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Preface

Geometry and Invariance in Stochastic Dynamics

The study of symmetries and invariance properties of ordinary and partial differential
equations (ODE and PDE resp.) is a classical and well-developed area of research
and provides a powerful tool for computing some explicit solutions to the equations
and analyzing their qualitative behavior.

In the last decades, the fruitful notions of symmetry and invariance have been
extended beyond classicalmechanical systems. In fact, the development of geometric
mechanics allowed the generalization of these notions to more complex (finite and
infinite dimensional) systems arising in many different areas of physics.

It is well known that variational principles, and their associated Hamiltonian
formulations, provide a natural framework for both classical and modern physics,
such as general relativity and quantum mechanics, and constitute one of the most
useful tools in mathematical physics. In particular, the physics of the XXth century
was deeply influenced by the fundamental theorem of Noether, which associates
symmetries of a classical dynamical system with its invariants, i.e., with quantities
that remain constant during the time evolution of the system.

The modern theory of symmetry for ODEs and PDEs, due to S. Lie, is based on
the extension of the original concept of discrete group introduced by E. Galois to
continuous groups of transformations. Nowadays, Lie’s symmetry theory is widely
applied both to ODEs and PDEs in order to reduce the original system to a simpler
form, exploiting symmetry-adapted coordinates.

From a numerical point of view, the theory of geometric numerical integration
for ODEs focuses on the preservation of continuous geometric structures under
time discretization. It provides a powerful alternative to standard discretization
methods with a significant impact on the theoretical and practical aspects of modern
computational mathematics.

Another research area involving symmetry and invariance arises from the inter-
action of quantum theory and probability. Indeed, since the first quarter of last
century, the development of the theory of general relativity enhanced the traditional
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viii Preface

links between classical deterministic mechanics and analysis and set off emerging
research fields between algebra and geometry. At the same time, quantummechanics
connected analysis and probability and in the second half of last century, these inter-
actions spread to quantum field theory and to the study of singular partial differential
equations.

Despite the big achievements obtained in the deterministic setting, the impor-
tance of the study of invariance properties and geometric structure of finite- or
infinite-dimensional stochastic differential equations (SDEs and SPDEs resp.) has
been overlooked for a long time and a systematic generalization of the determin-
istic results to the stochastic framework is much needed from both practical and
theoretical point of view.

The purpose of this book is to collect contributions in this direction and to
provide an overview that can inspire further researches aiming at generalizing to
the stochastic framework results involving geometric structures and invariance prop-
erties of deterministic ODEs and PDEs. For this reasons, the papers included in the
volume range from theoretical probability to the study of geometric and algebraic
structures, offering an extraordinary opportunity to approach this promising research
field from different perspectives.

In the following, without claiming to be complete, we try to outline the main
research topics that are tackled in the book.

From a geometric point of view, the generalization of geometric mechanics,
which is essentially based on group-invariant variational principles, to (Stratonovich)
stochastic setting gave rise to the new research area called stochastic geometric
mechanics (a beautiful introduction to the subject canbe found in theSpringerVolume
titled Stochastic Geometric Mechanics, 2017). Important achievements of this
stochastic extension are the variational formulation of SDEs and the Euler-Poincarè
reduction of stochastic infinite-dimensional variational systems in stochastic fluid-
dynamics. In particular, recent theoretical results in this framework turned out to be
extremely useful in order to obtain advanced numerical analysis techniques.

On the other hand, a direct (but non-trivial) extension of Lie symmetries approach
to the stochastic setting can be successfully exploited in order to determine explicit
solutions to SDEs, to reduce and reconstruct symmetric SDEs as well as to find
finite-dimensional solutions to SPDEs.

Moreover, recent advances unveil the central role played by algebraic structures
such as pre-Lie and post-Lie algebras, and their enveloping algebras which permit
to join B-series and Lie-series into Munthe-Kaas’ Lie-Butcher series on manifolds.
These structures turn out to be associated with Euclidean geometry and with homo-
geneous manifolds and Lie groups, and recent results in this framework provide
an interesting extension of the theory of Lie group integration to nonlinear SDEs.
Moreover, the Lie and Hopf algebraic setting underlying Lie group integration was
recently adapted to Lyons’ theory of rough paths, extending the notion of rough
differential equations to homogeneous spaces. In this area advanced combinatorial
methods have been successfully applied.

Furthermore, the interest in the study of singular PDEs, renormalization theory
for quantum fields and critical phenomena in statistical mechanics gave a big boost
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to new researches on SPDEs that experienced striking new developments in recent
years.

On the other side, the investigation of invariance properties for stochastic
processes provides an interesting and well-established research topic in theoretical
probability.

When stochastic processes take their values in manifolds, the standard proba-
bilistic tools have to interact with differential geometry techniques, originating a
research field called stochastic differential geometry. Since Lie groups combine the
algebraic structure of a group with the geometric notion of differential manifold, an
interesting challenge is the studyof diffusions,Markovprocesses, andLévyprocesses
on Lie groups. In particular, the analysis of the invariance properties of this kind of
processes under the action of the group gives promising results in the study of SDEs
driven by Lévy processes (also in the jump case) as well as in their characterization in
terms of stochastic variational principles. Moreover, the investigation of a stochastic
process by means of its invariance under random transformations provides useful
characterizations of the process itself.

Since many equations are not perfectly symmetric, another interesting theoretical
emerging area is the perturbations of symmetric or Hamiltonian systems. In this
setting, the symmetries of a diffusion equation can also be exploited in order to
obtain precise analytical properties of the related semigroup. These results have
important applications in the case of symmetric spaces with invariant Riemannian
structures.

Finally, the knowledge of some closed formula is also crucial inmany applications
of stochastic processes, since it permits to develop faster and cheaper numerical algo-
rithms for the simulation of the process or to evaluate interesting quantities related to
it, such asmartingales which can be individuated through stochastic Noether theorem
as counterparts of the deterministic conserved quantities.

The Conference, titled Random Transformations and Invariance in Stochastic
Dynamics (25–29 March 2019), held in the cloister of San Giorgio in Braida in
Verona (Italy) and was dedicated to Sergio Albeverio for his 80th birthday.

In connectionwith the conference twovolumes are being published.Afirst volume
consists of contributions directly related to the extraordinarily rich and exciting
human and scientific adventure of Sergio Albeverio; the present second volume,
as recalled above, contains the main research lines on geometry and invariance in
stochastic dynamics.

The editors of the present volume thank the authors who, besides actively
participating to the conference, accepted the invitation towrite up their contributions.
Wealso thankother lecturers at the conferencewhogreatly collaborated to the success
of the event and all the participants, for their presence and their active contribute to
create a really agreeable and inspiring atmosphere.

Many thanks to Marina Reizakis of Springer-Verlag, for accepting our invitation
to attend the Conference and to put on display books related to the conference.
Her competent and stimulating advice during the preparation of these proceedings
was greatly appreciated. We also thank Banu Dhayalan of Springer-Verlag for their
technical support in the preparation of the printing process.
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Some Recent Developments on Lie
Symmetry Analysis of Stochastic
Differential Equations

Sergio Albeverio and Francesco C. De Vecchi

Abstract We present a brief review of recent progresses on Lie symmetry analysis
of stochastic differential equations (SDEs). In particular, we consider some general
definitions of symmetries for Brownian motion driven SDEs, as well as of weak and
gauge symmetries of SDEs driven by discrete-time semimartingales. Some applica-
tions of Lie symmetry analysis to reduction and reconstruction of SDEs, Kolmogorov
equation and numerical schemes for SDEs are discussed. Studies on random sym-
metries of SDEs, as well as extension of Noether theorem on invariants to stochastic
systems and the finding of finite-dimensional solutions to SPDEs are also briefly
reviewed.

Keywords Lie symmetry analysis · Stochastic differential equations ·
Kolmogorov equation · Noether stochastic theorem
AMS: 60H10 · 58D19 · 60J76 · 60H35 · 60H15

1 Introduction

The study of infinitesimal (respectively global) symmetries of ordinary differential
equations (ODEs) and partial differential equations (PDEs) has a long tradition in
classical analysis, especially since the groundbreaking work of S. Lie. In fact he
introduced the very concepts that, since the turn of the XIX century, one associates
with the denominations of Lie algebra and Lie groups, acting as transformations
algebras (respectively groups) on solutions of ODEs and PDEs.

S. Albeverio · F. C. De Vecchi (B)
Institute for Applied Mathematics & Hausdorff Center for Mathematics, University of Bonn,
Bonn, Germany
e-mail: francesco.devecchi@uni-bonn.de
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2 S. Albeverio and F. C. De Vecchi

Lie’s work has its roots in the study of discrete symmetries of algebraic and
geometric structures especially sinceN.H.Abel andE.Galois discovery of the notion
of group and its developments, see, e.g. [36]. Another important concept in the study
of symmetries of ODEs and PDEs comes from the connection of these equations
with the calculus of variations, especially since E. Noether’s fundamental work on
the relation of invariants associated with ODEs and PDEs and the transformation
groups, see, e.g. [40, 53–55].

A possible application of these works is the reduction of interesting ODEs and
PDEs to simpler forms that can be more easily classified and studied. Furthermore,
exploiting the invariants associated with transformation laws, it is often possible to
provide concrete solutions to the associated differential equations. Due to these and
many other interesting applications, there has been an important development in the
theory of symmetries of deterministic differential equations. We refer the interested
reader to, e.g. [4, 5, 39, 51, 56, 57, 61].

Only in more relatively recent years this field of investigation has been extended
to its stochastic counterpart, especially in the form of studies concerning finite and
infinite dimensional stochastic differential equations (SDEs). The most studied case
in the one of finite dimensional SDEs driven by Brownian motion. In this case we
can find in the literature two approaches. The first one exploits the fact that the
solutions to a Brownian-motion-driven SDEs are Markov processes associated with
a second order differential operator L , depending on the SDE, which is an analytic
and deterministic object. In this way one can apply the usual notion of symmetry,
coming from the deterministic Lie symmetry analysis. This kind of research has been
developed in [6, 7, 34, 35, 48–50]. The second approach is instead to generalize
directly the original Lie idea of symmetry as a transformation leaving invariant the
set of solutions. This idea was developed in [26, 29, 32, 41, 42, 52, 60, 63]; see also
[30] for a partial review on this subject and [18–21, 27, 28, 31, 33, 43, 44] for some
more recent results.

Contrary to what happens for the Brownian case, the literature in the setting of
SDEs driven by general càdlàg semimartingales (thus where the driving stochastic
term can contain a jump component) is very scarce. The only references are the
works of [34, 35, 35, 48–50] (already quoted) which, dealing with the general case
of Markov process, cover the setting where the driving process is a Lévy process.
Furthermore there is the work [46] covering the case of SDE driven by general
continuous semimartingales, and [2, 3, 14] discussing the case of SDEs driven by
general semimartingales with jumps.

There are also some interesting works on SDEs driven by Brownian motion and
admitting a variational structure, and a generalization of Noether theorem has been
obtained in this case (see [12, 45, 47, 58, 62, 64] and also [1, 11, 38]).

For the case of infinite dimension SDEs (or stochastic partial differential equations
SPDEs) there is no work addressing directly the problem of the formulation of the
concept of symmetry, with the notable exception of [10] in the particular case of
Zakai equation (arising in filter theory). Nevertheless there are some articles about
the reduction of an SPDE to a finite dimensional SDE looking for explicit solutions,
see [8, 9, 13, 25].
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A detailed overview of the literature on symmetries of SDEs would require too
much space, for this reason we shall limit ourselves to make a particular choice of
someof themain directions of research and refer to given references for complements.
In particular we shall review our own contributions on the subject [2, 3, 18–22]
and we limit ourselves to present, in Sect. 5, some other recent interesting ideas, in
connection with other authors, that are not covered by the cited articles.

In Sect. 2 we briefly recall definitions of symmetries of SDEs driven by Brownian
motions contained in [18–21], and summarize some main results on them. In Sect. 3
we present a corresponding discussion for the case of SDEs driven by discrete-
time semimartingale discussed in [2, 3]. In Sect. 4 we present some applications
beginning, in Sect. 4.1, with the reduction and reconstruction theorem for symmetric
SDEs as presented in [18]. The relation between the symmetries of SDEs and the
corresponding Lie-point symmetries of Kolmogorov equations are discussed in Sect.
4.2. In Sect. 4.3 the concept of weak symmetries is discussed in relation to numerical
schemes for SDEs. In Sect. 5 we present other approaches to Lie symmetry analysis
of stochastic systems, from random symmetries (Sect. 5.1) to variational SDEs and
their relation with Noether’s theory (Sect. 5.2). We close with a short presentation
of works on finite dimensional reductions for SPDEs (Sect. 5.3).

2 Symmetries of SDEs Driven by Brownian Motion

In this section we consider the following stochastic differential equation (SDE)

dXt = μ(Xt )dt + σ(Xt ) · dWt (1)

where t ≥ 0, Xt ∈ M , M being an open subset of Rm , μ : M → R
m and σ : M →

R
m×n are smooth functions, andW is an n-dimensional (standard) Brownian motion

(i.e. an Rn-Brownian motion). In the following we say that Eq. (1) is an SDE (μ, σ )

(said to be smooth if (μ, σ ) are smooth) and the process (X,W ) (where X is a
semimartingale on M and W is an n dimensional Brownian motion) is a solution to
the SDE (μ, σ ) if it satisfies Eq. (1).

Hereafter the couple (X,W ), where where X is a semimartingale on M and W
is an n dimensional Brownian motion adapted to the same filtration, shall be called
simply a (standard) process (for the concept of semimartingale see, e.g., [37, 59];
roughly speaking semimartingales form themost general class of processes forwhich
Itô integral can be defined).

Let L be the second order operator defined on C2(M) functions given by

L( f )(x) = μi (x)∂i ( f )(x) + 1

2

n∑

α=1

σ i
α(x)σ j

α (x)∂i j ( f )(x) (2)
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where x ∈ M and f ∈ C2(M). Here and elsewhere in the paper we are using Einstein
summation convention of summing over repeated indices. Under suitable assump-
tions on the coefficients (μ, σ ), the closure of L in the Banach space C0(M) is the
generator of the (Markovian) diffusion process associated with the SDE (μ, σ ) in
the sense of solving (1).

2.1 Strong Symmetries

The most simple class of symmetries of Eq. (1) is given by diffeomorphisms � :
M → M . Indeed if X is a semimartingale on M also �(X)is a semimartingale on
M , see, e.g. [37, 59].

Definition 1 We say that � is a strong (finite) symmetry of the SDE (μ, σ ) if for
any solution (X,W ) to (μ, σ ) we have that (�(X),W ) is another solution to the
SDE (μ, σ ). If Y is a vector field on M generating a one-parameter group of diffeo-
morphism �a , where a ∈ R, we say that Y is a strong (infinitesimal) symmetry of
(μ, σ ) if �a is a strong finite symmetry of (μ, σ ) for any a ∈ R.

Remark 2 The name strong symmetries, for the previous kind of invariant transfor-
mations, derives from the fact that a strong symmetry � sends any strong solution to
the SDE (μ, σ ) (in the probabilistic sense) into a strong solution to the same SDE.
Indeed (X,W ) and (�(X),W ) are solutions to (μ, σ ) having the same Brownian
motion W .

By Itô’s Lemma we have that if (X,W ) solves the SDE (μ, σ ) then (�(X),W )

solves the SDE (μ′, σ ′) where

μ′(x) = (L(�)) ◦ �−1(x) σ ′(x) = (∇� · σ) ◦ �−1(x).

This implies the following theorem.

Theorem 3 The diffeomorphism � is a strong symmetry of the SDE (μ, σ ) if and
only if

μ(x) = (L(�)) ◦ �−1(x) σ (x) = (∇� · σ) ◦ �−1(x),

where x ∈ M, with L as in (2). The vector field Y is a strong symmetry of the SDE
(μ, σ ) if and only if

Y (μ) − L(Y ) = 0 and [Y, σα] = 0,

where [·, ·] stands for the Lie brackets between a vector fields, σα is the vector field
given by the α-th colomn of the matrix σ , and α = 1, . . . ,m.

Proof The proof can be found in [19] Proposition 3, Theorem 17 and Theorem 19.
�
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2.2 Weak Symmetries

The concept of strong symmetries of an SDE is quite restrictive. Indeed let us consider
the following trivial SDE with m = n = 2, μ = 0 and σ = I2 namely

dX1
t = dW 1

t d X2
t = dW 2

t , (3)

where t ≥ 0. The solutions to Eq. (3) are the x0-translated R
2-Brownian motions

Xt = x0 + Wt (for x0 ∈ R
2). The rotations

�a(x) =
(
cos(a) − sin(a)

sin(a) cos(a)

)
· x,

where x ∈ R
2 anda ∈ R, transform solutions Xt = (X1

t , X
2
t ) toEq. (3) into processes

with similar laws, indeed �a(Xt ) = �a(x0) + �a(Wt ) = x ′
0 + W ′

t where x ′
0 ∈ R

2

andW ′
t is a new (standard) Brownian motion t ≥ 0. On the other hand�a(x) is not a

strong symmetry of (3) since �a(Xt ) �= �a(x0) + Wt , i.e. �a(Xt ) is not a solution
to the SDE (3) with respect to the same R2-Brownian motion W .

The reason for this phenomenon is that strong symmetries do not take into account
the invariance properties of Brownian motion. Indeed the Brownian motion is invari-
ant in law with respect to spatial rotations and space-time rescaling. These two
invariances of Brownian motion allow us to introduce the following set of transfor-
mations.

2.2.1 Random Rotations

Let B : M → O(n) be a smooth function (where O(n) denotes the group of orthog-
onal matrices on R

n) and let (X,W ) be a (standard) process. We define

W ′
t =

∫ t

0
B(Xs) · dWs (4)

where the integral is in the Itô sense. The following Proposition characterizes W ′.

Proposition 4 The process W ′, defined by Eq. (4), is an n dimensional Brownian
motion.

Proof The proof can be found in [19] Proposition 7. �

2.2.2 Random Time Change

Let η : M → R+ = (0,+∞) be a smooth positive function and let (X,W ) be a
standard process then we consider, for t ∈ R+:
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βt =
∫ t

0
η(Xs)ds,

and set αt = inf{s|βs > t}. The process αt is called a time change associated with η.
If Z is a stochastic process we define Hη(Z)t = Zαt . If (X,W ) is a standard process,
then we use the notation:

W ′′ = Hη

(∫ √
η(Xs)dWs

)
, (5)

where the integral is in the Itô sense.

Proposition 5 The process W ′′, defined by Eq. (5), is an n dimensional Brownian
motion.

Proof The proof can be found in [19] Proposition 5. �

2.2.3 Weak Stochastic Transformations

Definition 6 Let � be a diffeomorphism, let B : M → O(n) and η : M → R+ be
two smooth functions. We call the triad T = (�, B, η) a stochastic transformation.

A stochastic transformation admits an action on the set of smooth SDEs (μ, σ )

and on the set of standard processes (X,W ). The action ET on (μ, σ ) is defined as
follows

ET (μ) :=
(
L(�)

η

)
◦ �−1

ET (σ ) :=
(

1√
η
∇� · σ · B

)
◦ �−1,

where L is defined as in (2), and the action PT on the set of standard processes
(X,W ) is defined by

PT (X) = �(Hη(X))

PT (W ) = Hη

(∫ √
η(Xs)B(Xs) · dWs

)
.

Definition 7 A stochastic transformation T is a (finite weak) symmetry of the SDE
(μ, σ ) if for any solution (X,W ) to (μ, σ ) also PT (X,W ) is solution to (μ, σ )

(where PT (X,W ) = (PT (X), PT (W ))).

A consequence of the previous definitions is the following theorem.
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Theorem 8 A stochastic transformation T is a symmetry of the SDE (μ, σ ) if and
only if ET (μ, σ ) = (μ, σ ).

Proof The proof can be found in [19] Theorem 17. �

2.2.4 Infinitesimal Stochastic Transformations

The set T of stochastic transformations T = (�, B, η) ∈ T has the natural structure
of an infinite dimensional Lie group (more precisely of a Lie grupoid). Indeed we
can define the following composition law

T1 ◦ T2 = (�1 ◦ �2, (B1 ◦ �2) · B2, (η1 ◦ �2)η2), (6)

for any Ti = (�i , Bi , ηi ) ∈ T , i = 1, 2.
This composition satisfies the following important property.

Theorem 9 Consider the SDE (μ, σ ) and the process (X,W ), then we have

ET1◦T2(μ, σ ) = ET1(ET2(μ, σ )) PT1◦T2(X,W ) = PT1(PT2(X,W )).

Proof The proof can be found in [19] Theorem 15. �

Using the composition (6) we can define the concept of one-parameter group of
stochastic transformations Ta = (�a, Ba, ηa), a ∈ R. This one-parameter group Ta
is generated by an infinitesimal stochastic transformation V = (Y,C, τ ), where Y
is a vector field on M , C : M → o(n) and τ : M → R are smooth functions (here
o(n) is the Lie algebra associated with O(n), i.e. the Lie algebra of antisymmetric
n × n matrices) through the following relations

∂a�a = Y ◦ �a

∂a Ba = C ◦ �a · Ba

∂aηa = τ ◦ �a · ηa .

Using the composition law (6) we can also define a natural action of a finite
stochastic transformation T = (�, B, η) on an infinitesimal one V = (Y,C, τ ), and
a Lie bracket [·, ·] between infinitesimal stochastic transformations Ti = (Yi ,Ci , τi ),
i = 1, 2:

T∗(V ) = (�∗(Y ), (B · C · B−1 + Y (B) · B−1) ◦ �−1, (τ + Y (η) · η−1) ◦ �−1)

(7)
[V1, V2] = ([Y1,Y2],Y1(C2) − Y2(C1) − {C1,C2},Y1(τ2) − Y2(τ1)) (8)

where {·, ·} is the usual commutator between matrices.
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Definition 10 An infinitesimal stochastic transformationV is an infinitesimal (weak)
symmetry of the SDE (μ, σ ) if the one-parameter group Ta generated by V is a set
of (finite weak) symmetries, in the sense of Definition 7, of (μ, σ ).

We can determine a set of necessary and sufficient conditions (called determining
equations) such that V = (Y,C, τ ) is an infinitesimal symmetry of the SDE (μ, σ ).

Theorem 11 The infinitesimal stochastic transformation V = (Y,C, τ ) is a sym-
metry of the SDE (μ, σ ) if and only if the following determining equations hold

Y (μ) − L(Y ) = −τμ

[Y, σ ] + σ · C = −1

2
τσ

Proof The proof can be found in [19] Theorem 19. �

2.3 Extended Symmetries

The set of weak symmetries exploit all the internal invariance properties of Brow-
nian motion and in this way generalizes in a non-trivial way the concept of strong
symmetry of a SDE. Unfortunately this is not enough for having a correspondence
with transformations of theKolmogorov equation associatedwith a given SDE.More
precisely there is no one-to-one correspondence betweenweak symmetries of a given
SDE and (deterministic) Lie point symmetries of the associated Kolmogorov equa-
tion (see Sect. 4.2 below). For this reason in [20] a generalization of weak symmetry
is proposed considering not only the invariance of Brownian motion with respect
rotations and rescaling but also its symmetries with respect to the change of measure
(the well known Cameron-Martin-Girsanov theorem).

An extended stochastic transformation Te = (�, B, η, h) is a set of four elements
where h : M → R

n is a smooth function. The action of Te on the processes (X,W )

is the same as the one of T = (�, B, η) on X , and on W it is the following

PTe(W ) = Hη

(∫ √
η(Xs)B(Xs)(dWs − h(Xs) ds)

)
.

Furthermore if P is the probability law of (X,W ), we consider the new process
PTe(X,W ) with respect the new probability measure Q given by

dQ

dP

∣∣∣∣
T

= exp

(
n∑

α=1

∫ T

0
hα(Xs)dW

α
s − 1

2

∫ T

0
(hα(Xs))

2ds

)
, (9)

for any T ≥ 0. ByGirsanov theorem, and under some additional technical conditions
on h (see [20]), PTe(W ) is a new Brownian motion with respect to the probability
measure Q (for Girsanov’s theorem and its extension see [24]).
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We can define an action of Te on the set of SDEs (μ, σ ). In particular ETe(σ ) =
ET (σ ) and

ETe(μ) =
(
L(�) + ∇� · σ · h

η

)
◦ �−1,

with L as in (2). It is possible to define a composition between extended stochas-
tic transformations and, thus also a concept of infinitesimal extended stochastic
transformations in the following sense. An infinitesimal stochastic transformation
Ve = (Y,C, τ, H) is composed by a vector field Y , and three smooth functions C :
M → o(n), τ : M → R and H : M → R

n . The relation, between the infinitesimal
stochastic transformation Ve and the one-parameter group Te,a = (�a, Ba, ηa, ha),
a ∈ R, generated by it, is the same of the one of weak stochastic transformations for
�a, Ba and ηa , and for ha it is given by

∂aha = √
ηa B

−1
a · H ◦ �a .

Definition 12 An extended stochastic transformation Te = (�, B, η, h) is an
(extended weak) symmetry of the SDE (μ, σ ) if for any solution (X,W ) to (μ, σ )

under the probability P also PTe(X,W ) is solution to (μ, σ ) under the probabilityQ
given by (9). An infinitesimal (extended) stochastic transformation Ve is a(n extended
weak) symmetry of the SDE (μ, σ ) if the one-parameter group Te,a generated by Ve

is a set of (finite extended weak) symmetries of (μ, σ ).

It is possible to give an extension of Theorems 8 and 11 for extended stochastic
transformations.

Theorem 13 An extended stochastic transformation Te is a symmetry of the SDE
(μ, σ ) if and only if ETe(μ, σ ) = (μ, σ ). The infinitesimal extended stochastic trans-
formation Ve = (Y,C, τ, H) is a symmetry of the SDE (μ, σ ) if and only if the
following determining equations hold

Y (μ) − L(Y ) − σ · H = −τμ

[Y, σ ] + σ · C = −1

2
τσ,

with L as in (2).

Proof The proof can be found in [20] Theorem 3.13, using also results of [19]. �

3 Symmetries of SDEs Driven by Discrete Time processes

In this sectionwe consider the symmetries of discrete time processes and in particular
of iterated random maps (see [23]). The theory presented here is a special case of
the idea of symmetry of an SDE driven by a general semimartingale studied in [2].
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We consider an open setM ⊂ R
m , and a Lie group ofmatrices N . If Z is a discrete

time stochastic process on N we define

	Zn = Zn · (Zn−1)
−1.

Let 
 : M × N → M be a smooth map. If X is a discrete time process defined on
M we say that (X, Z) is the solution of the SDE 
 driven by the process Zn if

Xn = 
(Xn−1,	Zn). (10)

3.1 Gauge Symmetries

In this brief section we want to discuss the concept of gauge symmetries of a discrete
time process taking values in a Lie group. The concept of gauge symmetry of a
general semimartingale was introduced in [3]. The concept of gauge symmetry is a
generalization of the invariance of Brownianmotionwith respect to random rotations
(in the sense of Proposition 4).

Let G be a Lie group of matrices, we consider �· : G × N → N as a G action of
N , namely we require that

�g1(�g2(z)) = �g1·g2(z),

for any g1, g2 ∈ G, z ∈ N . Let Z be a discrete time stochastic process on N and let
G be a predictable process with respect to the natural filtration of Z . We define the
process Z ′ on N in the following way Z ′

0 = 1N and

	Z ′
n = �Gn (	Zn).

Hereafter if Z ′ is defined as just described we write dZ ′ = �G(dZ).

Definition 14 Using the previous notationswe say thatG is a gauge symmetry group
with respect to the action �g for the process Z if for any predictable process G we
have that Z ′ (defined as dZ ′ = �G(dZ)) has the same law as Z .

Let νn(dz,	Z1, . . . ,	Zn−1) be the probability law of 	Zn conditioned with
respect to Z1, . . . , Zn−1 (where z ∈ N ).

Theorem 15 The group of matrices G is a gauge symmetry group for Z if and only
if, for any g1, . . . , gn ∈ G, we have

νn(d�g1(z),�g2(	Z1), . . . , �gn (	Zn−1)) = νn(dz,	Z1, . . . ,	Zn−1).

Proof The proof can be found in [3] Theorem 4.5 (that provides a general result
on transformations of semimartingales) and Sect. 4.3 (where gauge symmetries of
discrete processes are discussed). �
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3.2 Weak Symmetries of Discrete Time SDEs

Definition 16 Let � : M → M be a diffeomorphism and let B : M → G be a
smooth function. We call the pair (�, B) a (weak finite) stochastic transformation.
Let Y be a vector field on M and let C : M → g (where g is the Lie algebra of G)
be a smooth function, then we call the pair (Y,C) a (weak) infinitesimal stochastic
transformation.

As for the Brownian motion case, the set of stochastic transformations admits a
composition ◦, a push-forward ·∗ and the Lie brackets [·, ·] defined as follows

T1 ◦ T2 = (�1 ◦ �2, (B1 ◦ �2) · B2)

T∗(V ) = (�∗(Y ), (B · C · B−1 + Y (B) · B−1) ◦ �−1)

[V1, V2] = ([Y1,Y2],Y1(C2) − Y2(C1) − {C1,C2}),

where T = (�, B), V = (Y,C) and Vi = (Yi ,Ci ), i = 1, 2. We can also define an
action of a stochastic transformation T = (�, B) on the equation 
 and on the
process (X, Z)

ET (
)(x, z) = �(
(�−1(x),�B(x)−1(z))

PT (X)n = �(Xn)

	PT (Z)n = �B(Xn−1)(	Zn),

where x ∈ M and z ∈ N . Hereafter we suppose that Z has a fixed probability law.

Definition 17 A stochastic transformation T is a symmetry of the SDE 
 if for any
solution (X, Z) to 
 we have that PT (X, Z) is solution to the same equation 
.

By definition we obviously have that if (X, Z) is a solution to the SDE 
 then
PT (X, Z) is a solution of the equation ET (
). Using this fact it is simple to prove
the following theorem.

Theorem 18 If ET (
) = 
 then T is a symmetry of the SDE 
.

Proof The proof can be found in [2] Theorem 5.8 (see also the corresponding dis-
cussion in [3]). �

Remark 19 The converse of Theorem 18 is in general not true. In particular if the
law of 	Zn does not have support on all of N , but has support in a proper closed
subset Ñ ⊂ N , Ñ �= N , we can only prove that ET (
)(x, z) = 
(x, z) for any
(x, z) ∈ M × Ñ . When Ñ = N then also the converse of Theorem 18 holds (see [2]
Lemma 5.9 and Theorem 5.10).
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4 Applications

4.1 Reduction and Reconstruction of Symmetric SDEs

One of the standard results of Lie symmetry analysis for ODEs is the possibility of
reducing an n dimensional ODE admitting a (non degenerate) solvable r dimensional
Lie algebra of infinitesimal symmetries to a reduced n − r dimensional ODE and, in
addition, the possibility of reconstructing the solution to the original ODE from the
solutions to the reduced one using only the integration and the inversion operation of
some functions (this is called reconstruction by quadrature). It is possible to obtain a
similar result for SDEs driven by general semimartingales admitting a solvable Lie
algebra of weak symmetries (see [2]). For simplicity we describe here only the case
of Brownian motion driven SDEs as treated in [18].

Definition 20 We say that the SDE (μ, σ ) is r -triangular with respect to the first r
coordinates x1, . . . , xr of x ∈ M , if μi (x) and σ i

α(x) depend only on xi+1, . . . , xm

for i = 1, . . . , r(≤ m) and α = 1, . . . , n.

Obviously if (X,W ) is solution of a r -triangular SDE (μ, σ ) we can write
X1
t , . . . , X

r
t , t ∈ R+, in the following way

Xi
t = Xi

0 +
∫ t

0
μi (Xi+1

s , . . . , Xm
s )ds +

∫ t

0
σ i

α(Xi+1
s , . . . , Xm

s )dW α
s ,

for α = 1, . . . , n and i = 1, . . . , r , where the last integral is in the Itô sense, in other
words we can reconstruct the solution to the m dimensional SDE (μ, σ ) from the
solution to them − r dimensional SDE ((μr+1, . . . μm), (σ r+1, . . . , σm)) using only
the Riemann and Itô integral respectively.

So, if (μ, σ ) is an n dimensional SDE such that there exists a stochastic trans-
formation T for which ET (μ, σ ) is in an r -triangular form, we can reconstruct the
solution (X,W ) from ET (Xr+1), . . . , ET (Xn) computing the inverse T and using
only the Riemann and respectively Itô integration.

In order to describe the reduction and reconstruction theorem for SDEs we intro-
duce the following definition.

Definition 21 Let Y1, . . . ,Yr be r vector fields on M we say that Y1, . . . ,Yr are in
canonical form if

Y i
j (x) = δij ,

where x ∈ M , for i ≥ j , and i, j ∈ {1, . . . , r}.
We give now the theorem which guarantees the existence of a transformation T

putting a symmetric SDE (μ, σ ) in an r -triangular form.

Theorem 22 Suppose that the SDE (μ, σ ) admits an r dimensional solvable Lie
algebra V1 = (Y1, B1, τ1), ..., Vr = (Yr , Br , τr ) of (weak) symmetries (in the sense
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of Definition 7), such that for any x ∈ M the matrix (Y1(x)| . . . |Yr (x)) has maximal
rank. Then there exists a (locally defined) transformation T = (�, B, η) (in the sense
of Definition 6) satisfying

Yi (B) = Ci · B Yi (η) = τiη,

i = 1, . . . , r , and such that �∗(Y1), . . . , �∗(Yr ) are in canonical form (in the sense
of Definition 21). Furthermore for any T satisfying the previous conditions ET (μ, σ )

is in an r-triangular form.

Proof The proof can be found in [18] Theorem 4.4 and Theorem 4.11 (where The-
orem 24 of [19] is used). See also Theorem 5.19 of [2] where a more general result
for SDEs driven by semimartingales with jumps is proven. �

4.2 Symmetries of SDEs and Symmetries of Corresponding
Kolmogorov equations

The solutions to a Brownian motion driven SDE (or more generally the solutions to
a Lévy process driven SDE) are Markov processes. This implies that SDEs of the
form (1) are closely related to the corresponding Kolmogorov equations: these are
the (deterministic) PDEs defined by

∂t u = L(u) = μi∂i (u) + 1

2

n∑

α=1

σ i
ασ j

α ∂i j (u), (11)

where u belongs to C2(R+ × M). The relation between Eqs. (1) and (11) is the
following: let f : M → R be a C2 function with compact support then the unique
solution u(x, t) to Eq. (11) such that u(x, 0) = f (x) is given by

u(x, t) = E[ f (Xx
t )],

where t ∈ R+, Xx
t is the unique solution to Eq. (1) such that Xx

0 = x and x ∈ M .
Since Eq. (11) is a deterministic PDE we can study its Lie point symmetries (for

this concept see [56, 57]). Here for simplicity we consider only the symmetries that
do not depend on the time t (for the general case see [20]). Since (11) is a PDEwe can
see it as a submanifold of the second order jet bundle J 2(Rm+1,R) described by the
equation ∂t u + L(u) = 0 (see, e.g., [14, 20]). In this setting a Lie point infinitesimal
symmetry of (11) is a vector field

� = −m(x)∂t + φi (x)∂xi + 
(x, u)∂u (12)
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(where (x, u) are the standard coordinates on the jet space J 0(Rm+1,R)) such that
the second order prolongation �(2) satisfies �(2)(∂t u − L(u)) |∂t u−L(u)=0 = 0 (see
[20]).

Using the previous condition we obtain


(x, u) = −k(x)u + k0(x)
L(k0) = 0
L(k) = 0
L(φ) − �(μ) + 2 A · ∇k − L(m)μ = 0
L(m)A + �(A) − ∇φ · A − A · (∇φ)T = 0
A · ∇m = 0,

(13)

with L and μ as in (11), for some smooth functions k and k0, where A = 1
2σ · σ T

(being σ as in (11) and ·T standing for transpose) and with φ as in (12).
We have the following important theoremwhich establishes a relation betweenLie

point symmetries of the Kolmogorov equation (11) and extended weak symmetries
of the SDE (μ, σ ) (in the sense of Definition 7).

Theorem 23 Let � be a Lie point symmetry of Eq. (11) and suppose that σ

has maximal rank, then the extended infinitesimal stochastic transformation Ve =
(Y,C, τ, H) given by

Y i = φi

τ = L(m)

C = (σ T · σ)−1 · σ T · [φ, σ ] − 1

2
L(m)

H = σ T · ∇k,

where i = 1, . . . ,m, is an extended weak symmetry of the SDE (μ, σ ).

Proof The proof can be found in [20] Theorem 4.6. �

Remark 24 The converse of Theorem 23 is false, because, in general, there are
more extended weak symmetries for a SDE (μ, σ ) than Lie point symmetries for
the associated Kolmogorov equation. This is due to the fact that the condition H =
σ T · ∇k, with L(k) = 0, as in (13), is quite restrictive and it is not satisfied by a
general extended stochastic transformation.

In [20] (Theorem4.6 andRemark 4.7) it is proved that if we restrict to the family of
transformation generating a Doob h-transform (which is a probabilistic requirement
equivalent to the analytic conditions that there exists a function k such that L(k) = 0
and H = σ T · ∇k) the converse of Theorem 23 also holds.
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4.3 Weak Symmetries of Numerical Schemes for SDEs

An important family of iterated randommaps of the form (10) is given by the discrete
numerical approximation schemes for Brownian motion driven SDEs. In this section
we analyze only the simplest numerical scheme for a given SDE: the Euler scheme.
A more general analysis considering also the Milstein scheme is given in [2, 22].

Let (μ, σ ) be a smooth SDE, then we can define the following Euler discrete
approximation scheme

Xi
t� = Xt�−1 + μi (Xt�−1)(t� − t�−1) + σ i

α(Xt�−1)(W
α
t� − W α

t�−1
), (14)

where � ∈ N, α = 1, . . . , n. Let us consider the semimartingale Z = (Z0, Zα) ∈
R

n+1 defined by
Z0
t� = t� Zα

t� = W α
t� , (15)

with α ∈ {1, . . . , n}. We have that Eq. (14) can be written as an iterated random map
of the form (10) with 
 given by


 i (x, z) = xi + μi (x)z0 + σ i
α(x)zα,

with x ∈ M and z ∈ N , and with the driving process given by the discrete time
semimartingale Z = (Z0, Zα) given by the expression (15). Consider the action
�B(z) = (z0, Bβ

α z
α) (where B ∈ O(n)) of O(n) on R

n+1. We have the following
important theorem.

Theorem 25 The discrete semimartingale (15) admits O(n) with action �B as
gauge symmetry group (in the sense of Definition 14).

Proof The proof can be found in [2] Theorem 7.2. �
Since the numerical scheme (14) can be rewritten as a random map 
, and O(n)

is a gauge symmetry group for Z with action �B , we can say that (Y,C) is a weak
symmetry for the numerical scheme (14) if it is a weak symmetry for the random
map 
. The determining equations for SDE (14) reads

Y i (
(x, z0, zα)) − Y j (x)∂x j (
 i )(x, z0, zα) = −Cα
β (x)zβ∂zα (
 i )(x, z0, zα) (16)

with x ∈ M and z ∈ N . There is an important relation between weak symmetries of
the numerical scheme (14) and of the SDE (μ, σ ).

Theorem 26 Let V = (Y,C, 0) be a weak infinitesimal symmetry of SDE (μ, σ ).
When Y i (x) are polynomials of at most degree one in x1, . . . , xm then (Y,C) is a
weak symmetry of the Euler discretization scheme (14). Conversely if for a given
x0 ∈ M, span{σ1(x0), . . . , σn(x0)} = R

m then also the converse is true.

Proof The proof can be found in [2] Theorem 7.3 (see also [22] where the Theorem
is proven for C = 0). �
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Whenwe have a solvable Lie algebra ofweak symmetries of the numerical scheme
(14) we can find a weak (finite) stochastic transformation T = (�, B) putting Eq.
(14) in triangular form. We can use this privileged coordinate system for integrating
the SDE (μ, σ ). This strategy was applied in [22] to linear scalar equations and
some theoretical and practical advantages in terms of the forward error for long time
integration have been put in evidence.

5 Other Results on the Lie Symmetry Analysis
of Stochastic Systems

5.1 Random Symmetries

In this Section we try to summarize, very shortly and using our language introduced
in the first part of the present paper, the idea of Random symmetries, first proposed
by Gaeta and Spadaro in [33] and which has received further investigation in [27,
28, 31, 43, 44] (see also the review [30]). We use here some notations closer to the
ones used in the first part of the present paper and different from the ones used in
the articles cited above. For simplicity we consider here only autonomous equations
and autonomous transformations (i.e. non depending explicitly on time t).

The main idea of random symmetries is to consider transformations ϕ : M ×
R

n → M depending both on the variable X of the process (X,W ) and on the
Brownian motion W . In other words one considers a triad Tr = (ϕ, B0, η0) where
ϕ(·, w) is a diffeomorphism for each w ∈ R

n , B0 ∈ O(n) and η0 ∈ R+ are con-
stants. In this case one takes, in the language used before, an SDE (μr , σr ), where
μr : M × R

n → R
m and σr : M × R

n → R
m×n are smooth functions, generically

depending on both x ∈ M and w ∈ R
n . In this case (X,W ) is a solution of the SDE

(μr , σr ) if
dXi

t = μi
r (Xt ,Wt )dt + σ i

r,α(Xt ,Wt )dW
α
t .

One can then also consider the random generator

Lr ( f )(x, w) = μi
r∂xi f + 1

2

n∑

α=1

(σ i
r,ασ j

r,α∂xi x j f + 2σ i
r,α∂xiwα f + ∂wαwα f ),

where x ∈ M , w ∈ R
n and f ∈ C2(M × R

n). Using our language, the action of the
random transformation Tr on the processes (X,W ) is given by

PTr (X)t = ϕ
(
X t

η0
,W t

η0

)

PTr (W )t = √
η0B0 · W t

η0
.
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Using Itô formula one can determine the action of Tr on the SDE (μ, σ ), which is
given by the following relations

ETr (μr )(x, w) = 1

η0
Lr (ϕ)

(
ϕ−1

(
x,

B−1
0√
η0

· w
)

,
B−1
0√
η0

· w

)

ETr (σr )(x, w) = 1√
η0

(∇xϕ · σr · B−1
0 + ∇wϕ · B−1

0 )

(
ϕ−1

(
x,

B−1
0√
η0

· w
)

,
B−1
0√
η0

· w

)
.

Definition 27 We call finite random symmetry of the SDE (μr , σr ) a random trans-
formation Tr such that for any solution (X,W ) to (μr , σr ) also PTr (X,W ) is solution
to (μr , σr ).

Theorem 28 A random transformation Tr is a symmetry of the SDE (μr , σr ) if and
only if ETr (μr , σr ) = (μr , σr ).

Proof The proof is a consequence of Itô lemma and uniqueness of the martingale
representation for processes adapted to a Brownian motion filtration (see [27] for
more details). �

We can introduce also infinitesimal random transformation (Yr ,C0, τ0), where
Yr : M × R

n → R
m , C0 is an antisymmetric matrix and τ0 ∈ R, and the related

infinitesimal symmetries.

Theorem 29 An infinitesimal random transformation V = (Yr ,C0, τ0) is a sym-
metry of the SDE (μr , σr ) if and only if the following determining equations are
satisfied

Yr (μ) + ∂wαμ · Cα
0,βwβ − Lr (Y ) = τ0μ

(Yr (σr ) + ∂wασrC
α
0,βwβ) − ∇xYr · σr − ∇Yr = 1

2
τ0σr + σr · C0.

Proof The proof is provided in [27]. �
Remark 30 It is obviously possible to consider B0 and τ0 to be functions of x and
w. Unfortunately for general transformations of this form the random transformation
acts in a non-local way on the coefficients (μr ,σr ). This makes it difficult to write
some explicit determining equations.

Also in this case in [28] a theorem of reduction and reconstruction has been
derived. Using our language one can call (infinitesimal) simple random transforma-
tion an infinitesimal random transformation of the form Vr = (Yr , 0, 0).

Theorem 31 Let Vr,1 = (Yr,1, 0, 0), . . . , Vr,k = (Yr,k, 0, 0) be a solvable Lie alge-
bra of symmetries of the SDE (μr , σr ) then there exists a random transformation
Tr = (ϕ, In, 1) such that ETt (μr , σr ) is in triangular form with respect the first k
variables.

Proof The proof can be found in [28]. �
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5.2 Variational SDEs and Noether Theorem

In this section we want to treat a special form of SDEs, admitting a variational struc-
ture which arises as a stochastic perturbation of the standard Lagrangian mechanics
(see [64]). In this case it is possible to generalize many properties of the Lagrangian
mechanics (see [12, 45, 47, 58, 62, 64] and also [1, 11, 38]). We show here one of
the simplest result concerning variational stochastic systems and symmetries, namely
a stochastic version of Noether’s theorem. For simplicity we present here the case
involving only regular SDEs, for a weak version holding also for semimartingales
see [12, 45]. See [15] for recent results.

Consider the following SDE with additive noise, over Rm ,

dXt = b(Xt , t)dt + dWt (17)

where t ≥ 0, with initial condition X0 = x ∈ R
m and smooth time dependent drift

b. This kind of system can be viewed as a stochastic perturbation of a classical ODE
of the form

Ẋt = b(Xt , t),

with t ≥ 0 and X0 = x . Furthermore we have that

v(x, t) := lim
h→0

E

[
Xt+h − Xt

h

∣∣∣∣ Xt = x

]
= b(x, t), (18)

where E[·|Xt = x] denotes the conditional expectation given that Xt = x , with x ∈
R

m , t ∈ R+. For this reasonwe can consider v(x, t) = b(x, t) as a kind of generalized
velocity for the system. Consider now the Lagrangian

L(v, x) = |v|2
2

+ V (x),

where x ∈ R
m and v ∈ TRm , for some smooth function V bounded from below.

We define a special family of Eq. (17) for which

S[b] := E

[∫ T

0
L(v(Xt , t), Xt )dt

]
(19)

is minimized. Putting

S(x, t) = min
b∈C∞(M,Rm )

(
E

[∫ t

0
L(v(Xs, s), Xs)ds

])

we have that S solves the Hamilton-Jacobi-Bellman equation
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∂t S + 1

2
	S − 1

2

|∇S|
2

2

+ V = 0 (20)

with final condition S(x, T ) = 0 and we obtain that the minimizer of the action (19)
is exactly

b(x, t) = v(x, t) = ∇S(x, t). (21)

We can introduce the concept of symmetry of the Lagrangian L and of the variational
problem (17) with action (19).

Consider a vector field Y : Rm × R+ → R
m on R

m (depending also on the time
t) and a time vector field T : R+ → R. They generate a one parameter group of
transformations of the form

x ′ = �a(x, t) t ′ = fa(t),

with a ∈ R, t ∈ R+ and x ∈ R
m . Using the expression of the velocity (18), we obtain

that v is transformed in the following way

v′(x ′, t ′) = (∇�a · v)(�−a(x
′, t ′), f−a(t

′)). (22)

Definition 32 We say that the infinitesimal transformation (Y, T ) leaves invariant
the Lagrangian L if for each a ∈ R

|v(�−a(x ′, t ′), f−a(t ′))|2
2

+ V (�−a(x
′, t ′)) = L(v′(x ′, t ′), x ′)

where v′ is given by the expression (22) and v satisfies Eq. (21) (and S satisfies Eq.
(20)).

We introduce now the following expression

P(x, t) = v(x, t) · ∇Y (x, t) + T (t)

( |v(x, t)|2
2

+ V (x)

)
.

The functional P can be view as a generalization to the stochastic case of the deter-
ministic momentum associated with the vector field Y and time change T . In the
stochastic case we cannot expect the quantity P(Xt , t) to be a constant as a func-
tion of t . Indeed if P(Xt , t) were a constant of motion, the law of the process Xx0

t

(i.e. the solution to SDE (17) such that Xx
0 = x0) would be supported on the m − 1

dimensional manifold P(x, t) = P(x0, 0). But for processes with smooth drift and
additive noise the support of the law of Xx0

t is the whole R
m . Nevertheless also

in the stochastic case the symmetry (Y, T ) is associated with the conservation of
P(Xt , t), understood not in the pathwise sense, but rather in the mean sense. Indeed
the following theorem of [62] holds.
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Theorem 33 Suppose that v is a solution of the variational problem (17)with action
(19) (namely suppose that v satisfies the relation (21) with S satisfying Eq. (20)) and
let (Y, T ) be a symmetry of the Lagrangian L, then for any solution to the Eq. (17)
we have that the process

Pt := P(Xt , t)

is a martingale with respect to the filtration generated by the Brownian motion W in
(17).

Proof The proof is given in [62]. �

5.3 Finite Dimensional Reduction of SPDEs

In principle, it is possible to develop a concept of Lie point symmetry for SPDEs
generalizingwhat has been done for deterministic PDEs (see [56, 57]). Unfortunately
this approach is not so fruitful for two reasons. The first one is that the definition of
invariance of an SPDEs with respect to Lie point transformations is too restrictive:
in fact the SPDEs with this kind of invariance are very few and not so useful in the
applications (see [10] where this approach is applied to the Zakai equation). The
second reason is that, assuming a notion of symmetry of an SPDE based on Lie
point transformations, the use of the invariant solutions to an SPDE for reducing the
considered SPDE to a finite dimensional SDE, turns out to be too restrictive since
the dimension of the reduced SDE is fixed by the order of the considered equation
and it is often too low for being interesting in the applications.

Instead of extending the notion of symmetry of PDEs to the SPDEs case and then
using this property for reducing an SPDE to a finite dimensional SDE, we make
these two steps at once facing directly the problem of reducing an SPDE to a finite
dimensional SDE. We here consider an SPDE of the form

dUt (x) = Fα(x,Ut (x), ∂
σ (Ut (x))) ◦ dSα

t (23)

where x ∈ M ⊂ R
m and α = 1, . . . , r ,Ut (x) is a semimartingale taking values inR,

Fα(x, u, uσ ) are smooth functions of the independent coordinates xi , the dependent
coordinate u and its derivatives uσ (where σ ∈ N

m
0 is a multi-index denoting the

number of derivatives with respect the coordinates xi ), S1, . . . , Sr are continuous
semimartingales and ◦ denotes the Stratonovich integral (see, e.g., [37, 59]).

A finite dimensional solution to the SPDE (23) is a solution Ut (x) to (23) for
which there exists a function K : M × R

n → R and a semimartingale Bt (adapted
to the filtration of S1, . . . , Sr ) taking values in Rn such that

Ut (x) = K (x, Bt ). (24)
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Generic SPDEs of the form (23) do not admit finite dimensional solutions, but it
is possible, using the methods of Lie symmetry analysis of PDEs (in particular the
notion of differential constraints see [16, 17]), to provide a sufficient condition such
that solutions, of the form (24), exist.

We introduce the vector fields

Dxi = ∂xi +
∑

σ

uσ+1i ∂uσ

where 1i = (δi j ) j=1,...,m ∈ N
m
0 . We define also Dσ = Dσ1

x1 · · · Dσm
xm . We denote by

G the set of smooth real-valued functions of the independent coordinates xi , the
dependent coordinate u and of a finite number of its derivatives uσ . If F,G ∈ G we
write

{F,G} =
∑

σ∈N0

(Dσ F · ∂uσ G − ∂uσ F · DσG).

We have that the brackets {·, ·} gives to G the structure of a (real) Lie algebra.

Definition 34 We say that F1, . . . , Fr generates a finite dimensional Lie algebra if
span{F1, . . . , Fr } generates a finite dimensional Lie subalgebra ofG with respect to
the Lie brackets {·, ·}.

Let F ∈ G and let f ∈ C∞(M,R) be a smooth function. We then say that the
evolution equation F has a unique solution with respect to the initial condition f if
then there exist a T > 0 and a unique function v ∈ C∞(M × [0, T ],R) such that

∂tv(x, t) = F(x, v(x, t), ∂σ
x v(x, t))

and v(x, 0) = f (x).
Thanks to the previous definitions we can obtain the following theorem.

Theorem 35 Suppose that S1t in (23) satisfies S
1
t = t , and that the evolution equation

F1 has a solution with respect to the initial condition f ∈ C∞(M,R), and that
F2, . . . , Fr are at most of first degree (i.e. they are independent of uσ for |σ | > 1),
and that F1, . . . , Fr generates a finite dimensional Lie algebra. Then there exist
a smooth function K : M × R

n → R, such that K (x, 0) = f (x), and a stochastic
process Bt , taking values in R

n, defined till a stopping time τ > 0 and such that
B0 = 0, such that Ut (x) = K (x, Bt ) is a solution to Eq. (23) for t < τ.

Proof The theorem in this formulation is proven in the particular case of Zakai
equation and in [8, 9] general in [13, 17].A related result using a different formulation
and with different hypotheses is proven in [25]. �
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Markov Processes with Jumps on
Manifolds and Lie Groups

David Applebaum and Ming Liao

Abstract We review some developments concerning Markov and Feller processes
with jumps in geometric settings. These include stochastic differential equations in
Markus canonical form, the Courrège theorem on Lie groups, and invariant Markov
processes on manifolds under both transitive and more general Lie group actions.

Keywords Feller process · Lévy process · Stochastic differential equation ·
Manifold · Lie group · Symmetric space

1 Introduction

Stochastic differential geometry is a deep and beautiful subject. It is essentially the
study of stochastic processes that take their values in manifolds, and so it natu-
rally sits at the intersection of probability theory with differential geometry, but it
also impacts on, and makes use of techniques from real, stochastic and functional
analysis, dynamical systems and ergodic theory. If the manifold has the additional
structure of being a Lie group, then more tools are available and the results are of
considerable interest in their own right. By far the majority of work on the subject
has arisen from studying Markov processes that arise as the solutions of stochastic
differential equations (SDEs) on manifolds or Lie groups. From its beginnings with
the pioneering work of Itô in 1950 [30] until the 1990s, the emphasis was on pro-
cesses with continuous sample paths that are obtained by solving SDEs driven by
Brownian motion. For accounts of this work, see [19, 20, 27] and references therein.
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More recently, there has been increasing interest in studying processes with jumps
which are solutions of SDEs driven by Lévy processes. The material reviewed in
this paper is wholly concerned with the jump case, including Lévy processes in Lie
groups and manifolds, and generalisations.

The organisation of the paper is as follows. We begin with a short Sect. 2 that
reviews the key definitions of Markov and Feller processes in a suitably general
setting. In Sect. 3, we describe SDEs driven by Lévy processes on manifolds in
Markus canonical form. If unique solutions exist, then they give rise to a Markov
process. As an examplewe showhow to obtain a Lévy process on a compactmanifold
by projection from the solution of an SDE on the frame bundle. When there are
no jumps, this is precisely the celebrated Eels–Elworthy construction of Brownian
motion on a manifold. The next section is more analytic. We outline the proof of
a global version of the Courrège theorem in a Lie group, which gives a canonical
form for a linear operator that satisfies the positive maximum principle (PMP). The
probabilistic importance of this result is that the generators of all sufficiently rich
Feller processes satisfy the PMP, and so their generators must be of this form. Indeed
we see that the generators are characterised by a real-valued function, a vector-
valued function, a matrix-valued function, and a kernel, that may be probabilistically
interpreted as describing killing, drift, diffusion and jump intensity (respectively).
We also describe how, when the group is compact, the generator may be represented
by a pseudo-differential operator in the Ruzhansky–Turunen sense.

Sections5 and 7 deal with Markov processes that are suitably invariant (i.e. their
transition probabilities are invariant) under the action of a Lie group. In Sect. 5, we
examine the case where the group acts transitively. In this case the manifold is a
homogeneous space and the Markov process is, in fact, a Lévy process. To consider
the non-transitive case, we need the notion of inhomogeneous Lévy process in a
homogeneous space, i.e. a process that has independent, but not necessarily stationary
increments. These are describedmore fully in the short Sect. 6. In Sect. 7, we consider
the non-transitive case where we may effectively assume that the manifold M is the
product of another manifold M1 and a homogeneous space M2. Then our process is
the product of a radial part, that lives in M1, and an angular part that lives in M2. In
fact the radial part is a Markov process, and the angular part is an inhomogeneous
Lévy process. In the case of sample path continuity, some more detailed results are
given.

We emphasise that this survey is by no means comprehensive. Our goal is the
limited one of giving an introduction to the subject, and placing the spotlight on
some key themes where there is active work going on. For more systematic study
of Lévy processes on Lie groups and invariant Markov processes on manifolds, see
[32, 33]. An important topic that is not dealt with here is the application of Malliavin
calculus onWiener–Poisson space to study regularity of transition densities for jump-
diffusions. The recently published monograph [31] presents a systematic account of
key results in this area.

Notation. If E is a locally compact Hausdorff space, the Borel σ -algebra of E is
denoted as B(E). We denote by F(E), the space of all real-valued functions on E ,
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and C0(E) is the Banach space (with respect to the supremum norm) of all real-
valued, continuous functions on E that vanish at infinity. If M is a finite-dimensional
real C∞-manifold, then C∞

c (M) is the dense linear manifold in C0(M) comprising
all smooth functions with compact support.

The trace of a real or complex d × d matrix A is written tr(A). We denote as B1,
the open ball of radius 1 in R

d that is centred on the origin.

2 Markov and Feller Processes

Let (�,F , P) be a probability space and (E, E) be ameasurable space. An E-valued
stochastic process is a family X := (Xt , t ≥ 0) of random variables defined on �

and taking values in E (so for all t ≥ 0, Xt is F − E measurable). Now suppose that
F is equipped with a filtration (Ft , t ≥ 0). An adapted E-valued stochastic process
X is a Markov process if for all bounded measurable functions f : E → R, and all
0 ≤ s ≤ t < ∞,

E( f (Xt )|Fs) = E( f (Xt )|Xs) (a.s.)

We then obtain a family of linear operators (Ts,t , 0 ≤ s ≤ t < ∞) (in fact, these
are also contractions and positivity preserving) on the Banach space BE(E) of all
boundedmeasurable real-valued functions on E (equippedwith the supremumnorm)
by the prescription

Ts,t f (x) = E( f (Xt )|Xs = x).

From now on all Markov processes that are considered will be homogeneous, in
that Ts,t = T0,t−s =: Tt−s , unless otherwise stated. Then the family (Tt , t ≥ 0) is an
algebraic operator (contraction) semigroup on BE(E), in that for all s, t ≥ 0:

Ts+t = Ts Tt , and T0 = I.

From now on, we will assume that E is a locally compact, second countable Haus-
dorff space and E is its Borel σ -algebra For each t ≥ 0, B ∈ E, x ∈ E we define the
transition probability by

pt (x, B) = P(Xt ∈ B|X0 = x) = E(1X−1
t (B)|X0 = x).

We then have the representation

Tt f (x) =
∫

E
f (y)pt (x, dy), (2.1)
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for all t ≥ 0, f ∈ BE(E), x ∈ E , where we have taken a regular version1 of the
transition probability. If the mappings x → pt (x, B) are measurable, we have the
Chapman–Kolmogorov equations

ps+t (x, B) =
∫

E
ps(y, B)pt (x, dy).

We would like to write down a differential equation for the transition probabilities
which would enable us to extract information about these. This should be of the form
of Kolmogorov’s forward equation

∂pt (x, B)

∂t
= A† pt (x, B), (2.2)

where A† is the formal adjoint of a linear operator A acting on a suitable space of
functions. We say that our process X is a Feller process if (Tt , t ≥ 0) is a Feller
semigroup, i.e.

1. Tt (C0(E)) ⊆ C0(E) for all t ≥ 0,
2. limt→0 ||Tt f − f || = 0 for all f ∈ C0(E).

It then follows that (Tt , t ≥ 0) is a strongly continuous contraction semigroup
on C0(E). Hence it has an infinitesimal generator A defined on a dense subspace
Dom(A) of C0(E) so that for all f ∈ Dom(A),

lim
t→0

∣∣∣∣
∣∣∣∣Tt f − f

t
− A f

∣∣∣∣
∣∣∣∣ = 0.

It is precisely this operator that enables us to give meaning to (2.2).

3 Stochastic Differential Equations on Manifolds

There are two ways of making sense of stochastic differential equations (SDEs)
on manifolds. The first dates back to Itô [30], and is nicely described in Chap.5
of Ikeda–Watanabe [29]. It involves solving the equation in local co-ordinates in
each chart and then showing that the solutions transform geometrically on overlaps.
Another method, which can be found in Elworthy [20], involves using the Whitney
or Nash embedding theorem to embed the manifold into a Euclidean space of larger
dimension. In that larger space, we must then show that if the initial data lie on the
embeddedmanifold, then so does the solution for all later times. If the driving noise is
a continuous semimartingale we must use the Stratonovitch differential to set up the
SDE, and for discontinuous semimartingales, the more general Marcus canonical

1 Our assumptions on (E, E) ensure that such a version exists.
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form. However we cannot expect to get Markov processes as solutions with such
great generality. Nonetheless, by the argument of Sect. 6.4.2 in [2] pp. 387–8, we
find that if global solutions exist, then they yield Markov processes when the driving
noise is a Lévy process. To be more specific, we follow [10]. Let M be a manifold
of dimension d, and consider an R

d -valued Lévy process L = (L(t), t ≥ 0) having
Lévy measure ν and Lévy–Itô decomposition (see Chap.2 of [2] for background and
explanation of the notation)

Li (t) = bi t +
m∑

j=1

σi j B j (t) +
∫

B1\{0}
yi Ñ (t, dy) +

∫
Bc
1

yi N (t, dy),

for all i = 1, . . . , d, t ≥ 0.
Let Y1, . . . , Yd be C∞ vector fields which have the properties that

(A1) All finite linear combinations of Y1, . . . , Yd are complete,
(A2) Each Y j has bounded derivatives to all orders in every co-ordinate system

(obtained by smoothly embedding M into a Euclidean space).

Now consider the following SDE

d Xt =
d∑

i=1

Yi (Xt−) � d L(t) (3.1)

with initial condition X0 = p (a.s.) (where p ∈ M). The � stands for the Markus
canonical integral, so in a local co-ordinate systemcontaining p wehave the symbolic
form

Xt = p +
d∑

i=1

bi

∫ t

0
Yi (Xs−)ds +

d∑
i=1

m∑
j=1

σi j

∫ t

0
Yi (Xs−) ◦ d B j (s)

+
∫ t

0

∫
B1\{0}

⎡
⎣exp

⎛
⎝ d∑

j=1

y j Y j

⎞
⎠ (Xs−) − Xs−

⎤
⎦ Ñ (t, dy)

+
∫ t

0

∫
Bc
1

⎡
⎣exp

⎛
⎝ d∑

j=1

y j Y j

⎞
⎠ (Xs−) − Xs−

⎤
⎦ N (t, dy)

+
∫ t

0

∫
B1\{0}

⎡
⎣exp

⎛
⎝ d∑

j=1

y j Y j

⎞
⎠ (Xs−) − Xs− −

d∑
j=1

y j Y j (X (s−))

⎤
⎦ ν(dy)ds.

where exp is the exponential mapping from complete vector fields to diffeomor-
phisms, and ◦ is the Stratonovitch differential. Under the stated conditions, we do
indeed obtain a global solution (that is in fact a stochastic flow of diffeomorphisms)
and which, as discussed above will be a Markov process. In fact the conditions are
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always satisfied if the manifold is compact. We might also ask about the Feller prop-
erty. In general this is not so easy to answer; for SDEs driven by Lévy processes
in Euclidean space, it is sufficient for coefficients to be bounded as well as suit-
ably Lipschitz continuous (see Sect. 6.7 of [2]). We do have the following result for
manifolds.

Theorem 3.1 If M is compact then the solution to (3.1) is a Feller process. If A is
the infinitesimal generator of the transition semigroup, then C2(M) ⊆ Dom(A) and
for all f ∈ C2(M), x ∈ M,

A f (x) =
d∑

i=1

bi Yi f (x) + 1

2

d∑
i=1

m∑
j=1

ai j Yi Y j f (x)

+
∫
Rd\{0}

[
f

(
exp

(
d∑

i=1

yi Yi

)
x

)
− f (x) −

d∑
i=1

yi Yi f (x)1B1(0)(y)

]
ν(dy),

(3.2)

where the matrix a := σσ T .

Proof We just sketch this as it is along similar lines to that of Theorem 6.7.4 in [2]
pp. 402–3. Let �t be the solution flow that takes each x ∈ M to the solution of (3.1)
at time t with initial condition X0 = x (a.s.). Then we have Tt f (x) = E( f (�t (x)))

for each t ≥ 0, f ∈ C(M). Both (A1) and (A2) hold and so the mapping �t is con-
tinuous. Hence Tt : C(M) → C(M) by dominated convergence. Using Itô’s formula
we deduce that for all f ∈ C2(M),

Tt f (x) − f (x) =
∫ t

0
Ts A f (x)ds,

and the result follows easily from here. �

Another interesting example of a class of Feller processes on compact Riemannian
manifolds are the isotropic Lévy processes which are obtained by first solving the
equation

d Rt =
d∑

j=1

Hj (Rt−) � d L j (t), (3.3)

on O(M), the bundle of orthonormal frames over M . Here H1, . . . , Hd are horizontal
vector fields (with respect to the Riemannian connection on M), and L is an isotropic
Lévy process onRd (i.e. its laws are O(d)-invariant). The required isotropic process
is given by Xt = π(Rt ) where π : O(M) → M is the canonical surjection. The
generator of the Feller process X is the sumof a non-negativemultiple of theLaplace–
Beltrami operator and an integral superposition of jumps along geodesics weighted
by the Lévy measure of L . For details see [8]. If L is a standard Brownian motion
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so that (3.3) reduces to a Stratonovitch equation, then X is Brownian motion on M
whose generator is the Laplace–Beltrami operator.

Now return to the SDE (3.1). In [9], it is shown the this equation has a unique
solution (which will be a Markov process) if (A1) and (A2) are replaced by the
single condition that the vector fields Y1, . . . , Yd generate a finite-dimensional Lie
algebra. In general this is quite a strong assumption; as we are essentially saying that
solution flow only explores a “small” finite-dimensional part of the “huge” infinite-
dimensional diffeomorphism group of M . But one case where it occurs naturally is
if M is a Lie group, which we now denote as G, and if Y1, . . . , Yd are assumed to
be left-invariant vector fields which form a basis for the Lie algebra g of G. Before
proceeding further, we will define a Lévy process on a Lie group. This is precisely
as in the well-known Euclidean space, i.e. a càdlàg process X = (Xt , t ≥ 0), that
is stochastically continuous, satisfies X0 = e (a.s.), where e is the neutral element
of G and has stationary and independent increments, where the increment between
times s and t with s ≤ t , is understood to be X−1

s Xt . Since the pioneering work of
Hunt in 1956 [28], it has been known that Lévy processes are Feller processes (take
the filtration to be the natural one coming from the process). The associated Feller
semigroup is defined for f ∈ C0(G), σ ∈ G, t ≥ 0 by

Tt f (σ ) = E( f (σ Xt )) =
∫

G
f (στ)ρt (dτ),

where ρt is the law of Xt . In fact (ρt , t ≥ 0) is a weakly continuous, convolution
semigroup of probability measures on (G,B(G)). Hunt also showed that the gener-
ator A has the following canonical representation on2 C∞

c (G) ⊆ Dom(A): For each
σ ∈ G, f ∈ C∞

c (G),

A f (σ ) =
d∑

i=1

bi Yi f (σ ) + 1

2

d∑
i, j=1

ai j Yi Y j f (σ )

+
∫

G\{e}

(
f (στ) − f (σ ) −

d∑
i=1

xi (τ )Yi f (σ )

)
ν(dτ),

(3.4)

where b = (b1, . . . , bd) ∈ R
d , a = (ai j ) is a non-negative definite, symmetric d × d

real-valued matrix and ν is a Lévy measure on G, i.e. a Borel measure on G \ {e}
which is such that for every canonical co-ordinate neighbourhood U of e we have

∫
U\{e}

(
d∑

i=1

x2
i (g)

)
ν(dg) < ∞, and ν(U c) < ∞.

2 In fact he obtained the representation on a larger domain, but we will not need that here.
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Here xi ∈ C∞
c (G) for i = 1, . . . , d are such that (x1, . . . , xd) are canonical co-

ordinates for G in the neighbourhood U of e. The triple (b, a, ν) are called the
characteristics of X , and they uniquely determine (ρt , t ≥ 0).

In the case where the exponential map from g to G is onto (e.g. if G is compact
and connected, or simply connected and nilpotent), then the Lévy process X arises
as the unique solution to the SDE (3.1), provided the characteristics of the driving
Lévy process L are chosen so as to match those in (3.4). More generally, X is written
as a more general type of stochastic integral equation (for details see [9, 32]).

Remark. A more general form of SDE on manifold than (3.1) was developed by
Cohen [15]. In this case, the driving noise itself takes values in a manifold, which is
in general different to that in which the solution flow takes values. After some years
of neglect, this theory has recently found some new applications in work of [1].

4 The Positive Maximum Principle and Courrège Theory

Let E be a locally compact Hausdorff space and A be a linear mapping with domain
Dom(A) ⊆ C0(E) and range Ran(A) ⊆ F(E). Let DA be a linear subspace of
Dom(A). We say that A satisfies the positive maximum principle (PMP) with respect
to DA if f ∈ DA and f (y) = supx∈E f (x) ≥ 0 ⇒ A f (y) ≤ 0. It is usual in the liter-
ature (see e.g. [21]) to assume that A maps continuously i.e. that Ran(A) ⊆ C0(E).
Then one can prove powerful results—e.g. that A is dissipative, and hence if DA

is dense in C0(E), then A is closeable (see [21], Chap. 4, Lemma 2.1 (p. 165) and
Chap.1, Lemma 2.11 (p. 10)). We say that A has the full PMP if DA =Dom(A).

The connection with our work is through the following well-known result.

Proposition 4.1 If A is the generator of a Feller semigroup in C0(E) then it has the
full PMP.

Proof Using (2.1) we have for all f ∈ Dom(A) with f (y) = supx∈E f (x),

A f (y) = lim
t→0

Tt f (y) − f (y)

t

= lim
t→0

1

t

∫
E
( f (x) − f (y))pt (y, dx) ≤ 0.

�

There are stronger results than this. The celebrated Hille–Yosida–Ray theorem
states that a linear operator A is the generator of a positivity preserving contraction
semigroup (Tt , t ≥ 0) if and only if A is densely defined, closed, satisfies the full PMP
and λI − A is onto C0(E) for all λ > 0. If such a semigroup is also conservative,
i.e. it has an extension to the space of bounded measurable functions on E such that
Tt1 = 1 for all t ≥ 0, then we may effectively use Kolomogorov’s construction to
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obtain a Feller process for which (Tt , t ≥ 0) is the transition semigroup. For details
see [14] pp. 13–238 and [21] pp. 165–73.

4.1 The Courrège Theorem on Euclidean Space and
Manifolds

In this subsection we take DA = C∞
c (Rd) and consider linear operators A that satisfy

the PMP. The following key classification result was first published byCourrège [16].
In the following statement, we give the form (4.1) as can be found in Hoh [26].

Theorem 4.2 (Courrège theorem) Let A be a linear operator from C∞
c (Rd) to

F(Rd). Then A satisfies the PMP if and only if there exists a unique quadruple
(a(·), b(·), c(·), ν(·)) wherein for all x ∈ R

d , a(x) is a d × d non-negative definite
symmetric matrix, b(x) is a vector in R

d , c(x) is a non-negative constant and ν(x, ·)
is a Lévy measure on R

d , so that for all f ∈ C∞
c (Rd)

A f (x) = −c(x) f (x) +
d∑

i=1

bi (x)∂i f (x) +
d∑

i, j=1

ai j (x)∂i∂ j f (x)

+
∫
Rd\{0}

(
f (x + y) − f (x) −

d∑
i=1

yi∂i f (x)1B1(y)

)
ν(x, dy)

(4.1)

In the same paper, Courrège proved that A is a pseudo-differential operator:

A f (x) =
∫
Rd

eix ·yη(x, y) f̂ (y)dy,

where f̂ denotes the usual Fourier transform: f̂ (y) = 1
(2π)d/2

∫
Rd e−i x ·y f (x)dx , and

η is the symbol of the operator where

η(x, y) = −c(x) + ib(x) · y − a(x)y · y

+
∫
Rd\{0}

(eix ·y − 1 − i x · y1B1(y))ν(x, dy), (4.2)

so that formally:

η(x, y) = e−i x ·y A(eix ·y). (4.3)

If A is the generator of aLévyprocess inRd , then c = 0, b, a and ν are independent
of the value of x ∈ R

d , (4.1) is theEuclidean version of (3.4) andη is the characteristic
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exponentwhose form is that of the classical Lévy–Khintchine formula (see e.g. Chap.
3 of [2] and also Sect. 5 below). The general result (4.2) is important as it is a valuable
source of probabilistic information about rich Feller processes, i.e. those for which
C∞

c (Rd) ⊆ Dom(A), and so come under the auspices of this theory. See [14] and
references therein for details.

The Courrège theorem has been generalised to manifolds, first by Courrège in
the compact case [17] and then by Courrège, Bony and Prioret [13] in the general
case. These authors succeeded in showing that if A : C∞

c (M) → F(M) satisfies the
PMP, then it has a decomposition of similar form to (4.1) relative to a local chart at
a point. So they were able to describe the form of the operator in local co-ordinate
systems. If the manifold is a Lie group or a symmetric space, we can obtain a global
formalism.

4.2 The Courrège Theorem on Lie Groups

We summarise some of the main results of [11]. Let G be a Lie group with Lie
algebra g. Here the strategy is to imitate the approach in [26], but with the vector
fields {∂1, . . . , ∂d} in Euclidean space replaced by the Lie algebra basis {Y1, . . . , Yd}
for g.We say that a linear functional T : C∞

c (G) → R satisfies the positive maximum
principle (PMP), if whenever f ∈ C∞

c (G)with f (e) = supτ∈G f (τ ) ≥ 0 then T f ≤
0. Then the linear operator A satisfies the PMP if and only if each of the linear
functionals Ag satisfy the PMP, where Ag f := A(Lg−1 f )(g) for each g ∈ G, f ∈
C∞

c (G). Here Lg is the usual left translation defined by Lg f (σ ) = f (gσ) for σ ∈ G.
We can recover the action of A from that of the A′

gs by A f (g) = Ag Lg f . So the
problem is now reduced to studying the PMP for linear functionals T . Now it can
be shown that if T satisfies the PMP, then it is a distribution of order 2. This is not
a distribution in the usual sense. It is defined in the same way, but with the role of
each partial derivative ∂i replaced by Yi for i = 1, . . . , d.

We can then prove the first important result

Theorem 4.3 Let T : C∞
c (G) → R be a linear functional satisfying the PMP. Then

there exists c ≥ 0, b = (b1, . . . , bd) ∈ R
d , a non-negative definite symmetric d × d

real-valued matrix a = (ai j ), and a Lévy measure μ on G such that for all f ∈
C∞

c (G),

T f = −c f (e) +
d∑

i=1

bi Yi f (e) +
d∑

i, j=1

ai j Yi Y j f (e)

+
∫

G{e}

(
f (g) − f (e) −

d∑
i=1

xi (g)Yi f (e)

)
μ(dg), (4.4)

The proof involves using a positivity argument (essentially the Riesz lemma) to
show that there exists a Borel measure μ on G \ {e} so that for all f ∈ C∞

c (G \ {e})



Markov Processes with Jumps on Manifolds and Lie Groups 35

T f =
∫

G\{e}
f (g)μ(dg). (4.5)

It then turns out that μ is a Lévy measure. Next we introduce a linear functional
S : C∞

c (G) → R, by

S f :=
∫

G\{e}

[
f (g) − f (e) −

d∑
i=1

xi (g)Yi f (e)

]
μ(dg).

Then S satisfies thePMPand so is a distributionof order 2.Hence so is P = T − S.
But supp(P) ⊆ {e} and so P must take the form

P f = −c f (e) +
d∑

i=1

bi Yi f (e) +
d∑

i, j=1

ai j Yi Y j f (e).

It remains to prove that the matrix (ai j ) is positive definite and that c ≥ 0. For
this we refer the reader to the paper [11]. Once Theorem 4.3 is established, we can
use the “left translation trick” described above to get the main result:

Theorem 4.4 The mapping A : C∞
c (G) → F(G) satisfies the PMP if and only if

there exist functions c, bi , a jk (1 ≤ i, j, k ≤ d) from G to R, wherein c is non-
negative, and the matrix a(σ ) := (a jk(σ )) is non-negative definite and symmetric
for all σ ∈ G, and a Lévy kernel3 μ, such that for all f ∈ C∞

c (G), σ ∈ G,

A f (σ ) = −c(σ ) f (σ ) +
d∑

i=1

bi (σ )Yi f (σ ) +
d∑

j,k=1

a jk(σ )Y j Yk f (σ )

+
∫

G\{e}

(
f (στ) − f (σ ) −

d∑
i=1

xi (τ )Yi f (σ )

)
μ(σ, dτ). (4.6)

In [11] sufficient conditions are imposed on the coefficients to ensure that A :
C∞

c (G) → C0(G), and we will assume that these hold from now on.
We can represent linear operators satisfying the PMP as pseudo-differential oper-

ators when G is compact. To carry this out we need the unitary dual Ĝ comprising
equivalence classes (with respect to unitary equivalence) of all irreducible represen-
tations of Ĝ in some complex (finite-dimensional) Hilbert space. So if π ∈ Ĝ, then
for each g ∈ G, π(g) is a unitarymatrix acting in a space Vπ which has dimension dπ .
The Fourier transform f̂ of f ∈ C∞

c (G) is the matrix-valued function on Ĝ defined
by

f̂ (π) =
∫

G
f (g)π(g−1)dg,

3 We say that μ is a Lévy kernel if μ(σ, ·) is a Lévy measure for all σ ∈ G.
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where integration is with respect to normalised Haar measure on G. The Ruzhansky–
Turunen theory of pseudo-differential operators [35], starts from theFourier inversion
formula (just as in the classical case):

f (g) =
∑
π∈Ĝ

dπ tr( f̂ (π)π(g)).

Then we say that A : C∞
c (G) → C0(G) is a pseudo-differential operator with matrix

valued symbol jA(σ, π) acting in Vπ for each σ ∈ G, π ∈ Ĝ if

A f (g) =
∑
π∈Ĝ

dπ tr( jA(σ, π) f̂ (π)π(g)).

In [3] it was shown that the generators of Lévy processes on compact Lie groups
are pseudo differential operators, and this was further extended to some classes of
Feller processes in [4]. Now we have the more general result:

Proposition 4.5 If A : C∞
c (G) → C0(G) satisfies the PMP then it is a pseudo-

differential operator with symbol

jA(σ, π) = −c(σ )Iπ +
d∑

i=1

bi (σ )dπ(Yi ) +
d∑

j,k=1

a jk(σ )dπ(Y j )dπ(Yk)

+
∫

G\{e}

(
π(τ) − Iπ −

d∑
i=1

xi (τ )dπ(Yi )

)
μ(σ, dτ), (4.7)

for each π ∈ Ĝ, σ ∈ G.

Here if Y ∈ g, dπ(Y ) is the skew-hermitian matrix acting in Vπ which is uniquely
defined by

π(exp(tY )) = etdπ(Y ),

for all t ≥ 0. In the case where c = 0 and the characteristics b, a and μ are inde-
pendent of σ ∈ G, (4.7) coincides with the form of the Lévy–Khinchine formula on
compact Lie groups (see Sect. 5.5 in [6]).

Note that the analogue of (4.3) is

jA(σ, π) = π(σ−1)Aπ(σ),

where Aπ(σ) is the matrix (Aπi j (σ )). We recall that here G is compact and πi j (·) ∈
C∞(G) for all i, j = 1, . . . dπ , so that in this identity, the right hand side is a well-
defined product of dπ × dπ matrices.

In [12] these ideas are extended to study linear operators satisfying the PMP on a
symmetric space M . Observe that M may be identified with the homogeneous space
G/K , where G is the isometry group of M (which turns out to be a Lie group), and
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K is the compact subgroup of G comprising isometries leaving some given point
fixed.4 This enables us to use group theoretic techniques as described above, but with
additional symmetries arising from the action of K . A feature of this theory is that,
by using the properties of spherical functions, we can study a class of linear operators
on M that satisfy the PMP and are pseudo-differential operators with scalar-valued
symbols.

5 Invariant Markov Processes

Let M be a manifold under the action of a Lie group G, and let X = (Xt ; t ≥ 0)
be a Markov process in M with transition semigroup Tt as defined in Sect. 2. For
simplicity, we write Xt for the process from now on. It should be clear from the
context whether Xt is the whole process or just the random variable for a fixed
time t . The Markov process Xt will be called invariant under the action of G, or
G-invariant for short, if for any bounded Borel function f on M and g ∈ G,

Tt ( f ◦ g)(x) = (Tt f )(gx), x ∈ M. (5.1)

It is easy to show, see [33, Proposition 1.1], that the G-invariance of the Markov
process Xt may also be characterized probabilistically as follows: We may think of
a Markov process Xt as a family of processes, one for each starting point x ∈ M , all
governed probabilistically by the same transition semigroup. If we denote X z

t for the
Markov process starting from z ∈ M , then Xt is G-invariant if and only if for any
g ∈ G, gX z

t and X gz
t are equal in distribution as processes.

The G-invariance may also be defined for inhomogeneous Markov processes if
Tt in (5.1) is replaced by Ts,t .

When M = R
d and G = R

d acts as translations on R
d , it is well known that a

càdlàg Markov process Xt in R
d is G-invariant, or translation-invariant, if and only

if it has independent and stationary increments Xt − Xs for s < t , that is, if it is a
Lévy process inRd . The celebrated Lévy-Khintchine formula gives the characteristic
function of each random variable within a Lévy process Xt :

E(ei Xt ·y) = etψ(y)

for any y = (y1, . . . , yd) ∈ R
d by

ψ(y) = i
d∑

j=1

b j y j + 1

2

d∑
j,k=1

a jk y j yk +
∫
Rd\{0}

(eiz·y − 1 − i z · y1B1(z))ν(dz).

4 K is independent of the choice of point chosen, up to isomorphism.
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It provides a useful representation for a Lévy process in terms of a triple (b, a, ν),
comprising a drift vector b, a covariance matrix a = {ai j } and a Lévy measure ν

in the sense that its probability distribution is determined by the triple, and to any
such triple, there is an associated Lévy process, unique in distribution, which also
determines the triple. Note that (as we would expect) ψ coincides with η, as appears
in (4.2), when the latter function is constant in the x-variable.

In the rest of paper, we will present some results on the more general invariant
Markov processes under actions of Lie groups. The reader is referred to [33] for more
details.

Because a Lie group G acts on itself by left translations lg: G → G, x �→ gx , for
g ∈ G, wemay first consider aMarkov process Xt in G invariant under this G-action.
This is a direct extension of a translation-invariant Markov process in R

d to a Lie
group, and may be identified with a Lévy process in G as defined in Sect. 3, which
is characterized by independent and stationary increments of the form X−1

s Xt for
s < t . As already mentioned there, a Lévy process Xt in G is a Feller process, and its
generator L has an explicit expression given by Hunt’s formula (3.4), expressed in
terms of a drift vector b, a covariance matrix a and a Lévy measure ν. Thus, a Lévy
process in a Lie group is represented by a triple (b, a, ν) just as for a Lévy process
in Rd .

More generally, we may consider an invariant Markov process Xt in a manifold
under the transitive action of a Lie group G. Here a transitive action means that for
any two points x and y in M , there is g ∈ G such that gx = y. Fix a point o ∈ M
and let K = {g ∈ G; go = o}. Then K is a closed subgroup G, called the isotropy
subgroup at point o. The manifold M may be identified with the homogeneous space
G/K , the space of left cosets gK , g ∈ G, via the map gK �→ go, and the G-action
on M corresponds to the natural G-action on G/K given by (g, hK ) �→ ghK for
g, h ∈ G. Thus, a G-invariant Markov process in M may be naturally identified with
a G-invariant Markov process in the homogeneous space G/K .

A G-invariant Markov processes in G/K may also be characterised by indepen-
dent and stationary increments as for a Markov process in G invariant under left
translations, but to state this precisely will require a little preparation.

Let M = G/K and let π : G → M be the natural projection g �→ gK . A Borel
map S: M → G will be called a section map if

π ◦ S = idM (the identity map on M).

A section map always exists, but is not unique. It may not be smooth on M , but can
be chosen to be smooth near any point in M .

In general, there is no natural product structure on M = G/K , but we may define
xy = S(x)y with the choice of a section map S. Although this definition depends on
the choice of S, if Z is a random variable in M that has a K -invariant distribution,
that is, if k Z is equal to Z in distribution for any k ∈ K , then the distribution of x Z
does not depend on the choice of S. The increment of a process Xt in M = G/K
over the time interval (s, t] is defined by X−1

s Xt = S(Xs)
−1Xt , and its distribution

does not depends on S when Xt is a G-invariant Markov process.
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Proposition 5.1 A process Xt in M = G/K with natural filtration {Ft } is a G-
invariant Markov process if and only if it has independent and stationary increments
in the sense that for any s < t and any section map S, Xs,t = S(Xs)

−1Xt is inde-
pendent of Fs and its distribution depends only on t − s, not on S.

The easy proof of the above proposition may be found in [33, Theorem 1.14].
Because of this result, a G-invariant Markov process in M = G/K will be called a
Lévy process.

When K is compact, a Lévy process in M = G/K is a Feller process and its
generator is determined by Hunt [28] to have essentially the same form as the gen-
erator of a Lévy process in G. To state this precisely will require some additional
preparation.

For any g ∈ G, the conjugation map G → G, given by x �→ gxg−1, fixes the
identity element e of G. Its differential map at e is a linear bijection from the Lie
algebra g of G to g, denoted as Ad(g). Let p be an Ad(K)-invariant subspace of g,
complementary to the Lie algebra k of K . The linear space p may be identified with
the tangent space To M of M at o via the natural projection π : G → M . Recall that
we have chosen a basis {Y1, . . . , Yd} of g. We may assume Y1, . . . , Yn form a basis of
p and Yn+1, . . . , Yd form a basis of k, where n = dim(M). Recall the coordinate func-
tions x1, . . . , xd ∈ C∞

c (G) associated to the basis {Y1, . . . , Yd} of g as introduced in
Sect. 3. They may be chosen to satisfy g = exp[∑n

i=1 xi (g)Yi ] exp[∑d
i=n+1 xi (g)Yi ]

for g in a neighborhood of e, where exp: g → G is the Lie group exponentialmap.We
now define coordinate functions y1, . . . , yn on M associated to the basis {Y1, . . . , Yn}
of p to be functions inC∞

c (M) such that σ = π{exp[∑n
i=1 yi (σ )Yi ]} for σ in a neigh-

borhood of o. They may be chosen to satisfy
∑n

i=1 yi (σ )Ad(K)Yi = ∑n
i=1 yi(kσ)Yi

for all σ ∈ M and k ∈ K (see [33, Sect. 3.1]). Note that xi = yi ◦ π on a neighbor-
hood of e for 1 ≤ i ≤ n.

For k ∈ K , let [Ad(K)] denote the matrix representing Ad(K); p → p under the
basis of {Y1, . . . , Yn}, that is, Ad(K)ξj = ∑n

i=1[Ad(K)]ijYi. A vector
b = (b1, . . . , bn) ∈ R

n will called Ad(K)-invariant if [Ad(K)]b = b for k ∈ K and
an n × n non-negative definite real symmetric matrix a will be called Ad(K)-
invariant if [Ad(K)]a[Ad(K)]′ = a for k ∈ K , where the prime denotes the matrix
transpose. Ameasureμ on M is called K -invariant if kμ = μ for k ∈ K , where kμ is
the measure kμ(B) = μ(k−1(B)). Note that for a K -invariant measure μ, the value
of the integral

∫
M

f (xy)μ(dy) =
∫

f (S(x)y)μ(dy), x ∈ M,

does not depend on the choice of the section map S. A Lévy measure on M is defined
in the same way as a Lévy measure on G, given in Sect. 3, but using the coordinate
functions on M and a neighborhood U of o, and with the additional requirement that
it is K -invariant.

The following result is Hunt’s generator formula on M = G/K . The present form
is taken from [33]. By this result, a Lévy process in M = G/K is represented, in
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distribution, by a triple (b, a, ν) comprising an Ad(K)-invariant vector b, an Ad(K)-
invariant matrix a and a Lévy measure ν on M , just as for a Lévy process in Rd .

Theorem 5.2 A Lévy process in M = G/K is a Feller process. Let A be its generator.
Then the domain of A contains C∞

c (M), and there is a unique triple (b, a, ν) as above
such that A restricted to C∞

c (M) is given by (3.4) with d replaced by n, xi by yi and
G\{e} by M\{o}. Moreover, given any triple (b, a, ν), there is a Lévy process in M
starting at o, unique in distribution, such that its generator has the above expression.

Because the action of K on M fixes the point o, it induces a linear action of K
on the tangent space To M . The homogeneous space M = G/K is called irreducible
if To M has no proper subspace that is invariant under this K -action. For example,
the sphere Sn−1 = O(n)/O(n − 1) is irreducible as a homogeneous space of the
orthogonal group O(n) on R

n .
On an irreducible homogeneous space M = G/K , it can be shown (see [33,

Sect. 3.2]) that under a suitable choice of the basis {Y1, . . . , Yn} of p, any Ad(K)-
invariant matrix is proportional to the identitymatrix I , andwhen dim(M) > 1, there
is no nonzero Ad(K)-invariant vector. In this case, Hunt’s generator formula (3.4)
on M takes the following simpler form: For f ∈ C∞

c (M),

A f (σ ) = α

2

n∑
i=1

Yi Yi f (σ ) +
∫

G
[ f (στ) − f (σ )]ν(dτ), (5.2)

where the integral is understood as the principal value, that is, as the limit of∫
U c [ f (στ) − f (σ )]ν(dτ) when the K -invariant neighborhood U of o shrinks to

o. Therefore, on an irreducible homogeneous space M = G/K with dim(M) > 1, a
Lévy process is represented, in distribution, by a pair (α, ν) comprising a real number
α ≥ 0 and a Lévy measure ν on M .

We note that the choice of the basis {Y1, . . . , Yn) of p means that it is chosen to
be orthonormal under an Ad(K)-invariant inner product on p.

Recall that the Lévy-Khintchine formula gives the characteristic function of a
Lévy process in R

d . Such a formula may be extended to a general Lie group or a
homogeneous space. See [6, Sect. 5.5] and [25] for its extension to a compact Lie
group in terms of group representations, and [7] for the extension to a general Lie
group. In these generalisations, the role of the characteristic exponent is played by a
matrix-valued function on the unitary dual (in the compact case), or a function whose
values are linear operators in a Hilbert space (in the general case). On a symmetric
space, which is a special type of homogeneous space, Gangolli [24] obtained a Lévy-
Khintchine type formula, in terms of the spherical transform, that closely resembles
the classical form in that the characteristic exponent is scalar-valued. A simpler
approach to Gangolli’s result based on Hunt’s generator formula may be found in [5,
34]. See also [33, Chap. 5] for a more systematic discussion.

We have considered invariant Markov processes under a transitive action of a Lie
group, and have identified such processes with Lévy processes, which are charac-
terized by independent and stationary increments. We will next consider the non-
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transitive action of a Lie group G. In this case, the state space M is a collection
of G-orbits, and an invariant Markov process may be decomposed into a “radial”
part, that is transversal to G-orbits, and an “angular” part, that lives in a G-orbit
and is a G-invariant inhomogeneous Markov process. Such a process may be char-
acterized by independent, but not necessarily stationary, increments, and so will be
called an inhomogeneous Lévy process. Before we discuss the decomposition of an
invariant Markov process under a non-transitive action, we will first briefly discuss
inhomogeneous Lévy processes in Lie groups and homogeneous spaces.

6 Inhomogeneous Lévy Processes

Let G be a Lie group and K be a compact subgroup as before. A càdlàg inho-
mogeneous Markov process in G or in M = G/K , that is invariant under the left
translation in G or G-invariant in M , will be called an inhomogeneous Lévy process.
This definition is justified by the following easy proposition (see [33, Theorem1.24]).

Proposition 6.1 Let Xt be a càdlàg process in G or in M = G/K with natural
filtration {Ft }. Then Xt is an inhomogeneous Lévy process if and only if it has
independent increments in the sense that for any s < t , X−1

s Xt is independent of
Fs , where X−1

s Xt is understood as S(Xs)
−1Xt on M for any section map S and its

distribution is assumed not to depend on S.

Recall that a Lévy process inG is a Feller process and the domain of its generator A
contains C∞

c (G). By a standard result in Markov process theory (see Proposition 1.7
in [21, Chap. 4]), for any f ∈ C∞

c (G),

f (Xt ) −
∫ t

0
A f (Xs)ds

is a martingale under the natural filtration of Xt , where the generator A, given by
(3.4), is expressed in terms of a triple (b, a, ν). This martingale property in fact
provides a complete representation of the Lévy process Xt , in distribution, in the
sense that given any triple (b, a, ν), there is a Lévy process, unique in distribution,
having this martingale property.

A càdlàg process Xt is called stochastically continuous if P(Xt− = Xt ) = 1
for any t > 0. A Lévy process is stochastically continuous, but an inhomogeneous
Lévy process may not be. Feinsilver [22] obtained a martingale representation for a
stochastically continuous inhomogeneous Lévy process in a Lie group G by a time-
dependent triple. Such a representation holds also for inhomogeneousLévy processes
in a homogeneous space G/K , even for non-stochastically continuous ones, see [33].
The general representation is rather complicated, so we will not discuss it here, but
will present this representation on an irreducible G/K where it takes a very simple
form.
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A family of Lévy measures ν(t, ·), indexed by time t ≥ 0, will be called a Lévy
measure function if it is nondecreasing and continuous under weak convergence. It
will be called an extended Lévy measure function if it may not be continuous, but
is càdlàg, and ν(t, M) − ν(t−, M) ≤ 1 for any t > 0. The extended Lévy measure
function as defined in [33] requires an additional assumption, but on an irreducible
M = G/K , it reduces to the above definition. The following result is [33, Theo-
rem 8.16], which may be regarded as an extension of Hunt’s generator formula (5.2)
for Lévy processes on an irreducible G/K to inhomogeneous Lévy processes. We
will assume the basis {Y1, . . . , Yn) of p is chosen as described above in relation to
(5.2).

Theorem 6.2 Let M = G/K be irreducible with dim(M) > 1. For any inhomoge-
neous Lévy process Xt in M, there is a unique pair (a, ν) comprising a continuous
nondecreasing function a(t) with a(0) = 0 and an extended Lévy measure function
ν(t, ·) such that for any f ∈ C∞

c (M),

f (Xt ) −
∫ t

0

1

2

n∑
i=1

Yi Yi f (Xs)da(s) −
∫ t

0

∫
M

[ f (Xsτ) − f (Xs)]ν(ds dτ) (6.1)

is a martingale under the natural filtration of Xt , where the integral
∫

M [· · · ] is under-
stood as the principal value as in (5.2). Moreover, Xt is stochastically continuous if
and only if ν is a Lévy measure function.

Conversely, given any pair (a, ν) as above, there is an inhomogeneous Lévy pro-
cess Xt in M with X0 = o, unique in distribution, that has the above martingale
property. Moreover, if ν is a Lévy measure function, then the uniqueness holds among
all càdlàg processes in M.

7 Decomposition of Invariant Markov Processes

Let a Lie group G act on a manifold M . In this section we will not assume that the
action is transitive; then M is a collection of G-orbits. Because G acts transitively on
each G-orbit, any G-orbit is a homogeneous space G/K for some closed subgroup
K . By the Principal Orbit Type Theorem [18], there is a subgroup K such that the
G-orbits of type G/K fill up an open dense subset of M . Thus, by removing a small
subset if necessary, we may assume M is a union of G-orbits of type G/K . Then it is
reasonable to assume there is a submanifold M1 of M that is transversal to G-orbits
in the sense that it intersects each G-orbit at exactly one point, and

M = M1 × M2, M2 = G/K . (7.1)

The above will be assumed with K being compact. Note that G acts on M through
its natural action on M2 = G/K , and it acts trivially on M1.
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For example, the orthogonal group O(n) acts non-transitively on R
n . Its orbits

are spheres centered at the origin of type O(n)/O(n − 1), except the origin is an
orbit by itself. After removing the origin, Rn becomes M1 × M2, where M1 is a half
line from the origin and M2 is the unit sphere. This is just the usual spherical polar
decomposition.

Let Xt be a G-invariant Markov in M , and let Xt = (Yt , Zt ), where Yt ∈ M1 and
Zt ∈ M2, be the decomposition (7.1). Borrowing the terms from the polar decom-
position of R2, we will call Yt the radial part and Zt the angular part of the process
Xt , noting that both may be multi-dimensional. It is easy to show that Yt is a Markov
process in M1, and with some effort, it can be shown that Zt is an inhomogeneous
Lévy process in M2 = G/K under the conditional distribution given Yt , but to state
this more precisely requires some preparation. See Sects. 1.5 and 1.6 of [33] for more
details.

Let D(M) be the space of càdlàg paths in M equipped with the σ -algebra F
generated by the coordinate mapsω �→ ω(t), t ≥ 0, forω ∈ D(M). The distribution
of the process Xt with X0 = x induces a probability measure Px on D(M). We may
regard Xt as the coordinate process on D(M) by setting Xt (ω) = ω(t). Similarly, Yt

and Zt are regarded as coordinate processes on D(M1) and D(M2) (respectively).
The product M = M1 × M2 induces a product D(M) = D(M1) × D(M2). Let J1:
D(M) → D(M1) and J2: D(M) → D(M2) be the natural projections, and letF1 and
F2 be respectively the σ -algebras on D(M1) and D(M2) generated by the coordinate
maps. We may regard F1 as a σ -algebra on D(M) by identifying it with J−1

1 (F1) =
{J−1

1 (B); B ∈ F1}.
Let x = (y, z) ∈ M = M1 × M2. By the G-invariance of the Markov process Xt ,

Qy = Px ◦ J−1
1 is a probability measure on D(M1) depending only on y, and is in

fact the distribution of the radial process Yt .
Because (D(M),F) is a standard Borel space, there is a regular conditional

distribution P y(·)
x (·) of Px given F1, that is, for any F ∈ F ,

Px (F | F1)(y(·)) = P y(·)
x (F) for Qy-almost all y(·) ∈ D(M1),

where P y(·)
x (·) is a probability kernel from D(M1) to D(M) in the sense that it is

a probability measure on D(M) for each fixed y(·) ∈ D(M1) and P y(·)
x (F) is F1-

measurable in y(·) for each F ∈ F .
Let Ry(·)

z = P y(·)
x ◦ J−1

2 . Then Ry(·)
z is a probability kernel from D(M1) to D(M2),

and for F1 ∈ F1 and F2 ∈ F2,

Px (F1 ∩ F2) =
∫

F1

Ry(·)
z (F2)Qy(dy(·)).

Therefore, Ry(·)
z is the conditional distribution of the angular process Zt given the

radial process Yt . The following result is Theorems 1.31 and 1.39 in [33].
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Theorem 7.1 For y ∈ M1 and z ∈ M2, the radial process Yt is a Markov process
in M1 under Qy, and for Qy-almost all y(·) ∈ D(M1), the angular process Zt is an

inhomogenous Lévy process in M2 = G/K under Ry(·)
z .

Wewill now consider a continuous G-invariant Markov process Xt in M = M1 ×
M2 and assume M2 = G/K is irreducible. An example is a Brownian motion in Rn ,
which is invariant under the orthogonal group O(n), and in that case, the associated
decomposition Xt = (Yt , Zt ) is just the usual spherical polar decomposition.

It is well known that the radial process Yt and the angular process Zt are not
independent, but they are independent up to a random time change. More precisely,
there is a spherical Brownian motion Wt in the unit sphere Sn−1, independent of Yt ,
and a time change process a(t) adapted to the natural filtration of Yt , such that Zt =
wa(t). This is called the skew-product decomposition of the Brownian motion. Here
the time change process a(t) is a real-valued nondecreasing process with a(0) = 0.

This skew-product is generalized by Galmarino [23] to any continuous O(n)-
invariant Markov process in R

n . Using the decomposition of invariant Markov pro-
cesses (Theorem 7.1) and the representation of inhomogeneous Lévy processes in
irreducible homogeneous spaces (Theorem 6.2), we may obtain the skew-product on
a more general space by a conceptually more transparent proof. See [33, Sect. 9.2]
for more details. Note that the time change process a(t) in the following theorem is
the same a(t) as in Theorem 6.2.

Theorem 7.2 Let Xt be a continuous G-invariant Markov process in M = M1 ×
M2 and assume M2 = G/K is irreducible with dim(M2) > 1. Then there are a
Riemannian Brownian motion Wt in M2 under a G-invariant Riemannian metric,
independent of the radial process Yt , and a time change process a(t) that is adapted
to the natural filtration of Yt , such that Zt = Wa(t).

Acknowledgements We thank the referee for some helpful suggestions.
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Asymptotic Expansion for a
Black–Scholes Model with Small Noise
Stochastic Jump-Diffusion Interest Rate

Francesco Cordoni and Luca Di Persio

Abstract In the present paper we study the asymptotic expansion for a Black–
Scholes model with small noise stochastic jump-diffusion interest rate. In particular,
we consider the case when the small perturbation is due to a general, but small, noise
of Lévy type. Moreover, we provide explicit expressions for the involved expansion
coefficients as well as accurate estimates on the remainders.

Keywords Mathematical finance · Asymptotic expansions · Stochastic interest
rate models · Corrections for the Black–Scholes type models · Jump-diffusion
models
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91G80

1 Introduction

In the present paper we provide a correction around the well-known Black–Scholes
(BS) formula for option pricing under the assumptions that the interest rate is stochas-
tic. The latter description has gained particular attention after the 2008 worldwide
credit crunch. In fact, starting from that date, several critiques to the standard BS
model have been posed, mainly because of its too tight (deterministic) assumptions
on the coefficients. Consequently, a series of alternatives to the classic BS model has
been proposed, particularly allowing for stochastic volatility models in incomplete
markets as well as to consider arbitrage and non constant interest rates.

Unfortunately, even if such generalizations provide more realistic settings, con-
versely to the BS model, they lack of a closed formula for option pricing. Therefore,
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numerical simulations are needed, often implying non trivial algorithmic procedures
with associated significant computational costs.

One way to avoid such big numerical efforts is represented by ad hoc asymptotic
expansion techniques, see, e.g., [9, 14–16, 20, 22, 25–27, 29, 33, 40, 42, 44, 46, 49–
51].Moreover, recent applications have been provided specifically w.r.t. the financial
framework, as, e.g., in [12, 13, 31, 32, 37, 45, 52].

Following latter idea, we shall provide small noise asymptotic expansions for a BS
model subjected to a small noise interest rate of jump-diffusion type. Our approach,
inspired by the heuristic ideawritten in [28, Sect. 6.2], is based on themathematically
rigorous results derived in [6], see also [1, 22]. Let us recall that possible extensions
to certain class of SPDEs are also possible, see, e.g., [2–4].

In particular, we shall consider an asset evolving according to a geometric Brow-
nian motion also allowing for an interest rate characterized by a jump-diffusion
noise term of small amplitude ε > 0, then considering both a formal, based on [28,
Sect. 6.2], resp. asymptotic, based on [6], expansion in ε. Indeed, considering small
perturbations, we can approximate the considered model by a finite recursive sys-
tem of N linear equations with random coefficients, hence exploiting its solutions
by providing a formal, resp. an asymptotic, smooth functions approximation of the
original solution. Analogously, within the usual risk neutral setting, we derive the
corresponding option price approximation.

The paper is organized as follows: in Sect. 2 the general asymptotic expansions
and related main results are presented; in Sect. 3 we apply the results obtained in
Sect. 2 to provide corrections up to the first order for pricing plain vanilla options in
a Black–Scholes model characterized by a small noise stochastic interest rate.

2 The Asymptotic Expansion

2.1 The General Setting

Let us consider the following stochastic differential equation (SDE), indexed by a
parameter ε ≥ 0 {

dX ε
t = με

(
X ε
t

)
dt + σ ε

(
X ε
t

)
dLt ,

X ε
0 = xε

0 ∈ R, t ∈ [0,∞)
; (1)

where Lt , t ∈ [0,∞), is a real-valued Lévy process of jump diffusion type, sub-
jected to some restrictions which will be later specified, while με : Rd → R,
σ ε : Rd → R

d×d are Borel measurable functions, for any ε ≥ 0 satisfying some
additional technical conditions which guarantee existence and uniqueness of strong
solutions, namely they are locally Lipschitz and with sub-linear growth at infinity,
see, e.g., [10, 11, 30, 35, 43, 47]. If the Lévy process Lt has a jump component, then
X ε
t in Eq. (1) has to be understood as X ε

t− := lims↑t X ε
s , see, e.g., [43] for details.
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Hypothesis 2.1 Let us assume that:

(i) με, σ ε ∈ Ck+1(R) in the space variable, for any fixed value ε ≥ 0 and ∀ k ∈
N0 := N ∪ {0};

(ii) the maps ε 	→ αε(x), where α = μ, σ , are elements of CM(I ) in ε, for some
M ∈ N, for every fixed x ∈ R, having defined I := [0, ε0], while ε0 > 0.

We show that underHypothesis 2.1 and standard smoothness conditions onμε and
σ ε to guarantee the well posedness of the random coefficients Xi

t , i = 0, 1, . . . , N
in (2) below, a solution X ε

t to Eq. (1) can be represented as a power series w.r.t. the
parameter ε, namely:

X ε
t = X0

t + εX1
t + ε2X2

t + · · · + εN XN
t + RN (t, ε) , (2)

where Xi : [0,∞) → R, i = 0, . . . , N , are continuous functions,while |RN (t, ε)| ≤
CN (t)εN+1, ∀N ∈ N and ε ≥ 0, for some CN (t) independent of ε, but in general
dependent of randomness through X0

t , X
1
t , . . . , X

N
t .

For n ∈ N, the functions Xi
t are determined recursively as solutions of random

differential equations in terms of the X j
t , j ≤ i − 1, ∀i ∈ {1, . . . , N }, see, e.g., [1,

6], for further details.
In particular, we have the following fundamental result:

Proposition 2.1 Let x(ε) be as:

x(ε) =
N∑
j=0

ε j x j + Rx
N (ε), N ∈ N0, x j ∈ R, j = 0, 1, . . . , N , (3)

and fε be as:

fε(x) =
K∑
j=0

f j (x)ε
j + R fε

K (ε, x) , (4)

with f j ∈ CM+1, j = 0, . . . , K. Then

fε(x(ε)) =
K+M∑
k=0

εk [ fε(x(ε))]k + RK+M(ε) ,

with |RK+M(ε)| ≤ CK+MεK+M+1, for some constant CK+M ≥ 0 independent of both
ε and 0 ≤ ε ≤ ε0, the coefficients [ fε(x(ε))]k , being defined by:
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[ fε(x(ε))]0 = f0(x0);
[ fε(x(ε))]1 = Df0(x0)x1 + f1(x0);
[ fε(x(ε))]2 = Df0(x0)x2 + 1

2
D2 f0(x0)x

2
1 + Df1(x0)x1 + f2(x0);

[ fε(x(ε))]3 = Df0(x0)x3 + 1

6
D3 f0(x0)x

3
1 + Df1(x0)x2 + Df2(x0)x1 + D2 f1(x0)x

2
1 + f3(x0).

The general case has the following form

[ fε(x(ε))]k = Df0(x0)xk + 1

k! D
k f0(x0)x

k
1 + fk (x0) + B f

k (x0, x1, . . . , xk−1) , k = 1, . . . , K + M

(5)
where B f

k is a real function depending on (x0, x1, . . . , xk−1) only.

Remark 1 Let us note that [ fε(x(ε))]k depends linearly on xk , but not linearly in the
inhomogeneity involving the coefficients x j , 0 ≤ j ≤ k − 1 in (3). If x(ε) satisfies
(3) and both με and σ ε have the properties of the function fε , then the coefficients
με(x(ε)) and σ ε(x(ε)) on the right hand side of (1) can be rewritten in powers of ε,
for 0 ≤ ε ≤ ε0, as follows

με(x(ε)) =
Kμ+Mμ∑
k=0

[
με(x(ε))

]
k εk + Rμ

Kμ+Mμ
(ε);

σ ε(x(ε)) =
Kσ +Mσ∑
k=0

[
σ ε(x(ε))

]
k εk + Rσ

Kσ +Mσ
(ε) ;

where the natural numbers Kα and Mα , resp. α = μ, σ , depend on the functions με ,
resp. σ ε , while

|Rα
Kα+Mα

(ε)| ≤ CKα+Mα
εKα+Mα+1 ,

for some constants CKα+Mα
depending on C j , j = 0, . . . , Kα + Mα , but indepen-

dently of both ε and 0 ≤ ε ≤ ε0.

2.2 The Asymptotic Character of the Expansion of the
Solution Xε

t of the SDE in Powers of ε

Theorem 2.2 Let us assume that the coefficients αε , α = μ, σ of the SDE (1) belong
to CKα (I ) as functions of ε, ε ∈ I = [0, ε0], ε0 > 0, and are in CMα (R) as functions
of x. Moreover, let us assume that αε are such that there exists a solution X ε

t in
the probabilistic strong, resp. weak, sense for (1), and that the recursive system of
random differential equations

dX j
t = [

με
(
X ε
t

)]
j dt + [

σ ε
(
X ε
t

)]
j dLt , j = 0, 1, . . . , N , t ≥ 0 ,
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has a unique solution. Then there exists a sequence εn ∈ (0, ε0], ε0 > 0, εn ↓ 0 as
n → ∞ such that X εn

t has an asymptotic expansion in powers of εn, up to order N,
in the following sense:

X εn
t = X0

t + εn X
1
t + · · · + εN

n X N
t + RN (εn, t) ,

with

st − limεn↓0
sups∈[0,t] |RN (εn, s)|

εN+1
n

≤ CN+1 ,

for some deterministic CN+1 ≥ 0, independent of ε ∈ I , where st − lim stands for
the limit in probability.

Proof See [1, 6] for details. �

3 The Black–Scholes Model with Stochastic Interest Rate

Let us consider an asset whose return X ε
t := logSε

t , under the so-called risk neutral
probability measure Q, evolves according to the following SDE

{
dX ε

t =
(
r ε
t − σ 2

0
2

)
dt − ελt

(
eγ+ δ2

2 − 1
)

+ σ0dW 1
t + ε

∑Nt
k=1 Jk ,

X ε
0 = x0 ,

. (6)

with σ0 ∈ R+, while Nt is a standard Poisson process with intensity λ > 0, and
(Ji )i=1,...,Nt are i.i.d. Gaussian variables, i.e. Ji ∼ N (γ, δ2), for some γ ∈ R and
δ > 0. Therefore, the Lévy measure ν(dz) of Z reads as

ν(dz) = λ√
2πδ

e− (z−γ )2

2δ2 dz , z ∈ R ; with cumulant function κ(ζ ) = λ

(
eγ ζ+ δ2ζ2

2 − 1

)
.

Moreover, in Eq. (6), the r ε-term represents a stochastic interest rate evolving accord-
ing to {

dr ε
t = b(t, r ε

t )dt + εν(t, r ε)dW 2
t ,

r0 = r0 ∈ R ,
, (7)

for constant ε > 0,b and ν being real functions satisfying suitable regularity and
growth assumptions which guarantee both existence and uniqueness of the solution
for (7). Further, W 1 and W 2 are assumed to be two standard Brownian motions
with correlation d

〈
W 1W 2

〉
t = ρ̄dt , for some constant ρ̄ > 0. In what follows we

will assume that b(t, r) = κ(θ − r), for some real constants κ and θ , so that to
preserve the mean reverting property usually required by standard interest rates
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model. Furthermore, we choose ν(t, r) = ν̄ or ν(t, r) = ν̄
√
r , for some constants ν̄,

r ∈ R+.

Remark 2 Let us note that, although ν(t, r ε
t ) = ν̄

√
r ε
t does not satisfy the smooth-

ness assumptions we assumed up to now, our expansion works, at least as a formal
power series expansion, because of the existence and uniqueness result, see [23], for
this particular diffusion term component.

Assuming the above stated conditions, we have the following result.

Proposition 3.1 Let us consider the return process X ε
t evolving according to Eq. (6),

where the stochastic interest rate r ε
t evolves according to the SDE (7), with ν(t, r)

satisfying standard conditions. Assume existence and uniqueness of solutions to (7),
with b(t, r) = κ(θ − r). Assume that the jumpprocess is independent ofW i

t , i = 1, 2,
with

d
〈
W 1W 2

〉
t
= ρ̄dt , for some constant ρ̄ > 0. Then the first order heuristic expan-

sion for the stochastic interest rate r ε
t reads as follow

r0t = r0 +
∫ t

0
κ

(
θ − r0s

)
ds ,

r1t = −
∫ t

0
e−κ(t−s)ν(s, r0s )dW

2
s with law N

(
0, Qr1

t

)
,

(8)

where Qr1
t := ∫ t

0 e
−2κ(t−s)ν2(s, r0s )ds .

Furthermore the heuristic expansion up to the first order for the return X ε
t is given

by

X0
t = x0 +

∫ t

0

(
r0s − σ 2

0

2

)
ds ; X1

t =
∫ t

0
r1s ds − λt

(
eγ+ δ2

2 − 1
)

+
Nt∑
k=1

Jk . (9)

Proof Applying Theorem2.2, we have that r1t evolves according to

r1t = −
∫ t

0
κr1s ds +

∫ t

0
ν(s, r0s )dW

2
s ,

then, exploiting the Itô–Döblin lemma w.r.t. the function reκt , noticing that r0t is a
deterministic process, we find the desired solution. The distribution of r1t directly
follows by the fact that r1t is obtained integrating w.r.t. a Brownian motion with
deterministic integrand. �

Towhat regards the pricing problemof vanilla-type options,written on the underlying
eX

ε
t and with final payoff given by �(XT ), under the stochastic interest rate r ε , we

aim at finding the value Pr(0; T ) given by

Pr(0; T ) = E

[
e− ∫ T

0 r ε
s ds�

(
X ε
T

)]
, (10)
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where the expectation is taken according to the joint measure generated by the two
correlated Brownian motions W 1 and W 2. Therefore, to give an analytic expression
for (10), we consider suitable transformations allowing to replace W 2 within the
expression of r1t , by a random variable independent of W 1

T . Since r
1 is a Gaussian

random variable, then X1 is Gaussian, too. Therefore, defining

X1
t =

∫ t

0
r1s ds − λt

(
eγ+ δ2

2 − 1
)

+
Nt∑
k=1

Jk = X̄1
t − λt

(
eγ+ δ2

2 − 1
)

+
Nt∑
k=1

Jk ,

(11)

we have X̄1
T ∼ N

(
0, QX1

T

)
, where QX1

T := ∫ T
0

(∫ T
u eκsds

)2
e−2κrν(u, r0u )

2du .

Moreover�T := Cov
(
σ0W 1

T , X̄1
T

) = �T = σ0ρ̄
∫ T
0

∫ T
u eκsdse−κrν(u, r0u )du , so

that, exploiting the Gaussian distribution properties and following [36], we obtain

∫ T

0
r1s ds = �T

σ0T
W 1

T + √
�T Z , (12)

with �T := QX1

T − �2
T

σ 2
0 T

, for �2
T

σ 2
0 T

< QX1

T , being Z ∼ N (0, 1) and independent from

W 1
T , which allows us to state the following pricing proposition:

Proposition 3.2 Let us consider a European call option with payoff �(X ε
T ) =(

eX
ε
T − K

)
+, then the associated first order (heuristic) correction to its fair price, is

given by

Pr1ν (0; T ) = PBS + εe− ∫ T
0 r0s ds K

�T

σ0

√
T

φ (−d1) +

+ εT e− ∫ T
0 r0s ds N (d1) λ

(
eγ+ δ2

2 − 1
)

+ εT e− ∫ T
0 r0s ds N (d1) δλ ,

(13)

φ, resp. N , being the density, resp. the cumulative, function of the standard Gaussian
law, while d1 is defined as

d1 := 1

σ0

√
T

(
log

s0
K

+
(
r − σ 2

0

2

)
T

)
.

Proof For the sake of simplicity, let us first consider the case of a pure diffusive
process. Then, applying Proposition2.1 to the function x 	→ G(x) := e−X , with X =∫ T
0 r ε

s ds, we get

e−
∫ T
0 rεs ds = e−

∫ T
0 r0s ds − εe−

∫ T
0 r0s ds

∫ T

0
r1s ds + RG

1 (ε, T ) = e−
∫ T
0 r0s ds

(
1 − ε

∫ T

0
r1s ds)

)
+ RG

1 (ε, T ) ,

with |RG
1 (ε, T )| ≤ CT ε2, for some constant CT , depending on the chosen G. Then,

by applying Proposition2.1 to the function �, we have
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Pr1(0; T ) = E

[
e−

∫ T
0 r0s ds

(
1 − ε

∫ T

0
r1s ds

)
�(X0

T )

]
+ εE

[
e−

∫ T
0 r0s ds

(
1 − ε

∫ T

0
r1s ds

)
�′(X0

T )X1
T

]
=

= E

[
e−

∫ T
0 r0s ds�(X0

T )

]
− εE

[
e−

∫ T
0 r0s ds

∫ T

0
r1s ds�(X0

T )

]
+

+ εE

[
e−

∫ T
0 r0s ds�′(X0

T )X1
T

]
− ε2E

[
e−

∫ T
0 r0s ds

∫ T

0
r1s ds�

′(X0
T )X1

T

]
+ R1(ε, T ) =

= E

[
e−

∫ T
0 r0s ds�(X0

T )

]
− εE

[
e−

∫ T
0 r0s ds

∫ T

0
r1s ds�(X0

T )

]
+ εE

[
e−

∫ T
0 r0s ds�′(X0

T )X1
T

]
,

(14)
where the last equality follows from incorporating the term with ε2 into
R1(ε, T ). Since � = (eX

0
T − K )1[

W 1
T >−√

Td(1)
], and also considering that

�′ = eX
0
T1[

W 1
T >−√

Td(1)
], we eventually obtain

Pr1(0; T ) = E

[
e− ∫ T

0 r0s ds�(X0
T )

]
+ εE

[
e− ∫ T

0 r0s ds K X1
T1

[
W 1

T >−√
Td(1)

]
]

.

Therefore, by (12), exploiting the independence of W 1
T and Z , and since Z has zero

mean, we complete the proof, in the pure diffusive setting, by explicitly computing
the expectation.While, also considering the jump terms, the result follows byEq. (11)
in Eq. (14), and by the very definition of the Gaussian cumulative density function.

�

Remark 3 We would like to underline that the study of the expansion related to the
validation of interest rate contingent claim has been already discussed in [38, 39],
where only Gaussian noise-driven models have been considered, and the expansion
itself has been performed around an unperturbed and deterministic model, while,
more recently, different asymptotic approaches have been provided to consider the
specific CEV-model as well as some type of two-factor (stochastic) volatility interest
models, see, e.g., [24, 34, 53].

4 Conclusions

In the present paper we have focused on the analysis of the small noise asymptotic
expansions for a generalization of the standard Black–Scholes (BS) model, namely
considering it under stochastic interest rates. This has been motivated by one of the
major BS-model drawback, namely the unrealistic assumption that there exists a
unique constant interest rate, which is shown to be an unrealistic assumption within
current financial scenarios. Dropping latter assumption causes the loose of a closed
formula for European-type options. Therefore, we have provided rigorous explicit
expressions for a corrections around the classical BS-formula, when the interest rate
is perturbed by a small random noise, also allowing it to have jumps.
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Stochastic Geodesics

Ana Bela Cruzeiro and Jean-Claude Zambrini

Abstract We describe, in an intrinsic way and using the global chart provided by
Itô’s parallel transport, a generalisation of the notion of geodesic (as critical path
of an energy functional) to diffusion processes on Riemannian manifolds. These
stochastic processes are no longer smooth paths but they are still critical points of a
regularised stochastic energy functional. We consider stochastic geodesics on com-
pact Riemannian manifolds and also on (possibly infinite dimensional) Lie groups.
Finally the question of existence of such stochastic geodesics is discussed: we show
how it can be approached via forward-backward stochastic differential equations.

Keywords Geodesics · Diffusions on manifolds · Stochastic variational principles

1 Introduction

The notion of geodesic in Riemannian manifolds appeared first in a lecture of Rie-
mann, in 1854. Originally, it was referring to the shortest path between two points on
Earth’s surface. Nowadays, given an affine connection like the one of Levi-Civita,
it can also be defined as a curve whose tangent vectors remain parallel when trans-
ported along the curve. In Theoretical Physics it is in General Relativity that this
notion played a key rôle.

In a stochastic framework, a generalisation of geodesic curve is described. It cor-
responds to a critical path for some generalised action functional. The concept is
reminiscent of Feynman path integral approach to Quantum Mechanics [1] but for
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well defined probability measures on path spaces. It involves, in particular, regu-
larisation of the second order in time classical dynamical equations, which is not
traditional in Stochastic Analysis.

The derived equations of motion are of Burgers type. When considering flows
which keep the volumemeasure invariant one obtains Navier–Stokes equations. This
point of viewwas developed in [2, 3, 9] in particular. It is currently being investigated
(c.f. [8] as well as [10] for a review on this subject).

After a short survey of classical geodesics on Riemannian manifolds, Cartan’s
frame bundle approach and its relation with the horizontal and Laplace–Beltrami
operators are recalled.

Stochastic Analysis of diffusions on manifolds along the line of Itô–Ikeda–
Watanabe is given, together with Itô’s associated notion of parallel transport. Then
one comes back to one of the historic definitions of geodesics, namely as critical
points of an Action functional. The regularisations associated with the critical diffu-
sion provide the appropriate generalised energy functional. The same strategy applies
to geodesics on Lie groups.

It is also shown how, if needed, stochastic geodesics can be characterised via
stochastic forward-backward SDEs.

It is a special pleasure to dedicate this paper to Sergio Albeverio as a modest sign
of recognition for his faithful friendship along the years.

2 Geodesics on Riemannian Manifolds

We shall denote by M a d-dimensional compact Riemannian manifold and g its
metric tensor. Given m ∈ M , if u, v are vectors in the tangent space Tm(M) the
Riemannian inner product is given in local chart by

gm(u, v) = (gi, j u
i v j )(m)

Here and in the rest of the paper we adopt Einstein summation convention.
The Levi-Civita covariant derivative of a vector field z has the expression

[∇k z] j = ∂

∂mk
z j + Γ

j
k,l z

l,

whereΓ denotes the corresponding Christoffel symbols in the local chart; explicitly,

Γ
j

k,l = 1

2

(
∂

∂mk
gi,l + ∂

∂ml
gk,i − ∂

∂mi
gk,l

)
g j,i (1)

Given a smooth curve t → ϕ(t) ∈ M , the parallel transport of a vector field z
along this curve is defined by the condition of zero covariant derivative of z in the ϕ̇

direction,
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∇ϕ̇(t)z(t) = 0 or ż j = −Γ
j

k,l ϕ̇
k zl . (2)

Its solution, z(t) = tϕ
t←0(z(0)), the parallel transport of z along the curve, provides

an Euclidean isomorphism between tangent spaces:

tϕ
t←0 : Tϕ(0)(M) → Tϕ(t)(M).

Consider the curves minimising the length

J (γ ) =
∫

l(γ, γ̇ )dt, l(γ, γ̇ ) =
√

gi, j γ̇ i γ̇ j

and therefore satisfying the Euler Lagrange variational equation

d

dt

(
gi, j γ̇

j

l

)
= 1

2l
∂i (g j,k)γ̇

j γ̇ k .

Replacing dt by ds (where s is the arc length) we obtain

d

dt

(
gi, j γ̇

j 1

ds
) − 1

2

1

ds
∂i (g j,k

)
γ̇ j γ̇ k = 0

and also

gi, j
d2γ j

ds2
+ ∂k(gi, j )

dγ k

ds

dγ j

ds
− 1

2
∂i (g j,k)

dγ k

ds

dγ j

ds
= 0

Multiplying both members by gα,i we obtain the following classical form of the
geodesic equation:

d2γ α

ds2
+ Γ α

j,k

dγ j

ds

dγ k

ds
= 0 (3)

or ∇γ̇ γ̇ = 0.
A curve satisfying the last equation is called a geodesic for the corresponding

Riemannian metric. It is also well known that geodesics (defined in a time interval
[0, T ]) are characterised as being critical paths of the (kinetic) energy functional

E (γ ) =
∫ T

0
||γ̇ (t)||2dt =

∫ T

0
gi, j (γ (t))γ̇ i (t)γ̇ j (t)dt (4)
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By critical it is meant that, for every family of smooth curves (variations of γ )
γε starting (at time 0) and ending (at time T ) at γ (0) and γ (T ) resp., we have
d
dε

|ε=0E (γε) = 0.

3 The Frame Bundle and the Laplacians

The bundle of orthonormal frames over M is defined by

O(M) = {(m, r) : m ∈ M, r : Rd → Tm(M) is an Euclidean isometry}

The map π : O(M) → M, π(m, r) = m is the canonical projection.
Let ei , i = 1, . . . , d denote the vectors of the canonical basis of Rd and γi

denote the (unique) geodesic on M such that γi (0) = m, d
dt

∣∣
t=0

γi (t) = r(ei ). Let
(γi (t), ri (t)) represent the parallel transport of r along γi , ∇γ̇i ri = 0, ri (0) = Id.
Then

Ai (m, r) = d

dt

∣∣∣∣
t=0

ri (t)

are called the horizontal vector fields on M .
Denote by Θ the one-form defined on O(M) with values in Rd × so(d) such that

< Θ, Ai >= (ei , 0); Θ = (θ, ω), with ω(m, r) = r−1dr the Maurer–Cartan form
on the orthogonal group O(d). Its structure equations are given by

{
dθ = ω ∧ θ

dω = ω ∧ ω + Ω(θ ∧ θ),

where Ω denotes the curvature tensor:

Ω(X, Y, Z) = (∇X∇Y − ∇Y ∇X − ∇[X,Y ])Z ,

and where [X, Y ] denotes the bracket of two vector fields. Recall also that the Ricci
tensor (Riccikl) is the trace of the curvature, taken in the second and third entries.

In particular θ(Ak) = ek and ω(Ak) = 0. The horizontal Laplacian on O(M) is
the second order differential operator

ΔO(M) =
d∑

k=1

L 2
Ak

(5)

where LAk denotes the Lie derivative along the vector field Ak . For every smooth
function f defined on M we have
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ΔO(M)( f ◦ π) = (ΔM f ) ◦ π

where ΔM is the Laplace–Beltrami operator on M . This operator is expressed in
local coordinates by

ΔM f = gi, j

[
∂2 f

∂mi∂m j
− Γ k

i, j

∂ f

∂mk

]
. (6)

4 Stochastic Analysis on Manifolds

We are going to consider stochastic diffusions associated to elliptic operators on M
of the form

Lu f := 1

2
ΔM f + ∂u f (7)

in the sense of Itô stochastic calculus. Here u is a possibly time-dependent, smooth
(at least C2) vector field on M . In local coordinates the diffusion with generator Lu

can be written as

dm j (t) = σ
j

k dxk(t) −
(
1

2
gm,nΓ j

m,n − u j

)
dt (8)

where σ = √
g and xk are independent real-valued Brownian motions.

We consider the horizontal lift of these M-valued diffusion processes. Denote by
uk the functions defined on O(M) by

Uk(r) = r(ek).uπ(r).

Then ũ = ∑
k Uk Ak satisfies π ′(ũ) = u (π ′ being the derivative of the canonical

projection π ).
Denoting by x a sample path of the standard Brownian motion on Rd , x(t), t ∈

[0, T ], x(0) = 0, we consider the following Stratonovich stochastic differential
equation on O(M):

drx (t) =
d∑

k=1

Ak(◦dxk(t) + Ukdt), rx(0) = 0 (9)

with π(r0) = m0. In local coordinates (mi , ei
α) on O(M) and if r(t) = (m(t), e(t))

we have,
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{
dmi (t) = ei

α ◦ (dxα(t) + uαdt)
dei

α(t) = −Γ i
j,k(m(t))ek

α(t) ◦ dm j (t),

If a ∈ M , we denote the path space of the manifold-valued paths starting from a
by

Pa(M) = {p : [0, T ] → M, p(0) = a, p continuous}.

The diffusion m(t) has for generator the operator Lu . We refer to [16] for a detailed
exposition of diffusions on Riemannian manifolds constructed on the frame bundle.

For each vector field u the operator Lu and the operator LU = 1
2ΔO(M) + ∂U

induce on the path spaces Pm0(M) and Pm0(O(M)), respectively, two probability
measures, namely the laws of the corresponding diffusion processes. The projection
map π realizes an isomorphism between these two probability spaces.

Let the path space P0(Rd) be endowed with the law of the process dy(t) =
(◦dx(t) + U )(y(t)), t ∈ [0, T ] and Pm0(M) with the law of the diffusion p with
generator Lu). Consider the Itô map I : P0(Rd) → Pm0(M) defined by

I (x)(t) = π(rx(t))

Thismap is a.s. bijective and provides an isomorphism between the corresponding
probability measures [18].

Even though p is not differentiable in time, Itô has shown that one can still define
a parallel transport along p, which is the isomorphism from Tp(s)(M) → Tp(t)(M)

given by

t p
t←s := rx (t)rx(s)

−1.

The differentiability of rx (t) with respect to variations of the Brownian motion x
was studied in [12, 17] within the framework of Malliavin Calculus [5, 19] (c.f. also
[13] for the case of the Brownian motion with drift).

Denote Dβ
α = LAα

uβ . The following result holds:

Proposition 1 Given a process of bounded variation in time h : P0(Rd) × [0, T ] →
Rd, we have, using the notations of Sect.3,

< θ,
d

dε |ε=0

rx+εh >= ζ, < ω,
d

dε |ε=0

rx+εh >= ρ (10)

where ζ and ρ are determined by the Itô (and Stratonovich) stochastic differential
equations

dζ(t) = ḣ(t)dt − [1
2

Ricci + D](h(t))dt − ρ(t)dx(t) (11)

dρ = Ω(◦dx + udt, h)
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with initial conditions ζ(0) = 0, ρ(0) = 0.

The result above is still valid for pinned Brownian motion, namely when p(T ) is
fixed. Then the variations are equal to zero not only at the initial but also at this final
time. The sigma-algebra and filtration on the corresponding path space are the usual
ones, generated by the coordinate maps and generated by the coordinate maps up to
time T, respectively. We refer to [15] for more details.

5 Stochastic Geodesics

We shall consider stochastic geodesics as processes which are critical points of some
energy functional generalising the classical deterministic one. Since the stochastic
processes, diffusions on the manifold, are no longer differentiable in time, some
notion of generalised velocity has to replace the usual time derivative.

If ξ(·) is a semimartingale with respect to an increasing filtration Pt , t ∈ [0, T ]
and with values in a manifold M , we consider the process η defined by the
Stratonovich integral

η(t) :=
∫ t

0
t ξ
0←sodξ(s)

This is a semimartingale taking values in Tξ(0)(M). We consider its (generalised)
right-hand time derivative (or drift) by taking conditional expectations:

Dtη(t) = lim
ε→0

EP t

[
η(t + ε) − η(t)

ε

]

Notice that if ξ is a differentiable deterministic path, this notion of derivative reduces
to the usual one.

Then we define the generalised (forward) derivative

D∇
t ξ(t) := tt←0Dtη(t) (12)

We use the symbol ∇ to stress that the derivative depends on the choice of covariant
derivative used to define the parallel transport, although in this work we are only
consider the Levi-Civita covariant derivative.

For a (possibly time dependent) vector field Z computed along a semimartingale
ξ , the generalised derivative is defined as

D∇
t Z(t) = lim

ε→0

1

ε
EP t [tt←t+ε Z(t + ε, ξ(t + ε)) − Z(t, ξ(t)]

Let us consider our basemanifold M and, for a M-valued semimartingale ξ , define
the corresponding kinetic energy by
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E (ξ) = E
∫ T

0
||D∇ξ(t)||2dt (13)

Next Theorem characterises the critical paths of E . Allowed variations are pro-
cesses of bounded variation h satisfying h(0) = h(T ) = 0. We have the following
result:

Theorem 1 A diffusion process m(·) with generator Lu, u ∈ C2(M), is a critical
path for the energy functional E if and only if D∇

t u(t, m(t)) = 0 almost everywhere
or, equivalently,

∂

∂t
u + (∇uu) + 1

2
[(Δu) + Ricci(u)] = 0 (14)

Notice that, in particular, we obtain the expression derived in [20] using local
coordinates.

It is shown in [4] (c.f., more generally, [20]) that the symmetries of the critical
diffusion coincide with the regularisation of its classical counterpart. In other words,
if the diffusion coefficient in (8), regarded now as variable, tends to zero, D∇ξ in
(12) reduces to an ordinary (strong) derivative, Eq. (14) and the symmetries of the
critical diffusion reduce to those of the classical functional (4).

Proof We first write the energy functional via the lift of the process to the frame
bundle, as explained in the last paragraph:

E = E
∫ T

0
||Dtπ(rx (t))||2dt

where Dt refers to the generalised derivative for processes defined on the flat space
(of the Brownian motion x). Then we perform variations of the Brownian motion x
along directions h(·), processes of bounded variation with h(0) = h(T ) = 0. Using
Proposition 1, these variations will give rise to variations on the path space of the
manifold M along semimartingales ζ(·), where ζ is given by (11). More precisely
we have,

d

dε |ε=0

E
∫ T

0
||Dtπ(rx+εh(t))||2dt = 2E

∫ T

0
< Dtπ(rx (t)), Dtπ

′
(

d

dε |ε=0

rx+εh(t)

)
> dt

= 2E
∫ T

0
< Dtπ(rx (t)), Dt (ζ )(t)) > dt

= 2E
∫ T

0
< Dtπ(rx (t)), ḣ − 1

2
Ricci(h) − D(h)(t) > dt

Using integration by parts in time, the assumption h(0) = h(T ) = 0 and the fact
that there is no Itô’s extra term in the integration since h is of bounded variation, the
first term is equal to −2E

∫ T
0 < Dt Dtπ(rx), h(t) >.
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We arrive to the conclusion that a process rx of the form (9) is critical for the
action functional E if and only if D∇

t u = 0 almost everywhere, which proves the
Theorem.

6 Stochastic Geodesics on Lie Groups

Let G denote a Lie group endowed with a left invariant metric < > and a left
invariant connection ∇, that we assume here to be the Levi-Civita connection. The
corresponding Lie algebra G can be identified with the tangent space TeG, where e
is the identity element of the group. Taking a sequence of vectors Hk ∈ G , consider
the following Stratonovich stochastic differential equation on the group:

dg(t) = Te Lg(t)

(∑
k

Hk ◦ dxk(t) − 1

2
∇Hk Hkdt + u(t)dt

)
(15)

with g(0 = e, where Ta Lg(t) : TaG → Tg(t)aG is the differential of the left transla-
tion Lg(t)(x) = g(t)x, x ∈ G and where xk(t) are independent real valued Brownian
motions. The vector u(·) is assumed to be non random, u(·) ∈ C2([0, T ];G ).

The stochastic energy functional for a general G-valued semimartingale ξ(t), t ∈
[0, T ], reads:

E (ξ) = E
∫ T

0
||Tξ(t)Lξ(t)−1 D∇

t ξ(t)||2dt (16)

Assume furthermore that∇Hk Hk = 0 for all k (in particular the Stratanovich integral
in (15) coincides with the Itô one). Then the following result holds:

Theorem 2 ([2]) A G-valued semimartingale of the form (15) is critical for the
energy functional (16) if and only if the vector field u(·) satisfies the equation

d

dt
u(t) = adu(t)u(t) − 1

2

(∑
k

∇Hk ∇Hk u(t) + Ricci(u(t))

)

When Hk = 0 for all k the equation reduces to the well known Euler–Poincaré
equation for (deterministic) geodesics in Lie groups d

dt u(t) = adu(t)u(t).
Up to some sign changes, the right invariant case is analogous.
The theorem also holds for infinite-dimensional Lie groups and allows, as a par-

ticular case, to derive the Navier–Stokes equation, when the problem is formulated
on the diffeomorphisms group (c.f. [2]).
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7 Relation with Stochastic Forward-Backward Differential
Equations

Deterministic geodesics solve second order differential equations and as such can
be obtained using standard methods for such equations, with given initial position
and velocity as well as with initial and final given positions. The meaning of “sec-
ond order” stochastic differential equations is not so clear. A possible method is
its characterisation via stochastic forward-backward differential equations. In local
coordinates (c.f. notations defined in (8), a stochastic geodesic in the time interval
[0, T ] reads

m j (t) = m j (0) +
∫ t

0
σ

j
k (m(s))dxk(s) −

∫ t

0

(
1

2
gm,nΓ j

m,n(m(s)) − y j (s)

)
ds

y j (t) = y j (T ) −
∫ T

t
Z j

k (s)dxk(s) − 1

2

∫ T

t
Ricci j (m(s))ds

Given m j (0) and y(T ) = u(T, m(T )) these kind of systems may provide solu-
tions of the form (m(t), y(t))with y(t) = u(t, m(t)) corresponding to our stochastic
geodesics (c.f., for example, [14]). The term Z is an a priori unknown of the equation,
but is in fact determined a posteriori by the solution (m, y).

In the case of stochastic geodesics on Lie groups, the characterisation via forward-
backward equations was described in [6]. An extension to infinite dimensional Lie
groups and, in particular, to the Navier–Stokes equation framework, is also possible
[7, 11].
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A Note on Supersymmetry and
Stochastic Differential Equations

Francesco C. De Vecchi and Massimiliano Gubinelli

Abstract Weobtain a dimensional reduction result for the lawof a class of stochastic
differential equations using a supersymmetric representationfirst introducedbyParisi
and Sourlas.

Keywords Invariant measures of sdes · Dimensional reduction · Supersymmetric
field theories

AMS: 60H10 · 81T60 · 46L53

1 Introduction

In this paper we want to exploit a supersymmetric representation of scalar stochastic
differential equations (SDEs) with additive noise and nonlinear drift V ′ in order to
prove the well known relation between the invariant law of these SDEs and the Gibbs
measure e−2V (x)dx .

The supersymmetric representation of SDEs or more generally SPDEs was first
noted by Parisi and Sourlas [15, 16] and it is well known and used in the physics lit-
erature (see, e.g. [21]) where the relation between supersymmetry, SDEs and Gibbs
measures (called dimensional reduction) was formally established [7, 10]. In the
case of elliptic SPDEs these formal arguments have been rigorously exploited and
proved [3, 14] and applied to the stochastic quantization program of quantum field
theory [2, 11]. In the present paper we want to propose a similar rigorous version
of dimensional reduction for one dimensional SDEs. The proof proposed here fol-
lows more closely the methods used for dimensional reduction of elliptic equations
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used in [3] (see also [14]) rather than the formal proofs of the physics literature
(see, e.g. [7, 10]). The dimensional reduction of parabolic and elliptic stochastic
differential equations with additive noise and gradient type non-linearity is an exam-
ple of a more general phenomenon involving a supersymmetric representation of
generic stochastic differential equations with Gaussian white noise. Although there
are some formal arguments for proving this (conjectured) relation between dimen-
sional reduction, supersymmetry and generic stochastic differential equations (see,
e.g., [21] Chap.15), outside the elliptic case with additive noise cited above and the
standard stochastic differential equation with additive noise treated here, to the best
of our knowledge, there is no proof in the general setting.

We describe in more details the result proved in this paper. Here we consider the
following SDE

∂tφ(t) + m2φ(t) + f (t)V ′(φ(t)) = ξ(t), t ∈ R, (1)

where m > 0, f : R → R+ is a compactly supported positive even smooth function
such that f (0) = 1, V : R → R is a smooth bounded function with all derivatives
bounded and ξ is a Gaussian white noise onR. Equation (1) has a unique solution φ :
R → Rwhich coincides for sufficiently negative timeswith theOrnstein–Uhlenbeck
process ϕ = G ∗ ξ where

G(t) = e−m2t
It>0.

This solution satisfies the integral equation

φ(t) + G ∗ ( f V ′(φ))(t) = ϕ(t), t ∈ R, (2)

and moreover its law is invariant under the inversion t �→ −t of the time variable.
The aim of this note is to prove the following theorem.

Theorem 1 For any bounded measurable function F : R → R we have

E

[
F(φ(0))e−2

∫ 0
−∞ f ′(t)V (φ(t))dt

]
= 1

Z
∫

R

F(x)e−m2x2−2 V (x)dx

where

Z =
E

[
e−2

∫ 0
−∞ f ′(t)V (φ(t))dt

]
∫
R
e−m2x2−2 V (x)dx

.

Proof Let μϕ be the law of the Gaussian field ϕ = G ∗ ξ on the space C(R;R)

endowed with the topology of uniform convergence on bounded intervals. Girsanov
theorem implies that for any measurable bounded function F : R → R

E

[
F(φ(0))e−2

∫ 0
−∞ f ′(t)V (φ(t))dt

]
=

∫
F(ϕ(0)) exp(S(ϕ))μϕ(dϕ). (3)
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with

S(ϕ) =
∫ 0

−∞

[
f (t)

2
V ′′(ϕ(t)) − 1

2
( f (t)V ′(ϕ(t)))2 − 2 f ′(t)V (φ(t))

]
dt+

−
∫ 0

−∞
f (t)V ′(ϕ(t)) ◦ dB(t).

Here (B(t))t∈R is the double sided Brownian motion (adapted with respect to ϕ)
such that ∂t B = ξ = (∂t + m2)ϕ and ◦dB denotes the corresponding Stratonovich
integral.

Parisi and Sourlas [16] observed long ago that the r.h.s. of Eq. (3) admits a repre-
sentation using a Gaussian super-field � defined on the superspace (t, θ, θ̄), where
t ∈ R is the usual time variable and θ, θ̄ are twoGrassmann variables playing the role
of additional “fermionic” spatial coordinates (see Sect. 2 for the necessary notions
and notations). For the moment let us simply remark that � can be rigorously con-
structed as a random field on a non-commutative probability space with expectation
denoted by 〈·〉 in such a way that the expectation of polynomials in� can be reduced,
via an analog of Wick’s theorem, to linear combinations of products of covariances.
If the covariance of the super-field has the form

〈�(t, θ, θ̄)�(s, θ′, θ̄′)〉 = 1

2m2 G(|t − s|) + G(t − s)(θ′ − θ)θ̄′ − G(s − t)(θ′ − θ)θ̄, (4)

then we will prove in Theorem 8 below that the following representation formula
holds

∫
F(ϕ(0)) exp(S(ϕ))μϕ(dϕ) =

〈
F(�(0)) exp

(∫ 0

−∞
f (t + 2θθ̄)V (�(t, θ, θ̄))dtdθdθ̄

)〉
. (5)

Note that on the l.h.s. we have usual (commutative) probabilistic objects while the
r.h.s. is expressed in the language of non-commutative probability.

The interest of this reformulation lies in the fact that on the superspace (t, θ, θ̄)
one can define supersymmetric transformations which preserve the quantity t + 2θθ̄.
Integrals of supersymmetric quantities satisfy well known localization (also called
dimensional reduction) formulas [5, 6, 12, 14, 17] which express integrals over the
superspace as evaluations in zero, more precisely if F = f (t + 2θθ̄) ∈ S(S) is a
supersymmetric function and T ∈ S ′(S) is a supersymmetric distribution we have
that ∫ K

−∞
T (t, θ, θ̄) · F(t, θ, θ̄)dtdθdθ̄ = −2T∅(K )F∅(K )

for any K ∈ R (see Theorem 9 for a precise statement).
We cannot apply Theorem 9 directly to expression (5) since the superfield� is not

supersymmetric. On the other hand the correlation function (4) is supersymmetric
with respect to (s, θ′, θ̄′) when t � s and with respect to (t, θ, θ̄) when t � s. This
property and the Markovianity of the kernel G, namely



74 F. C. De Vecchi and M. Gubinelli

G(t − s)G(s − t) = 0

when s �= t , allows us to prove a localization property for the expectation of super-
symmetric linear functionals of � (see Theorem 14), namely we prove that

〈
F(�(0)) exp

(∫ 0

−∞
f (t + 2θθ̄)V (�(t, θ, θ̄))dtdθdθ̄

)〉
= 〈F(�(0)) exp[−2 V (�(0))]〉.

Since �(0) is distributed as a Gaussian with mean 0 and variance 2m−2 this implies
the claim. �

The rest of the paper contains details on the definition of the super-fields and the
proofs of the intermediate results.

2 Super-Geometry and Gaussian Super-Fields

2.1 Some Notions of Super-Geometry

We denote by S an infinite dimensional Grassmannian algebra generated by an
enumerable number of free generators {1, θ1, θ2, . . . , θn, . . .}. By this we mean that
any element of� ∈ S can bewritten in a uniqueway using a finite number of sumand
products between the generators θi . The product between the θi is anti-commuting
which means that θiθ j = −θ jθi , for all i, j ∈ N, and they commute with 1. We
callS0 = span{1},S1 = span{θ1, θ2, . . . , θn, . . .} andwithSk = span{θi1 · · · θik |θi j
∈ S1}.

If θ1, . . . , θh ∈ S1 we denote by S(θ1, . . . , θh) the finite dimensional Grass-
mannian sub-algebra of S generated by {1, θ1, . . . , θh}, and we denote by Oh the
universal Grassmannian algebra generated by h elements. We suppose that there is
an order between the generators of Oh . Once we fixed an order between θ1, . . . , θh
there is a natural isomorphism between Oh and S(θ1, . . . , θh).

We can define a notion of smooth function F : Rn × Sh
1 → S. Let F̃ be a smooth

function from R
n taking values in Oh which means an object of the form

F̃(x) = F̃∅(x)1 +
h∑

i=1

F̃i (x)ti +
∑

1�i< j�h

F̃i, j (x)ti t j + · · · + F̃1,2,...,h(x)t1 · · · th,

where t1, ..., th are a set of generators of Oh and x ∈ R
n . We define F associated

with F̃ in the following way: F associates to (x, θ1, . . . , θh) ∈ R
n × Sh

1 the element
F̃(x) ∈ S(θ1, . . . , θh) where we make the identification of S(θ1, . . . , θh) with Oh ,
i.e.
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F(x, θ1, . . . , θh) = F̃∅ (x)1 +
h∑

i=1

F̃i (x)θi +
∑

1�i< j�h

F̃i, j (x)θiθ j + · · · + F̃1,2,...,h(x)θ1 · · · θh .

(6)
Hereafter we use the notation F∅, Fθ1 , . . . for denoting F∅ = F̃∅, Fθ1 = F̃1, . . . .We
say that F is a Schwartz function if F∅, Fi , . . . are Schwartz functions. We denote
by S(Sh) the set of Schwartz functions with h anti-commuting variables.

If H : R → R is a smooth function we can define the composition H ◦ F in the
following way

H ◦ F(x, θ1, . . . , θh) = H(F∅(x))1 + H ′(F∅(x))(F(x, θ1, . . . , θh) − F∅(x)1)
+ 1

2H
′′(F∅(x))(F(x, θ1, . . . , θh) − F∅(x)1)2

· · · + 1
h! H

(h)(F∅(x))(F(x, θ1, . . . , θh) − F∅(x)1)h .

On S it is possible to define a notion of integral called Berezin integral, in the
following way

∫
θdθ = 1,

∫
θ̄dθ = 0 if θ̄ ∈ S1 and θ̄ �= θ,

∫
�θdθ = � where

� = θ1 · · · θh ∈ Sh and θi �= θ and
∫ ·dθ is linear in its argument. The integral∫

�dθ1dθ2 · · · dθh is defined as
∫ (· · · (∫ (∫

�dθ1
)
dθ2

) · · · ) dθh .
If F is a smooth function, defined on R

n × Sh
1, we can define the integral of F

with respect to dxdθ1 · · · dθh in the following way
∫
F(x, θ1, . . . , θh)dxdθ1 · · · dθh

first applying the integral
∫ ·dx to the set of functions F∅, Fi , . . . (which are the

component of the function F by Eq. (6)) obtaining an element ofS(θ1, . . . , θh) and
then applying the Berezin integral to this result. Using this notion of integral and
the induced duality between smooth functions, it is possible to define the notion of
tempered distribution T ∈ S ′(Rn × Sh). The distribution T is an object of the form

T (x, θ1, . . . , θk) = T∅(x)1 +
h∑

i=1

Tθi (x)θi + · · · + Tθ1...θh (x)θ1 · · · θh

where T∅(x), Tθi (x), ..., Tθ1...θh (x) are Schwartz distributions on R
n .

2.2 Construction of the Super-Field

Following the analogous construction in [3, 14] the super-field � is defined as

�(t, θ, θ̄) = ϕ(t) + ψ̄(t)θ + ψ(t)θ̄ + ω(t)θθ̄,

where t ∈ R, and ϕ,ψ, ψ̄,ω are complex Gaussian fields realized as functional from
S(R) into the set of operators O(H) on a complex vector space H with a fixed state
�, and θ, θ̄ are any pair of anti-commuting variables θ, θ̄ ∈ S commuting with the
operators ω,ϕ and anti-commuting with the operators ψ, ψ̄. Hereafter we shall use
the notation denote by 〈a〉� = 〈�, a(�)〉H for any a ∈ O(H), where 〈·, ·〉H is the
scalar product in H. For a background on superfield, supermanifolds and Berezin
integral see, e.g., [4, 8] and furthere referefnces in [2, 3].
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The Gaussian fields ϕ,ψ, ψ̄,ω mush be realized as operators defined from S(R)

taking values in O(H), for a suitable Hilbert space H with a state � ∈ H such that
the condition (4) holds. Making a formal computation we obtain that

〈�(t, θ, θ̄)�(s, θ′, θ̄′)〉� = 〈ϕ(t)ϕ(s)〉� − 〈ψ̄(t)ψ(s)〉�θθ̄′ − 〈ψ(t)ψ̄(s)〉�θ̄θ′+
+ 〈ϕ(t)ω(s)〉�θ′θ̄′ + 〈ω(t)ϕ(s)〉�θθ̄ + 〈ω(t)ω(s)〉�θθ̄θ′θ̄′

from which we get

〈ϕ(t)ϕ(s)〉� = 1
2m2G(|t − s|) 〈ψ̄(t)ψ(s)〉� = G(t − s) 〈ϕ(t)ω(s)〉� = G(t − s)

〈ω(t)ω(s)〉� = 0.
(7)

Using the commutation relations

{ϕ(t),ϕ(s)}+ = 0 {ϕ(t),ω(s)}+ = 0 {ω(t),ω(s)}+ = 0 (8)

{ψ̄(t),ψ(s)}− = {ψ(t),ψ(s)}− = {ψ̄(t), ψ̄(s)}− = 0
{ϕ(t)ψ(s)}+ = {ϕ(t)ψ̄(s)}+ = {ω(t),ψ(s)}+ = {ω(t), ψ̄(s)}+ = 0

(9)

where {K1, K2}+ = K1K2 − K2K1 and {K1, K2}− = K1K2 + K2K1 (where K1,

K2 ∈ B(H)) are the commutator and the anti-commutator of closed operators hav-
ing a non void common core. By Wick’s theorem (see, e.g. [9] Chap.3 Sect. 8) the
expectation of arbitrary polynomials in ϕ,ψ, ψ̄,ω is completely determined.

The bosonic field ϕ is a standard (real and commutative) Gaussian field with
covariance G(|t − s|). Also ω is a standard (complex and commutative) Gaussian
field of the form

ω(t) = ξ(t) + iη(t),

where ξ = (∂t + m2)ϕ and η is a Gaussian white noise with Cameron-Martin space
L2(R) independent of ϕ. We can realize the Gaussian field ϕ,ω as (unbounded)
operators defined on a Hilbert space H',! and with a state �ϕ,ω . We can take Hϕ,ω =
L2(μϕ,ω) where μϕ,ω is the law of (ϕ,ω) on C(R) × S ′

C
(R) and �ϕ,ω = 1.

The fermionic fields ψ, ψ̄ are build as follows (for a different construction of
fermionic fields see also [1]). Let a, b and a∗, b∗ be two creation and annihilation
operators defined as bounded functionals on S(R) taking values in B(Hψ,ψ̄) (where
Hψ,ψ̄ is a suitable Hilbert space with a fixed state �ψ,ψ̄) such that

{a( f ), a(g)}− = {b( f ), b(g)}− = 0
{a( f ), b(g)}− = {a∗( f ), b(g)}− = 0

{a∗(g), a( f )}− = {b∗(g), b( f )}− = (∫
R
f (t)g(t)dt

)
IHψ,ψ̄

,

for any f, g ∈ S(R), and such that

〈a( f )K 〉�ψ,ψ̄
= 〈Ka∗( f )〉�ψ,ψ̄

= 〈b( f )K 〉�ψ,ψ̄
= 〈Kb∗( f )〉�ψ,ψ̄

= 0,
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where K is any bounded operator K ∈ B(Hψ,ψ̄). We define U : S(R) → S(R) by

U( f )(t) = 1

2π

∫

R

e−iξt

iξ + m2
f̂ (ξ)dξ.

We then write

ψ( f ) = a∗(U∗( f )) + b( f ), ψ̄( f ) = b∗(U( f )) − a( f ),

where U∗ is the adjoint of U in L2(R) with respect to the Lebesgue measure on R.
In this way, we have

{ψ̄(t),ψ(s)}− = {ψ(t),ψ(s)}− = {ψ̄(t), ψ̄(s)}− = 0,

and also

〈ψ̄( f)ψ(g)〉�ψ,ψ̄
= 〈b∗( f )a∗(g)〉�ψ,ψ̄

+ 〈b∗( f )b(g)〉�ψ,ψ̄
− 〈a( f )a∗(g)〉�ψ,ψ̄

+
−〈a( f )b(g)〉�ψ,ψ̄

= ∫
R
U( f )(t)g(t)dt

= ∫
R
g(t)

∫ t
−∞ e−m2(t−s) f (s)dsdt = ∫

R2 g(t)G(t − s) f (s)dsdt.

In other words we have 〈ψ̄(t)ψ(s)〉�ψ,ψ̄
= G(t − s) as required (for a more detailed

proof see, e.g., [1, 15, 16, 21]). We can define the operators ϕ,ψ, ψ̄,ω as acting on
a unique (quantum) probability space, by taking

H = Hϕ,ω ⊗ Hψ,ψ̄ � = �ϕ,ω ⊗ �ψ,ψ̄.

In order to realize the field � in a rigorous way we consider a complex sub-algebra
A ⊂ O(H) such that ϕ,ψ, ψ̄,ω take values in A and for any smooth function V :
R → R we have V (ϕ(g)) ∈ A, where g is any function in S(R). This sub-algebra
A is generated (from an algebraic point of view) by operators of the form V (ϕ(g)),
ω(g), ψ(g), ψ̄(g) and IH. We consider the vector space A = A × S. There are two
preferred hyperplanes AA and AS defined by

AA = {(a, 1S)|a ∈ A}, AS = {(IH, θ)|θ ∈ S},

with the natural immersions iA : A → A and iS : S →A defined by iA(a) =
(a, 1S) and iS(θ) = (IH, θ) (we note that AA := iA(A) and AS := iS(S)). It is
clear thatAA,AS generates the wholeA. OnAwe define the following product ·, in
such a way that the maps iA and iS respect the product (i.e. iA(ab) = iA(a) · iA(b)
and iS(θ1θ2) = iS(θ1) · iS(θ2)) and such that

(V (ϕ(g)), 1S) · (IH, θ) = (IH, θ) · (V (ϕ(g)), 1S) = (V (ϕ(g)), θ)

(ω(g), 1S) · (IH, θ) = (IH, θ) · (ω(g), 1S) = (ω(g), θ)
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(ψ(g), 1S) · (IH, θ) = −(IH, θ) · (ψ(g), 1S) = (ψ(g), θ)

(ψ̄(g), 1S) · (IH, θ) = −(IH, θ) · (ψ̄(g), 1S) = (ψ̄(g), θ)

where g ∈ S(R) and θ ∈ S1 (not inS). The product · can be uniquely extended (in
a associative way) onA sinceAA,AS generates the wholeA, operators of the form
V (ϕ(g)), ω(g), ψ(g), ψ̄(g) generates the whole A and S1 generates the whole S.
Hereafter we will omit to explicitly write the product · if this omission does not cause
any confusion.

On A we can define a linear operator 〈·〉 : A → AS � S by

〈(a, θ)〉 = 〈a〉�(IH, θ).

Furthermore for any θ1, . . . , θn ∈ S1 we define the linear operator
∫ ·dθ1 . . . dθn :

A → AA such
∫ ·dθ1 . . . dθn|AS

is the usual Berezin integral induced by the identi-
fication AS � S

∫
(a, θ)dθ1 . . . dθn =

(∫
θdθ1 . . . dθn

)
(a, 1S).

Hereafter we identify the spaceA andSwithAA andAS respectively, and we write
instead of (a, 1S), (IH, θ), (IH, 1S) simply a, θ and 1 respectively (in this way we
take also the tacit identification of span{1S} = S0 withR). Furthermore we identify
ϕ,ψ, ψ̄,ω with iA ◦ ϕ, iA ◦ ψ, iA ◦ ψ̄, iA ◦ ω.

Remark 2 Since ψ, ψ̄ are “independent” with respect to ϕ and ω (since they can be
realized on a space of the form H = Hϕ,ω ⊗ Hψ,ψ̄) the expectation only with respect

to the fields ψ, ψ̄ is well defined, namely there exixts an operator 〈·〉ψ,ψ̄ : OH → O',!

such that

〈V (ϕ(t1), . . . ,ϕ(tk))ψ(t ′1)ψ̄(t ′′1 ) · · · ψ(t ′k ′)ψ̄(t ′′k ′)〉ψ,ψ̄

= V (ϕ(t1), . . . ,ϕ(tk))〈ψ(t ′1)ψ̄(t ′′1 ) · · · ψ(t ′k ′)ψ̄(t ′′k ′)〉.

This operator 〈·〉ψ,ψ̄ extends toA in the sameway inwhich the operator 〈·〉 is extended
on the whole A.

2.3 Relation with SDEs

In this section we want to use the super-field � for representing the solution to the
SDE (1) through the integral (3).

First of all we have to define the notion of composition of the super-field �

with smooth functions. Consider the smooth function H : R → R growing at most
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exponentially at infinity. We can formally expand H in Taylor series and using the
properties of θ, θ̄ we obtain

H(�(t, θ, θ̄)) = H(ϕ(t)) + H ′(ϕ(t))ψ̄(t)θ + H ′(ϕ(t))ψ(t)θ̄+
+(H ′(ϕ(t))ω(t) + H ′′(ϕ(t))ψ(t)ψ̄(t))θθ̄.

Unfortunately the products H ′(ϕ(t))ω(t) and H ′′(ϕ(t))ψ(t)ψ̄(t) are ill defined
since the factors are not regular enough. For this reason we consider a symmet-
ric mollifier ρ : R → R+ (with ρ(t) = ρ(−t)) and the field �ε = ρε ∗ �, where
ρε(t) = ε−1ρ(tε−1). If G is a super-function, F : R → R is a smooth function and
K is an entire function we define

〈
F(ϕ(0))K

(∫
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)〉
:= limε→0

〈
F(ϕε(0))K

(∫
G(t, θ, θ̄)H(�ε(t, θ, θ̄))dtdθdθ̄

)〉
.

(10)

We want to prove that the previous expression is well defined and does not depend
on ρ.

Remark 3 It is important to note that the expression (10) does not depend on ρ only
if ρ is reflection symmetric (i.e. ρ(t) = ρ(−t)). If we choose a different ρ (such that
for example

∫ 0
−∞ ρdt �= ∫ +∞

0 ρdt) we will obtain a different limit in (10). This is due

to the fact that the products H ′(ϕ(t))ω(t) and H ′′(ϕ(t))ψ(t)ψ̄(t) are ill defined and
it is analogous to the possibility to obtain Itô or Stratonovich integral in stochastic
calculus considering different approximations of the stochastic integral.

Lemma 4 Let F1, . . . , Fn : R × R → R be smooth functions with compact support
in the first variable and growing at most exponentially at infinity in the second
variable then we have

lim
ε→0

〈
n∏

i=1

∫
Fi (t,ϕε(t))ψ̄ε(t)ψε(t)dt

〉

ψ,ψ̄

=
∫ n∏

i=1

Fi (ti ,ϕ(t))Gn(t1, . . . , tn)dt1 . . . dtn . (11)

in L p(μϕ) for all 1 ≤ p < +∞. Here Gn(t1, . . . , tn) = det((Gi, j )i, j=1,...,n) with
Gi, j = G(t j − ti ) if i �= j and Gi,i = 1/2.

Proof It is simple to see that limε→0〈ψ̄ε(t1)ψε(t2)〉ψ,ψ̄ = G(t1 − t2) when t1 �= t2
and limε→0〈ψ̄ε(t)ψε(t)〉ψ,ψ̄ = 1

2 (this is due to the fact that ρ(t) = ρ(−t)). Since

〈ψ̄ε(t1)ψε(t1) · · · ψ̄ε(t2)ψε(tn)〉ψ,ψ̄ is uniformly bounded in t and ε and Fi (t,ϕε(t)) is
uniformly bounded in L p(μϕ) in t and ε the claim follows. �

Remark 5 Since only one between G(t − s) and G(s − t) is non zero if F1 = F2 =
· · · = Fn then we get

lim
ε→0

〈(∫
F1(t,ϕε(t))ψ̄ε(t)ψε(t)dt

)n〉

ψ,ψ̄

=
(
1

2

∫
F1(t,ϕ(t))dt

)n

.
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Lemma 6 Let F : R × R → R be smooth functions with compact support in the
first variable and growing at most exponentially at infinity in the second variable
then we have in L p(μϕ,ω), for all 1 ≤ p < +∞,

lim
ε→0

∫
F(t,ϕε(t))ωε(t) =

∫
F(t,ϕ(t)) ◦ dB(t) + i

∫
F(t,ϕ(t))dW (t)

where the first one is Stratonovich integral and the second one is Itô integral with
respect to (double sided) Brownian motions (B(t),W (t))t∈R such that ∂t B(t) = ξ(t)
and ∂tW (t) = η(t) with B0 = W0 = 0.

Proof This is the Wong–Zakai theorem [13, 18–20]. �

Theorem 7 WhenK is a polynomial and H growsatmost exponentially at infinity, or
K is entire and H is bounded with first and second derivative bounded, the limit (10)
is well defined and does not depend on the symmetric mollifier ρ.

Proof When K is a polynomial the thesis follows directly from Lemmas 4 and 6. If
K is an entire function and H is a bounded function with first and second derivatives
bounded it is possible to exchange the limit in ε with the power series, since

〈∣∣∣∣∣∣

〈(∫
G(t, θ, θ̄)H(�ε(t, θ, θ̄))

)k

dtdθdθ̄

〉

ψ,ψ̄

∣∣∣∣∣∣

p〉

is uniformly bounded in ε for any p ≥ 1. �

Theorem 8 Suppose that G(t, θ, θ̄) = G∅(t) + Gθθ̄(t)θθ̄ and that H is bounded
with the first and second derivatives bounded then

〈
F(ϕ(0)) exp

(∫
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)〉
=

=
∫

F(ϕ(0)) exp

(
1

2

∫
G∅(t)H ′′(ϕ(t))dt −

∫
G∅(t)H ′(ϕ(t)) ◦ dξ(t)+

−1

2

∫
(G∅(t)H ′(ϕ(t)))2dt −

∫
Gθθ̄(t)H(ϕ(t))dt

)
μϕ(dϕ).

(12)

Proof The proof follows from Theorem 7, the multiplicative property of exponen-
tials, Remark 5, and the fact that the Fourier transform of a process integrated with
respect to an independent Gaussian white noise can be computed explicitly and in
this case gives the factor exp(− 1

2

∫
(G∅(t)H ′(ϕ(t)))2dt). �
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3 Supersymmetry and the Supersymmetric Field

3.1 The Supersymmetry

On C∞(R × S2
1) one can introduce the (graded) derivations

Q := 2θ∂t + ∂θ̄, Q̄ := 2θ̄∂t − ∂θ,

which are such that
Q(t + 2θθ̄) = 0 = Q̄(t + 2θθ̄),

namely they annihilate the function t + 2θθ̄ defined on R × S2
1. Moreover if QF =

Q̄F = 0, for F in C∞(R × S2
1), then we must have

0 = QF(x, θ, θ̄) = 2∂t f∅(t)θ + fθ̄(t) + ∂t fθ̄(x)θθ̄ − fθθ̄(t)θ

0 = Q̄F(x, θ, θ̄) = 2∂t f∅(t)θ̄ + fθ(t) − ∂t fθ(x)θθ̄ − fθθ̄(t)θ̄

and therefore

∂t f∅(t) = 1

2
fθθ̄(t) and fθ(t) = fθ̄(t) = 0.

This means that there exists an f ∈ C∞(R,R) such that

f (t + 2θθ̄) = f (t) + 2 f ′(t)θθ̄ = f∅(t) + fθθ̄(t)θθ̄ = F(t, θ, θ̄).

Namely any function satisfying these two equations can be written in the form

F(t, θ, θ̄) = f (t + 2θθ̄).

Suppose that t > 0, if we introduce the linear transformations

τ (b, b̄)

⎛
⎝

t
θ

θ̄

⎞
⎠ =

⎛
⎝
t + 2b̄θρ + 2bθ̄ρ

θ − bρ
θ̄ + b̄ρ

⎞
⎠ ∈ S(θ, θ̄, ρ)

for b, b̄ ∈ R and where ρ ∈ S1 is a new odd variable different from θ, θ̄, then we
have

d

da

∣∣∣∣
a=0

τ (ab, ab̄)F(t, θ, θ̄) = d

da

∣∣∣∣
a=0

F(τ (ab, ab̄)(t, θ, θ̄)) = (b · Q̄ + b̄ · Q)F(t, θ, θ̄)

so τ (b, b̄) = exp(b · Q̄ + b̄ · Q) and τ (ab, ab̄)τ (cb, cb̄) = τ ((a + c)b, (a + c)b̄).
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In particular F ∈ C∞(R × S2) is supersymmetric if and only if for any b, b̄ ∈ R

we have τ (b, b̄)F = F .
By duality the operators Q, Q̄ and τ (b, b̄) also act on the space S ′(S) and we

say that the distribution T ∈ S ′(S) is supersymmetric if it is invariant with respect
to rotations in space and QT = Q̄T = 0. For supersymmetric functions and distri-
butions the following fundamental theorem holds.

Theorem 9 Let F ∈ S(S) and T ∈ S ′(S) such that T∅ is a continuous function.
If both F and T are supersymmetric. Then for any K ∈ R we have the reduction
formula ∫ K

−∞
T (t, θ, θ̄) · F(t, θ, θ̄)dtdθdθ̄ = −2T∅(K )F∅(K ). (13)

Proof The proof can be found in [14], Lemma 4.5 for R2 and in [17] for the case
of a general super-manifold. Here we give the proof only for the case where T
is a super-function. In this case we have that T (t, θ, θ̄) = T∅(t) + 2T ′

∅(t)θθ̄ and
F(t, θ, θ̄) = F∅(t) + 2F ′

∅(t)θθ̄, from which we have

T (t, θ, θ̄) · F(t, θ, θ̄) = T∅(t)F∅(t) + 2(T ′
∅(t)F∅(t) + T∅(t)F ′

∅(t))θθ̄
= T∅(t)F∅(t) + 2∂t (T∅F∅)(t)θθ̄.

By definition of Berezin integral we have

∫ K

−∞
T (t, θ, θ̄) · F(t, θ, θ̄)dxdθdθ̄ = −2

∫ K

−∞
∂t (T∅F∅)(t)dt

= −2T∅(K )F∅(K ).

�

Remark 10 In Theorem 9 we can assume that F = F∅(t) + Fθθ̄(t)θθ̄ and
T (t, θ, θ̄) = T∅(t) + Tθθ̄(t)θθ̄ where Fθθ̄(t) = 2F ′

∅(t) and Tθθ̄(t) = 2T ′
∅(t) only for

t � K . In this way we can consider supersymmetric functions only on the set
(−∞, K ].

3.2 Localization of Supersymmetric Averages

Remark 11 We note that the correlation function

C�(t, s, θ, θ̄) := 〈ϕ(t)�(s, θ, θ̄)〉 = 1

2m2
G(t − s) + G(t − s)θθ̄

is a supersymmetric function when t � s.
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Lemma 12 Let g(t) be smooth function with compact support, t ∈ R, let P be a
polynomial. Then for t1 > t2 > · · · > tk and M = (m1, . . . ,mk) ∈ N

k we have

HM,G
�,P (t1, . . . , tk) =

=
〈

k∏
j=1

ϕ(t j )
m j

∫ tk

−∞

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=1

g
(
τi + 2θi θ̄i

)
P(�(τi , θi , θ̄i ))dτidθidθ̄i

〉
=

= (−2 g(tk))�

�!

〈
k∏
j=1

ϕ(t j )
m j P(ϕ(tk))

�

〉
.

Proof We prove the lemma by induction on � and for simplicity we assume that
P(x) = xn , the general case being a straightforward generalization. Since the proof
is essentially of combinatorial nature in the following we consider some ill defined
objects like the products ϕ(t)ω(s) or ψ(t)ψ̄(s). This fact does not change the main
idea of the proof since all the expectations with respect to the previous products are
defined using the symmetric regularization proposed in Lemma 4 and Lemma 6, i.e.
all the following computations can be made rigorous replacing ϕ,ω,ψ and ψ̄ by the
regularized Gaussian fields ϕε,ωε,ψε and ψ̄ε (as defined in Lemma 4 and Lemma 6)
and then taking the limit as ε → 0. The main difference between the proof below
and the one involving the regularized fields is that in the regularized case we have
also to consider the contractions of the form ωε(t)ϕε(s) and ψε(t)ψ̄ε(s) when s < t
and |s − t | < ε. Since the contributions of this kind of terms are proportional to the
support of the mollifier ρε, they go to zero as ε → 0. Let

Y M(t1, . . . , tk) :=
k∏
j=1

ϕ(t j )
m j

We have
HM,G

1,xn (t1, . . . , tk) =
〈
Y M (t1, . . . , tk)

∫ tk

−∞
g(τ + 2θθ̄)(�(τ , θ, θ̄))ndτdθdθ̄

〉
=

=
∫ tk

−∞
g(τ + 2θθ̄)〈Y M (t1, . . . , tk)(�(τ , θ, θ̄))n〉dτdθdθ̄.

Since� andϕ are Gaussian fields, byWick theorem and by Remark 11, we have that
〈Y M(t1, . . . , tk)(�(τ , θ, θ̄))n〉 is supersymmetric in (τ , θ, θ̄)when τ � tk .Moreover,
given that G = g(t + 2θθ̄) is a supersymmetric function by Remark 10, we have the
thesis.

Suppose now that the lemma holds for � − 1 ∈ N, then letting

H(τ1) :=
∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i ,

we have
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HM,g
�,xn (t1, . . . , tk ) =

=
〈
Y M (t1, . . . , tk )

∫ tk

−∞

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=1

g
(
τi + 2θi θ̄i

)
(�(τi , θi , θ̄i ))

ndτidθidθ̄i

〉

=
∫ tk

−∞
g(τ1 + 2θ1θ̄1)〈Y M (t1, . . . , tk )�(τ1, θ1, θ̄1)

n H(τ1)〉dτ1dθ1dθ̄1

=
∫ tk

−∞
g′(τ1)H(M,n),g

�−1,xn (t1, . . . , tk , τ1)dτ1 − n
∫ tk

−∞
〈Y M (t1, . . . , tk )ϕ(τ1)

n−1ω(τ1)H(τ1)〉·

· g(τ1)dτ1 − n(n − 1)
∫ tk

−∞
〈Y M (t1, . . . , tk )ϕ(τ1)

n−2ψ(τ1)ψ̄(τ1)H(τ1)〉g(τ1)dτ1.

Here (M, n) = (m1, . . . ,mk, n). By the induction hypothesis the first term in the
sum is exactly
∫ tk

−∞
g′(τ1)H(M,n),g

�−1,xn (t1, . . . , tk , τ1)dτ1 =
∫ tk

−∞
g′(τ1)

(2 g(τ1))�−1

(� − 1)! 〈ϕ(τ1)
�nY M (t1, . . . , tk)〉dτ1.

For the second term we note that

〈
ϕ(τ1)

n−1ω(τ1)Y
M (t1, . . . , tk)

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i

〉
=

=
k∑
j=1

m j 〈ω(τ1)ϕ(t j )〉H(M−1 j ,n−1),g
�−1,xn (t1, . . . , tk , τ1) + (n − 1)〈ϕ(τ1)ω(τ1)〉H(M,n−2),g

�−1,xn (t1, . . . , tk , τ1)

where 1 j = (0, . . . , 1, 0, . . . , 0) ∈ N
k with 1 in the j-th position and where we used

Wick’s theorem and the fact that

〈ϕ(τ1)ω(τ1)〉 = 1

2
and

〈
ω(τ1)

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i

〉
= 0.

Furthermore for the third term we have

〈
ϕ(τ1)

n−2ψ(τ1)ψ̄(τ1)

k∏
j=1

ϕ(t j )
m j

∫ τ1

−∞
· · ·

∫ τ�

−∞

�∏
i=2

g(τi + 2θi θ̄i )(�(τi , θi , θ̄i ))
ndτidθidθ̄i

〉
=

= 〈ψ(τ1)ψ̄(τ1)〉H(M,n−2),g
�−1,xn (t1, . . . , tk , τ1).

In this way we obtain that

HM,g
�,xn (t1, . . . , tk) = (−1)�−12�−1

∫ tk

−∞
g′(τ1)

(g(τ1))�−1

(� − 1)! 〈ϕ(τ1)
�nY M (t1, . . . , tk)〉dτ1+

−
k∑
j=1

m j 〈ω(τ1)ϕ(t j )〉 · H(M−1 j ,n−1),g
�−1,xn (t1, . . . , tk , τ1).



A Note on Supersymmetry and Stochastic Differential Equations 85

Here we use the fact that 〈ϕ(τ1)ω(τ1)〉 = −〈ψ(τ1)ψ̄(τ1)〉 = 1
2 . Noting that

〈ϕ�n−2(τ )ψ(τ )ψ̄(τ )Y M(t1, . . . , tk)〉 + 〈ϕ(τ )ω(τ )〉〈ϕ�n−2(τ )Y M(t1, . . . , tk)〉 = 0

we obtain

HM,g
�,xn (t1, . . . , tk) = (−2)�−1

〈
Y M (t1, . . . , tk)

∫ tk

−∞
(g(τ + 2θθ̄))�

�! �n�(τ , θ, θ̄)dτdθdθ̄

〉
=

= (−2)�−1

�! HM,g�

1,xn� (t1, . . . , tk)

Finally, the thesis follows from the induction hypothesis forHM,g�

1,xn� (t1, . . . , tk). �
Corollary 13 Let G be a supersymmetric function with compact support, then we
have

〈
ϕ(0)m

(∫ 0

−∞
G(t, θ, θ̄)P(�(t, θ, θ̄))dtdθdθ̄

)k〉
= (−2G∅(0))k〈ϕ(0)m P(ϕ(0))k〉.

(14)

Proof Using the symmetry of the l.h.s. of (14) with respect to the exchanges
(τi , θi , θ̄i ) ←→ (τ j , θ j , θ̄ j ) we have that

〈
ϕ(0)m

(∫ 0

−∞
G(t, θ, θ̄)P(�(τ , θ, θ̄))dtdθdθ̄

)k
〉

=

= k!
〈
ϕ(0)m

∫ 0

−∞

∫ τ1

−∞
· · ·

∫ τk−1

−∞

k∏
i=1

G(τi , θi , θ̄i )P(�(τi , θi , θ̄i ))dτidθidθ̄i

〉
.

Then the claim follows directly from Lemma 12 taking g = G∅. �
Theorem 14 Let F be a smooth bounded function, let G be a supersymmetric func-
tion with compact support, let H be a bounded function with all the derivatives
bounded and let K be an entire function, then we have

〈
F(ϕ(0))K

(∫ 0

−∞
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)〉
= 〈F(ϕ(0)) · K(−2G∅(0) · ϕ(0))〉.

Proof Using the density of polynomials in the set of smooth functions with respect
to the topology given by the one of the Sobolev space with respect to the Gaussian
law of ϕ(t), Corollary 13 implies that for any k ∈ N and F,G, H satisfying the
hypothesis of the theorem

〈
F(ϕ(0))

(∫ 0

−∞
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)k
〉

= 〈F(ϕ(0))[−2G∅(0)H(ϕ(0))]k〉.



86 F. C. De Vecchi and M. Gubinelli

Expanding K in power series, exploiting the fact that

〈∣∣∣∣∣∣

〈(∫
G(t, θ, θ̄)H(�(t, θ, θ̄))dtdθdθ̄

)k
〉

ψ,ψ̄

∣∣∣∣∣∣

p〉

is uniformly bounded when H is bounded, for any p ≥ 1, we can exchange the series
with the expectation 〈·〉, and obtain in this way the thesis. �
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Quasi-shuffle Algebras in
Non-commutative Stochastic Calculus

Kurusch Ebrahimi-Fard and Frédéric Patras

Abstract This chapter is divided into two parts. The first is largely expository and
builds on Karandikar’s axiomatisation of Itô calculus for matrix-valued semimartin-
gales. Its aim is to unfold in detail the algebraic structures implied for iterated Itô
and Stratonovich integrals. These constructions generalise the classical rules of Chen
calculus for deterministic scalar-valued iterated integrals. The second part develops
the stochastic analog of what is commonly called chronological calculus in control
theory. We obtain in particular a pre-Lie Magnus formula for the logarithm of the Itô
stochastic exponential of matrix-valued semimartingales.

Keywords Quasi-shuffle · Itô integral · Stochastic exponential · Magnus
formula · Stratonovich integral

1 Introduction

Algebra, renormalisation theory as well as numerical analysis are among a range of
disparate fields that have seen a surge in interest for the study of various algebraic and
combinatorial structures originating from the integration by parts formula, founda-
tional to integral calculus. In particular, the theories of Rota–Baxter algebras, shuffle
and quasi-shuffle products, pre- and post-Lie algebras as well as combinatorial bial-
gebras on rooted trees and words have undergone expansive phases in the last two
decades. The following rather incomplete list of references provides some examples
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of these developments [11, 15, 17, 18, 21, 36, 38, 57, 63, 64, 66, 67, 70]. In the
particular context of stochastic integration, interest in these structures concentrated
largely in Lyons’ seminal theory of rough paths [58, 59], which is based on Chen’s
iterated path integrals and shuffle algebra on words [22, 23, 72]. Gubinelli expanded
Lyons’ theory by generalising it to a certain combinatorial Hopf algebra of rooted
trees. The resulting notion of branched rough paths [41, 42, 46] draws inspiration
from Butcher’s theory of B-series in numerical integration of differential equations
[43, 60] as well as Connes and Kreimer’s Hopf algebraic approach to renormali-
sation in perturbative quantum field theory [24]. The latter, moreover emphasised
the pre-Lie algebraic perspective on rooted trees [20, 62]. Ideas from rough paths
gave rise to various new developments, culminating in Hairer’s celebrated theory of
regularity structures [44, 45] and its algebraic renormalisation theory [12] used in
the construction of solutions of very irregular S(P)DEs.

The relevance of such algebraic structures for classical—non-commutative—
stochastic integration (in the sense of Itô–Stratonovich) [6, 71] has attracted less
attention. Foundational papers in this field are Gaines’s 1994 work on the algebra of
iterated stochastic integrals [40], introducing what is now called quasi-shuffle prod-
uct, as well as the equivalent sticky shuffle product formula for iterated quantum
Itô integrals introduced in 1995 in the context of quantum stochastic calculus [8].
We refer to Hudson’s review papers on Hopf-algebraic aspects of iterated stochastic
integrals [49, 50]. The authors together with Charles Curry, Alexander Lundervold,
Simon Malham, Hans Munthe-Kaas and Anke Wiese further developed the use of
(quasi-)shuffle algebra in stochastic integration theory and numerical methods for
SDEs in several joint works [25–27, 30, 33, 34].

The present article is divided into two main parts. The first part starts by recall-
ing Karandikar’s axiomatisation of Itô calculus for matrix-valued continuous semi-
martingales [53]. We discuss in detail the algebraic structures implied for iterated Itô
and Stratonovich integrals. To the best of our knowledge, such an account does not
seem to exist in the literature. In fact, Karandikar’s ideas do not seem to be widely
known, as the algebraic notions and techniques involved are not of common use in
non-commutative stochastic calculus. Our presentation is written with a view toward
operationality and therefore, as far as possible, in the language of theoretical probabil-
ity theory. Inmodern algebraic terminology,Karandikar’s axioms define the notion of
non-commutative quasi-shuffle algebra. We proceed by building consistently on this
structure aiming at unraveling properties of integration techniques, ranging fromgen-
eral matrix-valued semimartingales to more specific situations (continuous paths).
We remark that introducing the Stratonovich integral in full generality requires extra
axioms corresponding to the splitting of the quadratic covariation bracket into a
continuous and a jump part. We hope that these ideas might be useful also in other
settings.

The second part develops the stochastic analog of what is commonly called
chronological calculus in control theory [1, 4, 5]. We feature in particular Agrachev
and Gamkrelidze’s [2, 3] study and systematical use of chronological algebra in
control problems. In mathematics, chronological algebras are known as pre-Lie or
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Vinberg algebras [13, 17]. This part of our work is a continuation of joint work
with Charles Curry [26], where a pre-Lie Magnus formula for the logarithm of the
Stratonovich stochastic exponential for continuous matrix-valued semimartingales
was introduced.

A more detailed outline of the paper follows. The first section is divided into
three subsections. We begin by focusing on general Itô calculus for matrix-valued
semimartingales, introduce Karandikar’s axioms, and point out connections with
other theories, especially Rota–Baxter algebras. The second subsection introduces
formally the splitting of the covariation bracket, leading to a tentative axiomatisation
of Stratonovich calculus. The last subsection studies stochastic calculus for contin-
uous semimartingales, a situation where the axioms simplify dramatically, allowing
to replace quasi-shuffles by shuffles, that is, permitting the use the standard rules of
calculus.

In the second section we study pre-Lie algebraic aspects in stochastic integral
calculus. We consider the pre-Lie Magnus formula in the general context of envelop-
ing algebras of pre-Lie algebras—the corresponding section can be understood also
as an introduction to pre-Lie structures since we survey some of their most rele-
vant properties for general integral calculus, following the chapter [35] written in
the context of classical integration. The second and last subsection of this section
changes focus by developing instead a pre-Lie point of view on Itô integral calculus,
without restriction to continuous matrix-valued semimartingales. We obtain in par-
ticular a pre-Lie Magnus formula for the logarithm of the Itô stochastic exponential
of matrix-valued semimartingales.

Conventions (i) With the aim of simplifying the presentation we shall always
assume that the value of semimartingales is zero at t = 0. (ii) All structures are
defined over a ground field k of characteristic zero.

2 Karandikar’s Axioms and Quasi-shuffle Algebras

2.1 Itô Calculus for Semimartingales

This section discusses the formal properties of the integral calculus for semimartin-
gales. Protter’s textbook [71] will serve as the standard reference on stochastic inte-
gration. The central aim is to feature Karandikar’s axioms for matrix-valued Itô
integrals and the corresponding notion of non-commutative quasi-shuffle algebra.1

Recall first Itô’s integration by parts formula for scalar semimartingales X, Y [71,
chapter II.6]

Xt Yt =
∫ t

0
Xs−dYs +

∫ t

0
Ys−d Xs + [X, Y ]t . (1)

1 Karandikar’s axioms appeared in a 1982 paper [53]. Theywere (re-)discovered almost two decades
later in a completely different context –the one of Stasheff polytopes– as axioms for dendriform
trialgebras [56].
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Here as well as in the rest of the paper, our conventions are in place, that is, we
assume that X0 = Y0 = 0. Equation (1) defines the so-called quadratic covariation
bracket, [X, Y ]t , the extra term that distinguishes Itô’s integration by parts formula
from the classical one.

To deal with matrix-valued semimartingales, one has to take into account the
non-commutativity of matrix multiplication. The product in the second term on the
righthand side of (1) is then in the wrong order. Following Protter (and Karandikar),
we introduce left and right stochastic integrals

(X � Y )t :=
∫ t

0
Xs−dYs (X ≺ Y )t :=

∫ t

0
d XsYs− . (2)

Itô’s integration by parts formula formatrix-valued semimartingales X, Y writes then
[71, Chap. V.8, Theorem 47]

Xt Yt = (X � Y )t + (X ≺ Y )t + [X, Y ]t , (3)

Notice that in the case of scalar-valued semimartingales we have that X ≺ Y = Y �
X such that (3) can be changed back to (1).

Remark 1 Protter and Karandikar use a different notation: (X � Y )t = (X · Y )t

and (X ≺ Y )t = (X : Y )t . Our notation is in line with the one used in algebra. It is
also convenient to identify the time-ordering of operations, see [35].

Hereafter, we account for various properties of (left and right) stochastic integrals
of scalar-valued semimartingales. Even though some of the ternary formulas consid-
ered may seem redundant in the scalar case, we emphasise that they do not involve
permutations of the variables. They thus hold immediately for (n × n) matrix-valued
semimartingales.

Recall first [71, Chap. II.6, Theorem 29] that for H, K adapted processes with
caglad (left continuous with right limits) paths and X, Y two semimartingales we
have [∫ t

0 Hsd Xs,
∫ t
0 KsdYs]t = ∫ t

0 Hs Ksd[X, Y ]s .
Assuming now that L and M are semimartingales, we get [L � X, M � Y ] =

(L M) � [X, Y ] which simplifies to the ternary relation

[L � X, Y ] = L � [X, Y ].

Similarly, [X ≺ Y, Z ] = [X, Y � Z ] and [X, Y ] ≺ Z = [X, Y ≺ Z ].
Other ternary relations satisfied by semimartingales follow directly from standard

properties and from the definitions:

(X � (Y � Z))t =
∫ t

0
Xs−d(

∫ t

0
Ys−d Zs) =

∫ t

0
Xs−Ys−d Zs = ((XY ) � Z)t .

Similarly, for G, H caglad and Y a semimartingale,
∫ t
0 Gsd(

∫ t
0 HsdYs) =∫ t

0 Gs HsdYs [71, Thm. II.19]. Dually, (X ≺ Y ) ≺ Z = X ≺ (Y Z). Finally,
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((X � Y ) ≺ Z)t =
t∫

0

(d

s∫

0

Xu−dYu)Zs− =
t∫

0

Xs−dYs Zs− = (X � (Y ≺ Z))t .

(4)
Notice that the associativity of the quadratic covariation bracket, [X, [Y, Z ]] =
[[X, Y ] , Z ] , can be deduced from the associativity of the usual product of semi-
martingales together with the previous identities:

[[X, Y ], Z ] = [XY − X ≺ Y − X � Y, Z ]
= (XY )Z − (XY ) ≺ Z − (XY ) � Z − [X ≺ Y + X � Y, Z ]
= X (Y Z) − X ≺ (Y Z) − X � (Y ≺ Z) − X � (Y � Z)

− X � [Y, Z ] − [X, Y ≺ Z ] − [X, Y � Z ]
= [X, Y Z ] − [X, Y ≺ Z ] − [X, Y � Z ] = [X, [Y, Z ]].

Note that, as mentioned before, X, Y and Z appear always in the same order
in the above formulas. This implies that they hold in the matrix-valued case. In
that case, [X, Y ] is defined in terms of the component-wise quadratic covariation
brackets, [X, Y ]ik = ∑n

j=1[Xi j , Y jk], and similarly for the other products. Putting
this together, yields the axiomatisation of Itô calculus for semimartingales, due to
Karandikar.

Theorem 1 (Karandikar [53]) The left- and right stochastic Itô integrals satisfy
Karandikar’s identities for matrix-valued semimartingales X, Y, Z

(X ≺ Y ) ≺ Z = X ≺ (Y Z) (5)

X � (Y � Z) = (XY ) � Z (6)

(X � Y ) ≺ Z = X � (Y ≺ Z) (7)

(XY )Z = X (Y Z) (8)

[X � Y, Z ] = X � [Y, Z ] (9)

[X ≺ Y, Z ] = [X, Y � Z ] (10)

[X, Y ] ≺ Z = [X, Y ≺ Z ] . (11)

Remark 2 Karandikar considered in [53] the continuous case. Axiom 10 is stated
in a slightly different way—namely in the case where Y is non-singular [53, Eq. (9)
p. 1089]. However, these restrictions (to the continuous case and to non-singular Y )
are not necessary, see Karandikar [55].

Definition 1 An associative algebra A equipped with three products ≺,� and [ , ],
called respectively the left half-shuffle, the right half-shuffle and the bracket, such that
XY = X ≺ Y + X � Y + [X, Y ] and satisfying Karandikar’s identities in Theorem
1 is called a quasi-shuffle algebra.

See Remark 4 below for an explanation of the terminology. Karandikar’s axioma-
tisation of Itô calculus therefore says that the algebra of semimartingales is a non-
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commutative quasi-shuffle algebra. There are many examples of quasi-shuffle alge-
bras besides the one coming from stochastic calculus and Karandikar’s results apply
immediately to them. Conversely, general results from abstract quasi-shuffle algebra
apply to stochastic calculus. Examples of application of this strategy can be found
in our joint works with Simon Malham and Anke Wiese [33, 34].

Remark 3 We have seen that the associativity of the bracket operation [ , ]

[X, [Y, Z ]] = [[X, Y ] , Z ] (12)

follows from the associativity of product in the algebra A. One can define equivalently
a quasi-shuffle algebra to be a vector space A equipped with three products≺,� and
[ , ] satisfying Eqs. (5)–(11) and (8) replaced by (12), where one sets XY = X ≺ Y +
X � Y + [X, Y ]. The associativity of the product XY results then automatically from
these axioms (the proof parallels the proof showing that the quadratic covariation
bracket is associative for semimartingales):

(XY )Z = (XY ) ≺ Z + (XY ) � Z + [X ≺ Y + X � Y + [X, Y ], Z ]
= X ≺ (Y Z) + X � (Y ≺ Z) + X � (Y � Z)

+ [X, Y ≺ Z ] + [X, Y � Z ] + X � [Y, Z ] + [X, [Y, Z ]]
= X ≺ (Y Z) + X � (Y ≺ Z) + X � (Y � Z) + X � [Y, Z ] + [X, Y Z ] = X (Y Z).

Remark 4 The terminology “quasi-shuffle” algebra is used in algebra and combi-
natorics. It reflects the close similarity with the classical shuffle algebra [73]. The
work [38] explores the relation between the two families of algebras from a defor-
mation theoretical viewpoint. Hoffman [47], independently of Karandikar’s seminal
work, largely initiated the development of the Hopf algebraic theory of commutative
quasi-shuffle algebra. However, as we mentioned in the introduction, Gaines [40] as
well as Hudson et al. [8, 49, 50] introduced quasi-shuffle products to study properties
of products of iterated Itô integrals. We note that Cartier, back in 1972 [17], used a
quasi-shuffle product in the construction of free (Rota-)Baxter algebra.

When dealing with scalar-valued semimartingales, we already noticed that X ≺
Y = Y � X . Correspondingly,Karandikar’s axioms simplify, leading to the notion of
commutative quasi-shuffle algebra studied in detail by Hoffman, see [37] for a recent
account. Some extra properties are then available such as Hoffman’s isomorphism
linking shuffle and quasi-shuffle products. Features of the commutative theory have
been exploited recently in stochastic calculus, for example in [25, 34, 39].

From a purely algebraic viewpoint, the fundamental example of a quasi-shuffle
algebra is the linear span of words X = x1 · · · xn where the xi belong to a monoid M
with (not necessarily commutative) product denoted×. The axioms for the products,
≺, �, and [ , ], used to define inductively the associative product X ∗ Y := X ≺
Y + X � Y + [X, Y ] of words X, Y , are given by:

x1 · · · xn ≺ y1 · · · ym := x1(x2 · · · xn ∗ y1 · · · ym)
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x1 · · · xn � y1 · · · ym := y1(x1 · · · xn ∗ y2 · · · ym)

[x1 · · · xn, y1 · · · ym] := (x1 × y1)(x2 · · · xn ∗ y2 · · · ym).

For example, taking M to be the monoid of the integers, we have

2 3 ≺ 1 = 2(3 ∗ 1) = 2(3 ≺ 1 + 3 � 1 + [3, 1]) = 2 3 1 + 2 1 3 + 2 4.

Remark 5 In the following, quasi-shuffle algebra shall mean non-commutative
quasi-shuffle algebra. The latter are also called tridendriform algebras in the lit-
erature. However, the quasi-shuffle terminology, besides being close to other ones
that have been used in stochastics (modified shuffle product, sticky shuffle product,
...) has the advantage of underlining the connection to the familiar shuffle calculus
for Chen’s iterated integrals and the related product of simplices, as well as many
more topics (such as quasi-symmetric functions, multizeta values, etc.). We refer to
[31, 37, 68, 69] for accounts on the combinatorial theory of quasi-shuffle algebras as
well as further bibliographical references and various examples. See [25, 26, 33, 34,
40, 49, 50] and references therein for more details and references on quasi-shuffle
calculus in probability.

We introduce now Rota–Baxter algebras, which provide a more general approach
to the algebraic axiomatisation of integral calculus [77] and therefore an important
class of examples for quasi-shuffle algebras. Indeed, Theorem 2 below shows that
any Rota–Baxter algebra is a quasi-shuffle algebra [28]. We refer to the survey [35]
for further details and references about Rota–Baxter algebras and their use in integral
calculus, probability theory, renormalisation in perturbative quantumfield theory and
classical integrable systems.

Definition 2 A Rota–Baxter algebra of weight θ ∈ k consists of an associative k-
algebra A equipped with a linear operator R : A → A satisfying the Rota–Baxter
relation of weight θ:

R(x)R(y) = R
(
R(x)y + x R(y) + θxy

) ∀x, y ∈ A. (13)

Note that if R is a Rota–Baxter map of weight θ, then the map R′ := βR for β ∈ k
different from zero is of weight βθ. This permits to rescale the original weight θ 	= 0
to the standard weight θ′ = +1 (or θ′ = −1). The argument of the map R on the
righthand side of (13) consists of a sum of three terms; one can show that it defines
a new associative product on A.

Definition 3 (Rota–Baxter product) The Rota–Baxter associative product is defined
by

x ∗θ y := R(x)y + x R(y) + θxy. (14)

The Rota–Baxter relation originated in the work of the mathematician Glen Bax-
ter [7]. Rota [74, 76] followed by Cartier [16] made important contributions to the
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algebraic foundations of Baxter’s work, among others, by providing different con-
structions of free commutative objects. The idea of quasi-shuffle product is actually
often traced back to Cartier’s 1972 article.

Theorem 2 ([28]) Assume now that θ = 1. Writing a · b := ab for the usual asso-
ciative product on A and setting a ≺ b := a R(b) and a � b := R(a)b, so that
∗ :=≺ + � + ·, then the quasi-shuffle algebra identities hold:

(a ≺ b) ≺ c = a ≺ (b ∗ c), (a � b) · c = a � (b · c)
a � (b � c) = (a ∗ b) � c, (a ≺ b) · c = a · (b � c)
(a � b) ≺ c = a � (b ≺ c), (a · b) ≺ c = a · (b ≺ c).

(15)

Remark 6 Without the normalisation to the standardweight, one obtains an example
of a θ-quasi-shuffle algebra, studied in greater detail in [14]. See also [48].

Example 1 (Fluctuation theory) Baxter’s work was motivated by problems in the
theory of fluctuations [75]. The latter deals with extrema of sequences of real val-
ued random variables. Their distribution can be studied using operators on random
variables such as X → X+ := max(0, X). This motivates to define the operator

R(F)(t) := E[exp(i t X+)]

on characteristic functions F(t) := E[exp(i t X)] of real valued random variables X ,
which is a Rota–Baxter map of weight θ = 1.

Example 2 (Finite summation operators) On functions f defined on N and with
values in an associative algebra A, the summation operator R( f )(n) := ∑n−1

k=0 f (k)

is a Rota–Baxter map of weight one. It is the right inverse of the finite difference
operator Δ( f )(n) := f (n + 1) − f (n).

Remark 7 (Shuffle algebras in classical calculus) Before concluding this section,
we apply the previous ideas to the case of deterministic matrix-valued semimartin-
gales. Even in that seemingly simple case the relations put forward by Karandikar
prove to be interesting and useful.

We consider for example the algebra A of matrices whose entries are continuous
functions of finite variation. Then, since the quadratic covariation bracket vanishes,
Karandikar’s identities reduce to an algebra equipped with an associative product
XY = X ≺ Y + X � Y and

(X ≺ Y ) ≺ Z = X ≺ (Y Z)

X � (Y � Z) = (XY ) � Z

(X � Y ) ≺ Z = X � (Y ≺ Z).

(16)

Our previous arguments show that the associativity of the product XY can be recov-
ered formally from these identities. These relations have been used first by Eilenberg
and MacLane to give an abstract proof of the associativity of the shuffle product of
simplices in topology.
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Definition 4 The three identities (16) define the structure of (non-commutative)
shuffle algebra (aka dendriform algebra).

From Theorem 2 is clear that on a Rota–Baxter algebra of weight θ = 0 one
can define left and right half-shuffle products satisfying the three identities (16).
We refer to [35] for a survey and more details and applications in classical integral
calculus as well as general references on the subject. We will come back to these
relations later as they encode the algebra structure underlying Stratonovich calculus
for semimartingales.

2.2 Singular Quasi-shuffle Algebras and Stratonovich
Calculus

In this section we extend Karandikar’s axiomatisation beyond the setting of continu-
ous semimartingales. Namely, we include in the algebraic description of Itô calculus
the decomposition into continuous and jumpparts of the quadratic covariation bracket
[71, Chap. II.6].

We write Δ(X) for the process of jumps of a semimartingale X , i.e., Δ(X)s =
(X − X−)s , and introduce the corresponding decomposition of the bracket into con-
tinuous and jump parts, [X, Y ] = [X, Y ]c + [X, Y ] j . The definition extends from
the scalar-valued to the continuous matrix-valued case components-wise. For scalar-
valued processes, [X, X ] j

t = ∑
0≤s≤t (Δ(X)s)

2, a term that appears frequently in
stochastic calculus, for example, in the study of the stochastic or Doléans-Dade
exponential [71, Chap. II.8, Theorem 37]. A semimartingale X is called quadratic
pure jump if [X, X ] = [X, X ] j .

Recall first a fundamental property of Δ acting on scalar-valued processes.
Since the bracket of two semimartingales has paths of finite variation on com-
pact sets [71, Chap. II, Cor.1], it is a quadratic pure jump semimartingale, that is,
[[X, Y ], [X, Y ]] = [[X, Y ], [X, Y ]] j by [71, Chap. II.6, Theorem 26]. This implies
by [71, chap. II.6. Theorem 28] that for arbitrary semimartingales X, Y, Z we have
[[X, Y ], Z ] = ∑

0≤s≤t Δ([X, Y ])sΔ(Z)s . In particular,

[[X, Y ]c, Z ] = [[X, Y ]c, Z ]c = [[X, Y ]c, Z ] j = 0,

[[X, Y ], Z ]c = [[X, Y ] j , Z ]c = 0,

[[X, Y ], Z ] = [[X, Y ] j , Z ] = [[X, Y ] j , Z ] j .

As a corollary, we notice for further use that for continuous semimartingales
[[X, Y ], Z ] = 0. These identities hold for matrix-valued semimartingales (since the
splitting of processes into a continuous and a pure jump part is linear—it commutes
with taking linear combinations of brackets).

A full axiomatisation of Itô calculus taking into account such phenomena would
require the introduction of the operator Δ, those identities, and most likely other
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aspects of standard stochastic calculus. We propose a lighter version that provides
an axiomatic framework allowing to relate formally Itô and Stratonovich calculi.

Definition 5 A singular quasi-shuffle algebra is a quasi-shuffle algebra, (A,�,≺
, [−,−]), such that the associative bracket splits into [−,−] = [−,−]c + [−,−] j

and furthermore the following relations hold:

[[X, Y ]c, Z ]c = [X, [Y, Z ]c]c = 0 (17)

[[X, Y ]c, Z ] j = [X, [Y, Z ]c] j = 0 (18)

[[X, Y ] j , Z ]c = [X, [Y, Z ] j ]c = 0 (19)

Notice that we also have then

[X ≺ Y, Z ]c = [X, Y � Z ]c, [X ≺ Y, Z ] j = [X, Y � Z ] j .

Recall that for matrix-valued semimartingales, the (left/right) Fisk–Stratonovich
integrals are defined in terms of the Itô integral by

(X � Y )t :=
∫ t

0
Xs ◦dYs :=

∫ t

0
XsdYs + 1

2
[X, Y ]c

t (20)

(Y � X)t :=
∫ t

0
◦dYs Xs :=

∫ t

0
dYs Xs + 1

2
[Y, X ]c

t . (21)

Formally, in any singular quasi-shuffle algebra one can define the two productss

X � Y := X � Y + 1

2
[X, Y ]c, X � Y := X ≺ Y + 1

2
[X, Y ]c.

Then the integration by parts rule reads:

XY = X � Y + X � Y + [X, Y ] j . (22)

Unfortunately, it seems to be difficult to find a simpler axiomatic framework than
the one of singular quasi-shuffle algebras to account for Stratonovich calculus in the
presence of jumps. Indeed, it is likely that a meaningful system of ternary relations
involving only �, � and [ , ] j is unavailable. Fortunately, these issues simplify
considerably for continuous semimartingales.

2.3 Shuffle Algebra and Continuous Semimartingales

As we mentioned previously, stochastic integration simplifies dramatically when
considering continuous semimartingales. The reason for this should be clear from
our previous developments, that is, the jump part, [−,−] j , of the bracket, [−,−],
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vanishes, so that the latter reduces to its continuous part and becomes nilpotent of
order 3: [X, [Y, Z ]] = [[X, Y ], Z ] = 0. In that situation, the axioms of Itô calculus
rewrite:

Lemma 1 Continuous matrix-valued semimartingales equipped with the left and
right half-shuffles and the covariation bracket obey the axioms (5)–(11) together
with

[X, [Y, Z ]] = [[X, Y ], Z ] = 0 (23)

Notice that the associativity of the product (axiom (8)) is then formally a conse-
quence of the other axioms. This observation is of little interest when dealing with
stochastic integrals for which the associativity of the product is somehow obvious.
However, it is relevant with respect to the axiomatic point of view.

Definition 6 A regular quasi-shuffle algebra is a quasi-shuffle algebra such that the
bracket satisfies the extra axiom (23).

The continuity hypothesis has more interesting consequences when dealing
with Fisk–Stratonovich integrals. We follow closely the exposition in [26]. The
Stratonovich formula is indeed then the usual integration by parts formula

Xt Yt = (X � Y )t + (X � Y )t , (24)

The classical statement that the Stratonovich integral for continuous semimartin-
gales obeys the usual laws of calculus translates formally into the

Theorem 3 For continuous semimartingales X, Y, Z, the left and right Fisk–Strato-
novich integrals satisfy the half-shuffle identities

(X � Y ) � Z = X � (Y Z) (25)

(X � Y ) � Z = X � (Y � Z) (26)

X � (Y � Z) = (XY ) � Z . (27)

In particular, the algebra of continuous matrix-valued semimartingales is a non-
commutative shuffle algebra.

Proof

(X � Y ) � Z = (
X ≺ Y + 1

2
[X, Y ]) � Z

= (X ≺ Y ) ≺ Z + 1

2
[X, Y ] ≺ Z + 1

2
[X ≺ Y, Z ] + 1

4
[[X, Y ], Z ]

= X ≺ (Y Z) + 1

2
[X, Y ≺ Z ] + 1

2
[X, Y � Z ]

= X � (Y Z).
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Identity (27) is proved similarly.

(X � Y ) � Z = (
X � Y + 1

2
[X, Y ] � Z

= (X � Y ) ≺ Z + 1

2
[X, Y ] ≺ Z + 1

2
[X � Y, Z ] + 1

4
[[X, Y ], Z ]

= X � (Y ≺ Z) + 1

2
[X, Y ≺ Z ] + 1

2
X � [Y, Z ]

= X � (Y � Z).

�

In general, the same argument show

Theorem 4 The map (A,≺,�, [ , ]) �−→ (A,�,�) is a functor from the category
of regular quasi-shuffle algebras to the category of shuffle algebras.

3 Chronological Calculus for Stochastic Integration

In this section, the second part of this work, we start by briefly reviewing the classical
chronological calculus following Agrachev, Gamkrelidze and collaborators [1–4].
The aim is to show how chronological calculus can be applied in the context of
stochastic calculus. The key idea is to use the notion of pre-Lie (or chronological)
algebra instead of that of usual Lie algebra, to analyse group- and Lie-theoretical
phenomena associated to evolution equations. We refer to [35] where this point of
view is developed in more detail.

3.1 Chronological Calculus and Pre-Lie Algebra

Time- or path-ordered products are ubiquitous, especially in theoretical physics and
control theory, and form the basis for Agrachev and Gamkrelidze’s chronological
calculus [1]. These authors understood that the combination of Lie algebra and inte-
gration by parts permits to define the useful notion of chronological algebra [2],
better known as pre-Lie or Vinberg algebra in algebra and geometry [13, 17, 62].
Concepts from chronological calculus apply in the context of stochastic integration as
far as iterated Stratonovich integrals for continuous semimartingales are concerned,
because they obey the usual rules of calculus.

However, for Itô and Stratonovich integrals in the non-continuous case, the usual
ideas of chronological calculus do not apply immediately, due to the terms arising
from the jump component of the covariation bracket. It turns out that in this case,
one must appeal to results originating in the study of non-commutative Rota–Baxter
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algebras.We refer to [35] for more details as well as to joint works [26, 34] for results
in that direction related to stochastic exponentials in the context of Itô calculus.

In a nutshell, chronological calculus is based on the idea of time-ordering of oper-
ators. Consider for example two time-dependent operators, M(t) and N (t) (with
M(0) = N (0) = 0), in a non-unital algebra A of operators—having suitable regu-
larity properties allowing to compute derivatives, integrals, and so on. The classical
integration by parts rule is satisfied

M(t)N (t) =
∫ t

0
ds

∫ s

0
duṀ(s)Ṅ (u) +

∫ t

0
ds

∫ s

0
duṀ(u)Ṅ (s)

=: (M � N )(t) + (M ≺ N )(t).

We recognise in ≺ and � the usual operations of left/right integration—restricted to
the context of deterministic processes. In particular, they satisfy the shuffle algebra
axioms (16). Agrachev and Gamkrelidze observed that the binary operation

(M  N )(t) := (M � N )(t) − (N ≺ n)(t) =
∫ t

0
ds

∫ s

0
du[Ṁ(s), Ṅ (u)]

has particular properties defining a chronological algebra structure on A. The latter
is known as pre-Lie or Vinberg algebra in the mathematical literature.

Consider a vector space A with a binary product : A ⊗ A → A and the associ-
ated bracket product [a, b] := a  b − b  a. Write Lx for the linear endomorphism
of A defined by left multiplication, Lx (y) := x  y, and define the usual commutator
bracket of linear endomorphisms of A, [Lx , L y]◦ := Lx ◦ L y − L y ◦ Lx .

Definition 7 ([2]) The pair (A, ) is a pre-Lie algebra if and only if for any x, y ∈ A,
the identity [Lx , L y]◦ = L [x,y] holds,which is equivalent to the (left) pre-Lie relation

x  (y  z) − (x  y)  z = y  (x  z) − (y  x)  z.

The notion of pre-Lie algebra is finer than that of Lie algebra (it contains more
information). Indeed, pre-Lie algebras are Lie admissible, that is, if A is a pre-Lie
algebra, then (A, [−,−]) is a Lie algebra.

The link with classical chronological calculus is as follows. Consider an algebra
A of matrix-valued continuous semimartingales equipped with the left/right Fisk–
Stratonovich integrals, � and �, defined in (20) respectively (21). We write �−,−�
for its commutator bracket:

�X, Y �t := Xt Yt − Yt Xt .

According to our previous developments, computing in this algebra amounts to
computingwith time-dependent operators. The—Fisk–Stratonovich—integration by
parts formula implies that



102 K. Ebrahimi-Fard and F. Patras

�X, Y �t =
∫ t

0
Xs ◦ dYs +

∫ t

0
◦d Xt Yt −

∫ t

0
Ys ◦ d Xt −

∫ t

0
◦dYs Xs, (28)

which can be written as the difference of:

(X  Y )t := (X � Y − Y � X)t =
∫ t

0
Xs ◦ dYs −

∫ t

0
◦dYs Xs

and (Y  X)t so that �X, Y � = [X, Y ]. That the algebra A is indeed a pre-Lie
algebra, that is,

([X, Y ]  Z)t = (X  (Y  Z))t − (Y  (X  Z))t . (29)

follows from the Jacobi identity of the commutator bracket on the non-commutative
algebra A .

Remark 8 The same argument shows that, more generally, there is a forgetful func-
tor from shuffle to pre-Lie algebras, that is, any shuffle algebra (A,≺,�) has the
structure of a pre-Lie algebra with pre-Lie product: x  y := x � y − y ≺ x .

Let us apply these ideas in the context of stochastic exponentials. Recall a fun-
damental object in the classical analysis of differential equations, known as the
Magnus formula [61] and its pre-Lie interpretation [2, 29]. It follows from studying
the formal properties of the flow associated to a matrix differential equation using a
Lie theoretic approach, for theoretical and numerical reasons. Consider for instance
the evolution operator solution of the linear differential equation Ẋ(t) = X (t)H(t)
with initial value X (0) = 1, the identity matrix. Its logarithm is computed by a Lie
series. Truncating the expansion of this logarithm,Ω(t) := log(X (t)), and taking its
exponential is a classical and efficient way to approximate X (t) numerically, while
preserving group-theoretic properties [10, 51].

The logarithm can be computed using the Baker–Campbell–Hausdorff formula
(see, e.g., [65]) or Magnus’ non-linear differential equation [61]

Ω̇(t) = adΩ

eadΩ − 1
H(t) = H(t) +

∑
n>0

Bn

n! adn
Ω(t)(H(t)),

where ad stands for the usual Lie adjoint representation, adN (M) := N M − M N ,
ad0

N (M) = M , and the Bn are the Bernoulli numbers.
Let us explain how the formula adapts to Stratonovich integrals using recently

developed algebraic tools that are most likely not familiar in the context of stochastic
integration. The following developments are based on [35]. We omit here the group-
theoretical perspective that relies on two underlying Hopf algebra structures, existing
on the enveloping algebra of any pre-Lie algebra [21].

Let A be our usual algebra of continuous matrix-valued semimartingales, now
equipped with the pre-Lie product . The algebra of polynomials overA is denoted
R[A ] andwe identifym-multilinearmaps symmetric in them entrieswithmaps from
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the degree m component of this polynomial algebra. To avoid confusion between the
product of twomatrix-valued semimartingales inA and their (commutative) product
inR[A ], we denote the latter X � Y . The bracemap onA is the family of symmetric
multilinear maps into A

R[A ] ⊗ A −→ A , P ⊗ X �−→ {P}X,

defined inductively by
{Y }X := Y  X,

for Y, X ∈ A , and for Y1, Y2, . . . , Yn, X ∈ A we have

{Y1, . . . , Yn}X := {Yn}({Y1, . . . , Yn−1}X) −
n−1∑
i=1

{Y1, . . . , {Yn}Yi , . . . , Yn−1}X.

Observe that for n = 2 the last equality encodes the pre-Lie identity (29) as
{Y1, Y2}X = {Y2, Y1}X . Following Guin and Oudom [70], we introduce a product ∗
on R[A ] in terms of the brace map. For elements X1, . . . , Xn and Y1, . . . , Ym inA ,

(Y1 � · · · � Ym) ∗ (X1 � · · · � Xn) :=
∑

f

W0 � {W1}X1 � · · · � {Wn}Xn, (30)

where the sum is over all maps f from {1, . . . , m} to {0, . . . , n} and the Wi :=∏
j∈ f −1(i) Y j . For example, Y ∗ X = Y X + {Y }X , for X, Y ∈ A .
Recall now that the enveloping algebra,U (L), of a Lie algebra L is an associative

algebra (uniquely defined up to isomorphism) such that [73]:

• the Lie algebra L embeds inU (L) (as a Lie algebra, where the Lie algebra structure
on U (L) is induced by the associative product, that is, in terms of the ususal
commutator bracket,

• for any associative algebra A (which is a Lie algebra, L A, when equipped with the
commutator bracket), there is a natural bijection between Lie algebra maps from
L to A and associative algebra maps from U (L) to A.

The central result of the work of Oudom and Guin [70] is the next theorem.

Theorem 5 ([70]) R[A ] with the product ∗ defined in (30) is a non-commutative,
associative and unital algebra. The product makes R[A ] the enveloping algebra of
the Lie algebra LA associated to A .

ApplyingTheorem5 toA we see that the commutator bracket inA identifieswith
the pre-Lie bracket: �X, Y � = [ , ]. On the other hand, by the universal properties
of enveloping algebras, there is a unique associative algebra map ι from (R[A], ∗)

to A which is the identity on A . In degree two we have:
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ι(Y � X) = ι(Y ∗ X) − ι({Y }X) = Y X − Y  X

= Y � X + Y � X − (Y � X − X � Y )

= Y � X + X � Y =: T 〈Y, X〉,

where, using now the language of theoretical physics, we call time-ordered product
of two elements in A the product T 〈Y, X〉 := X � Y + Y � X . In general, for
X1, . . . , Xn ∈ A ,

T 〈X1, X2, . . . , Xn〉 :=
∑
σ∈Sn

Xσ(1) � (Xσ(2) � (· · · � (Xσ(n−1) � Xσ(n)) · · · )),

where Sn denotes the symmetric group of order n. The degree two calculation is a
particular instance of a general phenomenon. The followingTheorem relating pre-Lie
products and time-ordered exponentials was obtained in [32, p. 1291]:

Theorem 6 The image in A of a monomial X1 � · · · � Xn ∈ R[A ] by the canon-
ical map ι is the time-ordered product of the Xi s in A :

ι(X1 � · · · � Xn) = T 〈X1, . . . , Xn〉. (31)

Notice that, in particular,

1

n! ι(X�n) = 1

n!T 〈X, . . . , X〉 = X � (X � (· · · � (X � X) · · · )).

Let us apply these ideas to the study of the stochastic exponential and its logarithm
in the Stratonovich framework. We address these problems at a purely formal level.
Regarding the existence of the stochastic exponential and the convergence issues of
the related series we refer to [71] for the Itô case and to Ben Arous [9] and Castell
[19] for the Stratonovich one.

Definition 8 For a continuous matrix-valued semimartingale, X ∈ A , the
(Stratonovich) right stochastic exponential is defined through

E�(X) = 1 + (
X � E�(X)

)
,

or, by a Picard iteration, as a series

E�(X) = 1 + X + X � X + · · · + X � (X � (· · · � (X � X) · · · )) + · · ·

We are interested in the stochastic analogue of the classical Baker–Campbell–
Hausdorff problem of computing the logarithm Ω(X) of the solution

Ω(X) = log
(
E�(X)

)
. (32)
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Since Stratonovich calculus obeys the usual integration by parts rule, the well-known
Strichartz formula holds [9, 65, 78]. We are interested here in the stochastic analog
of the so-called Magnus solution.

By Theorem 6, the equation

E�(X) = exp
(
Ω(X)

)

lifts in R[A ] to an equality of exponentials:

exp�(X) = exp∗(Ω̃(X)), (33)

where exp�(X) (resp. exp∗(Ω̃(X))) denotes the exponential of X ∈ A (resp. Ω̃(X))
for the� (resp.∗) product. Theorem6 togetherwith the general properties of envelop-
ing algebras insure that this identity maps to (32) by ι and that ι(Ω̃(X)) = Ω(X).
The next proposition was shown in [21], using the fact that the maps exp� and exp∗
have a Lie theoretic interpretation.

Proposition 1 The element Ω̃(X) = log∗ ◦ exp�(X) belongs to A and satifies the
fixed point equation:

Ω̃(X) = { Ω̃(X)

exp∗(Ω̃(X)) − 1

}
X, (34)

where Ω̃(X)/(exp∗(Ω̃(X)) − 1) is computed in R[A ] using the ∗ product.

Note that the brace map is in place on the righthand side in (34). We set

�
(n)
X(Y ) := X  (�

(n−1)
X (Y )), �

(0)
X(Y ) := Y.

The Bn/n! are the coefficients of the formal power series expansion of x/(exp(x) −
1) and, by formal properties of the enveloping algebra, we have ι({X∗n}Y ) = �

(n)
X(Y ).

We refer, e.g., to [35] for an explanation of this general phenomenon in the context
of enveloping algebras of pre-Lie algebras. We recover finally the pre-Lie Magnus
expansion of the logarithm of the right Stratonovich exponential obtained in [26].

Theorem 7 The continuous matrix-valued semimartingale Ω(X) satisfies the fixed
point equation

Ω(X) =
∑
n≥0

Bn

n! �
(n)

Ω(X)(X). (35)

Remark 9 The left stochastic exponential is defined similarly through E�(X)t =
1 + (

E�(X) � X
)

t . It satisfies

E�(X) = exp
(− Ω(−X)

)
. (36)
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3.2 Chronological Itô Calculus

In the present subsection we will apply the machinery developed in the previous sub-
section in the context of Itô calculus. As remarked earlier, our arguments are purely
algebraic. We do neither address the question of existence of stochastic exponentials
nor do we discuss convergence issues of the associated series. On these questions,
the reader is referred to the standard reference [71].

The existence of a continuous Baker–Campbell–Hausdorff, or Strichartz formula,
the presence of pre-Lie structures as well as a Magnus formula could be expected
in Stratonovich calculus due to the fact that the latter satisfies the usual rules of
calculus. In Itô calculus, however, things are not so simple due to the presence of
the covariation bracket and the fact that the usual shuffle algebra structure must
be replaced by Karandikar’s axioms, i.e., a quasi-shuffle algebra. For iterated Itô
integrals of matrix-valued semimartingales, a Strichartz-type formula was obtained
in [33, 34]. The differencewith the classical formula reflect the fact that onemust take
into account the covariation bracket. This is achieved by replacing bijections, that is,
permutations and their descent statistics as they appear in the classical formula, by
surjections and a suitable notion of descents in this new context.

Here, we focus again on pre-Lie structures and the Magnus formula in the context
of Itô calculus. Our results are obtained by adapting ideas from the theory of Rota–
Baxter algebras to quasi-shuffle algebras. Our presentation is almost self-contained.
On Rota–Baxter algebras and integral calculus, we refer to [35] for a general survey
combined with references.

In this subsection,A denotes an algebra ofmatrix-valued semimartingales (notice
that we do not require continuity anymore).

Proposition 2 For X, Y ∈ A , set X � Y := X � Y + [X, Y ] and X � Y := X �

Y − Y ≺ X, then the pair (A ,�) is a pre-Lie algebra. Moreover, �X, Y � = [X, Y ]�.

Proof Indeed, the quasi-shuffle axioms imply that

XY = X ≺ Y + X � Y + [X, Y ] = X ≺ Y + X � Y.

This yields

�X, Y � = XY − Y X = X ≺ Y + X � Y − Y ≺ X − Y � X

= (X � Y − Y ≺ X) − (Y � X − X ≺ Y )

= X � Y − Y � X = [X, Y ]�.

Using the Jacobi identity (to avoid any notational ambiguity, recall that [ , ] denotes
in this article the covariation bracket, not to be confused with the Lie bracket � , �):
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([X, Y ]� � Z)t = (�X, Y � � Z)t =
∫ t

0
��Xs , Ys�, ◦d Zs� + [�X, Y �, Z ]t

= (

∫ t

0
�Xs , �Ys , ◦d Zs�� + [XY, Z ]t ) − (

∫ t

0
�Ys , �Xs , ◦d Zs�� + [XY, Z ]t )

=
∫ t

0
�Xs , �Ys , ◦d Zs�� + [X � Y + X ≺ Y + [X, Y ], Z ]t

− (

∫ t

0
�Ys , �Xs , ◦d Zs�� + [Y � X + Y ≺ X + [Y, X ], Z ]t )

=
∫ t

0
�Xs , �Ys , ◦d Zs�� + [X, Y � Z ]t + (X � [Y, Z ])t + [[X, Y ], Z ]t

− (

∫ t

0
�Ys , �Xs , ◦d Zs�� + [Y, X � Z ]t + (Y � [X, Z ])t + [[Y, X ], Z ]t )

= (X � (Y � Z))t − (Y � (X � Z))t .

�
Remark 10 The triple (A ,≺, �) is a shuffle algebra. More generally, in [28] it
was shown that any quasi-shuffle algebra gives rise to a shuffle algebra. Indeed,
(X ≺ Y ) ≺ Z = X ≺ (Y Z) and

(X � Y ) ≺ Z = (X � Y ) ≺ Z + [X, Y ] ≺ Z

= X � (Y ≺ Z) + [X, Y ≺ Z ] = X � (Y ≺ Z)

(XY ) � Z = (XY ) � Z + [XY, Z ]
= (XY ) � Z + [X � Y, Z ] + [X ≺ Y, Z ] + [[X, Y ], Z ]
= X � (Y � Z) + X � [Y, Z ] + [X, Y � Z ] + [X, [Y, Z ]]
= X � (Y � Z) + [X, Y � Z ] = X � (Y � Z).

We note that this property is also common in Rota–Baxter algebras, where a shuffle
algebra structure is defined similarly starting from the operations R(X)Y , X R(Y )

and XY instead of ≺,�, [−,−].
Definition 9 For a matrix-valued semimartingale X ∈ A the (Itô) right stochastic
exponential is defined through

E≺(X) = 1 + (
X ≺ E≺(X)

)
,

or, by a Picard iteration, as a series

E≺(X) = 1 + X + X ≺ X + · · · + X ≺ (X ≺ (· · · ≺ (X ≺ X) · · · )) + . . .

We are interested again in the stochastic analogue of the Baker–Campbell–
Hausdorff problem of computing the logarithm Γ (X) of the solution:

E≺(X) = exp
(
Γ (X)

)
. (37)
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Let us denote now by R�[A ] the enveloping algebra ofA constructed exactly as
in the previous section but using the new pre-Lie product� instead of . In particular,
as a vector space, R�[A ] = R[A ], the algebra of polynomials over A .

To avoid notational ambiguities, we write ∗� for the associative product making
R�[A ] the enveloping algebra of LA and {P}� X the bracemap for P ∈ R�[A ].We
also writeT� for the corresponding time-ordered product, associated to the left-half
shuffle ≺, e.g., T�[X, Y ] := X ≺ Y , and so on. Lastly, we denote ι� the canonical
algebra map from (R�[A ], ∗�) to A obtained from the universal properties of
the enveloping algebra. Theorem 6 holds mutatis mutandis in the new context and
equation (37) lifts in R�[A ] to:

exp�(X) = exp∗�(Γ̃ (X)). (38)

Theorem 6 and the general properties of enveloping algebras insure that this identity
maps to (37) by ι� and that ι�(Γ̃ (X)) = Γ (X).

We obtain finally the analogous of Proposition 1:

Proposition 3 The element Γ̃ (X) = log∗
� ◦ exp�(X) belongs to A and satifies the

fixed point equation:

Γ̃ (X) = { Γ̃ (X)

exp∗
�(Γ̃ (X)) − 1

}
� X, (39)

where Γ̃ (X)/(exp∗
�(Γ̃ (X)) − 1) is computed in R�[A ] using the ∗� product.

Setting
�

(n)
X�(Y ) := X � (�

(n−1)
X� (Y )),

�
(0)
X�(Y ) := Y , we get finally a pre-Lie Magnus expansion of the logarithm of the

right Itô stochastic exponential:

Theorem 8 The matrix-valued semi-martingale Γ (X), which is the logarithm of
the (Itô) stochastic exponential, satisfies the fixed point equation

Γ (X) =
∑
n≥0

Bn

n! �
(n)

Γ (X)�(X). (40)
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Higher Order Derivatives of Heat
Semigroups on Spheres and Riemannian
Symmetric Spaces

K. David Elworthy

Abstract As a very special case of a more general procedure a formula is derived
for the Hessian of the solutions Ptf of the heat equation for functions on the sphere
Sn. The formula demonstrates that for higher order derivatives there can be a spec-
trum of decay/growth rates, unlike the generic situation for first derivatives which
is fundamental for Bakry-Emery theory. The method used is then applied for higher
derivatives for spheres, and could be used for compactRiemannian symmetric spaces.

Keywords Stochastic analysis · Stochastic flows · Symmetric spaces · Heat
semigroup · Bakry-Emery · Diffusion of symmetric tensors · Semi-group
domination

Mathematics subject classification 58J65 · (58J70 · 60H30 60J60 · 43A85)

1 Introduction

A well known and fundamental result concerning the heat-semigroup {Pt }t≥0 of a
complete Riemannian manifold M is that of Bakry-Emery theory, [1]

|∇Pt ( f )| ≤ e−ct Pt (|∇ f |) iff c|v|2 ≤ Ric(v, v) all v ∈ T M (1)

where Ric : T M
⊕

T M → R is the Ricci curvature of M . Bakry-Emery theory, [2,
3], shows how to extend it to much more general classes of heat semi-groups, and it
can then be used to define the notion of generalised Ricci curvature bounded below
in much more general situations than Riemannian geometry. An obvious question is
whether similar expressions hold for higher derivatives of Pt f with exponential rates
given in terms of the geometry of the Riemannian manifold. With this in mind we
obtain expressions for the second and third derivatives of Pt f when M is a sphere
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with its standard Riemannian structure, Theorems 4.1 and 5.5 respectively, and also
give expressions for all symmetrised derivatives in Theorem 5.1. These suggest that
the situation is more complicated, and possibly more interesting, than expected. The
approach we give, based on earlier work with Yves LeJan and Xue-Mei Li [13], can
be extended to arbitrary compact Riemannian symmetric spaces, and should give
similar formulae. However we have not done this.

The second derivative, or Hessian, is symmetric. This is not true in general for
higher derivatives; see Sect. 5.1 below. It is simpler to compute the symmetrised ver-
sions. For the symmetrised versions the exponential rate is controlled by a Weitzen-
böck term, in the sense of [8, 13], which for spheres turns out to be essentially the
Weitzenböck term for the Lichnerowicz Laplacian, eg see [5]. For general M , the
latter has been shown by Bettiol and Mendes, [6], to characterise sectional curva-
ture bounds. However our exponential rate can be expected to involve derivatives of
curvature for general M ; for spheres these vanish.

A relevant result by James Thompson, [27], is that if M is compact then for
each p ∈ N and ε > 0 there is a constant Cp(ε) > 0 such that for all C1 functions
f : M → R

|∇ p Pt f |∞ ≤ Cp(ε)e
−λt |∇ f |∞ for all t > ε

where λ > 0 is the spectral gap of M . This involves the smoothing behaviour of the
semigroup when p > 1, which is why t needs be kept away from 0. It demonstrates
that there is uniform rate of decay for all derivatives as t → ∞, but our formulae
suggests that amore detailed analysis involving the directions of the derivatives could
be rewarding. Indeed for spheres our estimate (68) shows that for derivatives taken
in orthonormal directions the rate of decay increases with 1 ≤ p ≤ n. For p = 2 it
is bounded above by e−nt , ( 51). For Sn with 1

2� the spectral gap, is n
2 .

An excellent survey of work on higher order derivative formulae can be found in
the introduction to Xue-Mei Li’s article, [19]. Much of this concerns the technically
harder problem of considering derivatives of the heat kernels. Usually just the first
and second derivatives are discussed, though a notable early example giving path
integral formulae is Norris’s work, [25]. See Sect. 55 for the result of applying [19]
to our situation on Sn .

Our treatment here of Sn is as a very special illustrative example of the more
general situation described in [14]. We give the necessary geometric background,
and give the proof of a simple case concerning the expectation of representations of
diffusing Lie group elements. As pointed out in Sect. 4.1, below, there are alternative
methods for Sn , and a purely algebraic one could be the most economical.
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2 Brownian Motion on Spheres as Symmetric Spaces

2.1 The Sphere as a Symmetric Space

Consider the sphere Sn as the set of unit vectors of Rn with its induced topology,
differential structure, and Riemannian metric. It is acted on transitively and smoothly
by the special orthogonal group SO(n + 1). Let x0 be a given point in Sn; we can
take it to be the North Pole, (0, 0, 0..., 1). This identifies the subgroup SO(n + 1)x0 ,
of those θ ∈ SO(n + 1) which fix x0, with SO(n). We have the projection

p : SO(n + 1) → Sn p(k) = k(x0) k ∈ SO(n + 1) (2)

which identifies Sn with the quotient space SO(n + 1)/SO(n). It is a principal
bundle with group SO(n). For us the main import of that will be that there is the
right action of SO(n)

SO(n + 1) × SO(n) → SO(n + 1) (k, g) 	→ k.g

with p(k.g) = p(k).
We want p to be a Riemannian submersion. This means that we have an inner
product 〈−,−〉k on each tangent space Tk SO(n + 1) such that Tk p : Tk SO(n +
1) → Tp(k)Sn , the derivative of p at k is an orthogonal projection. We also want this
Riemannian structure to be bi-invariant and so it suffices to take

〈A, B〉I d = −1

2
trace AB∗ A, B ∈ so(n + 1) ∼= TeSO(n + 1).

With this choice, if {kt }t≥0 is a Brownian motion on SO(n + 1) starting at the
identity I d, then {xt }t≥0 with xt = p(kt ) = kt .x0 is a Brownian motion on Sn from
x0. Moreover if we define ξt : Sn → Sn by ξt (y) = kt .y we have a stochastic flow
of Brownian motions on the sphere. For example see [7] or [13]. In particular if Pt
denotes the heat semi-group acting on continuous functions on Sn then

Pt f (y) = E f (ξt (y)) f : Sn → R y ∈ Sn (3)

Recall that ft = Pt f : Sn → R, t ≥ 0 is the classical solution to the heat equation
d ft
dt = 1

2� ft , f0 = f on Rn . Here� is the Laplace Beltrami operator,� = div grad,
on Sn .
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2.2 Derivatives of the Heat Semigroup

Assume now that f is C∞, then we can differentiate equation (3) in the direction of
some v ∈ Tx0 S

n to give

d(Pt f )(v) = E{d fxt (Txt ξt (v))}. (4)

Recall that the derivative of f gives a differential one-form d fy : TySn → R, and
the derivative of the flow gives, random, linear isomorphisms,
Tyξt : TySn → Tξt (y)S

n , for y ∈ Sn .

2.2.1 Aside on Calculus on Spheres

In order to differentiate again we need a connection on Sn . This gives a covariant
derivative operator ∇ with which tensor fields such as d f can be differentiated in
tangent directions. Equivalently it gives a differentiation operator D

dt of tensor fields
along C1 curves σ , and a parallel translation operator //t : Tσ(0)Sn → Tσ(t)Sn of
tangent vectors, or of other tensors. These are related, for example by

D

dt
Vt = //t

d

dt
//−1
t Vt Vt ∈ Tσ(t)S

n, (5)

and if v = σ̇ (0)

∇v(d f ) = D

dt
(d fσ(t))|t=0 = d

dt
(d fσ(t)//t )|t=0 (6)

Stratonovich calculus allows these operations to be extended, almost surely, to the
situation where σ is a continuous semi-martingale, such as our Brownian motion
{xt }t . Also we can differentiate our stochastic flow successively, for example to get
∇u0T ξt : Tx0 Sn → Txt S

n for u0 ∈ Tx0 S
n , given by

∇u0T ξt (v0) = D

ds
(Tσ(s)ξt (//sv0)|s=0 u0, v0 ∈ Tx0 S

n σ̇ (0) = u0. (7)

All this holds for any Riemannian manifold, and there is a unique connection, the
Levi-Civita connection, for which parallel translations consist of orthogonal trans-
formations and also

D

∂s

∂

∂t
f (σ (s, t)) = D

∂t

∂

∂s
f (σ (s, t)) (8)

for a two parameter σ(s, t) and f : M → R, both smooth.

We will use this. For Sn it has the natural definition that D
dt Vt is obtained by con-

sidering the vector field Vt along σ as having values in Rn+1, differentiating this in
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t as usual and projecting the result back to Tσ(t)Sn .

Note: for {e j }nj=1 an orthonormal base for TySn , y ∈ Sn

� f (y) = trace(∇(d f ))y = �n
j=1∇e j (d f )e j . (9)

The Hessian, Hess( f ), of f is just the second derivative considered as a bilinear
form

Hess( f )y = ∇−(d f )(−) : TyS
n × TyS

n → R. (10)

By equation (8), the Hessian is symmetric and so determines a linear map on the
symmetric tensor product TySn

⊙
TySn by

Hess( f )(u � v) = ∇u(d f )(v) u, v ∈ TyS
n. (11)

2.3 Higher Derivatives of Pt f

Using the Levi-Civita connection we can differentiate equation (4) again to obtain,
for u0, v0 ∈ Tx0 S

n:

Hess(Pt f )(u0 � v0) = E{Hess( f )(Tx0ξt u0 � Tx0ξtv0) + d fxt ∇u0(T ξt )(v0)}.
(12)

An important simplification arises since our flow is a flow of isometries. In this
situation covariant second order derivatives of the flow vanish, see [5]. Thus for
u0, v0 ∈ Tx0 S

n:

Hess(Pt f )x0(u0 � v0) = E{Hess( f )xt (Tx0ξt u0 � Tx0ξtv0)}. (13)

and repeating the differentiaton, for k = 1, 2, ... and u10, ..., u
k
0, v0 ∈ Tx0 S

n:

∇(k)d(Pt f )(u
k
0, ..., u

1
0, v0) = E{∇k(d f )(Tx0ξt u

k
0, ..., Tx0ξt u

1
0, Tx0ξtv0)} (14)

But the derivatives are not symmetricwhen k ≥ 2 andn ≥ 2; the curvature intervenes.
See Subsection 5.1 below.

Wecanget amore precise formula from formula (12) by computing the conditional
expectation of

Tx0ξt � Tx0ξt : Tx0 Sn � Tx0 S
n → Txt S

n � Txt S
n

with respect to the σ -algebraFt generated by the Brownian motion {xs : 0 ≤ s ≤ t}.
This technique, of filtering out the redundant noise, has been a basic tool for looking
at first derivatives since [12]. It is described in detail in [10]. In essence the condi-
tional expectation is obtained by parallel translation back to the initial point:
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Write ut = Tx0ξt (uo) and vt = Tx0ξt (vo) and set ut � vt = E{ut � vt |Ft }; then,
essentially by definition,

ut � vt = (//t � //t )E{//−1
t ut � //−1

t vt |Ft }. (15)

Since //−1
t ut � //−1

t vt lies in a fixed vector space its conditional expectation makes
classical sense. There is no problem about integrability, and any choice of parallel
translation in T Sn � T Sn will do, [10].

We proceed to calculate this conditional expectation using techniques from [13],
see also [8].

3 Decomposition and Conditioning of Tξt � Tξt

3.1 Decomposition of the Flow

Remember ξt is just the action of the Brownian motion {kt }t , on SO(n + 1), on
our sphere. Also the Brownian motion {xt }t , from x0 on the sphere, is given by
xt = p(kt ) = kt .x0. From [9] we have a skew product decomposition:

kt = x̃t .gt (16)

where {gt }t is a Brownianmotion on SO(n) from the identity, independent of {Ft }t≥0,
and {x̃t }t is a diffusion process adapted to {Ft }t≥0 with p(x̃t ) = xt for t ≥ 0. In fact
{x̃t }t is the “horizontal lift” of Brownian motion on Sn from the identity, and is the
conditioned process of {kt }t given {Ft }t≥0. Moreover if we write ξ̃t : Sn → Sn for
y 	→ x̃t .y then parallel translation {//t }t≥0 along {xt }t is given by

//t = Tx0 ξ̃t : Tx0 Sn → Txt S
n. (17)

See [11] or [13] for more.
Identifying g ∈ SO(n) with its action on Sn let ρ�2

denote the representation of
SO(n) on Tx0 S

n � Tx0 S
n given by

ρ�2
(g)(u0 � v0) = Tx0Lgu0 � Tx0Lgv0. (18)

From above, using the independence of gt from Ft , we have:

Lemma 3.1 For a C2 function f : Sn → R and u0, v0 ∈ Tx0 S
n

Hess(Pt f )(u0, v0) = E
{
Hess( f )xt

(
(//t � //t )E

{
ρ�2

(gt )(u0 � v0)
})}

. (19)

We go on to compute the second expectation appearing above.
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3.2 Expectations of Representations of Random Matrices: An
Elementary Lemma

The following is a very special case of a similar result for finite dimensional rep-
resentations of certain, possibly time inhomogenous, diffusions on possibly infinite
dimensional groups. It is essentially Theorem 3.4.1 of [13], but see [8], or below,
for a corrected sign in equation (3.19) of [13]. For completeness the simple proof is
given here for Brownian motions on finite dimensional Lie groups. The more general
cases will be discussed in [14]. The integrability of ρ(gt )v was proved by Baxendale,
[4], for Wiener processes on Polish groups acting on Banach spaces.
LetG be a finite dimensional Lie group with right invariant metric, determined by an
inner product 〈−,−〉e on its Lie algebra g identified with the tangent space TeG at the
identity e ∈ G. Wewill use theMaurer-Cartan form determined by right translations
Rg, rather than the more usual left translations Lg. It is the g-valued one-form 


given by:

g := Tg(Rg)

−1 : TgG → g := TeG g ∈ G.

The co-differential, the adjoint d∗ of d, maps one-forms to functions. It acts on

 component wise: let {α j } j be an orthonormal base for g and define the scalar
one forms 
 j by 
 j (v) = 〈
(v), α j 〉g. Then d∗
(g) := ∑

j d
∗
 j (g)α j ∈ g for

g ∈ G.

Note that

 j (v) = 〈Aα j

(g), v〉g g ∈ G, v ∈ TgG

for Aα j
(g) = T Rg(α

j ), the right invariant vector field corresponding toα j . Therefore

d∗
(g) = −
∑

j

divAα j
(g)α j ∈ g g ∈ G. (20)

The divergence of a vector field measures the infinitesimal rate of change of Rie-
mannian volumeμ, say, under its flow. For us the Riemannian volume is a right Haar
measure. However the flow of a right invariant vector field is left translation by its
1-parameter subgroup i.e. Letα j for Aα j

. It follows that if the right Haar measure is
also left invariant, in other words if G is unimodular then d∗
 = 0. This holds in
particular for G a compact Lie group; the situation of our main present interest. In
general (Lg)∗μ is again right invariant and so a multiple m(g) say of μ. This version
m : G → R(> 0) of the modular function of G is a group homomorphism. Since μ

corresponds to a right invariant top dimensional form it is given by

m(g) = | det Adg|

for the adjoint action Adg = (T Rg)
−1T Lg : g → g.

Thus,
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d∗
 j (g) = −divAα j
(g) = − d

dt

d
(
(Le−tα j )∗(μ)

)

dμ
|t=0 (21)

= − d

dt
| det Ade−tα j |t=0 (22)

= trace adα j = −
∑

k

〈ad∗
αk

αk, α j 〉 (23)

for ad : g → L(g; g) the adjoint representation, adα(β) = [α, β].
Lemma 3.2 Let ρ : G → GL(V ) be a smooth representation of G on a real finite
dimensional vector space V and denote by ρ∗ : g → L(V ; V ) the derivative of ρ at
the identity element.

Let {gt }t be Brownian motion on G from the identity.
Then ρ(gt )v is integrable for each v ∈ V and t ≥ 0 and its expectation is differ-

entiable in t with
d

dt
E{ρ(gt )v} = λρ(E{ρ(gt )v}) (24)

where λρ ∈ L(V ; V ) is given by

λρ = 1

2
Comp

∑

j

(ρ∗(α j ) ⊗ ρ∗(α j )) + 1

2

∑

k

ad∗
αkα

k (25)

with
Comp : L(V ; V ) ⊗ L(V ; V ) → L(V ; V )

the composition map A ⊗ B 	→ AB. For unimodular groups, and in particular for
compact Lie groups, the term

∑
k ad

∗
αkα

k vanishes.

Proof By Itô’s formula, as in equation (4.1) of [13],

ρ(gt )(v) = v + Mdρv
t +

∫ t

0

1

2
�(ρ(−)v)(gs) ds, (26)

where {Mdρv
t }t is the continuous local martingale in V

Mdρv
t =

∫ t

0
dρgs (TeRgs ◦ dBs)v (27)

where {Bs}s≥0 is the Brownian motion on g given by dBs := 
gs ◦ dgs .
Now since ρ : G → GL(V ) is a group homomorphism we see,

(dρ)k = ρ∗ ◦ 
k(−)ρ(k) : TkG → L(V ; V ) for any k ∈ G. (28)

Thus
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Mdρv
t =

∫ t

0
(ρ∗( dBs)ρ(gs)v) . (29)

Also, using the right invariance of the Laplacian,

�(ρ)(gs) = �(ρ ◦ Rgs )(e) = �(ρ)(e)ρ(gs) ∈ L(V ; V ).

From (28) and (23) we see

�(ρ)(e) = −d∗(dρ)(e) = −d∗(ρ(−)ρ∗ ◦ 
−)(e)

=
∑

j

ρ∗(α j )ρ∗(α j ) − d∗(ρ∗ ◦ 
)(e)

=
∑

j

ρ∗(α j )ρ∗(α j ) + ρ∗
∑

k

(ad)∗αkα
k

= 2λρ.

Thus equation (26) reduces to the linear equation with constant coefficients

dρ(gt )(v) = ρ∗( dBt )ρ(gt )v + λρρ(gt )v dt (30)

For compact Lie groups the result is immediate since the local martingale {Mdρv
t }t

will be bounded and so a martingale. In general we can use a stopping time argu-
ment or the basic existence theorems for equations with Lipschitz coefficients to see
that {ρ(gt )(v)}0≤t≤T is bounded in L2 for each T ≥ 0, so the local martingale has
integrable quadratic variation and so is a martingale [26]. �

3.3 Calculation for Sn

We must calculate E
{
ρ�2

(gt )(u0 � v0)
}
to make use of our Hessian formula (19)

for Sn . By Lemma 3.2 we have

E
{
ρ�2

(gt )(u0 � v0)
}

= Wt (u0 � v0) (31)

where Wt = W
ρ�2

t : Tx0 Sn � Tx0 S
n → Tx0 S

n � Tx0 S
n satisfies W0(u0 � v0) = u0

� v0 and
d

dt
Wt (u0 � v0) = λρ�2

(Wt (u0 � v0)) t ≥ 0.

Here 2λρ�2 = ∑
j ρ

�2

∗ (α j )ρ�2

∗ (α j ).
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We will use a more algebraic formulation of our representation λρ�2

defined in
(18):

3.3.1 Identification ofm with Tx0 S
n

As for any smooth left action of a Lie group we have a linear map α 	→ Xα from
so(n + 1) to smooth vector fields on Sn . It is given by

Xα(y) = d

ds
((exp sα).y)|s=0.

In particular the derivative Te p : so(n + 1) → Tx0 S
n at the identity of our projection

p : SO(n + 1) → Sn has Te p(α) = Xα(x0). It is important, [5] page 182, or [18]
page 469, to note the minus sign in the identity

[Xα, Xβ ] = −X [α,β] α, β ∈ so(n + 1). (32)

Let m be the orthogonal complement of so(n) in so(n + 1). A fundamental sym-
metric space property is thatm is invariant under the adjoint action, Ad, of SO(n) on
so(n + 1), and so under ad : so(n) → GL(so(n + 1)), its derivative at the identity
e. There is the following important standard lemma with versions for more general
symmetric spaces:

Lemma 3.3 There are the commutative diagrams:

1. For g ∈ SO(n)

m
Tep � Tx0S

n

�
Adg

m

�

Tx0S
n.�

Tep

TLg

2. For α ∈ so(n)

m
Tep � Tx0S

n

�
adα

m

�

Tx0S
n.�

Tep

∇(−)X
α

Proof For 1. :
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T LgTe p(α) = T LgX
α(x0) = d

ds
g exp(sα).x0|s=0

= d

ds
g exp(sα)g.x0|s=0 = XAdgα(x0)

= Te p(Adgα).

For 2. : if v ∈ m

Te p(adα(v)) = Te p([α, v]) = −[Xα, Xv]
= −∇Xα(0)X

v + ∇Xv(0)X
α

= ∇Xv(0)X
α

= ∇(−)X
α ◦ Te p(v).

�

We will identify m with Tx0 S
n by Te p. By the lemma the representation ρ�2 :

SO(n) → GL(Tx0 S
n � Tx0 S

n) gets identified with Ad⊗Ad : SO(n) → GL(m �
m) using the restriction of the adjoint action. Then we have ρ�2

∗ (α) = adα ⊗Id +
Id ⊗ adα , and so

λρ�2 = 1

2

∑

j

{adα j ◦ adα j ⊗ Id + Id ⊗ adα j ◦ adα j + 2adα j ⊗ adα j }. (33)

3.3.2 Curvature Identities

Let R : T M ⊕ T M → L(T M; T M) denote the curvature tensor, with Kobayashi &
Nomizu’s convention, so for tangent vectors u, v, w at a point z we have a tangent
vector R(u, v)w at z, and for Sn :

R(u, v)w = 〈v,w〉u − 〈u, w〉v. (34)

The Ricci curvature, Ric : T M ⊕ T M → R is given as the trace,
Ric(u, v) = trace R(−, u)v, with Ric : T M → T M given by

Ric(u) =
∑

j

R(u, e j )e j

for a suitable o.n. base.
For Sn:

Ric(u, v) = (n − 1)〈u, v〉. (35)

In our situation, from [18] page 231, and [5] page 193 taking account of Besse’s
different sign convention for R:
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for u, v, w ∈ m with m identified with Tx0 S
n

R(u, v)w = −[[u, v], w]. (36)

Noting that adα : k → k is skew-symmetric for α ∈ so(n + 1) we see from this that
if also a ∈ m,

〈R(u, v)w, a〉 = 〈adw([u, v]), a〉 (37)

= −〈aduv, adwa〉. (38)

From this, for u, v ∈ m,

Ric(u, v) = −tracemaduadv (39)

Here we have written tracem to emphasise that the trace is taken for aduadv : m →
m. Indeed there are the fundamental relations:

[g, g] ⊂ g, [g,m] ⊂ m, [m,m] ⊂ g (40)

where for us g = so(n). See for example [5] page 193, or [18] page 226. Therefore
adu interchanges g and m so

Ric(u, v) = −tracegaduadv = −1

2
trace aduadv (41)

as in [5] page 194.

3.3.3 Decomposition of V � V

To go further we shall decompose m � m into irreducible components for ρ�2
.

For a real, n-dimensional, inner product space V, 〈, 〉, the inner product, being
symmetric and bilinear, determines a linear map 〈−〉 : V ⊗ V → R given by

〈u ⊗ v〉 = 〈u, v〉.

It is invariant under the action

u � v 	→ Uu �Uv : U ∈ O(V )

of the orthogonal group O(V ) of V . Its kernel in V � V , denoted byH, is therefore
also invariant. It has codimension one and its elements are sometimes called “trace-
less” or “harmonic”; the latter because of the representation of symmetric tensors as
homogeneous polynomials, [6, 16]. The space V ⊗ V has a distinguished element
� := ∑

j e j � e j for {e j } j an orthonormal basis of V . It corresponds to the identity
when V ⊗ V is identified with L(V ; V ) using the inner product. Using the inner
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product of V � V inherited from that of V ⊗ V we see

〈�, u � v〉 =
∑

j

〈u, e j 〉〈v, e j 〉 = 〈u � v〉.

Thus � is the Riesz representative of 〈−〉 and so orthogonal to the kernel H and
invariant under our orthogonal action. We write

V � V = R� ⊕ H with (42)

u � v = 1

n
〈u, v〉� ⊕

(

u � v − 1

n
〈u, v〉�

)

. (43)

Let PH : V � V → V � V be the orthogonal projection onto H, so

PH(u � v) = u � v − 1

n
〈u, v〉�. (44)

3.3.4 Computations

From (36), starting to compute λρ�2

from formula (33), with our orthonormal base
{α j } j for so(n), and u, v, a, b ∈ m,

∑

j

〈adα j u ⊗ adα j v, a � b〉 =
∑

j

〈aduα j ⊗ advα
j , a � b〉

= 1

2

∑

j

{〈adua, α j 〉〈advb, α
j 〉+

+ 〈adva, α j 〉〈adub, α j 〉}
= −1

2
{〈R(u, a)v, b〉 + 〈R(v, a)u, b〉}

= −1

2
{〈R(u, a)v, b〉 + 〈R(u, b)v, a〉}

= −〈R(u,−)v,−〉(a � b), (45)

where R(u,−)v ∈ m � m is the dual to a � b 	→ 1
2 〈R(u, a)v + R(v, a)u, b〉. For

Sn using (34)

〈R(u, a)v + R(v, a)u, b〉 = 〈a, v〉〈u, b〉 + 〈b, v〉〈u, a〉 − 2〈u, v〉〈a, b〉
= 2〈u � v, a � b〉 − 2〈u, v〉〈a, b〉

whence ∑

j

adα j u ⊗ adα j v = −u � v + 〈u, v〉�. (46)
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Furthermore, using (41), for any w ∈ m

∑

j

〈adα j ◦ adα j u, w〉 = −
∑

j

〈aduα j , adwα j 〉

=
∑

j

〈adw ◦ aduα
j , α j 〉

= −Ric(u, w). (47)

We now see from (33), (47), (45)

λρ�2

(u � v) = −1

2
{Ricu � v + u � Ric(v)} − R(u,−)v. (48)

Using the explicit expressions, (35) and (46), for Sn this yields:

λρ�2

(u � v) = −(n − 1)(u � v) − u � v + 〈u, v〉�
= −nPH(u � v). (49)

4 Main Result for Sn

Theorem 4.1 For x0 ∈ Sn and u0, v0 in the tangent space Tx0 S
n and a C2 map

f : Sn → R the second derivative Hess Pt f of the solution to the heat equation

d

dt
Pt f = 1

2
�Pt f

P0 f = f

is given by

Hess Pt f (u0, v0) = 1

n
(1 − e−nt )〈u0, v0〉Pt (� f )(x0) + e−ntE{Hess( f )xt (//t u0, //tv0)}

= 1

n
〈u0, v0〉Pt (� f )(x0) + e−ntE{Hess( f )xtPH(//t u0, //tv0)}. (50)

In particular if u0 and v0 are orthogonal,

||Hess Pt f (u0, v0|| ≤ e−nt Pt (||Hess f ||)(x0)||u0|| ||v0|| t ≥ 0. (51)

Proof From (19) and from (31),

Hess(Pt f )(u0, v0) = E
{
Hess( f )xt ((//t ⊗ //t )Wt (u0 � v0))

}

where, using (31),
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d

dt
Wt (u0 � v0) = λρ�2

(Wt (u0 � v0)) t ≥ 0 (52)

= −nPH(Wt (u0 � v0)). (53)

Thus

Wt (u0 � v0) = 1

n
〈u0, v0〉� + e−nt

(

u0 � v0 − 1

n
〈u0, v0〉�

)

= 1

n
(1 − e−nt )〈u0, v0〉� + e−nt (u0 � v0).

Write �t := (//t ⊗ //t )�. We now see

Hess(Pt f )(u0, v0) = 1

n
〈u0, v0〉E{Hess( f )xt (�t )}

+ e−ntE{Hess( f )PH(//t u0 � //tv0))}

equivalently

Hess(Pt f )(u0, v0) = 1

n
(1 − e−nt )〈u0, v0〉E{Hess( f )xt�t }

+ e−ntE{Hess( f )xt (//t u0 � //tv0)}.

Since Hess( f )xt�t = � f (xt ) the results follow. �

4.1 Two Alternative Approaches

4.1.1 Algebraic

The form of formula (50) is not surprising given the symmetries of the sphere, and the
decomposition of our representation of so(n) into irreducible components. Indeed for
g ∈ so(n + 1) and y ∈ Sn , we have Pt f (gy) = Pt ( f ◦ g)(y) . Using the fact that for
g ∈ so(n) left translation by g preserves the law of Brownian motion from x0, we see

that λρ�2

must be invariant under the action of ρ�2
(so(n)). It follows that it must be

constant on the irreducible componentsH andR� ofm � m for that action. Sincewe
must have Hess(Pt f )(�) = �(Pt f )(x0) = Pt (� f )(x0) we see the second constant
must be zero. To compute the first constant we could proceed as in [13] Corollary
3.4.4, page 50 and relate

∑
j ρ

�2

∗ (α j ) ◦ ρ�2

∗ (α j ) with the Casimir element of our
representation, [17] 6.2. That way there need be no mention of curvature. However
we have preferred to introduce curvature since it gives a geometric interpretation of
the constants, and also our approach applies in greater generality.
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4.1.2 Doubly Damped Parallel Translation

In [20] and [19] Xue-Mei Li obtains second derivative formulae on rather gen-
eral Riemannian manifolds M by differentiating the standard first derivative for-
mula dPt ( f )(v0) = E{d fξt (x0)Wt (v0)} with {Wt } damped, or Dohrn -Guerra, par-
allel translation, and {ξt }t , a gradient stochastic flow. This gives a term under the
expectation of the form d fξt (x0)∇u0Wt (v0). If we filter out the redundant noise, i.e.
condition, ∇u0Wt (v0), this term becomes d fξt (x0)W

(2)
t (u0, v0) for a certain process

W (2)
t (u0, v0) ∈ Txt M which she calls the doubly damped parallel translation. For

our sphere

W (2)
t (u0, v0) = e− 1

2 (n−1)t//t

∫ t

0
e−(n−1)s (〈u0, v0〉dBs − 〈u0, dBs〉v0) (54)

for {Bt }t the stochastic anti-development of our Brownian motion on Sn , and her
formula gives:

Hess(Pt f )(u0, v0) = e−(n−1)t E{Hess( f )(//t u0, //tv0)}
+E{d f (W (2)

t (u0, v0))}. (55)

5 Extensions

5.1 Higher Order Derivatives

To consider 3rd order, or higher derivatives ∇(k)d(Pt f )(uk0, ..., u
1
0, v0), we have for-

mula (14) but have to recall that the higher derivatives are not symmetric. To deal
with this we could look at the representation theory of so(n) on the full tensor algebra⊗k m but this will involve sub-representations such as on∧kmwhich are not relevant
to us. It seems easier to keep to the symmetric tensor products and then adjust with
curvature terms as done for third derivatives below. For Sn or other symmetric spaces
this is much helped by the vanishing of the covariant derivatives of the curvature.

5.1.1 Symmetrised Derivatives

For the symmetrised version, for each p = 2, 3, ... we use the map

C :
p⊗

Rn →
p−2⊙

Rn

given by
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C(u1 ⊗ ... ⊗ u p) = C(u1 � ... � u p) =
∑

i< j

〈ui , u j 〉
k �=i, j⊙

uk .

Let
⊙p

(Rn)H denote the kernel of C in
⊙p Rn . These are the traceless or harmonic

elements. It is invariant under the representation ρ� of SO(n):

ρ�(g)(u1 � ... � u p) = (ρ(g)u1 � ... � ρ(g)u p)

for any given orthogonal representation ρ of SO(n) on Rn .
If ρ is irreducible we have the decomposition of

⊙p Rn into irreducible factors
under ρ�:

p⊙
Rn =

p⊙
(Rn)H +

p−2⊙
(Rn)H

⊙
� + ... +

p−2k⊙
(Rn)H

⊙
(

k⊙
�) + · · ·

(56)
For example see [6] or [16].

For p = 3 the decomposition is

u � v � w =
(

u � v � w − 1

n + 2
C(u � v � w) � �

)

⊕ 1

n + 2
C(u � v � w) � � (57)

We can give a precise formula for arbitrarily high symmetric derivatives:

Theorem 5.1 For p = 1, 2, ... and smooth f : Sn → R the symmetrised p-th
covariant derivative of the solution Pt f to the heat equation

∂

∂t
Pt f = 1

2
�Pt f P0 f = f

is given by

∇ p(Pt f )(u
1
0 � ... � u p

0 ) = E{∇ p( f )W [p]
t (u10 � ... � u p

0 )} (58)

where the damped parallel translation W [p]
t : ⊙p Tx0M → ⊙p Txt M is given in

terms of the decomposition ( 56) of
⊙p Tx0M by

W [p]
t = W [p]

H,t + W [p−2]
H,t � //t |� + W [p−4]

H,t � //t |� � //t |� + ... (59)

where //t |� refers to parallel translation restricted to �, and

W [q]
H,t :

q⊙
(Tx0M)H →

q⊙
(Txt M)H
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is the restriction of W [q]
t to the harmonic tensors and is given by

W [q]
H,tU0 = e− q

2 (n+q−2)t//tU0 U0 ∈
q⊙

(Tx0 S
n)H. (60)

Proof The same argument that gave formula (19) yields

∇ p(Pt f )(U0) = E{∇ p( f )(//tE{ρ�(gt )U0})} U0 ∈
p⊙

(Tx0 S
n).

Now

ρ�(V � �) = ρ�(V ) � � V ∈
q⊙

(Tx0 S
n)

so formulae (58) and (59) holdwithW [q]
H,t the restrictionofE{ρ�(gt )} to⊙q

(Tx0 S
n)H.

To calculate this we have, by Lemma 3.2

d

dt
E{ρ�(gt )U0} = λρ�

E{ρ�(gt )U0}

for λρ� = 1
2 Comp

∑
r (ρ

�∗ (αr ) ⊗ ρ�∗ (αr )).

Since ρ�∗ (αr )(u1 � ... � uq) = ∑
� ρ∗(αr )u� � j �=� u j we have

ρ�
∗ (αr )ρ�

∗ (αr )(u1 � ... � uq) = Ar + Br

where
Ar =

∑

�

ρ∗(αr )2u� � j �=� u j

and
Br = 2

∑

j<k

ρ∗(αr )u j � ρ∗(αr )uk �� �= j,k u�.

From formula (47) and the fact that Ric(u) = (n − 1)u for u ∈ T Sn we have

∑

r

Ar (U0) = −q(n − 1)(U0) U0 ∈
q⊙

(Tx0 S
n),

while by (46), for U0 ∈ ⊙q
(Tx0 S

n)H,

∑

r

Br (U0) = −q(q − 1)U0 + 2C(U0) � � = −q(q − 1)U0,

giving (60), to complete the proof. �
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In particular for p = 3, using the decomposition (57) we obtain:

Corollary 5.2 For U0 = u10 � u20 � u30 ∈ ⊙3 Tx0M, with parallel translate Ut ∈
⊙3 Txt M along the Brownian paths, we have

∇3(Pt f )(U0) = e− 3
2 (n+1)t E{∇3 f (Ut )}

+e− 1
2 (n−1)t

n + 2
(1 − e−(n+2)t )E{∇3 f (C(Ut ) � �t )}. (61)

5.1.2 The Full Derivative, P=3

Recall that with our use of Kobayashi & Nomizu’s sign conventions the curvature
R∇E : T M × T M → L(E; E) of a connection ∇E on a vector bundle E over a
manifold M is given by definition by

R∇E
(u, v)S(x) = ∇E

u ∇E
V S − ∇E

v ∇E
U S − ∇E

[U,V ](x)S (62)

= (∇E )2S(u, v) − (∇E )2S(v, u) (63)

for u = U (x), v = V (x) some x ∈ M , withU, V vector fields and S a section of E .
To define (∇E )2 a torsion free connection on M is used.

For E = T M with M Riemannian and ∇E = ∇ the Levi-Civita connection, we
write R = R∇E

as before. It is important to note that with the induced Levi-Civita
connection on the cotangent bundle

R∇T∗M
(u, v)� = −� ◦ R(u, v) for � ∈ T ∗

x M.

This can be seen by computing the Hessian of the function φ(W (−)) for φ a one-
form and W a vector field, and using its symmetry. More generally, if S is a section
of (

⊗p T M)∗ then

∇2S(u, v)(w1 ⊗ ... ⊗ w p) − ∇2S(v, u)(w1 ⊗ ... ⊗ w p) =
− S(x)

(
R(u, v)w1 ⊗ w2 ⊗ ... + · · · + w1 ⊗ w2 ⊗ ... ⊗ R(u, v)w p

)
(64)

for u, v, w1, ...w p ∈ TxM .

Lemma 5.3 For u, v, w ∈ TxM and f : M → R

∇2d f (u, v, w) = ∇2d f (u � v � w) + 1

3
d f (R(v, u)w + R(w, u)v) . (65)

Proof By the symmetry of Hessians,∇2d f (u, v, w) is symmetric in v,w. Therefore

∇2d f (u � v � w) = 1

3!∇
2d f (2u ⊗ v ⊗ w + 2v ⊗ u ⊗ w + 2w ⊗ u ⊗ v) .
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Taking S = d f in (64)

∇2d f (v ⊗ u ⊗ w) = ∇2d f (u ⊗ v ⊗ w) − d f (R(v, u)w)

and
∇2d f (w ⊗ u ⊗ v) = ∇2d f (u ⊗ w ⊗ v) − d f (R(w, u)v),

giving the result by the symmetry of ∇2d f in the last two variables. �

As an example

Example 5.4

d� f (x0)(u) = ∇2d f (u ⊗ �) = ∇2d f (u � �) − 2

3
d f

(
Ric(u)

)
(66)

which enables us to rewrite (61) as

∇3(Pt f )(U0) = e− 3
2 (n+1)tE{∇3 f (Ut )}+

e− 1
2 (n−1)t

n + 2
(1 − e−(n+2)t )E

{
(

d� f (C(Ut )) + 2n − 2

3
d f (C(Ut))

)
}
.

Theorem 5.5 For u0, v0, w0 ∈ Tx0 S
n write Ut = //t u0 ⊗ //tv0 ⊗ //tw0 for parallel

translation along a Brownian motion from x0. Then for a C3 function f : Sn → R

∇3Pt f (U0) = E
{
e− 3

2 (n+1)t∇3 f (Ut )

+ 1

n + 2
e− 1

2 (n−1)t (1 − e−(n+2)t )d� f (C(Ut))

+ e− 1
2 (n−1)t

(
1 − e−(n+2)t

)
d f (

n

n + 2
C(Ut ) − 〈v0, w0〉//t u0)

}
.

In particular if u0, v0, w0 are mutually perpendicular,

∇3Pt f (U0) = e− 3
2 (n+1)tE

{∇3 f (Ut )
}
. (67)

Proof By formula (65)

∇2dPt f (u0, v0, w0) = ∇2dPt f (u0 � v0 � w0) + 1

3
dPt f (z0)

for
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z0 = R(v0, u0)w0 + R(w0, u0)v0
= 〈u0, w0〉v0 + 〈u0, v0〉w0 − 2〈v0, w0〉u0
= C(U�

0 ) − 3〈v0, w0〉u0
for our sphere.

Now d(Pt f )(z0) = E{e− 1
2 (n−1)t d f (//t z0)}

and

1

3
//t z0 + 2(n − 1)

3(n + 2)
(1 − e−(n+2)t )C(U�

t )

= −〈v0, w0〉//t u0 +
(

n

n + 2
− 2(n − 1)e−(n+2)t

3(n + 2)

)

C(U�
t ).

The result follows by using the formula in Example 5.4 withU0 = u0 � v0 � w0,
together with (65) to go back again to our non-symmetrised Ut . �

Remark 5.6 Note that for all p = 2, 3, ..n, for a sphere Sn , formula (64) can be
applied inductively to show that if u1, ..., u p are mutually orthogonal then for any
C p function f

∇ p f (u1, u2, ..., u p) = ∇ pd f (u1 � u2... � u p)

For y ∈ Sn set

||∇ p f ||o.n.(y) = sup
{|∇ p f (v1, ..., v p)|, orthonormal v1, ..., v p ∈ TyS

n}.

Applying (60) we obtain the pointwise semi-group domination,

||∇ p Pt f ||o.n. ≤ e− p
2 (n+p−2)t Pt (||∇ p f ||o.n.) (68)

5.2 More General Diffusion Semi-groups

5.2.1 Heat Semigroups on Functions and Forms on Compact
Riemannian Symmetric Spaces

Themethod described here for spheres should go over directly for the heat semi-group
of a compact Riemannian symmetric space. The representation theory involved may
be more complicated. It should extend similarly to formulae for derivatives of heat
semigroups for forms. See also the alternative approach suggested in Sect. 4.1.

An additional first order term can be included by combining this method with the
more standard method of filtering out redundant noise, but the formulae will be more
complicated unless the term comes from a Killing vector field.
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5.2.2 General Diffusions on Manifolds; Derivatives of Induced
Semigroups on Functions, Forms, Jets Etc

For a heat equations on ageneral compactRiemannianmanifoldM a similar approach
can be followed but replacing our bundle p : SO(n + 1) → Sn by a bundle p :
Diff(M) → M whereDiff(M) is a suitable group of diffeomorphisms ofM and p the
evaluation map at a base point x0 ∈ M . This can be considered as a principal bundle
with group those elements Diff x0(M) of Diff(M) which fix x0. Our stochastic flow
can be considered as a process on Diff(M) and has a skew product decomposition
generalising that described in Sect. 3.1. See [11], [13]. This gives rise to formulae like
(19) and its higher order analogues, but with lower order derivative terms because
the second derivative of the flow will not generally vanish: for symmetric spaces it
vanished because we had a flow of isometries.

In this case we should look at k-jets of Pt f rather than k-th order covariant
derivatives. However the parallel translation in our formula may now not be metric
preserving for any metric on the bundle of k-th order tangent vectors (essentially k-
th order differential operators), or its dual, the k-jets. This makes uniform estimates
difficult to obtain. For tensor bundles, associated to the frame bundle of M , such
as

⊗k T M , an SDE can be chosen for our diffusion so that its conditioned flow
determines Levi-Civita parallel translation, and so is metric preserving, see [10]. For
k-th order tangent vectors the question is crucial but open.

A result by Mendes & Redeschi, [24], shows that we cannot have the Levi-Civita
connection on tensor bundles induced by an SDE for Brownian motion which has a
solution flow of isometries except in the case we have been discussing for symmetric
spaces. They call an SDE for Brownian motion which induces the Levi-Civita con-
nection a virtual immersion. Ming Liao [22] has somewhat related negative results;
in particular there are no isometric stochastic flows of Brownian motions on a Rie-
mannian symmetric space of non-compact type. However Liao shows in [23] that
for n > 3 there are a continuum of them on Sn .

In [14], in preparation, this set up is extended to a wide class of semi-groups
induced on sections of natural bundles, such as jet bundles, by a sum of squares
representation of a diffusion operator on M . The operator need not be elliptic or
hypo-elliptic but for the method to work smoothly it should be cohesive in the sense
of [13]. However, the crucial question of finding stochastic flows inducing metric
connections on natural bundles remains open, to my knowledge.

5.3 Questions

• [Berger’s spheres.] It would be interesting to see how the derivatives of the heat
semigroup change as the sphere gets smoothly deformed, for example for Berger’s
spheres which still retain a lot of symmetry; see [15] and for a stochastic analytical
discussion and more references [21].
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• [Different symmetric space structures.] The same Riemannian manifold can have
different symmetric space structures. For example the 3-sphere is also a Lie
group and so has the symmetric space structure with group S3 × S3 acting by
(g1, g2).a = g1a(g2)−1 for a ∈ S3. Can such different structures give different
derivative formulae?

• [Non-compact type] Are there corresponding formulae for symmetric spaces of
non-compact type? In particular for hyperbolic space. As remarked above, [22]
and [24] imply that the use of isometric flows as here does not go over immediately
to the non-compact case.
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Rough Homogenisation with Fractional
Dynamics

Johann Gehringer and Xue-Mei Li

Dedicated to Sergio Albeverio on the occasion of his 80th
birthday

Abstract We review recent developments of slow/fast stochastic differential equa-
tions, and also present a new result on Diffusion Homogenisation Theory with frac-
tional and non-strong-mixing noise and providing new examples. The emphasise of
the review will be on the recently developed effective dynamic theory for two scale
random systems with fractional noise: Stochastic Averaging and ‘Rough Diffusion
Homogenisation Theory’. We also study the geometric models with perturbations to
symmetries.

Keywords Homogenisation · Stochastic averaging · Fractional Brownian
motion · Multi-scale · Rough paths

1 Introduction

When we study the evolution of a variable/quantity, which we denote by x , we
often encounter other interacting variables which either have the same scale as x
and are therefore treated equally, or are much smaller in size or slower in speed
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and are essentially negligible, or they might evolve in a microscopic scale ε, such
variables are called the fast variables which we denote by y. It happens often that y
is approximately periodic or has chaos behaviour or exhibits ergodic properties, then
its effect on the x-variables can be analysed. During any finite time on the natural
scale of x , the y-variable will have explored everywhere in its state space. As ε → 0,
the persistent effects from the fast variables will be encoded in the ‘averaged’ slow
motions through adiabatic transformation. We then expect that limε→0 xε

t exists; its
limit will be autonomous, not depending on the y-variables. In otherwords, the action
of y is transmitted adiabatically to x and the evolution of x can be approximated by
that of an autonomous system called the effective dynamics of x .

We explain this theory with the two scale slow/fast random evolution equation

dxε
t = f (xε

t , y
ε
t ) dt + g(xε

t , y
ε
t ) dBt . (1.1)

Here ε > 0 is a small parameter, yε
t is a fast oscillating noise, and Bt is another

noise. The stochastic processes Bt and yε
t will be set on a standard probability

space (�,F ,P) with a filtration of σ-algebra Ft . Typically the sample paths of
the stochastic processes t �→ Bt (ω), and t �→ yε

t (ω) are not differentiable but have
Hölder regularities. The equation is then interpreted as the integral equation:

xε
t = x0 +

∫ t

0
f (xε

s , y
ε
s ) ds +

∫ t

0
g(xε

s , y
ε
s ) dBs . (1.2)

We take the initial values to be the same for all ε. The x-variables are usually referred
to as the slow variables. If the fast dynamics depend on the slow variables, we refer
this as the ‘feedback dynamics’. If the fast variables do not depend on the slow
variables, we have the ‘non-feedback dynamics’.

If (Bs) is a Brownian motion, the integral is an Itô integral. The solutions of a
Itô stochastic differential equation (SDE) are Markov processes, they have contin-
uous sample paths and therefore diffusion processes. Within the Itô calculus realm,
the study of two scale systems began in the 1960s, almost as soon as a rigorous
theory of Itô stochastic differential equations was established, and has been under
continuous exploration. In the averaging regime, the effective dynamics are obtained
by averaging the original system in the y-variable. This non-trivial dynamical the-
ory is related to the Law of Large Numbers (LLN) and the ergodic theorems. The
averaged dynamics for the Markovian system is expected to be again the Markov
process whose Markov generator is obtained by averaging the y-components in the
family of Markov generators Ly of the slow variables with a parameter y. Stochastic
Averaging for Markovian ordinary differential equations was already studied in the
1960s and 1970s in [52, 86, 105, 106], [12, 39, 68, 104]. See also [7, 39, 40, 57,
97, 102, 113]. Stochastic averaging with periodic and stationary vector fields from
the point of view of dynamical systems is a related classic topic, see [61]. For more
recent work, see [2, 10, 62, 85]. Stochastic averaging on manifolds for Markovian
systems are studied in [1, 9, 17, 73, 74, 100]. In the homogenisation regime, this
theory is linked to Functional Central Limit Theorems (CLTs). In the classical setting
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this falls within the theory of diffusion creation, we therefore refer it as the diffusive
homogenisation theory. A meta functional CLT is as follows [54, 69]: Let f be such
that

∫
f dπ = 0 where π is the unique invariant probability measure of a Markov

process Ys , then 1√
t

∫ t
0 f (Ys)ds converges to a Markov process. Such limit theorems

are the foundation for diffusive homogenisation theorems and for studying weak
interactions. If the dynamics is Markovian, we naturally expect the limit of the slow
variable to be another Markov process. This theory is known as homogenisation;
let us call this ‘diffusive homogenisation’ to distinguish it from the settings where
the dynamics is fractional. For Markovian systems, there are several well developed
books, see e.g. [63, 102], see also [11]. Diffusive homogenisation was studied in [16,
24, 58, 96], see also [10, 79].

An Itô type stochastic differential equation is a good model if the randomness
is obtained under the assumptions that there are a large number of independent (or
weakly correlated) components. However, long range dependence (LRD) is preva-
lent in mathematical modelling and observed in time series data such as economic
cycles and data networks. One of the simplest LRD noise is the fractional noise,
which is the ‘derivative’ of fractional Brownian motions (fBM). Fractional Brown-
ianmotionswas popularised byMandelbrot andVanNess [84] formodelling the long
range dependent phenomenon observed by H. Hurst [53]. This is a natural process to
use. Within the Gaussian class, those with stationary increments and the covariance
structureE(Bt − Bs)

2 = (t − s)2H are necessarily fractional Brownianmotionswith
similarity exponent/Hurst parameter H . Fractional Gaussian fields and strongly cor-
related fields are used to study critical phenomena in mathematical physics, see e.g.
R. L. Dobrushin, G. Jona-Lasinio, G. Pavoliotti [26, 42, 59], and Ja. G. Sinai [103].

If Bt is a fractional BM of Hurst parameter H , the stochastic integral in (1.2) is a
Riemann-Stieljes integral if H > 1

2 . Otherwise this can be understood in the sense
of rough path integration or fractional calculus. We explain the essence for this using
the basics in the rough path theory. The instrument for this is the ‘Young bound’
[114]: if F ∈ Cα and b ∈ Cβ with α + β > 1

∣∣∣∣
∫ t

r
(Fs − F0)dbs

∣∣∣∣ � |F |α |b|β (t − r)α+β .

With this, Young showed that the map (F, b) �→ ∫ t
0 Fsdbs is continuous where

∫ t

0
Fsdbs = lim

|P|→0

∑
[u,v]⊂P

Fu(bu − bv) ∈ Cβ,

a Riemannan Stieljes integral/Young integral. This argument also established the
continuity of the solutions to Young equations. The solution xt inherits the regularity
of the driver and is in Cβ . This means if H > 1

2 , the equation

dxt = b(xt ) dt + F(xt ) dBt
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below can be interpreted as a Young integral equation. It is well posed if F, b are in
BC3 [81]. In general this type of SDE can be made sense of if the Hurst parameter of
the fBM Bt is greater than 1

4 , see [23, 27, 48] and also [70, 82]. The study of stochastic
evolution equations with fractional Brownian motions has since become popular, see
e.g. [3, 15, 20, 36, 41, 56, 88] and [22, 91] for their study in mathematical finance
and in economics. See also [46].

Despite of this popularity of stochastic equations with fractional noise, there had
not been much activity on the effect dynamics of a multi-scale systems. A stochastic
averaging with LRD fractional dynamics is obtained in [55] for the without feedback
case and also for a feedback Markovian dynamics yε

t which solves the following
interacting SDE:

dyε
t = 1√

ε

m2∑
k=1

Yk(x
ε
t , y

ε
t ) ◦ dWk

t + 1

ε
Y0(x

ε
t , y

ε
t ) dt, yε

0 = y0 (1.3)

where Wi
t are independent Wiener processes. A uniform ellipticity is assumed of

the equation. A priori the fast variables yε
t ∈ C 1

2 −. Since the sample paths of Bt is in
CH−, for the LRD case where H > 1

2 , (1.1) is a Young equation. More precisely, for
ω fixed, ( ∫ t

0
g(xε

s , y
ε
s )dBs

)
(ω) :=

∫ t

0
g(xε

s (ω), yε
s (ω))dBs(ω),

is a Riemannan Stieljes integral/Young integral. The solution xε
t inherits the reg-

ularity of BH
t and is in CH−. These integrals are not defined with the classic Itô

stochastic calculus in any natural way, it is therefore reasonable to use this pathwise
interpretation. A solution theory for the equation (1.1) and (1.3) also exist, see [47,
55].

As mentioned earlier, if Bt is a BM, the classic averaging theory states that the
effective dynamics is the Markov process with its generator obtained by averaging
the Markov generators of the slow variables. This is obtained within the theory of Itô
calculus. However standard analysis within the integration theory does not lead to
‘pathwise’ estimates on xε

t that are uniform in ε, whichmeans a pathwise limit theory
is not to be expected. It is clear that the ‘Young bounds’ are totally ineffective for

obtaining the essential uniform pathwise estimates for
( ∫ t

0 g(x
ε
s , y

ε
s )dBs

)
(ω). When

ε → 0 , the Hölder norm of the yε· is expected to blow up. If g does not depend on the
fast variables, it is of course possible to obtain pathwise bounds. Indeed, the sewing
lemma of Gubinelli [49] and Feyel-de la Pradelle [34], which neatly encapsulates the
main analytic estimates of both the work of Young and that of Lyons [81], and has
since become a fundamental tool in pathwise integration theory, does not provide
the required estimates for the feedback dynamics. Without any uniform pathwise
estimates, the slow variables (for a generic equation) cannot be shown to converge
for fixed fBM path.

In [55], a novel approximation, of the pathwise Young integrals by Wiener inte-
grals, was introduced with the help of the stochastic sewing lemma of Lê [71]. This



Rough Homogenisation with Fractional Dynamics 141

approach used, paradoxically, the stochastic nature of the fractional Brownianmotion
in an essentialway and, therefore, effectively departed the pathwise framework. Since
Itô integrals and Wiener integrals are defined as an element of L2(�), the uniform
estimates are L p-estimates and thus the limit theorem is an ‘annealed’ limit. It was
shown, [55], that xε

t converges in joint probability to the solution of the following
equation with the same initial data as xε

0:

dxt = f̄ (xt ) dt + ḡ(xt )dBt .

where f̄ and ḡ are obtained by directly averaging f and g respectively. Stochastic
averaging with fractional dynamics is now a fast moving area, see [94, 95, 101] [?]
for more recent work see [8, 30, 80].

For the homogenisation theory the main references are [44, 45]; see also [43]
which is the preliminary version of the previous two articles, equations of the form

ẋε
t = h(xε

t , y
ε
t )

are studied. They can be used tomodel the dynamics of a passive tracer in a fractional
and turbulent random environment.

In [43, 45], a functional limit theorem is obtained. The limit theorems are build
upon the results in [14, 25, 87–89, 98, 109, 111, 112]. In [43, 44], a homogenisation
theorem for random ODE’s for fractional Ornstein-Uhlenbeck processes. See also
[38, 66]. Since the tools for diffusive homogenisation do not apply, we have to rely
on a theorem from the theory of rough path differential equations. This approach is
close to that in [18, 19, 65, 93], see also [4, 13, 35]. However, in these references only
the dynamics are Markovian and the results are of diffusive homogenisation type.
In [43–45], the fast dynamics is a fractional Ornstein-Uhlenbeck process and the
effective dynamics are not necessarily Markov processes and the limiting equation
is a rough differential equation. We refer this theory as ‘rough creation’ theory and
‘rough homogenisation’ theory.

The study for the stochastic averaging theory and the homogenisation theory for
fractional dynamics has just started. These theories departed from the classical theory
both in terms of themethods of averaging, the techniques, and the effective dynamics.
We will compare the methodologies and obtain the following intermediate result. for
yε
t = yt/ε where yt is a stationary stochastic process with stationary distribution μ.
Let Gk be a collection of real valued L2(μ) functions on R we define

Xk,ε
t = √

ε

∫ t
ε

0
Gk(ys)ds, X ε

t = (
X1,ε
t , . . . , Xn,ε

t

)
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1.1 Main Results

Our main result, c.f. Sect. 2, can be proved using the methods in [43]. The statement
is as follows:

Theorem 1 Let yt be a real valued stationary and ergodic process with stationary
measure μ. Let Gk : R → R be L2 functions satisfying

∫ ∞

0
‖E [Gk(ys)|F0] ‖L2 ds < ∞. (1.4)

Suppose that furthermore the following moment bounds hold

‖Xk,ε
s,t ‖L p � |t − s| 1

2 , ‖Xi, j,ε
s,t ‖

L
p
2

� |t − s|,

and the functional central limit theorem holds ( i.e. X ε
t converges jointly in finite

dimensional distributions to a Wiener process Xt = (
X1
t , . . . , X

n
t

)
). Then the fol-

lowing statements hold.

(i) The canonical lift Xε = (X ε,Xε) converges weakly in Cγ for γ ∈ ( 13 ,
1
2 − 1

p ).
(ii) As ε → 0, the solutions of

ẋε
t =

N∑
k=1

1√
ε
fk(x

ε
t )Gk(y

ε
t ), xε

0 = x0

converges to the solution of the equation dxt = ∑n
k=1 fk(xt ) ◦ dXk

t .

Wewill discuss examples of yε
t and Gk for which the above holds including those

discussed, see Sect. 2.4.

2 Homogenization via Rough Continuity

With the Law of Large Number theory in place we now explain the homogenisation
theory. The homogenisation problem is about fluctuations from the average. We
therefore take

ẋε
t = h(xε

t , y
ε
t ), (2.1)

where h(x, y) is a function averaging to zero and h(x, yε
t ) is a fast oscillating frac-

tional nature moving at a microscopic scale ε. The aim is to obtain an ‘effective’
closed equation whose solution x̄t approximates xε

t . This effective dynamics will
have taken into accounts of the persistent averaging effects from the fast oscillations.
Homogenisation for random ODEs has been dominated by the diffusion creation
theory, with only a handful of exceptions where the limit is a fBM. We will obtain a
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range of dynamics with local self-similar characteristics of the fractional Brownian
motion, Brownian motion, and Hermite processes.

Recall that the fractional Brownian motion is a Gaussian process with stationary
increments. Its Hurst parameter H , given by its covariance structure:E(Bt − Bs)

2 =
(t − s)2H , indicates also the exponent in the power law decay of the corresponding
fractional noise. Indeed, the correlation of two increments of the fractional Brownian
motion of length 1 and time t apart,

E(Bt+s+1 − Bt+s)(Bs+1 − Bs) = 1

2
(t + 1)2H + 1

2
(t − 1)2H − t2H

which is approximately 2Ht2H−2 for large t .

2.1 CLT for Stationary Processes

Given a stochastic process ys we are concerned with the question, whether for some
scaling α(ε) and function G : R → R the following term converges in the sense of
finite dimensional distributions

X ε
t = α(ε)

∫ t
ε

0
G(ys)ds.

Usual functional central limit theorems would set α(ε) = √
ε and the limit would be

a Wiener process. For Markovian noises these question has been studied a lot, see
e.g. [69] and the book [63] and the references therein. The basic idea is: If L is the
Markov generator and the Poisson equation L = G is solvable, with solution in the
domain of L, then the central limit theorem holds. This follows from the martingale
formulation for Markov processes.

Another kind of condition often imposed on the noise is some kind of mixing
condition. Processes that satisfy these conditions are in a sense nicely behaved as
they obey the usual CLT. However, in this section we aim to treat cases in which
non of this conditions are satisfied. For example the fractional Ornstein-Uhlenbeck
process for H > 1

2 is neither Markovian nor obeys usual mixing assumptions. Look-
ing at this question from a Gaussian perspective Rosenblatt [99] gave an example
of a stationary Gaussian sequence Xk such that 1√

N

∑N
k=1 Xk does not converge,

however the right scaling 1
Nα

∑N
k=1 Xk , for a suitable α > 1

2 converges to the so
called Rosenblatt process. Taqqu and Dobrushin [26, 108, 110] added to this work
of so called non-central limit theorems. Philosophically, if the covariance function
ρ( j) = E

[
X0X j

]
does not decay fast enough the limiting distribution can not have

independent increments. The notions of short and long range dependence capture
this idea. We say that a sequence is short range dependent if

∑∞
j=1 |ρ( j)| < ∞ and

long range dependent otherwise.
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We now want to discuss a method to conclude convergence to a Wiener process
for these kind of processes. In case of a Gaussian noise ys the rich toolboxes of
Malliavin calculus, in particular the fourth moment theorem enables one to conclude
limit theorems for a wide variety of situations, c.f. [88–90, 92]. However, the method
we are going to explore further relies on a martingale approximation method, see
[60] Theorem 3.79.

The idea is to impose a condition on the functional instead on the noise in order to
obtain a decomposition, as in the Markovian case, into a martingale and coboundary
term.

Furthermore, the method of martingale approximation can be used to obtain con-
vergence of the lifted process via Theorem 2.2 in [67], cf. [6, 64]. Given a function
U satisfying Assumption 2.7 we may define the following L2 martingale

Mt =
∫ ∞

0
E

[
U (yr )|Ft+

] − E
[
U (yr )|F0+

]
dr.

Now we may decompose X ε as follows

X ε
t = √

ε

∫ t
ε

0
U (yr )dr = √

εM t
ε
+ √

ε
(
Z t

ε
− Z0

)
,

where Zt = ∫ ∞
t E

[
U (yr )|Ft+

]
dr. As by assumption ‖Zt‖L2 is uniformly bounded

we may drop the coboundary term and apply the Martingale central limit theorem.

2.2 Fractional Ornstein Uhlenbeck as Fast Dynamics

To illustrate the type of theorem we are seeking, we review the recently obtained
result for the fractional Ornstein-Uhlenbeck process. In [44], we studied equation
(2.4) where yε

t is the fractional Ornstein-Uhlenbeck process. A fluctuation theorem
from the average was obtained. We showed furthermore that the effective dynamics
is the solution of (2.5).

Definition 2.1 A function G ∈ L2(μ), G = ∑∞
l=0 cl Hl , is said to satisfy the fast

chaos decay condition with parameter q ∈ N, if

∞∑
l=0

|cl |
√
l! (2q − 1)

l
2 < ∞.

The lowest index l with cl 
= 0 is called the Hermite rank of G. If m is the Hermite
rank we define H∗(m) = m(H − 1) + 1 .

Remark 2.2 [43, 44] Let yt be the stationary fractional Ornstein-Uhlenbeck process
with H ∈ (0, 1) \ { 12 }. Then, for any real valued functions U ∈ L2(μ) with Hermite
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rank m > 0 and H∗(m) = m(H − 1) + 1 < 0, we have

∫ ∞

0
‖E [U (ys)|F0] ‖L2 ds < ∞. (2.2)

Note that, without the conditioning on F0 the integral would be infinite due to the
stationarity of ys .

Let α(ε, H∗(m)) be positive constants as follows, they depend onm, H and ε and
tend to ∞ as ε → 0,

α
(
ε, H∗(m)

) =

⎧⎪⎨
⎪⎩

1√
ε
, if H∗(m) < 1

2 ,
1√

ε| ln(ε)| , if H∗(m) = 1
2 ,

εH
∗(m)−1, if H∗(m) > 1

2 .

(2.3)

For H∗(m) 
= 1
2 this is equivalent to α(ε, H∗(m)) = ε(H∗(mk )∨ 1

2 )−1. The following is
proved in [43] for H > 1

2 , see [44] for also the H < 1
2 case.

Theorem 2.3 [43, 44] Let yt be the fractional Ornstein-Uhlenbeck process with
stationary measure μ. Let Gk be L2 ∩ L pk functions with satisfies the fast chaos
decay condition with parameter q � 4 for pk sufficiently large (see blow). We order
the functions {Gk} so that their Hermite rank mk does not increase with k. We also
assume either H∗(mk) < 0 for k � n or H∗(mk) > 1

2 otherwise. Then, the solutions
of ⎧⎪⎪⎨

⎪⎪⎩
ẋε
t =

N∑
k=1

ε(H∗(mk )∨ 1
2 )−1 fk(x

ε
t )Gk(y

ε
t ),

xε
0 = x0,

(2.4)

converges, as ε → 0 to the solution of the following equation with the same initial
data:

dxt =
n∑

k=1

fk(xt ) ◦ dXk
t +

N∑
k=n+1

fk(xt )dX
k
t . (2.5)

Here Xk
t is a Wiener process for k � n, and otherwise a Gaussian or a non-Gaussian

Hermite process. The covariances between the processes are determined by the func-
tions Gk, for which there are explicit formulas. In these equations, the symbol ◦
denotes the Stratonovich integral and the other integrals are in the sense of Young
integrals.

The conditions for pk are:

Assumption 2.4 If Gk has low Hermite rank, assume H∗(mk) − 1
pk

> 1
2 ; otherwise

assume 1
2 − 1

p > 1
3 . Furthermore,
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min
k�n

(
1

2
− 1

pk

)
+ min

n<k�N

(
H∗(mk) − 1

pk

)
> 1. (2.6)

2.3 The Rough Path Topology

To explain the methodology we first explain the necessities from the rough path
theory. If X and Y are Hölder continuous functions on [0, T ] with exponent α and
β respectively, such that α + β > 1, then by Young integration theory

∫ T

0
YdX = lim

P→0

∑
[u,v]∈P

Yu(Xv − Xu).

where P denotes a partition of [0, T ]. Furthermore (X,Y ) �→ ∫ T
0 YdX is a continu-

ous map. Thus, for X ∈ C 1
2 + and f ∈ C2

b , one can make sense of a solution Y to the
Young integral equation dYs = f (Ys)dXs . Furthermore the solution is continuous
with respect to both the driver X and the initial data, see [114]. If X has Hölder
continuity less or equal to 1

2 , this fails and one cannot define a pathwise integration
for

∫
XdX by the above Riemann sum anymore. Rough path theory provides us with

a machinery to treat less regular functions by enhancing the process with a second
order process, giving a better local approximation, which then can be used to enhance
the Riemann sum and show it converges.

A rough path of regularity α ∈ ( 13 ,
1
2 ), is a pair of process X = (Xt ,Xs,t ) where

(Xs,t ) ∈ R
d×d is a two parameter stochastic processes satisfying the following alge-

braic conditions: for 0 � s < u < t � T ,

Xs,t − Xs,u − Xu,t = Xs,u ⊗ Xu,t , (Chen’s relation)

where Xs,t = Xt − Xs , and (Xs,u ⊗ Xu,t )
i, j = Xi

s,u X
j
u,t as well as the following ana-

lytic conditions,
‖Xs,t‖ � |t − s|α, ‖Xs,t‖ � |t − s|2α. (2.7)

The set of such paths will be denoted by Cα([0, T ];Rd). The so called second order
processXs,t canbeviewedas a possible candidate for the iterated integral

∫ t
s Xs,udXu .

Given a path X , which is regular enough to define its iterated integral, for example
X ∈ C1([0, T ];Rd), we define its natural rough path lift to be given by

Xs,t :=
∫ t

s
Xs,udXu .

It is now an easy exercise to verify thatX = (X,X) satisfies the algebraic and analytic
conditions (depending on the regularity of X ), by whichwemean Chen’s relation and
(2.7). Given two rough paths X and Y we may define , for α ∈ ( 13 ,

1
2 ), the following
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defines a complete metric on Cα([0, T ];Rd), called the in-homogenous α-Hölder
rough path metric:

ρα(X,Y) = sup
s 
=t

‖Xs,t − Ys,t‖
|t − s|α + sup

s 
=t

‖Xs,t − Ys,t‖
|t − s|2α . (2.8)

We are also going to make use of the norm like object

‖X‖α = sup
s 
=t∈[0,T ]

‖Xs,t‖
|t − s|α + sup

s 
=t∈[0,T ]
‖Xs,t‖ 1

2

|t − s|α , (2.9)

where we denote for any two parameter process X a semi-norm:

‖X‖2α := sup
s 
=t∈[0,T ]

‖Xs,t‖
|t − s|2α .

Our proof will be based on the following results:

Lemma 2.5 Let Xε be a sequence of rough paths with X(0) = 0 and

sup
ε∈(0,1]

E
(‖Xε‖γ

)p
< ∞,

for some γ ∈ ( 13 ,
1
2 − 1

p ), then Xε is tight in Cγ′
for every 1

3 < γ′ < γ.

Theorem 2.6 [37] Let Y0 ∈ R
m,β ∈ ( 13 , 1), f ∈ C3

b(R
m,L(Rd ,Rm)) and

X ∈ Cβ([0, T ],Rd). Then, the differential equation

Yt = Y0 +
∫ t

0
f (Ys)dXs (2.10)

has a unique solutionwhich belongs toCβ . Furthermore, the solutionmap� f : Rd ×
Cβ([0, T ],Rd) → D2β

X ([0, T ],Rm), where the first component is the initial condition
and the second component the driver, is continuous.

2.4 Homogenization via Rough Continuity

2.4.1 Main Idea of the Method

Theorem 2.6 has an interesting application to our homogenisation problem as weak
convergence is preserved under continuous operations. A simple equation for the
demonstration is

dxε
t = α(ε) f (xε

t )G(yε
t )dt,
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for a suitable choice of α and stochastic process yε
t , we may rewrite this equation

into a rough differential equation. To do so set X ε
t = α(ε)

∫ t
0 G(yε

s ) ds thus,

dxε
t = f (xε

t )dX
ε
t .

To obtain a rough differential equation we now define the canonical lift of X ε as
Xε = (X ε

t ,X
ε
s,t ), where X

ε
s,t = ∫ t

s X ε
s,r d X

ε
r and study

dxε
t = f (xε

t )dX
ε
t .

As stated above to conclude weak convergence in a Hölder space of the solutions xε

it is sufficient to obtain weak convergence of Xε in a rough path space Cγ for some
γ ∈ ( 13 ,

1
2 ). This can be done by following a two step approach. Firstly, proving

convergence in finite dimensional distributions for Xε and secondly tightness via
moment bounds. See [6, 18, 35, 44, 65].

Overall we have reduced the question to proving a functional central limit for
X ε
t = α(ε)

∫ t
0 G(yε

s ) ds, as well as for

X
ε
s,t =

∫ t

s
X ε
s,r d X

ε
r = α(ε)2

∫ t

s

∫ r

s
G(yr )G(yu)dudr,

in a suitable path space. In one dimensions, by symmetry, Xε
s,t = 1

2

(
X ε
s,t

)2
, hence

a continuous functional of X ε. This makes the one dimensional case quite simple.
However, when dealing with equations of the form

dxε
t =

N∑
k=1

αk(ε) fk(x
ε
t )Gk(y

ε
t )dt,

where the fast motions are channelled through functions of different scales, or

dxε
t = α(ε) f (xε

t , y
ε
t ),

the canonical lift is more involved.

2.4.2 Proof of Theorem 1

We apply the rough path theory and CLT theorem to diffusion creation. To deal with
components converging to a Wiener process, to prove convergence of the second
order process as mentioned above one usually relies on a martingale coboundary
decomposition with suitable regularity, cf. [6, 65]. Then, one can use the stability of
weak convergence of the Itô integral, Theorem 2.2 [67], for L2 martingales.
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Assumption 2.7 Given a stochastic process yt with stationary distributionμ, a func-
tion U in L2(μ) is said to satisfy the ‘conditional memory loss’ condition:

∫ ∞

0
‖E [U (ys)|F0] ‖L2 ds < ∞. (2.11)

Assumption 2.8 A vector valued process

X ε
t = (

X1,ε
t , . . . , Xn,ε

t

)
,

is said to satisfy the rough moment condition if the following moment bounds hold

‖Xk,ε
s,t ‖L p � |t − s| 1

2

‖Xi, j,ε
s,t ‖

L
p
2

� |t − s|.

Given a stationary and ergodic process yt and functions Gk , we define Xk,ε
t =√

ε
∫ t

ε

0 Gk(ys)ds. Suppose that there exists a Wiener process Xt = (
X1
t , . . . , X

n
t

)
such that X ε

t → Xt in finite dimensional distributions. To prove Theorem 1, by the
continuity theorem, it is sufficient to show that the canonical lift Xε = (X ε,Xε)

converges weakly in Cγ for γ ∈ ( 13 ,
1
2 − 1

p ).

Remark 2.9 In case the assumptions of Theorem1 are satisfied one has in particular,

E[X j
t X

l
s] = 2(t ∧ s)

∫ ∞

0
E[G j (yr )Gl(y0)]dr.

Proof of Theorem 1. To prove Theorem 1 one may argue similarly as in Sect. 3.3
in [44]. Recall that we assume that yt and Gk satisfy the conditional memory loss
condition in Assumption 2.7, and X ε satisfies Assumption 2.8.

Firstly, due to Assumption 2.7 we may decompose each Xk,ε as follows,

Xk,ε
t = √

ε

∫ t
ε

0
Gk(yr )dr = √

εMk
t
ε
+ √

ε
(
Zk

t
ε
− Zk

0

)
,

where Zk
t = ∫ ∞

t E
[
Gk(yr )|Ft+

]
dr and Mk

t = ∫ ∞
0

E
[
Gk(yr )|Ft+

] − E
[
Gk(yr )|F0+

]
dr. By the construction, Mk

t is a martingale and

‖Zk
t ‖L2 is bounded by Assumption 2.7. Hence, the term

√
ε
(
Zk

t
ε

− Zk
0

)
converges

to 0 in L2. Thus, also the multidimensional martingales

(
√

εM1
t
ε
, . . . ,

√
εMn

t
ε
)

converge jointly to the n-dim Wiener process,
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Xt = (X1
t , . . . , X

n
t ).

When computing the iterated integralsXi, j,ε
s,t = ∫ t

s X i,ε
s,r d X

j,ε
r , we obtain for the diag-

onal entries Xi,i,ε
s,t = 1

2

(
Xi,ε
s,t

)2
by symmetry as above. However, in case i 
= j we

need to argue differently. Using the same martingale coboundary decomposition as
above one can show the following lemma.

Lemma 2.10 (See the Appendix) For L(ε) = � t
ε
�,

ε

∫ t
ε

0

∫ s

0
Gi (ys)G j (yr )dr = ε

L(ε)∑
k=0

(Mi
k+1 − Mi

k)M
j
k + t Ai, j + Er(ε),

where Ai, j = ∫ ∞
0 Gi (ys)G j (y0)ds and Er(ε) converges to 0 in probability.

Now, defining the cadlag martingales Mi,ε
t = √

εMi
� t

ε � one may identify the sum
above as Itô integral. Furthermore, by Assumption 2.7 thesemartingales are bounded
in L2, hence, using Theorem 2.2 in [67] we obtain,

(
Mk,ε

t ,

∫ t

0
Mi,ε

s dM j,ε
s

)
→ (

Xt ,X0,t
)
,

where X is given by Itô integrals, in the sense of finite dimensional distributions.
Additionally, themoment bounds guarantee that the convergence actually takes place
Cγ for γ ∈ ( 13 ,

1
2 − 1

p ).

An example that satisfies above conditions is given by choosing yt as the fractional
Ornstein Uhlenbeck process and functions Gk that satisfy,

Assumption 2.11 Each Gk belongs to L pk (μ), where pk > 2, and has Hermite rank
mk ≥ 1. Furthermore,

(1) Each Gk satisfies the fast chaos decay condition with parameter q � 4.
(2) For each k, 1

2 − 1
pk

> 1
3 and H∗(mk) < 0.

where H∗(m) = (H − 1)m + 1, the Hermite rank is as defined in Sect. 2.5.3 .

2.5 Examples Satisfying Assumption 2.7

2.5.1 Strong Mixing Environment

Using this method one can also treat the classical setup. Given a stationary stochastic
process yt and assume it is strong mixing with mixing rate α(s).
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α(t) = sup
A∈F0∞,B∈F∞

t

|P(A ∩ B) − P(A)P(B)|.

By Lemma 3.102 in [60], givenG : R → R such that ‖G(y0)‖L1 < ∞ the following
inequality holds,

‖E [G(yt )|F0] − E [G(yt )] ‖Lq � 2
(
2

1
q + 1

)
α(t)

1
q − 1

r ‖G(yt )‖Lr ,

where 1 � q � r � ∞.

Lemma 2.12 Let yt be a stationary process with mixing rate α(t) and G ∈ Lr (μ)

is centred. Then Assumption 2.7 holds if

∫ ∞

0
α(t)

1
2 − 1

r dt < ∞.

2.5.2 Volterra Kernel Moving Averages

Let B denote a fBm of Hurst parameter H and set yt = ∫ t
−∞ K (t − s)dBs , where K

denotes a kernel K such that ‖yt‖L2 = 1. Using the decomposition Bt − Bk = B̃k
t +

B̄k
t , where B̄

k
t = ∫ k

−∞(t − k)H− 1
2 − (k − r)H− 1

2 dr and B̃k
t = ∫ t

k (t − r)H− 1
2 dWr , we

may also decompose

yt =
∫ t

−∞
K (t − r)dBr =

∫ k

−∞
K (t − r)dBr +

∫ t

k
K (t − r)d(Br − Bk)

=
(∫ k

−∞
K (t − r)dBr +

∫ t

k
K (t − r)dB

k
r

)
+

∫ t

k
K (t − r)d B̃k

r

= ykt + ỹkt .

It was shown in [50] that the term B̃k
t is independent of Fk and B

k
t is Fk measurable,

hence ỹkt is independent of Fk and ykt is Fk measurable. Moreover, both terms are
Gaussians. We set ykt = yt for k � t . Using an expansion into Hermite polynomials
one can show the following:

Lemma 2.13 Let yt = ∫ t
−∞ K (t − s)dBs such that ‖yt‖L2 = 1 be given. If the ker-

nel K is such that
∫ ∞

k−1

(
E

[(
yks

)2]) m
2
dt,

then Assumption 2.7 hold.

An example of this is the fractional Ornstein-Uhlenbeck process.
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2.5.3 Effective Dynamics Driven by Non-wiener Process

As mentioned above for Gaussian noises one may obtain a variety of limits. The
Hermite rank plays a central role in the analysis of limit theorems with Gaussian
noises. Let γ denote the standard normal distribution and yt a stationary process
with distribution γ, then each G ∈ L2(γ) admits an expansion into Hermite poly-
nomials, G(ys) = ∑∞

k=0 ck Hk(ys). The Hermite rank is now defined as the rank of
the smallest non zero Hermite polynomial, thus, a function with Hermite rank m
can be written as G(ys) = ∑∞

k=m ck Hk(ys) with cm 
= 0. Hermite polynomials are
mutually orthogonal and satisfy E

(
Hk(ys)Hj (yr )

) = δ(k − j)ρ(|s − r |)k , where ρ
denotes the correlation function of ys . In case ρ admits only an algebraic decay,
i.e. the fractional OU process satisfies ρ(t) � 1 ∧ t2H−2, higher order polynomials
accelerate the correlation decay. Thus, the picture one obtains is that there is a criti-
cal m such that Hk(ys) is short range dependent if k � m and long range dependent
otherwise. In case (H − 1)k + 1 > 1

2 the process is long range dependent and short
range dependent if (H − 1)k + 1 < 1

2 , the border line case is long range dependent as
well, however the sum of the correlations only diverges logarithmically, which leads
to a separate behaviour which will not be discussed here. Thus, if a function G has
Hermite rank m such that (H − 1)k + 1 > 1

2 one obtains convergence to Hermite
processes for α(ε) = ε(H−1)m+1. As this processes have Hölder regularity greater
than 1

2 they can be treated within the Young framework.

Remark 2.14 To combine both frameworks in [44] the assumption was made that
the Hölder regularity of Wiener components plus the ones for Hermite components
is bigger than 1, hence the joint lifts are irrelevant in the limit and well defined as
Young integrals.

3 Recent Progress on Slow/Fast Markovian Dynamics

In order to compare the methods, we will explain the classical Stochastic Averag-
ing Theory and the Diffusion Homogenisation theory with Markovian Dynamics,
which have been continuously re-inventing itself since the 1960s and 1970s. They
are typically a system of two-scale stochastic equations as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxε
t =

m1∑
k=1

Xk(x
ε
t , y

ε
t ) ◦ dW̃ k

t + X0(x
ε
t , y

ε
t ) dt, xε

0 = x0;

dyε
t = 1√

ε

m2∑
k=1

Yk(x
ε
t , y

ε
t ) ◦ dWk

t + 1

ε
Y0(x

ε
t , y

ε
t ) dt, yε

0 = y0.

(3.1)

where Wi
t , W̃

i
t are independent Brownian motions. Such models have the flavour of

the following multi-scale system in dynamical system
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ẋε
t = f (xε

t , y
ε
t ), ẏε

t = 1

ε
Y0(x

ε
t , y

ε
t ).

In dynamical system, the fast dynamics is often periodic or has chaotic behaviour.
Because these are well known, we will focus on the newer developments that

applies to non-linear state spaces which is sufficient to illustrate the underlying ideas
and the differences between the theories within the Markovian dynamics and that
with the fractional dynamics. Since the scale in amulti-scale systemare note naturally
separated, we will need to use geometric methods to separate them, the slow and fast
variables so obtained often lives in a non-linear space. For example if we take an
approximately integrable Hamiltonian system the natural state space is a torus. If the
slow-fast system is obtained by using symmetries, the state space of the fast motions
are Lie groups. SDEs with symmetries are popular topics, see [5, 28, 31–33, 107].
See also [74, 78] for perturbation to symmetries.

3.1 The Basic Averaging Principal

For y ∈ R
n , let σi (·, y) : Rd → R

d , and for x ∈ R
d , Yi (x, ·) : Rn → R

n . The aver-
aging principle states that if (xε

t , y
ε
t ) is the solution of the following stochastic dif-

ferential equation, with Itô integrals,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxε
t =

m1∑
k=1

σk(x
ε
t , y

ε
t )dW̃

k
t + σ0(x

ε
t , y

ε
t ) dt, xε

0 = x0;

dyε
t = 1√

ε

m2∑
k=1

Yk(x
ε
t , y

ε
t )dW

k
t + 1

ε
Y0(x

ε
t , y

ε
t ) dt, yε

0 = y0,

(3.2)

then xε
t converges to aMarkov process. This principle requires technical verification.

The popular format and assumptions for the Stochastic Averaging Principle is as
follows, see [52] and [113]. Let Y x

s be the solution to the equation below with frozen
slow variable (we assume sufficient regularity assumption so that there equation has
a unique strong solution,)

dyxt =
m2∑
k=1

Yk(x, y
x
t )dWk

t + Y0(x,y
x
t ) dt, yx0 = y0.

suppose that there exists a unique invariant probability measure μx . Assume further-
more that the coefficients of the equations are Lipschitz continuous in both variables
and suppose that there exist functions āi, j and b̄ such that on [0, T ],
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∣∣∣∣1t E
∫ t

0
b(x,Y x

s )ds − b̄(x)

∣∣∣∣ � (|x |2 + |y0|2 + 1),
∣∣∣∣∣
1

t
E

∫ t

0

∑
k

σi
kσ

j
k (x,Y

x
s )ds − āi, j (x)

∣∣∣∣∣ � (|x |2 + |y0|2 + 1).
(3.3)

Then, xε
t converges weakly to the Markov process with generator

L̄ = 1

2
āi, j (x)

∂2

∂xi∂x j
+ b̄k(x)

∂

∂xk
.

The notation h̄ denotes the average of a function h, i.e. h̄(x) = ∫
h(y)μx (dy). In

[52], boundedness in y is assumed in (3.3). This is replaced by the quadratic growth
in [113], where a uniform ellipticity is also used to replace the regularity assumption
needed on x �→ μx .

In the next section we outlined conditions posed directly on the coefficients of the
equations, under which these assumptions hold.

3.2 Quantitative Locally Uniform LLN

The law of large numbers is the foundation for stochastic averaging theory. Let yε
t

be an ergodic Markov process on a state space Y with invariant measure π, then the
Birkhoff’s ergodic theorem holds, i.e.

lim
t→∞

∣∣∣∣1t
∫ t

0
h(xs)ds −

∫
h(y)π(dy)

∣∣∣∣ → 0.

If L is a strictly elliptic operator, this is seen easily by the martingale inequalities
and Schauder’s estimates. There is typically a rate of convergence of the order 1√

t
.

Such results are classic for elliptic diffusions on R
n . For Brownian motion on a

compact manifolds this is proven in [72], see also [29], we generalise this result
to non-elliptic operators and obtain a quantitative estimate. Furthermore, we obtain
locally uniform estimates for diffusion operators Lx where x ∈ X is a parameter.
Our main contribution is to obtain quantitative estimates that are locally uniform in
x . We indicate one such result below.

Definition 3.1 Let X0, X1, . . . , Xk be smooth vector fields.

(i) The differential operator
∑m

k=1(Xi )
2 + X0 is said to satisfyHörmander’s con-

dition if {Xk, k = 0, 1, . . . ,m} and their iterated Lie brackets generate the
tangent space at each point.

(ii) The differential operator
∑m

k=1(Xi )
2 + X0, is said to satisfy strong Hörman-

der’s condition if {Xk, k = 1, . . . ,m} and their iterated Lie brackets generate
the tangent space at each point.
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Let s ≥ 0, let dx denote the volume measure of a Riemannian manifold G and
let � denote the Laplacian. If f is a C∞ function we define its Sobolev norm to be

‖ f ‖s =
(∫

G
f (x)(I + �)s/2 f (x) dx

) 1
2

If the Strong Hörmander’s condition holds and Y is compact, then the Markov
process with generator

∑m
k=1(Xi )

2 + X0 has a unique invariant probability measure.
We state a theorem for Y compact, a version with Y not compact can also be found
in [78].

Theorem 3.2 [78] Let Y be a compact manifold. Suppose that Yi (x, ·) are bounded
vector fields on Y with bounded derivatives and C∞ in both variables. Suppose that
for each x ∈ X ,

Lx = 1

2

m∑
i=1

Y 2
i (x, ·) + Y0(x, ·)

satisfies Hörmander’s condition and has a unique invariant probability measure
which we denote by μx . Then the following statements hold .

(a) x �→ μx is locally Lipschitz continuous in the total variation norm.
(b) For every s > 1 + dim(Y)

2 there exists a positive constant C(x), depending con-
tinuously in x, such that for every smooth function f : Y → R,

∣∣∣∣ 1T
∫ t+T

t
f (zxr ) dr −

∫
G
f (y)μx (dy)

∣∣∣∣
L2(�)

� C(x)‖ f ‖s 1√
T

, (3.4)

where zr denotes an Lx -diffusion.

The proof for this follows from an application of Itô’s formula, applied to the
solution of the Poisson equation Lxh = f (x, ·) where

∫
f (x, y)μx (dy) = 0. For

such functions,

1

T

∫ T

0
f (x, zxr )dr = 1

T

(
g(x, zxT ) − g(x, y0)

) − 1

T

(
m2∑
k=1

∫ T

0
dg(x, ·)(Yk(x, zxr ))dWk

r

)
.

(We take t = 0 for simplicity.) It then remain to bound the supremum norm of
dg(x, ·), which is a consequence of the sub-elliptic estimates of Hörmander.

3.3 Averaging with Hörmander’s Conditions

LetX ,Y be smoothmanifolds.We take a family of vector fieldsσi (·, y) onX indexed
by y ∈ Y and a family of vector fields Yi (x, ·) with parameter x ∈ X . The vector
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field σi (·, y) acts on a real function h : X → R so that σi (·, y)h is the derivative
of h in the direction of σi (·, y). If X is a vector field we denote by Dh(X (x)) the
derivative of the function h in the direction of X (x) at the point x . The function so
obtained is also denoted by LXh, or Xh, or Dh(X).

The assumption (3.3) can in fact be verified with ergodicity and regularity condi-
tions on the coefficients.We state such a result onmanifolds.We switch to Stranovich
integrals and denote this by ◦.We also denote by σ̃0 and Ỹ0 the effective drifts (includ-
ing the Stratonovich corrections). Consider

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxε
t =

m1∑
k=1

σk(x
ε
t , y

ε
t ) ◦ dW̃ k

t + σ0(x
ε
t , y

ε
t ) dt, xε

0 = x0;

dyε
t = 1√

ε

m2∑
k=1

Yk(x
ε
t , y

ε
t ) ◦ dWk

t + 1

ε
Y0(x

ε
t , y

ε
t ) dt, yε

0 = y0.

(3.5)

Suppose that, for each x , Lx = 1
2

∑m
i=1 Y

2
i (x, ·) + Y0(x, ·) has a unique invariant

probability measure which we denote by μx . For h : X → R a smooth function with
compact support, we define

L̄h(x) = 1

2

∑
k

∫
Y

(
D2h)x (σk(x, y),σk(x, y))

)
(y)μx (dy) +

∫
Y

(Dh)x

(
σ0(x, y)

)
μx (dy).

The key condition for the convergence of the slow motion is the Hörmander’s condi-
tion. More precisely we will make use of the conclusion of Theorem 3.2, from which
we obtain the following estimates on a compact subset D of X :

E

N−1∑
i=0

∣∣∣∣
∫ ti+1

ti

f
(
xε
ti , y

xε
ti

r

)
ds − �ti f

(
xε
ti

)∣∣∣∣ � c T λ(
�ti
ε

) sup
x∈D

∥∥ f (x, ·) − f̄ (x)
∥∥
s
.

(3.6)
Here λ(t) is a function converging to zero as t → ∞. With this we obtain the dynam-
ical Law of Large Number as follows.

Theorem 3.3 [78] Let Y be compact and Yi are in C2 ∩ BC1. Suppose that σ̃0 and
σi are C1, where i = 1, . . . ,m, and Lx satisfies Hörmander’s condition and that it
has a unique invariant probability measure. Suppose that one of the following two
statements holds.

(i) Let ρ denote the distance function on Y . Suppose that ρ2 is smooth and

1

2

m∑
i=1

∇dρ2(σi (·, y),σi (·, y)) + dρ2(σ̃0(·, y)) � K (1 + ρ2(·)), ∀y ∈ G.

(ii) The sectional curvature of Y is bounded. There exists a constant K such that
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m∑
i=1

|σi (x, y)|2 � K (1 + ρ(x)), |σ0(x, y)| � K (1 + ρ(x)), ∀x ∈ N ,∀y ∈ G.

Then {xε
t , ε > 0} converges weakly, on any compact time intervals, to the Markov

process with the Markov generator L̄.
This theorem is useful when we have an stochastic differential equation on a

manifold which is invariant under a group action, and when we study its small
perturbations.

3.3.1 Geometric Models

The LLN can be used to study the following models.

Example 3.4 (1) Approximately Integrable Hamiltonian systems. If H : M →
R is a smooth Hamiltonian function on a symplectic manifold or on R

2n with
its standard symplectic structure, we use XH to denote its Hamiltonian vector
fields. Let k be a smooth vector field. Let {Hi } be a family of Poisson commuting
Hamiltonian functions on a symplectic manifold.

dzε
t = 1√

ε

n∑
i=1

XHi (z
ε
t ) ◦ dWi

t + 1

ε
XH0(z

ε
t )dt + k(zε

t )dt.

Let xε
t = (H1(zε

t ), . . . , H1(zε
t )) and let yε

t denote the angle components. It was
shown in [73] that an averaging principle holds if {H1, . . . , Hn} forms a com-
pletely integrable systems and xε

t converging to the solution of and ODE. Fur-
thermore if k is also a Hamiltonian vector field, then xε converges on the scale
[0, 1

ε
] to a Markov process whose generator can be explicitly computed.

(2) Stirring geodesics. Let H0 is a horizontal vector field on the orthonormal frame
bundle OM of a manifold M . The orthonormal frames over x ∈ ME are the set
of directions, i.e. linear maps from R

n to TxM . Then the equation u̇t = H0(ut )
on OM is the equation for geodesics, its projection to the base manifold is a
geodesic with unit speed, it solves a second order differential equation on M . Let
{Ak} be a collection of skew symmetric d × d matrices where d is the dimension
of the manifold. Let Ak denote also the vertical fundamental fields obtained on
OM by rotating an initial tangent vector in the direction of the exponential map
of Ak . Consider the equation on OM :

duε
t = 1

ε
H0(u

ε
t )dt + 1

ε

n(n−1)
2∑

k=1

Ak(u
ε
t ) ◦ dWk

t .

These are large oscillatory perturbations on the the geodesic equation, consid-
ered on the scale [0, 1

ε
].



158 J. Gehringer and X.-M. Li

Let π denote the projection of a frame in OxM � L(Rn, TxM) to x . We are
only concerned with the projection of uε

t to the base manifold M and we set
xε
t = π(uε

t ). Then our equation reduces to the following:

ẋε
t = 1

ε
xε
t g

ε
t

on the manifold M , where gε
t is a fast diffusion on SO(d). If {Ak} is an o.n.b. of

so(d), it was shown in [75] that π(uε
t ) converges as ε → 0. Theorem 3.3 allow

this theorem to be extended to a set of L = {Ak}, which is not necessarily an
o.n.b. of so(n), but the elements of L and their Lie bracket has dimension n.

(3) Perturbation to equi-variant diffusions. Perturbed equi-variant SDEs on prin-
cipal bundles were studied in [74, 78]. See also [31–33] for the study of equiv-
ariant diffusions.

(4) Inhomogeneous scaling of Riemannian metric and collapsing of manifolds.
In [77], a singularly perturbedmodel on a lie groupGwith a compact subgroup H
was studied. LetG be endowed with an AdH -invariant left invariant Riemannian
metric, this exists if H is compact. Let Xi be elements of the Lie algebra of H
which we denote by h. Let Y be an element of its orthogonal complement.
We identify an element of the Lie algebra with the left invariant vector fields
generated by it. Consider

dgε
t = 1

ε

p∑
k=1

Xk(g
ε
t ) ◦ dWk

t + 1

ε
Y (gε

t ) dt.

Then, if {Xk} and their brackets generates h, it was shown in [77] that π(gε
t )

converges to a diffusion process on the orbit space G/H .

In these examples, a geometric reduction method is used, see also [21, 78].

3.4 Diffusion Homogenisation Theory

The models in [2] and [4] above can be reduced to random ODEs with a random
right hand sides. The effective dynamic theory falls into the diffusive homogenisation
theory. The first example also falls within this theory when the perturbation vector
field k is again a Hamiltonian vector field. According to [51], the study of ODEs
with a random right hand side was already considered in an article by Stratonovich
in 1961. See [63, 83].

A diffusive homogenisation theory, in its simplest form, is about a family of
random ordinary differential equation of the form

ẋε
t = 1√

ε
V (xε

t , y
ε
t )
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where V is a function with
∫
V (x, y)μ(dy) = 0 and yt is an ergodic Markov process

or a stationary strong mixing stochastic process, and yε· is distributed as y ·
ε
, with sta-

tionary measure μ. The zero averaging assumption is about the ‘oscillatory property’
on the y process and also restrictions on the functions V , without this xε

t may blow
up as ε → 0 even if V is bounded and smooth. Assuming the square root scaling
is the correct scaling for a non-trivial effective limit, then we expect the effective
dynamics to be a Markov process in which case we employ the martingale method.

Suppose that yt is a Markov process with generator L0, then yε
t is a Markov

process with generator 1
ε
L0 with invariant measure π. To proceed further let F be a

real valued function, then

F(xε
t ) = F(xε

0) + 1√
ε

∑
k

∫ t

0
(DF)xε

s

(
V (xε

s , y
ε
s )

)
ds.

We take xε
0 = x0 for simplicity. Using a semi-martingale decomposition,

∫ t

0
dF((V (xε

s , y
ε
s ))ds = Mε

t + Aε
t ,

it remains to show that

(i) (xε· , ε ∈ (0, 1]) is a relatively compact set of stochastic processes;
(ii) any of its limit point x̄t solves a martingale problem with a generator L̄ which

comes down to show that conditioning on the past;
(iii) the drift part Aε

t converges to the conditional process of
∫ t
0 L̄ f (xs)ds.

If yt is a Markov process with generator L, then the semi-martingale decomposition
comes from solving the Poisson equation:

Lβ(·, y) = dF ◦ V (·, y).

This equation is solvable, for each y, precisely under the center condition on V . Of
course we will need to assume some technical conditions, for example L0 is elliptic
and the state space for y is compact. Then one applies the Itô formula to obtain:

β(xε
t , y

ε
t ) = β(x0, y0) + 1√

ε

∫ t

0
Dxβ

(
V (xε

s , y s
ε
)
)
ds + 1

ε

∫ t

0
Lyβ(xε

s , y s
ε
)ds + N ε

t

= β(x0, y0) + 1√
ε

∫ t

0
Dxβ

(
V (xε

s , y s
ε
)
)
ds + 1

ε

∫ t

0
dF(V (xε

s , y s
ε
))ds + N ε

t .

the subscript y inLy indicates applying the operator to the second variable y, and sim-
ilarly Dxβ indicates differentiation in thefirst variable.Also, N ε

t = ∫ t
0 Dyβ(xε

s , y
ε
s ))d

{yε
s }, where {yε

s } denotes the martingale part of yε, is a local martingale. This means
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F(xε
t ) = F(xε

0) + √
ε
(
β(xε

t , y
ε
t ) − β(x0, y0)

) −
∫ t

0
Dxβ

(
V (xε

s , y s
ε
)
)
ds − N ε

t .

(3.7)

This identity can now be used to show {xε, ε ∈ (0, 1]} is tight. Let us examine
the terms in the above equation. We expect that that

√
ε
(
β(xε

t , y
ε
t ) − β(x0, y0)

)
is

negligible when ε is small and
∫ t
0 Dxβ

(
V (xε

s , y s
ε
)
)
ds converges if xε converges as

a process. Indeed if V does not depend on x , the ergodic assumption will imply that∫ t
0 Dxβ

(
V (xε

s , y s
ε
)
)
ds converges to the spatial average

∫
V (y)π(dy). Let us define

L̄ =
∫

Dxβ(V (x, y))π(dy).

It remains to show that any limit xt satisfies that F(xt ) − F(xs) − ∫ L̄F(xs)ds is a
martingale, which can be obtained from (3.7) by ergodic theorems.

If both the x and y-variables taking values in a manifold and V (x, y) =∑N
k=1 Yk(x)Gk(y) where Ḡk = ∫

Gk(y)π(dy) = 0, a diffusive homogenisation the-
orem is proved in [76], from which we extract a simple version and state it below.

Theorem 3.5 [76] Suppose that L0 is a smooth and elliptic operator on a smooth
compact manifold Y with invariant measure π and Gk smooth functions with∫
Y Gkdπ = 0. Let Yi be smooth vector fields on R

N , growing at mostly linearly,
and have bounded derivatives of all order. Consider

ẋε
t = 1√

ε

N∑
k=1

Yk(x
ε
t )Gk(y

ε
t ), xε

0 = x0.

Then, the following statements hold.

(1) As ε → 0, the solution xε converges to a diffusionmeasure μ̄ onanybounded time
intervals. Furthermore for every r < 1

4 , their Wasserstein distance is bounded
above by εr , i.e.

sup
t�T

d(P̂yε
t
ε

, μ̄t ) � ε
1
4 −.

(2) Let β j be the solutions to L0β j = G j , Yiβ j = ∫
G(Yiβ j )dπ, and Pt the Markov

semigroup for

L̄ = −
m∑

i, j=1

Yiβ j Yi (Y j f ),

where Yi F = dF(Yi ). Then, for every F ∈ BC4 and any T ,

sup
t�T

∣∣EF(xε
t ) − Pt F(x0)

∣∣ � ε
√| log ε|(1 + |x0|2) (1 + |F |C4) .
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Remark 3.6 In [76] amore general theorem is provedwithout assuming the unique-
ness of the invariant probability measures for the fast variables. The compactness of
the state space for yt is not important, what we really used is the exponential rate of
convergence of the diffusion at time t to the invariant measure in the total variation
norm.

4 Appendix

Here we give a proof for Lemma 2.10, which is completely analogue to that of [44,
Prop. 4.10], where the theorem is stated for the fractional OU-process, but the proof
is also valid for the processes specified in Lemma 2.10. The proof is added here
for reader’s the convenience. We will however omit lengthy algebraic manipulations
identical to that for the proof of [44, Prop. 4.10], pointing out only where to find
them.

Proof of Lemma 2.10. We write U = Gi and V = G j and denote by Fk the
filtration generated by the fractional Brownian motion defining our fOU process.
For k ∈ N, we define the Fk-adapted processes:

I (k) =
∫ k

k−1
U (ys)ds, J (k) =

∫ k

k−1
V (ys)ds,

Û (k) =
∫ ∞

k−1
E [U (ys)|Fk] ds, V̂ (k) =

∫ ∞

k−1
E [V (ys)|Fk] ds,

Mk =
k∑

l=1

Û (l) − E

[
Û (l − 1)|Fl−1

]
, Nk =

k∑
l=1

V̂ (l) − E

[
V̂ (l − 1)|Fl−1

]
.

In particular, Mk and Nk are Fk adapted L2 martingales. There are the following
useful identities. For k ∈ N

Û (k) = I (k) + E[Û (k + 1) |Fk],
Mk+1 − Mk = I (k) + Û (k + 1) − Û (k)
k∑
j=1

I ( j) =
∫ k

0
U (yr )dr = Mk − Û (k) + Û (1) − M1,

and similarly for J, V̂ and N , where the function U is replaced by V .
In a nutshell, the proof is as follows. Combining Lemma 4.1 below, and using

E(U (ys)V (yr )) = E(U (ys−r )V (y0)), we see that
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ε

∫ t
ε

0

∫ s

0
U (ys)V (yr )drds

= ε

L∑
k=1

(Mk+1 − Mk)Nk + t
∫ ∞

0
E (U (yv)V (y0)) du + Er1(ε) + Er2(ε).

The proof of Lemma 2.10 is then concluded with Lemma 4.2 and the identity

(∫ 1

0

∫ s

0
+

∫ ∞

1

∫ 1

0

)
E (U (ys)V (yr )) drds = −1

2

∫ ∞

0

∫ u−2

u
E (U (yv)V (y0)) dudv

=
∫ ∞

0
E (U (yv)V (y0)) dv.

Henceforth in this section we set L = L(ε) = [ t
ε
].

Lemma 4.1 There exists a function Er1(ε), which converges to zero in probability
as ε → 0, such that

ε

∫ t
ε

0

∫ s

0
U (ys )V (yr )drds = ε

L∑
k=1

I (k)
k−1∑
l=1

J (l) + t
∫ 1

0

∫ s

0
E (U (ys )V (yr )) drds + Er1(ε)

(4.1)

The proof for this follows exactly the same way as that of Lemma 4.13 in [44]
where the proof is for the fractional Ornstein-Uhlenbeck process, but the proof used
only the stationary property and the ergodicity of the process.

Lemma 4.2 The following converges in probability:

lim
ε→0

(
ε

L∑
k=1

I (k)
k−1∑
l=1

J (l) − ε

L∑
k=1

(Mk+1 − Mk)Nk

)
= t

∫ ∞

1

∫ 1

0
E (U (ys)V (yr )) drds.

This lemma can be proved in the same way as that of [44, Lemma 4.14], again
that was for the fractional Ornstein-Uhlenbeck process. The idea is to use the above
identities to write the summation on the left hand side as follows:

ε

⎛
⎝ L∑
k=1

−I (k) V̂ (k) +
L∑

k=1

I (k)(V̂ (1) − N1) −
L∑

k=1

(Û (k + 1) − Û (k))Nk

⎞
⎠ = I ε1 + I ε2 + I ε3 .

To the first term we apply shift invariance and ergodic theorem to obtain

I ε
1 → −t E[I (1)V̂ (1)] = (−t)E

(∫ 1

0
U (yr )dr

∫ ∞

0
V (ys)ds

)
. (4.2)



Rough Homogenisation with Fractional Dynamics 163

Also,

I ε
2 = E

∣∣∣∣∣ε
L∑

k=1

I (k)(V̂ (1) − N1)

∣∣∣∣∣
2

�ε2 E[V̂ (1)]2
∫ L

0

∫ L

0
E[U (yr )U (ys)] ds dr → 0,

Since
∫ L
0

∫ L
0 E[U (yr )U (ys)] ds dr ∼ t

ε
. We then change the order of summation to

obtain the following decomposition

−I ε3 = −ε

L−1∑
j=1

(N j+1 − N j )Û (L + 1) + ε

L−1∑
j=1

(N j+1 − N j ) Û ( j + 1) − ε
(
Û (L + 1) − Û (1)

)
N1

= J ε
1 + J ε

2 + J ε
3 .

By Birkhoff’s ergodic theorem, J ε
1 → 0 a.s. and similarly,

J ε
2 → t E

(
Û (2)(N2 − N1)

)
. (4.3)

Since Û ( j) is bounded in L2(�) by the assumption (for the fractional OU-process,
this assumption is proved to hold),

∣∣J ε
3

∣∣
L2(�)

� ε → 0. This concludes the limit of
the left hand side to be

t E
[
Û (2)(N2 − N1) − I (1)V̂ (1)

]
, (4.4)

which we need to rewrite. Firstly,

(N2 − N1) = V̂ (2) − V̂ (1) +
∫ 1

0
V (ys) ds, I (1) = Û (1) − E[Û (2)|F1].

Secondly,

E

(
Û (2)(N2 − N1) − I (1)V̂ (1)

)

=
∫ ∞

1

∫ 1

0
E (U (ys)V (yr )) drds + E

(
Û (2)

(
V̂ (2) − V̂ (1)

)
−

(
Û (1) − E[Û (2)|F1]

)
V̂ (1)

)
.

Since V̂ (1) is F1 measurable and by the shift covariance of Û (k)V̂ (k),

E

(
Û (2)

(
V̂ (2) − V̂ (1)

)
−

(
Û (1) − E[Û (2)|F1]

)
V̂ (1)

)
= 0.

This concludes the proof of the lemma.
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Stochastic Geometric Mechanics
with Diffeomorphisms

Darryl D. Holm and Erwin Luesink

Abstract Noether’s celebrated theorem associating symmetry and conservation
laws in classical field theory is adapted to allow for broken symmetry in geometric
mechanics and is shown to play a central role in deriving and understanding the
generation of fluid circulation via the Kelvin-Noether theorem for ideal fluids with
stochastic advection by Lie transport (SALT).

Keywords Noether’s theorem · Geometric mechanics · Diffeomorphisms ·
Reduction by symmetry · Symmetry breaking

1 Noether’s Theorem in Geometric Mechanics

1.1 Euler-Poincaré Reduction

Geometric mechanics deals with group-invariant variational principles. In this set-
ting, Noether’s theorem [23, 24] plays a key role. Given the tangent lift action
G × T M → T M of a Lie group G on the tangent bundle T M of a manifold M1

on which G acts transitively, Noether’s theorem states that each Lie symmetry of a
Lagrangian L : T M → R defined in the action integral S = ∫

L(q, v)dt for Hamil-
ton’s variational principle δS = 0with (q, v) ∈ T M implies a conserved quantity for
the corresponding Euler-Lagrange equations defined on the cotangent bundle T ∗M .
The conserved quantities arising from Noether’s theorem in the case where the con-
figuration manifold M is a Lie group G were studied by Smale, in [26, 27], where

1M is called the configuration manifold in classical mechanics.
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it was shown that the reduction procedure TG → TG \ G � g leads to dynamics
which take place on the dual g∗ of the Lie algebra g. The dynamical variable m ∈ g∗
in the dual Lie algebra is now called the momentum map (Smale called it angular
momentum). In general, the configuration manifold M is not a Lie group. However,
when a Lie group G acts transitively on a configuration manifold M the proof of
Noether’s theorem induces a cotangent-lift momentum map J : T ∗M → g∗. The
momentum map induced this way is an infinitesimally equivariant Poisson map tak-
ing functions on the cotangent bundle T ∗M of M to the dual Lie algebra g∗ of the Lie
group G. The momentum map J : T ∗M → g∗ is equivariant and Poisson, even if G
is not a Lie symmetry of the Lagrangian in Hamilton’s principle. Momentum maps
naturally lead from the Lagrangian side to the Hamiltonian side. The Hamiltonian
dynamics on T ∗M involves symplectic transformations. However, as we shall dis-
cuss below, for the class of Hamiltonians which can be defined as H ◦ J : g∗ → R,
the momentum map induces Euler-Poincaré motion on the Lagrangian side and Lie-
Poisson motion on the Hamiltonian side. To illustrate these remarks, we return to the
situation in which the configuration manifold, M , is a Lie group, G.

For hyperregular Lagrangians, the Legendre transform to the Hamiltonian side
is invertible and one may reconstruct the solution on G from its representation on
T ∗G \ G � g∗. In that case, solving the equations describing the evolution of the
momentum map on the dual Lie algebra g∗ is equivalent to solving the equations
on the cotangent bundle T ∗G when the configuration manifold is G. When the Lie
group G acts transitively, freely and properly on the configuration manifold M , then
one may reconstruct the solution on M from its representation on T ∗G \ G � g∗.
The last statement is proven for finite-dimensional Lie groups G in, e.g., [1].

The Lie-group reduced equations defined on the dual Lie algebra g∗ via Smale’s
procedure of reduction by symmetry T ∗G \ G � g∗ are called Euler-Poincaré equa-
tions after [25]. Provided the Lagrangian is hyperregular, the Euler-Poincaré reduc-
tion procedure can be expressed in terms of the cube of linked commutative diagrams
shown in Fig. 1.

To summarise the notation in Fig. 1, G denotes the configuration manifold which
is assumed to be isomorphic to a Lie group, TG is the tangent bundle, T ∗G is the
cotangent bundle, TG \ G � g is the Lie algebra and T ∗G \ G � g∗ is the dual of
the Lie algebra. The Lagrangian is a functional L : TG → R and the Hamiltonian is
a functional H : T ∗G → R. Euler-Poincaré reduction takes advantage of Lie group
symmetries to transform the Lagrangian and Hamiltonian into group-invariant vari-
ables, which leads to a reduced Lagrangian � : g → R and a reduced Hamiltonian
� : g∗ → R. The diagram comprising the face of the cube involving these func-
tionals in Fig. 1 commutes if the Legendre transform is a diffeomorphism. This is
guaranteed if the Lagrangian or Hamiltonian is hyperregular. The Euler-Lagrange
equations and Hamilton’s equations are related via a change of variables, which also
holds for the Euler-Poincaré equations and the Lie-Poisson equations. Many finite
dimensional mechanical systems may be described naturally in this framework. The
classic example is the rotating rigid body, discussed from the viewpoint of symmetry
reduction by Poincaré in [25]. In his 1901 paper, Poincaré also raised the issue of
symmetry breaking, by introducing the vertical acceleration of gravity, which breaks
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the SO(3) symmetry for free rotation and restricts it to SO(2) for rotations about
the vertical axis.

Stochasticity may also be included in the framework of Euler-Poincaré reduction
by symmetry. The first attempt to include noise consistently in finite-dimensional
symplecticHamiltonianmechanicswas by [5] and reduction by symmetry of stochas-
tic systems was studied by [21].

Plan of the paper. In the present work, we will review Euler-Poincaré reduction
of stochastic infinite dimensional variational systems with symmetry breaking. The
infinite dimensional case is interesting because it is the natural setting for fluid
dynamics, quantum mechanics and elasticity. The foundations of the finite dimen-
sional stochastic geometric mechanics are established in [12]. We will explore the
infinite dimensional case in context of fluid dynamics, where symmetry under the
smooth invertible maps of the flow domain is broken by the spatial dependence of
the initial mass density.

1.2 Sobolev Class Diffeomorphisms

Consider an n-dimensional compact and oriented smooth manifold M , equipped
with a Riemannian metric 〈 · , · 〉. This will be the spatial domain of flow and X ∈ M
will denote the initial position of any given fluid particle. The manifold M is acted
upon by a group of Sobolev class diffeomorphisms. In [13] it is shown that the space
of C∞ diffeomorphisms, defined byD = {g ∈ C∞(M, M)| g is bijective and g−1 ∈
C∞(M, M)}, is not the convenient setting to study fluid dynamics, but that one
should use Ds = {g ∈ Hs(M, M)| g is bijective and g−1 ∈ Hs(M, M)}, the space
of Sobolev class diffeomorphisms with s weak derivatives. The reason for this choice

L : TG → R H : T ∗G → R

Euler-Lagrange eqns Hamilton’s eqns

� : g → R � : g∗ → R

Euler-Poincaré eqns Lie-Poisson eqns

Legendre transform

Legendre transform

Fig. 1 The cube of commutative diagrams for geometric mechanics on Lie groups. Euler-Poincaré
reduction (on the left side) and Lie-Poisson reduction (on the right side) are both indicated by the
arrows pointing down. The diagrams are all commutative, provided the Legendre transformation
and reduced Legendre transformation are both invertible
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is that the smooth diffeomorphisms constitute a Fréchet manifold for which there is
no inverse or implicit function theorem and no general solution theorem for ordi-
nary differential equations. Each of these latter features would prohibit the study of
geodesics.

The space of Sobolev class diffeomorphisms is both a Hilbert manifold and a
topological group if s > n/2 + 1, as was shown by [14]. The Hilbert manifold struc-
ture implies the existence of function inverses and the implicit function theorem, as
well as the existence of a general solution theorem for ordinary differential equa-
tions. This additional structure also implies that one can construct the tangent space
ofDs in the usual way and study geodesics. The spaceDs is the configuration space
for continuum mechanics and each g ∈ Ds is called a configuration. A fluid trajec-
tory starting from X ∈ M at time t = 0 is given by x(t) = gt (X) = g(X, t), with
Ds 
 g : M × R

+ → M being a continuous one-parameter subgroup of Ds . In the
deterministic case, computing the time derivative of this one-parameter subgroup
gives rise to the reconstruction equation, given by

∂

∂t
gt (X) = u(gt (X), t), (1)

where ut ( · ) = u( · , t) ∈ Xs is a time dependent vector field with flow gt ( · ) =
g( · , t). The initial data is given by g(X, 0) = X . Here Xs = Hs(T M) denotes the
space of Sobolev class vector fields on M , which is also the Lie algebra associated
to the Sobolev class diffeomorphisms.

1.3 Stochastic Advection by Lie Transport (SALT)

In the setting of stochastic advection by Lie transport (SALT), which was intro-
duced by [16], the deterministic reconstruction equation in (1) is replaced by the
semimartingale

dg(X, t) = u(gt (X), t)dt +
M∑

i=1

ξi (gt (X)) ◦ dWi
t , (2)

where the symbol ◦ means that the stochastic integral is taken in the Stratonovich
sense. The initial data is given by g(X, 0) = X . TheWi

t are independent, identically
distributed Brownian motions, defined with respect to the standard stochastic basis
(�,F , (Ft )t≥0, P). Such a noise was shown to arise from a multi-time homogenisa-
tion argument in [10]. The ξi ( · ) ∈ Xs are called data vector fields and are prescribed.
These data vector fields represent the effects of unresolved degrees of freedom on the
resolved scales of fluid motion and account for unrepresented processes. They are
determined by applying empirical orthogonal function analysis to appropriate numer-
ical and/or observational data. For instance, for an application to the two dimensional
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Euler equations for an ideal fluid, see [8] and for an application to a two-layer quasi-
geostrophic model, see [7]. Stochastic models enable the use of a variety of methods
in data assimilation, which are discussed in [9]. It is not difficult to make sense of (1),
but understanding (2) is more complicated. In [4], a stochastic chain rule is shown
to exist. This stochastic chain rule is called the Kunita-Itô-Wentzell (KIW) formula
and helps interpret the semimartingale in (2). The KIW formula will also be used
later to prove the stochastic Kelvin circulation theorem. First, however, the spaceDs

needs to be given more structure.
The spaceDs inherits aweak Riemannian structure from the underlying manifold

M in a natural way. For g ∈ Ds and V,W ∈ TgDs , one can define the following
bilinear form

(V,W ) =
∫

M
〈(V (X),W (X)〉g(X)μ(dX), (3)

where μ is the volume form on M induced by the metric. The Riemannian structure
induced by (3) is weak because the topology is of type L2, which is strictly weaker
than the Hs topology. This bilinear form is a linear functional on the Hilbert space
TgDs and can be used to define the dual space T ∗

g D
s . The pairing between V ∈ TgDs

and α ∈ T ∗
g D

s is given by

〈α, V 〉 =
∫

M
α(X) · V (X). (4)

Hence the metric on M and the volume form μ(dX) can be used to construct the
isomorphism between TDs and T ∗Ds as V (X) �→ α(X) = V �(X)μ(dX), where
� : T M → T ∗M is one of the musical isomorphisms that are induced by the metric
on M . The group Ds is not a Lie group; since right multiplication is smooth, but
left multiplication is only continuous. HenceDs is a topological group with a weak
Riemannian structure. In general, these properties are not sufficient to guarantee
the existence of an exponential map. However, [13] showed that an exponential
map can exist in many important cases. In particular, they showed that the geodesic
spray associated to (3) (with and without forcing) is smooth.2 The smoothness of the
geodesic spray persists even though Hs diffeomorphisms are considered rather than
smooth diffeomorphisms. Combined with the existence of an exponential map, the
smoothness property implies a regular interpretation of the Euler-Poincaré equations
onDs , provided that one uses right translations and right representations of the group
on itself and its Lie algebra, as shown in [17]. However, due to the presence of the
volume formμ(dm), the bilinear form (3) is not right-invariant under the action of the
entire Hs diffeomorphism group, although there is right-invariance under the action
of the isotropy subgroup Ds

μ = {g ∈ Ds | g∗μ = μ}. Since this subgroup is a proper
subgroup, as it is smaller than Ds itself. Thus, one speaks of symmetry breaking.

In deriving the equations of ideal deterministic fluid dynamics, one needs to keep
track of the volume form as well. The appropriate mathematical setting for this is an

2 The geodesic spray is the vector field whose integral curves are the geodesics.
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outer semidirect product group. Thismeans that one constructs a new group from two
given groups with a particular type of group operation. For continuum mechanics,
the ingredients are Ds and V ∗, where V ∗ is a vector space of tensor fields. This
vector space is the space of advected quantities and it will always contain at least
the volume form μ.

Definition 1.1 (Advected quantity) A fluid variable is said to be advected, if it keeps
its value along Lagrangian particle trajectories. Advected quantities are sometimes
called tracers, because the evolution histories of scalar advected quantities with dif-
ferent initial values (labels) trace out the Lagrangian particle trajectories of each
label, or initial value, via the push-forward of the full diffeomorphism group, i.e.,
at = gt ∗a0 = a0g−1

t , where gt is a time-dependent curve on the manifold of diffeo-
morphisms that represents the fluid flow.

Remark 1 (Advected quantities as order parameters) When several advected quan-
tities are involved, the space V ∗ is the direct sum of several vector spaces, where
each summand space hosts a different advected quantity. In general, each addi-
tional advected quantity decreases the dimension of the isotropy subgroup. For
example, consider an ideal deterministic fluid with a buoyancy variable b, then the
Lagrangian corresponding to the model will depend on μ and b in a parametric
manner. This Lagrangian will be right invariant under the action of the isotropy
subgroup Ds

μ,b = {g ∈ Ds | g∗μ = μ and g∗b = b}. Hence, advected quantities are
order parameters and each additional order parameter breaks more symmetry. For
the sake of notation, one usually writes Ds

a0 for the isotropy subgroup, no matter
how many advected quantities there are. One then uses a to represent all advected
quantities and a0 to denote the initial value of the advected quantities.

1.4 Semidirect Product Group Adjoint and Coadjoint Actions

The semidirect product group action is constructed in the following way. The repre-
sentation ofDs on a vector space V is by push-forward, which is a left representation,
as shown by [22]. The representation of the group on itself and on its Lie algebra
is a right representation. In terms of analysis, this means that all representations are
smooth and no derivatives need to be counted. The group action of the semidirect
product group is given by

• : (Ds × V ) × (Ds × V ) → (Ds × V )

(g1, v1) • (g2, v2) := (g1 ◦ g2, v2 + (g2)∗v1)
(5)

with g1, g2 ∈ Ds and v1, v2 ∈ V . The semidirect product group is often denoted as
Ds�V = (Ds × V, •). In the group action above, (g2)∗v1 denotes the push-forward
of v1 by g2 and ◦ denotes composition. Note that the group affects both slots in (5),
but the vector space only appears in the second slot. The identity element of the
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semidirect product group is (e, 0) where e ∈ Ds is the identity diffeomorphism and
0 ∈ V is the zero vector. An inverse element is given by

(g, v)−1 = (g−1,−(g−1)∗v) = (g−1,−g∗v), (6)

where g∗v denotes the pull-back of v by g. To understand how reduction works for
semidirect products, it is helpful to know how the group acts on its Lie algebra and
on the dual of its Lie algebra. Duality will be defined with respect to the sum of
the pairing (4) and the dual linear transformation [ · ]∗ on V . This pairing induces
another pairing in a natural way on Xs × V . Consider two at least C1 one parameter
subgroups (gt , vt ), (̃gε, ṽε) ∈ Ds × V . Using these one parameter subgroups, one
can compute the inner automorphism, or adjoint action of the group on itself. This
adjoint action is defined by conjugation

AD : (Ds × V ) × (Ds × V ) → (Ds × V ),

AD(gt ,vt )(̃gε, ṽε) := (gt , vt ) • (̃gε, ṽε) • (gt , vt )
−1

= (
gt ◦ g̃ε ◦ g−1

t , g∗
t (̃vε − vt + g̃ε∗vt )

)
.

(7)

To see how the group acts on its Lie algebra, one can compute the derivative with
respect to ε and evaluate at ε = 0 in the adjoint action of the group on itself. Let
Xs 
 ũ = d

dε
|ε=0g̃ε and V 
 b̃ = d

dε
|ε=0ṽε . This choice for a vector field is guided by

the deterministic reconstruction equation in (1). For any tensor Sε ∈ T r
s (M) whose

dependence on ε is at least C1 it holds that

d

dε
g̃ε∗Sε = g̃ε∗

(
d

dε
Sε − Lũ Sε

)

. (8)

Important here is that the Lie derivative does not commute with pull-backs and push-
forwards that depend on parameters, see [1]. The adjoint action of the group on its
Lie algebra can be computed as

Ad : (Ds × V ) × (Xs × V ) → (Xs × V ),

Ad(gt ,vt )(̃u, b̃) := d

dε

∣
∣
∣
ε=0

AD(gt ,vt )(̃gε, ṽε)

= (gt∗ũ, g∗
t b̃ − g∗

t Lũvt ).

(9)

By means of the pairing on Xs × V , one can compute the dual action to the adjoint
action (9). This is called the coadjoint action of the group on the dual of its Lie
algebra. Let (m̃, ã) ∈ (Xs × V )∗, then the coadjoint action is given by

Ad∗ : (Ds × V ) × (Xs × V )∗ → (Xs × V )∗,

〈Ad∗
(g−1

t ,−g−1
t vt )

(m̃, ã), (̃u, b̃)〉 := 〈(m̃, ã),Ad(gt ,vt )(̃u, b̃)〉,
Ad∗

(g−1
t ,−g−1

t vt )
(m̃, ã) = (g∗

t m̃ + vt  gt∗ã, gt∗ã).

(10)
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Definition 1.2 (The diamond operator) The coadjoint action (10) features the dia-
mond operator, which is defined for a ∈ V ∗, u ∈ Xs and fixed v ∈ V as

〈v  a, u〉Xs∗×Xs := −〈a,Luv〉V ∗×V . (11)

Note that the diamond operator is the dual of the Lie derivative regarded as a map
L( · )v : Xs → V , hence v  ( · ) : V ∗ → Xs∗. The diamond operator shows how an
element from the dual of the vector space acts on the dual of the Lie algebra.

When evaluated at t = 0, the t-derivatives of Ad in (9) and Ad∗ in (10) define,
respectively, the adjoint and coadjoint actions of the Lie algebra on itself and on its
dual. Denote by Xs 
 u = d

dt |t=0gt and V 
 b = d
dt |t=0vt . The adjoint action of the

Lie algebra on itself is

ad : (Xs × V ) × (Xs × V ) → (Xs × V ),

ad(u,b)(̃u, b̃) := d

dt

∣
∣
∣
t=0

Ad(gt ,vt )(̃u, b̃),

ad(u,b)(̃u, b̃) = (−Luũ,Lub̃ − Lũb)

= (−[u, ũ],Lub̃ − Lũb),

(12)

where the bracket [ · , · ] in (12) is the commutator of vector fields. The minus sign
is due to fact that group acts on itself from the right. The coadjoint action of the Lie
algebra on its dual can be obtained by computing the dual to (12) or by taking the
derivative with respect to t and evaluate at t = 0 in (10). Either way, one arrives at

ad∗ : (Xs × V ) × (Xs × V )∗ → (Xs × V )∗,

〈ad∗
(u,b)(m̃, ã), (̃u, b̃)〉 := 〈(m̃, ã), ad(u,b)(̃u, b̃)〉,

ad∗
(u,b)(m̃, ã) = (Lum̃ + b  ã,−Luã),

(13)

in which (12) implies the last line in (13). Alternatively, one can also obtain (13) by
taking the derivative with respect to t in (10) and evaluate at t = 0.

Remark 2 (Coadjoint action and the diamond operator) The coadjoint action is an
important operator in geometric mechanics and representation theory. It was shown
by [18] and in further work by [20, 28] that the coadjoint orbits of a Lie group
G have the structure of symplectic manifolds and are connected with Hamiltonian
mechanics. See [19] for a review. The computations of the adjoint and coadjoint
actions for the semidirect product group is valuable for fluid mechanics, as they
introduce the two fundamental operators that appear in the equations of motion.
The Lie derivative is responsible for transport of tensors along vector fields and
its dual action given by the diamond operator encodes the symmetry breaking. In
particular, the diamond operator introduces the effect of symmetry breaking into the
Euler-Poincaré equations of motion.
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2 Deterministic Geometric Fluid Dynamics

With the adjoint and coadjoint actions defined, one can derive continuum mechanics
equations with advected quantities by using symmetry reduction. Euler-Poincaré
reduction for a semidirect product group Ds × V as developed in [17] is sketched
below in Fig. 2.

As shown by comparison of Fig. 2with Fig. 1, several new features arise in semidi-
rect product Lie group reduction which differ fromEuler-Poincaré reduction by sym-
metry when the configuration space itself is a Lie group. These differences can be
conveniently explained by introducing the physical concept of an order parameter.
As discussed earlier, the order parameters in continuum mechanics are the elements
of V ∗ which are advected by the action of the diffeomorphism groupDs . The advec-
tion is defined simply as the semidirect product action on the elements of V ∗. The
introduction of each additional advected state variable (or, order parameter) into the
physical problem further breaks the original symmetry Ds . The remaining symme-
try of the Lagrangian in Hamilton’s principle is the isotropy subgroup Ds

a0 of the
initial conditions, a0, for the entire set of advected quantities, a. The action of the
diffeomorphism group Ds on these initial conditions then describes their advection
as the action of Ds on its coset space Ds \ Ds

a0 = V ∗. Once the initial values of
the order parameters, a0, have been set, one must still define a Legendre transform
from the Lagrangian formulation into the Hamiltonian formulation and vice versa.
The Legendre transform in the setting of semidirect products is a partial Legen-
dre transform, since it transforms between TDs and T ∗Ds or TDs \ Ds

a0 � Xs and
T ∗Ds \ Ds

a0 � Xs∗ only after having fixed the value a0 of the order parameters, which
live in V ∗. This coset reduction is what Fig. 2 shows. The remaining invariance of a
functional under the action of the isotropy subgroup is called its particle relabelling
symmetry.

Our exploration continues on the Lagrangian side in Fig. 2. Consider a fluid
Lagrangian L : TDs × V ∗ → R. By fixing the value of a0 ∈ V ∗, one can construct
La0 : TDs → R. If this Lagrangian is right invariant under the action of the isotropy

L : TDs × V ∗ → R H : T ∗(Ds × V ) → R

Euler-Lagrange eqns Hamilton’s eqns

� : Xs × V ∗ → R � : (Xs × V )∗ → R

Euler-Poincaré eqns Lie-Poisson eqns

Legendre transform

Legendre transform

Fig. 2 The cube of continuum mechanics in the semidirect product group setting. Reduction is
indicated by the arrows pointing down
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subgroup Ds
a0 , then one can construct

L

(
d

dt
g ◦ g−1, e, a0

)

= La0

(
d

dt
g ◦ g−1, e

)

= �a0

(
d

dt
g ◦ g−1

)

= �

(
d

dt
g ◦ g−1, g∗a0

)

.

(14)

Here ◦ means composition of functions. The same procedure applies to the Hamil-
tonian. Since the coadjoint action is known, it is straightforward to formulate the
Lie-Poisson equations. The details of Hamiltonian semidirect product reduction and
also more information on the Lagrangian semidirect product reduction can be found
in [17].

The coadjoint action of the Lie algebra on its dual is also required for the
Lagrangian semidirect product reduction. One can use the deterministic reconstruc-
tion equation to see that the argument of the Lagrangians in (14) is

d

dt
g ◦ g−1 = u. (15)

Using this information, one can integrate the Lagrangian in time to construct the
action functional. By requiring the variational derivative of the action functional to
vanish, one can compute the equations of motion. However, due to the removal of
symmetries, the variations are no longer free.

3 Stochastic Geometric Fluid Dynamics

In the situation where noise is present, that is, when the reconstruction equation is
(2), the Euler-Poincaré variations become stochastic. Consider g : R

2 → Ds with
gt,ε = g(t, ε) to be a two parameter subgroup with smooth dependence on ε, but
only continuous dependence on t . Let us denote

dχt,ε(X) = (dgt,ε ◦ gt,ε)(X) = ut,ε(X)dt +
N∑

i=1

ξi (X) ◦ dWi
t

and

vt,ε(X) = (
∂

∂ε
gt,ε ◦ gt,ε)(X) .

When a ◦ symbol is followed by dWt it means Stratonovich integration and in every
other context the ◦ symbol is used to denote composition. Note that the data vector
fields ξi are prescribed and hence will not have a dependence on ε.
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In order to compute with these stochastic subgroups and their associated vector
fields, one needs a stochastic Lie chain rule. The Kunita-Itô-Wentzell (KIW) formula
is the stochastic generalisation of the Lie chain rule (8). A proof of the KIW formula
is given in [4] for differential k-forms and vector fields. That proof includes the
technical details on regularity that will be omitted here. In the KIW formula, the
k-form is allowed to be a semimartingale itself. Let K be a continuous adapted
semimartingale that takes values in the k-forms and satisfies

Kt = K0 +
∫ t

0
Gsds +

N∑

i=1

∫ t

0
Hi s ◦ dBi

s , (16)

where the Bi
t are independent, identically distributed Brownian motions. The drift

of the semimartingale K is determined by G and the diffusion by Hi , both of which
are k-form valued continuous adapted semimartingales with suitable regularity. Let
gt satisfy (2), then [4] shows that the following holds

d(g∗
t Kt ) = g∗

t

(
dKt + Lut Kt dt + Lξi Kt ◦ dWi

t

)
. (17)

Equation (16) helps to interpret the dKt term in the KIW formula (17). This for-
mula will be particularly useful in computing the variations of the variables in the
Lagrangian. To compute these variations, one needs the variational derivative.
The variational derivative. The variational derivative of a functional F : B → R,
where B is a Banach space, is denoted δF/δρ with ρ ∈ B. The variational derivative
can be defined by the first variation of the functional

δF[ρ] := d

dε

∣
∣
∣
ε=0

F[ρ + εδρ] =
∫

δF

δρ
(x)δρ(x) dx =

〈
δF

δρ
, δρ

〉

. (18)

In the definition above, ε ∈ R is a parameter, δρ ∈ B is an arbitrary function and
the first variation can be understood as a Fréchet derivative. A precise and rigorous
definition can be found in [15]. With the definition of the functional derivative in
place, the following lemma can be formulated.

Lemma 3 With the notation as above, the variations of u and any advected quantity
a are given by

δu(t) = dv(t) + [dχt , v(t)], δa(t) = −Lv(t)a(t), (19)

where v(t) ∈ Xs is arbitrary.

Proof The proof of the variation of a(t) is a direct application of the Kunita-Itô-
Wentzell formula to a(t, ε) = gt,ε∗a0. Note that the data vector fields ξi are prescribed
and do not depend on ε. Denote by xt,ε = gt,ε(X). Then one has
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dgt,ε(X) = dxt,ε = ut,ε(xt,ε) dt +
N∑

i=1

ξi (xt,ε) ◦ dWi
t =: dχt,ε(xt,ε). (20)

The vector field associated to the ε-dependence of the two parameter subgroup is
given by

∂

∂ε
gt,ε = ∂

∂ε
xt,ε = vt,ε(xt,ε). (21)

Computing the derivative with respect to ε of (20) gives

∂

∂ε
dxt,ε = ∂

∂ε

(
dχt,ε(xt,ε)

)

=
(

∂

∂ε
ut,ε + vt,ε · ∂

∂xt,ε
dχt,ε

)

(xt,ε),
(22)

where the independence of the data vector fields ξi on ε was used. Taking the differ-
ential with respect to time of (21) gives

d
(

∂

∂ε
xt,ε

)

= d
(
vt,ε(xt,ε)

)

=
(

dvt,ε(xt,ε) + dχt,ε · ∂

∂xt,ε
vt,ε

)

(xt,ε).

(23)

One can then evaluate at ε = 0 and call upon equality of cross derivative-differential
to obtain the result by subtracting. Since gt,ε depends on t in a C0 manner, the
integral representation is required. The particle relabelling symmetry permits one to
stop writing the explicit dependence on space,

δu(t) dt = dv(t) + [dχt , v(t)]. (24)

This completes the proof of formula (19) for the variation of u(t).

The notation in (20) needs careful explanation, because it comprises both a stochastic
differential equation and a definition. The symbol dχt,ε is used to define a vector
field, whereas dxt,ε denotes a stochastic differential equation. This lemma makes the
presentation of the stochastic Euler-Poincaré theorem particularly simple.

Theorem 4 (Stochastic Euler-Poincaré) With the notation as above, the following
are equivalent.

(i) The constrained variational principle

δ

∫ t2

t1

�(u, a) dt = 0 (25)

holds on Xs × V ∗, using variations δu and δa of the form
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δu = dv + [dχt , v], δa = −Lva, (26)

where v(t) ∈ Xs is arbitrary and vanishes at the endpoints in time for arbitrary
times t1, t2.

(ii) The stochastic Euler-Poincaré equations hold on Xs × V ∗

d
δ�

δu
+ Ldχt

δ�

δu
= δ�

δa
 a dt, (27)

and the advection equation

da + Ldχt a = 0. (28)

Proof Using integration by parts and the endpoint conditions v(t1) = 0 = v(t2), the
variation can be computed to be

δ

∫ t2

t1

�(u, a) dt =
∫ t2

t1

〈
δ�

δu
, δu

〉

+
〈
δ�

δa
, δa

〉

dt

=
∫ t2

t1

〈
δ�

δu
,dv + [dχt , v]

〉

+
〈
δ�

δa
dt,−Lva

〉

=
∫ t2

t1

〈

−d
δ�

δu
− Ldχt

δ�

δu
+ δ�

δa
 a dt, v

〉

= 0 .

(29)

Since the vector field v is arbitrary, one obtains the stochastic Euler-Poincaré equa-
tions. Finally, the advection equation (28) follows by applying the KIW formula to
a(t) = gt∗a0. �

Remark 5 The stochastic Euler-Poincaré theorem is equivalent to the version pre-
sented in [16], which uses stochastic Clebsch constraints. In [16] one can also find
an investigation the Itô formulation of the stochastic Euler-Poincaré equation.

Stochastic Lie-Poisson formulation. The stochastic Euler-Poincaré equations have
an equivalent stochastic Lie-Poisson formulation. To obtain the Lie-Poisson formu-
lation, one must Legendre transform the reduced Lagrangian. The Legendre trans-
formation in the presence of stochasticity becomes itself stochastic in the following
way

m := δ�

δu
, �(m, a) dt +

N∑

i=1

〈m, ξi 〉 ◦ dWi
t = 〈m,dχt 〉 − �(u, a) dt. (30)

The stochasticity enters the Legendre transformation because the momentummapm
is coupled to the stochastic vector field dχt . The left hand side of the transformation
determines the Hamiltonian, which is a semimartingale. The underlying semidirect
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product group structure has not changed, it is still the Hs diffeomorphisms with a
vector space, but the Hamiltonian has become a semimartingale. This implies that
in the stochastic case the energy is not conserved, because Hamiltonian depends
on time explicitly. Note that (30) emphasises that the Lagrangian does not feature
stochasticity in this framework. Instead, the Lagrangian represents the physics in
the problem, which does not change. The stochasticity is supposed to account for
the difference between observed data and deterministic modelling. The stochastic
Lie-Poisson equations are given by

d(m, a) = −ad∗
( δ�

δm , δ�

δa )
(m, a) dt −

N∑

i=1

ad∗
(ξi ,0)(m, a) ◦ dWi

t , (31)

where ad∗ is given in (13). Since both the drift and the diffusion part use the same
operator in (31), the stochastic Lie-Poisson equations preserve the same family of
Casimirs (or integral conserved quantities) as the deterministic Lie-Poisson equa-
tions. The stochastic Euler-Poincaré theorem has a stochastic Kelvin-Noether circu-
lation theorem as a corollary.

Let the manifold M be a submanifold of R
n with coordinates X . Then the volume

form can be expressed with respect to a density. That is, μ(dn X) = ρ0(X)dn X . By
pushing forward ρ0 along the stochastic flow gt , one obtains ρ. Let Cs be the space
of loops γ : S1 → Ds , which is acted upon from the left by Ds . Given an element
m ∈ Xs , one can obtain a 1-form by formally dividing m by the density ρ.

The circulation map K : Cs × V ∗ → Xs∗∗ is defined by

〈K(γ, a),m〉 =
∮

γ

m

ρ
. (32)

Given a Lagrangian � : Xs × V ∗ → R, the Kelvin-Noether quantity is defined by

I (γ, u, a) :=
∮

γ

1

ρ

δ�

δu
. (33)

One can now formulate the following stochastic Kelvin-Noether circulation theorem.

Theorem 6 (Stochastic Kelvin-Noether) Let ut = u(t) satisfy the stochastic Euler-
Poincaré equation (27) and at = a(t) the stochastic advection equation (28). Let gt
be the flow associated to the vector field dχt . That is, dχt = dgt ◦ g−1

t = ut dt +
∑N

i=1 ξi ◦ dWi
t . Let γ0 ∈ Cs be a loop. Denote by γt = gt ◦ γ0 and define the Kelvin-

Noether quantity I (t) := I (γt , ut , at ). Then

dI (t) =
∮

γt

1

ρ

δ�

δa
 a dt . (34)
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Proof The statement of the stochastic Kelvin-Noether circulation theorem involves
a loop that is moving with the stochastic flow. One can transform to stationary
coordinates by pulling back the flow to the initial condition. This pull-back yields

I (t) =
∮

γt

1

ρ

δ�

δu
=

∮

γ0

g∗
t

(
1

ρ

δ�

δu

)

=
∮

γ0

1

ρ0
g∗
t

(
δ�

δu

)

. (35)

An application of the Kunita-Itô-Wentzell formula (17) leads to

dI (t) =
∮

γ0

1

ρ0
g∗
t

(

d
δ�

δu
+ Ldχt

δ�

δu

)

=
∮

γ0

1

ρ0
g∗
t

(
δ�

δa
 a

)

dt, (36)

since u satisfies the stochastic Euler-Poincaré theorem. Transforming back to the
moving coordinates by pushing forward with gt yields the final result.

Thus, Theorem 6 explains how particle relabelling symmetry gives rise to the
Kelvin-Noether circulation theorem via Noether’s theorem. When the only advected
quantity present is the mass density, the loop integral of the diamond terms vanishes.
This means that circulation is conserved according to Noether’s theorem for an
incompressible fluid, or for a barotropically compressible fluid. The presence of
other advected quantities breaks the symmetry further and introduces the diamond
terms which generate circulation, as one can see in the Kelvin-Noether circulation
theorem in equation (34). Consequently, the symmetry breaking due to additional
order parameters can provide additional mechanisms for the generation of Kelvin-
Noether circulation in ideal fluid dynamics.

Outlook.Stochastic geometricmechanics is an active field ofmathematicswhich has
recently established its utility for a broad range of applications in science. Basically,
everything that can be done with Hamilton’s principle for deterministic geometric
mechanics can also be made stochastic in the sense of Stratonovich. This is possible
because the variational calculus in Hamilton’s principle requires only the product
rule and chain rule from ordinary calculus. The happy emergence of the new sci-
ence of stochastic geometric mechanics was celebrated with the publication of the
book [2]. This book showcases some of the recent developments in stochastic geo-
metric mechanics. Another collection of recent developments can be found in [6].
An ongoing development is in the direction of rough geometric mechanics, initiated
with a rough version of the Euler-Poincaré theorem in [11]. Remarkably, variational
principles which are driven by geometric rough paths again only require the product
rule and the chain rule. Other directions involve the inclusion of jump processes,
fractional derivatives and non-Markovian processes in geometric mechanics. For
example, recent work by [3] shows that SDEs driven by semimartingales with jumps
have weak symmetries and a corresponding extension of the reduction and recon-
struction technique is discussed.
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McKean Feynman-Kac Probabilistic
Representations of Non-linear Partial
Differential Equations

Lucas Izydorczyk, Nadia Oudjane, and Francesco Russo

Abstract This paper presents a partial state of the art about the topic of representa-
tion of generalized Fokker-Planck Partial Differential Equations (PDEs) by solutions
ofMcKean Feynman-Kac Equations (MFKEs) that generalize the notion ofMcKean
Stochastic Differential Equations (MSDEs). While MSDEs can be related to non-
linear Fokker-Planck PDEs, MFKEs can be related to non-conservative non-linear
PDEs. Motivations come from modeling issues but also from numerical approxima-
tion issues in computing the solution of a PDE, arising for instance in the context of
stochastic control. MFKEs also appear naturally in representing final value problems
related to backward Fokker-Planck equations.
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1 Introduction and Motivations

1.1 General Considerations

The idea of the present article is to focus onmodelswhich have a doublemacroscopic-
microscopic face in the form of perturbation of a so called Fokker-Planck type
equation that we call generalized Fokker-Planck equation. Our ambition is driven by
two main reasons.

1. A modeling reason: the idea is to observe both from a macroscopic-microscopic
point of view phenomena arising from physics, biology, chemistry or complex
systems.

2. A numerical simulation reason: to provide Monte-Carlo suitable algorithms to
approach PDEs.

The target macroscopic Fokker-Planck equation is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u = 1
2

d∑

i, j=1

∂2
i j

(
(σσ�)i, j (t, x, u)u

) − div (b(t, x, u,∇u)u)

+�(t, x, u,∇u)u , for t ∈]0, T ] ,

u(0, ·) = u0,

(1.1)

where u0 is a Borel probability measure σ : [0, T ] × R
d × R → Md,p(R), b :

[0, T ] × R
d × R → R

d , � : [0, T ] × R
d × R × R

d → R and ∇ denotes the gradi-
ent operator. The initial condition in (1.1) means that for every continuous bounded
real function ϕ we have

∫
ϕ(x)u(t, x)dx → ∫

ϕ(x)u0(dx) when t → 0. When u0
admits a density, we denote it by u0. The unknown function u :]0, T ] × R

d → R

is supposed to run in L1(Rd) considered as a subset of the space of finite Radon
measures M(Rd). The idea consists in finding a probabilistic representation via
the solution of a Stochastic Differential Equation (SDE) whose coefficients do not
depend only on time and the position of the particle but also on its probability law.
The target microscopic equation we have in mind is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yt = Y0 + ∫ t
0 σ

(
s, Ys , u(s, Ys)

)
dWs + ∫ t

0 b
(
s, Ys , u(s, Ys)

)
ds

Y0 ∼ u0∫

ϕ(x)u(t, x)dx = E

[

ϕ(Yt ) exp
{ ∫ t

0
�
(
s, Ys , u(s, Ys),∇u(s, Ys)

)
ds

} ]

, for t ∈]0, T ] ,

(1.2)
for any continuous bounded real valued test function ϕ. Sometimes we denominate
the third line equation of (1.2) the linking equation. When � = 0, in Eq. (1.2), the
linking equation simply says that u(t, ·) coincides with the density of the marginal
distribution L(Yt ). In this specific case, Eq. (1.2) reduces to a McKean Stochastic
Differential Equation (MSDE), which is in general an SDE whose coefficients, at
time t , depend, not only on (t,Yt ), but also on the marginal law L(Yt ). With more
general functions�, the role of the linking equation is more intricate since the whole
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history of the process (Ys)0≤s≤t is involved. This fairly general type of equations
will be called McKean Feynman-Kac Equation (MFKE) to emphasize the fact that
u(t, x)dx now corresponds to a non-conservative Feynman-Kac measure.

An interesting feature of MSDEs (which means � = 0) is that the law of the
process Y can often be characterized as the limiting empirical distribution of a large
number of interacting particles, whose dynamics are described by a coupled system
of classical SDEs. When the number of particles grows to infinity, the particles
behave closely to a system of independent copies of Y . This constitutes the so called
propagation of chaos phenomenon, already observed in the literature when the drift
and diffusion coefficients are Lipschitz dependent on the solution marginal law, with
respect to the Wasserstein metric, see e.g. [42, 52, 53, 55, 64]. Propagation of chaos
is a common phenomenon arising in many physical contexts, see for instance [2]
concerning Nelson stochastic mechanics.

When � = 0, Eq. (1.1) is a non-linear Fokker-Planck equation, it is conserva-
tive and it is known that, under mild assumptions, it describes the dynamics of the
marginal probability densities, u(t, ·), of the processY . This correspondence between
PDE (1.1) with MSDE (1.2) and interacting particles has extensive interesting appli-
cations. In physics, biology or economics, it is a way to relate a microscopic model
involving interacting particles to a macroscopic model involving the dynamics of
the underlying density. Numerically, this correspondence motivates Monte-Carlo
approximation schemes for PDEs. In particular, [20] has contributed to develop
stochastic particle methods in the spirit of McKean to provide original numerical
schemes approaching a PDE related to Burgers equation providing also the rate of
convergence.

Below we list some situations of particular interest where such correspondence
holds.

1.2 Some Motivating Examples

Burgers Equation
We fix d = p = 1 and let ν > 0 and u0 be a probability density on R. We consider
two equivalent specific cases of (1.1). The first σ ≡ ν, b ≡ 0, �(t, x, u, z) = z. The
second σ ≡ ν, b(t, x, u) = u

2 ,� = 0. Both instantiations correspond to the viscid
Burgers equation in dimension d = 1, given by

{
∂t u = ν2

2 ∂xxu − u∂xu, (t, x) ∈ [0, T ] × R,

u(0, ·) = u0 .
(1.3)

Generalized Burgers-Huxley Equation
We fix d = p = 1 and let ν > 0 and u0 be a probability density on R. We consider
the particular cases of (1.1) where σ ≡ ν, b(t, x, u) = α un

n+1 , �(t, x, u) = β(1 −
un)(un − γ ), with fixed reals α, β, γ and a non-negative integer n. This instantiation
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corresponds to a natural extension of Burgers equation called Generalized Burgers-
Huxley equation orBurgers-Fisher equationwhich is of great importance to represent
non-linear phenomena in various fields such as biology [3, 56], physiology [43] and
physics [69]. These equations have the particular interest to describe the interaction
between the reaction mechanisms, convection effect, and diffusion transport. Those
are non-linear and non-conservative PDEs of the form

{
∂t u = ν

2∂xxu − αun∂xu + βu(1 − un)(un − γ ), (t, x) ∈ [0, T ] × R,

u(0, ·) = u0.
(1.4)

Fokker-Planck Equation with Terminal Condition
The present example does not properly integrate the framework of (1.1). In terms of
application, we are interested by inverse problems that can be formulated by a PDE
with terminal condition

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u = 1
2

d∑

i, j=1

∂2
i j

(
(σσ t )i, j (t, x)u

) − div (b(t, x)u)

+�(t, x)u , for t ∈]0, T [ ,

u(T, ·) = uT,

(1.5)

where uT is a prescribed probability measure. Solving that equation by analytical
means constitutes a delicate task.Aprobabilistic representationmayhelp for studying
well-posedness or providing numerical schemes.

Backward simulation of diffusions is a subject of active research in various
domains of physical sciences and engineering, as heat conduction [13], material sci-
ence [61] or hydrology [4]. In particular, hydraulic inversion is interested in inverting
a diffusion phenomenon representing the concentration of a pollutant to identify the
pollution source location when the final concentration profile is observed. The prob-
lem is in general ill-posed because either the solution is not unique or the solution
is not stable. For this type of problem, the existence is ensured by the fact that the
observed contaminant has necessarily originated from some place at a given time (as
soon as themodel is correct). To correct the lack ofwell-posedness two regularization
procedures have been proposed in the literature: the first one relies on the notion of
quasi-solution, introduced by Tikhonov [66], the second one on the method of quasi-
reversibility, introduced by Lattes and Lions [45]. Besides well-posedness, a second
crucial issue consists in providing a numerical approximating scheme to the back-
ward diffusion equation. A probabilistic representation of (1.5) via the time-reversal
of a diffusion could show those issues under a new light.

The Stochastic Fokker-Planck with Multiplicative Noise
We fix p = d, σ (t, x, u) = 
(u)I dd , where 
 : R → R and b = � ≡ 0. Typical
examples are the case of classical porous media type equation (resp. fast diffusion
equation), when 
(u) = uq , 1 ≤ q (resp. 0 < q < 1). The (singular) case 
(u) =
γ H(u − ec), H being the Heaviside function and ec a given threshold in R, appears
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in the science of complex systems, more precisely in the so called self-organized
criticality, see e.g. [5, 6, 24].

{
∂t u = γ

2 �(H(u − ec)u)

u(0, ·) = u0.
(1.6)

The phenomenon of self-organized criticality often is described in two scale phases:
a fast dynamics (of avalanch type) described by the PDE (1.6) and a slower motion
of sand storming modeled by the addition of a supplementary stochastic noise
�(t, x;ω). In that case the target macroscopic equation is

{
∂t u = γ

2 �(H(u − ec)u) + �(t, x;ω)u

u(0, ·) = u0,
(1.7)

where �(t, x;ω) is a quenched realization of a space-time colored (ideally white)
noise. The SPDEwill be represented by aMSDE in random environment, see Sect. 6.

1.3 Structure of the Paper

In the rest of the paper, to simplify notations, most of the results are stated in the
one-dimensional setting. The generalization to themulti-dimensional case is straight-
forward.

The paper is organized as follows. Next section presents a brief review of basic
situations where Fokker-Planck equations can be represented by MSDEs which in
turn can be represented by interacting particles systems. Section3, considers the case
of generalized Fokker-Planck equations in the sense of (1.1) with a non-zero term �

allowing to take into account non-conservative PDEs including a large class of semi-
linear PDEs. Section5 highlights the correspondence between MFKEs and MSDEs
with jumps which paves the way to a great variety of numerical approximations
schemes for non-linear PDEs. Section4 is devoted to a particular inverse problem
which consists in modeling backwardly in time the evolution of a Fokker-Planck
equation with a given terminal condition. This problem can be related to a time-
reversed SDE which in turn can be represented by a MSDE. In Sect. 6 we analyze
the well-posedness of generalized Fokker-Planck equation where the term� in (1.1)
may involve an exogenous noise resulting in a stochastic non-linear PDE. Finally, in
Sect. 7, we consider a stochastic control problem for which the associated Hamilton-
Jacobi-Bellman equation can be represented by a MFKE.
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2 McKean Representations of Non-linear Fokker-Planck
Equations

In this section, we recall some standard situations where a Fokker-Planck PDE can
be represented by an SDEwhich in turn can be approached by an interacting particles
system.

2.1 Probabilistic Representation of Linear Fokker-Planck
Equations

Suppose there exists a solution (Yt )t∈[0,T ] (in law) to the SDE

⎧
⎨

⎩

Yt = Y0 +
∫ t

0
σ(s,Ys)dWs +

∫ t

0
b(s,Ys)ds, t ∈ [0, T ],

Y0 ∼ u0 ,

(2.1)

whereW is a real valued Brownian motion on [0, T ] and u0 is a probability measure
on R. A direct application of Itô formula shows that the marginal probability laws
(μ(t, ·) := L(Yt ))t∈[0,T ] generate a distributional solution of the linear Fokker-Planck
PDE ⎧

⎨

⎩

∂tμ = 1

2
∂2
xx (σ

2(t, x)μ) − ∂x (b(t, x)μ)

μ(0, dx) = u0(dx).
(2.2)

This naturally suggests a Monte Carlo algorithm to approximate the above linear
PDE, consisting in simulating N i.i.d. particles (ξ i )i=1,···N with N i.i.d. Brownian
motions (Wi )i=1,···N i.e.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ i
t = ξ i

0 +
∫ t

0
σ(s, ξ i

s )dW
i
s +

∫ t

0
b(s, ξ i

s )ds

ξ i
0 i.i.d. ∼ u0

μN
t = 1

N

N∑

j=1

δ
ξ
j
t
.

(2.3)

Then the law of large numbers provides the convergence of the empirical approxi-
mation μN

t −−−→
N→∞ μ(t, ·), the solution of the Fokker-Planck equation (2.2).



McKean Feynman-Kac Probabilistic Representations … 193

2.2 McKean Probabilistic Representation of Non-linear
Fokker-Planck Equation

We consider the non-linear SDE in the sense of McKean (MSDE)

⎧
⎪⎪⎨

⎪⎪⎩

Yt = Y0 +
∫ t

0
σ
(
s,Ys, (K ∗ μ)(s,Ys)

)
dWs +

∫ t

0
b
(
s,Ys, (K ∗ μ)(s,Ys)

)
ds

Y0 ∼ u0
μ(t, ·) is the probability law of Yt , t ∈ [0, T ],

(2.4)
whose solution is a couple (Y, μ). Here σ, b are Lipschitz, K : R × R → R

denotes a Lipschitz continuous convolution kernel such that (K ∗ μ)(t, y) :=∫
K (y, z)μ(t, dz) for any y ∈ R. We emphasize that this type of regularized depen-

dence of the drift and diffusion coefficients on μ is essentially different (and in
general easier to handle) from a pointwise dependence where the coefficients b or
σ may depend on the value of the marginal density at the current particle position
dμ

dx (s,Ys). This regularized or non-local dependence on the time-marginals μ(t, ·)
is a particular case of the framework when the diffusion and drift coefficients are
Lipschitz with respect to μ(t, ·) according to the the Wasserstein metric.

Again, by Itô formula, given a solution (Y, μ) of (2.4), μ solves the non-local
non-linear PDE

⎧
⎨

⎩

∂tμ = 1

2
∂2
xx

(
σ 2(t, x, K ∗ μ)μ

)
− ∂x

(
b(t, x, K ∗ μ)μ

)

μ(0, dx) = u0(dx),
(2.5)

in the sense of distributions. In this setting, the well-posedness of (2.4) relies on a
fixed point argument in the space of trajectories under the Wasserstein metric, see
e.g. [64], at least in the case when the diffusion term does not depend on the law. We
will denominate this situation as the traditional setting.

Deriving a Monte-Carlo approximation scheme from this probabilistic represen-
tation already becomesmore tricky since it can nomore rely on independent particles
but should involve an interacting particles system as initially proposed in [42, 64].
Consider N interacting particles (ξ i,N )i=1,···N with N i.i.d. Brownian motions (Wi ),

i.e.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ
i,N
t = ξ

i,N
0 +

∫ t

0
σ
(
s, ξ i,Ns , (K ∗ μN

s )(ξ i,Ns )
)
dWi

s +
∫ t

0
b
(
s, ξ i,Ns , (K ∗ μN

s )(ξ i,Ns )
)
ds

ξ
i,N
0 i.i.d. ∼ u0

μN
t = 1

N

N∑

j=1

δ
ξ
j,N
t

,

(2.6)
with (K ∗ μN

t )(y) = 1
N

∑N
j=1 K (y, ξ j,N

t ). The above system defines a so-called
weakly interacting particles system, as pointed out in [57]. This terminology under-
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lines the fact that any particle interacts with the rest of the populationwith a vanishing
impact of order 1/N . In this setting, at least when the diffusion coefficient does not
depend on the law, [64] proves the so called chaos propagation which means that
(ξ

i,N
t )i=1,···N asymptotically behaves as an i.i.d. sample according to μ(t, ·) as the

number of particles N grows to infinity, where μ is the solution of the regularized
non-linear PDE (2.5). This in particular implies the convergence of the empirical
measures μN

t −−−→
N→∞ μ(t, ·) with the rate C/

√
N inherited from the law of large

numbers.
As already announced, the case where the coefficients depend pointwise on the

density law u(t, ·) ofμ(t, ·), t > 0, is far more singular. Indeed the dependence of the
coefficients on the law of Y is no more continuous with respect to the Wasserstein
metric. In this context, well-posedness results rely generally on analytical meth-
ods. One important contribution in this direction is reported in [40], where strong
existence and pathwise uniqueness are established when the diffusion coefficient σ

and the drift b exhibit pointwise dependence on u but are assumed to satisfy strong
smoothness assumptions together with the initial condition. In this case, the solution
u is a classical solution of the PDE

⎧
⎨

⎩

∂t u = 1

2
∂2
xx

(
σ 2(t, x, u(t, x))u

)
− ∂x

(
b(t, x, u(t, x))u

)

u(0, x) = u0(dx),
(2.7)

which is formally derived from (2.5) setting K (x, y) = δ0(x − y). Let us fix K ε being

a mollifier (depending on a window-width parameter ε), such that K ε(x, y) = 1

εd

φ(
x − y

ε
) −−→

ε→0
δ0(x − dy) . As in (2.6), we consider the N interacting particles

(ξ i,N )i=1,···N solving

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ i,N
t = ξ

i,N
0 +

∫ t

0
σ
(
s, ξ i,N

s , uN ,ε
s (ξ i,N

s )
)
dWi

s +
∫ t

0
b
(
s, ξ i,N

s , uN ,ε
s (ξ i,N

s )
)
ds

ξ
i,N
0 i.i.d. ∼ u0

uN ,ε
t = 1

N

N∑

j=1

K ε(·, ξ j,N
t ).

(2.8)
Under the smooth assumptions on b, σ , u0 mentioned before and non-degeneracy
of σ , [40] proved the convergence of the regularized particle approximation uN ,ε

t

to the solution u of the pointwise non-linear PDE (2.7) as soon as ε(N ) −−−→
N→∞ 0

slowly enough. According to [57], the system (2.8) defines a so-called moderately

interacting particle system with uN ,ε
t (x) = 1

Nεd

∑N
j=1 φ(

x−ξ
j,N
t

ε
). Indeed as the win-

dow width of the kernel, ε, goes to zero, the number of particles that significantly
impact a single one is of order Nεd with a strength of interaction of order 1

Nεd
. In

contrast, when ε is fixed, we recover the weakly interacting situation in which case
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the strength of interaction of each particle is of order 1
N which is smaller than 1

Nεd
.

In this case of moderate interaction, the propagation of chaos occurs with a slower
rate than C/

√
N and depends exponentially on the space dimension. Reference [40]

constitutes an extension of the weak propagation of chaos of moderately interacting
particles proved in [57] for the limited case of identity diffusion matrix.

The peculiar case where the drift vanishes and the diffusion coefficient σ(u(t,Yt ))
has a pointwise dependence on the law density u(t, ·) of Yt has beenmore particularly
studied in [16] for classical porous media type equations and [8, 9, 14, 15, 18] who
obtain well-posedness results for measurable and possibly singular functions σ . In
that case the solution u of the associated PDE (1.1), is understood in the sense of
distributions.

3 McKean Feynman-Kac Representations for
Non-conservative and Non-linear PDEs

The idea of generalizing MSDEs to MFKEs (1.2) was originally introduced in the
sequence of papers [46–48], with an earlier contribution in [11], where
�(t, x, u,∇u) = ξt (x), ξ being the sample of a Gaussian noise random field, white
in time and regular in space, see Sect. 6. The goal was to provide some probabilis-
tic representation for non-conservative non-linear PDEs (1.1) by introducing some
exponential weights defining Feynman-Kac measures instead of probability mea-
sures. An interesting aspect of this strategy is that it is potentially able to represent
an extended class of second order non-linear PDEs. One particularity of MFKE
equations is that the probabilistic representation involves the past of the process (via
the exponential weights). In this context, it is worth to quote the recent paper [39]
which proposes a probabilistic representation, which also includes a dependence on
the past, in relation with Keller-Segel model with application to chemiotaxis.

It is important to consider carefully the two major features differentiating the
MFKE (1.2) from the traditional setting of MSDEs. To recover the traditional setting
one has to do the following.

1. First, one has to put � = 0 in the third line equation of (1.2) Then u(t, ·) is
explicitly given by the third line equation of (1.2) and reduces to the density of
the marginal distribution, L(Yt ). When � �= 0, the relation between u(t, ·) and
the process Y is more complex. Indeed, not only does� embed an additional non-
linearity with respect to u, but it also involves the whole past trajectory (Ys)0≤s≤t

of the process Y .
2. Secondly, one has to replace the pointwise dependence b(s,Ys, u(s,Ys)) in

Eq. (1.2) with a mollified dependence b(s,Ys,
∫

Rd K (Ys − y)u(s, y)dy), where
the dependencewith respect tou(s, ·) isWasserstein continuous.Here K : R → R

is a convolution kernel.

One interesting aspect of probabilistic representation (1.2) is that it naturally yields
numerical approximation schemes involving weighted interacting particle systems.
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More precisely, we consider N interacting particles (ξ i,N )i=1,···N with N i.i.d. Brow-
nian motions (Wi )i=1,···N , i.e.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ
i,N
t = ξ

i,N
0 + ∫ t

0 σ
(
s, ξ i,N

s , uN ,ε
s (ξ i,N

s )
)
dWi

s + ∫ t
0 b

(
s, ξ i,N

s , uN ,ε
s (ξ i,N

s )
)
ds

ξ
i,N
0 i.i.d. ∼ u0

uN ,ε
t (ξ i

t ) =
N∑

j=1

ω
j,N
t K ε(ξ i,N

t − ξ
j,N
t ) ,

(3.1)
where the mollifier K ε is such that K ε(x) = 1

εd
φ( x

ε
) −−→

ε→0
δ0 and the weights ω

j,N
t

for j = 1, · · · , N verify

ω
j,N
t := exp

{∫ t

0
�
(
r, ξ j,N

r , uε,N
r (ξ j,N

r ),∇uε,N
r (ξ j,N

r )
)
dr

}

= ω j,N
s exp

{∫ t

s
�
(
r, ξ j,N

r , uε,N
r (ξ j,N

r ),∇uε,N
r (ξ j,N

r )
)
dr

}

.

References [48, 49] consider the case of pointwise semilinear PDEs of the form

{
∂t u = 1

2∂
2
xx (σ

2(t, x)u) − ∂xb(t, x)u) + �(t, x, u,∇u)u
u(0, x) = u0(x),

(3.2)

for which the target probabilistic representation is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yt = Y0 + ∫ t
0 σ

(
s,Ys

)
dWs + ∫ t

0 b
(
s,Ys

)
ds

Y0 ∼ u0∫

ϕ(x)ut (x)dx := E

[

ϕ(Yt ) exp
{ ∫ t

0
�
(
s,Ys, us(Ys),∇us(Ys)

)
ds

} ]

.

(3.3)

We set

Lt f := 1

2
σ 2(t, x) f ′′(x) + b(t, x) f ′(x), t ∈]0, T [, for any f ∈ C2(R). (3.4)

Let us consider the family of Markov transition functions P(s, x0, t, ·) associated
with (Lt ), see [49]. We recall that if X is a process solving the first line of (3.1) with
Xs ≡ x0 ∈ R, then

∫

R
P(s, x0, t, x) f (x)dx = E( f (Xt )), t ≥ s, for every bounded

Borel function f : R → R. u : [0, T ] × R → Rwill be calledmild solution of (3.2)
(related to (Lt )) if for all ϕ ∈ C∞

0 (R), t ∈ [0, T ],
∫

Rd
ϕ(x)u(t, x)dx =

∫

Rd
ϕ(x)

∫

Rd
u0(dx0)P(0, x0, t, dx)

+
∫

[0,t]×Rd

( ∫

Rd
ϕ(x)P(s, x0, t, dx)

)
�(s, x0, u(s, x0), ∇u(s, x0))u(s, x0)dx0ds.
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The following theoremstates conditions ensuring equivalencebetween (3.3) and (3.2)
together with the convergence of the related particle approximation (3.1).

Theorem 3.1 We suppose that σ and b are Lipschitz with linear growth and � is
bounded.

1. Let u : [0, T ] × R → R ∈ L1([0, T ];W 1,1(Rd). u is amild solution of PDE (3.2)
if and only if u verifies (3.3).

2. Suppose that σ ≥ c > 0 and� is uniformly Lipschitz w.r.t. to u and∇u. There is a
unique mild solution in L1([0, T ];W 1,1(R) ∩ L∞([0, T ] × R) of (3.2), therefore
also of (3.3).

3. Under the same assumption of item 2., the particle approximation uN ,ε (3.1)
converges in L1([0, T ];W 1,1(R) to the solution of (3.2) as N → ∞ and ε(N ) →
0 slowly enough.

Item 1. was the object of Theorem 3.5 in [49]. Item 2. (resp. item 3.) was treated
in Theorem 3.6 (resp. Corollary 3.5) in [49].

Remark 3.2 The error induced by the discrete time approximation of the particle
system was evaluated in [48].

Reference [50] considers the case where b is replaced by b + b1 where b is only
supposed bounded Borel, without regularity assumption on the space variable. In
particular they treat the pointwise semilinear PDEs of the form

{
∂t u = 1

2∂
2
xx (σ

2(t, x)u) − ∂x

((
b(t, x) + b1(t, x, u)

)
u
)

+ �(t, x, u)u

u(0, x) = u0(x),
(3.5)

for which the target probabilistic representation is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yt = Y0 + ∫ t
0 σ(s,Ys)dWs + ∫ t

0

[
b(s,Ys) + b1

(
s,Ys, u(s,Ys)

)]
ds

Y0 ∼ u0∫

ϕ(x)ut (x)dx := E

[

ϕ(Yt ) exp
{ ∫ t

0
�
(
s,Ys, us(Ys)

)
ds

} ]

.

(3.6)

The following theoremstates conditions ensuring equivalencebetween (3.6) and (3.5)
together with well-posedness conditions for both equations.

Theorem 3.3 We formulate the following assumptions.

1. The PDE in the sense of distributions ∂t u = L∗
t ut admits as unique solution

u ≡ 0, where Lt was defined in (3.4).
2. b is boundedmeasurable and σ is continuous σ ≥ c > 0 for some constant c > 0.
3. b1,� : [0, T ] × R × R → R is uniformly bounded, Lipschitz with respect to the

third argument.
4. The family of Markov transition functions associated with (Lt ), are of the form

P(s, x0, t, dx) = p(s, x0, t, x)dx,, i.e. they admit measurable densities p.
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5. The first order partial derivatives of the map x0 �→ p(s, x0, t, x) exist in the
distributional sense.

6. For almost all 0 ≤ s < t ≤ T and x0, x ∈ R there are constants Cu, cu > 0 such
that

p(s, x0, t, x) ≤ Cuq(s, x0, t, x) and
∣
∣∂x0 p(s, x0, t, x)

∣
∣ ≤ Cu

1√
t − s

q(s, x0, t, x) ,

(3.7)

where q(s, x0, t, x) :=
(
cu(t−s)

π

) 1
2
e−cu

|x−x0 |2
t−s is a Gaussian probability density.

The following results hold.

1. Let u ∈ (L1 ∩ L∞)([0, T ] × R). u is a solution of PDE (3.5) in the sense of
distributions if andonly if u verifies (3.6) for a solutionY in the sense of probability
laws.

2. There is a unique solution u ∈ (L1 ∩ L∞)([0, T ] × R) in the sense of distribu-
tions of PDE (3.5) (and therefore of (3.6)).

The result 1. (resp. result 2.) was the object of Theorem 12. (resp. Proposition 16.,
Theorems 13., 22.) of [50].

Remark 3.4 Under more restrictive assumptions on b, item 3. of Theorem 13. in
[50] states the well-posedness of (3.6)) in the sense of strong existence and pathwise
uniqueness.

References [46, 47] studied a mollified version of (1.1), whose probabilistic rep-
resentation falls into theWasserstein continuous traditional setting mentioned above.
Following the spirit of [64], a fixed point argument was carried out in the general
case in [47] to prove well-posedness of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yt = Y0 + ∫ t
0 σ

(
s,Ys, K ∗ us(Ys)

)
dWs + ∫ t

0 b
(
s,Ys, K ∗ us(Ys)

)
ds

Y0 ∼ u0

(K ∗ ut )(x) := E

[

K (x − Yt ) exp
{ ∫ t

0
�
(
s,Ys, K ∗ us(Ys)

)
ds

} ]

,

(3.8)

where K : R → R is a mollified kernel. We remark that if (Y, u) is a solution of
(3.8), then u is a solution (in the sense of distribution) of

{
∂t u = 1

2∂
2
xx (σ

2(t, x, K ∗ u)u) − ∂x (b(t, x, K ∗ u)u) + �(t, x, K ∗ u)u
u(0, x) = u0(x).

(3.9)

Remark 3.5 1. Existence and uniqueness results (in the strong sense and in the
sense of probability laws) for the MFKE (3.8) are established under various
technical assumptions, see [46].

2. Chaos propagation for the interacting particle system (3.1) providing an approx-
imation to the regularized PDE (3.9), as N → ∞ (for fixed K ), [47].
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4 McKean Representation of a Fokker-Planck Equation
with Terminal Condition

Let us consider the PDE with terminal condition (1.5) and � = 0.

⎧
⎪⎨

⎪⎩

∂t u = 1
2

d∑

i, j=1

∂2
i j

(
(σσ t )i, j (t, x)u

) − div (b(t, x)u)

u(T, dx) = uT(dx),

(4.1)

where uT is a given Borel probability measure. In the present section we assume the
following.

Assumption 1 Suppose that (4.1) admits uniqueness, i.e. that there is at most one
solution of (4.1).

Remark 4.1 Different classes of sufficient conditions for the validity ofAssumption
1 are provided in [38]. In particular one significant result is Theorem 4.14 of [38]
which states that previous Assumption 1 holds if σ, b are time-homogeneous and the
following holds.

Assumption 2 1. � = σσ ∗ is strictly non-degenerate.
2. The functions σ is Lipschitz in space.
3. The functions σ , b, (∇xbi )i∈[[1,d]],

(∇x�i j
)

i, j∈[[1,d]] are continuous bounded and

∇2
x� is Hölder continuous with exponent α ∈]0, 1[.

Generalizations to the time-inhomogeneous setup are also available.
A natural representation of (4.1) is the following MSDE, where β is a Brownian

motion.
⎧
⎪⎪⎨

⎪⎪⎩

Yt = ξ −
∫ t

0
b̃ (s,Ys; vs) ds +

∫ t

0
σ (T − s,Ys) dβs, t ∈ [0, T ]

∫

Rd vt (x)ϕ(x)dx = E(ϕ(Yt )), t ∈ [0, T ]
ξ ∼ uT,

(4.2)

where b̃(s, y; vs) = (b̃1(s, y; vs), . . . , b̃d(s, y; vs)) is defined as

b̃ (s, y; vs) :=
⎡

⎣
divy

(
σσ t

j. (T − s, y) vs (y)
)

vs (y)

⎤

⎦

j∈[[1,d]]
− b (T − s, y) . (4.3)

For d = 1 previous expression gives

b̃(s, y; vs) :=
(
σ 2(T − s, ·)vs

)′

vs
(y) − b (T − s, y) . (4.4)
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Remark 4.2 Equation (4.2) is in particular fulfilled if Y is the time reversal process
X̂t := XT−t of a diffusion satisfying the SDE

⎧
⎨

⎩

Xt = X0 +
∫ t

0
b(s, Xs)ds + σ(s, Xs)dWs, t ∈ [0, T ]

X0 ∼ u0 ∈ P(R).

(4.5)

This happens under locally Lipschitz conditions on σ and b and minimal regularity
conditions on the law density pt of Xt . Indeed in [35], the authors prove that

X̂t = XT +
∫ t

0
b̃
(
s, X̂s; pT−s

)
ds +

∫ t

0
σ
(
T − s, X̂s

)
dβs, t ∈ [0, T ], (4.6)

where b̃ is defined in (4.3) and pt is the density of Xt . We emphasize that the main
difference between (4.2) and (4.6) is that in the first equation the solution is a couple
(Y, v), in the second one, a solution is just Y , p being exogeneously defined by (4.5).

We observe now that a solution (Y, v) of (4.2) provides a solution u of (4.1). This
justifies indeed the terminology of probabilistic representation.

Proposition 4.3 1. Let (Y, v) be a solution of (4.2). Then u(t, ·) := v(T − t, ·), t ∈
[0, T ]), is a solution of (4.1) with terminal value uT.

2. If (4.1) admits at most one solution, then there is at most one v such that (Y, v)

solves (4.2).

Proof In order to avoid technicalities which complicate the task of the reader we
express the proof for d = 1. We prove 1. since 2. is an immediate consequence of 1.

Let φ ∈ C∞ (R) with compact support and t ∈ [0, T ]. Itô formula gives

E
[
φ
(
YT−t

)] −
∫

Rd
φ (y)uT (dy) =

∫ T−t

0
E

[

b̃ (s, Ys ; vs ) φ′ (Ys ) + 1

2

(
σ 2 (T − s, Ys ) φ′′ (Ys )

)]

ds.

Fixing s ∈ [0, T ], we have

E

[
b̃(s, Ys; vs)φ

′(Ys)
]

=
∫

R

(σ 2(T − s, ·)vs)′(y)φ′(y)dy −
∫

R

b(T − s, y)φ′(y)vs(y)dy

= −
∫

R

(σ 2)(T − s, y)φ′′(y)vs(y)dy −
∫

R

b(T − s, y), φ′(y)vs(y)dy.

Hence, we have the identity

E
[
φ (YT−t )

] =
∫

R

φ (y) uT (dy) −
∫ T−t

0

∫

R

LT−sφ (y) vs (y) dyds.

Applying the change of variable t �→ T − t , we finally obtain the identity
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∫

R

φ (y) vT−t (y) dy =
∫

R

φ (y) uT (dy) −
∫ T

t

∫

Rd

Lsφ (y) vT−s (y) dyds.

This means that t �→ ut is a solution of (1.2) with terminal value uT. �

Remark 4.4 Precise discussions on existence and uniqueness of (4.2) are provided
in [38]. In particular we have the following.

1. There is at most one solution (in law) (Y, v) of (4.2) such that v is locally bounded
in [0, T [×R

d .
2. There is at most one strong solution (Y, v) of (4.2) such that v is locally Lipschitz

in [0, T [×R
d .

Item 1. is a consequence of Theorem 10.1.3 of [63]. Item 2. is a consequence of usual
pathwise uniqueness arguments for SDEs.

5 Probabilistic Representation with Jumps
for Non-conservative PDEs

In this section, we outline the link between non-conservative PDEs and non-linear
jump diffusions. This kind of representation was emphasized in [25, 28] to design
interacting jump particles systems to approximate time-dependent Feynman-Kac
measures. For simplicity, we present this correspondence in the simple case of the
non-conservative linear PDE (1.1) when the coefficients do not depend on the solu-
tion, see (1.1). However, the same ideas could be extended to the non-linear case
where the coefficients σ, b,� may depend on the PDE solution.

Let us consider the SDE
{
dXt = b(t, Xt )dt + σ(t, Xt )dWt

X0 ∼ u0,
(5.1)

whereW is a one-dimensional Brownian motion. Assume that (5.1) admits a (weak)
solution. Let � be a bounded and negative function defined on [0, T ] × R. For
any t ∈ [0, T ], we define the measure, γ (t, ·) such that for any real-valued Borel
measurable test function ϕ

∫

γ (t, dx)ϕ(x) = E

[

ϕ(Xt ) exp

(∫ t

0
�(s, Xs)ds

)]

. (5.2)

We recall that by Sect. 3 we know that γ is a solution (in the distributional sense) of
the linear and non-conservative PDE

{
∂tγ = 1

2∂
2
xx (σ

2(t, x)γ ) − ∂x (b(t, x)γ ) + �(t, x)γ
γ (0, ·) = u0.

(5.3)
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Remark 5.1 If uniqueness of distributional solutions of (5.3) holds, then γ defined
by (5.1), (5.2) is the unique solution of (5.3).

Let γ (t, ·) be a solution of (5.2) which for each t is a positive measure. We
introduce the family of probability measures (η(t, ·))t∈[0,T ], obtained by normalizing
γ (t, ·), such that for any real valued bounded andmeasurable test function ϕ we have

∫

η(t, dx)ϕ(x) :=
∫

γ (t, dx)ϕ(x)
∫

γ (t, dx)
. (5.4)

By simple differentiation of the above ratio and using the fact that γ satisfies (5.3),
we obtain that η is a solution in the distributional sense of the integro-differential
PDE

{
∂tη = 1

2∂xx (σ
2(t, x)η) − ∂x (b(t, x)η) +

(
�(t, x) − ∫

η(t, dx)�(t, x)
)
η

η0 = u0 .

(5.5)
Besides one can express γ (t, ·) as a function of (η(s, ·))s∈[0,t]. Indeed, since γ solves
the linear PDE (5.3) then in particular approaching the constant test function 1, yields

∂t

∫

γ (t, dx) =
∫

γ (t, dx)�(t, x) =
∫

γ (t, dx)
∫

η(t, dx)�(t, x) ,

which gives
∫

γ (t, dx) = exp
(∫ t

0

∫
η(s, dx)�(s, x)ds

)
. Then by definition (5.4)

of η,

γ (t, ·) =
( ∫

γ (t, dx)
)
η(t, ·) = exp

(∫ t

0

∫

η(s, dx)�(s, x)ds

)

η(t, ·) . (5.6)

We already know that for any solution γ of (5.3) one can build a solution η to (5.5)
according to relation (5.4). Conversely, for any solution η of (5.5), by similar manip-
ulations one can build a solution γ of (5.3) according to (5.6). Hence well-posedness
of (5.3) is equivalent to well-posedness of (5.5).

We propose now an alternative probabilistic representation to (5.1) and (5.2) of
(5.3). Let us introduce the non-linear jump diffusion Y (if it exists), which evolves
between two jumps according to the diffusion dynamics (5.1) and jumps at expo-
nential times with intensity −�t (Yt ) ≥ 0 to a new point independent of the current
position and distributed according to the current law, L(Yt ). More specifically, we
consider a process Y solution of the following non-linear (in the sense of McKean)
SDE with jumps
⎧
⎨

⎩

dYt = b(t, Yt− )dt + σ(t, Yt− )dWt + ∫

R
x1|x |>1 Jt (μt− , Yt− , dx)dt + ∫

R
x1|x |≤1(Jt − J̄t )(μt− , Yt− , dx)dt

Y0 ∼ u0
μt− = L(Yt− ) ,

(5.7)
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where J denotes the jump measure and J̄ is the associated predictable compensator
such that for any probability measure ν on R

J̄t (ν, y, d(y′ − y)) = −�t (y)ν(dy′) , for any y , y′ ∈ R .

Note that well-posedness analysis of the above equation constitutes a difficult task.
In particular, [41] analyzes well-posedness and particle approximations of some
types of non-linear jump diffusions. However, contrarily to (5.7), the nonlinearity
considered in [41] is concentrated on the diffusion matrix (assumed to be Lipschitz
in the time-marginals of the process w.r.t. Wasserstein metric) and does not involve
the jump measure which is assumed to be given.

Assume that MSKE (5.7) admits a weak solution. By application of Itô formula,
we observe that the marginals of Y are distributional solutions of (5.5). Indeed, for
any real valued test function in C∞

0 (R)

E[ϕ(Yt )] = E[ϕ(Y0)]
+
∫ t

0
E

[

b(s,Ys−)ϕ′(Ys−) + 1

2
σ 2(s,Ys−)ϕ′′(Ys−)

]

ds

+
∫ t

0
E

[∫

ϕ(Ys− + x) J̄s(μs− ,Ys− , dx)

]

ds

−
∫ t

0
E
[
ϕ(Ys−) J̄s(μs− ,Ys− ,R)

]
ds . (5.8)

Conclusion 5.2 Suppose that (5.3) admits a unique distributional solution γ ; let
η defined by (5.4). Suppose the existence of a (weak) solution X (resp. Y ) of (5.1)
(resp. (5.7)).

1. η is the unique solution (in the sense of distributions) of (5.5). Moreover∫

R
ϕ(x)η(t, dx) = E[ϕ(Yt )], t ≥ 0.

2. We obtain the following identities for γ and η:

∫

γ (t, dx)ϕ(x) = E
[
ϕ(Xt ) exp

(∫ t

0
�(s, Xs)ds

)
]

= exp

(∫ t

0

∫

η(s, dx)�(s, x)ds

)

ηt (ϕ)

= exp

(∫ t

0
E[�(s,Ys)]ds

)

E[ϕ(Yt )]. (5.9)

Using the above identities allows to design discrete time interacting particles
systems with geometric interacting jump processes. In particular, in [27] the authors
provide non asymptotic bias and variance theorems w.r.t. the time step and the size
of the system, allowing to numerically approximate the time-dependent family of
Feynman-Kac measures γ .
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6 McKean SDEs in Random Environment

6.1 The (S)PDE and the Basic Idea

Let (�,F , (Ft ),P) be a filtered probability space.We consider a progressively mea-
surable random field (ξ(t, x)). We want to discuss probabilistic representations of

{
∂t u = 1

2�(β(u)) + ∂tξ(t, x)u(t, x) , with β(u) = σ 2(u)u.

u(0, ·) = u0.
(6.1)

Suppose for a moment that ξ has random realizations which are smooth in time so
that

∂tξ(t, x) = �(t, x;ω). (6.2)

Under some regularity assumptions on �, (6.1) can be observed as a randomization
of a particular case of the PDE (1.1). For each random realization ω ∈ �, the natural
(double) probabilistic representation is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yt = Y0 + ∫ t
0 σ

(
u(s,Ys)

)
dWs

Y0 ∼ u0∫

ϕ(x)u(t, x)dx = E
ω

[

ϕ(Yt ) exp
{ ∫ t

0
�
(
s,Ys;ω)

)
ds

} ]

, for t ∈ [0, T ],
(6.3)

where Eω denotes the expectation with frozen ω. However the assumption (6.2) is
not realistic and we are interested in ∂tξ being a white noise in time. Let N ∈ N

∗. Let
B1, . . . , BN be N independent (Ft )-Brownian motions, e1, . . . , eN be functions in
C2
b (R). In particular they are H−1-multiplier, i.e. the maps ϕ → ϕei are continuous

in H−1.
We define the random field ξ(t, x) = ∑N

i=0 e
i (x)Bi

t , where B0
t ≡ t and we con-

sider the SPDE (6.1) in the sense of distributions, i.e.

∫

R

ϕ(x)u(t, x)dx =
∫

R

ϕ(x)u0(dx) + 1

2

∫ t

0

∫

R

ϕ′′(x)σ 2(u(s, x))dsdx +
∫ t

0

∫

R

ϕ(x)u(s, x)ξ(ds, x)dx,

(6.4)
where the latter stochastic integral is intended in the Itô sense.

6.2 Well-Posedness of the SPDE

The theorem below contains results taken from [10, 62].

Theorem 6.1 Suppose that β is Lipschitz.

• Suppose that u0 ∈ L2(R). There is a solution to Eq. (6.1).
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• Assume further that β is non-degenerate, i.e. β(r) ≥ ar2, r ∈ R, where a > 0.
Then, there is a solution u to (6.1) for any probability u0(dx) (even in H−1(R)).

• There is at most one solution in the class of random fields u such that∫

[0,T ]×R
u2(t, x)dtdx < ∞ a.s.

Remark 6.2 • Previous result extends to the case of an infinite number of modes
ei and for d ≥ 1.

• We remark that the ∂tξ(t, x) is a colored noise (in space). The case of space-time
white noise seems very difficult to treat.

6.3 McKean Equation in Random Environment

Given a local martingale M , E(M) denotes the Doléans exponential of M i.e.
exp(Mt − 1

2 [M]t), t ≥ 0. We say that a filtered probability space (�0,G, (Gt ), Q) is
a suitable enlarged space of (�,F , (Ft ), P), if the following holds.

1. There is a measurable space (�1,H) with �0 = � × �1, G = F ⊗ H and a ran-
dom kernel (ω, H) �→ Q

ω(H) defined on � × H → [0, 1] such that the proba-
bility Q on (�0,G) is defined by dQ(ω, ω1) = dP(ω)Qω(ω1).

2. The processes B1, . . . , BN are (Gt )- Brownian motions where Gt = Ft ∨ H.

Definition 6.3 We say that the non-linear doubly-stochastic diffusion

⎧
⎨

⎩

Yt = Y0 + ∫ t
0 
(u(s,Ys))dWs,∫

ϕ(x)u(t, x)dx = E
Q

ω (
ϕ(Yt (ω, ·))Et

(∫

0 ξ(ds,Ys)(ω, ·))) ,

ξ − Law(Y0) = u0(dx),
(6.5)

admits weak existence on (�,F , (Ft ),P) if there is a suitably enlarged probability
space (�0,G, (Gt ),Q) an (Gt )-Brownian motion W such that (6.5) is verified. The
couple (Y, u) will be called weak solution of (6.5).

Remark 6.4 • We remark that the second line in (6.5) represents a sort of ξ -
marginal weighted law of Yt .

• Let (Y, u) be a solution to (6.5). Then u is a solution to (6.1).
• Such representation allows to show that u(t, x) ≥ 0, dPdtdx a.e. and, at least
if e0 = 0, E

(∫

R
u(t, x)dx

) = 1, so that the conservativity is maintained at the
expectation level.

Definition 6.5 Let two measurable random fields ui : � × [0, T ] × R → R, i =
1, 2 on (�,F ,P, (Ft )), and Y i , on a suitable extended probability space (�i

0,Gi ,

(Gi
t ),Q

i ), i = 1, 2, such that (Y i , ui ) are (weak) solutions of (6.5) on (�,F , (Ft ),P).
If we always have that (Y 1, B1, . . . , BN ) and (Y 2, B1, . . . , BN ) have the same law,
then we say that (6.5) admits weak uniqueness (on (�,F , (Ft ),P)).

Theorem 6.6 Under the assumption of Theorem 6.1 Eq. (6.5) admits (weak) exis-
tence and uniqueness on (�,F , (Ft ),P).
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7 McKean Representation of Stochastic Control Problems

7.1 Stochastic Control Problems and Non-linear Partial
Differential Equations

There are several connections between stochastic control and McKean type SDEs,
see e.g. [1]. Here, we propose an original (and maybe unexpected) point of view. Let
us briefly recall the link between stochastic control and non-linear PDEs given by
the Hamilton-Jacobi-Bellman (HJB) equation. We refer for instance to [31, 60, 67]
for more details. Consider a state process (Xt0,x,α

s )t0≤s≤T on [t0, T ] × R
d solution to

the controlled SDE
{
dXt0,x,α

s = b
(
s, Xt0,x,α

s , α(s, Xt0,x,α
s )

)
ds + σ

(
s, Xt0,x,α

s , α(s, Xt0,x,α
s )

)
dWs

Xt0,x,α
t0 = x ,

(7.1)
whereW denotes the Brownian motion on [t0, T ] × R

d , and α(s, Xt0,x,α
s ) represents

Markovian control in the sense that the control at time t is supposed here to depend
on t and on the current value of the state process:

α ∈ At0,T := {
α : (t, x) ∈ [t0, T ] × R

d �→ α(t, x) ∈ A ⊂ R
k
}

, (7.2)

A being a subset of Rk . For a given initial time and state (t0, x) ∈ [0, T ] × R
d , we

are interested in maximizing, over the Markovian controls α ∈ At0,T , the criteria

J (t0, x, α) := E

[

g(Xt0,x,α
T ) +

∫ T

t0

f
(
s, Xt0,x,α

s , α(s, Xt0,x,α
s )

)
ds

]

. (7.3)

In the above criteria, the function f is called the running gain whereas g is called
the terminal gain.

Remark 7.1 At first glance, the set of control processes of the form αt = α(t, Xt )

defined in (7.2)may appear too restrictive compared to a larger set of non-anticipative
controls (αt ) which may depend on all the past history of the state process (Xt ).
However, in the framework of Markov control problems (for which the state process
(Xt0,x,a

t ) isMarkov, as soon as the control is fixed to a deterministic valueαt = a ∈ A,
for all t ∈ [t0, T ]), it is well-known that the optimal control process (αt ) lies in the
set of Markovian controls verifying αt = α(t, Xt ). Hence, considering controls of
the particular form (7.2) is done here without loss of generality.

To tackle this finite horizon stochastic control problem, the usual approach consists
in introducing the associated value (or Bellman) function v : [t0, T ] × R

d → R

representing the maximum gain one can expect, starting from time t at state x , i.e.

v(t, x) := sup
α∈At,T

J (t, x, α) , for t ∈ [t0, T ] . (7.4)
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Note that the terminal condition is known, which fixes v(T, x) = g(x), whereas the
initial condition v(t0, x) corresponds to the solution of the original minimization
problem. The value function is then proved to verify the Dynamic Programming
Principle (DPP) which consists in the backward induction

v(t, x) = sup
α∈At,τ

E
[
∫ τ

t
f (s, Xt,x,α

s , α(s, Xt,x,α
s ))ds + v(τ, Xt,x,α

τ )
]
, for any stopping time τ ∈]t, T ] .

(7.5)
Under continuity assumptions on b, σ , f , g, using DPP together with Itô formula
allows to characterize v as a viscosity solution of the HJB equation

{
v(T, x) = g(x)
∂tv(t, x) + H(t, x,∇v(t, x),∇2v(t, x)) = 0 ,

(7.6)

where ∇ and ∇2 denote the gradient and the Hessian operators and the so-called,
Hamiltonian, H denotes the real valued function defined on [0, T ] × R

d × R
d × Sd

(Sd denoting the set of symmetric matrices in Rd×d ), such that

H(t, x, δ, γ ) := sup
a∈A

{

f (t, x, a) + b(t, x, a)�δ(t, x) + 1

2
Tr [σσ ′(t, x, a)γ (t, x)]

}

.

(7.7)
Note that (7.6) is a non-linear PDE because of the nonlinearity in the Hamiltonian
induced by the supremum operator. Besides, assuming that, for all (t, x) ∈ [t0, T ] ×
R

d , the supremum in (7.7) is attained at a unique maximizer, then the optimal control
α∗ is directly obtained as a function of the Bellman function and its derivatives, i.e.

α∗(t, x) = argmax
a∈A

{

f (t, x, a) + b(t, x, a)�∇v(t, x) + 1

2
Tr [σσ�(t, x, a)∇2v(t, x)]

}

. (7.8)

Except in some very concrete cases such as the Linear Quadratic Gaussian (LQG)
setting (where the states dynamics involve an affine drift with Gaussian noise and
the cost is quadratic both w.r.t. the control and the state), there is no explicit solution
to stochastic control problems. To numerically approximate the solution of equa-
tion (7.6), several approaches have been proposed, mainly differing in the way the
value function v is interpreted. Indeed, as pointed out, v can be viewed either as the
solution to the control problem (7.4), or as a (viscosity) solution of the non-linear
PDE (7.6).

1. When v is defined as the solution to the control problem (7.4), a natural approach
consists in discretizing the time continuous control problem and apply the time
discreteDynamic Programming Principle [17]. Then the problem consists inmax-
imizing over the controls, backwardly in time, the conditional expectation of the
value function related to (7.5). The maximization at time step tk can be done via
a parametrization of the control x �→ αθ

tk (x) via a parameter θ so that parametric
optimization methods such as the stochastic gradient algorithm could be applied
to maximize the expectation over θ . It remains to approximate the conditional
expectations by numerical methods such as PDE, Fourier, Monte Carlo, Quanti-
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zation or lattice methods…A great variety of numerical approximation schemes
has been developed in the specific Bermudan option valuation test-bed [7, 22, 23,
26, 51, 68]. Alternatively, one can use Markov chain approximation method [44]
which consists in a time-space discretization designed to obtain a proper Markov
chain.

2. In the second approach we recall that v is viewed as the solution of (7.6). The
problem amounts then to discretize a non-linear PDE. Then one can rely on
numerical analysis methods (e.g. finite differences, or finite elements) and use
monotone approximation schemes in the sense of Barles and Souganidis [12] to
build converging approximation schemes, e.g. [19, 33]. This type of approach
is in general limited to state space dimension lower than 4. To tackle higher
dimensional problems, one approach consists in converting the PDE into a prob-
abilistic setting in order to apply Monte Carlo types algorithms. To that end,
various kinds of probabilistic representations of non-linear PDEs are available.
Forward Backward Stochastic Differential Equations (FBSDE) were introduced
in [59] as probabilistic representations of semi-linear PDEs. Then various types
of numerical schemes for FBSDE have been developed. They mainly differ in the
approachof evaluating conditional expectations: [21] (resp. [34], [29, 58]) use ker-
nel (resp. regression, quantization) methods. Recently, important progresses have
been done performing machine learning techniques, see e.g. [30, 37]. Branching
processes [36, 54] can also provide probabilistic representations of semi-linear
PDEs via Feynman-Kac formula. Non-linear SDEs in the sense of McKean [53]
are another approach that constitutes the subject of the present paper.

3. Other approaches take advantage of both interpretations see for instance [32] and
in [65].

7.2 McKean Type Representation in a Toy Control Problem
Example

In order to illustrate the application of MFKEs to control problems, we consider a
simple example corresponding to an inventory problem, for which the Hamiltonian
maximization (7.7), (7.8) is explicit. The state (Xt )t∈[t0,T ] denotes the stock level
evolving randomly with a control of the drift α:

⎧
⎪⎨

⎪⎩

dXt0,x,α
t = −α(t, Xt0,x,α

t )dt + σdWt

J (t0, x, α) = sup
α∈At0,T

E

[
g(Xt0,x,α

T ) −
∫ T

t0

[(
α(t, Xt0,x,α

t ) − Dt
)2 + h(Xt0,x,α

t )
]
dt
]
.

Bound constraints on the storage level are implicitly forced by the penalization h. A
target terminal level is indicated by the terminal gain g, supposed here to be Lebesgue
integrable. The objective is then to follow a deterministic target profile (Dt )t∈[0,T ],
on a given finite horizon [t0, T ]. When the admissible set in which the controls take
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their values A = R, one can explicitly derive the optimal control as a function of the
value function derivative

α∗(t, ·) = Dt + 1

2
(∂xv)(t, ·) ,

which yields the following HJB equation

∂tv + 1

4
(∂xv)2 + Dt∂xv + σ 2

2
∂xxv − h = 0 .

Reversing the time, (with t0 = 0) gives (t, x) �→ u(t, x) := v(T − t, x) solution of

{
∂t u = 1

4 (∂xu)2 + σ 2

2 ∂xxu + Dt∂xu − h,

u(0, x) = g(x).
(7.9)

We recover the framework of (1.1), with�(t, x, y, z) = 1
4

|z|2
y − h(x)

y and b(t, x, y) =
−Dt . Consequently the Bellman function v can be represented via
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yt = Y0 + σWt − ∫ t
0 Dsds

Y0 ∼ g(x)dx∫

R
g(y)dy

∫
ϕ(x)v(t, x)dx = (∫

R
g(y)dy

)
E

[
ϕ(YT−t ) exp

{ ∫ T
t �

(
s, YT−s , v(s, YT−s), ∇v(s, YT−s)

)
ds

} ]
,

for t ∈ [0, T ].
(7.10)
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Bernstein Processes, Isovectors and
Mechanics

Paul Lescot and Laurène Valade

Abstract We investigate the symmetries of a class of diffusions processes (“Bern-
stein’s reciprocal” processes) introduced in the eighties for the solution of a prob-
lem stated by Schrödinger in 1931. Those diffusions satisfy two unusual proper-
ties. Although typically not time-homogeneous, they are time reversible. Also their
infinitesimal coefficients are specific functions of positive solutions of time adjoint
parabolic equations. The symmetries of these PDEswill therefore be transformed into
symmetries of the diffusions and provide relations between them hard to guess oth-
erwise. We shall use an algebraico-geometric method (“of isovectors”) and mention
applications in finance and mathematical physics. As can be expected Schrödinger’s
initial motivation was quantum mechanics.

Keywords Isovectors · Euclidian Quantum Mechanics · Bernstein Processes ·
Finance

1 Introduction

Since, according toK. Itô, his stochastic calculus should be regarded as a deformation
of Leibniz-Newton calculus along Brownian-like trajectories, it is a natural hope
that the study of the symmetries of stochastic differential equations should have the
same impact as its deterministic counterpart (essentially due to S. Lie) for ODEs. A
number of works in this direction have been published along the years. Recently we
can mention, in particular, [1, 4] or [5].

The option chosen here is different and follows directly from the above
Schrödinger’s idea. Instead of look for a general theory valid for all kinds of stochas-
tic differential equations, we focus on those which are solutions of Schrödinger’s
problem. What we shall lose in generality will be compensated by their strong anal-
ogy with quantum mechanics which was precisely at the origin of his idea. Or,
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equivalently, with the benefit of knowing the future of the early thirties, we can be
inspired by Feynman’s path integrals approach to quantum mechanics, involving
purely symbolic diffusion processes. Indeed Bernstein’s reciprocal processes share
a lot of qualitative properties with those “diffusions”. This perspective is described
in detail in the review [22].

We shall start with a short summary of Schrödinger’s problem and its solutions
for the class of elementary mechanical systems (originally this author considered
only the one dimensional free case). This will be sufficient to understand the origin
of the specific class of processes and our transfer from symmetries of underlying
PDEs to the ones of associated diffusions. In particular, we shall limit ourselves
to one type of those PDEs, backward parabolic equations (well defined for final
boundary conditions). They correspond, in our framework, to the usual description
of diffusions in term of increasing filtrations. The adjoint description can be obtained
without further computations.

Then we shall describe the method of isovectors. Inspired by Cartan’s approach
to partial differential equations in term of differential forms and their exterior dif-
ferential calculus, it has been formulated by Harrison and Estabrook as a tool for
the study of the invariance group of these equations [7]. This method is particularly
suitable to analyse the symmetries of the class of Bernstein’s reciprocal processes.

A number of examples will be given, motivated by Stochastic finance or the
analogy with Quantum Physics which was the initial motivation of Schrödinger.

2 Summary

• A summary of Schrödinger’s problem and its solution
• The method of isovectors
• Bernstein processes
• Parametrization of a one-factor affine model
• Generalized Brownian Bridges
• References

3 A Summary of Schrödinger’s Problem and Its Solution

Consider a real valued diffusion process Z(t) defined on a finite time interval,
say [− T

2 , T
2 ]. Let’s suppose that, in addition to the data of its initial probability

μ −T
2

= δ −T
2

(dx)we are given also a final oneμ −T
2

= δ −T
2

(dz) distinct from the prob-
ability associated with the evolution of δ −T

2
under the diffusion equation. Such evo-

lutions may be rare but they are possible and result manifestly from a conditioning.
Schrödinger’s problem is : what is the most probable evolution between those two
probabilities? [22]. The answer was given by the same author: the optimal process Z
is such that P(Z(t) ∈ A) = ∫

A η∗(t, q)η(t, q)dq, for A a Borelian, where η∗ and η
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are respectively positive solutions of two adjoint parabolic partial differential equa-
tions:

{ ∂η∗
∂t = H0η

∗

η∗(−T
2 , x) = η∗

−T
2

(x)

and
{− ∂η

∂t = H0η

η(−T
2 , z) = η −T

2
(z)

and H0 = −κ
2 �, for κ a positive constant and η∗

−T
2
, η −T

2
are two unspecified positive

functions.
A corresponding pair of variational principles inspired by stochastic Optimal

Control theory provides the drift of the SDE solved by the optimal process:
dZ(t) = κ

∇η

η
(t, Z(t))dt + κ

1
2 dW (t) for W (t) a Wiener process and an initial dis-

tribution δ −T
2

and an associated filtration Pt increasing on the time interval. The
stochastic variational principle corresponding to the adjoint PDE provides a back-
ward SDE whose increment d∗Z(t) points towards the past of Z(t): d∗Z(t) =
−κ

∇η∗
η∗ (t, Z(t))dt + κ

1
2 d∗W∗(t) for an associated decreasing filtration Ft from a

final data δ T
2
. W∗ is defined in complete analogy with W (t) and Pt . For the purpose

of the symmetry analysis it is sufficient to consider the more familiar forward SDE
as no new computaions are needed.

Bernstein measures are constructed from the joint probability M(dq, dZ) at the
boundaries of the time interval [−T

2 , T
2 ]. In the special Markovian case considered by

Schrödinger, it is of the form M(dq, dZ) = u∗
−T
2

(q)h(q, T, Z)u T
2
(Z)dqdZ where

h(q, T, Z) is the integral kernel e
−1
κ
T H (q, Z), and we have allowed a more general

Hamiltonian operator H = H0 + V (Z) for a given bounded below scalar potential V.
Then the twomarginals ofM , for given boundary probabilities δ −T

2
and δ T

2
provide

a nonlinear integral system of equations for u∗
−T
2
and u −T

2
. A. Beurling proved in 1960

the existence and uniqueness of its positive solutions [2] under general conditions. In
other words theMarkovian Bernstein diffusions are well defined ([22] and references
therein for more details).

In recent years Schrödinger’s problem and its solution have been re-interpreted
in a measure theoretic perspective and in the context of Mass Transportation theory
([11] and references therein). In particular, the reciprocalBernstein diffusions solving
Schrödinger’s problem can, curiously, be regarded as regularization of the Monge-
Kantorovich problem solved ten years after Schrödinger by Kantorovich.

Schrödinger’s problem is at the origin of the program of Stochastic Deformation
[22]. Its aim is the elaboration of the randomized mechanics whose existence was
suggested, in particular by Bernstein and whose Feynman’s Path integral theory can
be regarded as a (very) informal description.
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4 The Method of Isovectors

The method of isovectors was introduced in [4] in order to classify up to equivalence
(systems of) partial differential equations appearing in mathematical physics.

Given a system of partial differential equations, one expresses it, adding if neces-
sary some of the derivatives of the unknown function as auxiliary unknowns, as the
vanishing of a family of first-order differential forms. An isovector is then defined
as a vector field in all the variables preserving the differential ideal generated by the
forms.

For the one–dimensional heat equation, it was determined (using a different lan-
guage) by Bluman and Cole ([3]).

Olver’s prolongation method ([19]) provides a somewhat different approach.
Let us now give some details. We shall consider an equation of the shape

∂u

∂t
= G(t, q, u,

∂u

∂q
, ...,

∂n−1u

∂qn−1
) + λ

∂nu

∂qn

for n ≥ 2, t ∈ J (an interval of R), q ∈ O (an open set in Rn), u a function of t and
q, λ a constant and G : J × O × Rn → R a C∞ function of t , q u and its derivatives
in space.

In order to study the symmetries of the equation, we shall temporarily consider

u,
∂u

∂t
,
∂u

∂q
, ...,

∂n−1u

∂qn−1
as independent variables.

We now consider a differential equation (E) of order n = 2.
We note u(t, q) a solution of this equation.
We define B1 = ∂u

∂q .

We consider u, A = ∂u
∂t and B1 as independent variables.

Let α = du − Adt − ∑n
i=1 B

i
1dqi , a 1-differential form.

So we have dα = −d Adt − dB1dq.
The equation (E) is equivalent to the vanishing of the forms α, dα and of a certain

number of differential forms of degrees at least 2 noted δ j , dδ j où j ∈ N.
We pose I =< α, dα, δ j , dδ j >. It is a closed differential ideal of the algebra of

the differential forms.

Lemma 4.1 Each 2-form of I can be written aα + zdα + ξ with z a 0-form, ξ ∈<

δ j , dδ j > for j ∈ N and a a 1-form of the type a1dt + a2dq + a3du + a4d A +
a5dB1 for which we can suppose a3 = 0.

Proof If a3 �= 0, we replace aα by a′α where

a′ = (a1 + Aa3)dt + (a2 + B1a3)dq + a4d Aa5dB1

We note

N = Nt ∂

∂t
+ Nq ∂

∂q
+ Nu ∂

∂u
+ N A ∂

∂A
+ N B1

∂

∂B1

.
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Definition 4.2 We say that N is an isovector of (E) if LN (I ) ⊂ I .

To compute these isovectors, we use themethod developed byHarrison Estabrook
in [7] and already set up to find the symmetries of many equations for instance in
([12–17, 20, 21]).

We denote by G the set of isovectors.

Lemma 4.3 G is a Lie algebra for the usual bracket of vector fields.

Lemma 4.4 Let N ∈ G. There is a function F = FN (t, q, u, A, B1) such that

N t = −FA

Nq = −FB1

Nu = F + ANt + B1Nq

N A = AFu + Ft

N B1 = B1Fu + Fq

Remark 4.5 This lemma is present in ([7, p. 657]).

Proposition 4.6 Nt depends only of t . We note N t = − f (t).

For an equation of the following form:

(Eg,2) : Q(t, q, u)
∂2u

∂q2
+ T (t, q)

∂u

∂t
+ R(t, q, u, B1) = 0

with Q �= 0, we have complementary results:

Theorem 4.7 • Under the previous hypothesis, considering (Eg,2) we have:

Nq = Nq(t, q)

We note Nq = −w(t, q).
• If we suppose also that Q = Q(t, q) and R is linear in B1 then Nu is affine in u.
We pose Nu = um(t, q) + l(t, q) where l and m are functions of t and q.
We have also relations between the various auxiliary functions introduced:
−QTt f + T Qt f + T Q ft − QTqw − 2T Qwq + T Qqw = 0 and

QT B1wt + QTumt + QTlt − QRt f − QRqw + QRuum + QRul + QRB1 B1m + QRB1 B1wq

+QRB1umq + QRB1 lq − QRwq + Q2B1mq + Q2B1wqq + Q2umqq + Q2lqq + Q2B1mq

= −RQt f − RQqw + QR(m + wq )

Proof The proof of this theorem will be detailed in the second author’s Ph.D. thesis
[21].
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4.1 Examples

4.1.1 Black Scholes

We can apply the previous results to find the symmetries of the Black Scholes equa-
tion. It is the most famous equation in financial mathematics:

∂C

∂t
+ 1

2
σ 2S2

∂2C

∂S2
+ r S

∂C

∂S
− rC = 0

where C(t, S) denotes the price of a call option with maturity T and strike price K
on an underlying asset satisfying St = S, σ is the volatility and r the risk free interest
rate.

Weposeq = ln(S) andu(t, q) = C(t, exp(q)) = C(t, S). The equationbecomes:

∂u

∂t
+ 1

2
σ 2 ∂2u

∂q2
+

(

r − σ 2

2

)
∂u

∂q
− ru = 0

According to our notations we have T = 1, Q = 1
2σ

2 and R = (r − σ 2

2 )B1 − ru.

We note r̃ = r − σ 2

2 and s̃ = r + σ 2

2 .
By Theorem 3.7 we obtain:

• σ 2

2 ft − 2 σ 2

2 wq = 0 so
ft = 2wq

and
wqq = 0

• We divide by Q to find:

B1wt + umt + lt − r(um + l) +
(

r − σ 2

2

)

(B1m + B1wq + umq + lq ) −
(

r − σ 2

2

)

B1wq + ruwq

+ σ 2

2
(B1mq + umqq + lqq + B1mq ) =

(

r − σ 2

2

)

B1(m + wq ) − ru(m + wq )

Differentiating with respect to B1 we obtain:

wt = (r − σ 2

2
)wq − σ 2mq

As wqq = 0, wtqq = σ 2mqqq = 0 so

mqqq = 0.
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Differentiating with respect to u we have:

mt = −
(

r − σ 2

2

)

mq − 2rwq − σ 2

2
mqq

In addition we have mtqq = 0, so

mqq = constant.

Taking u = B1 = 0, we find that l is a solution of the equation.
Working with the different equations obtained above, we have the following rela-

tions:
ftt = 2wqt = −2σ 2mqq = 2C1

f = C1t
2 + C2t + C3

wq = C1t + 1

2
C2

So

mq = −C1

σ 2
q + v(t)

mtt = −
(

r − σ 2

2

)

vt − 2C1r

Hence
mttq = 0

But by the expression of mq we deduce that vt = constant .

The expression of mt gives us mtq =
(
r − σ 2

2

)
C1
σ 2 , so

vt =
(

r − σ 2

2

)
C1

σ 2

wt t = 1
2

(
r − σ 2

2

)
ftt + σ 2mtq = 1

2

(
r − σ 2

2

)
2C1 − σ 2

(
r − σ 2

2

)
(C1

σ 2 ) by the

expression of mt .

So
wt t = 0

As well, wt = 1
2 (r − σ 2

2 )C2 + (r − σ 2

2 )C1t + σ 2(C1
σ 2 q) − σ 2v(t) = C4

Hence



220 P. Lescot and L. Valade

v = (r − σ 2

2 )C1

σ 2
t + (r − σ 2

2 )

2σ 2
C2 − C4

σ 2

So we have :

f = C1t
2 + C2t + C3

w = C1tq + 1

2
C2q + C4t − C5

m = r̃C1

σ 2 tq − C1

2σ 2 q
2 +

(
r̃C2

2σ 2 − C4

σ 2

)

q − s̃2C1

2σ 2 t2 +
(

− s̃2C2

2σ 2 + r2C4

σ 2 + C1

2

)

t + C6

Finally we find a basis (Ni )1≤i≤6 of 6 isovectors, for which

Ñ1 = −t2
∂

∂t
− tq

∂

∂q
+ r̃

σ 2
tqu

∂

∂u
− 1

2σ 2
q2u

∂

∂u
− s̃2

2σ 2
ut2

∂

∂u
+ 1

2
ut

∂

∂u

Ñ2 = −t
∂

∂t
+ 1

2
q

∂

∂q
+ r̃

2σ 2
qu

∂

∂u
− s̃2

2σ 2
tu

∂

∂u

Ñ3 = − ∂

∂t

Ñ4 = −t
∂

∂q
− 1

σ 2
qu

∂

∂u
+ r2

σ 2
tu

∂

∂u

Ñ5 = ∂

∂q

Ñ6 = u
∂

∂u

4.1.2 Backward Heat Equation with Potential V

As observed before, we can limit ourselves to this equation, well defined for a final
boundary condition, in the context of Schrödinger’s problem.

The theorem can also be applied to determine the isovectors and so the symmetries
of the backward heat equation with a potential V (t, q). Although we assumed in the
first paragraph that the potential V is time independant, the symmetry analysis does
not require this hypothesis.

This equation is very important in the theory of Bernstein process, especially
concerning their applications to the Euclidian Quantum Mechanics.
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It is also present in the theory of affine interest rate models.
The results are already obtained by P. Lescot, H. Quintard and J.C. Zambrini for

the equivalent Hamilton-Jacobi-Bellman equation ([14, 16, 17]).
We consider the equation :

(EV
κ ) : κ

∂u

∂t
+ κ2

2

∂2u

∂q2
− V (t, q)u = 0

Applying Theorem 3.7 we obtain:

ft = 2wq

So we can pose

w = 1

2
ftq + a(t).

The second equation is:

κ(B1wt + umt + lt ) + Vtu f + Vquw − Vum − Vl + Vuwq

+ κ2

2
(B1mq + umqq + lqq + B1mq) + Vu(m + wq) = 0

For u = B1 = 0, l is a solution of the equation.
Differentiating according to B1 we have

wt = −κmq

So we can pose

m = −1

4K
fttq

2 − 1

K
atq + b(t).

Differentiating according to u we obtain

mt = − 1

κ
(Vt f + Vqw + 2Vwq + κ2

2
mqq)

That is

−1

4κ
ftt t q

2 − 1

κ
attq + bt = −1

κ
(Vt f + 1

2
Vq ftq + Vqa + V ft − κ

4
ftt )

Particular Case V = 0
We obtain −1

4
ftt t q

2 − attq + bt = κ

4
ftt
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Differentiating twice with respect to q we have ftt t = 0.
So

f = 2C1t
2 + C2t + C3.

Differentiating with respect to q we have att = 0.
Hence

w = 2C1tq + C2

2
q + C4t + C5

Finally bt = κC1 and

m = −C1

κ
q2 − C4

κ
q + κC1t + C6

Hence we have a basis of isovectors for which :

Ñ1 = −2t2
∂

∂t
− 2tq

∂

∂q
+ κtu

∂

∂u

Ñ2 = −t
∂

∂t
− 1

2
q

∂

∂q

Ñ3 = ∂

∂t

Ñ4 = −t
∂

∂q
− 1

κ
qu

∂

∂u

Ñ5 = ∂

∂q

Ñ6 = u
∂

∂u

We find a basis of isovectors similar to that of ([16, 19]).

Particular Case V (t, q) = C
q2 + Dq2:

For this potential we obtain:

1

4
ftt t q

2 + attq − κbt − 2Dftq
2 + 2Ca

q3
− 2Daq + κ

4
ftt = 0

Because f , a and b are independent of q, after multiplying by q3, we can equal
the terms in q5, q4, q3 and the constant terms in q.
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⎧
⎪⎪⎨

⎪⎪⎩

ftt t = 8Dft
att = 2Da
2Ca = 0
bt = 1

4 ftt

We find exactly the same system as in [14, 20].

5 Bernstein Processes

For simplicity, we shall only consider processes with values in R.
Many familiar stochastic processes can be viewed as Bernstein processes, solving

Schrödinger’s problem. Instead of a time interval centred in 0, we shall consider,
here, an interval [0, T ], and denote by θ the constant

√
κ .

Let us mention a few classical examples:

(1) The Brownian Motion (see e.g. [16, p. 200])
For t0 = 0, t1 = T > 0, μ0 = δ0 and μ1 = N (0, θ2T ), z(t) = θw(t) is a Bern-

stein process for V = 0, η(t, q) = 1 and η∗(t, q) = 1

θ
√
2π t

e− q2

2θ2 t .

Here
dz(t) = θdw(t).

(2) The Brownian Bridge (see [16, p. 201]).
Here t0 = 0, t1 = 1, V = 0, μ0 = μ1 = δ0 and

η(t, q) = 1√
1 − t

e
− q2

2θ2(1−t) .

Then

dz(t) = θdw(t) − z(t)

1 − t
dt.

(3) The Ornstein–Uhlenbeck process starting from 0

Here t0 = 0, t1 = T > 0, μ0 = δ0, μ1 = N(0,
θ2

2ω
(1 − e−2ωT )), V = ω2q2

2
and

η(t, q) = e
ω

2θ2
(θ2t−q2)

.

We have
dz(t) = θdw(t) − ωz(t)dt.
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6 Parametrization of a One-Factor Affine Model
in Stochastic Finance

A one–factor affine interest rate model is characterized by an instantaneous rate r(t),
satisfying a stochastic differential equation of the following type:

dr(t) = √
αr(t) + β dw(t) + (φ − λr(t)) dt ,

under the risk–neutral probability Q (α = 0 corresponds to the Vasicek model, and
β = 0 corresponds to the Cox–Ingersoll–Ross model; see [8, 10]).

Assuming α �= 0, let us set

θ = α

2
,

φ̃ := φ + λβ

α
,

δ := 4φ̃

α
,

C := α2

8

(
φ̃ − α

4

) (

φ̃ − 3α

4

)

= α4

128
(δ − 1)(δ − 3) ,

D := λ2

8
,

and define the potential

V (t, q) = C

q2
+ Dq2 .

Theorem 6.1 (see [14, Theorem 5.4]) Consider the process

z(t) = √
αr(t) + β

and the stopping time
T̃ = inf{t > 0|αr(t) + β = 0}.

(1) One has T̃ = +∞ a.s. for δ ≥ 2, and T̃ < +∞ a.s. for δ < 2. (2) There
exists a process y(t) satisfying the stochastic differential equation

∀t > 0

dy(t) = θdw(t) + B̃(t, y(t))dt
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relatively to the canonical increasing filtration of the Brownian w, where

B̃ ≡de f θ2

∂η

∂q
η

.

for a certain solution η of (EV )

For each given t > 0, the law of y(t) is η(t, q)η∗(t, q)dq, where η∗ satisfies the
dual equation (E ′

V ). One has

z(t) = y(t) ∀t ∈ [0, T̃ [

In particular, in case δ ≥ 2, z itself is a Bernstein process on any interval [0, T0]
(T0 > 0).

Proposition 6.2 The isovector algebra associated with the affine model has dimen-
sion 6 if and only if δ ∈ {1, 3}; in the opposite case, it has dimension 4.

Let us analyze more closely the first case; the general case is considered in [14].

1) φ̃ = α

4
, i.e. δ = 1 . Then y(t) is a solution of

dy(t) = α

2
dw(t) − λ

2
y(t)dt ,

i.e. y(t) is an Ornstein–Uhlenbeck process, and the potential V is quadratic.
Here

η(t, q) = e
λt
4 − λq2

α2 .

From

y(t) = e− λt
2 (z0 + α

2

∫ t

0
e

λs
2 dw(s))

= e− λt
2 (z0 + w̃(

α2(eλt − 1)

4λ
)) ,

(w̃ denoting another Brownian motion), it appears that y(t) follows a normal law νt

with mean e− λt
2 z0 and variance α2(1−e−λt )

4λ .
For each T > 0, (y(t))0≤t≤T is a Bernstein process with μ0 = δz0 and μ1 = νT .
The law of y(t) therefore has density

ρt (q) = 2
√

λ

α
√
2π(1 − e−λt )

e
(−
2λ(q − e− λt

2 z0)2

α2(1 − e−λt )
)

.
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whence

η∗(t, q) = ρt (q)

η(t, q)

= 1

α

√√
√
√

λ

π sinh (
λt

2
)

e
(
−λq2 − λq2e−λt + 4λqz0e− λt

2 − 2λz20e
−λt

α2(1 − e−λt )
)

and one may check that, as was to be expected, η∗ satisfies (E ′
V ).

(2) φ̃ = 3α

4
, i.e. δ = 3.

Then

η(t, q) = q e

λ

α2
(
3α2t

4
− q2)

.

Let us define

s(t) = e
λt
2

1

y(t)
;

then an easy computation using Itô’s formula gives

ds(t) = −α

2
e

λt
2 s(t)2dw(t) ;

in particular, s(t) is a forward martingale.
It may be seen that, in case X0 = 0,

Xt = e−λt Y (
α2(eλt − 1)

4λ
)

where Y is a BESQ3(squared Bessel process with parameter 3) with Y (0) = 0. But,
for fixed t > 0, Yt has the same law as tY1, and Y1 = ||B1||2 is the square of the norm
of a 3–dimensional Brownian motion (see [6]); the law of Y1 is therefore

1√
2π

e− u
2
√
u1u≥0du .

Therefore the density ρt (q) of the law of y(t) is given by:

ρt (q) = 1√
2π

16λ
3
2

α3(1 − e−λt )
3
2

q2e
−

2λq2

α2(1 − e−λt )
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and

η∗(t, q) = ρt (q)

η(t, q)
= 16λ

3
2

α3
√
2π

(1 − e−λt )−
3
2 qe

3λt
4 − λq2

α2 tanh( λt
2 ) .

For X0 �= 0, a Bessel function appears in the expression for η∗.
M. Houda and the first author ([10]) have extended these computations.

7 Generalized Brownian Bridges

Let us fix T > 0 and β ∈ R. Mansuy’s generalized Brownian Bridge ([18]) X (β,γ,T,x)

is the solution X (t) of the stochastic differential equation

dX (t) = θdw(t) − β
X (t)

T − t
dt

with initial value X (0) = x .
It is a Bernstein process for

η(t, q) := (T − t)−
β

2 e
− βq2

2θ2(T−t)

and

V (t, q) := β(β − 1)q2

2(T − t)2
,

an example of semi–classical potential.

8 Conclusion

The class of Bernstein reciprocal processes allows a study of its symmetries founded
on its quantum-like analogy. In particular, as suggested by Feynman, it should allow
the construction of a dynamical theory where those symmetries should play a role
as fundamental as in classical mechanics. Although a lot of progress has been made
since [23] much more should be done. Using the symmetries, how can we define a
stochastic version of classical integrability? Such a notion should inject in stochastic
analysis key ideas of dynamical systems theory. For instance a stochastic deformation
of Symplectic Geometry whose symplectomorphisms would precisely describe all
transformations preserving dynamcal structures.
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Since Schrödinger’s original problem is now regarded as a foundational aspect
of Optimal transportation theory it is likely that, in this area also, those processes
will play an important role as natural regularizations of the traditional analytical and
deterministic approaches.
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On the Positivity of Local Mild Solutions
to Stochastic Evolution Equations

Carlo Marinelli and Luca Scarpa

Abstract We provide sufficient conditions on the coefficients of a stochastic evolu-
tion equation on a Hilbert space of functions driven by a cylindrical Wiener process
ensuring that its mild solution is positive if the initial datum is positive. As an appli-
cation, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model
via Musiela’s stochastic PDE.

Keywords Positivity · Mild solutions · Stochastic evolution equations · HJM
model.

1 Introduction

Let us consider a stochastic evolution equation of the type

du + Au dt = F(u) dt + B(u) dW, u(0) = u0, (1.1)

where A is a linear maximal monotone operator on a Hilbert space of functions
H , the coefficients F and B satisfy suitable integrability assumptions, and W is a
cylindrical Wiener process. Precise assumptions on the data of the Cauchy problem
(1.1) are given in Sect. 2 below. Our goal is to establish a maximum principle for
(local) mild solutions to (1.1), i.e. to provide sufficient conditions on the operator A
and on the coefficients F and B such that positivity of the initial datum u0 implies
positivity of the solution u (see Theorem 2.2 below).
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A simpler problemwas studied in [10],where the coefficients F and B are assumed
to be Lipschitz continuous. Here we simply assume that F and B satisfy rather min-
imal integrability conditions and that a local mild solution exists. On the other hand,
in [10] the linear operator A need only generate a positivity preserving semigroup,
while here we require that A generates a sub-Markovian semigroup.

We refer to [10] for a discussion about the relation between other positivity results
for solutions to stochastic partial differential equations and ours. It is however prob-
ably worth pointing out that most existing results seem to deal with equations in the
variational setting (see, e.g., [1, 7, 8, 13]).

As an application, we provide an alternative, more direct proof of the positivity of
forward rates in the Heath-Jarrow-Morton [5] framework than the one in [10]. This
is obtained, as is now classical, viewing forward curves as solutions to the so-called
Musiela stochastic PDE (see, e.g., [3, 11]).

2 Assumptions and Main Result

Let (Ω,F ,P) be a probability space endowed with a complete right-continuous
filtration (Ft )t∈[0,T ], with T > 0 a fixed final time, on which all random elements
will be defined. Identities and inequalities between random variables are meant to
hold P-almost surely, and two stochastic processes are declared equal, unless other-
wise stated, if they are indistinguishable. The σ -algebra of progressively measurable
subsets of Ω × [0, T ] will be denoted by R. We shall denote a cylindrical Wiener
process on a separable Hilbert space U by W . Standard notation and terminology
of stochastic calculus for semimartingales will be used throughout (see, e.g., [12]).
In particular, given an adapted process X and a stopping time τ , X τ will denote the
process X stopped at τ . Similarly, if X is also càdlàg, X τ− stands for the process X
pre-stopped at τ .

For any separable Hilbert spaces E1 and E2, we use the symbolsL (E1, E2) and
L 2(E1, E2) for the spaces of linear continuous and Hilbert-Schmidt operators from
E1 to E2, respectively. The space of continuous bilinear maps from E1 × E1 to E2

will be denoted by L2(E1; E2). The n-th order Fréchet and Gâteaux derivatives of
a function Φ : E1 → E2 at a point x ∈ E1 are denoted by DnΦ(x) and Dn

GΦ(x),
respectively, omitting the superscript if n = 1, as usual.

We shall work under the following standing assumptions.

(A1) There exists an open set O in R
d , d ≥ 1, and a Borel measure μ such that

H = L2(O, μ).

The norm and the scalar product on H will be denoted by ‖ · ‖ and 〈·, ·〉, respectively.
For any f, g ∈ H , we shall write f ≥ g to mean that f ≥ g μ-almost everywhere.

(A2) A is a linear maximal monotone operator on H such that its resolvent is sub-
Markovian and is a contraction with respect to the L1(O, μ)-norm.

Recall that the resolvent of A, i.e. the family of linear continuous operators on H
defined by
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Jλ := (I + λA)−1, λ > 0,

is said to be sub-Markovian if, for every λ > 0 and every φ ∈ H such that 0 ≤ φ ≤ 1,
one has 0 ≤ Jλφ ≤ 1.

(A3) F : Ω × [0, T ] × H → H and B : Ω × [0, T ] × H → L 2(U, H) are R ⊗
B(H)-measurable, and there exists a constant C > 0 such that

−〈F(ω, t, h), h−〉 + 1

2

∥
∥1{h≤0}B(ω, t, h)

∥
∥
2
L 2(U,H)

≤ C‖h−‖2H

for all (ω, t, h) ∈ Ω × [0, T ] × H .

(A4) u0 ∈ L0(Ω,F0; H)

Definition 2.1 A local mild solution to the Cauchy problem (1.1) is a pair (u, τ ),
where τ is a stopping time with τ ≤ T , and u : [[0, τ [[→ H is a measurable adapted
process with continuous trajectories such that, for any stopping time σ < τ , one has

(i) S(t − ·)F(u)1[[0,σ ]] ∈ L0(Ω; L1(0, t; H)) for all t ∈ [0, T ];
(ii) S(t − ·)B(u)1[[0,σ ]] ∈ L0(Ω; L2(0, t;L 2(U, H))) for all t ∈ [0, T ],
and

u = S(·)u0 +
∫ ·

0
S(· − s)F(s, u(s)) ds +

∫ ·

0
S(· − s)B(s, u(s)) dW (s).

The last identity is to be understood in the sense of indistinguishability of processes
defined on the stochastic interval [[0, τ [[. Here the stochastic convolution is defined
on [[0, σ ]], for every stopping time σ < τ , as

(∫ t

0
S(t − s)B(s, u(s))1[[0,σ ]](s) dW (s)

)

t∈[0,σ ]
.

The main result is the following.

Theorem 2.2 Let (u, τ ) be a local mild solution to the Cauchy problem (1.1) such
that, for every stopping time σ < τ , one has

i) F(u)1[[0,σ ]] ∈ L0(Ω; L1(0, T ; H));
(ii) B(u)1[[0,σ ]] ∈ L0(Ω; L2(0, T ;L 2(U, H))).

If u0 ≥ 0, then uτ−(t) ≥ 0 for all t ∈ [0, T ].

3 Auxiliary Results

The arguments used in the proof of Theorem 2.2 (see Sect. 4 below) rely on the
following results, that we recall here for the reader’s convenience. The first is a
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continuous dependence result for mild solutions to stochastic evolution equations
in the form (1.1) with respect to the coefficients and the initial datum. This is a
consequence of a more general statement proved in [9, Corollary 3.4]. Let

(u0n)n ⊂ L0(Ω,F0; H),

( fn)n, f ⊂ L0(Ω; L1(0, T ; H)),

(Gn)n,G ⊂ L0(Ω; L2(0, T ;L 2(U, H)))

be such that the H -valued processes fn , f , Gnv, and Gv are strongly measurable
and adapted for all v ∈ U and n ∈ N. Then the Cauchy problems

dun + Aun dt = fn dt + Gn dW, un(0) = u0n,

and
du + Au dt = f dt + G dW, u(0) = u0,

admit unique mild solutions un and u, respectively.

Proposition 3.1 Assume that

u0n −→ u0 in L0(Ω; H),

fn −→ f in L0(Ω; L1(0, T ; H)),

Gn −→ G in L0(Ω; L2(0, T ;L 2(U, H))).

Then un → u in L0(Ω;C([0, T ]; H)).

The second result we shall need is a generalized Itô formula, the proof of which
can be found in [10].

Proposition 3.2 Let G : H → R be continuously Fréchet differentiable and DG
be Gâteaux differentiable, with D2

GG : H → L2(H ;R) such that (ϕ, ζ1, ζ2) �→
D2

GG(ϕ)[ζ1, ζ2] is continuous, and assume that G, DG, and D2
GG are polyno-

mially bounded. Moreover, let the processes f ∈ L0(Ω; L1(0, T ; H)) and Φ ∈
L0(Ω; L2(0, T ;L 2(U, H))) be measurable and adapted, and v0 ∈ L0(Ω,F0; H).
Setting

v := v0 +
∫ ·

0
f (s) ds +

∫ ·

0
Φ(s) dW (s),

one has

G(v) = G(v0) +
∫ ·

0

(

DG(v) f + 1

2
Tr

(

Φ∗D2
GG(v)Φ

))

(s) ds

+
∫ ·

0
DG(v(s))Φ(s) dW (s).
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Finally, we recall an inequality for maximal monotone linear operators with sub-
Markovian resolvent due to Brézis and Strauss (see [2, Lemma 2]).1

Lemma 3.3 Let β : R → 2R be a maximal monotone graph with 0 ∈ β(0). Let ϕ ∈
L p(O) with Aϕ ∈ L p(O), and z ∈ Lq(O) with z ∈ β(ϕ) a.e. in O, where p, q ∈
[1,+∞] and 1/p + 1/q = 1. Then

∫

O
(Aϕ)z ≥ 0.

We include a sketch of proof for the reader’s convenience, assuming for simplicity
that β : R → R is continuous and bounded. Let j : R → R+ be a (differentiable,
convex) primitive of β and

Aλ := 1

λ

(

I − (I + λA)−1
) = 1

λ
(I − Jλ), λ > 0,

be the Yosida approximation of A. It is well known that Aλ is a linear maximal
monotone bounded operator on H and that, for every v ∈ D(A), Aλv → Av as
λ → 0. Let v ∈ D(A). The convexity of j implies, for every λ > 0, that

〈

Aλv, β(v)
〉

L2 = 1

λ

〈

v − Jλv, j ′(v)
〉

L2

≥ 1

λ

(∫

O
j (v) −

∫

O
j (Jλv)

)

= 1

λ

(‖ j (v)‖L1 − ‖ j (Jλv)‖L1

)

.

Since Jλ is sub-Markovian and j is convex, the generalized Jensen inequality for
positive operators (see [4]) and the contractivity of Jλ in L1 imply that

∥
∥ j (Jλv)

∥
∥
L1 ≤ ∥

∥Jλ j (v)
∥
∥
L1 ≤ ∥

∥ j (v)
∥
∥
L1 ,

i.e. that
〈

Aλv, β(v)
〉

L2 ≥ 0

for every λ → 0. Passing to the limit as λ → 0 yields 〈Av, β(v)〉L2 ≥ 0.

4 Proof of Theorem 2.2

The proof is divided into two parts. First we show that a local mild solution u to (1.1)
can be approximated by strong solutions to regularized equations. As a second step,
we show that such approximating processes are positive, thanks to a suitable version
of Itô’s formula.

1 For a related inequality cf. also [14, Lemma 5.1].
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4.1 Approximation of the solution

Let (u, τ ) be a local mild solution to (1.1). Let σ be a stopping time with σ < τ , so
that u : [[0, σ ]] → H is well defined, and set

ū := uσ ∈ L0(Ω;C([0, T ]; H)),

F̄ := F(·, u)1[[0,σ ]] ∈ L0(Ω; L1(0, T ; H)),

B̄ := B(·, u)1[[0,σ ]] ∈ L0(Ω; L2(0, T ;L 2(U, H))).

In particular, One has

ū(t) := S(t)u0 +
∫ t

0
S(t − s)F̄(s) ds +

∫ t

0
S(t − s)B̄(s) dW (s) (4.1)

for all t ∈ [0, T ] P-a.s., or, equivalently, ū is the unique global mild solution to the
Cauchy problem

dū + Aū dt = F̄ dt + B̄ dW, ū(0) = u0.

Recalling that Jλ ∈ L (H,D(A)) for all λ > 0, one has

F̄λ := JλF(·, u)1[[0,σ ]] = Jλ F̄ ∈ L0(Ω; L1(0, T ;D(A))),

B̄λ := JλB(·, u)1[[0,σ ]] = Jλ B̄ ∈ L0(Ω; L2(0, T ;L 2(U,D(A)))),

u0λ := Jλu0 ∈ L0(Ω,F0;D(A)),

where the second assertion is an immediate consequence of the ideal property of
Hilbert-Schmidt operators. The process uλ : Ω × [0, T ] → H defined as

uλ(t) := S(t)u0λ +
∫ t

0
S(t − s)F̄λ(s) ds +

∫ t

0
S(t − s)B̄λ(s) dW (s), t ∈ [0, T ],

(4.2)
therefore belongs to L0(Ω;C([0, T ];D(A))) and is the unique global strong solution
to the Cauchy problem

duλ + Auλ dt = F̄λ dt + B̄λ dW, uλ(0) = u0λ,
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i.e.

uλ +
∫ ·

0
Auλ(s) ds = u0λ +

∫ ·

0
F̄λ(s) ds +

∫ ·

0
B̄λ(s) dW (s) (4.3)

in the sense of indistinguishable H -valued processes. Furthermore, since Jλ is con-
tractive and converges to the identity in the strong operator topology of L (H, H)

as λ → 0, i.e. Jλh → h for every h ∈ H , one has

u0λ −→ u0 in L0(Ω; H),

F̄λ −→ F̄ in L0(Ω; L2(0, T ; H)),

B̄λ −→ B̄ in L0(Ω; L2(0, T ;L 2(U, H))),

where the second convergence follows immediately by the dominated convergence
theorem, and the third one by a continuity property of Hilbert-Schmidt operators
(see, e.g., [6, Theorem 9.1.14]). Finally, thanks to Proposition 3.1, we deduce that

uλ −→ ū in L0(Ω;C([0, T ]; H)). (4.4)

4.2 Positivity

Let us introduce the functional

G : H −→ R+

ϕ �−→ 1

2

∫

O
|ϕ−|2,

as well as the family of regularized functionals (Gn)n∈N defined by

Gn : H −→ R+

ϕ �−→
∫

O
gn(ϕ),

where gn : R → R+ is a convex, twice continuously differentiable approximation of
r �→ (r−)2/2 such that (g′′

n ) is uniformly bounded and converges to mathbbm1R− ,
and g′

n(r) → −r− as n → ∞ for every r ∈ R. The existence of such an approximat-
ing sequence is well known (see, e.g., [15, Sect. 3] for an analogous construction).
One can verify (see, e.g., [10]) that, for every n ∈ N, Gn is everywhere continuously
Fréchet differentiable with derivative

DGn : H −→ L (H,R) � H

ϕ �−→ g′
n(ϕ),
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and that DGn : H → H is Gâteaux differentiable with Gâteaux derivative given by

D2
GGn : H −→ L (H, H) � L2(H ;R)

ϕ �−→
[

(ζ1, ζ2) �→
∫

O
g′′
n (ϕ)ζ1ζ2

]

.

Furthermore, the map (ϕ, ζ1, ζ2) �→ D2
GGn(ϕ)(ζ1, ζ2) is continuous. Proposition 3.2

applied to the process uλ defined by (4.3) then yields

Gn(uλ) +
∫ ·

0

〈

Auλ, DGn(uλ)
〉

(s) ds

= Gn(u0λ) +
∫ ·

0
DGn(uλ(s))B̄λ(s) dW (s)

+
∫ ·

0

(

DGn(uλ)F̄λ + 1

2
Tr

(

B̄∗
λD

2
GGn(uλ)B̄λ

))

(s) ds

(4.5)

Recalling that g′
n : R → R is increasing, Lemma 3.3 implies that

〈Auλ, DGn(uλ)〉 = 〈Auλ, g
′(uλ)〉 ≥ 0, (4.6)

hence also, denoting a complete orthonormal system of U by (e j ),

∫

O
gn(uλ(t)) ≤

∫

O
gn(u0λ) +

∫ t

0
g′
n(uλ(s))B̄λ(s) dW (s)

+
∫ t

0
g′
n(uλ(s))F̄λ(s) ds + 1

2

∫ t

0

∞
∑

j=0

∫

O
g′′
n (uλ(s))

∣
∣B̄λ(s)e j

∣
∣
2
ds

for every t ∈ [0, T ] and n ∈ N. We are now going to pass to the limit as n → ∞
in this inequality. Recalling that (g′′

n ) is uniformly bounded and that the paths of uλ

belong to C([0, T ]; H) P-a.s., the dominated convergence theorem yields

∫

O
gn(uλ(t)) −→ 1

2

∥
∥u−

λ (t)
∥
∥
2 ∀t ∈ [0, T ],

∫

O
gn(u0λ) −→ 1

2

∥
∥u−

0λ

∥
∥
2
.

Note that u0 is positive and Jλ is positivity preserving, hence u0λ = Jλu0 is also
positive and, in particular, u−

0λ is equal to zero a.e. in O. Let us introduce the (real)
continuous local martingales (Mλ,n)n∈N, Mλ, defined as
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Mλ,n
t :=

∫ t

0
g′
n(uλ(s))B̄λ(s) dW (s),

Mλ
t := −

∫ t

0
u−

λ (s)B̄λ(s) dW (s).

One has, by the ideal property of Hilbert-Schmidt operators,

[

Mλ,n − Mλ, Mλ,n − Mλ
]

t =
∫ t

0

∥
∥(g′

n(uλ(s)) + u−
λ (s))B̄λ(s)

∥
∥
2
L 2(U,R)

ds

≤
∫ t

0

∥
∥g′

n(uλ(s)) + u−
λ (s)

∥
∥
2∥
∥B̄λ(s)

∥
∥
2
L 2(U,H)

ds

for all t ∈ [0, T ]. Recalling that uλ ∈ L0(Ω;C([0, T ]; H)) and g′
n(r) → −r−

for every r ∈ R, it follows by the dominated convergence theorem that
[Mλ,n − Mλ, Mλ,n − Mλ] → 0, hence that Mλ,n → Mλ, as n → ∞, i.e. that

∫ ·

0
g′
n(uλ(s))B̄λ(s) dW (s) −→ −

∫ ·

0
u−

λ (s)B̄λ(s) dW (s)

in the ucp topology. Similarly, the pathwise continuity of uλ and the dominated
convergence theorem yield

∫ t

0
g′
n(uλ(s))F̄λ(s) ds −→ −

∫ t

0
u−

λ (s)F̄λ(s) ds

for all t ∈ [0, T ] as n → ∞. Finally, the pointwise convergence g′′
n → 1R− and the

dominated convergence theorem imply that

∫ t

0

∞
∑

j=0

∫

O
g′′
n (uλ(s))

∣
∣B̄λ(s)e j

∣
∣
2
ds −→

∫ t

0

∞
∑

j=0

∫

O
1{uλ(s)≤0}

∣
∣B̄λ(s)e j

∣
∣
2
ds

for all t ∈ [0, T ] as n → ∞. We are thus left with

∥
∥u−

λ (t)
∥
∥
2 ≤

∫ t

0

(

−2〈u−
λ (s), F̄λ(s)〉 +

∞
∑

j=0

∫

O
1{uλ(s)≤0}

∣
∣B̄λ(s)e j

∣
∣
2
)

ds

−
∫ t

0
u−

λ (s)B̄λ(s) dW (s).

Let us now take the limit as λ → 0: if follows from the convergence property (4.4)
and the continuous mapping theorem that

∥
∥u−

λ (t)
∥
∥
2 −→ ∥

∥ū−(t)
∥
∥
2
.
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Recalling that F̄λ = JλF(ū), which converges pointwise to F̄ , one has

∫ t

0
−2

〈

u−
λ (s), F̄λ(s)

〉

ds −→
∫ t

0
−2

〈

ū−(s), F̄(s)
〉

ds

Appealing again to (4.4), it is not difficult to check that

1{ū(s)≤0} ≥ lim sup
λ→0

1{uλ(s)≤0}

Hence it follows from Fatou’s lemma that

lim sup
λ→0

∫ t

0

∞
∑

j=0

∫

O
1{uλ(s)<0}

∣
∣B̄λ(s)e j

∣
∣
2
ds ≤

∫ t

0

∞
∑

j=0

∫

O
1{ū(s)<0}

∣
∣B̄(s)e j

∣
∣
2
ds.

Let us define the real continuous local martingale M as

Mt := −
∫ t

0
ū−(s)B̄(s) dW (s).

One has

[

Mλ − M, Mλ − M
]

t
=

∫ t

0

∥
∥u−

λ (s)B̄λ(s) − ū−(s)B̄(s)
∥
∥
2
L 2(U,R)

ds,

where, by the ideal property of Hilbert-Schmidt operators and the contractivity of
Jλ,

∥
∥u−

λ B̄λ − ū− B̄
∥
∥
L 2(U,R)

≤ ∥
∥(u−

λ − ū−)B̄λ

∥
∥
L 2(U,R)

+ ∥
∥ū−(B̄λ − B̄)

∥
∥
L 2(U,R)

≤ ∥
∥u−

λ − ū−∥
∥
∥
∥B̄

∥
∥
L 2(U,H)

+ ∥
∥ū−∥

∥
∥
∥B̄λ − B̄

∥
∥
L 2(U,H)

.

Since uλ converges to ū in the sense of (4.4) and, as already seen, B̄λ → B̄ in
L0(Ω; L2(0, T ;L 2(U, H))), the dominated convergence theorem yields, for every
t ∈ [0, T ],

[

Mλ − M, Mλ − M
]

t −→ 0,

thus also ∫ ·

0
u−

λ (s)B̄λ(s) dW (s) −→
∫ ·

0
ū−(s)B̄(s) dW (s).

in the ucp topology. Recalling assumption (A3), one obtains, for every t ∈ [0, T ],

‖ū−(t)‖2 ≤ 2C
∫ t

0
‖ū−(s)‖2 ds − 2

∫ t

0
ū−(s)B(s, ū(s)) dW (s),
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thus also, integrating by parts,

e−2Ct‖ū−(t)‖2 ≤ −2
∫ t

0
e−2Cs ū−(s)B(s, ū(s)) dW (s) =: M̃t

The process M̃ is a positive local martingale, hence a supermartingale, with M̃(0) =
0, therefore M is identically equal to zero. This implies that ‖ū−(t)‖ = 0 for all
t ∈ [0, T ], hence, in particular, that u(t) is positive for all t ∈ [0, T ]. By definition
of ū, we deduce that

uσ ≥ 0 ∀t ∈ [0, T ] × O

for every σ < τ . Since σ is arbitrary, this readily implies that

uτ−(t) ≥ 0 ∀t ∈ [0, T ],

thus completing the proof of Theorem 2.2.

Remark 4.1 In [10] the substantially weaker assumption was made that −A gen-
erates a positive semigroup. This was possible because F and B were assumed to
be Lipschitz continuous. In fact, in this case the process uλ, strong solution of the
equation obtained by replacing A with its Yosida approximation Aλ in (1.1), i.e.

duλ + Aλuλ dt = F(uλ) dt + B(uλ) dW, uλ(0) = u0,

converges to the unique mild solution u to (1.1), and the positivity of uλ, for every
λ > 0, was shown. In the more general situation considered here, where F and B
are not supposed to be Lipschitz continuous, it is not even clear whether the above
regularized equation admits a solution at all. For this reasonwe introduced a different
approximation scheme in Sect. 4.1, that implies the need for an estimate such as (4.6),
which in turn is satisfied if −A generates a sub-Markovian semigroup, rather than
just a positive one.

5 Positivity of Forward Rates

Musiela’s stochastic PDE can be written as

du + Au dt = β(t, u) dt +
∞

∑

k=1

σk(t, u) dwk(t), u(0) = u0, (5.1)

where−A is (formally, for the moment) the infinitesimal generator of the semigroup
of translations, (wk)k∈N is a sequence of independent standard Wiener processes, σk

is a random, time-dependent superposition operator for each k ∈ N, as well as β,
and u takes values in a space of continuous functions, so that u(t, x) := [u(t)](x),
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x ≥ 0, models the value of the forward rate prevailing at time t for delivery at time
t + x . In order to exclude arbitrage (or, more precisely, in order for the corresponding
discounted bond price process to be a local martingale), β needs to satisfy the so-
called Heath-Jarrow-Morton no-arbitrage condition

β(t, v) =
∞

∑

k=1

σk(t, v)

∫ ·

0
[σk(t, v)](y) dy.

In order for (5.1) to admit a solution with continuous paths, a by now standard choice
of state space is the Hilbert space Hα , α > 0, which consists of absolutely continuous
functions φ : R+ → R such that

∥
∥φ

∥
∥
2
Hα

:= φ(∞)2 +
∫ ∞

0
|φ′(x)|2eαx dx < ∞.

Under measurability, local boundedness, and local Lipschitz continuity conditions
on (σk), one can rewrite (5.1) as

du + Au dt = β(t, u) dt + B(t, u) dW (t), u(0) = u0, (5.2)

where−A is the generator of the semigroup of translations on Hα ,W is a cylindrical
Wiener process on U = 2, and B : Ω × R+ × H → L 2(U, H) is such that

∞
∑

k=1

∫ ·

0
σk(s, v(s)) dwk(s) =

∫ ·

0
B(s, v(s)) dW (s).

Under such assumptions on (σk), (5.1) admits a unique local mild solution with
values in Hα . If (σk) satisfy stronger (global) boundedness and Lipschitz continuity
assumptions, then the local mild solution is in fact global. For details we refer to [3],
as well as to [10].

Positivity of forward rates, i.e. of the mild solution to (5.1), is established in [10]
by proving positivity of mild solutions in weighted L2 spaces to regularized ver-
sions of (5.1). Such an approximation argument is employed because the conditions
on (σk) ensuring (local) Lipschitz continuity of the coefficients in the associated
stochastic evolution (5.2) equation in Hα do not imply (local) Lipschitz continuity
of the coefficients if state space is changed to a weighted L2 space.

Thanks to Theorem 2.2, we can give a much shorter, more direct proof of the
(criterion for the) positivity of forward rates. Let L2−α denote the weighted space
L2(R+, e−αx dx), and note that Hα is continuously embedded in L2−α =: H . Let us
check that assumptions (A1), (A2), and (A3) are satisfied.Assumption (A1) holds true
with the choiceO = R+, endowedwith the absolutely continuousmeasureμ(dx) :=
e−αx dx . As far as assumption (A2) is concerned, a simple computation shows that
A + α I is monotone on L2−α , and, by standard ODE theory, one also verifies that
the range of A + α I + I coincides with the whole space L2−α , therefore A + α I is



On the Positivity of Local Mild Solutions to Stochastic Evolution Equations 243

maximal monotone. Even though A itself is not maximal monotone, this is clearly
not restrictive, as the “correction” term α I can be incorporated in β without loss of
generality. To verify that the resolvent Jλ ∈ L (H) of A + α I is sub-Markovian, let
y ∈ H , so that Jλy ∈ D(A) is the unique solution yλ to the problem

yλ − λy′
λ + λαyλ = y.

If 0 ≤ y ≤ 1 a.e. in R+, then we have, multiplying both sides by (yλ − 1)+, in the
sense of the scalar product of H , that

(1 + λα)
〈

yλ, (yλ − 1)+
〉

−α
− λ

〈

y′
λ, (yλ − 1)+

〉

−α

= 〈

y, (yλ − 1)+
〉

−α
≤ 〈

1, (yλ − 1)+
〉

−α
.

Here and in the following we denote the scalar product and norm of L2−α simply by
〈·, ·〉−α and ‖ · ‖−α , respectively. Since

〈

yλ, (yλ − 1)+
〉

−α
− 〈

1, (yλ − 1)+
〉

−α
= ∥

∥(yλ − 1)+
∥
∥
2
−α

, (5.3)

we obtain

∥
∥(yλ − 1)+

∥
∥
2
−α

− λ

2

∫ ∞

0

d

dx
((yλ − 1)+)2(x)e−αx dx + λα

〈

yλ, (yλ − 1)+
〉

−α
≤ 0,

where, integrating by parts,

− λ

2

∫ ∞

0

d

dx
((yλ − 1)+)2(x)e−αx dx

= −λα

2

∫ ∞

0
((yλ(x) − 1)+)2e−αx dx + λ

2
((yλ(0) − 1)+)2

= −λα

2

〈

yλ, (yλ − 1)+
〉

−α
+ λα

2

〈

1, (yλ − 1)+
〉

−α
+ λ

2
((yλ(0) − 1)+)2

≥ −λα

2

〈

yλ, (yλ − 1)+
〉

−α
.

Rearranging terms yields

∥
∥(yλ − 1)+

∥
∥
2
−α

+ λα

2

〈

yλ, (yλ − 1)+
〉

−α
≤ 0,

where the second term on the left-hand side is positive by (5.3). Therefore ‖(yλ −
1)+‖−α = 0, which implies that yλ ≤ 1 a.e. in R+. A completely similar argument,
i.e. scalarly multiplying the resolvent equation by y−

λ , also shows that yλ ≥ 0 a.e. in
R+, thus completing the proof that Jλ is sub-Markovian. We still need to show that
Jλ is contractive in L1−α . Let y, z ∈ H and yλ := Jλy, zλ := Jλz, so that
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(yλ − zλ) − λ(yλ − zλ)
′ + λα(yλ − zλ) = y − z. (5.4)

Define the sequences of functions (γk), (γ̂k) ⊂ R
R as

γk : r �→ tanh(kr), γ̂k : r �→
∫ r

0
γk(s) ds,

and recall that, as k → ∞, γk converges pointwise to the sign function, and γ̂k
converges pointwise to the absolute value function. Scalarly multiplying (5.4) with
γk(yλ − zλ) yields

(1 + λα)
〈

yλ − zλ, γk(yλ − zλ)
〉

−α
− λ

〈

(yλ − zλ)
′, γk(yλ − zλ)

〉

−α

= 〈

y − z, γk(yλ − zλ)
〉

−α
≤ ∥

∥y − z
∥
∥
L1−α

,

where, integrating by parts,

〈

(yλ − zλ)
′, γk(yλ − zλ)

〉

−α

=
∫ ∞

0

(

γk(yλ − zλ)(x)(yλ − zλ)
′(x)

)

e−αx dx

=
∫ ∞

0

d

dx
γ̂k(yλ − zλ)(x)e

−αx dx

= −γ̂k(yλ(0) − zλ(0)) + α

∫ ∞

0
γ̂k(yλ − zλ)(x)e

−αx dx

≤ α

∫ ∞

0
γ̂k(yλ − zλ)(x)e

−αx dx .

This implies

〈

yλ − zλ, γk(yλ − zλ)
〉

−α

+ λα
〈

yλ − zλ, γk(yλ − zλ)
〉

−α
− λα

∫ ∞

0
γ̂k(yλ − zλ)(x)e

−αx dx

≤ ∥
∥y − z

∥
∥
L1−α

.

Taking the limit as k → ∞, the sum of the second and third term on the left-hand
side converges to zero by the dominated convergence theorem, while the first term
on the left-hand side converges to ‖yλ − zλ‖L1−α

, thus proving that

∥
∥yλ − zλ

∥
∥
L1−α

≤ ∥
∥y − z

∥
∥
L1−α

,

i.e. that the resolvent of A + α I is contractive in L1−α . We have thus shown that
assumption (A2) holds for A + α I . Moreover, assumption (A3) is satisfied if, for
example,
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|σk(ω, t, x, r)|1{r≤0} � r−.

for all k ∈ N and (ω, t, x) ∈ Ω × R
2+ (see [10], where also slightlymore general suf-

ficient conditions are provided). Since all integrability assumptions of Theorem 2.2
are satisfied, as it follows by inspection of the proof of well-posedness in Hα (see [3,
10, 11]), we conclude that, under the above assumptions on (σk), forward rates are
positive at all times.
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Invariance of Poisson Point Processes
by Moment Identities with Statistical
Applications

Nicolas Privault

Abstract This paper reviews nonlinear extensions of the Slivnyak-Mecke formula
as moment identities for functionals of Poisson point processes, and some of their
applications. This includes studying the invariance of Poisson point processes under
random transformations, as well as applications to distribution estimation for random
sets in stochastic geometry, random graph connectivity, and density estimation for
neuron membrane potentials in Poisson shot noise models.
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Random-connection model · Filtered shot noise processes · Gram-charlier
expansions · Neuron membrane potentials
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1 Introduction

Computing the moments and cumulants of random variables has important applica-
tions in probability and statistics, e.g. for the estimation of distributions. In this paper
we review the computation of moments of random functionals of Poisson point pro-
cesses via combinatorial identities that extend the Slivnyak-Mecke formula to higher
order moments, see [16, 19], and present some applications.

For this, we derive moment identities for stochastic integrals using sums over
partitions. Those identities are used to derive criteria for invariance of Poisson ran-
dom measures under random transformations, and for distribution estimation of the
cardinality of random sets based on a Poisson point process.
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The moments of random functionals can be used to estimate random graph con-
nectivity in the random connection model using probability generating functions.
This approach is based on the computation of the moments of k-hop path counts as
sums over non-flat partitions, using extensions of moment identities to multiparam-
eter processes, see [2].

The calculation of moments can also be applied to estimate the skewness and
kurtosis of probability distributions, and to approximate probability densities via
Edgeworth and Gram-Charlier expansions. Examples are provided using stochas-
tic differential equations in Poisson shot noise models, with an application to the
estimation of probability densities of neuron membrane potentials.

This paper is organized as follows. In Sect. 2 we review moment identities for
Poisson stochastic integrals with random integrands. In Sect. 5, such identities are
specialized to indicator functions of random sets, for application in stochastic geom-
etry. Section6 deals with applications to the statistics of k-hop counts in the random-
connection model, using multiparameter stochastic integrals for the analysis of ran-
dom graph connectivity. Section8 considers the moments of Poisson shot noise pro-
cesses, with an application to the modeling of membrane potential distributions.

2 Moments of Poisson Point Processes

We consider a Poisson point process with intensity measure σ(dx) on the space

�X := {
ξ = {xi }i∈I ⊂ X : #(A ∩ ξ) < ∞ for all compact A ∈ B(X)

}

of locally finite configurations on a subset X ⊂ IRd , where ξ(A) = #{k : xk ∈ A}
denotes the count of configuration points that belong to a measurable subset A ⊂ X.

X

A

x1
x2

0

1

2

3

4

0

1

2

3

4

3

4

1

2

0

1

2

3

4

For all compact disjoint subsets A1, . . . , An of X, n ≥ 1, the mapping

ξ �→ (ξ(A1), . . . , ξ(An))

is a vector of independent Poisson distributed random variables on IN with respective
intensities σ(A1), . . . , σ (An). As a consequence, the Poisson stochastic integral with
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respect to the Poisson random measure with intensity σ(dx) on X has the moment
generating function

IE

⎡

⎣exp

⎛

⎝
∑

x∈ξ

h(x)

⎞

⎠

⎤

⎦ = exp

(∫

X

(eh(x) − 1)σ (dx)

)
. (1)

3 Slivnyak-Mecke Identity

The Slivnyak-Mecke [11, 23] identity allows one to compute the moments of first
order stochastic integrals of random integrands as

IE

⎡

⎣
∑

x∈ξ

u(x, ξ)

⎤

⎦ = IE

[∫

X

ε+
x u(x, ξ)σ (dx)

]
, (2)

where ε+
x is the addition operator defined on random variables F on �X as

ε+
x F(ξ) = F(ξ ∪ {x}), x ∈ X.

4 Nonlinear Slivnyak-Mecke Identities

Next, we show how the Slivnyak-Mecke identity can be used to derive a covariance
formula with random integrands. We have

IE

⎡

⎣
∑

x1∈ξ

u1(x1, ξ)
∑

x2∈ξ

u2(x2, ξ)

⎤

⎦ = IE

⎡

⎣
∑

x1∈ξ

( ∑

x2∈ξ

u2(x2, ξ)

)
ui (x1, ξ)

⎤

⎦

= IE

[ ∫

X

ε+
x1

( ∑

x2∈ξ

u2(x2, ξ)u1(x1, ξ)

)
σ(dx1)

]
,

with
ε+
x1

∑

x2∈ξ

u2(x2, ξ) =
∑

x2∈ξ

ε+
x1u2(x2, ξ) + ε+

x1u2(x1, ξ).

Hence, another application of (2) yields
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IE

⎡

⎣
∑

x1∈ξ

u1(x1, ξ)
∑

x2∈ξ

u2(x2, ξ)

⎤

⎦

= IE

[ ∫

X

∑

x2∈ξ

ε+
x1 (u1(x1, ξ)u2(x2, ξ))σ (dx1)

]
+ IE

[ ∫

X

ε+
x1 (u1(x1, ξ)u2(x1, ξ))σ (dx1)

]

= IE

[ ∫

X2
ε+
x1ε

+
x2 (u1(x1, ξ)u2(x2, ξ))σ (dx1)σ (dx2)

]
+ IE

[ ∫

X

ε+
x1 (u1(x1, ξ)u2(x1, ξ))σ (dx1)

]
.

Proposition 1 below, see Theorem 1 in [19], can be regarded as a nonlinear extension
of the Slivnyak-Mecke formula (2) with random integrands u : X × �X −→ IR. The
sum (3) runs over the partitions π1, . . . , πk of {1, . . . , n}, where |πi | denotes the
cardinality of the block πi , i = 1, . . . , k. Given zn = (z1, . . . , zn) ∈ X

n we will use
the shorthand notation ε+

zn
for the operator

(ε+
zn
F)(ξ) = F(ξ ∪ {z1, . . . , zn}), ξ ∈ �X,

for F a random variable on �X.

Proposition 1 Let u : X × �X −→ IR be a (measurable) process. For all n ≥ 1 we
have

IE

⎡

⎣

⎛

⎝
∑

x∈ξ

u(x, ξ)

⎞

⎠

n⎤

⎦ =
∑

ρ∈	[n]
IE

[∫

X|ρ|
ε+
z|ρ|

|ρ|∏

l=1

u|ρl |(zl)σ⊗|ρ|(dz|ρ|)

]

, (3)

where the sum runs over all partitions ρ of {1, . . . , n} with cardinality |ρ|.
See [9] for an extension of (3) to point processes admitting Papangelou intensities,
and [2] for an extension to multiparameter processes. This result can be more gen-
erally stated as the next joint moment identity for Poisson stochastic integrals with
random integrands, cf. Proposition 7 in [19].

Proposition 2 Let u1, . . . , u p : X × �X −→ IR be random processes, p ≥ 1. For
all n1, . . . , np ≥ 0 and n := n1 + · · · + np, We have

IE

⎡

⎣

⎛

⎝
∑

x1∈ξ

u1(x1, ξ)

⎞

⎠

n1

· · ·
⎛

⎝
∑

xp∈ξ

u p(xp, ξ)

⎞

⎠

np
⎤

⎦

=
n∑

k=1

∑

π1∪···∪πk={1,...,n}
IE

⎡

⎣
∫

Xk

ε+
x1 · · · ε+

xk

⎛

⎝
k∏

j=1

p∏

i=1

u
lni, j
i (x j , ξ)

⎞

⎠ σ(dx1) · · · σ(dxk)

⎤

⎦ ,

where the sum runs over all partitions π1, . . . , πk of {1, . . . , n} and the power lni, j is
the cardinality
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lni, j := |π j ∩ (n1 + · · · + ni−1, n1 + · · · + ni ]|, i = 1, . . . , k, j = 1, . . . , p.

Proposition 2 implies in particular the next joint moment identity. Let f1, . . . , f p :
X −→ IR be deterministic functions, p ≥ 1. Then, for any bounded random variable
F and n1, . . . , np ≥ 0 and n := n1 + · · · + np, we have

IE

⎡

⎣F

⎛

⎝
∑

x1∈ξ

f1(x1)

⎞

⎠

n1

· · ·
⎛

⎝
∑

xp∈ξ

f p(xp)

⎞

⎠

np
⎤

⎦

=
n∑

k=1

∑

π1∪···∪πk={1,...,n}

∫

Xk

IE
[
ε+
x1 · · · ε+

xk F
] k∏

j=1

p∏

i=1

f
lni, j
i (x j )σ (dx1) · · · σ(dxk).

5 Random Sets in Stochastic Geometry

We consider possibly random sets A(ξ) such that

{ξ ∈ �X : A(ξ) ⊂ K } ∈ F for all K ∈ K(X),

and let N (A(ξ)) denote the cardinality of ξ ∩ A(ξ). The next proposition is a factorial
moment identity for N (A), see Proposition 2.1 in [3].

Proposition 3 Let A(ξ) be a random measurable subset of X. For all n ≥ 1 and
sufficiently integrable random variable F, we have

IE
[
F N (A)(n)

] = IE

[∫

Xn

ε+
xn

(F1An (x1, . . . , xn))σ
⊗n(dx1, . . . , dxn)

]
,

where N (A)(n) = N (A)(N (A) − 1)(N (A) − n + 1) denotes the descending facto-
rial of N (A), n ≥ 1.

Given K in the collection K(X) of compact subsets of X, let

FK := σ(ξ(U ) : U ⊂ K , σ (U ) < ∞)

denote the sigma-algebra generated by ξ �→ ξ(U ), withU ⊂ K and σ(U ) < ∞. We
recall that a random compact set S is called a stopping set if

{ξ ∈ �X : S(ξ) ⊂ K } ∈ FK for all K ∈ K(X).

In other words, modifying the configuration ξ outside of S(ξ) does not affect S(ξ)

itself, see [24] and Definition 2.27 page 335 of [12].
In the sequel, we consider stopping sets S satisfying the following monotonicity

and stability conditions.
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(i) The stopping set S is non-increasing in the sense that

S(ξ ∪ {x}) ⊂ S(ξ), ξ ∈ �X, x ∈ X.

(ii) The stopping set S is stable in the sense that

x ∈ S(ξ) =⇒ x ∈ S(ξ ∪ {x}), ξ ∈ �X, x ∈ X.

Examples of stopping sets satisfying the above conditions can be given as follows:

– Theminimal closed ball S = Bm centered at 0 and containing exactlym ≥ 1points,
see Fig. 1a.

– The complement S of the open convex hull�S of a Poisson point process inside a
convex subset of finite σ -measure in IRd , see Fig. 1b.

– The Voronoi flower S, which is the union of closed balls centered at the vertices of
the Voronoi polygon, containing the point 0 and exactly two other process points,
see Fig. 1c.

– The complement S of the union of open cones generated by a Boolean-Poisson
model on a set of finite σ -measure in IRd , see Fig. 2.

– Other examples of stopping sets include the Voronoi sausage or the Delaunay
lunes, see e.g. [6, 7].

From (5) and Proposition 3 we obtain the next factorial moment identity.

Proposition 4 Let�S be the complement of a stable, non-increasing stopping set S.
For all n ≥ 1, we have

IE
[
F N (�S)(n)

] = IE

[ ∫

�Sn
ε+
x1 · · · ε+

xn F σ(dx1) · · · σ(dxn)

]
,

for F a bounded random variable.

Fig. 1 Examples of stopping sets
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Given S a stopping set, we consider the stopped sigma-algebra generated by S defined
as

FS := σ(B ∈ F : B ∩ {ξ ∈ �X : S(ξ) ⊂ K } ∈ FK , K ∈ K(X)),

see Definition 1 in [24]. As a consequence of Proposition 4, we obtain the following
invariance result, see Propositions 4.1–4.2 and Corollary 5.2 in [18].

Corollary 1 Consider S(ξ) a stable and non-increasing stopping set and F(ξ) a
non-negative FS-measurable random variable with IE

[
ezσ(�S)(1 + z)ξ(�S)F(ξ)

]
< ∞

for some z > 0. We have the Girsanov identity

IE[F(ξ)] = IE
[
e−zσ(�S)(1 + z)ξ(�S)F(ξ)

]
. (4)

Relation (4) yields the following conditional Laplace transform for S(ξ) a stable and
non-increasing stopping set:

IE[e−zσ(S) | ξ(S) = n] = 1

(1 + z)n
Pz(ξ(S) = n)

P(ξ(S) = n)
, z > 0, n ∈ IN,

wherePz denotes the Poisson point process distributionwith intensity zσ(dx), which
is consistent with the gamma-type results of Theorem 2 of [13] and Theorem 2 of
[24], and this recovers the gamma distribution of σ(S) conditionally to ξ(S) = n,
when Pz(ξ(S) = n) does not depend on z > 0.

Corollary 2 LetS be a non-increasing and stable stopping set. Then the complement
�S of S satisfies

P(N (�S) = n | FS) = e−(σ (�S))

n! (σ (�S))n, n ≥ 0.

Proof We note that the complement�S of a stable and non-increasing stopping set S
fulfills the condition

ε+
xn

(1�S(x1) · · · 1�S(xn)) = 1�S(x1) · · · 1�S(xn), x1, . . . , xn ∈ X, n ≥ 1, (5)

and apply the factorial moment identity of proposition 4.

Corollary 2 shows in particular that, given the stopping set S, the count N (�S) is a
Poisson random variable with intensity σ(�S), see Theorem 3.1 of [1], and [17], when
S is the closed complement of the Poisson convex hull�S. From Corollary 2 we can
construct an alternative estimator

P(N (�S) = n | FS) = (σ (�S))n

n! e−σ(�S). (6)

of the distribution P(N (�S) = n) of the number of Poisson vertices inside the
complement �S of a stopping set S, in addition to the standard sampling estima-
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tor 1{N (�S)=n}, see [22] for numerical experiments where the performances of the
estimators 1{N (�S)=n} and (6) are compared via their respective variances given by

P(N (�S) = n)(1 − P(N (�S) = n)), and IE
[
(σ (�S))2ne−2σ(�S)

]
/n!2 − (P(N (�S) = n))2.

6 Multiparameter Integrals in Random Graphs

In this section we consider joint moment identities for multiparameter processes
(uz1,...zr )(z1,...zr )∈Xr .

• Let 	[n × r ] denote the set of partitions of


n×r := {1, . . . , n} × {1, . . . , r} = {
(k, l) : k = 1, . . . , n, l = 1, . . . , r

}
.

• Given ρ = {ρ1, . . . , ρm} a partition of 
n×r , let ζ ρ : 
n×r −→ {1, . . . ,m} let

ζ ρ(k, l) = p if and only if (k, l) ∈ ρp,

denote the index of the block ρp containing (k, l).

In the next proposition, see Theorem 3.1 in [2], we use the notation

ε+
zk
u(z1, . . . , zk, ξ) := u(z1, . . . , zk, ξ ∪ {z1, . . . , zk}), zn = (z1, . . . , zn) ∈ X

n,

(7)
for (u(z1, . . . , zk, ξ))z1,...,zk∈X a multiparameter process.

Proposition 5 We have

IE

⎡

⎣

⎛

⎝
∑

z1,...,zr∈ξ

u(z1, . . . , zr , ξ)

⎞

⎠

n⎤

⎦ =
∑

ρ∈	[n×r ]
IE

⎡

⎣
∫

X|ρ|
ε+
z|ρ|

n∏

k=1

u(zρπk )σ
⊗|ρ|(dz|ρ|)

⎤

⎦ ,

where zρ
πk

:= (zζ ρ(k,1), . . . , zζ ρ(k,r)) and πk := {(k, 1), . . . , (k, r)}, k = 1, . . . , n.

When n = 1, this yields the multivariate version of the Georgii, [14] identity

IE

⎡

⎣
∑

z1,...,zr∈ξ

u(z1, . . . , zr , ξ)

⎤

⎦ =
∑

ρ∈	[1×r ]
IE

[∫

Xr
ε+
z|ρ|u(zζ ρ (1,1), . . . , zζ ρ (1,r))σ

⊗|ρ|(dz|ρ|)
]

.

We write π  σ when a partition π ∈ 	[n × r ] is finer than another partition σ ∈
	[n × r ], i.e. when every block of π is contained in a block of σ . We also write
ρ ∧ π = 0̂ when μ = 0̂ := {{1, 1}, . . . , {n, r}} is the only partition μ ∈ 	[n × r ]
such that μ  π and μ  ρ, i.e. |πk ∩ ρl | ≤ 1 for k = 1, . . . , n, l = 1, . . . , |ρ|. The
moment identity in the next proposition is written as a sum over partitions ρ ∈ 	[n ×
r ] such that the partition diagram �(π, ρ) is non-flat, see Chap.4 of [15], where
π := (π1, . . . , πn) ∈ 	[n × r ] is given by πk := {(k, 1), . . . , (k, r)}, k = 1, . . . , n.
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Fig. 2 Cones generated by a Boolean-Poisson model

Fig. 3 Example of a non-flat partition of 	[3 × 2]

Proposition 6 Assume that u(z1, . . . , zr , ξ) = 0 whenever zi = z j , 1 ≤ i �= j ≤ r ,
ξ ∈ �X. We have

IE

⎡

⎣

⎛

⎝
∑

z1,...,zr∈ξ

u(z1, . . . , zr , ξ)

⎞

⎠

n⎤

⎦ =
∑

ρ∈	[n×r ]
ρ∧π=0̂

IE

⎡

⎣
∫

X|ρ|
ε+
z|ρ|

n∏

k=1

u(zρπk )σ
⊗|ρ|(dz|ρ|)

⎤

⎦ ,

where the sum is over non-flat partition diagrams �(π, ρ), with zρ
πk

:= (zζ ρ(k,1), . . . ,

zζ ρ(k,r)) and πk := {(k, 1), . . . , (k, r)}, k = 1, . . . , n.

Figure3 shows an example of a non-flat partition of 	[n × r ] with n = 3 and
r = 2, which is tagged using the four symbols�,�,�,�, with π3 = {(3, 1), (3, 2)},
π2 = {(2, 1), (2, 2)}, π1 = {(1, 1), (1, 2)}, and � = {(1, 2), (2, 1), (3, 2)}, � =
{(1, 1), (3, 1)}, � = {(2, 2)}.

Figure4 illustrates the non-flat partition technique in the case n = 3 and r = 2,
by displaying 6 out of the 87 multigraphs occurring in the computation of the case
of the third moment of the 3-hop count based on possible combinations of common
nodes in the product (8), together with each corresponding non-flat partition of [3 ×
2] = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}, and every path in the multigraph is
followed from the blue node x to the red node y.



256 N. Privault

Fig. 4 Matching of non-flat partitions of [3 × 2] to multigraphs with identification of common
nodes

Fig. 5 Random-connection graph

7 Random-Connection Model

In the random-connection model, two vertices x �= y of the Poisson point process ξ

of nodes onX ⊂ IRd are independently connected with the probability H(x, y) given
ξ in the probability space�X, where H : X × X −→ [0, 1] is a connection function,
see Fig. 5. In particular the 1-hop count 1{x↔y}, where x ↔ y means that x ∈ X is
connected to y ∈ X , is a Bernoulli random variable with parameter H(x, y) and we
have the relation

IE

[

ε+
zr

r∏

i=0

1{zi↔zi+1}(ξ)

∣∣∣∣ξ

]

=
r∏

i=0

H(zi , zi+1)

for any subset {z0, . . . , zr+1} of distinct elements of X, where ε+
zr

is the addition
operator of point process nodes at the locations zr = {z1, . . . , zr }, see (7).

Given x, y ∈ X two vertices in X, the count Nx,y
r of (r + 1)-hop paths from x

to y as particular cases, i.e. the number of (r + 1)-hop sequences z1, . . . , zr ∈ ξ

of vertices connecting x to y in the random graph is the multiparameter stochastic
integral

Nx,y
r+1 =

∑

z1,...,zr∈ξ

u(z1, . . . , zr )

over the vertices of the point process ξ , of the multiparameter r -process
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Fig. 6 The seven possible ways to join two nodes via two 3-hop paths and their common nodes

u(z1, . . . , zr , ξ) := 1{zi �=z j , 1≤i< j≤r}1{z1,...,zr∈ξ}
r∏

i=0

1{zi↔zi+1}(ξ)

which vanishes on the diagonals in Xr , with z0 := x and zr+1 := y. Computing the
moments of Nr requires to raise Nr to a given power, creating product terms of the
form

n∏

l=1

u(z(l)
1 , . . . , z(l)

r ; ξ) (8)

where (z(l)
1 , . . . , z(l)

r ) denotes the sequence of points appearing in the l-th product
term. For example, computing the second moment of a 3-hop count requires to
identify and count the 7 possible multigraphs that can connect x to y via two 3-hop
paths with possible common nodes as in Fig. 6, see also Fig. 2 in [10], in which
every path in each multigraph is followed from the blue node x to the red node y.
The difficulty in dealing with common nodes is that they break the independence
property in the product (8), and as such they have to be dealt with separately.

The next proposition, which is a direct consequence of Proposition 5, provides
a general expression for the moments of the count Nx,y

r+1 of (r + 1)-hop paths, see
[20].

Proposition 7 The moment of order n of the (r + 1)-hop count between x, y ∈ X is
given by

IE
[(
Nx,y
r+1

)n] =
∑

ρ∈	[n×r ]
ρ∧π=0̂

IE

[∫

X|ρ|

n∏

l=1

r∏

i=0

H 1/nρ

l,i (zζ ρ(l,i), zζ ρ(l,i+1))σ
⊗|ρ|(dz|ρ|)

]

,

where z0 = x, zr+1 = y, ζ ρ(l, 0) = 0, ζ ρ(l, r + 1) = r + 1, and

nρ
l,i := #

{
(p, j) ∈ {1, . . . , n} × {0, . . . , r} : {ζρ(l, i), ζ ρ(l, i + 1)} = {ζρ(p, j), ζ ρ(p, j + 1)}}.
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In particular, the first order moment of the (r + 1)-hop count between x ∈ X and
y ∈ Y is given as

H (r+1)(z0, zr+1) := IE

⎡

⎣
∑

z1,...,zr∈ξ

u(z1, . . . , zr , ξ)

⎤

⎦

=
∫

IRd
· · ·

∫

IRd

r∏

i=0

H(zi , zi+1)σ (dz1) · · · σ(dzr ), z0, zr+1 ∈ IRd .

The 2-hop count between x ∈ X and y ∈ Y is given by the first order integral

∑

z∈ξ

u(z, ξ) =
∑

z∈ξ

1{x↔z}1{z↔y}(ξ) =
∑

z∈ξ

1{x↔z}1{z↔y},

and its moment of order n is

IE

⎡

⎣

⎛

⎝
∑

z∈ξ

u(z, ξ)

⎞

⎠

n⎤

⎦ =
∑

ρ∈	[n×1]

∫

X|ρ|

|ρ|∏

l=1

(H(x, zl)H(zl , y))σ
⊗|ρ|(dz1, . . . , dz|ρ|)

=
n∑

k=1

S(n, k)

(∫

IRd
H(x, z)H(z, y)σ (dz)

)k

=
n∑

k=1

S(n, k)
(
H (2)(x, y)

)k
,

which shows that the 2-hop count between x ∈ X and y ∈ Y is a Poisson random
variable with mean H (2)(x, y).

Variance of 3 -hop counts
When n = 2 and r = 3 Proposition 7 allows us to compute the variance of the 3-hop
count between x ∈ X and y ∈ Y , as follows:

Var
[
Nx,y
3

] = H (3)(x, y) + 2
∫

X

H(x, z1)H
(2)(z1, y)H

(2)(z1, y)σ (dz1) (9)

+ 2
∫

X

H(x, z1)H
(2)(x, z1)H

(2)(z1, y)H(z1, y)σ (dz1)

+
∫

X2
H(x, z1)H(z1, z2)H(z2, y)H(x, z2)H(z1, y)σ

⊗2(dz1, dz2),

In the case of a Poisson point process with flat intensity σ(dx) = λdx on X, λ > 0
with a Rayleigh fading function H(x, y) of the form

Hβ(x, y) := e−β‖x−y‖2 , x, y ∈ IRd , β > 0,
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we have

H (2)
β (x, y) = λ

∫

IRd
Hβ(x, z)Hβ(z, y)dz = λ

(
π

2β

)d/2

e−‖x−y‖2/2,

and (9) recovers the variance

Var
[
Nx,y
3

] = 2λ3

(
π3

8β3

)d/2

e−β‖x−y‖2/2 + λ2

(
π2

3β2

)d/2

e−β‖x−y‖2/3

+2λ3

(
π3

12β3

)d/2

e−3β‖x−y‖2/4 + λ2

(
π2

8β2

)d/2

e−β‖x−y‖2

of 3-hop counts between x ∈ X and y ∈ Y , see Theorem II.2 of [10]. The knowledge
ofmoments can provide accurate numerical estimates of the probability P(Nx,y

k > 0)
of at least one k-hop path by expressing it as a series of factorial moments, see [10].

8 Moments of Poisson Shot Noise Processes

We consider a Poisson point process ξ(dx) with intensity measure σ(dt, dθ) on
X = IR × S, where S = [0, N ], and the N shot noise processes given by

Qk(t, ξ) =
∑

(s j ,θ j )∈ξ

gk(t − s j , θ j ), k = 1, . . . , N ,

where the shot noise kernels gk(u, θ) are such that gk(u, θ) = 0 for all u < 0 and
θ ∈ S. In this framework, the moment generating function of Qk(t, ξ) is given from
(1) as

IE
[
exp (Qk(t, ξ))

] = exp

(∫

(−∞,t]×S
(egk (t−u,θ) − 1)σ (du, dθ)

)
.

Consider the Poisson shot noise stochastic differential equation

τ
dYN

dt
(t, ξ) = −YN (t, ξ) +

N∑

k=1

(wk − YN (t, ξ))Qk(t, ξ), (10)

where τ > 0 and w1, . . . , wn ∈ IR, whose solution is the filtered shot noise process
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Fig. 7 Shot noise processes Q1(t, ξ) and Q2(t, ξ)

YN (t, ξ) = 1

τ

N∑

k=1

wk

∫ t

−∞
Qk(z, ξ)e− ∫ t

z Q0(u,ξ)dudz (11)

= 1

τ

∫ t

−∞
e− ∫ t

z Q0(s,ξ)ds
∑

(s j ,θ j )∈ξ

f (w)(z − s j , θ j )dz, t ∈ IR,

where

Q0(u, ξ) := 1

τ
+ 1

τ

N∑

k=1

Qk(u, ξ) = 1

τ
+ 1

τ

∑

(s j ,θ j )∈ξ

f (u − s j , θ j ),

with

f (z, θ) :=
N∑

k=1

gk(z, θ) and f (w)(z, θ) :=
N∑

k=1

wkgk(z, θ), z ∈ IR, θ ∈ S,

see e.g. Sect. 2.1 of [4] and [5]. The following numerical examples use the parameters
of the double source model of [4] for the modeling of neuron membrane potentials,
where N = 2, λ2(t) = 500Hz and λ1(t) is a periodic function of time, t ∈ [0, 100]
(Fig. 7).

Figure8 presents the graphs of the intensities λ1(t), λ2(t) and a numerical simu-
lation of V2(t, ξ) in the double source model.

9 Computation of Joint Moments

Thenext proposition gives a general formula for the computation of the jointmoments
of YN (t1, ξ), . . . ,YN (tn, ξ) in the multiple source model as a direct consequence of
(11).
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Fig. 8 Sample of V2(t, ξ) with mean, standard deviation and intensities λ1(t), λ2(t)

Proposition 8 We have the joint moment identity

IE[YN (t1, ξ) · · · YN (tn, ξ)] = 1

τn

∫ t1

−∞
· · ·

∫ tn

−∞
mn,N (z1, . . . , zn; t1, . . . , tn)dz1 · · · dzn,

where

mn,N (z1, . . . , zn; t1, . . . , tn) := IE

⎡

⎣
n∏

k=1

⎛

⎝e
− ∫ tl

zl
Q0(u,ξ)du ∑

(u j ,θ j )∈ξ

f (w)(zk − u j , θ j )

⎞

⎠

⎤

⎦ .

The functions mn,N (z1, . . . , zn; t1, . . . , tn) can be evaluated from Proposition 2 as a
sum over the set 	[n] of partitions π = {π1, . . . , πk} of {1, . . . , n} with cardinality
k = |π | = 1, . . . , n, as

mn,N (z1, . . . , zn; t1, . . . , tn)

= IE

[
e
−∑n

l=1
∫ tl
zl

Q0(u,ξ)du
] ∑

π∈	[n]

|π |∏

j=1

∫

(−∞,ẑπ j ]×S

n∏

l=1

e
− 1

τ

∫ tl
zl

f (u−y,η)du ∏

i∈π j

f (w)(zi − y, η)σ (dy, dη),

(z1, . . . , zn) ∈ (−∞, t1] × · · · × (−∞, tn], with ẑπ j = mini∈π j zi , where, by (1), we
have

IE
[
e− ∑n

l=1

∫ tl
zl
Q0(u,ξ)du

]

= e− 1
τ

∑n
l=1(tl−zl ) exp

(∫

(−∞,max(t1,...,tn)]×S

(
e− 1

τ

∑n
l=1

∫ tl
zl

f (u−s,θ)du − 1
)
σ(ds, dθ)

)
.

Figures9, 10 and 11 present the evolutions of the mean κ1, variance κ2, third and
fourth cumulants κ3, κ4, and skewness and excess kurtosis

κ3

(κ2)3/2
= IE[(V2 − IE[V2])3]

(IE[(V2 − IE[V2])2])3/2 and
κ4

(κ2)2
= IE[(V2 − IE[V2])4]

(IE[(V2 − IE[V2])2])2 − 3

(12)
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of the potential V2(t, ξ), computed from Proposition 8 as functions of the arrival
intensity parameter λ at t = 0.2.

10 Gram-Charlier Expansions

The Gram-Charlier expansion of the continuous probability density function φX (x)
of a random variable X , see Sect. 17.6 of [8], is given by

φX (x) = 1√
κ2

ϕ

(
x − κ1√

κ2

)
+ 1√

κ2

∞∑

n=3

cnHn

(
x − κ1√

κ2

)
ϕ

(
x − κ1√

κ2

)
, (13)

where ϕ(x) is the standard normal density function, Hn(x) denotes the Hermite poly-
nomial of degree n, and the sequence (cn)n≥3 is given from the cumulants (κn)n≥1

of X . In particular, the coefficients c3 and c4 can be expressed from the skewness
κ3/κ

3/2
2 and the excess kurtosis κ4/κ

2
2 as c3 = κ3/(3!κ3/2

2 ) and c4 = κ4/(4!κ2
2 ), which

are computed from (12). Figures12 and 13 present the Gram-Charlier density expan-
sions (13) at different times for the estimation of the probability density function of

Fig. 9 First and second cumulants of V2(t, ξ) at t = 0.2

Fig. 10 Third cumulant and skewness of V2(t, ξ) at t = 0.2
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Fig. 11 Fourth cumulant and excess kurtosis of V2(t, ξ) at t = 0.2

Fig. 12 Gram-Charlier density expansions vs simulated densities

Fig. 13 Gram-Charlier density expansions vs simulated densities

the membrane potential V2(t, ξ) in the double source model (10) of Fig. 8, see [21]
for details.

In comparison with the Gaussian diffusion approximation with matching mean
and variance, the fourth-order Gram-Charlier approximations provide a better fit of
the actual probability densities obtained by Monte Carlo simulation of (11) (purple
areas), which show time-varying skewness.
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