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Abstract. The self-supervised depth and camera pose estimation methods are
proposed to address the difficulty of acquiring the densely labeled ground-truth
data and have achieved a great advance. As the stereo vision could constrain the
predicted depth to a real-world scale, in this paper, we study the use of both left-
right pairs and adjacent frames of stereo sequences for self-supervised semantic
and optical flow guided monocular depth and camera pose estimation without real
pose information. In particular, we explore (i) to construct a cascaded structure of
the depth-pose and optical flow for well-initializing the optical flow, (ii) a cycle
learning strategy to further constrain the depth-pose learning by the cross-task
consistency, and (iii) a weighted semantic guided smoothness loss to match the
real nature of a depth map. Our method produces favorable results against the
state-of-the-art methods on several benchmarks. And we also demonstrate the
generalization ability of our method on the cross dataset.

Keywords: Self-supervised learning · Monocular depth estimation · Camera
pose estimation · Stereo vision

1 Introduction

Scene understanding is a crucial yet challenging problem in robotics and autonomous
driving. One goal is to recognize and analyze the 3D scene structure and camera pose
information frommonocular 2D images. Traditional methods fail to model the ability of
humans to infer the 3D geometric structure of a scene from amonocular image.Whereas
with the rise of deep learning, several methods [5, 15] try to understand a scene in a
supervised manner by large amounts of densely labeled data. But these methods are
based primarily on the assumption that a plentiful of densely labeled ground-truth data
is available which is costly and time-consuming [29].

Hence, some researchers attempt to address this problem by self-supervised learning
from either stereo pairs [9] or video sequences [23] based on the scene structure re-
projection error [10, 23] andmulti-view geometric consistency [16]. Learning amapping
from a monocular image to a depth map in a self-supervised manner is challenging
due to the high dimensions densely continuous-valued outputs, so more constraints are
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needed to solve this problem. The self-supervised optical flow methods have achieved
excellent access, as it is easier than the 3D scene understanding. Existingmethods import
the deep learning-based optical flow for depth-pose learning, and achieve competitive
performance [2, 19, 22]. The deep learning-based optical flow extraction is expensive in
space and time, while the iterative optimization-based TVNet [6] achieves competitive
accuracy with the fastest feature extraction time. Furthermore, the depth values of the
pixels within an object always be close and relative, and significant changes occurred
at the boundary of an object. To improve the reliability of the depth-pose estimation
and imitate the learning process of humans, semantic segmentations are introduced
for multi-task learning to mutually positive transfer between semantic segmentation and
depth estimation [1, 12, 31, 34]. While they always treat the foreground objects, i.e. cars,
and the background equally, which is not squared with the factual scene structure. Thus
the different depth distribution of each class should be treated differently. The scale-
ambiguity issue is common in self-supervised monocular depth estimation, existing
methods mainly incorporate the stereo information into the monocular videos-based
methods by given the stereo relations of two image planes.

Fig. 1. An overview of the proposed pipeline for self-supervised depth and camera poses esti-
mation. The depth network and pose network are learned collaboratively with the TVNet optical
flow and guided by semantic segmentation.

In this paper, we propose a novel framework that jointly learns the semantic and
optical flow-guided self-supervised monocular depth and camera pose from stereo
video sequences. An overview of our proposed framework has been depicted in Fig. 1.
Specifically, our main contributions are as follows:

1)We incorporate the structure of predicting the stereo views’ disparity maps only based
on amonocular image into the structure-from-motion (SfM) based self-supervised depth-
pose learning framework, which takes full advantage of the constraints from spatial and
temporal image pairs to improve upon prior art on monocular depth estimations. Our
method can solve the scale ambiguity problem by stereo pairs without pose supervision.

2)We introduce the interpretable and simple optical flow, TVNet, into the self-supervised
depth and pose learning framework to construct a cascaded structure with an end-to-end
cycle learning strategy for well initializing the TVNet and better facilitating the depth-
pose learning. Thus, the mismatching problem can be significantly alleviated, and the
TVNet can be well-initialized.
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3) As we always know that pixels labeled as ‘sky’ must accompany very large depth
values and the depth values of the road are gradually increasing while the depth values
of the pedestrian are almost the same. In this paper, we jointly train the depthpose and
the semantic segmentation tasks and construct a weighted semantic guided region-aware
smoothness loss to treat each class differently and make the predicted depth map closer
to the real values.

2 Related Work

There are substantial studies on monocular depth estimation, including geometry-based
methods [35] and learning-based methods [5]. In this paper, however, we concentrate
only on the self-supervised depth-pose learning and semantic-guided depth estimation,
which is highly related to the research topic of this paper.

Self-supervised depth estimation. Self-supervised methods enable learning the depth
and pose networks from unlabeled images by substituting the direct ground-truth super-
vision with the new views synthesis loss. Godard et al. [9] and Garg et al. [7] proposed
the stereo vision-based self-supervised methods, then Zhou et al. [23] proposed a self-
supervised structure-from-motion-based learning framework that jointly learns the depth
and camera pose from monocular video sequences. Based on this framework, a large
corpus of works were proposed to promote self-supervised learning performance from
different aspects. For more robust self-supervision signals, Mahjourian et al. [16] pro-
posed a 3D geometric consistency loss which directly measured the whole structure
of a scene, Shen et al. [32] introduced the epipolar geometry to measure the matching
error, another kind of methods leveraged auxiliary tasks such as the optical flow [19,
22] to strengthen depth supervision via cross-task consistency. To deal with the dynamic
objects, selective masks were used to filter out the unreliable information during train-
ing. Prior works generated the mask by the auto-learning network [23], while the recent
methods produced themask by geometric error guidance [10, 24, 26], whichwere proved
to be more effective. Guizilini et al. [11] proposed a novel depth network architecture to
improve the estimation performance. There also exist other methods trying to enhance
the network performance with traditional SfM [3], which offer pseudo labels for depth
estimation. Poggi et al. [18] focused on the uncertainty estimation for self-supervised
monocular depth estimation. And recently some methods were proposed to solve the
scale ambiguity problem [26, 32].

Semantic guided Depth estimation. Semantic information had been shown to provide
positive effects on monocular depth estimation [1, 31]. The methods could be classified
into two categories by the manner of using semantic information. One group of the
methods used the outputs of semantic labels directly to guide the depth learning. Chen
et al. [1] constrained the depth maps by leveraging the semantic labels of the scene.
Klingner et al. [30] and Casser et al. [25] addressed the dynamic moving objects issues
by the indication of the semantic map. The other group of methods enhanced the depth
feature representation by semantic feature guidance [12, 27] proposed a segmentation-
like loss term for depth estimation. Li et al. [28] fused these two manners and proposed
an individual semantic network for better scene representation.
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3 The Proposed Method

3.1 Cascaded Structure and Cycle Learning Strategy

Monocular depth, optical flow, and ego motion are coupled by the nature of 3D scene
geometry. A reasonable combination of these tasks would improve the prediction perfor-
mance. It contains two stages, the rigid 3D structure reasoning stage and the optical flow
iterating stage. The first stage to infer scene structure is made up of two sub-networks,
i.e. the DepthNet and the PoseNet. The depth maps and camera poses are regressed
respectively and combined to produce the rigid scene flow. And the second stage is to
feed the rigid scene flow into the TVNet based optical flow to form a cascaded structure
for iterating the optical flow from these initial values. The TVNet [6] is obtained by
imitating and unfolding the iterative optimization process of the TV-L1 method [34]
and formulates the iterations as customized layers of a neural network. Thus it can be
naturally connectedwith other related networks to form an end-to-end trainable architec-
ture. It is not necessary to carefully design a complex network structure with unknown
interpretability or to store the optical-flow features anymore. Since the Taylor expansion
is applied in TVNet to linearize the brightness difference, the initial flow field should
be close to the real field to ensure a smaller approximation error. Thus it is proper to
construct a cascaded structure for depth-pose and optical flow learning. Furthermore, we
constrain the cross-task geometric consistency check during training, which significantly
enhances the coherence of the predictions and achieves impressive performance.

Our first stage aims to reconstruct the rigid scene structure with robustness towards
non-rigidity and outliers. The DepthNet takes a single image I l(r)t ∈ RH×W×3 as input
to regress a pair of pixel-wise stereo depth maps (Dl(r)

t ,Dr(l)
t ) and exploits accumulated

scene priors for depth prediction. Similar to [9], our model does not require the relative
pose between the stereo pair. ThePoseNet takes the concatenated adjacent views [It, Is] ∈
RH×W×6 as input to regress the relative 6DoF camera poses Tt→s = [R, t] from the
target view It to the source viewsIs, wheres ∈ {t − 1, t + 1}. With the estimated depth
and pose, the reprojected scene flow from the target image It to the source image Is can
be represented by

f inf ert→s = p − KTt→sD
l(r)
t (p)K−1p (1)

whereK ∈ R3×3 denotes the camera intrinsic and p denotes homogeneous coordinates of
a pixel in the frame It . Here the estimated optical flow of the TVNet-15 [6] is represented
as f pret→s and can be optimized by the loss as follows:

Lop = min
u(p)

∑
(|u1(p)| + |u2(p)| + λρ(u(p))) (2)

where u(p) = (u1(p), u2(p)) denotes the displacement of the position p from time t to the
next frame t+1 of each iteration process and ρ(u(p)) is defined to penalize the brightness
difference of adjacent time. The more implementation details are recommended to see
the literature TVNet [6]. Instead of setting the initial value u0(p) = (0, 0), here we use
the u0(p) = f inf ert→s (p) as the initial value of the TVNet.
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As we all know that stereo view reconstruction can achieve more reliable results due
to it is less affected by the illumination variation. In this paper, we adopt the minimum
error among source views and a per-pixel binary auto-mask μ proposed by [10] to
construct the photometric loss of the adjacent views asLvs = μmin

s
pe(It, Is→t), where

pe(, ) is a mixture of L1-Norm and structural similarity (SSIM) difference.
We also use the left-right disparity consistency loss Llr and the stereo image recon-

struction losses Lap introduced by [9] to constrain the depth maps. Thus the total
reconstruction loss of our method can be expressed as:

Lsyth = Lvs + λaLap + λcLlr (3)

where λa and λc are the weightings for the left-right image reconstruction loss and
the left-right disparity consistency loss, respectively. The cross-task consistency on the
depth-pose and optical flow estimation can further constrain the depth-pose learning
procedure. Like other methods [26, 32], we compute a binary mask M (p) based on the
distribution of the consistency difference between f pret→s(p) and f

inf er
t→s (p) to filter out the

outliers. The binary mask can be computed by:

M (p) = {1,Percentile(|f
pre
t→s(p) − f inf ert→s (p)|) < TM

0, Otherwise
. (4)

Where pixel positions whose geometry consistency loss is above a percentile thresh-
old TM are filtered out. Thus the optical flow-guided depth and pose learning loss can
be reformulated as:

Lpf =
∑

r

∑

s

∑

p

M (p)|f pret→s(p) − f inf ert→s (p)|. (5)

Where r indexes over different feature scales of the image, s indexes over source
images, and p indexes over all pixels.

3.2 Semantic Guided Depth Estimation

The existing depth estimationmethods generally focus on pixel-wise disparity estimation
and regard all pixels within an image as spatial homogeneity, which would lead to
unfavorable disparity estimation along object boundaries. To overcome the limitation,
we perform disparity estimation by leveraging semantic information to improve the
quality of the depthmaps. The semantic segmentation is derived by a neural network that
implements a non-linear mapping between an input image It and the output scores yt ∈
RH×W×S for all pixel indexes p and classes s. We thus define the semantic segmentation
loss Lseg as:

Lseg = ωsCE(sGT , s) (6)

where ωsCE() indicates the weighted cross-entropy loss, ωs are the weights of each
semantic class, s ∈ S is the predicted semantic labels of each pixel p from a set of
classes S = {1, 2, · · · , S} and sGT denotes the ground truth labels from an additional
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disjoint dataset. To approximate the real distribution of the depth map, we proposed a
region-aware smoothness loss function to constrain the depth values belonging to the
same objects to be closer with their nearby pixels, while making a difference between
the foreground objects and the background. St = ϕ(yt) is the operation that sets the
maximum value along each channel as 1 and sets the remaining values as 0. Then the
weighted region-aware disparity smoothness term is defined as:

Lsm = �p(|∂xDl(r)
t (p)| + |∂yDl(r)

t (p)|) � ωsf (1 − St) (7)

where ∂x( · ) and ∂y( · ) are the gradients of disparity in horizontal and vertical
direction respectively � denotes element-wise multiplication, St is the gradients of the
segmentation map in each channel which mean the edges of all classes, and ωsf ∈ RS

is the smoothness weights of all semantic classes. Thus the weighted semantic guided
smooth factor is low (close to zero) on the boundary regions of the objects, high (close to
one) on the foreground objects’ central regions, and smaller on the background regions.
The depth value of the nearby pixels within the edge of one semantic object should be
almost the same for the foreground objects, while just be closer and gradually changed
for the background of the nearby pixels. Thus the smoothness degree of each class should
be different during training. The second term 1 − ∇St is an edge detector operation to
identify edges of the segmentation map.

Thus our final loss function becomes:

Lfinal = Lsyth + λsLsm + λf Lpf + λoLop. (8)

Where λs and λf are the weightings for the depth smoothness loss and the geometry
consistency loss, respectively.

4 Experiments

In this section, we evaluated the quantitative and qualitative performance of our method,
and compared it with the state-of-the-arts methods mainly on the KITTI dataset [8]
for a fair comparison. We also evaluated the cross dataset generalization ability on the
Make3D dataset [21].

4.1 Implementation Details

Parameters setting. The algorithm was implemented in the PyTorch [17] framework.
For all the experiments, we set the weighting of the different loss components as λs =
0.01, λf = 0.001, λa = 0.5 and λc = 0.5. We trained our model for 40 epochs with
the Adam [14] optimizer, Gaussian random initialization, and mini-batch size of 6. The
learning rate was initially set to 0.0001 for the first 30 epochs and then dropped to
0.00001 for the reminder. The network took almost 28 h to train on a single Titan Xp
for 20 epochs.

Network architecture. Our networks are based on SGDepth [30], where an encoder-
decoder architecture with skip connections is employed. To ensure comparability to
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Fig. 2. The qualitative results of the proposed method on the KITTI dataset. The left, middle, and
right columns show respectively input images, the state-of-the-art predicted depth maps Godard
et al. [10], Klingner et al. [30] and the depths maps obtained by ours. Our method predicts sharper
boundaries and fine-grained details on distant objects.

existing work [10, 12, 30], we choose the ResNet18 [13] pretrained on Imagenet [20]
as encoder. The shared encoder was trained according to [30]. The depth head has two
channels at each output layer and has 4 different spatial scales of the outputs. A sigmoid
output σ is used to ensure the predicted depth to be within a reasonable range, which
is converted to a depth map by 1/aσ + b, where a and b are chosen to constrain the
depth values within the range [0.1, 100]. For simplicity, the segmentation decoder uses
the same architecture as the depth decoder, except for the last layer having S channels
feature maps, whose elements are converted to class probabilities by a softmax function.
The pose network’s architecture is the same as in [30].

Datasets. We utilized one dataset to learn the semantic segmentation and another one
for the self-supervised depth-pose and optical flow training. For training the semantic
segmentation we utilized the Cityscapes dataset [4] while at the same time we use the
KITTI dataset [8] for training the depth estimation. Similar to other state-of-the-art
approaches we trained our model on the Eigen split dataset [5] which excluded 679
images from the KITTI dataset for testing and remove static frames following [23]. All
the experiments were performed with image sequences captured by color cameras with
fixed focal length. We resized images to 640 × 192 during training, but the network can
be tested with arbitrary input image size, due to the depth and pose networks were all
with the fully convolutional structure.

Augmentation and processing. We performed horizontal flips and the following data
augmentations during training, with 50% chance: random brightness, contrast, satura-
tion, and hue jitter with respective ranges of ±0.2, ±0.2, ±0.2, and ±0.1 as in [10]. All
the images fed to the pose and depth networks are performed with the same augmenta-
tions. For results trained in stereo image pairs, we did not perform median scaling as the
scale has to be learned by the stereo vision.
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Table 1. Results on the KITTI dataset [8] using the Eigen split [5] compared with the state-of-
the-art methods by the authors’ report. ‘S’ and ‘M’ refer to stereo images and monocular images
self-supervision, respectively. ‘Inst’ and ‘Sem’ indicate the instance or semantic information.

Method Train Error (lower is better) Accuracy (higher is better)

Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

Zhou et al.
[23]

M 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Godard
et al. [9]

S 0.133 1.142 5.533 0.230 0.830 0.936 0.970

Vid2Depth
[16]

M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yin et al.
[22]

M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Chen et al.
[1]

S 0.118 0.905 5.096 0.211 0.839 0.945 0.977

Godard
et al. [10]

M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Godard
et al. [10]

MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979

Casser
et al. [25]

M+Inst 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Bian et al.
[26]

M 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Xue et al.
[32]

M 0.113 0.864 4.812 0.191 0.877 0.960 0.981

Guizilini
et al. [12]

M+Sem 0.117 0.854 4.714 0.191 0.873 0.963 0.981

n.Klingner
et al. [30]

M+Sem 0.113 0.835 4.693 0.191 0.879 0.961 0.981

Ours MS+Sem 0.105 0.801 4.631 0.189 0.881 0.962 0.982

4.2 Main Results

In this section, we start by the comparison to multiple state-of-the-art methods, followed
by an analysis of how the single components of our method improve the estimation
results.

Depth Estimation Results on KITTI. We first provided a comparison with the state-
of-the-arts self-supervised methods on the monocular depth evaluation by the Eigen
split in Table 1. To be fair for all methods, we used the same crop manner as [10] and
evaluated the prediction with the same resolution as the input image. The evaluation
metrics conformed to the one used in [10], and the depth value was capped to 80 m
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during evaluation. Ourmethod outperforms all comparable baselines, wherewe compare
to methods that use only video sequences as supervision on the KITIT dataset. As
the resolution of the input image highly dependent on the estimation performance, we
reported the results at the middle resolutions 640 × 192 for a fair comparison. Due to
fairness, we do not compare against results with online refinement [1] or employing a
more efficient network architecture [11], as such techniques can improve any methods.
Qualitative results were shown in Fig. 2. We could observe that our method was able
to reconstruct small objects such as traffic signs and could achieve the state-of-the-art
performance.

Depth Estimation Results on Make3D. To illustrate the generalization ability of our
method, we evaluated our model trained only on the KITTI dataset on the Make3D
test set of [21]. Make3D consists of only RGB/Depth pairs and without stereo image.
Qualitative results were shown in Fig. 3, note that our model is only trained on the KITTI
dataset, and directly tested on Make3D. These results would be further improved with
more relevant training data.

Table 2. Odometry results on the KITTI [8] odometry dataset. Results show the average absolute
trajectory error, and standard deviation, in meters.

Methods Sequence 09 Sequence 10 # frames

Garg et al. [7] 0.013 ± 0.010 0.012 ± 0.011 3

Zhou et al. [23] 0.021± 0.017 0.020 ± 0.015 5

Mahjourian et al.
[16]

0.013± 0.010 0.012 ± 0.011 3

GeoNet [22] 0.012± 0.007 0.012 ± 0.009 5

Ranjan et al. [19] 0.012± 0.007 0.012 ± 0.008 5

Monodepth2 [10] 0.017± 0.008 0.015 ± 0.010 2

SGDepth [30] 0.019± 0.010 0.016 ± 0.010 2

Ours 0.011 ± 0.007 0.012 ± 0.008 2

Fig. 3. Illustration of examples of depth predictions on the unseen Make3D dataset [21].
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Pose Estimation Results on KITTI Odometry. While we mainly concentrated on
better depth estimation, we also compared our pose networks with competing meth-
ods on the KITTI odometry dataset since the two tasks are inter-dependent. The KITTI
odometry dataset contains 11 driving sequences with ground-truth poses available (and
11 sequences without ground-truth). We evaluated the pose error on sequences 09 and
10. Competing methods typically feed more frames to their pose network for improving
their performance.We had observed that with the joint optical flow learning, the result of
visual odometry would be improved. We measured the Absolute Trajectory Error (ATE)
over N-frame snippets (N = 3 or 5), as measured in [10]. As showed in Table 2, our
method outperformed other state-of-the-art approaches.

Table 3. Ablation studies. Results for different variants of our model trained on KITTI 2015 [8]
using the Eigen split.

Method Error (lower is better) Accuracy (higher is better)

Abs
Rel

Sq Rel RMSE RMSE
log

δ < 1.25 Δ < 1.252 Δ < 1.253

Baseline 0.115 0.903 4.863 0.193 0.877 0.959 0.977

+Stereo 0.113 0.863 4.767 0.192 0.875 0.957 0.980

+Cascaded-cycle
learning

0.106 0.842 4.723 0.191 0.877 0.959 0.979

+ Weighted
Semantic
guidance

0.105 0.801 4.631 0.189 0.881 0.962 0.982

4.3 Ablation Studies

To verify how each component of our model contributed to the overall performance,
we performed ablation studies by changing various components of our model based on
and listed the results in Table 3. The study was performed on the Eigen split for better
comparison. We see that each component of our model could promote the estimation
performance of the baseline model [10], and all our components combined lead to a
significant improvement. As expected, integrating stereo information into a monocular
model could increase accuracy.

Benefits of the cascaded structure by cycle learning strategy for depth estimation.
We also compared our only depth estimation model with the jointly depth-pose and
TVNet learning framework with zero initialization. Our method performed better than
the model that simply jointed training three networks together on the KITTI Eigen
split dataset. We further verified that the cycle learning could address the mismatching
problem which could be reflected by the end-to-end point error.
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Effect of the weighted semantic guided smoothness loss. We saw that the weighted
semantic guided smoothness loss could not only achieve improvement of the quantitative
results than the edge-aware first order smooth loss and the second-order smooth loss,
the qualified results could also be better improved. Semantic information could improve
depth estimation in all cases.

More specifically, we applied the exact network architecture of Godard et al. [9]
that predicted the disparity maps for stereo views from a monocular image by randomly
using the left or right view as input instead of only using the left image as input, which
would solve the problem of unawareness of structural information from the other view,
and promoted the depth and pose estimation.

5 Conclusions

In this paper, we have presented a self-supervised semantic and optical flow-guided
depth-pose learning pipeline from stereo sequences with an unknown stereo pose. This
framework takes full advantage of the constraints on the unlabeled stereo and temporal
image pairs by predicting stereo disparity maps from a monocular image. Furthermore,
we import the explainable TVNet into the self-supervised depth-pose learning and con-
struct a cascaded structurewith a cycle learning strategy for better depth-pose and optical
flow learning. Finally, we propose a weighted semantic guided smoothness loss to treat
the foreground objects and background region differently for predicting more natural
and reasonable depth maps. Experiments show that our method can exceed the existing
self-supervised method, and can generalize well to the unseen dataset.
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