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Abstract. In this work, we develop and evaluate two adaptive strate-
gies to self-supervised depth estimation methods based on view recon-
struction. First, we propose an adaptive consistency loss that extends the
usage of minimum re-projection to enforce consistency on the pixel inten-
sities, structure, and feature maps. Moreover, we evaluate two approaches
to use uncertainty to weigh the error contribution in the input frames.
Finally, we improve our model with a composite visibility mask. The
results show that the adaptive consistency loss can effectively combine
photometric, structure and feature consistency terms. Moreover, weight-
ing the error contribution using uncertainty can improve the performance
of a simpler version of the model, but cannot improve them model when
all improvements are considered. Finally, our combined model achieves
competitive results when compared to state-of-the-art methods.
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1 Introduction

Dense depth maps are useful representations of a scene that have been used
in several computer vision applications, such as 3D reconstruction, virtual and
augmented reality, robot navigation, scene interaction and autonomous driving.
Depth maps can be obtained with sensors. However, in some scenarios, it is
unfeasible to rely solely on them. Such demand has increased the interest in the
development of effective methods, and recently it has motivated the development
of approaches based on deep learning.

The existing data sets for depth estimation have enabled training deep models
in a supervised approach. However, the size, quality and availability of labeled
data sets are becoming a barrier for supervised approaches. Researchers use
complex and costly procedures to collect ground truth and the available data
sets are smaller than the ones used in other computer vision tasks.

In recent years, various self-supervised approaches have been proposed to
learn depth maps from monocular videos. These methods rely on appearance and
geometric consistency among nearby frames on videos, to reconstruct a reference
frame with the intensities of another frame and to use the reconstruction error as
a supervisory signal. Thus, these methods can learn dense depth maps without
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labeled data sets and can take advantage of the vast amount and rich variability
of video data available.

One of the main challenges of self-supervised approaches based on reconstruc-
tion is that some pixels in frame cannot be explained from other frames because
of occlusion, specular reflection, textureless regions among other reasons. Several
approaches deal with these challenges excluding or attenuating the influence of
pixels based on priors or adaptive approaches that leverage the availability of
multiple frames neighboring a target frame to explain their pixels.

In this work, we develop and evaluate two adaptive strategies to improve
the robustness of self-supervised depth estimation approaches with pixels that
violate the assumptions of view reconstruction. Initially, we develop an adap-
tive consistency loss that extends the usage of minimum re-projection to enforce
consistency on 3D structure and feature maps, in addition to the photometric
consistency. Moreover, we evaluate the usage of uncertainty as loss attenuation
mechanism, where the uncertainty is learned by modeling predictions as Lapla-
cian, smooth-L1 or Cauchy probability distributions. Finally, we improve our
model with a composite visibility mask.

2 Related Work

View Reconstruction Based Depth Estimation. Deep learning approaches
based on view reconstruction leverage the correspondence between the pixels of
two views of the same scene. This correspondence could be computed with the
relative pose between cameras that captures both views, and a depth map of
a single view. This principle was used by Garg et al. [5], where a stereo pair
provides the views, the parameters of the device give the relative pose, and a
depth network predicts the depth map. Similarly, Zhou et al. [28] proposed a
method where the relative pose and the depth map are estimated with deep
networks.

These approaches have been improved, for example, to deal with occluded
regions that cannot be reconstructed using geometric priors [15,17], to deal with
moving objects, which violate the static assumption of view reconstruction,
using optical flow [9,26] or segmenting and estimating the motion of moving
objects [2,14,23], and to improve the learning signal by enforcing consistency
between several representations of the scene [3,17,26]. Our approach improves
the learning signal enforcing consistency between 3D coordinates, feature maps,
and color information of the views.

Consistency Constraints. The availability of a correspondence between the
pixels on the source and target views allows supervision by enforcing consis-
tency on representations, in addition to the pixel intensities. For example, we
can enforce consistency between forward and backward optical flows [16,26],
predicted and projected depth maps [7,16], 3D coordinates [17], and feature
maps [20,27]. However, we cannot enforce consistency in the entire image because
some regions do not have valid correspondences, for example, occluded regions
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produced by the motion of the camera or objects, or regions with specular reflec-
tion where the color is inconsistent with the structure of the scene, and also due
to multiple correspondences for single pixels at homogeneous regions do not pro-
vide supervision. Approaches that exclude or attenuate the error contribution
of these regions have been proposed in the literature. For example, learning an
explainability mask [28], excluding pixels that are projected out of the field of
view [17], excluding pixels with high inconsistencies on optical flows or depth
maps [26], excluding stationary pixels [8], excluding occluded pixels using to
geometric cues [9], attenuating the error using similar criteria [18]. Another app-
roach leverage the availability of correspondences from multiple source frames [8]
or estimated from different models [3], considering only the correspondences with
minimum photometric error. Our approach extends the minimum re-projection
error on other consistency constraints in addition to photometric consistency.

Adaptive Losses Based on Uncertainty. The importance of quantifying the
uncertainty on predictions has motivated research endeavors in several prob-
lems on computer vision, such as robust regression [1], representation learn-
ing [22], object detection [11], image de-raining [25], optical flow [12] and depth
estimation [13,19,21,24]. Researchers have explored approaches that leverage
uncertainty information for depth estimation, for instance, a method that lever-
ages existing uncertainty estimation techniques [21] and an approach that pre-
dicts the uncertainty using a neural network [13,19,24]. A recent work explored
approaches to estimate epistemic uncertainty and aleatoric uncertainty on an
unsupervised monocular setting [19]. In this work, we explore several probabil-
ity functions to predict aleatoric uncertainty to improve depth estimation.

3 Method

Figure 1 illustrates the main components of our method. In this section, we pro-
vide an overview of our baseline system. Moreover, we introduce two adaptive
strategies to improve the robustness of our approach. Finally, we explore addi-
tional constraints.

3.1 Preliminaries

Approaches that use view reconstruction as main supervisory signal require to
find correspondences between pixel coordinates on frames that represent views
of the same scene. These correspondences can be computed using multi-view
geometry. Given a pixel coordinate xt in a target frame It, we can obtain its
coordinate xs in a source frame Is by back-projecting xt to the camera coordinate
system of the It using its depth value Dt(xt), and the inverse of its intrinsic
matrix K−1. Then, the relative motion transformation Tt→s is applied to project
the coordinates form the coordinate system of the It to the coordinate system
of Is. Finally, the coordinates are projected onto the image plane in the source
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Fig. 1. Overview of our method. The depth network is used to predict the depth maps
for the target It and source images Is ∈ {It−1, It+1}. The pose network predicts the
Euclidean transformation between the target and source camera coordinate systems
Tt→s.

frame. We express this correspondence in Eq. 1. We refer the reader to [28] for
a detailed explanation.

xs ∼ KTt→sDt(xt)K−1xt (1)

Once we know the projected coordinates and, therefore, the pixel intensities
in the source image plane for each pixel xt in the target image, we reconstruct
the target frame Îs→t(xt) = Is(xs). This process is known as image warping.
This approach requires the dense depth map Dt of the target image, which we
aim to reconstruct, the Euclidean transformation Tt→s, and camera intrinsics
K. Our model predicts the depth maps and the Euclidean transformation using
convolutional neural networks and assumes that the camera intrinsics are given.
The networks are trained using the reconstruction error as supervisory signal.

3.2 Adaptive Consistency Loss

Consistency could be enforced on representations of the scene such as 3D struc-
ture and feature maps. We propose an adaptive consistency loss that, in addition
to the photometric consistency, also considers 3D structure and feature consis-
tency constraints. This idea leverages the robustness of the min-reprojection
error to pixels with high reconstruction error that could potentially be outliers.
The adaptive consistency loss is defined as follows:

Lac=
∑

xt∈It

min
Is

(
Mo(xt)

(
ρpc

(
It(xt), Îs→t(xs)

)

+ λscρsc
(
Cs→t(xt), Ĉs→t(xs)

)
+ λfcρfc

(
Φt(xt), Φ̂s→t(xs)

))) (2)

where ρpc measures the photometric consistency between pixels on the original It
and reconstructed images Îs→t, ρsc measures the structure consistency between



Adaptive Self-supervised Depth Estimation in Monocular Videos 691

the 3D-coordinates of the target image projected to the camera coordinate sys-
tem of the source image Cs→t, and the 3D-coordinates of the source image in its
own camera coordinate system Ĉs→t, and ρfc measure the feature dissimilarity
between the feature vectors for all pixels, and obtained from the target Φt, and
the warped source feature maps Φ̂s→t. The feature maps are extracted from the
decoder part of the depth network. Mo is a visibility mask that excludes pixels
that lie out the field-of-view on the source frame [17].

Our photometric error function ρpc is a combination of an L1 distance and
the structure similarity index metric (SSIM), with a trade-off parameter α. This
function is shown in Eq. 3.

ρpc(p, q) = ||p − q||1 + α
1 − SSIM(p, q)

2
(3)

Our structure error function ρsc is the average of a normalized absolute dif-
ference of the coordinates as follows:

ρsc(x, y) =
1
3

3∑

i=1

|xi − yi|
|xi| + |yi| (4)

Our feature dissimilarity function ρsc measures the squared L2 distance of
the L2 normalized feature vectors f̂s = fs/||fs||2 and f̂t = ft/||ft||2, with fs =
Φ̂s→t(xs) and ft = Φt(xt).

ρfc(fs, ft) = ||f̂s − f̂t||22 (5)

The total loss is the sum of the adaptive consistency loss and depth smooth-
ness loss term [7] for the defined output scales S.

Ltotal =
∑

i∈S
L(i)
ac + L(i)

ds (6)

3.3 Error Weighting Using Uncertainty

The adaptive consistency loss can handle cases in which at least one the source
images can provide the information to reconstruct each pixel. However, several
cases might break this condition, for instance, homogeneous regions and regions
with specular reflection. Therefore, we aim to find other mechanisms to handle
pixels with large error on these cases.

An approach is to allow the model to learn the uncertainty about the depth
estimates, and leverage this information to attenuate the effect of pixels with
large errors on the overall error. We can do that by placing a probability dis-
tribution function over the outputs of the model. The predicted depth values
Dt(xt) are modeled as corrupted with additive random noise sampled from a
PDF with a scale parameter σxt

that is predicted by depth network. σxt
quan-

tifies the uncertainty of the model on the predictions. The model is trained to
minimize the negative log-likelihood.
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First, we assume that noise comes from a Laplacian distribution, then the
error function is the negative log-likelihood of this distribution. Equation 7 shows
the error function.

ρLaplacian(pt, ps) =
|ρpc(pt, ps)|

σxt

+ log(2σxt
) (7)

where pt = It(xt), ps = Îs→t(xs), ρpc is the photometric error function, and σxt

is the predicted uncertainty for the pixel xt.
We can observe that the first term in Eq. 7 attenuates the error when the

uncertainty is high. Then, the second term discourages the model to predict
high uncertainty values for all pixels. Thus, in order to minimize the function,
the model is encouraged to predict high uncertainty values for pixels with large
errors, attenuating the influence of large error in the overall error.

In order to explore the space of probability functions, we also evaluate our
approach on the smooth-L1 functions and the Cauchy functions [1]. We define the
probability distribution associated to the smooth-L1 function using the family
of probability distributions defined in [1]. Equation 8 shows the negative log-
likelihood associated to the smooth-L1 function.

ρsmooth-L1(pt, ps) =

√(
ρpc(pt, ps)

σxt

)2

+ 1 − 1 + log(Z(1)) (8)

where Z(1) is a normalization factor for smooth-L1 function. We refer the reader
to [1] for a detailed explanation. Finally, Eq. 9 shows the negative log-likelihood
associated with the Cauchy distribution.

ρCauchy(pt, ps) = log

(
1
2

(
ρpc(pt, ps)

σxt

)2

+ 1

)
+ log(

√
2πσxt

) (9)

Similarly, we propose to attenuate the error contribution in the scale of the
images. This is a single uncertainty σt is predicted by each image. In the training
process, the uncertainty is optimized to match to the distribution of errors for
all the pixels of each image.

3.4 Exploring Visibility Masks

We combine several strategies to filter out pixels that are likely to be outliers.
We mask the pixels on the target image that lie out of the field-of-view on
the source image, also known as principled mask [26], the pixels that belong to
homogeneous regions and do not change their appearance, even when the camera
is moving [8], and the target pixels that are occluded in the source view [9]. The
resulting composite mask is applied to our adaptive consistency loss at each
scale.
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3.5 Implementation Details

The depth network is a convolutional encoder-decoder network with skip con-
nections. We used a ResNet18 as backbone for the encoder part of the depth
network. The decoder network is composed of deconvolutional layers that up-
sample the bottleneck representation in order to upscale the feature maps to the
input resolution. For uncertainty estimation, we add a channel on the output
of the depth network. In order to predict uncertainty pixel values, the extra
channel is used as uncertainty map. On the other hand, when we aim to pre-
dict a single uncertainty value for image, we use spatial average pooling over
the uncertainty map. The motion network predicts the relative motion between
two input frames. The relative camera motion has a 6-DoF representation that
corresponds to 3 rotation angles and the translation vector. The motion network
is composed of the first five layers of the ResNet18 architecture, followed by a
spatial average pooling and four 1 × 1 convolutional layers.

4 Experiments

In this section, we show the experiments conducted to evaluate each compo-
nent of our system separately, as well the complete system with the proposed
components.

4.1 Experiments Setup

Dataset. We use the KITTI benchmark [6]. It was created to reduce the bias
and to complement available benchmarks with real-world data. It is composed
of video sequences with 93 thousand images acquired through high-quality RGB
cameras captured by driving on rural areas and highways of a city. We used the
Eigen split [4] with 45023 images for training and 687 for testing. Moreover, we
partitioned the training set on 40441 for training, 4582 for validation. For result
evaluation, we used the standard metrics [4].

Training. Our networks are trained using ADAM optimization algorithm with
a learning rate of 2e − 5, β1 = 0.9, β2 = 0.999, ε = 10−8. We used the batch size
of 12 snippets. Each snippet is a 3-frame sequence. The frames are resized to a
resolution of 416 × 128 pixels.

4.2 Adaptive Consistency Loss

Table 1 shows the performance of the baseline model improved by considering
the spatial and feature consistency loss terms individually, as well as combined
using average and minimum re-projection. The first rows shows the results of
our baseline model that only considers the photometric consistency and depth
smoothness loss terms. Then, we evaluate the performance of the model including
structure and feature consistency terms individually and jointly by using average
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or minimum re-projection. As other works in the literature [7,16,17,20,27], we
show that including structure and feature consistency terms is beneficial. The
results indicate that our implementations of structure and feature consistency
can improve the performance of the model individually, in most of the metrics.
Furthermore, we show that both terms are complementary and, together, can
improve the performance with average and minimum re-projection losses. We
obtained better results with minimum re-projection error.

Table 1. Ablation study. We evaluate the performance of structure and feature consis-
tency terms with average re-projection, and the adaptive consistency loss, which uses
minimum re-projection error.

↓ Lower is better ↑ Higher is better

Avg. Min. SC FC Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

0.1116 0.8905 4.7177 0.1840 0.8717 0.9564 0.9817

� � 0.1113 1.0024 4.6312 0.1807 0.8797 0.9595 0.9823

� � 0.1104 0.8747 4.6005 0.1800 0.8785 0.9587 0.9825

� � � 0.1096 1.0134 4.5476 0.1776 0.8838 0.9611 0.9828

� � � 0.1059 0.7520 4.4537 0.1737 0.8834 0.9620 0.9848

4.3 Error Weighting Using Uncertainty

We evaluate the usage of uncertainty to weigh the error contribution when the
uncertainty values are predicted by pixel and by image.

Error Weighting by Pixel. Table 2 shows that predicting uncertainty to
weight the error contribution by pixel improves the performance of the base-
line model using smooth-L1 probability function. However, the variants of the
model that use the Laplacian and Cauchy distribution degrade the results.

We observe that the model predicts incorrect depth values on regions where
the pixel intensities vary. This variation occurs because the predictive uncer-
tainty is formulated on the photo-metric consistency term (Eq. 7).

Table 2. Using uncertainty to weigh the error contribution by pixel.

Method ↓ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline-L1 0.1894 4.1497 5.9739 0.2433 0.8111 0.9228 0.9599

Laplacian 0.1987 4.4033 6.0675 0.2481 0.8034 0.9216 0.9593

Smooth-L1 0.1810 3.0795 5.6726 0.2386 0.8027 0.9245 0.9634

Cauchy 0.1968 3.2513 5.9439 0.2540 0.7836 0.9147 0.9565
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Error Weighting by Image. Table 3 shows the effect of predictive uncertainty
by image to weight the error contribution of images using the Laplacian, Smooth-
L1, and Cauchy probability functions. The first row shows our baseline, which
use an L1 distance between pixel intensities to measure photometric consistency
and depth smoothness.

Our results indicate that the Smooth-L1 function improves the performance
of the baseline and outperforms the approaches that assume other distributions.
However, using uncertainties predicted through Laplacian and Cauchy functions
does not improve the performance. Qualitative results are illustrated in Fig. 2.

Table 3. Using uncertainty to weigh the error contribution by image.

Method ↓ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline-L1 0.1894 4.1497 5.9739 0.2433 0.8111 0.9228 0.9599

Laplacian 0.1928 4.4074 5.9921 0.2472 0.8153 0.9234 0.9598

Smooth-L1 0.1561 1.3712 5.3931 0.2239 0.8018 0.9286 0.9683

Cauchy 0.1976 3.3892 6.0628 0.2530 0.7846 0.9160 0.9600

Uncertainty by pixel
image Laplacian Smooth-L1 Cauchy

Uncertainty by image
minimal (L1) Laplacian Smooth-L1 Cauchy

Fig. 2. Qualitative results of error weighting approach with uncertainty. The first col-
umn shows a target image and its depth maps predicted with the minimal model. The
remaining columns show the results for the error weighting approaches for the PDF
associated to Laplacian, Smooth-L1 and Cauchy functions. For each function, the first
and second rows show the result of considering an uncertainty value by pixel and by
image, respectively.

4.4 Visibility Masks

We performed ablation studies with visibility masks to filter out inconsistent
pixels. We used model trained with the adaptive consistency loss as baseline.
Table 4 shows that every mask improves the error metrics, as well as the thresh-
olded accuracy metrics. Moreover, the model trained with all mask formulations
achieved better results. Qualitative results are illustrated in Fig. 3.
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Table 4. Ablation study of additional masks. We considered the Field-of-View masks
(FOV), Auto mask (AM), Geometric mask (GM).

↓ Lower is better ↑ Higher is better

FOV AM GM Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

� 0.1059 0.7520 4.4537 0.1737 0.8834 0.9620 0.9848

� � 0.1063 0.8071 4.5570 0.1779 0.8829 0.9612 0.9831

� � 0.1073 0.9355 4.4135 0.1734 0.8877 0.9629 0.9840

� � � 0.1015 0.7692 4.4297 0.1719 0.8890 0.9622 0.9839

Fig. 3. Qualitative results. Depth prediction using our final model.

4.5 Comparison with the State of the Art

Table 5 shows that our method achieved competitive results when compared to
state-of-the-art methods. Moreover, our approach is compatible and it could be
improved with advanced strategies such as inference-time refinement [2,3], joint
depth and optical flow estimation [3], and effective architecture designs [10].

Table 5. Results of depth estimation on the Eigen split of the KITTI dataset. We
compared our results against several methods of the literature. In order to allow a fair
comparison, we report the results of competitive methods trained with a resolution of
416×128 pixels. (*) indicates newly results obtained from an official repository. (-ref.)
indicates that the online refinement component is disabled.

Method ↓ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [28]* 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [17] 0.163 1.240 6.220 0.250 0.762 0.916 0.967

Ying et al. [26]* 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Casser et al. [2] (-ref.) 0.141 1.026 5.290 0.215 0.816 0.945 0.979

Chen et al. [3] (-ref.) 0.135 1.070 5.230 0.210 0.841 0.948 0.980

Gordon et al. [9] 0.129 0.959 5.230 0.213 0.840 0.945 0.976

Ours 0.131 1.037 5.173 0.204 0.846 0.952 0.980

Godard et al. [8] 0.128 1.087 5.171 0.204 0.855 0.953 0.978
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5 Conclusions

In this work, we show that minimum re-projection can be used to jointly enforce
consistency on photometric, 3D structure, and feature representations of frames.
This approach reduces the influence of pixels without valid correspondences on
other consistency constraints, in addition to photometric consistency.

Moreover, our results suggest that the error weighting approaches based on
predictive uncertainty at pixel and image levels can be beneficial when the model
is minimal, when the model does not implement additional strategies to han-
dle invalid correspondences and when the outputs are assumed to follow the
probability distribution derived from the smooth-L1 function. Further explo-
ration could be done to leverage uncertainty to improve the performance of
self-supervised depth estimation methods that consider several priors to handle
invalid correspondences.
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