
3A2A: A Character Animation Pipeline
for 3D-Assisted 2D-Animation

Oscar Dadfar(B) and Nancy Pollard

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{odadfar,npollard}@andrew.cmu.edu

Abstract. 2D hand-drawn character animation requires a substantial
amount of time and drawing experience, turning away many interested
in the field based on their lack of drawing ability. In an effort to make
this type of animation more accessible to new creators without draw-
ing experience, we provide a pipeline that creates hand-drawn character
keyframes from stick figures. Our 2D interface allows users to draw and
edit stick figures in 3D space that are then used to pose and toon-shade
any 3D character model. We give these reference images a hand-drawn
effect by applying a sketch-like filter to the cel-shaded output and com-
pose it with a painted shading effect. We evaluate our work on multiple
animation cycles and various models, demonstrating the program’s ease-
of-use for individuals with or without drawing experience. This strategy
helps non-artists create 2D hand-drawn human character animations by
reducing the entire hand-drawn character pipeline to simply drawing
stick figures. We believe that if anyone can draw stick figures, then any-
one can animate.

Keywords: Human-centered computing · Graphical user interfaces ·
Fine arts

1 Introduction

Since Disney’s release of Snow White and the Seven Dwarfs in 1937, traditional
hand-drawn animation gained momentum as one of the most entertaining and
inspiring mediums of creativity and storytelling of its time. A few decades later,
many animation studios have yet to put out any hand-drawn animation films,
with Disney having no plans for releasing any 2D animation films in the future
[28]. The cost and skill associated with drawing out every frame, a practice orig-
inally done on cel-sheet paper due to the lack of technology, was too expensive
compared to its computer-generated counterpart that requires no drawing expe-
rience. As easier 3D tools became more widely accessible, more novice content
creators would avoid the art of hand-drawn animations in favor of 3D animation,
citing that they do not have the necessary drawing skills to create traditional
animations [1].

A few notable qualities make hand-drawn animation more favorable com-
pared to its 3D counterpart. Traditional animation has a human-like touch,
c© Springer Nature Switzerland AG 2021
Y. Peng et al. (Eds.): ICIG 2021, LNCS 12890, pp. 557–568, 2021.
https://doi.org/10.1007/978-3-030-87361-5_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87361-5_46&domain=pdf
https://doi.org/10.1007/978-3-030-87361-5_46


558 O. Dadfar and N. Pollard

Fig. 1. Our program computes the joint angles of a set of key body joints to pose any
3D model. The posed model is toon-shaded and sketched over to help give a hand-
drawn animation. Bottom row of frames were sketched and colored using the middle
row reference keyframes.

where every stroke is carefully thought out rather than interpolated. Characters
are not limited to human constraints and can bend and rotate limbs in any fash-
ion. Yet in order to create such character animations, individuals need to know
how to draw characters accurately (per frame) and consistently (across frames),
putting forth a high artistic barrier for those interested in the field.

In order to alleviate the high requirements of 2D animation, we developed
an animation pipeline that does not require any artistic ability from the user
when creating hand-drawn animations. While previous work explores 3D anima-
tion from 2D sketches, our pipeline is the first of its kind to use 3D models to
help go from stick figures to a 2D character animation. We can model realistic
body turns and proper object perspectives that are otherwise difficult for 2D
character animators to draw, giving beginner animators an easy way to gener-
ate and stylize characters in a toon-like fashion. We demonstrate the program’s
ease-of-use in creating several different hand-drawn animation cycles applied to
various character models and evaluate the system on a number of individuals
with and without traditional artistic backgrounds. The final pipeline allows any-
one to, regardless of artistic ability, create 2D hand-drawn animations, encour-
aging individuals without artistic backgrounds to create hand-drawn animations
despite their lack of drawing experience.

2 Related Works

Making 2D animation easier has been a persistent challenge, pushing creators to
spend more time dreaming and less time drawing. Disney Research’s Mender was
developed as a vector/raster hybrid interface for computing in-betweens quickly
[33] and Adobe’s Flash Professional software integrated a similar pen tool to vec-
torize brush strokes, but both approaches suffered from the same artifacts when
trying to adjust to complex geometries like face and body turns. Researchers at
Autodesk added “Motion Amplifiers” that apply a set of transformations on a



3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation 559

vector to model the motions found in the 12 Principles of Animation [17,30],
although the resulting vector still suffers from its inability to exhibit 3D rota-
tions. 2D sketches can also be used to to pose 2D vectored characters [27], but
this is limited in viewpoint as we cannot consider 3D rotations.

We can edit 3D motions to obey the 12 Principles by applying filters or convo-
lutions to exaggerate [18,34] or squash and stretch [19] these 3D motions, making
them look more 2D like. While these filters are a step in the right direction, the
viewer can often see that the results were generated by a filter and not by hand
animation, thus leading the viewer to loose interest in the work. An alternative
to this is to use inverse kinematics on the joint angles [20,21] or bone segments
[3] to pose the characters in the exaggerated ways we see in 2D animation. One
solver in particular attempts to use 2D sketches in the model’s 3D environment
as a basis for 3D character posing using inverse kinematics [24], making 3D
character posing and animating a 2D constrained problem, given that all target
movements lie along the same plane. We use this mechanism of editing 3D data
along the 2D camera plane as a part of the backbone of our drawing interface,
as it provides a way to pose 3D characters from 2D-constrained sketches.

State-of-the-art research in this area focuses on 2D-assisted 3D animation
from rough 2D skeletons [7,9,12] and from detailed artist drawings [15]. Con-
verting 2D sketches to 3D posing data is an under-constrained problem, leading
to many possible poses per 2D sketch. Rather than querying the user to pick the
best pose from a sketch or searching for similar 3D poses from a database [23,29],
we attempt to properly constrain the problem by drawing 2D stick figures in 3D
space. These 3D interfaces for 2D sketches have been used previously for iterative
character re-posing [24] and to define spatial trajectories of character motions
[10,11,31]. These same 3D drawing environments can also be used for creating
3D human character models [25] or various other 3D models [5,35,36] from 2D
sketches. They provide an interface for drawing within 3D space that leads to
a fully-constrained conversion between sketch and 3D posing, and rotations in
these 3D sketch spaces can be achieved by easily computing the quaternion rota-
tions [16] between joints. While intuitive, these models are used for 3D animation
rather than 2D. We combine these 3D spaces with 2D rendering techniques to
provide the first accurate 3D animation interface for 2D rendering.

Toon Shading is a non-photorealistic rendering style that helps give 3D
animation a 2D cartoon-like look [4,13] by thresholding on the shader’s color
value to give a render high-contrast shading effects that we see in 2D imaging
and paintings. Hand-drawn shading is an alternative that integrates sketch-like
strokes around the contours of an image to give it a more natural, hand-drawn
feel [6,22,26,32]. When rasterizing 3D-posed reference frames, we can apply these
hand-drawn shading styles to the contours of our exported 3D character anima-
tion sequence to help make it look more like a 2D sketch while also introducing
the stochasticity and roughness of human sketches that we see between frames.



560 O. Dadfar and N. Pollard

Fig. 2. Block diagram of the interface. Blue regions refer to the sketch interface while
orange regions refer to the posing interface. The joint rotations of the sketch in 3D space
are used to pose a user-imported 3D model. These model frames are toon-shaded and
cropped before being loaded behind the original stick figure, providing a live feedback-
loop. (Color figure online)

3 Approach

Figure 2 shows a high-level description of the animation interface segmented into
two parts: 2D and 3D. The 2D drawing interface is the user side that is respon-
sible for gathering the joint vectors that comprise the stick figure. This data is
sent to the 3D interface where these rotations are computed and applied to a
rigged character model that is toon-shaded and rasterized before being sent back
to the 2D interface. The user has a chance to make any corrections and re-pose
any frames they are not happy with. Once done with their animation cycle, users
can sketch their character animation using these frames as keyframe reference
or can use the hand-drawn program we discuss in the paper to algorithmically
give the character a sketch-like feel.

2D Interface. We construct a 2D interface that can sketch multi-color strokes
in 3D space. The different stroke colors refer to different body parts, including
the back, left-leg, left-ankle, right-leg, right-ankle, left-shoulder, left-arm, right-
shoulder, and right-arm. The user can draw on the plane parallel to the current
camera’s view and drag endpoints of existing stokes parallel to the same camera
plane. We install an orbital camera to view the stick figure from different angles
and to help redraw/drag existing strokes. This mechanism allows users to draw
in the native xy-plane that they are used to drawing in 2D on pen and paper
while still allowing the user to modify depths of strokes in the z-pane. If the user
draws a stroke that already exists on the current frame, the previously existing
stroke is cleared, allowing for only one instance of each body part per frame.



3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation 561

Fig. 3. 3D posing interface with configurable parameters. The user specifies the joint
mappings between the joints in the 2D setting with the joint names for the specific
model.

The interface’s provided timeline coupled with the onion skinning tool allows for
drawing in-betweens with ease after drawing the main keyframes.

The user can link together joints, where the program attaches strokes if they
share a common joint. Some common joints include the shoulder connected by
the back and left/right-shoulder or the knee connected by the left/right-leg and
left/right ankle. This way, the user does not have to make sure strokes connect
when drawing them, but can auto-connect joints afterwards.

The rotational data of the joints are used to pose and display a toon-shaded
rasterization of the user-selected model behind the user’s stick figure for each
frame. This allows the user to see in full perspective how their posing looks and
allows them to edit their stick figures in realtime.

3D Interface. Each joint maps to a base vector and end vector, where we seek
to obtain the rotation transforming a joint along the base vector to the end
vector. For each joint, we fetch the initial base vector of the model before any
transformations are applied. This helps us compute the quaternion rotation from
the base’s rest vector to the current base vector [8,14]. We apply the inverse of
this quaternion to the base and end vectors for the current joint, allowing us
to reset the base vector to its rest position before computing the current joint’s
quaternion rotation from base to end in its initial space. This is because we
will be applying the quaternion rotation to each joint from it’s rest position, so
we want to compute quaternions when the base vector is aligned with it’s rest
position.

Each quaternion can be broken into a pitch, yaw, and roll. Because we do
not define orientations for our joints, the roll is left undefined when computing
the quaternion. This can lead to random rotations that affect the child joint,
offsetting target rotations by some amount along the roll of the parent joint.
To fix this, we remove the roll component from each joint’s parent quaternion.
We compute the current axis as the child joint’s roll axis and the target axis as
the world-space end vector of the child joint and attempt to minimize the dot



562 O. Dadfar and N. Pollard

Algorithm 1. Joint Rotations
for (curJoint, parentJoint) in jointMap do

Vec3 base = normalize( curJoint.base )
Vec3 end = normalize( curJoint.end )
Vec3 initBase = normalize( modelInit[curJoint.id].base )
//reset base/end to init orientation
Quat q0 = quaternionFromUnitVec( base, initBase );
Vec3 baseR = base.rotateByQuaternion( q0.inv() );
Vec3 endR = end.rotateByQuaternion( q0.inv() );
Quat q = quaternionFromUnitVec( endR, baseR );
curJoint.rotateQuaternion( q );
//remove rollAxis rotation from parent
Vec3 current = curJoint.rollAxis;
Vec3 target = end;
Vec3 axis = target.cross( current );
float angle = acos( target.dot( current ));
parentJoint.rotateAxisAligned( parentJoint.rollAxis, angle );

end for

product between these two vectors. We can compute the rotation angle between
the current and target axis, and apply an axis-aligned rotation onto the parent
joint’s roll axis for the computed rotation angle. This effectively removes the roll
component of the parent’s quaternion and correctly aligns the child joint to its
target location.

The user can import any rigged 3D model to pose using their stick-figure
joint rotations. Since the model joint names and rotations differ from model to
model, our interface traverses the model’s scene graph and provides a list of all
joint names to the user. The user can then configure which local joints map to
which model joints. Because these are model-specific parameters, they only need
to be computed once per model as shown in Fig. 3.

When rasterizing the frames, we use toon-shading where we extrude the
geometry of back-facing normals that are shaded black to give it an outline
effect. We interpolate the vertex normals of the model along the faces to create
smooth normals that we can threshold on in order to compute hard shadows
for our figure. We combine this with a movable directional light to give it a
flat-shading effect. For each frame, we pose the model using the quaternions
computed per joint and then rasterize the frames and save them to the device
(Fig. 4).

We can search for the rasterized frames on the device and compute the bound-
ing box of the toon-shaded image in order to crop the image and display it as a
texture behind the bounding box of the stick figure. This allows the user to see
in real-time how the frame posing aligns with their stick-figure and allows them
to make quick edits to body parts and re-rasterize frames if they need to. This
iterative process helps users experiment and refine their animations cycles.



3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation 563

Fig. 4. Applying the same joint rotations to multiple toon-shaded models

Fig. 5. Computing the hand-drawn and paint details separately before compositing
them. A displacement map sampled from perlin noise is used on the paint details to
give them additional temporal inconsistency.

Sketch Effect. We can generate a hand-drawn feeling along the contours from
the backface shading of each frame by applying rough sketch strokes to these
contours. Each sketch is comprised of a bezier curve of several nearby points.
We generate a random point along the contour of the frame and search for the
next point within a given radius of the previous point using uniform rejection
sampling, making sure the next point falls within the contour of the frame as
well. To help remove extraneous strokes that cut across non-outline regions, we
also verify the midpoint between every two points also lies along the contours.
We can generate N random strokes in the bounding box of the frame or generate
N/C strokes per cell in a C×C uniform grid to promote the uniformity of strokes
distributed.

We can separate the shading components from our toon-shaded models and
run a thresholded convolution filter that bins colors into either a light or a
shaded color depending on which color the average of the convolution is closer to
per pixel. This provides blotchier, smoother details that replicate hand-painted
effects for shading. We can apply both light and dark shadows by duplicating the
blotchy shading and apply a choke convolution that narrows the region, creating
darker shadows in more concentrated regions. We finish by adding a displacement
map to the shading, where the displacements are read from a perlin noise texture
to provide smooth jittery distortions to the shading per frame to give shading a
slight temporal inconsistency, similar to what would be found in hand-painted
frames. The results are composited with the stroke effect in Fig. 5 to provide
both hand-drawn strokes and shading.



564 O. Dadfar and N. Pollard

Fig. 6. Front-view run cycles. Bottom row colored-in by novice user.

4 Results

Of the 5 participants we selected to evaluate our system, 1 participant had
traditional drawing abilities, 1 participant had vector-art abilities but no drawing
abilities, and the remaining 3 participants had no prior art experience. We aim
to measure the effects of the pipeline along a diverse set of backgrounds but
focus primarily on individuals without art backgrounds.

We evaluated our system on several core animations cycles, such as jumping-
jacks and run cycles, which can be seen in Fig. 1, Fig. 6 and Fig. 7. Models were
provided by Adobe Mixamo [2], allowing us to configure the joint rotations once
in order for the rotations to work for most models. Our comprehensive demo of
video animations can be found here.

Participants without drawing experience were asked to sketch over the result-
ing edge-detected run-cycle frames in Fig. 1 and Fig. 6 to give them a more hand-
drawn feel. These participants found that sketching over the reference frames was
simple and required no previous drawing experience, yet mentioned that draw-
ing over every frame can take a long time. Because of this, these participants
preferred using our sketching algorithm on the contour frames to generate quick
automatic sketches of these animation cycles in Fig. 7, requiring no additional
sketching and saving users a substantial amount of time.

5 Discussion

The Run, Walk, and Kick cycles in Table 1 were generated by the 2 artist par-
ticipants while all other cycles were from non-artist participants. Participants
without prior art experience were able to create fluid animation cycles, primarily
because the animation interface required them to draw rough stick figures. In
some cycles in Table 1 the drawing time was substantially longer than the edit-
ing time. This happened in cycles such as run and kick that were visually more

https://vimeo.com/568201568


3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation 565

Fig. 7. Participant-generated stick figure animations and the resulting posed output.
Top uses edge detection while bottom uses our sketch-painting algorithm with N=1,500
and C=5.

challenging to think and draw the posings for. Most cycles had lower editing
times, mainly because it is easier for users to see and edit in-betweens of primi-
tive color-coded stick figures using onion skinning than of larger, more complex
3D character rigs, allowing users to quickly identify and edit changes to their
work whenever they noticed a temporal inconsistency in the motion.

Table 1. Animation cycle timed (in mins)

Cycle Frames Drawing Editing Cycle Frames Drawing Editing

Run 24 16.4 9.4 Kick 17 10.2 4.0

Run (Side) 25 16.4 9.4 Stretch 9 7.3 5.2

Walk 11 7.3 8.9 Dab 9 5.1 2.2

Jump 10 4.2 2.2 Warrior 8 6.2 2.5

Jump (Side) 11 8.19 7.1 Tree Pose 20 8.3 6.3

Following the study, users were asked about their impressions about the
pipeline. Non-artist users found it easy to think about their animations as stick
figures rather than individual joint rotations when producing their character
animation cycles, as stick figure drawings were ubiquitous in their pre-school
and elementary school periods. When asking about their thought process during
the animation stage, these individuals without art or posing experience said



566 O. Dadfar and N. Pollard

they would move around in front of a mirror and copy down their motions
as stick figures in order to easily create their animation cycles from their own
movements. They found that real-life was an easy reference to them, and that
converting real-life posings as stick figures came naturally for them.

The 2 participants with art experience said that drawing stick figures was a
much simpler interface than traditional forward kinematics posing, and that they
could draft ideas down much faster than the conventional counterpart of drawing
frames by hand. This demonstrates the pipeline’s effectiveness for individuals
with and without art experience. Individuals without art experience can use
the pipeline to create consistent and smooth hand-drawn character animations
without needing to understand character anatomy while individuals with art
experience can use the pipeline to quickly prototype 2D hand-drawn animations.

Limitations. Our interface only allows drawing line strokes, prohibiting the
generation of curved strokes for arc-like posing. While some models may have
many pivot points along the back to make it bend and curve, other models may
lack these pivot points. In order to generalize our interface to posing multiple
models, we use line strokes, not worrying about curved or arc-like body parts.

When computing joint angles, the stick figure from the 2D interface is only
concerned with aligning body parts in the 3D model to match their stick figures.
Yet this is still an under constrained problem, since our algorithm does not
account for the fact that users should be able to rotate joints around themselves
that do not change the character pose, but change body part orientations. A
common example is twisting an arm around itself. These body part orientations
are not specified in the original 2D interface. Future work could explore adding a
normal to each stroke to help visualize the orientation, and moving this normal
around would change the orientation. When computing joint angles, this changes
our alignment strategy from aligning vectors to aligning planes since each joint is
described by their unique direction and normal. In this case, there always exists
a unique rotation between two planes.

Future work could also look into adding in support for head rotations as
well. Most artists represent heads in basic sketches as circle with a cross, where
the cross intersection represents where the nose is oriented. Our program would
analyze where this point is relative to the center of the circle, as well as whether
the cross is bent inwards or outwards to denote whether the nose is facing towards
or away from the camera. This information would be enough to construct a unit
vector from the center of the face to the cross point and compute the quaternion
rotation of the vector from its rest position.

6 Conclusion

Our implementation bridges a 2D drawing interface with a 3D posing and ren-
dering interface in order to assist with the process of creating 2D hand-drawn
animations. We also introduce a novel toon-based shading scheme that builds
on classic cel-shading to create hand-drawn effects and shading. We believe that
with our interface, if anyone can draw stick-figures, then anyone can animate.



3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation 567

References

1. Why we’re seeing less 2D animated movies and why they probably won’t make a
comeback. Bloop Animation (2019)

2. Adobe: Mixamo (2021). https://www.mixamo.com/
3. Aristidou, A., Lasenby, J.: Graphical Models, pp. 243–260 (2011)
4. Bénard, P., Hertzmann, A.: Line drawings from 3D models. CoRR http://arxiv.

org/abs/1810.01175 (2018)
5. Chen, B.Y., Ono, Y., Nishita, T.: Character animation creation using hand-drawn

sketches. Vis. Comput. 21, 551–558 (2005). https://doi.org/10.1007/s00371-005-
0333-z

6. Curtis, C.: Loose and sketchy animation (1998). http://otherthings.com/uw/loose/
sketch.html

7. Davis, J., Agrawala, M., Chuang, E., Popović, Z., Salesin, D.: A sketching inter-
face for articulated figure animation. In: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 320–328 (2003)

8. Day, M.: Extracting Euler angles from a rotation matrix (2014)
9. Dvorožňák, M., Sýkora, D., Curtis, C., Curless, B., Sorkine-Hornung, O., Salesin,

D.: Monster mash: a single-view approach to casual 3D modeling and animation.
ACM Trans. Graph. 39(6), 1–12 (2020)

10. Guay, M., Ronfard, R., Gleicher, M., Cani, M.P.: Adding dynamics to sketch-based
character animations. In: Proceedings of the Workshop on Sketch-Based Interfaces
and Modeling, pp. 27–34 (2015)

11. Guay, M., Ronfard, R., Gleicher, M., Cani, M.P.: Space-time sketching of charac-
ter animation. ACM Trans. Graph. 34(4), 1–10 (2015). https://doi.org/10.1145/
2766893

12. Hecker, R., Perlin, K.: Controlling 3D objects by sketching 2D views. In: Sensor
Fusion V, pp. 46–48 (1992). https://doi.org/10.1117/12.131636

13. Hudon, M., Pagés, R., Grogan, M., Ondrej, J., Smolic, A.: 2D shading for cel
animation. Expressive 2018 (2018). https://doi.org/10.1145/3229147.3229148

14. Hughes, N.: Quaternion to/from euler angle of arbitrary rotation sequence and
direction cosine matrix conversion using geometric methods (2017)

15. Jain, E., Sheikh, Y., Hodgins, J.: Leveraging the talent of hand animators
to create three-dimensional animation. In: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 93–102 (2009).
https://doi.org/10.1145/1599470.1599483

16. Jia, Y.B.: Quaternions and rotations (2013). http://graphics.stanford.edu/courses/
cs348a-17-winter/Papers/quaternion.pdf

17. Kazi, R.H., Grossman, T., Umetani, N., Fitzmaurice, G.: Motion amplifiers: sketch-
ing dynamic illustrations using the principles of 2D animation. In: Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4599–4609
(2016). https://doi.org/10.1145/2858036.2858386

18. Kwon, J.Y., Lee, I.K.: Rubber-like exaggeration for character animation. In: Pacific
Graphics, pp. 18–26 (2007). https://doi.org/10.1109/PG.2007.25

19. Kwon, J.Y., Lee, I.K.: The squash-and-stretch stylization for character motions.
IEEE Trans. Vis. Comput. Graph. 18, 488–500 (2011). https://doi.org/10.1109/
TVCG.2011.48

20. Lander, J.: Making kine more flexible. Game Developer Mag. 1, 15–22 (1998)
21. Lander, J.: Oh my god, i inverted kine! Game Developer Mag. 9, 9–14 (1998)

https://www.mixamo.com/
http://arxiv.org/abs/1810.01175
http://arxiv.org/abs/1810.01175
https://doi.org/10.1007/s00371-005-0333-z
https://doi.org/10.1007/s00371-005-0333-z
http://otherthings.com/uw/loose/sketch.html
http://otherthings.com/uw/loose/sketch.html
https://doi.org/10.1145/2766893
https://doi.org/10.1145/2766893
https://doi.org/10.1117/12.131636
https://doi.org/10.1145/3229147.3229148
https://doi.org/10.1145/1599470.1599483
http://graphics.stanford.edu/courses/cs348a-17-winter/Papers/quaternion.pdf
http://graphics.stanford.edu/courses/cs348a-17-winter/Papers/quaternion.pdf
https://doi.org/10.1145/2858036.2858386
https://doi.org/10.1109/PG.2007.25
https://doi.org/10.1109/TVCG.2011.48
https://doi.org/10.1109/TVCG.2011.48


568 O. Dadfar and N. Pollard

22. Liu, D., Nabail, M., Hertzmann, A., Kalogerakis, E.: Neural contours: learning to
draw lines from 3D shapes. In: Computer Vision and Pattern Recognition (2020)

23. Lv, P., et al.: A suggestive interface for sketch-based character posing. Comput.
Graph. Forum 34(7), 111–121 (2015). https://doi.org/10.1111/cgf.12750

24. Mahmudi, M., Harish, P., Le Callennec, B., Boulic, R.: Artist-oriented 3D character
posing from 2D strokes. Comput. Graph. 57, 81–91 (2016). https://doi.org/10.
1016/j.cag.2016.03.008

25. Mao, C., Qin, S.F., Wright, D.: A sketch-based approach to human body modelling.
Comput. Graph. 33(4), 521–541 (2009). https://doi.org/10.1016/j.cag.2009.03.028

26. Muhammad, U.R., Yang, Y., Song, Y., Xiang, T., Hospedales, T.M.: Learning deep
sketch abstraction. CoRR http://arxiv.org/abs/1804.04804 (2018)

27. Pan, J., Zhang, J.: Sketch-based skeleton-driven 2D animation and motion capture.
Trans. Edutainment 6, 164–181 (2011). https://doi.org/10.1007/978-3-642-22639-
7-17

28. Stein, M.: Will disney ever return to making hand-drawn animated films? The
Mickey Mindset (2016)

29. Tang, Z., Xiao, J., Feng, Y., Yang, X., Zhang, J.: Human motion retrieval based on
freehand sketch. Comput. Anim. Virtual Worlds 25(3–4), 271–279 (2014). https://
doi.org/10.1002/cav.1602

30. Thomas, F.: The illusion of life: Disney animation. (1995)
31. Thorne, M., Burke, D., van de Panne, M.: Motion doodles: an interface for sketching

character motion. ACM Trans. Graph. 23(3), 424–431 (2004). https://doi.org/10.
1145/1015706.1015740

32. Tong, Z., Chen, X., Ni, B., Wang, X.: Sketch generation with drawing process
guided by vector flow and grayscale. Trans. Edutainment (2020)

33. Whited, B., Daniels, E., Kaschalk, M., Osborne, P., Odermatt, K.: Computer-
assisted animation of line and paint in disney’s paperman. In: Proceedings of
the 2012 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(2012). https://doi.org/10.1145/2343045.2343071

34. Wu, T.T.: Character rigs for motion exaggeration (2006)
35. Yang, R., Wünsche, B.: Life-sketch - a framework for sketch-based modelling and

animation of 3D objects. In: Conferences in Research and Practice in Information
Technology Series, vol. 106 (2010)

36. Yonemoto, S.: A sketch-based skeletal figure animation tool for novice users. In:
2012 Ninth International Conference on Computer Graphics, Imaging and Visual-
ization, pp. 37–42 (2012). https://doi.org/10.1109/CGIV.2012.18

https://doi.org/10.1111/cgf.12750
https://doi.org/10.1016/j.cag.2016.03.008
https://doi.org/10.1016/j.cag.2016.03.008
https://doi.org/10.1016/j.cag.2009.03.028
http://arxiv.org/abs/1804.04804
https://doi.org/10.1007/978-3-642-22639-7-17
https://doi.org/10.1007/978-3-642-22639-7-17
https://doi.org/10.1002/cav.1602
https://doi.org/10.1002/cav.1602
https://doi.org/10.1145/1015706.1015740
https://doi.org/10.1145/1015706.1015740
https://doi.org/10.1145/2343045.2343071
https://doi.org/10.1109/CGIV.2012.18

	3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation
	1 Introduction
	2 Related Works
	3 Approach
	4 Results
	5 Discussion
	6 Conclusion
	References




