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Abstract. Acute leukemia is a malignant clonal disease of hematopoi-
etic stem cells, which is usually diagnosed by morphological examination
of bone marrow cells. However, the morphological examination usually
relies on the subjective inference of cell morphology experts and is labor-
intensive. With the development of computer vision, automatic classifi-
cation and counting of blood cells is increasingly popular, which greatly
improves work efficiency. Within this context, we here propose a novel
method for neutrophil classification, which is based on deep neural net-
work. In brief, it first crops the single cells from the large images, and then
makes use of the loss functions designed for face recognition and weakly-
supervised fine-grained visual classification. With the hybrid loss, the
trained network can focus on nucleus areas, extract features with inter-
class differences and intra-class compactness. Experiments show that the
proposed method can obtain higher overall accuracy. Data is available
at https://github.com/stevenxmy/subAML-dataset.git.

Keywords: Acute leukemia · Fine-grained classification · Neural
network

1 Introduction

Leukemia is a highly heterogeneous tumor with malignant hyperplasia of
hematopoietic tissue or clonal hyperplasia of lymphoid tissue, which has high
morbidity and fatality rate. Early haematological diagnosis of acute leukemia
is crucial for the patients. Comprehensive haematological diagnostics are usu-
ally combined with complex inspection such as blood routine, bone marrow cell
morphological examination and cytogenetic analysis. Particularly, morphological
evaluation of leukocytes from peripheral blood or bone marrow samples is one of
the most basic and important methods. During the hamatological diagnostics,
trained human examiners observe bone marrow smears under microscopes, check
whether there are abnormal cells and count different types of nucleated cells, the
proportion of which depicts the pathological trend.
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The specific process of hamatological diagnostics is shown in Fig. 1. First,
bone marrow smears are generated by bone marrow aspiration. Next, the cyto-
chemical staining was performed by the Wright-Giemsa staining analysis tech-
nique. Then, morphological analysis and classification of bone marrow cells are
conducted under oil immersion lens. Finally, preliminary diagnoses of the type of
acute leukemia are made according to the French-American-British classification
standard [1]. However, it takes quite a long time to cultivate an expert in cell
morphology, and the cell examination is time-consuming and laborious.

Fig. 1. Diagram of the human examination of cell morphology

With the advancement of computer vision technologies and pattern recogni-
tion algorithms, emphasis is laid on automatic recognition of bone marrow cell
types, which can reduce the burden on experts and improve work efficiency. A
feasible solution is to make use of artificially designed feature extractions com-
bined with feature selection and classifiers. Gurcan et al. [15] extracted chro-
maticity, morphology and texture features, and used SVM for classification. In
recent years, deep learning has demonstrated outstanding performance in various
fields of computer vision, such as image detection, segmentation, and recogni-
tion. Researchers have focused on the bone marrow cell classification based on
deep neural networks. Christian et al. [11] used the ResNext network to classify
18,365 blood cell smear images of 200 patients collected by the Munich Univer-
sity Hospital Laboratory from 2014 to 2017. The blood cells are divided into 15
categories, while a few classes only contain dozens of images. It is not surprising
that the precision and sensitivity of partial sub-categories obtained by such a
generic classification network structure are very low. Hong et al. [6] made use of
the deep neural network to classify the bone marrow cells based on 3000 marrow
smear samples collected by Sir Run Run Shaw Hospital affiliated to Zhejiang
University School of Medicine between 2016 and 2018. However, the sensitiv-
ity of certain types of cells such as myelocytes and promyelocytes are poor. In
conclusion, although the classification of main blood cell types has been widely
developed, the fine-grained classification of sub-categories, which is crucial for
hamatological diagnostics, has not been well analyzed.

In recent years, face recognition and fine-grained visual classification(FGVC)
have been increasingly popular. The common challenging problems of face recog-
nition and FGVC are the large inter-class similarity and intra-class variability
[12]. Researchers have focused on the loss functions to train deep neural networks
for feature extraction, which greatly improve the performance of the networks.
The morphological classification of blood cells is similar to the above tasks to a
certain extent. However, there have been few research on white blood cell classi-
fication taking the algorithms of face recognition and FGVC into consideration,
which may contribute to the precise classification of sub-categories of blood cells.
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To address the gap above, we propose a pipeline similar to the face recogni-
tion which involves the steps of detection and classification. The feature pyra-
mid network is applied to detect single cells. The backbone of EfficientNet [16]
is adopted. A hybrid loss function containing the clustering component and
diversity component is also designed to reinforce the inter-class difference and
intra-class compactness, which borrows the idea of the loss functions designed
for face recognition and weakly-supervised FGVC.

The contributions are summarized as follows:

– An half-automatic cell detection pipeline is designed to generate the actual
single-cell images.

– The backbone of EfficientNet is adopted to enhance the feature extraction
and save the memory.

– A hybrid loss for classification is designed by combining the center loss and
diversity loss.

– Data cleaning and augmentation is done for part of the Munich AML Mor-
phology Dataset [11] which is open source.

2 Related Work

2.1 Generic Object Detection

Generic object detection refers to the task of determining whether there are
certain types of objects in the scene, and return the locations if the targets
exist [9]. Traditional target detection algorithms mainly include preprocessing,
window sliding, feature extraction, feature selection, feature classification and
post-processing. The generic object detection algorithms based on deep learning
are divided into two groups: two-stage methods with region proposal stage and
object recognition stage, and single-stage methods without candidate boxes. Gir-
shick et al. [14] proposed the classic dual-stage object detection method Faster
R-CNN, which gained state-of-the-art results on PASCAL VOC 2007. Redmon
et al. [13] implemented feature extraction, bounding box classification and regres-
sion in a branchless deep convolutional network, which effectively improved the
low efficiency of Faster R-CNN. Recently, numerous studies on dual-stage and
single-stage methods have been conducted, such as FPN [7] and YOLOv4 [2],
the accuracy and speed of which are much better.

2.2 Fined-Grained Visual Classification

Fined-grained visual classification(FGVC) refers to the task of classifying sub-
categories of a certain category such as vehicles, birds and flowers, which draws
considerable attention. Types of research approach on FGVC can be divided into
two groups: strongly-supervised algorithms and weakly-supervised algorithms.
Wei et al. [18] proposed an end-to-end model which localized parts and selected
descriptors for FGVC of birds, which made use of strong supervision annota-
tions. Chang et al. [3] proposed the mutual-channel loss with a discriminality
component and a diversity component to force the channel maps of each class
to be discriminative and mutually exclusive.



Fine-Grained Classification of Neutrophils with Hybrid Loss 105

2.3 Face Recognition

Three basic steps are included in robust face recognition system: face detection,
feature extraction and face recognition. With the development of deep learning,
the second and third steps are usually merged in deep neural network. Different
from generic object classification, there are numerous identities which may also
change irregularly in total number. Therefore, feature embeddings and similarity
measures are combined to recognize identities without fine-tuning the model
frequently. Discriminative feature embeddings are usually extracted by training
with particular losses such as center loss [19], CosFace [17] and ArcFace [4].
Cosine similarity and euclidean distance are usually adopted as the similarity
measures.

3 Methods

3.1 Single Cell Detection

Although the common two-stage detection network Faster R-CNN has designed
multiple sizes of anchor boxes and multiple aspect ratios, it has not solved the
problem of low resolution of deep feature maps, which leads to the poor perfor-
mance of small target detection. We adopt the idea of Feature Pyramid Network
(FPN) [7] and combines multi-scale feature map information for detection. First,
the proposal bounding boxes are generated through the region proposal network.
After that, the coarse screening and preliminary anchor box regression are per-
formed. Finally, the bounding boxes of different scales are finely selected while
coordinates are revised by the fully connected network. The inference of FPN is
depicted in Fig. 2(a). Specifically, due to the small scale variation range of blood
cells, compared with generic object detetion, only three output scales are used
as the final prediction to reduce the false alarm rate.

However, the locations of the bounding boxes may not have been annotated.
The strategy of active learning is adopted. We first annotated part of the bound-
ing boxes, then fine-tuned FPN for detection with the pretrained MS COCO [8]
weights. After that, the inference results of the bounding boxes are manually
revised, in case of the missed targets or the bad boxes. If the dataset is quite
large, the revision work can be done in an iterative way, and the detection model
can be updated for several times. Finally, the single-cell images are cropped from
the original images. The diagram of the annotation work is depicted in Fig. 2(b).

3.2 EfficientNet Backbone

Tan et al. [16] made use of neural architecture search to design a baseline network
EfficientNet-B0, and scale it up to build a series of models called EfficientNets.

The MBConv module in EfficientNet includes the squeeze-and-excitation [5]
block to automatically recalibrates the channel-wise feature responses. In the
squeeze-and-excitation block, the weights of the channels in feature maps are
redistributed by global average pooling layer, fully connected layer and point-
wise product layer. The channel attention blocks mentioned above contribute to
the excellent feature extraction capabilities of the network.
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Fig. 2. FPN structure and half-automatic annotations

3.3 Loss Functions

Clustering Component. We adopt the center loss [19] as clustering compo-
nent to improve the intra-class compactness.

The traditional softmax loss function is presented as follow.

Lsoftmax = −
n∑

i=1

log
eW

T
yi

xi+byi

∑m
j=1 eW

T
j xi+bj

(1)

In Eq. 1, n denotes the batch size of input data, while m denotes the number
of class. xi ∈ R

d denotes the ith extracted feature of the mini-batch. W ∈ R
d×m

and b ∈ R
ddenotes the weight and bias in the fully connected layer. Suppose

the ith input belongs to class yi, then the softmax loss is calculated as Eq. 1.
However, the softmax loss mainly focuses on the inter-class differences. With the
center loss [19] formulated in Eq. 2, the intra-class differences are minimized and
the discriminative power of the convolutional neural network is improved.

Lcenter =
1
2

m∑

i=1

||xi − cyi
||2 (2)

On each mini-batch, the center of features are computed once and the param-
eters of the center loss are updated. Scalar α is used to avoid perturbations
caused by bad annotations. The gradients of Lcenter and the updating step is
depicted as follow. cyi

denotes the center of the feature embeddings extracted by
the network. The centers of the embedding features are only updated when the
predictions are correct.

∂Lcenter

∂xi
= xi − cyi

(3)

Δcj =
∑m

i=1 δ(yi = j) · (cj − xi)
1 +

∑m
i=1 δ(yj = j)

(4)
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Diversity Component. The diversity component is presented as follow. W
and H denote the width and height of the extracted feature map F , which has
ξ channels. Different from the diversity loss in mutual-channel loss [3], we take
all feature channels into consideration instead of manually splitting the channels
into m groups, where m denotes the number of classes. Therefore, the number
of hyperparameters is reduced.

Ldiv = −
WH∑

k=1

max
j=1,2,...,ξ

[
eFj,k

∑WH
k′=1 eFj,k′

]
(5)

The diversity loss aims to reinforce the attention on different areas of the
images, which may be crucial for the fine-grained classification of cells.

Hybrid Loss. The hybrid loss adopted in our approach is presented in Eq. 6.
Considering the problem of convergence and the bad samples, the center loss
and diversity loss are combined with the softmax loss. α and β are the hyperpa-
rameters which controls the proportion of Lsoftmax, Lcenter and Ldiv.

Lhybrid = Lsoftmax + α · Lcenter + β · Ldiv (6)

4 Experiments

4.1 Implementation Details

Datasets. As given in Table 1, we employ the subset of the Munich AML Mor-
phology Dataset called Sub-AML Dataset which contains myelocytes in different
stages as our training data and conduct comparison with other approaches. Addi-
tionally, promyelocyte (PMO) and myelocyte (MYB) cells are combined into the
PMOMYB class, since many cells in these two classes are much alike. Although
it is claimed that the Munich AML Morphology Dataset only contains single-
cell images, there are still images containing more than one cell, as depicted in
Fig. 3(a). Please note that the metamyelocyte class is removed because of the
low proportion. There are 8484 segmented neutrophils in the original dataset,
while some should be considered as band neutrophils, as depicted in Fig. 3(b).
To best of our knowledge, data imbalance is unfriendly to network training. We
apply Gaussian blur, average blur, random jittering in HSV space, rotation and
flipping to alleviate data imbalance. To avoid data leaking, single-cell cropped
images augmented from the same images can not be included in both training
and validation folds. Finally, the Sub-AML Dataset contains 11655 PMOMYB
cells, 13760 band neutrophils (NGB) and 11976 segmented neutrophils (NGS).
The precision and sensitivity of different categories gained by the method in [11]
are also depicted in Table 1.
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Fig. 3. Multi-cell images and suspected annotations

Table 1. The subset of Munich AML Morphology Dataset

Class Precision Sensitivity Images Chosen No. Final No.

Erythroblast 0.75 0.87 78

Lymphocyte (typical) 0.96 0.95 3937

Lymphocyte (atypical) 0.20 0.07 11

Monoblast 0.52 0.58 26

Monocyte 0.90 0.90 1789

Myeloblast 0.94 0.94 3268

Promyelocyte (bilobled) 0.45 0.41 18

Smudge cell 0.53 0.77 15

Eosinophil 0.95 0.95 424

Basophil 0.48 0.82 79

Promyelocyte 0.63 0.54 70
√

111 11655

Myelocyte 0.46 0.43 42
√

Metamyelocyte 0.07 0.13 15

Neutrophil (band) 0.25 0.59 109
√

344 13760

Neutrophil (segmented) 0.99 0.96 8484
√

1996 11976

Experimental Settings. As mentioned in Sect. 3.1, single cells are detected by
FPN and cropped from the 400 × 400 images in the Munich AML Morphology
Dataset with a half-automatic pipeline. Single-cell images are then resized to 224
× 224. We set the batch size to 32 and train models on one NVIDIA RTX 2080TI
GPU. The training process is finished at 60 epochs in Pytorch 1.4.0. Momentum
is set to 0.9 and weight decay is set to 5e−4. The learning rate starts from 0.0005
and is divided by 10 at 30, 48 epochs. Additionally, 5-fold cross-validation is used
to evaluate the methods. The accuracy of fold-k is denoted as ‘acck’.

4.2 Ablation Study

Performance Metrics. We calculate accuracy as the comparison metric, which
represents the ratio of correct predictions among the total samples.

Center Loss. We explore the proportion of center loss on the Sub-AML Dataset
with the backbone of EfficientNet-B0. As depicted in Table 2, the center loss is
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effective for improving classification accuracy. The best value of α observed in
our experiments is 0.5. We also compare center loss with classic margin based
losses such as ArcFace and CosFace, and the selection of hyperparameters refers
to [4] and [17], in which scaling parameter is set to 64 and margin parameters
are set to 0.5 and 0.35. However, the performance of the ArcFace and CosFace
is bad, which may due to the small number of classes.

Table 2. Verification results of different α

Backbone Loss Function α acc1 acc2 acc3 acc4 acc5 Average acc

Efficient-B0 Center 0.0 96.27% 95.24% 95.87% 95.04% 96.29% 95.74%

Efficient-B0 Center 0.1 96.50% 96.04% 96.10% 95.05% 96.27% 96.00%

Efficient-B0 Center 0.3 96.77% 94.96% 96.73% 95.88% 95.97% 96.06%

Efficient-B0 Center 0.5 96.14% 95.66% 96.73% 95.37% 96.65% 96.11%

Efficient-B0 Center 0.7 96.52% 95.00% 96.69% 94.24% 96.90% 95.87%

Efficient-B0 Center 0.9 96.38% 95.07% 96.85% 94.87% 96.93% 96.01%

Efficient-B0 ArcFace / 94.22% 92.31% 94.10% 93.90% 94.24% 93.75%

Efficient-B0 CosFace / 93.99% 92.75% 93.02% 93.07% 93.15% 93.20%

Since the dimension of the feature embedding is high, we adopt the t-SNE
visualization tool [10], which can retain the local structure of the extracted data
and reveal important global structure.

As depicted in Fig. 4, points with three colors which refer to the three classes
show local clustering. Additionally, the similarity between NGB and NGS cells
leads to the overlaps on the borders. To put it in a nutshell, the center loss
successfully enhances the intra-class compactness of the testing data as well as
the inter-class discrimination.

Diversity Loss. We explore the proportion of diversity loss on the Sub-AML
Dataset with the backbone of EfficientNet-B0. As depicted in Table 3, the best
value of β varies in each fold, and the diversity loss does work under certain
hyperparameters. On average, the best value of β observed in our experiments
is 0.05, while the weight of center loss is set to 0. The overall accuracy is not
improved with only diversity loss. However, there is much difference on the atten-
tion maps of the extracted features. In Fig. 5, more emphasis is laid on nucleus
areas. It is obvious that the attention areas of the features extracted by the
neural network trained with diversity loss are sometimes more abundant.
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Fig. 4. T-SNE visualization of the feature embeddings

Table 3. Vertification results of different β

Backbone β acc1 acc2 acc3 acc4 acc5 Average acc

Efficient-B0 0.0 96.27% 95.24% 95.87% 95.04% 96.29% 95.74%

Efficient-B0 0.00005 96.29% 94.83% 95.58% 95.21% 96.29% 95.64%

Efficient-B0 0.0005 96.47% 95.36% 95.53% 94.20% 96.24% 95.56%

Efficient-B0 0.005 95.83% 95.10% 95.51% 95.15% 96.33% 95.58%

Efficient-B0 0.05 96.06% 95.29% 95.77% 95.03% 96.14% 95.66%

Efficient-B0 0.5 96.14% 95.19% 96.26% 94.75% 95.98% 95.66%

4.3 Evaluation Results

We train EfficientNet-B0 model with hybrid loss of different hyperparameters.
Since the datasets of blood cell morphology are very few, we only compare our
work with other CNN-based methods on Sub-AML Dataset, such as ResNext-
101, VGG-16, ResNet-18, ResNet-50 and DenseNet-121, as depicted in Table 4.
The performance of mutual-channel loss is also evaluated. Our method achieves
the best accuracy among all the methods listed, while the backbone of Efficient-
B0 has the smallest FLOPs [16]. Take fold-1 for instance, the best accuracy on
test set is achieved at epoch 14. The curves of loss and accuracy are depicted
in Fig. 6(a) and 6(b), while the confusion matrix of our method is depicted
in Fig. 6(c). The convergence of our method is fast. With the data cleaning
and augmentation work, the accuracy of the sub-category, especially NGB, have
been significantly improved, compared with the results in [11]. Additionally, even
though the diversity loss is not effective separately, the hybrid loss obviously
contributes to the improvement of overall accuracy.
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Fig. 5. Original single-cell image and the attention map of the extracted features

Table 4. Vertification performance of different methods on Sub-AML Dataset

Method (α, β) acc1 acc2 acc3 acc4 acc5 Average acc

Proposed (0.5, 0.0005) 96.57% 96.10% 96.71% 95.97% 96.86% 96.44%

Mutual-channel loss / 95.96% 95.92% 95.88% 95.14 % 96.18% 95.82%

Efficient-B0 / 96.27% 95.24% 95.87% 95.04% 96.29% 95.74%

ResNet-18 / 93.62% 91.93% 93.54% 94.49% 94.20% 93.56%

ResNet-50 / 94.97% 93.75% 94.77% 94.97% 94.62% 94.83%

ResNext-101 / 96.38% 95.49% 95.97% 94.77% 96.29% 95.78%

VGG-16 / 94.26% 93.29% 93.96% 93.98% 95.44% 94.19%

DenseNet-121 / 95.84% 95.27% 95.95% 94.96% 96.11% 95.63%

(a) Training and testing
loss

(b) Training and testing
accuracy
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Fig. 6. The curves and confusion matrix of fold-1

5 Conclusions

Automatic morphology examination of blood cells is a promising field, since it
can save much labor. There have already exist a few studies which focus on rough
classification of five types of blood cells. However, little research lays emphasis
on fine-grained classification of the sub-categories, which is more difficult.

In this paper, we borrow the idea from the pipeline of face recognition, and
propose half-automatic bounding box annotation method and resize the images
which contain only one cell to a fixed size. Hybrid loss function is designed to
gain better performance on the fine-grained classification of the neutrophils in
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adjacent stages. Clustering component reinforces the compactive distribution of
the feature embeddings of the blood cells belonging to the same class, which also
contributes to the inter-class discrimination. Diversity component reinforces the
broad receptive field of the network, which helps to discover important local
features. From the comprehensive experiments done on the Sub-AML Dataset,
we demonstrate that the method proposed outperforms the popular deep neural
network based methods. With the increasing blood smear data, combined with
rough classification techniques, our fine-grained classification of sub-categories
may greatly contribute to the improvement of the overall accuracy of automatic
blood cell fine classification in the future, which is crucial for the diagnosis of
leukemia.

Acknowledgements. We thank Christian Matek and Antje for the morphologcial
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