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Abstract We describe, in an intrinsic way and using the global chart provided by
Itô’s parallel transport, a generalisation of the notion of geodesic (as critical path
of an energy functional) to diffusion processes on Riemannian manifolds. These
stochastic processes are no longer smooth paths but they are still critical points of a
regularised stochastic energy functional. We consider stochastic geodesics on com-
pact Riemannian manifolds and also on (possibly infinite dimensional) Lie groups.
Finally the question of existence of such stochastic geodesics is discussed: we show
how it can be approached via forward-backward stochastic differential equations.
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1 Introduction

The notion of geodesic in Riemannian manifolds appeared first in a lecture of Rie-
mann, in 1854. Originally, it was referring to the shortest path between two points on
Earth’s surface. Nowadays, given an affine connection like the one of Levi-Civita,
it can also be defined as a curve whose tangent vectors remain parallel when trans-
ported along the curve. In Theoretical Physics it is in General Relativity that this
notion played a key rôle.

In a stochastic framework, a generalisation of geodesic curve is described. It cor-
responds to a critical path for some generalised action functional. The concept is
reminiscent of Feynman path integral approach to Quantum Mechanics [1] but for
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well defined probability measures on path spaces. It involves, in particular, regu-
larisation of the second order in time classical dynamical equations, which is not
traditional in Stochastic Analysis.

The derived equations of motion are of Burgers type. When considering flows
which keep the volumemeasure invariant one obtains Navier–Stokes equations. This
point of viewwas developed in [2, 3, 9] in particular. It is currently being investigated
(c.f. [8] as well as [10] for a review on this subject).

After a short survey of classical geodesics on Riemannian manifolds, Cartan’s
frame bundle approach and its relation with the horizontal and Laplace–Beltrami
operators are recalled.

Stochastic Analysis of diffusions on manifolds along the line of Itô–Ikeda–
Watanabe is given, together with Itô’s associated notion of parallel transport. Then
one comes back to one of the historic definitions of geodesics, namely as critical
points of an Action functional. The regularisations associated with the critical diffu-
sion provide the appropriate generalised energy functional. The same strategy applies
to geodesics on Lie groups.

It is also shown how, if needed, stochastic geodesics can be characterised via
stochastic forward-backward SDEs.

It is a special pleasure to dedicate this paper to Sergio Albeverio as a modest sign
of recognition for his faithful friendship along the years.

2 Geodesics on Riemannian Manifolds

We shall denote by M a d-dimensional compact Riemannian manifold and g its
metric tensor. Given m ∈ M , if u, v are vectors in the tangent space Tm(M) the
Riemannian inner product is given in local chart by

gm(u, v) = (gi, j u
i v j )(m)

Here and in the rest of the paper we adopt Einstein summation convention.
The Levi-Civita covariant derivative of a vector field z has the expression

[∇k z] j = ∂

∂mk
z j + Γ

j
k,l z

l,

whereΓ denotes the corresponding Christoffel symbols in the local chart; explicitly,

Γ
j

k,l = 1

2

(
∂

∂mk
gi,l + ∂

∂ml
gk,i − ∂

∂mi
gk,l

)
g j,i (1)

Given a smooth curve t → ϕ(t) ∈ M , the parallel transport of a vector field z
along this curve is defined by the condition of zero covariant derivative of z in the ϕ̇

direction,



Stochastic Geodesics 61

∇ϕ̇(t)z(t) = 0 or ż j = −Γ
j

k,l ϕ̇
k zl . (2)

Its solution, z(t) = tϕ
t←0(z(0)), the parallel transport of z along the curve, provides

an Euclidean isomorphism between tangent spaces:

tϕ
t←0 : Tϕ(0)(M) → Tϕ(t)(M).

Consider the curves minimising the length

J (γ ) =
∫

l(γ, γ̇ )dt, l(γ, γ̇ ) =
√

gi, j γ̇ i γ̇ j

and therefore satisfying the Euler Lagrange variational equation

d

dt

(
gi, j γ̇

j

l

)
= 1

2l
∂i (g j,k)γ̇

j γ̇ k .

Replacing dt by ds (where s is the arc length) we obtain

d

dt

(
gi, j γ̇

j 1

ds
) − 1

2

1

ds
∂i (g j,k

)
γ̇ j γ̇ k = 0

and also

gi, j
d2γ j

ds2
+ ∂k(gi, j )

dγ k

ds

dγ j

ds
− 1

2
∂i (g j,k)

dγ k

ds

dγ j

ds
= 0

Multiplying both members by gα,i we obtain the following classical form of the
geodesic equation:

d2γ α

ds2
+ Γ α

j,k

dγ j

ds

dγ k

ds
= 0 (3)

or ∇γ̇ γ̇ = 0.
A curve satisfying the last equation is called a geodesic for the corresponding

Riemannian metric. It is also well known that geodesics (defined in a time interval
[0, T ]) are characterised as being critical paths of the (kinetic) energy functional

E (γ ) =
∫ T

0
||γ̇ (t)||2dt =

∫ T

0
gi, j (γ (t))γ̇ i (t)γ̇ j (t)dt (4)
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By critical it is meant that, for every family of smooth curves (variations of γ )
γε starting (at time 0) and ending (at time T ) at γ (0) and γ (T ) resp., we have
d
dε

|ε=0E (γε) = 0.

3 The Frame Bundle and the Laplacians

The bundle of orthonormal frames over M is defined by

O(M) = {(m, r) : m ∈ M, r : Rd → Tm(M) is an Euclidean isometry}

The map π : O(M) → M, π(m, r) = m is the canonical projection.
Let ei , i = 1, . . . , d denote the vectors of the canonical basis of Rd and γi

denote the (unique) geodesic on M such that γi (0) = m, d
dt

∣∣
t=0

γi (t) = r(ei ). Let
(γi (t), ri (t)) represent the parallel transport of r along γi , ∇γ̇i ri = 0, ri (0) = Id.
Then

Ai (m, r) = d

dt

∣∣∣∣
t=0

ri (t)

are called the horizontal vector fields on M .
Denote by Θ the one-form defined on O(M) with values in Rd × so(d) such that

< Θ, Ai >= (ei , 0); Θ = (θ, ω), with ω(m, r) = r−1dr the Maurer–Cartan form
on the orthogonal group O(d). Its structure equations are given by

{
dθ = ω ∧ θ

dω = ω ∧ ω + Ω(θ ∧ θ),

where Ω denotes the curvature tensor:

Ω(X, Y, Z) = (∇X∇Y − ∇Y ∇X − ∇[X,Y ])Z ,

and where [X, Y ] denotes the bracket of two vector fields. Recall also that the Ricci
tensor (Riccikl) is the trace of the curvature, taken in the second and third entries.

In particular θ(Ak) = ek and ω(Ak) = 0. The horizontal Laplacian on O(M) is
the second order differential operator

ΔO(M) =
d∑

k=1

L 2
Ak

(5)

where LAk denotes the Lie derivative along the vector field Ak . For every smooth
function f defined on M we have
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ΔO(M)( f ◦ π) = (ΔM f ) ◦ π

where ΔM is the Laplace–Beltrami operator on M . This operator is expressed in
local coordinates by

ΔM f = gi, j

[
∂2 f

∂mi∂m j
− Γ k

i, j

∂ f

∂mk

]
. (6)

4 Stochastic Analysis on Manifolds

We are going to consider stochastic diffusions associated to elliptic operators on M
of the form

Lu f := 1

2
ΔM f + ∂u f (7)

in the sense of Itô stochastic calculus. Here u is a possibly time-dependent, smooth
(at least C2) vector field on M . In local coordinates the diffusion with generator Lu

can be written as

dm j (t) = σ
j

k dxk(t) −
(
1

2
gm,nΓ j

m,n − u j

)
dt (8)

where σ = √
g and xk are independent real-valued Brownian motions.

We consider the horizontal lift of these M-valued diffusion processes. Denote by
uk the functions defined on O(M) by

Uk(r) = r(ek).uπ(r).

Then ũ = ∑
k Uk Ak satisfies π ′(ũ) = u (π ′ being the derivative of the canonical

projection π ).
Denoting by x a sample path of the standard Brownian motion on Rd , x(t), t ∈

[0, T ], x(0) = 0, we consider the following Stratonovich stochastic differential
equation on O(M):

drx (t) =
d∑

k=1

Ak(◦dxk(t) + Ukdt), rx(0) = 0 (9)

with π(r0) = m0. In local coordinates (mi , ei
α) on O(M) and if r(t) = (m(t), e(t))

we have,
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{
dmi (t) = ei

α ◦ (dxα(t) + uαdt)
dei

α(t) = −Γ i
j,k(m(t))ek

α(t) ◦ dm j (t),

If a ∈ M , we denote the path space of the manifold-valued paths starting from a
by

Pa(M) = {p : [0, T ] → M, p(0) = a, p continuous}.

The diffusion m(t) has for generator the operator Lu . We refer to [16] for a detailed
exposition of diffusions on Riemannian manifolds constructed on the frame bundle.

For each vector field u the operator Lu and the operator LU = 1
2ΔO(M) + ∂U

induce on the path spaces Pm0(M) and Pm0(O(M)), respectively, two probability
measures, namely the laws of the corresponding diffusion processes. The projection
map π realizes an isomorphism between these two probability spaces.

Let the path space P0(Rd) be endowed with the law of the process dy(t) =
(◦dx(t) + U )(y(t)), t ∈ [0, T ] and Pm0(M) with the law of the diffusion p with
generator Lu). Consider the Itô map I : P0(Rd) → Pm0(M) defined by

I (x)(t) = π(rx(t))

Thismap is a.s. bijective and provides an isomorphism between the corresponding
probability measures [18].

Even though p is not differentiable in time, Itô has shown that one can still define
a parallel transport along p, which is the isomorphism from Tp(s)(M) → Tp(t)(M)

given by

t p
t←s := rx (t)rx(s)

−1.

The differentiability of rx (t) with respect to variations of the Brownian motion x
was studied in [12, 17] within the framework of Malliavin Calculus [5, 19] (c.f. also
[13] for the case of the Brownian motion with drift).

Denote Dβ
α = LAα

uβ . The following result holds:

Proposition 1 Given a process of bounded variation in time h : P0(Rd) × [0, T ] →
Rd, we have, using the notations of Sect.3,

< θ,
d

dε |ε=0

rx+εh >= ζ, < ω,
d

dε |ε=0

rx+εh >= ρ (10)

where ζ and ρ are determined by the Itô (and Stratonovich) stochastic differential
equations

dζ(t) = ḣ(t)dt − [1
2

Ricci + D](h(t))dt − ρ(t)dx(t) (11)

dρ = Ω(◦dx + udt, h)
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with initial conditions ζ(0) = 0, ρ(0) = 0.

The result above is still valid for pinned Brownian motion, namely when p(T ) is
fixed. Then the variations are equal to zero not only at the initial but also at this final
time. The sigma-algebra and filtration on the corresponding path space are the usual
ones, generated by the coordinate maps and generated by the coordinate maps up to
time T, respectively. We refer to [15] for more details.

5 Stochastic Geodesics

We shall consider stochastic geodesics as processes which are critical points of some
energy functional generalising the classical deterministic one. Since the stochastic
processes, diffusions on the manifold, are no longer differentiable in time, some
notion of generalised velocity has to replace the usual time derivative.

If ξ(·) is a semimartingale with respect to an increasing filtration Pt , t ∈ [0, T ]
and with values in a manifold M , we consider the process η defined by the
Stratonovich integral

η(t) :=
∫ t

0
t ξ
0←sodξ(s)

This is a semimartingale taking values in Tξ(0)(M). We consider its (generalised)
right-hand time derivative (or drift) by taking conditional expectations:

Dtη(t) = lim
ε→0

EP t

[
η(t + ε) − η(t)

ε

]

Notice that if ξ is a differentiable deterministic path, this notion of derivative reduces
to the usual one.

Then we define the generalised (forward) derivative

D∇
t ξ(t) := tt←0Dtη(t) (12)

We use the symbol ∇ to stress that the derivative depends on the choice of covariant
derivative used to define the parallel transport, although in this work we are only
consider the Levi-Civita covariant derivative.

For a (possibly time dependent) vector field Z computed along a semimartingale
ξ , the generalised derivative is defined as

D∇
t Z(t) = lim

ε→0

1

ε
EP t [tt←t+ε Z(t + ε, ξ(t + ε)) − Z(t, ξ(t)]

Let us consider our basemanifold M and, for a M-valued semimartingale ξ , define
the corresponding kinetic energy by
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E (ξ) = E
∫ T

0
||D∇ξ(t)||2dt (13)

Next Theorem characterises the critical paths of E . Allowed variations are pro-
cesses of bounded variation h satisfying h(0) = h(T ) = 0. We have the following
result:

Theorem 1 A diffusion process m(·) with generator Lu, u ∈ C2(M), is a critical
path for the energy functional E if and only if D∇

t u(t, m(t)) = 0 almost everywhere
or, equivalently,

∂

∂t
u + (∇uu) + 1

2
[(Δu) + Ricci(u)] = 0 (14)

Notice that, in particular, we obtain the expression derived in [20] using local
coordinates.

It is shown in [4] (c.f., more generally, [20]) that the symmetries of the critical
diffusion coincide with the regularisation of its classical counterpart. In other words,
if the diffusion coefficient in (8), regarded now as variable, tends to zero, D∇ξ in
(12) reduces to an ordinary (strong) derivative, Eq. (14) and the symmetries of the
critical diffusion reduce to those of the classical functional (4).

Proof We first write the energy functional via the lift of the process to the frame
bundle, as explained in the last paragraph:

E = E
∫ T

0
||Dtπ(rx (t))||2dt

where Dt refers to the generalised derivative for processes defined on the flat space
(of the Brownian motion x). Then we perform variations of the Brownian motion x
along directions h(·), processes of bounded variation with h(0) = h(T ) = 0. Using
Proposition 1, these variations will give rise to variations on the path space of the
manifold M along semimartingales ζ(·), where ζ is given by (11). More precisely
we have,

d

dε |ε=0

E
∫ T

0
||Dtπ(rx+εh(t))||2dt = 2E

∫ T

0
< Dtπ(rx (t)), Dtπ

′
(

d

dε |ε=0

rx+εh(t)

)
> dt

= 2E
∫ T

0
< Dtπ(rx (t)), Dt (ζ )(t)) > dt

= 2E
∫ T

0
< Dtπ(rx (t)), ḣ − 1

2
Ricci(h) − D(h)(t) > dt

Using integration by parts in time, the assumption h(0) = h(T ) = 0 and the fact
that there is no Itô’s extra term in the integration since h is of bounded variation, the
first term is equal to −2E

∫ T
0 < Dt Dtπ(rx), h(t) >.
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We arrive to the conclusion that a process rx of the form (9) is critical for the
action functional E if and only if D∇

t u = 0 almost everywhere, which proves the
Theorem.

6 Stochastic Geodesics on Lie Groups

Let G denote a Lie group endowed with a left invariant metric < > and a left
invariant connection ∇, that we assume here to be the Levi-Civita connection. The
corresponding Lie algebra G can be identified with the tangent space TeG, where e
is the identity element of the group. Taking a sequence of vectors Hk ∈ G , consider
the following Stratonovich stochastic differential equation on the group:

dg(t) = Te Lg(t)

(∑
k

Hk ◦ dxk(t) − 1

2
∇Hk Hkdt + u(t)dt

)
(15)

with g(0 = e, where Ta Lg(t) : TaG → Tg(t)aG is the differential of the left transla-
tion Lg(t)(x) = g(t)x, x ∈ G and where xk(t) are independent real valued Brownian
motions. The vector u(·) is assumed to be non random, u(·) ∈ C2([0, T ];G ).

The stochastic energy functional for a general G-valued semimartingale ξ(t), t ∈
[0, T ], reads:

E (ξ) = E
∫ T

0
||Tξ(t)Lξ(t)−1 D∇

t ξ(t)||2dt (16)

Assume furthermore that∇Hk Hk = 0 for all k (in particular the Stratanovich integral
in (15) coincides with the Itô one). Then the following result holds:

Theorem 2 ([2]) A G-valued semimartingale of the form (15) is critical for the
energy functional (16) if and only if the vector field u(·) satisfies the equation

d

dt
u(t) = adu(t)u(t) − 1

2

(∑
k

∇Hk ∇Hk u(t) + Ricci(u(t))

)

When Hk = 0 for all k the equation reduces to the well known Euler–Poincaré
equation for (deterministic) geodesics in Lie groups d

dt u(t) = adu(t)u(t).
Up to some sign changes, the right invariant case is analogous.
The theorem also holds for infinite-dimensional Lie groups and allows, as a par-

ticular case, to derive the Navier–Stokes equation, when the problem is formulated
on the diffeomorphisms group (c.f. [2]).
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7 Relation with Stochastic Forward-Backward Differential
Equations

Deterministic geodesics solve second order differential equations and as such can
be obtained using standard methods for such equations, with given initial position
and velocity as well as with initial and final given positions. The meaning of “sec-
ond order” stochastic differential equations is not so clear. A possible method is
its characterisation via stochastic forward-backward differential equations. In local
coordinates (c.f. notations defined in (8), a stochastic geodesic in the time interval
[0, T ] reads

m j (t) = m j (0) +
∫ t

0
σ

j
k (m(s))dxk(s) −

∫ t

0

(
1

2
gm,nΓ j

m,n(m(s)) − y j (s)

)
ds

y j (t) = y j (T ) −
∫ T

t
Z j

k (s)dxk(s) − 1

2

∫ T

t
Ricci j (m(s))ds

Given m j (0) and y(T ) = u(T, m(T )) these kind of systems may provide solu-
tions of the form (m(t), y(t))with y(t) = u(t, m(t)) corresponding to our stochastic
geodesics (c.f., for example, [14]). The term Z is an a priori unknown of the equation,
but is in fact determined a posteriori by the solution (m, y).

In the case of stochastic geodesics on Lie groups, the characterisation via forward-
backward equations was described in [6]. An extension to infinite dimensional Lie
groups and, in particular, to the Navier–Stokes equation framework, is also possible
[7, 11].
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