol-
lows more closely the methods used for dimensional reduction of elliptic equations
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used in [3] (see also [14]) rather than the formal proofs of the physics literature
(see, e.g. [7, 10]). The dimensional reduction of parabolic and elliptic stochastic
differential equations with additive noise and gradient type non-linearity is an exam-
ple of a more general phenomenon involving a supersymmetric representation of
generic stochastic differential equations with Gaussian white noise. Although there
are some formal arguments for proving this (conjectured) relation between dimen-
sional reduction, supersymmetry and generic stochastic differential equations (see,
e.g., [21] Chap.15), outside the elliptic case with additive noise cited above and the
standard stochastic differential equation with additive noise treated here, to the best
of our knowledge, there is no proof in the general setting.

We describe in more details the result proved in this paper. Here we consider the
following SDE

∂tφ(t) + m2φ(t) + f (t)V ′(φ(t)) = ξ(t), t ∈ R, (1)

where m > 0, f : R → R+ is a compactly supported positive even smooth function
such that f (0) = 1, V : R → R is a smooth bounded function with all derivatives
bounded and ξ is a Gaussian white noise onR. Equation (1) has a unique solution φ :
R → Rwhich coincides for sufficiently negative timeswith theOrnstein–Uhlenbeck
process ϕ = G ∗ ξ where

G(t) = e−m2t
It>0.

This solution satisfies the integral equation

φ(t) + G ∗ ( f V ′(φ))(t) = ϕ(t), t ∈ R, (2)

and moreover its law is invariant under the inversion t �→ −t of the time variable.
The aim of this note is to prove the following theorem.

Theorem 1 For any bounded measurable function F : R → R we have

E

[
F(φ(0))e−2

∫ 0
−∞ f ′(t)V (φ(t))dt

]
= 1

Z
∫

R

F(x)e−m2x2−2 V (x)dx

where

Z =
E

[
e−2

∫ 0
−∞ f ′(t)V (φ(t))dt

]
∫
R
e−m2x2−2 V (x)dx

.

Proof Let μϕ be the law of the Gaussian field ϕ = G ∗ ξ on the space C(R;R)

endowed with the topology of uniform convergence on bounded intervals. Girsanov
theorem implies that for any measurable bounded function F : R → R

E

[
F(φ(0))e−2

∫ 0
−∞ f ′(t)V (φ(t))dt

]
=

∫
F(ϕ(0)) exp(S(ϕ))μϕ(dϕ). (3)
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with

S(ϕ) =
∫ 0

−∞

[
f (t)

2
V ′′(ϕ(t)) − 1

2
( f (t)V ′(ϕ(t)))2 − 2 f ′(t)V (φ(t))

]
dt+

−
∫ 0

−∞
f (t)V ′(ϕ(t)) ◦ dB(t).

Here (B(t))t∈R is the double sided Brownian motion (adapted with respect to ϕ)
such that ∂t B = ξ = (∂t + m2)ϕ and ◦dB denotes the corresponding Stratonovich
integral.

Parisi and Sourlas [16] observed long ago that the r.h.s. of Eq. (3) admits a repre-
sentation using a Gaussian super-field � defined on the superspace (t, θ, θ̄), where
t ∈ R is the usual time variable and θ, θ̄ are twoGrassmann variables playing the role
of additional “fermionic” spatial coordinates (see Sect. 2 for the necessary notions
and notations). For the moment let us simply remark that � can be rigorously con-
structed as a random field on a non-commutative probability space with expectation
denoted by 〈·〉 in such a way that the expectation of polynomials in� can be reduced,
via an analog of Wick’s theorem, to linear combinations of products of covariances.
If the covariance of the super-field has the form

〈�(t, θ, θ̄)�(s, θ′, θ̄′)〉 = 1

2m2 G(|t − s|) + G(t − s)(θ′ − θ)θ̄′ − G(s − t)(θ′ − θ)θ̄, (4)

then we will prove in Theorem 8 below that the following representation formula
holds

∫
F(ϕ(0)) exp(S(ϕ))μϕ(dϕ) =

〈
F(�(0)) exp

(∫ 0

−∞
f (t + 2θθ̄)V (�(t, θ, θ̄))dtdθdθ̄

)〉
. (5)

Note that on the l.h.s. we have usual (commutative) probabilistic objects while the
r.h.s. is expressed in the language of non-commutative probability.

The interest of this reformulation lies in the fact that on the superspace (t, θ, θ̄)
one can define supersymmetric transformations which preserve the quantity t + 2θθ̄.
Integrals of supersymmetric quantities satisfy well known localization (also called
dimensional reduction) formulas [5, 6, 12, 14, 17] which express integrals over the
superspace as evaluations in zero, more precisely if F = f (t + 2θθ̄) ∈ S(S) is a
supersymmetric function and T ∈ S ′(S) is a supersymmetric distribution we have
that ∫ K

−∞
T (t, θ, θ̄) · F(t, θ, θ̄)dtdθdθ̄ = −2T∅(K )F∅(K )

for any K ∈ R (see Theorem 9 for a precise statement).
We cannot apply Theorem 9 directly to expression (5) since the superfield� is not

supersymmetric. On the other hand the correlation function (4) is supersymmetric
with respect to (s, θ′, θ̄′) when t � s and with respect to (t, θ, θ̄) when t � s. This
property and the Markovianity of the kernel G, namely
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G(t − s)G(s − t) = 0

when s �= t , allows us to prove a localization property for the expectation of super-
symmetric linear functionals of � (see Theorem 14), namely we prove that

〈
F(�(0)) exp

(∫ 0

−∞
f (t + 2θθ̄)V (�(t, θ, θ̄))dtdθdθ̄

)〉
= 〈F(�(0)) exp[−2 V (�(0))]〉.

Since �(0) is distributed as a Gaussian with mean 0 and variance 2m−2 this implies
the claim. �

The rest of the paper contains details on the definition of the super-fields and the
proofs of the intermediate results.

2 Super-Geometry and Gaussian Super-Fields

2.1 Some Notions of Super-Geometry

We denote by S an infinite dimensional Grassmannian algebra generated by an
enumerable number of free generators {1, θ1, θ2, . . . , θn, . . .}. By this we mean that
any element of� ∈ S can bewritten in a uniqueway using a finite number of sumand
products between the generators θi . The product between the θi is anti-commuting
which means that θiθ j = −θ jθi , for all i, j ∈ N, and they commute with 1. We
callS0 = span{1},S1 = span{θ1, θ2, . . . , θn, . . .} andwithSk = span{θi1 · · · θik |θi j
∈ S1}.

If θ1, . . . , θh ∈ S1 we denote by S(θ1, . . . , θh) the finite dimensional Grass-
mannian sub-algebra of S generated by {1, θ1, . . . , θh}, and we denote by Oh the
universal Grassmannian algebra generated by h elements. We suppose that there is
an order between the generators of Oh . Once we fixed an order between θ1, . . . , θh
there is a natural isomorphism between Oh and S(θ1, . . . , θh).

We can define a notion of smooth function F : Rn × Sh
1 → S. Let F̃ be a smooth

function from R
n taking values in Oh which means an object of the form

F̃(x) = F̃∅(x)1 +
h∑

i=1

F̃i (x)ti +
∑

1�i< j�h

F̃i, j (x)ti t j + · · · + F̃1,2,...,h(x)t1 · · · th,

where t1, ..., th are a set of generators of Oh and x ∈ R
n . We define F associated

with F̃ in the following way: F associates to (x, θ1, . . . , θh) ∈ R
n × Sh

1 the element
F̃(x) ∈ S(θ1, . . . , θh) where we make the identification of S(θ1, . . . , θh) with Oh ,
i.e.
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F(x, θ1, . . . , θh) = F̃∅ (x)1 +
h∑

i=1

F̃i (x)θi +
∑

1�i< j�h

F̃i, j (x)θiθ j + · · · + F̃1,2,...,h(x)θ1 · · · θh .

(6)
Hereafter we use the notation F∅, Fθ1 , . . . for denoting F∅ = F̃∅, Fθ1 = F̃1, . . . .We
say that F is a Schwartz function if F∅, Fi , . . . are Schwartz functions. We denote
by S(Sh) the set of Schwartz functions with h anti-commuting variables.

If H : R → R is a smooth function we can define the composition H ◦ F in the
following way

H ◦ F(x, θ1, . . . , θh) = H(F∅(x))1 + H ′(F∅(x))(F(x, θ1, . . . , θh) − F∅(x)1)
+ 1

2H
′′(F∅(x))(F(x, θ1, . . . , θh) − F∅(x)1)2

· · · + 1
h! H

(h)(F∅(x))(F(x, θ1, . . . , θh) − F∅(x)1)h .

On S it is possible to define a notion of integral called Berezin integral, in the
following way

∫
θdθ = 1,

∫
θ̄dθ = 0 if θ̄ ∈ S1 and θ̄ �= θ,

∫
�θdθ = � where

� = θ1 · · · θh ∈ Sh and θi �= θ and
∫ ·dθ is linear in its argument. The integral∫

�dθ1dθ2 · · · dθh is defined as
∫ (· · · (∫ (∫

�dθ1
)
dθ2

) · · · ) dθh .
If F is a smooth function, defined on R

n × Sh
1, we can define the integral of F

with respect to dxdθ1 · · · dθh in the following way
∫
F(x, θ1, . . . , θh)dxdθ1 · · · dθh

first applying the integral
∫ ·dx to the set of functions F∅, Fi , . . . (which are the

component of the function F by Eq. (6)) obtaining an element ofS(θ1, . . . , θh) and
then applying the Berezin integral to this result. Using this notion of integral and
the induced duality between smooth functions, it is possible to define the notion of
tempered distribution T ∈ S ′(Rn × Sh). The distribution T is an object of the form

T (x, θ1, . . . , θk) = T∅(x)1 +
h∑

i=1

Tθi (x)θi + · · · + Tθ1...θh (x)θ1 · · · θh

where T∅(x), Tθi (x), ..., Tθ1...θh (x) are Schwartz distributions on R
n .

2.2 Construction of the Super-Field

Following the analogous construction in [3, 14] the super-field � is defined as

�(t, θ, θ̄) = ϕ(t) + ψ̄(t)θ + ψ(t)θ̄ + ω(t)θθ̄,

where t ∈ R, and ϕ,ψ, ψ̄,ω are complex Gaussian fields realized as functional from
S(R) into the set of operators O(H) on a complex vector space H with a fixed state
�, and θ, θ̄ are any pair of anti-commuting variables θ, θ̄ ∈ S commuting with the
operators ω,ϕ and anti-commuting with the operators ψ, ψ̄. Hereafter we shall use
the notation denote by 〈a〉� = 〈�, a(�)〉H for any a ∈ O(H), where 〈·, ·〉H is the
scalar product in H. For a background on superfield, supermanifolds and Berezin
integral see, e.g., [4, 8] and furthere referefnces in [2, 3].
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The Gaussian fields ϕ,ψ, ψ̄,ω mush be realized as operators defined from S(R)

taking values in O(H), for a suitable Hilbert space H with a state � ∈ H such that
the condition (4) holds. Making a formal computation we obtain that

〈�(t, θ, θ̄)�(s, θ′, θ̄′)〉� = 〈ϕ(t)ϕ(s)〉� − 〈ψ̄(t)ψ(s)〉�θθ̄′ − 〈ψ(t)ψ̄(s)〉�θ̄θ′+
+ 〈ϕ(t)ω(s)〉�θ′θ̄′ + 〈ω(t)ϕ(s)〉�θθ̄ + 〈ω(t)ω(s)〉�θθ̄θ′θ̄′

from which we get

〈ϕ(t)ϕ(s)〉� = 1
2m2G(|t − s|) 〈ψ̄(t)ψ(s)〉� = G(t − s) 〈ϕ(t)ω(s)〉� = G(t − s)

〈ω(t)ω(s)〉� = 0.
(7)

Using the commutation relations

{ϕ(t),ϕ(s)}+ = 0 {ϕ(t),ω(s)}+ = 0 {ω(t),ω(s)}+ = 0 (8)

{ψ̄(t),ψ(s)}− = {ψ(t),ψ(s)}− = {ψ̄(t), ψ̄(s)}− = 0
{ϕ(t)ψ(s)}+ = {ϕ(t)ψ̄(s)}+ = {ω(t),ψ(s)}+ = {ω(t), ψ̄(s)}+ = 0

(9)

where {K1, K2}+ = K1K2 − K2K1 and {K1, K2}− = K1K2 + K2K1 (where K1,

K2 ∈ B(H)) are the commutator and the anti-commutator of closed operators hav-
ing a non void common core. By Wick’s theorem (see, e.g. [9] Chap.3 Sect. 8) the
expectation of arbitrary polynomials in ϕ,ψ, ψ̄,ω is completely determined.

The bosonic field ϕ is a standard (real and commutative) Gaussian field with
covariance G(|t − s|). Also ω is a standard (complex and commutative) Gaussian
field of the form

ω(t) = ξ(t) + iη(t),

where ξ = (∂t + m2)ϕ and η is a Gaussian white noise with Cameron-Martin space
L2(R) independent of ϕ. We can realize the Gaussian field ϕ,ω as (unbounded)
operators defined on a Hilbert space H',! and with a state �ϕ,ω . We can take Hϕ,ω =
L2(μϕ,ω) where μϕ,ω is the law of (ϕ,ω) on C(R) × S ′

C
(R) and �ϕ,ω = 1.

The fermionic fields ψ, ψ̄ are build as follows (for a different construction of
fermionic fields see also [1]). Let a, b and a∗, b∗ be two creation and annihilation
operators defined as bounded functionals on S(R) taking values in B(Hψ,ψ̄) (where
Hψ,ψ̄ is a suitable Hilbert space with a fixed state �ψ,ψ̄) such that

{a( f ), a(g)}− = {b( f ), b(g)}− = 0
{a( f ), b(g)}− = {a∗( f ), b(g)}− = 0

{a∗(g), a( f )}− = {b∗(g), b( f )}− = (∫
R
f (t)g(t)dt

)
IHψ,ψ̄

,

for any f, g ∈ S(R), and such that

〈a( f )K 〉�ψ,ψ̄
= 〈Ka∗( f )〉�ψ,ψ̄

= 〈b( f )K 〉�ψ,ψ̄
= 〈Kb∗( f )〉�ψ,ψ̄

= 0,
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where K is any bounded operator K ∈ B(Hψ,ψ̄). We define U : S(R) → S(R) by

U( f )(t) = 1

2π

∫

R

e−iξt

iξ + m2
f̂ (ξ)dξ.

We then write

ψ( f ) = a∗(U∗( f )) + b( f ), ψ̄( f ) = b∗(U( f )) − a( f ),

where U∗ is the adjoint of U in L2(R) with respect to the Lebesgue measure on R.
In this way, we have

{ψ̄(t),ψ(s)}− = {ψ(t),ψ(s)}− = {ψ̄(t), ψ̄(s)}− = 0,

and also

〈ψ̄( f)ψ(g)〉�ψ,ψ̄
= 〈b∗( f )a∗(g)〉�ψ,ψ̄

+ 〈b∗( f )b(g)〉�ψ,ψ̄
− 〈a( f )a∗(g)〉�ψ,ψ̄

+
−〈a( f )b(g)〉�ψ,ψ̄

= ∫
R
U( f )(t)g(t)dt

= ∫
R
g(t)

∫ t
−∞ e−m2(t−s) f (s)dsdt = ∫

R2 g(t)G(t − s) f (s)dsdt.

In other words we have 〈ψ̄(t)ψ(s)〉�ψ,ψ̄
= G(t − s) as required (for a more detailed

proof see, e.g., [1, 15, 16, 21]). We can define the operators ϕ,ψ, ψ̄,ω as acting on
a unique (quantum) probability space, by taking

H = Hϕ,ω ⊗ Hψ,ψ̄ � = �ϕ,ω ⊗ �ψ,ψ̄.

In order to realize the field � in a rigorous way we consider a complex sub-algebra
A ⊂ O(H) such that ϕ,ψ, ψ̄,ω take values in A and for any smooth function V :
R → R we have V (ϕ(g)) ∈ A, where g is any function in S(R). This sub-algebra
A is generated (from an algebraic point of view) by operators of the form V (ϕ(g)),
ω(g), ψ(g), ψ̄(g) and IH. We consider the vector space A = A × S. There are two
preferred hyperplanes AA and AS defined by

AA = {(a, 1S)|a ∈ A}, AS = {(IH, θ)|θ ∈ S},

with the natural immersions iA : A → A and iS : S →A defined by iA(a) =
(a, 1S) and iS(θ) = (IH, θ) (we note that AA := iA(A) and AS := iS(S)). It is
clear thatAA,AS generates the wholeA. OnAwe define the following product ·, in
such a way that the maps iA and iS respect the product (i.e. iA(ab) = iA(a) · iA(b)
and iS(θ1θ2) = iS(θ1) · iS(θ2)) and such that

(V (ϕ(g)), 1S) · (IH, θ) = (IH, θ) · (V (ϕ(g)), 1S) = (V (ϕ(g)), θ)

(ω(g), 1S) · (IH, θ) = (IH, θ) · (ω(g), 1S) = (ω(g), θ)
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(ψ(g), 1S) · (IH, θ) = −(IH, θ) · (ψ(g), 1S) = (ψ(g), θ)

(ψ̄(g), 1S) · (IH, θ) = −(IH, θ) · (ψ̄(g), 1S) = (ψ̄(g), θ)

where g ∈ S(R) and θ ∈ S1 (not inS). The product · can be uniquely extended (in
a associative way) onA sinceAA,AS generates the wholeA, operators of the form
V (ϕ(g)), ω(g), ψ(g), ψ̄(g) generates the whole A and S1 generates the whole S.
Hereafter we will omit to explicitly write the product · if this omission does not cause
any confusion.

On A we can define a linear operator 〈·〉 : A → AS � S by

〈(a, θ)〉 = 〈a〉�(IH, θ).

Furthermore for any θ1, . . . , θn ∈ S1 we define the linear operator
∫ ·dθ1 . . . dθn :

A → AA such
∫ ·dθ1 . . . dθn|AS

is the usual Berezin integral induced by the identi-
fication AS � S

∫
(a, θ)dθ1 . . . dθn =

(∫
θdθ1 . . . dθn

)
(a, 1S).

Hereafter we identify the spaceA andSwithAA andAS respectively, and we write
instead of (a, 1S), (IH, θ), (IH, 1S) simply a, θ and 1 respectively (in this way we
take also the tacit identification of span{1S} = S0 withR). Furthermore we identify
ϕ,ψ, ψ̄,ω with iA ◦ ϕ, iA ◦ ψ, iA ◦ ψ̄, iA ◦ ω.

Remark 2 Since ψ, ψ̄ are “independent” with respect to ϕ and ω (since they can be
realized on a space of the form H = Hϕ,ω ⊗ Hψ,ψ̄) the expectation only with respect

to the fields ψ, ψ̄ is well defined, namely there exixts an operator 〈·〉ψ,ψ̄ : OH → O',!

such that

〈V (ϕ(t1), . . . ,ϕ(tk))ψ(t ′1)ψ̄(t ′′1 ) · · · ψ(t ′k ′)ψ̄(t ′′k ′)〉ψ,ψ̄

= V (ϕ(t1), . . . ,ϕ(tk))〈ψ(t ′1)ψ̄(t ′′1 ) · · · ψ(t ′k ′)ψ̄(t ′′k ′)〉.

This operator 〈·〉ψ,ψ̄ extends toA in the sameway inwhich the operator 〈·〉 is extended
on the whole A.

2.3 Relation with SDEs

In this section we want to use the super-field � for representing the solution to the
SDE (1) through the integral (3).

First of all we have to define the notion of composition of the super-field �

with smooth functions. Consider the smooth function H : R → R growing at most
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exponentially at infinity. We can formally expand H in Taylor series and using the
properties of θ, θ̄ we obtain

H(�(t, θ, θ̄)) = H(ϕ(t)) + H ′(ϕ(t))ψ̄(t)θ + H ′(ϕ(t))ψ(t)θ̄+
+(H ′(ϕ(t))ω(t) + H ′′(ϕ(t))ψ(t)ψ̄(t))θθ̄.

Unfortunately the products H ′(ϕ(t))ω(t) and H ′′(ϕ(t))ψ(t)ψ̄(t) are ill defined
since the factors are not regular enough. For this reason we consider a symmet-
ric mollifier ρ : R → R+ (with ρ(t) = ρ(−t)) and the field �ε = ρε ∗ �, where
ρε(t) = ε−1ρ(tε−1). If G is a super-function, F : R → R is a smooth function and
K is an entire function we define

〈
F(ϕ(0))K

(∫
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)〉
:= limε→0

〈
F(ϕε(0))K

(∫
G(t, θ, θ̄)H(�ε(t, θ, θ̄))dtdθdθ̄

)〉
.

(10)

We want to prove that the previous expression is well defined and does not depend
on ρ.

Remark 3 It is important to note that the expression (10) does not depend on ρ only
if ρ is reflection symmetric (i.e. ρ(t) = ρ(−t)). If we choose a different ρ (such that
for example

∫ 0
−∞ ρdt �= ∫ +∞

0 ρdt) we will obtain a different limit in (10). This is due

to the fact that the products H ′(ϕ(t))ω(t) and H ′′(ϕ(t))ψ(t)ψ̄(t) are ill defined and
it is analogous to the possibility to obtain Itô or Stratonovich integral in stochastic
calculus considering different approximations of the stochastic integral.

Lemma 4 Let F1, . . . , Fn : R × R → R be smooth functions with compact support
in the first variable and growing at most exponentially at infinity in the second
variable then we have

lim
ε→0

〈
n∏

i=1

∫
Fi (t,ϕε(t))ψ̄ε(t)ψε(t)dt

〉

ψ,ψ̄

=
∫ n∏

i=1

Fi (ti ,ϕ(t))Gn(t1, . . . , tn)dt1 . . . dtn . (11)

in L p(μϕ) for all 1 ≤ p < +∞. Here Gn(t1, . . . , tn) = det((Gi, j )i, j=1,...,n) with
Gi, j = G(t j − ti ) if i �= j and Gi,i = 1/2.

Proof It is simple to see that limε→0〈ψ̄ε(t1)ψε(t2)〉ψ,ψ̄ = G(t1 − t2) when t1 �= t2
and limε→0〈ψ̄ε(t)ψε(t)〉ψ,ψ̄ = 1

2 (this is due to the fact that ρ(t) = ρ(−t)). Since

〈ψ̄ε(t1)ψε(t1) · · · ψ̄ε(t2)ψε(tn)〉ψ,ψ̄ is uniformly bounded in t and ε and Fi (t,ϕε(t)) is
uniformly bounded in L p(μϕ) in t and ε the claim follows. �

Remark 5 Since only one between G(t − s) and G(s − t) is non zero if F1 = F2 =
· · · = Fn then we get

lim
ε→0

〈(∫
F1(t,ϕε(t))ψ̄ε(t)ψε(t)dt

)n〉

ψ,ψ̄

=
(
1

2

∫
F1(t,ϕ(t))dt

)n

.
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Lemma 6 Let F : R × R → R be smooth functions with compact support in the
first variable and growing at most exponentially at infinity in the second variable
then we have in L p(μϕ,ω), for all 1 ≤ p < +∞,

lim
ε→0

∫
F(t,ϕε(t))ωε(t) =

∫
F(t,ϕ(t)) ◦ dB(t) + i

∫
F(t,ϕ(t))dW (t)

where the first one is Stratonovich integral and the second one is Itô integral with
respect to (double sided) Brownian motions (B(t),W (t))t∈R such that ∂t B(t) = ξ(t)
and ∂tW (t) = η(t) with B0 = W0 = 0.

Proof This is the Wong–Zakai theorem [13, 18–20]. �

Theorem 7 WhenK is a polynomial and H growsatmost exponentially at infinity, or
K is entire and H is bounded with first and second derivative bounded, the limit (10)
is well defined and does not depend on the symmetric mollifier ρ.

Proof When K is a polynomial the thesis follows directly from Lemmas 4 and 6. If
K is an entire function and H is a bounded function with first and second derivatives
bounded it is possible to exchange the limit in ε with the power series, since

〈∣∣∣∣∣∣

〈(∫
G(t, θ, θ̄)H(�ε(t, θ, θ̄))

)k

dtdθdθ̄

〉

ψ,ψ̄

∣∣∣∣∣∣

p〉

is uniformly bounded in ε for any p ≥ 1. �

Theorem 8 Suppose that G(t, θ, θ̄) = G∅(t) + Gθθ̄(t)θθ̄ and that H is bounded
with the first and second derivatives bounded then

〈
F(ϕ(0)) exp

(∫
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)〉
=

=
∫

F(ϕ(0)) exp

(
1

2

∫
G∅(t)H ′′(ϕ(t))dt −

∫
G∅(t)H ′(ϕ(t)) ◦ dξ(t)+

−1

2

∫
(G∅(t)H ′(ϕ(t)))2dt −

∫
Gθθ̄(t)H(ϕ(t))dt

)
μϕ(dϕ).

(12)

Proof The proof follows from Theorem 7, the multiplicative property of exponen-
tials, Remark 5, and the fact that the Fourier transform of a process integrated with
respect to an independent Gaussian white noise can be computed explicitly and in
this case gives the factor exp(− 1

2

∫
(G∅(t)H ′(ϕ(t)))2dt). �
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3 Supersymmetry and the Supersymmetric Field

3.1 The Supersymmetry

On C∞(R × S2
1) one can introduce the (graded) derivations

Q := 2θ∂t + ∂θ̄, Q̄ := 2θ̄∂t − ∂θ,

which are such that
Q(t + 2θθ̄) = 0 = Q̄(t + 2θθ̄),

namely they annihilate the function t + 2θθ̄ defined on R × S2
1. Moreover if QF =

Q̄F = 0, for F in C∞(R × S2
1), then we must have

0 = QF(x, θ, θ̄) = 2∂t f∅(t)θ + fθ̄(t) + ∂t fθ̄(x)θθ̄ − fθθ̄(t)θ

0 = Q̄F(x, θ, θ̄) = 2∂t f∅(t)θ̄ + fθ(t) − ∂t fθ(x)θθ̄ − fθθ̄(t)θ̄

and therefore

∂t f∅(t) = 1

2
fθθ̄(t) and fθ(t) = fθ̄(t) = 0.

This means that there exists an f ∈ C∞(R,R) such that

f (t + 2θθ̄) = f (t) + 2 f ′(t)θθ̄ = f∅(t) + fθθ̄(t)θθ̄ = F(t, θ, θ̄).

Namely any function satisfying these two equations can be written in the form

F(t, θ, θ̄) = f (t + 2θθ̄).

Suppose that t > 0, if we introduce the linear transformations

τ (b, b̄)

⎛
⎝

t
θ

θ̄

⎞
⎠ =

⎛
⎝
t + 2b̄θρ + 2bθ̄ρ

θ − bρ
θ̄ + b̄ρ

⎞
⎠ ∈ S(θ, θ̄, ρ)

for b, b̄ ∈ R and where ρ ∈ S1 is a new odd variable different from θ, θ̄, then we
have

d

da

∣∣∣∣
a=0

τ (ab, ab̄)F(t, θ, θ̄) = d

da

∣∣∣∣
a=0

F(τ (ab, ab̄)(t, θ, θ̄)) = (b · Q̄ + b̄ · Q)F(t, θ, θ̄)

so τ (b, b̄) = exp(b · Q̄ + b̄ · Q) and τ (ab, ab̄)τ (cb, cb̄) = τ ((a + c)b, (a + c)b̄).
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In particular F ∈ C∞(R × S2) is supersymmetric if and only if for any b, b̄ ∈ R

we have τ (b, b̄)F = F .
By duality the operators Q, Q̄ and τ (b, b̄) also act on the space S ′(S) and we

say that the distribution T ∈ S ′(S) is supersymmetric if it is invariant with respect
to rotations in space and QT = Q̄T = 0. For supersymmetric functions and distri-
butions the following fundamental theorem holds.

Theorem 9 Let F ∈ S(S) and T ∈ S ′(S) such that T∅ is a continuous function.
If both F and T are supersymmetric. Then for any K ∈ R we have the reduction
formula ∫ K

−∞
T (t, θ, θ̄) · F(t, θ, θ̄)dtdθdθ̄ = −2T∅(K )F∅(K ). (13)

Proof The proof can be found in [14], Lemma 4.5 for R2 and in [17] for the case
of a general super-manifold. Here we give the proof only for the case where T
is a super-function. In this case we have that T (t, θ, θ̄) = T∅(t) + 2T ′

∅(t)θθ̄ and
F(t, θ, θ̄) = F∅(t) + 2F ′

∅(t)θθ̄, from which we have

T (t, θ, θ̄) · F(t, θ, θ̄) = T∅(t)F∅(t) + 2(T ′
∅(t)F∅(t) + T∅(t)F ′

∅(t))θθ̄
= T∅(t)F∅(t) + 2∂t (T∅F∅)(t)θθ̄.

By definition of Berezin integral we have

∫ K

−∞
T (t, θ, θ̄) · F(t, θ, θ̄)dxdθdθ̄ = −2

∫ K

−∞
∂t (T∅F∅)(t)dt

= −2T∅(K )F∅(K ).

�

Remark 10 In Theorem 9 we can assume that F = F∅(t) + Fθθ̄(t)θθ̄ and
T (t, θ, θ̄) = T∅(t) + Tθθ̄(t)θθ̄ where Fθθ̄(t) = 2F ′

∅(t) and Tθθ̄(t) = 2T ′
∅(t) only for

t � K . In this way we can consider supersymmetric functions only on the set
(−∞, K ].

3.2 Localization of Supersymmetric Averages

Remark 11 We note that the correlation function

C�(t, s, θ, θ̄) := 〈ϕ(t)�(s, θ, θ̄)〉 = 1

2m2
G(t − s) + G(t − s)θθ̄

is a supersymmetric function when t � s.
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Lemma 12 Let g(t) be smooth function with compact support, t ∈ R, let P be a
polynomial. Then for t1 > t2 > · · · > tk and M = (m1, . . . ,mk) ∈ N

k we have

HM,G
�,P (t1, . . . , tk) =

=
〈

k∏
j=1

ϕ(t j )
m j

∫ tk

−∞

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=1

g
(
τi + 2θi θ̄i

)
P(�(τi , θi , θ̄i ))dτidθidθ̄i

〉
=

= (−2 g(tk))�

�!

〈
k∏
j=1

ϕ(t j )
m j P(ϕ(tk))

�

〉
.

Proof We prove the lemma by induction on � and for simplicity we assume that
P(x) = xn , the general case being a straightforward generalization. Since the proof
is essentially of combinatorial nature in the following we consider some ill defined
objects like the products ϕ(t)ω(s) or ψ(t)ψ̄(s). This fact does not change the main
idea of the proof since all the expectations with respect to the previous products are
defined using the symmetric regularization proposed in Lemma 4 and Lemma 6, i.e.
all the following computations can be made rigorous replacing ϕ,ω,ψ and ψ̄ by the
regularized Gaussian fields ϕε,ωε,ψε and ψ̄ε (as defined in Lemma 4 and Lemma 6)
and then taking the limit as ε → 0. The main difference between the proof below
and the one involving the regularized fields is that in the regularized case we have
also to consider the contractions of the form ωε(t)ϕε(s) and ψε(t)ψ̄ε(s) when s < t
and |s − t | < ε. Since the contributions of this kind of terms are proportional to the
support of the mollifier ρε, they go to zero as ε → 0. Let

Y M(t1, . . . , tk) :=
k∏
j=1

ϕ(t j )
m j

We have
HM,G

1,xn (t1, . . . , tk) =
〈
Y M (t1, . . . , tk)

∫ tk

−∞
g(τ + 2θθ̄)(�(τ , θ, θ̄))ndτdθdθ̄

〉
=

=
∫ tk

−∞
g(τ + 2θθ̄)〈Y M (t1, . . . , tk)(�(τ , θ, θ̄))n〉dτdθdθ̄.

Since� andϕ are Gaussian fields, byWick theorem and by Remark 11, we have that
〈Y M(t1, . . . , tk)(�(τ , θ, θ̄))n〉 is supersymmetric in (τ , θ, θ̄)when τ � tk .Moreover,
given that G = g(t + 2θθ̄) is a supersymmetric function by Remark 10, we have the
thesis.

Suppose now that the lemma holds for � − 1 ∈ N, then letting

H(τ1) :=
∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i ,

we have
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HM,g
�,xn (t1, . . . , tk ) =

=
〈
Y M (t1, . . . , tk )

∫ tk

−∞

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=1

g
(
τi + 2θi θ̄i

)
(�(τi , θi , θ̄i ))

ndτidθidθ̄i

〉

=
∫ tk

−∞
g(τ1 + 2θ1θ̄1)〈Y M (t1, . . . , tk )�(τ1, θ1, θ̄1)

n H(τ1)〉dτ1dθ1dθ̄1

=
∫ tk

−∞
g′(τ1)H(M,n),g

�−1,xn (t1, . . . , tk , τ1)dτ1 − n
∫ tk

−∞
〈Y M (t1, . . . , tk )ϕ(τ1)

n−1ω(τ1)H(τ1)〉·

· g(τ1)dτ1 − n(n − 1)
∫ tk

−∞
〈Y M (t1, . . . , tk )ϕ(τ1)

n−2ψ(τ1)ψ̄(τ1)H(τ1)〉g(τ1)dτ1.

Here (M, n) = (m1, . . . ,mk, n). By the induction hypothesis the first term in the
sum is exactly
∫ tk

−∞
g′(τ1)H(M,n),g

�−1,xn (t1, . . . , tk , τ1)dτ1 =
∫ tk

−∞
g′(τ1)

(2 g(τ1))�−1

(� − 1)! 〈ϕ(τ1)
�nY M (t1, . . . , tk)〉dτ1.

For the second term we note that

〈
ϕ(τ1)

n−1ω(τ1)Y
M (t1, . . . , tk)

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i

〉
=

=
k∑
j=1

m j 〈ω(τ1)ϕ(t j )〉H(M−1 j ,n−1),g
�−1,xn (t1, . . . , tk , τ1) + (n − 1)〈ϕ(τ1)ω(τ1)〉H(M,n−2),g

�−1,xn (t1, . . . , tk , τ1)

where 1 j = (0, . . . , 1, 0, . . . , 0) ∈ N
k with 1 in the j-th position and where we used

Wick’s theorem and the fact that

〈ϕ(τ1)ω(τ1)〉 = 1

2
and

〈
ω(τ1)

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i

〉
= 0.

Furthermore for the third term we have

〈
ϕ(τ1)

n−2ψ(τ1)ψ̄(τ1)

k∏
j=1

ϕ(t j )
m j

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i

〉
=

= 〈ψ(τ1)ψ̄(τ1)〉H(M,n−2),g
�−1,xn (t1, . . . , tk , τ1).

In this way we obtain that

HM,g
�,xn (t1, . . . , tk) = (−1)�−12�−1

∫ tk

−∞
g′(τ1)

(g(τ1))�−1

(� − 1)! 〈ϕ(τ1)
�nY M (t1, . . . , tk)〉dτ1+

−
k∑
j=1

m j 〈ω(τ1)ϕ(t j )〉 · H(M−1 j ,n−1),g
�−1,xn (t1, . . . , tk , τ1).
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Here we use the fact that 〈ϕ(τ1)ω(τ1)〉 = −〈ψ(τ1)ψ̄(τ1)〉 = 1
2 . Noting that

〈ϕ�n−2(τ )ψ(τ )ψ̄(τ )Y M(t1, . . . , tk)〉 + 〈ϕ(τ )ω(τ )〉〈ϕ�n−2(τ )Y M(t1, . . . , tk)〉 = 0

we obtain

HM,g
�,xn (t1, . . . , tk) = (−2)�−1

〈
Y M (t1, . . . , tk)

∫ tk

−∞
(g(τ + 2θθ̄))�

�! �n�(τ , θ, θ̄)dτdθdθ̄

〉
=

= (−2)�−1

�! HM,g�

1,xn� (t1, . . . , tk)

Finally, the thesis follows from the induction hypothesis forHM,g�

1,xn� (t1, . . . , tk). �
Corollary 13 Let G be a supersymmetric function with compact support, then we
have

〈
ϕ(0)m

(∫ 0

−∞
G(t, θ, θ̄)P(�(t, θ, θ̄))dtdθdθ̄

)k〉
= (−2G∅(0))k〈ϕ(0)m P(ϕ(0))k〉.

(14)

Proof Using the symmetry of the l.h.s. of (14) with respect to the exchanges
(τi , θi , θ̄i ) ←→ (τ j , θ j , θ̄ j ) we have that

〈
ϕ(0)m

(∫ 0

−∞
G(t, θ, θ̄)P(�(τ , θ, θ̄))dtdθdθ̄

)k
〉

=

= k!
〈
ϕ(0)m

∫ 0

−∞

∫ τ1

−∞
· · ·

∫ τk−1

−∞

k∏
i=1

G(τi , θi , θ̄i )P(�(τi , θi , θ̄i ))dτidθidθ̄i

〉
.

Then the claim follows directly from Lemma 12 taking g = G∅. �
Theorem 14 Let F be a smooth bounded function, let G be a supersymmetric func-
tion with compact support, let H be a bounded function with all the derivatives
bounded and let K be an entire function, then we have

〈
F(ϕ(0))K

(∫ 0

−∞
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)〉
= 〈F(ϕ(0)) · K(−2G∅(0) · ϕ(0))〉.

Proof Using the density of polynomials in the set of smooth functions with respect
to the topology given by the one of the Sobolev space with respect to the Gaussian
law of ϕ(t), Corollary 13 implies that for any k ∈ N and F,G, H satisfying the
hypothesis of the theorem

〈
F(ϕ(0))

(∫ 0

−∞
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)k
〉

= 〈F(ϕ(0))[−2G∅(0)H(ϕ(0))]k〉.
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Expanding K in power series, exploiting the fact that

〈∣∣∣∣∣∣

〈(∫
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)k
〉

ψ,ψ̄

∣∣∣∣∣∣

p〉

is uniformly bounded when H is bounded, for any p ≥ 1, we can exchange the series
with the expectation 〈·〉, and obtain in this way the thesis. �
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