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Abstract. Nonnegative matrix factorization (NMF) is a classical low-rank
approximationmethod of data matrix, which decomposes a high-dimensional data
matrix into two nonnegative low-rank matrices, namely basis matrix and coeffi-
cient matrix. In order to capture the local geometric structure of original dataset,
manifold learning methods are incorporated into NMF framework. Motivated by
recent progress in dual graph regularization, by considering the geometric struc-
tures of both the data manifold and the feature manifold, Orthogonal Dual-graph
NMF (ODNMF) algorithms were proposed, which imposed orthogonality con-
straints on basis matrix or coefficient matrix. Since the projection directions were
mutually orthogonal, the representation power of data samples was enhanced, thus
ODNMFmethods are more robust for data clustering. The extensive experimental
results on UCI, text and face image data sets have demonstrated the superiority of
the proposed methods.

Keywords: Data representation · Nonnegative matrix factorization · Dual-graph
regularization · Orthogonal projection

1 Introduction

Non-negativeMatrix Factorization (NMF) is one of themost powerful tools in numerical
computing, machine learning and data mining. By decomposing original high dimen-
sional non-negative data matrix X into two low dimensional non-negative factors U and
V, namely basis matrix and coefficient matrix, such that X ≈ UVT. Moreover, the addi-
tive reconstruction with nonnegative constraints can lead to a parts-based representation
for images [1], texts [2], and microarray data [3] and so on.

To decompose the given data into a component part that encodes low-rank sparse
principal features and a noise-fitting error part, Zhang et al. proposed a transductive low-
rank and sparse principal feature coding (LSPFC) model to recover the low-rank and
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sparse subspaces jointly for robust data representation [4]. By imposing orthogonality
constraints on NMF, Ding et al. proposed orthogonal non-negative matrix factorization
(ONMF)method [5],which has been shown towork remarkablywell for clustering tasks.
Pompili et al. show that ONMF is mathematically equivalent to a weighted variant of
spherical k-means [6].Motivated by recent progress inmanifold learning and orthogonal
projection, in this paper we propose a novel algorithm, which called Orthogonal Graph
Regularized NonnegativeMatrix Factorization (OGNMF), which combining orthogonal
constraints and manifold regularization in a parts-based low-dimensional space.

From geometric perspective, the data samples are usually sampled from a low-
dimensional manifold embedded in a high-dimensional ambient space. Based on such
assumption, Cai et al. proposed graph regularized NMF (GNMF [7]) method, which
incorporates the manifold learning into NMF for finding a compact low-dimensional
representation to discover the latent semantics and intrinsic geometric structure in the
dataset simultaneously. Since the sparse hypergraph inherits themerits of both the hyper-
graphmodel and sparse representation, S. Huang et al. proposed Sparse Hypergraph reg-
ularizedNMF (SHNMF [8]) to exploit the high-order discriminant manifold information
for data representation. In order to depict complex relations of samples, J. Wang et al.
encoded different sample relations into multiple graphs and proposed Multiple Graph
regularized NMF (MGNMF [9]). However, the process of multiple graphs construction
is very time consuming. Motivated by recent study on sample diversity learning [10], C.
Wang et al. proposed Graph regularized NMF with Sample Diversity (GNMFSD [11]),
which incorporated label information into the graph to encode the intrinsic geometrical
structures of the data space, then the discriminant power of the basis vectors is enhanced.
By introducing an additional regression level, Mei et al. proposed a general method for
including side information on the columns and rows in NMF, which can be used for time
series recovery and prediction [12].

Recent works have shown that not only the original data samples are found to lie on a
nonlinear low-dimensional manifold, which is called data manifold, but also the feature
vectors lie on a manifold, which is called feature manifold [13]. Considering the duality
between data samples and feature vectors, several dual-graph based data representation
algorithms have been proposed and shown to be superior to traditional data manifold
regularization basedmethods. Shang et al. [14] proposed graphDual regularizationNon-
negative Matrix Factorization (DNMF). In order to improve the overall performance of
recommender systems, by encoding the side information from both users and items as
twograph regularization terms,Yao et al. [15] proposed a dual-regularizedmodel for one-
class collaborate filtering. In order to estimate fraction of different land cover types from
remote sensing imagery, Tong et al. [16] applied DNMF in hyperspectral unmixing and
showed that DNMF has better performance than GNMF. Yang et al. [17] applied DNMF
to discover real-world events from Flickr data. By imposing the L2,1-norm constraint
on the self-representation coefficients matrix in data space, Shang et al. proposed self-
representation based dual-graph regularized feature selection clustering (DFSC, [18])
and non-negative spectral learning and sparse regression-based dual-graph regularized
feature selection (NSSRD, [19]). For incorporating the graph topology,Yankelevsky et al.
[20] proposed a dual regularized dictionary learning method, which imposed a quadratic
smoothness constraint on the dictionary bases and a manifold smoothness regularization
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on the sparse representations. Luo et al. proposed Dual-regularized Multi-view Non-
negative Matrix Factorization (DMvNMF [21]) to deal with multi-view data, which
can extract compatible and complementary information contained in multiple modality
datasets, while preserve the geometric structures in both the data space and the feature
space. In order to reduce the redundancy between bases and representations in GNMF
model, He et al. proposed Orthogonal GNMF (OGNMF [22]), which incorporates three
kinds of orthogonal constraints into GNMF model.

In summary, our main contributions in this paper are listed below.

(1) Orthogonal dual-graph regularized NMFmodels are proposed, in which three types
of orthogonal constraints are added, including U orthogonal, V orthogonal and bi-
orthogonal. In this way, the potential geometrical structural information can be
preserved during the process of data representation, which can effectively enhance
the discriminative ability of clustering.

(2) The multiplicative iterative updating rules derived from original NMF are used to
optimize the proposed DNMF models.

(3) Comprehensive experiments on ten real world datasets are conducted to show the
effectiveness of the proposed three algorithms, and demonstrate its advantage over
other state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
related works, such as NMF, ONMF and DNMF. In Sect. 3, we proposed three types of
ODNMFmodels and their optimization algorithms. Extensive experiments are presented
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Works

2.1 NMF

NMF aims to express each sample xi as a linear combination of the basis vectors which
are columns ofU, namely, where vj is the jth column xi = Uvj of V. Such a factorization
is generally obtained by minimizing the following cost function:

min
U ,V

∥
∥X − UVT

∥
∥
2
F

s.t. uij ≥ 0, vij ≥ 0
(1)

where X = [x1, x2, · · · , xn] ∈ Rd×n denotes the original data matrix, which contains
n data samples with the dimensionality d, and U ∈ Rd×r denotes the basis matrix,
V ∈ Rr×n denotes the coefficient matrix, where r is the reduced target dimensionality
of projected low dimensional data. The NMF model (1) can be optimized by using
following multiplicative updating rules [1]:

uij = uij
(XV )ij

(

UVTV
)

ij

(2)
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vij = vij

(

X TU
)

ij
(

VUTU
)

ij

(3)

Since the objective function in (1) is not convex in bothU andV, the above iterative updat-
ing rules can only find the local minimum of the objective function. The convergence of
the optimization algorithm is proved in [1].

2.2 ONMF

ONMF is a variant of NMF, which approximate the data matrix with the product of two
low-rank nonnegative matrices, one of which has orthonormal columns. For example,
when the coefficient matrix V has orthonormal columns, the corresponding optimization
model is

min
U ,V

∥
∥X − UVT

∥
∥
2
F

s.t.
uij ≥ 0, vij ≥ 0
VTV = I

(4)

Since the column vectors of coefficient matrix V is orthonormal, its power lies in
the potential to generate sparser part-based decompositions of data with smaller basis
vectors, that are easier to interpret.

The updating rules to optimize the above objective function (4) are given as follows

uij = uij
(XV )ij

(

UVTV
)

ij

(5)

vij = vij

(

X TU
)

ij
(

VUTXV
)

ij

(6)

2.3 GNMF

GNMF adds manifold learning into the classical NMF for finding a compact repre-
sentation, in which the local geometric structure of data manifold is simulated by a
neighborhood graph.

LetG(X ,W ) denote a graph with vertex set X = {x1, x2, · · · , xn} and weight matrix
W whose entryWij denotes the similarity between sample xi and xj. There several ways
to compute the similarity weight matrix W, and we use the Gauss kernel function as
follows:

Wij =
⎧

⎨

⎩

e−‖xi−xj‖2
2

t xi ∈ Nk(xj) ∨ xj ∈ Nk(xi)
0 otherwise

(7)

where Nk(xi) is the sample points set that contains the k nearest neighbors of xi, and t is
heat kernel parameter. SinceG is an undirected graph, the weight matrixW is symmetric
and the diagonal entries in W are all 0.
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GNMF aims to learning a collection of nonnegative basis which can not only mini-
mize the reconstruction error but also preserve the similarities between pairwise samples
that encoded in neighborhood graph. Therefore, the optimal nonnegative basisU can be
obtained via minimizing the following objective:

min
U ,V

∥
∥X − UVT

∥
∥
2
F + λtr

(

VTLV
)

s.t. uij ≥ 0, vij ≥ 0
(8)

where L = D–W is the graph Laplacian matrix and D is a diagonal matrix whose entry

is Dii =
n∑

j=1
Wij, W is the weight matrix to measure the similarity between the nearby

data samples. The λ is a regularization parameter which balance the reconstruction error
and graph embedding term. Since the graph embedding regularizer could smooth the
variation between two samples with large similarity in the latent low-dimensional space,
the performance of clustering based on GNMF can be effectively improved.

Similar to Eq. (2) and (3), the iterative updating rules to solve (8) are presented as
follows:

uij = uij
(XV )ij

(

UVTV
)

ij

(9)

vij = vij

(

X TU + λWV
)

ij
(

VUTU + λDV
)

ij

(10)

2.4 DNMF

DNMF is an extension of GNMF, which imposed graph regularization on basis matrix
and coefficient matrix to discover the geometrical structure of data. Similar to GNMF,
DNMF constructed k nearest neighbor graph on data samples and feature vectors. Sup-
pose the columns of data matrix X are {X:1,X:2, ...,X:N } and the weight between two
neighborhood samples can be defined as:

[WV ]ij =
{

1 if X:,j ∈ N (X:,i)
0 otherwise

i, j = 1, ...,N (11)

where N (X:,i) is the k-th neighborhood sample of X:,i. The graph Laplacian matrix is
LV = DV − WV , here DV is diagonal matrix, whose diagonal elements are rows sum
of W, i.e., [DV ]ii = ∑

j [WV ]ij.
Similarly, the rows of data matrix X are feature vectors, i.e., {X T

1,:,X T
2,:, ...,X T

N ,: }, and
the weight between feature vectors can be defined as:

[WU ]ij =
{

1, if X T
j,: ∈ N (X T

i,: )

0 otherwise
i, j = 1, ...,M (12)
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where N (X T
i,:) is the k-th feature vector of X T

i,:., and the corresponding graph Laplacian

matrix is LU = DU −WU , here DU is a diagonal matrix, and its element is row sum of
W, i.e. [DV ]ii = ∑

j [WV ]ij.
Similar to GNMF, the DNMF model can be formulated as

JDNMF =||X − UVT ||2 + λTr(V TLVV ) + μTr(UTLUU )

s.t. U ≥ 0,V ≥ 0 (13)

where λ, μ are regularization parameters. When μ tends to 0, DNMF is equivalent to
GNMF.When both the λ andμ tend to 0, DNMF is equivalent toNMF. Theminimization
process of objective function in Eq. (9) can be achieved through the following update
rules:

Uij = Uij

(XV )ij + μ
(

WUU
)

ij
(

UVTV
)

ij + μ
(

DUU
)

ij

(14)

Vij = Vij

(

X TU
)

ij + λ(WV )ij
(

VUTU
)

ij + λ(DV )ij
(15)

3 Proposed Methods

Orthogonal projections have been proved to be more discriminative in most cases, since
it can also release the correlation of the projection directions or low-dimensional rep-
resentations. With orthogonal constraints on basis matrix and coefficient matrix, the
performance of DNMF model on data clustering is improved. ODNMF inherits the
advantages of ONMF and DNMF, it can capture the local similarity structures of data
space and feature which are helpful for extracting the discriminative features, while pre-
serving the global geometrical structure of data space which aims to contain the intrinsic
information as much as possible.

3.1 ODNMF-U

Adding the orthogonal constraint on basis matrix U, we have the following orthogonal
dual-graph regularized NMF with U orthogonality (ODNMF-U):

JODNMF = ||X − UVT ||2 + λTr(V TLVV ) + μTr(UTLUU )

s.t. U ≥ 0,V ≥ 0, UTU = I (16)

The objective function in model (16) can be rewritten as:

JODNMF = tr((X − UVT )(X − UVT )T )

+ λtr(VTLVV ) + μtr(UTLUU )

= tr(XX T ) − 2tr(XVUT ) + tr(UVTVUT )
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+ λtr(VTLVV ) + μtr(UTLUU ) (17)

The partial derivatives of objective function (17) with respect to U and V are:

∇U J = [∇U J ]+ − [∇U J ]−
= UVTV − XV + μLUU

= ∇U ε + μLUU (18)

∇V J = [∇V J ]+ − [∇V J ]−
= VUTU − X TU + λLVV

= ∇V ε + λLVV (19)

whereLU = DU−WU andLV = DV−WV , and their definitions are same asEq. (11) and
(12). Let ∇U ε = UVTV − XV and ∇V ε = VUTU − X TU , when imposing orthogonal
constraint on U, then

∇U ε = UVTX TU − XV (20)

Substituting Eq. (20) into Eq. (18), we have the following updating rule on U,

Uij = Uij

(XV )ij + μ
(

WUU
)

ij
(

UVTX TU
)

ij + μ
(

DUU
)

ij

(21)

Similarly, the updating rule on V is,

Vij = Vij

(

X TU
)

ij + λ
(

WVV
)

ij
(

VUTU
)

ij + λ
(

DVV
)

ij

(22)

3.2 ODNMF-V

By incorporating orthogonal constraint of the coefficient matrix V in DNMF model, we
have the following ODNMF-V model,

JODNMF = ||X − UVT ||2 + λtr(V TLVV ) + μtr(UTLUU )

s.t. U ≥ 0,V ≥ 0, V TV = I (23)

The partial derivatives of objective function (23) with respect to U and V are same as
in Eq. (18) and (19). Similarly, the orthogonal constraint on V can lead to the following
formula,

∇V ε = [∇V ε]+ − [∇V ε]−
= VUTXV − X TU (24)
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Substituting Eq. (24) into Eq. (19), we have,

∇V J = [∇V J ]+ − [∇V J ]−
= ∇V ε + μLvV

= VUTXV − X TU + μLvV (25)

Then the updating rules on V and U can be formulated as follows,

Vij = Vij

(

X TU
)

ij + λ
(

WVV
)

ij
(

VUTXV
)

ij + λ
(

DVV
)

ij

(26)

Uij = Uij

(XV )ij + μ
(

WUU
)

ij
(

UVTV
)

ij + μ
(

DUU
)

ij

(27)

3.3 ODNMF

ODNMF imposes the orthogonal constraints on both the basis matrix U and coefficient
matrix V, which involves the following minimization problem,

JODNMF = ||X − UVT ||2 + λtr(V TLVV ) + μtr(UTLUU )

s.t. U ≥ 0,V ≥ 0, V TV = I , UTU = I (28)

The orthogonal constraints on the basis matrix U and coefficient matrix V provide
a strong capability of simultaneously clustering rows and columns, which we call bi-
orthogonal constraints. Combining update rules (21) inOGNMF-U and (26) inOGNMF-
V, the update rules of OGNMF are given as follows

Vij = Vij

(

X TU
)

ij + λ
(

WVV
)

ij
(

VUTXV
)

ij + λ
(

DVV
)

ij

(29)

Uij = Uij

(XV )ij + μ
(

WUU
)

ij
(

UVTX TU
)

ij + μ
(

DUU
)

ij

(30)

4 Experimental Results

In this section, we evaluate the effectiveness of our proposed ODNMF framework
compared with the relatedmatrix factorizationmethods including NMF, ONMF, GNMF.
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4.1 Experimental Setting

To investigate the image clustering performances, two popular evaluation metric are
used in the experiments, i.e., the clustering accuracy (AC) and the normalized mutual
information (NMI) [10], that are defined as follows

AC =

n∑

i=1
δ(li, τi)

n

where δ is a cluster label indicator function, which equals 1 if the two entries are the
same and equals 0 otherwise. li and τi denote the true label and predicted label.

NMI = MI
(

C,C ′)

max(H (C),H (C ′))

where C is the set of clusters from the ground truth, and C’ is predicted clusters by
clustering method. H (·) is the entropy of a set, and the mutual information MI

(

C,C ′)

between two sets of clusters C and C ′ is defined as

MI
(

C,C ′) =
∑

ci∈C,c′
j∈C ′

p
(

ci, c
′
j

)

log
p
(

ci, c′
j

)

p(ci)p
(

c′
j

)

where p(ci) and p
(

c′
j

)

are the probabilities of a sample belonging to the clusters ci and

c′
j, respectively. p

(

ci, c′
j

)

denotes the joint probability that the selected sample belongs

to the clusters ci as well as c′
j at the same time. The larger AC and higher NMI indicate

a better clustering performance [6].
For theODNMFmethods, the neighborhoodgraphondata samples are set the sameas

those for GNMF, where the number of nearest neighbors of each sample is fixed as 5 and
the regularization parameter in model (9), (12), (19) and (24) are empirically set as 100.
After the low-dimensional data representations were produced by matrix factorization
methods, the k-means clustering method was performed in the low-dimensional data
space. All the experiments in this paper run in MATLAB R2015b on Win7 with 8G
RAM and 3.4 GHz CPU.

4.2 Datasets Description

In our experiments, we use three types of datasets, including UCI datasets1, text datasets,
and face image datasets. For UCI datasets,MADELON is an artificial dataset, whichwas
part of the NIPS 2003 feature selection challenge and containing data points grouped in
32 clusters placed on the vertices of a five dimensional hypercube and randomly labeled
+1 or −1. CNAE9 is a highly sparse text dataset, which contains 1080 documents with
9 groups. Semeion is a handwritten digital dataset, which contains 1593 binary images

1 http://archive.ics.uci.edu/ml/ .

http://archive.ics.uci.edu/ml/
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created by 80 persons, and each image is with the size of 16 × 16. Hillvalley is a
graphical dataset, and each sample contains 100 points of a 2D plane, and there are 606
samples in two groups, hill or valley. For text dataset, Tr31 dataset is a subset of TREC
datasets2 and Re1 is a subset of Reuters21578 dataset3. For face image dataset, UMIST
dataset4 consists of 575 images with 20 different persons, the number of which varies
from 19 to 36. XM2VST dataset5 contains 2950 samples with 295 persons, and YaleB
dataset6 used in our experiments is a subset of original YaleB dataset, containing 2414
images of 38 persons under 64 lighting conditions. ORL dataset7 contains 400 images of
10 individuals, each of which contains 40 images that captured at different conditions,
including shooting time, illuminations, expressions and some other facial details, such
as with/without glasses. Some statistics of the four face image datasets are summarized
in Table 1.

Table 1. The description of datasets used in the experiments

Datasets #Samples #Dimensionality #Classes

UCI
datasets

MADELON 4400 500 2

CNAE9 1080 856 9

Semeion 1593 256 10

Hillvalley 606 100 2

Text
dataset

Tr31 927 10128 7

Re1 1657 3758 25

Face
image
dataset

UMIST 575 2576 20

XM2VST 2950 2576 295

YaleB 2414 1024 38

ORL 400 1024 40

4.3 Results Discussion

The optimal clustering results on different datasets are reported in this section. The
clustering accuracies are summarized in Table 2 and the NMI metrics are summarized in
Table 3. The value in the parentheses is the optimal target dimensionality under which
the method achieved the maximum evaluation metric. As can be shown, the proposed
orthogonal DNMFs have better clustering performances than others in most cases. It

2 https://trec.nist.gov/data.html.
3 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
4 http://www.sheffield.ac.uk/eee/research/iel/research/face.
5 http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/.
6 http://vision.ucsd.edu/~D.Leekc/ExtYaleDatabase/ExtYaleB.html.
7 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

https://trec.nist.gov/data.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.sheffield.ac.uk/eee/research/iel/research/face
http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
http://vision.ucsd.edu/~D.Leekc/ExtYaleDatabase/ExtYaleB.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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is worth noting that the original DNMF and orthogonal DNMF perform perfect on the
Hillvalley dataset. This is because that the feature or attribute neighborhood information
plays more role on identifying a Hill and a Valley on a 2D graph. However, on CNAE9,
Tr31 and Re1 datasets, the traditional NMFmethod performs better than other methods,
which indicates that dual-graph regularized NMFs are not suitable for text clustering
tasks.

Table 2. The optimal clustering results (AC%)

Datasets NMF ONMF DNMF ODNMF-U ODNMF-V ODNMF

MADELON 54.20(78) 53.25(20) 52.40(3) 51.20(24) 58.45(2) 59.00(2)

CNAE9 70.74(93) 54.44(43) 63.89(9) 56.39(92) 64.26(37) 65.00(23)

Semeion 60.39(64) 52.48(14) 69.49(59) 69.93(16) 71.50(19) 72.44(12)

Hillvalley 68.65(2) 592.4(23) 100.0(10) 100.00(10) 100.00(10) 100.0(10)

Tr31 58.36(64) 50.05(6) 54.05(12) 54.48(12) 53.83(8) 52.64(8)

Re1 43.39(94) 42.31(74) 39.35(38) 38.32(76) 39.77(50) 40.43(16)

XM2VTS 17.29(31) 12.71(4) 15.80(44) 15.63(87) 17.39(96) 16.92(71)

UMIST 48.35(77) 33.91(8) 62.96(19) 63.30(23) 63.65(69) 63.13(34)

YaleB 16.20(91) 6.96(1) 32.97(18) 33.35(16) 13.09(21) 10.65(5)

ORL 56.50(76) 36.75(27) 55.50(65) 58.50(41) 60.25(73) 58.75(70)

Table 3. The optimal clustering results (NMI%)

Datasets NMF ONMF DNMF ODNMF-U ODNMF-V ODNMF

MADELON 0.51(78) 0.31(20) 0.17(36) 0.04(24) 2.10(2) 2.36(2)

CNAE9 68.88(93) 48.12(43) 63.26(64) 53.88(71) 64.84(6) 64.67(6)

Semeion 53.01(86) 47.32(14) 64.96(59) 63.83(16) 66.70(20) 65.73(12)

Hillvalley 10.29(2) 2.52(23) 100.0(10) 100.0(10) 100.0(10) 100.0(10)

Tr31 41.07(4) 36.79(6) 44.01(38) 42.93(38) 44.58(8) 43.98(14)

Re1 44.63(70) 48.09(28) 46.40(52) 45.68(52) 46.74(40) 47.21(16)

XM2VTS 61.17(10) 58.75(5) 60.20(66) 60.16(3) 61.45(98) 61.17(96)

umist 66.86(79) 48.13(8) 79.73(36) 79.69(52) 80.18(35) 79.66(83)

YaleB 27.63(86) 8.64(1) 45.36(18) 44.89(18) 20.88(5) 17.86(5)

ORL 74.18(59) 59.31(27) 73.03(65) 74.66(80) 76.05(73) 74.05(82)
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5 Conclusions

Existing data representation methods are all carried out in data space. However, the
information of feature space cannot be fully exploited. To compensate for this drawback,
orthogonal dual-graph regularizedNMF (ODNMF) is proposed by incorporatingDNMF
and ONMF. Orthogonal constraints on the basis matrix U and coefficient matrix V are
incorporated as the additional condition, which can not onlymake full use of geometrical
structural information underlying the data manifold, but also enhance the generalization
performance and robustness of the proposed methods. Since ONMF are more robust
to noise, and DNMF has good performance on data clustering, therefore, ODNMF can
combine the advantages of ONMF and DNMF together, which has been confirmed on
data clustering experiments. The theoretical analysis of the models will be investigated
deeply in the future work.
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