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Abstract. Object detection models with favorable performances usu-
ally suffer from high computational costs. Knowledge distillation, a sim-
ple model compression method, aims at training a light-weight student
network by transferring knowledge from a cumbersome teacher model.
In this paper, we investigate different components of typical two-stage
and single-stage detector in details, and propose a detector distillation
framework that adaptively transfers knowledge from teacher to student
according to task specific priors. The knowledge is transferred adaptively
at three levels, i.e., feature backbone, classification head, and bounding
box regression head, according to which model performs more reasonably.
Furthermore, considering that it would introduce optimization dilemma
when minimizing distillation loss and detection loss simultaneously, we
propose a distillation decay strategy to help improve model general-
ization via gradually reducing the distillation penalty. Experiments on
widely used detection benchmarks demonstrate the effectiveness of our
method. Particularly, taking Faster R-CNN as an example, we achieve
an accuracy of 39.4% with Resnet-50 on MS COCO 2017 dataset, which
surpasses its baseline 37.5% by 1.9% points, and even better than the
teacher model with 39.3% mAP.

Keywords: Object detection · Knowledge distillation · Gaussian
masking · Adaptive regularization

1 Introduction

Object detection is a fundamental and challenging problem in computer vision.
Typical detection models, varying from single-stage [17,19,23] to two-stage [5,6,
20], achieves significant improvement in performances. However, these detectors
are usually equipped with cumbersome models and suffer expensive computation
cost. Hence, designing light-weight neural networks with high performance has
attracted much attention in real-world applications.

Knowledge Distillation (KD), introduced by Hinton [11], has received much
attention due to its simplicity and efficiency. The distilled knowledge is defined
as soft label outputs from a large teacher model, which contain structural infor-
mation among different classes. Following KD, many methods are proposed to
either utilize softmax outputs [4,16] or mimic the feature layer of teacher models
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[21,27,28]. However, detection requires reliable localization in addition to clas-
sification, while the interleaved relationships among various modules in detector
make it difficult to transfer knowledge directly.

To address the above issues, this paper proposes an adaptive distillation
framework for typical object detectors, of which we deliberately design specific
distillation strategy for each module according to their intrinsic properties. The
highlight is that what we want to borrow from the teacher model is its general-
ization ability. In particular, our method adaptively mimics responses of teacher
model in three aspects: 1) At feature backbone level, we highlight foreground
regions by Gaussian masking operation for feature distillation. 2) At classifica-
tion level, benefiting from a region proposal sharing mechanism, teacher model
outputs soft labels within regions that student provides. 3) At bounding box
regression level, regressed bounding box locations from teacher model’s regres-
sion head are used as extra regressed targets for student model.

In addition, minimizing distillation loss and original training loss simultane-
ously would introduce optimization dilemma, where the optimal state suitable
for distillation may not be acceptable for detection. To solve this issue, we fur-
ther propose a distillation decay strategy to improve student’s generalization via
gradually reducing distillation penalty. In this way, the distillation term can be
treated as regularization to help student model converge to a better optimization
point.

To sum up, this paper makes following contributions:

• We propose an adaptive distillation framework for object detection, which
transfers knowledge from teacher to student according to task specific priors.
This is achieved by imitating knowledge at three levels, i.e., feature backbone,
classification head, and bounding box regression head, according to which
model performs more reasonably.

• We propose a distillation decay strategy to gradually reduce teacher’s inter-
ference to student, and help improve model generalization.

2 Related Works

2.1 Object Detection

Current CNN-based object detectors mainly include single-stage, two-stage and
anchor-free detectors, where the former two are well-developed. Single-stage
object detectors such as YOLO [19] directly perform object classification and
bounding box regression on the feature maps. RetinaNet [14] proposes focal loss
to mitigate the unbalanced positive and negative samples. Two-stage detectors
[2,5,6,9,20] treat detection as a coarse-to-fine process via firstly generating can-
didate regions of interests and followed by a region refinement procedure. In
particular, Faster R-CNN [20] introduces Region Proposal Network (RPN) to
produce region proposals.
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2.2 Knowledge Distillation

In order to accelerate network training, various model compression strategies
have been proposed, such as weight quantization [7,26,29], network pruning
[8,18,24], and low-rank factorization [12,22]. However, these methods either
change network structure or contains large complexity, even hurting performance
significantly.

Knowledge distillation is proposed to transfer knowledge from a high perfor-
mance teacher model to a compact student model, aiming at improving latter’s
performance. It is first proposed by Hinton et al. [11] on image classification
models, utilizing teacher’s class probability vectors as soft labels to guide stu-
dent’s training. Hint learning [21] distills a deeper and thinner student model by
imitating both soft outputs and intermediate feature representations of teacher
model. Similar works are presented in [4,16,28].

In detection domains, knowledge distillation also shows its potential.
Wang et al. [25] only distill backbone features within local regions near object.
Chen et al. [1] distill two-stage detectors on all components including task heads.
Li et al. [13] transfer knowledge from both positive and negative proposals on
high-level features and corresponding task heads. However, these methods either
have accuracy limited by redundant selected background features or suffer from
drowning background proposals. Misguidance may also be provided when con-
fronting proposals teacher model performs poorly on.

In summary, current distillation frameworks either lack specific design for
detectors or fail to effectively select the most informative parts for distillation.
Different from these works, our adaptive distillation method designs specific
distillation strategy for each module according to their intrinsic properties and
utilizes distillation decay strategy to further improve generalization.

3 Method

3.1 Network Overview

In this section, we describe our proposed adaptive distillation framework in
detail. Without losing generality, we take the typical two-stage object detec-
tor Faster R-CNN [20] for instance, and the whole framework is shown in Fig. 1.
Our proposed distillation method effects mainly on three parts: distillation of
feature backbone, classification head, and bounding box regression head, respec-
tively. We adaptively transfer knowledge from teacher to student model with
different imitation strategies.

Based on responses of each components: 1) For backbone features, the fore-
ground regions are modeled by a two-dimensional Gaussian mask inside ground
truth bounding boxes to enhance objects while suppressing backgrounds. 2) For
classification head, by region proposal sharing, teacher model utilizes student’s
positive samples to outputs soft labels and student’s classification head is super-
vised by both one-hot labels and soft ones. 3) For bounding box regression head, a
selective distillation scheme takes regressed bounding box locations from teacher
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Fig. 1. Overview of the proposed task adaptive distillation framework. The proposed
distillation method consists of three modules. Blue parts remain unchanged during
distillation, while yellow parts are adaptively supervised by the teacher (Color figure
online).

model as extra regressed targets to guide student model. As such, regression tar-
gets are progressively approaching to ground truths, which is more robust for
bounding box regression. Each component would be elaborated as follows.

3.2 Backbone Features

For CNN-based detectors, the performance gain mainly credits to better back-
bone features. However, previous work [25] has found that directly imitating
features at all locations would not promote the performance much. The reason
is that it is the foreground regions that counts for a successful detector. Since
drowning background regions usually occupy the majority area of a feature map,
merely perform distillation at all the locations would inevitably introduce large
amount of noise from those uncared negative regions. To address this issue, we
introduce a Gaussian mask to highlight the centric foreground pixels and sup-
press those boundary regions around the objects.

Specifically, given a bounding box B of an object, with size of w × h and
centered at (x0, y0), the two-dimensional Gaussian mask is defined as:

M =

{
e
− (x−x0)2

σ2
x(w/2)2

− (y−y0)2

σ2
y(h/2)2 , (x, y) ∈ B

0, otherwise
(1)

where σ2
x and σ2

y are decay factors along the two directions, and we set σ2
x = σ2

y

for simplicity. The mask is only effective within ground truth bounding boxes
and equals to zero everywhere else. In particular, when several Gaussian masks
overlap over a single pixel (x, y), the mask value is simply set as point-wise max-
imum. Figure 2 illustrates two images, as well as their corresponding Gaussian
masks.

With the delicately designed Gaussian mask, the backbone features are dis-
tilled via minimizing the following loss:
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Gaussian maskOriginal Images Gaussian maskOriginal Images

Fig. 2. An illustration of the generated Gaussian masks over samples from MS COCO
[15] dataset.

Lbk =
1

2Na

W∑
i=1

H∑
j=1

C∑
c=1

M ijc(F ijc
s − F ijc

t )2, (2)

where Na =
∑W

i=1

∑H
j=1

∑C
c=1 M ijc , W , H, C are the width, height, and chan-

nels of the feature map, F ijc
s and F ijc

t denote the backbone features of student
and teacher models, respectively.

3.3 Classification Head

Knowledge distillation is widely used in classification tasks [11,21,28], where
soft labels provide structural information among different categories. However,
directly transferring soft labels in a detection system is not applicable: First,
background regions occupy the majority of proposals, which introduce a large
amount of noise to their structural information; Second, proposals output by two
models are inevitably different, which makes them not comparable for knowledge
distillation.

Our method effectively address the above issues: 1) We only focus on positive
samples which are beneficial when modeling inter-class structural priors and
neglect negative ones. 2) We share student’s RPN proposals to teacher model,
and use its corresponding outputs as soft labels. Specifically, given N region
proposals from student RPN’s output, we compute soft labels of Np positive
samples over teacher model {yi

t}Np

i=1 ∈ R
C′

, where C ′ denotes the number of
classes. Accompanying with all the N proposals and their ground truth labels
{yj}Nj=1 ∈ R

C′
, total loss for classification head is reformulated as

Lcls =
N∑
j=1

LCE(yj
s, y

j) + β1

Np∑
i=1

LBCE(yi
s, y

i
t), (3)

where LCE and LBCE denote cross-entropy and binary cross-entropy, respec-
tively. ys is prediction of student model, and β1 is a balancing factor that controls
the two loss terms.

3.4 Bounding Box Regression Head

Regression head in detectors adjusts locations and sizes of candidate region
proposals. For bounding box regression distillation, we expect teacher model’s
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output to offer a reasonable mild target for student model to regress, relieving
the forced abrupt regression targets from current proposal to ground truth.

However, teacher’s regression output may provide wrong guidance for student
model and even contradicts to ground truth’s direction. Therefore, we propose a
distillation strategy that selectively relies on teacher’s outputs. Similar to classifi-
cation head distillation, student’s positive proposals are shared to teacher model.
Specifically, given Np positive region proposals from student’s RPN output, we
denote {rip}Np

i=1, {rit}Np

i=1, {ris}Np

i=1, {rigt}Np

i=1 as proposal locations before regres-
sion, teacher’s regression output, student’s regression output, and correspond-
ing ground truth, respectively. We first calculate IoU (Intersection-Over-Union)
between rip and rigt, and IoU between rit and rigt. If IoU(rit, r

i
gt) > IoU(rip, r

i
gt),

it indicates that teacher’s regression output is a reliable indicator to provide cor-
rect guidance for student. Otherwise, this proposal is abandoned in distillation.
The final regression loss is formulated as follows:

Lreg =
N∑
j=1

L(rjs, r
j
gt) + β2

Np∑
i=1

Ldist(ris, r
i
t, r

i
gt), (4)

where L is L1 loss defined as L1 distance between two vectors, β2 is a balance
factor, and Ldist is the selective distillation loss:

Ldist(ris, r
i
t, r

i
gt) =

{
L(ris, r

i
t) if IoU(rit, r

i
gt) > IoU(rip, r

i
gt)

0. otherwise (5)

Integrating the above three distillation terms produces our overall training
targets of the student model, which can be formulated as:

L = λLbk + Lcls + Lreg + Lrpn, (6)

where λ is the balance parameter for backbone distillation and Lrpn is the RPN
training loss in two-stage detector as described in [20].

3.5 Adaptive Distillation Decay

The overall loss function in Eq. (6) simultaneously minimizes distillation loss and
detection loss. It formulates a multi-task learning issue and makes training pro-
cess hard to converge. To solve this issue, we propose a distillation decay strategy
to help improve model generalization via gradually reducing distillation penalty,
hoping that the model focuses more on detection task in the training process.
This is achieved by introducing a time decay variable γ(t), which decreases to 0
as the training proceeds. In our implementation, we simply set γ(t) = 1 − t/T
at the tth training iteration, where T is the total training iterations. The time
decay variable is imposed to balance parameters β1, β2, and λ in Eq. (3), Eq.
(4), Eq. (6) to control the intensity of distillation loss, i.e.,

β̃1 = γ(t)β1, β̃2 = γ(t)β2, λ̃ = γ(t)λ. (7)
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4 Experiments

In this section, we evaluate our adaptive distillation framework for object detec-
tion, providing extensive designed evaluation and making comparison with pre-
vious works.

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate our approach on two widely
used detection datasets: 1) PASCAL VOC 2007 [3], containing totally 9,963
images of 20 object classes, of which 5,011 images are included in trainval and
the rest 4,952 in test ; 2) Microsoft COCO 2017 [15], a large scale dataset that
contains over 135k images spanning 80 categories, of which over 120k images are
used for train and around 5k for val. Following the default settings, for PASCAL
VOC, we choose the trainval split for training and the test split for test, while
for MS COCO, we choose the train split for training and the val split for test.
For performance evaluation, the average precision(AP) is used. We report the
COCO style (AP [0.5:0.95]) detection accuracy for MS COCO, and PASCAL
style (AP [0.5]) accuracy for PASCAL VOC.

Baseline Models. We evaluate our method based on both two-stage and
single-stage detection frameworks. For two-stage detectors, we choose widely
used Faster R-CNN [20] detector and for single-stage detectors, RetinaNet [14]
is selected. Since there are no RPN layers for RetinaNet and anchors generated
by teacher and student are exactly the same, we directly utilize positive anchors
for task heads’ distillation. Other operations and parameters are the same with
those in two-stage detectors. Resnet [10] series networks are used as backbones
of detectors, depending on their model sizes. For ease of narration, if Resnet-101
is used as teacher model and Resnet-50 as student, the distilled model is simply
denoted as R-101-50.

Implementation Details. All experiments are performed on NVIDIA Tesla
V100 8 GPUs with parallel acceleration. With Stochastic Gradient Descend
(SGD) as optimization method, we set batch size to 16, allocating 2 images
per GPU. The Gaussian parameters σ2

x and σ2
y in Eq. (1) are set to 2. The bal-

ance factors β1, β2, and λ are set to 10, 3, 0.6, respectively, via diagnosing the
initial loss of each branch and ensuring that all losses are within the same scale.
We find that these parameters are robust in our method, and do not affect the
results too much as long as they are in similar scale. Unless specified, all exper-
iments choose 1x schedule for training 12 epochs. The resolutions for images in
COCO and PASCAL VOC are set as (1333,800) and (1000,600), respectively,
following traditional implementation of each dataset.
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Table 1. Effects of various distillation modules on PASCAL VOC 2007.

Student R-50
√

Teacher R-101
√

Backbone?
√ √ √

Classification Head?
√ √ √

Regression Head?
√ √ √

Distillation Decay?
√

mAP (%) 70.0 72.8 73.2 73.4 73.8 74.5 74.3

Table 2. Hyperparameter analysis of Gaussian mask’s variances on PASCAL VOC
2007. ‘Rectangle’ denotes using rectangle mask while ‘All features’ denotes distilling
the whole feature map.

σ2
x = σ2

y 1 2 4 Rectangle All features

mAP 72.7 72.8 72.7 72.4 72.1

4.2 Ablation Study

Component Analysis. We first conduct experiments to understand how each
distillation module contributes to the final performance, as well as the robustness
of our method to different parameters. Without loss of generality, all experiments
in this section are based on PASCAL VOC 2007 with Resnet-101 as teacher and
Resnet-50 as student, which produces accuracy of 74.3% and 70.0%, respectively.

As shown in Table 1, different distillation components includes 1) backbone
with Gaussian masking, 2) classification head, 3) regression head, 4) distillation
decay. From the table we make following observations:

• Backbone Distillation: The backbone distillation brings about 2.8% mAP
gain. The results demonstrates that our masking strategy enables student
model to learn highlighted foreground information.

• Classification and Regression Head Distillation: The independent distillation
strategies on classification head and regression head improve the student
model by 3.2% and 3.4% points, respectively. It indicates that classification
head distillation can provide effective soft labels, while regression head offers
correct guidance.

• Combination: Combination of the above three distillation targets achieves
better results, which brings about another 0.4% points gain compared
with the best single distillation module. The combination strategy obtains
marginal improvement compared with the individual components, partially
due to the difficulty of joint optimization.

• Distillation Decay: The distillation decay strategy can further improve the
results from 73.8% to 74.5%. This demonstrates effectiveness of the proposed
distillation decay strategy. In this way, teacher model can be treated as a
guider that leads student to a better optimization point gradually, which
improves its generalization ability.
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Table 3. Per category evaluation results on PASCAL VOC 2007.

Network mAP aero bike bird boat bott. bus car cat chai. cow tabl. dog hors. mbike pern plnt sheep sofa train tv

R-101 74.3 73.3 83.6 78.2 60.2 61.5 75.5 84.6 85.7 58.6 80.1 61.1 85.7 82.5 80.0 82.9 50.2 74.7 72.0 81.1 75.2

R-50 70.0 67.1 79.1 73.9 56.3 54.4 74.9 81.5 82.7 51.7 76.4 53.2 82.3 81.4 75.7 80.5 45.0 71.9 64.0 77.7 70.9

R-101-50 74.5 74.0 82.4 75.7 60.9 62.0 79.9 84.7 86.1 58.2 80.3 64.0 84.7 83.7 81.0 83.2 51.2 77.9 70.2 78.3 72.1

Table 4. Evaluation results for different teacher and student models for Faster R-CNN
on MS COCO 2017.

Network Model info mAP AP50 AP75 APs APm APl

R-152 76.5M/10.8 fps 41.3 61.9 45.1 24.2 45.8 53.3

R-101 60.9M/11.9 fps 39.3 60.0 42.7 22.8 43.7 51.0

R-152-101 41.8 61.8 45.5 23.6 46.1 54.5

R-50 41.8M/13.6 fps 37.5 58.3 40.8 21.8 40.9 48.5

R-101-50 39.4 59.8 43.0 22.5 43.5 52.0

R-152-50 40.2 60.4 43.9 23.4 44.3 53.1

R-152-101-50 40.6 60.9 44.2 23.4 44.5 53.2

Table 5. Distillation results of RetinaNet on MS COCO 2017, together with the model
size and inference speed.

Network Model info mAP AP50 AP75 APs APm APl

Retina-101 57.1M/10.9 fps 38.6 57.6 41.3 22.2 42.5 51.0

Retina-50 38.0M/12.1 fps 36.4 55.5 38.6 20.3 40.0 47.9

Retina-101-50 38.6 57.8 41.2 21.9 42.1 50.9

Hyperparameter of Gaussian Mask. We now investigate the influence of
Gaussian mask for detection performance. For simplicity, we fixed σ2

x = σ2
y = k

and jointly change the two parameters. In principle, with larger k, Gaussian mask
becomes more scattered, while with smaller k, the mask will concentrate more
on center of the box. As an extreme condition, when σ2

x = σ2
y = +∞, Gaussian

mask degrades to a rectangle mask. To verify the effectiveness of Gaussian mask,
we take experiments on rectangle mask and the whole feature map without any
masking operation. The results are shown in Table 2, where we find that the
performance is relatively robust to Gaussian mask and it is much better than
simply using rectangle mask or the whole feature maps for distillation.

4.3 Experimental Results

PASCAL VOC. The detection results by category on PASCAL VOC are
shown in Table 3. Our distillation model R-101-50 achieves a significant boost
for each category, and brings 4.5% overall gain (from 70.0% to 74.5%) compared
to student model, which demonstrates superior performance of our proposed
distillation framework.
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Table 6. Comparison with previous distillation methods for detectors on VOC 2007.

Network Mimic [13] FGFI [25] Ours

Teacher R-101 74.3 74.4 74.3

Student R-50 70.0 69.1 70.0

Distilled R-101-50 72.7 72.0 74.5

Improvement – +2.7 +2.9 +4.5

MS COCO. Table 4 and Table 5 show overall distillation performances on
COCO dataset for Faster R-CNN [20] and RetinaNet [14], respectively. As
shown, R-101-50 exceeds its teacher R-101 and R-152-101 also surpasses R-152.
Specifically, R-152-50 (40.2%) even exceeds R-101 (39.3%) by a large margin. The
reason for the gap between R-152-50 and its teacher R-152 is the large differences
in structures and features between them. The progressive distillation approach
R-152-101-50 brings R-50 closer to R-152. In detail, R-101 is firstly utilized as
teacher model to distill R-50, obtaining R-101-50. Then we use R-152 as teacher
model to further distill R-101-50, resulting R-152-101-50 which achieves a fur-
ther mAP gain compared to R-152-50. It is worth mentioning that although R-50
contains much less layers than those of R-152 (almost 1/3), our R-152-101-50
still has a comparable result to the R-152. Similarly, distillation on single-stage
RetinaNet also obtains outstanding performance. Retina-101 improves Retina-
50 by 2.2% mAP and shows equal performance with its teacher Retina-101. The
experiment results demonstrate significant performance improvement brought
by our distillation framework.

Compression and Acceleration. To better illustrate compression and accel-
eration effect of knowledge distillation in object detection, we provide parameters
amount and inference speed of each model in Table 4 and Table 5. The two met-
rics are shown in ‘model info’ column, where ‘M’ and ‘fps’ denote ‘million(s)’ and
‘frames per second’, respectively. According to the results, our distillation frame-
work effectively lightens network sizes and increases their inference speed. For
Faster R-CNN, the distillation models (e.g., R-101-50, R-152-50) are much faster,
while offering comparable or better performance against their teacher models.
For RetinaNet, Retina-101-50 compresses Retina-101 by about 68% with 1.2 fps
gain, while its performance remains comparable to Retina-101.

4.4 Comparison with Previous Distillation Methods

To further explore effectiveness of the proposed distillation framework in object
detection, we present comparative results between our method with previous
works [13,25]. Since the devil is in experimental details, the results of teacher
and student models may differ in our implementation. We simply re-implement
results of [13] which distills all proposals, while for method in [25], we refer
to results in the original paper. From Table 6, we make following observations:
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Mimic [13] improves R-50 from 70.0% to 72.7% with 2.7% mAP gain, while FGFI
[25] offers a little better result with 2.9% mAP gain. Apparently, our approach
outperforms these distillation methods on absolute performance with a promi-
nent mAP gain of 4.5%. The significant advantage of our method mainly comes
from three aspects: 1) The Gaussian mask effectively suppresses the undesirable
background noise while retaining informative foregrounds; 2) Adaptive distil-
lation for task heads provides suitable guide for student model; 3) Distillation
decay strategy helps model’s optimization.

5 Conclusion

In this paper, we proposed an adaptive distillation framework for typical object
detectors. The key contribution is that we deliberately design different imitat-
ing schemes according to the property of each distilled target. Based on the
responses, we are able to successfully select crucial part of teacher’s feature
maps, classification structural priors, and bounding box regression results as
supervision for distillation. Besides, a distillation decay strategy is deployed to
help improve model generalization via gradually reducing the distillation penalty.
Experiments conducted on widely used detection benchmarks demonstrate the
effectiveness of the proposed method.
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