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Abstract. Conventional subspace-based multi-view re-ranking methods
essentially handle the Euclidean feature space transformation and tend
to be inefficient when dealing with large-scale data, since the cost of com-
puting the similarity between the query item and the database item is
prohibitively high. Inspired by Hashing technique, in this paper, we pro-
pose an efficient binary multi-view image re-ranking strategy in which the
original multi-view features are projected onto a compact Hamming sub-
space. With the intrinsic structure of the original multi-view Euclidean
feature space maintained, the resulting binary codes are consistent with
the original multi-view features in similarity measure. Furthermore, cou-
pled with the discriminative learning mechanism, our method leads to
compact binary codes with sufficient discriminating power for accurate
image re-ranking. Experiments on public benchmarks reveal that our
method achieves competitive retrieval performance comparable to the
state-of-the-art and enjoys excellent scalability in large-scale scenario.

Keywords: Multi-view image re-ranking + Hamming subspace -
Discriminative learning - Binary codes

1 Introduction

In visual search task, image re-ranking aims to update the query model and
improve the initial retrieval accuracy by polishing the ranking list in the first
place [4,15]. The core of these algorithms is to develop an accurate re-ranking
model for re-evaluating the correlation between the target images and the query.
Recent research suggests that subspace-based multi-view re-ranking serves as an
important line of research in image re-ranking, since the traditional hand-crafted
shallow features are supplementary to the deep features. Thus, the complemen-
tarity among these two heterogeneous features can be embedded within a unified
multi-view learning framework for recovering a latent subspace [12,21,22].

The most representative multi-view learning framework is Canonical Correla-
tion Analysis (CCA) [5], which is aiming at exploring the associations between two
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Fig. 1. The system flowchart of our BMVIR approach.

sets of variables. Besides, a wide variety of CCA variants [1,14] are developed and
widely used in multi-view learning. Subsequently, multi-view re-ranking methods
combining multi-view learning and image re-ranking strategy have been proposed
and demonstrated their overwhelming superiority in various visual tasks [19]. In
addition to CCA framework, Li et al. [10,11] develop a series of unified discrimi-
native multi-view learning frameworks in which multi-view subspace embedding
is combined with discriminative learning for accurate image re-ranking. Despite
effective, these methods suffer from expensive computational cost especially in
large-scale scenarios, which adversely affects real-world applications.

To address this issue, in this paper, we propose a novel binary multi-view image
re-ranking method (BMVIR) for efficient and accurate image re-ranking. Inspired
by image Hashing [8,20], our method attempts to recover a latent Hamming sub-
space from the original multi-view feature spaces, and the resulting binary codes
are used for subsequent image re-ranking. More importantly, coupled with the dis-
criminative learning mechanism, our method is capable of embedding the correla-
tion information of the pairwise images into the generated binary codes, and thus
maximally preserving the discriminating power of the compact binary codes. Ben-
efiting from the reliable discriminant information, our method avoids the lossy
coding caused by the over-dependence on the data structure for the traditional
Hashing methods, and generates the similarity-preserving binary codes with suffi-
cient discriminative power. With the help of the efficient binary codes, fast image
search can be carried out via Hamming distance evaluation, which dramatically
reduces the computational cost with desirable efficiency. The processing pipeline
of our approach is illustrated in Fig. 1.

The rest of the paper is organized as follows. We elaborate our method
in details in Sect.2. Next, we present the experimental evaluations in Sect. 3.
Finally, our work is concluded and summarized in Sect. 4.
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2 Our Efficient Multi-view Re-ranking Method

2.1 Formulation

Without loss of generality, image re-ranking is defined as the problem of refin-
ing the initial retrieval results by updating the query model for improving the
retrieval accuracy. Mathematically, given the initial retrieval results R obtained
by query model @, we aim to polish @) with a re-ranking model Q, and re-evaluate
the query relevance of the target images using Q, leading to the re-ranked results
R. More specifically, the re-ranking model Q is built on the partially labeled sam-
ples S collected from the initial image ranks R.

When training Q, we make use of multi-view heterogeneous features of S
for subspace learning. Given the original multi-view data Z, € RP*" (v =
1,...,m), the subspace-based multi-view embedding framework seeks to uncover
the underlying subspace X € R%*™ such that the original multi-view features
can be recovered from this subspace via view-specific generation matrix P, €
RPvxd (y = 1,...,m). m is the number of data views while n is the number of
images. Besides, D, indicates the view-specific feature dimensionality while d
is the dimension of the latent subspace. Mathematically, the subspace recovery
process is formulated as:

Zy=P,X+E, (1)

where E, € RP»*" is denoted as the view-dependent reconstruction error. In
general, the shared subspace is reconstructed by solving the following formula-
tion:

m m

HE%;”ZU_PUX”?«"+01UZ=1”PUH%+C2”XH% (2)
where ¢; and co are the parameters controlling the tradeoff among the corre-
sponding regularization terms which are used to prevent overfitting. Although
Eq. (2) provides a general paradigm for recovering a potential subspace from
multi-view features, the resulting Euclidean subspace is still prone to high sim-
ilarity calculation costs. Inspired by learning to Hash, we attempt to recover a
shared Hamming space directly from the original multi-view feature, yielding
compact binary codes. Mathematically, encoding the Hamming subspace with
binary discretization constraint is expressed as:

Pvgl(i’%ﬂz 12y — P X |5+ 1 Y IPl5 + c2 | X5+ cs || B — XTRHi .

v=1 v=1

st. Be{-1,1}"*? RTR=1
where B is the resulting d-dimensional Hamming subspace, and R € R4*¢ is an
orthogonal matrix, and c1, ¢z, c3 are the tuning parameters controlling the trade-
off among respective regularization terms. Basically, since the binary matrix dis-
cretization constraint poses a great challenge to the optimization of the resulting
Hamming space, it is not easy to generate an accurate mapping from Euclidean
space to Hamming space while maximally maintaining the intrinsic correlation
among multi-view data without significant loss. In our scheme, we impose the
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orthogonal transformation on the resulting Euclidean subspace to minimize its
loss with binary code, and thus avoid the problem of direct optimization of binary
matrix. The principle behind it can be explained by the invariance property of
the orthogonal transformation of Euclidean space. Thus, the optimal multi-view
Euclidean subspace structure is retained intact in Hamming space.

In Hashing methods, it is crucial for maintaining the discrimination capability
of binary codes, whereas the correlation information contained in the inherent
data structure is limited,and thus somewhat affects the performance of Hashing
learning. In order to further improve the discriminating power of the binary
codes, we introduce discriminative learning to minimize the similarity preserving
empirical loss:

o1
Hgn§||w||2+04HY—wTXH2 (4)

where w € R?*! indicates the separating hyperplane in the latent subspace,
whilst Y € {1, —1}¥ is the label vector of the training samples. Accordingly, we
combine Eq. (4) with Eq. (3), yielding the following binary multi-view feature
learning framework:

m

m
oomin 312, = PXIG e Y IR + e |XIF +ea| B - XTE

v=1 v=1

5
+ 5 ol + e ¥ — x| ®)

st. Be{-1,1}"4 RTR=1

As shown in Eq. (5), we incorporate Hashing learning and discriminative learn-
ing into a unified multi-view embedding framework, solving for the view-dependent
generation matrices P,, the latent representation X, the binary codes B, the
decision boundary w and the orthogonal matrix R simultaneously. Thus, the re-
ranking model Q is derived. For the on-the-fly re-ranking, we first compute the
binary codes B of all the target images by optimizing the following formulation:

min ) || Z, — P.X |5 + el B - XT R (6)
X,B

=1

where Z, denotes the original multi-view features of the target images. Thus, the
query relevance can be re-evaluated and re-ordered by calculating B - w, leading
to the re-ranked results R.

2.2 Optimization

The formulation in Eq. (5) requires simultaneous optimization of the five param-
eters: the view-dependent generation matrix P,, the low-dimensional subspace
embedding X, the orthogonal rotation matrix R, the binary codes B and the
decision boundary w. To solve this problem, we design an iterative algorithm to
alternate the optimization of the five variables for minimizing the empirical loss
as in Eq. (5):
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Update P, by Fixing Others. After removing the irrelevant terms, the for-
mulation in Eq. (5) is reduced to:

min |2, ~ X + 1 [P (7)

Let:
£=min | Z, - PX|I} + 1 | P} (8)

Thus, we take the derivative of L w.r.t. P, and set the derivative to 0, leading
to the close-form solution as follows:

P,=Z, X" XXT 4 ¢,1)7? (9)

Update X by Fixing Others. With the irrelevant terms discarded, the for-
mulation in Eq. (5) is simplified as:

min|Z, = PX|% + o | X |7 + s || B - XTR|[L +ea |y —u"X|  (10)

Analogously, we take the derivative of L w.r.t. X and set the derivative to 0
for obtaining the following close-form solution:

X =(>_ PP, +cl +caRR" + coww™) " (Y PYZ, + ¢sRB" + cyuwY) (11)

v=1 v=1

Update B by Fixing Others. While updating B, we only maintain the terms
regarding B, and thus the problem is reduced to:

min||B - XTR||" st Be{-1,1}"x4 (12)
B F
Expanding Eq. (12), we have:
. 2
min 1Bl + || X", — 2tr(BRTX)
. T2 T (13)
:mBlnndJrHX HF72tr(BR X)

Since n - d is constant while the projected data matrix X is fixed, minimizing
Eq. (13) is equivalent to maximizing

d
r(BRTX) Zzn:ZBinij (14)
i—1 j=1

where Xij denotes the elements of X = XTR. To maximize this formulation
with respect to B, we have B;; = 1 whenever X;; > 0 and —1 otherwise.
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Update R by Fixing Others. After removing the irrelevant variables, Eq. (5)
is reduced to: )
min [|[B - XTR[, st RTR=1I (15)

The objective function shown in Eq. (15) is in spirit the classic orthogonal
Procrustes problem [6]. In our method, Eq. (15) is minimized by computing the
SVD of the n x n matrix BTXT as $285™ and letting R = SS™.

Update w by Fixing Others. Similar to the above-mentioned steps, we remove
the irrelevant terms and rewrite Eq. (5) as follows:

II}}]II%HU)H2+C4HY7’LUTXH2 (16)

we also take the derivative of L w.r.t. w and set the derivative to 0 for
obtaining the following close-form solution:

w=(I+2c,XXT) 2, XY7T (17)

We iteratively alternate the above steps until the convergence of the algo-
rithm is reached.

Time Complexity. In our method, computing P, requires O(D, - n - d) +
O(D,, - d*) + O(d®) + O(d? - n) time cost, which can be further approximated
by O(D, - n -d) + O(D, - d*) because D, >> d in our case. n denotes the
number of database images. In term of the time complexity of updating X,
it amounts to m - (O(D, - n - d) + O(D, - d?)) + 20(d®) + 20(d? - n) which
can be also approximated by m - O(D, - n - d) + m - O(D, - d*)). Meanwhile,
optimizing w requires approximately O(d? - n + d®) time cost. In addition, the
time complexity of computing B is O(d - n), while optimizing R requires O(n?)
time cost. Besides, the feature matching based on Hamming distance has a time
complexity of O(d - n).

3 Experiments

In this section, we evaluate our BMVIR framework for interactive image re-
ranking. We first introduce the public benchmark datasets along with the exper-
imental setting and the evaluation protocols. Next, comprehensive quantitative
analyses are carried out to illustrate the performance of our algorithm. In addi-
tion, comparative study also demonstrates the significant advantages of our algo-
rithm over the existing image re-ranking methods.

3.1 Datasets

We evaluate our approach on two public benchmark datasets for landmark
retrieval, namely Oxford5K [16] and Paris6K [17]. Both the two datasets include
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Fig. 2. The performance of our algorithm with different parameter values {ci, c2, cs,
¢4} on query “triomphe”.

11 famous landmarks, each of which has five query instances, yielding a total
of 55 query groups. In terms of the performance measure, we compute aver-
age precision (AP) for each query group and obtain the mean average precision
(mAP) by averaging all AP scores for the overall evaluation. In addition, to
assess the scalability of our algorithm in large-scale scenarios, we respectively
merge Oxford5K and Paris6K with the Flickr100K [16] for large-scale evaluation.
Flickr100K has a total of 100,071 images crawled from Flickr’s 145 most popular
tags, and is typically merged with other datasets for large-scale retrieval task.

3.2 Multi-view Features

Two heterogeneous image signatures are involved in our evaluation, namely CNN
and TEDA [7]. Besides, we also make use of the VLAD+ [3] feature for the
subsequent evaluation in large-scale retrieval scenario. As for the CNN feature,
we directly adopt the deep model which is specifically fine-tuned for landmark
retrieval and recognition task [2] and generate a 4,096-dimensional vector for
feature representation. Besides, we follow [7] to compute TEDA signature which
is represented by a 8,064-dimensional vector. In terms of VLAD+, we reproduce
the method in [3] and also use a vocabulary of 256 visual words for producing
16,384-dimensional image feature.

3.3 Experimental Setting

As shown in Eq. (5), there are four regularization parameters c1, ¢z, ¢ and ¢4
involved in the model selection. Figure 2 shows the impact of different parameters
on the performance of BMVIR for query “triomphe”. In implementation, we
empirically set ¢; and co as 0.25 and 0.5 respectively, while parameter c3 is
set to 0.001 to compromise between the multi-view reconstruction error and
the binary quantization loss. In addition, ¢4 is set as 2 empirically to put more
weights on the similarity-preserving term for improving the discriminating power
of our BMVIR model. Besides, we set the subspace dimension and the binary
code length as 256 for compact representation and efficient retrieval.
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Fig. 3. The impact of the parameter M on the proposed BMVIR algorithm.

3.4 Training Samples Collection

In our method, since it is essential to indicate the query-relevance of the ini-
tial shortlisted images from scratch, we collect the query-relevant and query-
irrelevant instances from the original image ranks to obtain the partial super-
vised information for the subspace learning. It is well known that high-ranked
images are likely to be query-relevant, whereas the low-scored images are neg-
ative examples for a specific query instance in the initial retrieval results. In
implementation, we use user interaction to indicate the relevance of top returned
candidates in the shortlist of size M and consider the relevant images as posi-
tive training examples, whilst label L images at the bottom of the rank list as
negative samples. Since our method mainly depends on the size of the shortlist
M in the initial ranking list shown to the user, we discuss the influence of M in
Fig. 3. It is observed that increasing M allows more positive examples involved
in the training process, and thus leads to significant performance promotion. For
the sake of the balance between efficiency and performance, we set M and L as
50 and 1000 respectively in practice.

3.5 Results

Baselines. We produce two separate baseline retrieval results in the first place
by combining single image representation with efficient cosine similarities, which
are denoted as CNN_COS, and TE_COS for short respectively. As shown in
Table 1, CNN_COS consistently reports higher retrieval accuracy than TE_COS
across all the performance measures, suggesting the promise of the TEDA sig-
nature and the significant heterogeneity between these two features.

Re-ranked Results by Using BMVIR. Given the initial retrieval results, we
impose the proposed BMVIR on the original ranking list produced from TE_COS
for accurate re-ranking. Table 2 reports the dramatic performance gains provided
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Table 1. Comparison of different baselines on Oxford5K and Paris6K.

Datasets | CNN_COS | TE_COS
Oxford5K | 0.6809 0.6204
Paris6K | 0.7596 0.6176

Table 2. Comparison of TE_COS baseline method and TE_.BMVIR re-ranking app-
roach on some representative query groups of Paris6K.

Query TE_COS (Baseline) | TE_.BMVIR (Re-ranking)
AP AP

defense 0.3656 0.7233

eiffel 0.4438 0.6605

moulinrouge | 0.3317 0.6532

triomphe 0.5265 0.8307

mean 0.6176 0.7731

by TE_.BMVIR on the two benchmarks. It can be observed that our method
significantly improves the baseline. For instance, on Paris6k, TE_.BMVIR out-
performs TE_COS by 35.77% on query “defense”. The overall mAP score also
increases from 61.76% to 77.31% accordingly. Similar advantage of TE_.BMVIR
is also shown on Oxford5K, indicating the mAP score is reported at 78.34%
which considerably outperforms the corresponding baseline score at 62.04%.
This implies that our BMVIR strategy fully explores the complementarity of
heterogeneous features and combines discriminant learning to produce discrim-
inative binary codes, and significantly improves the performance and efficiency
of baselines.

Comparative Studies. To further demonstrate the advantages of our
approaches, we have compared our method with other related works.

— BMSL: We use the recent binary multi-view fusion method BMSL [20] to
produce compact binary codes from the original multi-view features. It is
worth noting that this is an unsupervised multi-view learning method without
discriminative learning strategy involved.

— DMINTIR-ITQ: In this method, we utilize the classical multi-view rerank-
ing method DMINTIR [11] to generate discriminating subspace. Next, we
encode the resulting subspace representation into the binary codes by using
the ITQ algorithm [6].

For the sake of consistency, we adopt the same setup of multi-view features as
our method. As show in Fig. 4, our approach consistently achieves superior per-
formance on both datasets. In particular, our method reports 78.34% mAP score
on Oxford5K, and significantly exceeds the competing method BMSL reporting
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Table 3. Comparison of TE_COS baseline method and TE_BMVIR re-ranking app-
roach on some representative query groups of Oxford5K.

Query TE_COS (Baseline) | TE_.BMVIR (Re-ranking)
AP AP
all_souls 0.6105 0.7682
ashmolean 0.4988 0.6641
bodleian 0.3728 0.8430
hertford 0.6705 0.8755
radcliffe_camera | 0.9020 0.9525
mean 0.6204 0.7834

8(()DOmparitive study on the Oxford5K and Paris6K

[ (EEEBMVIR(Ours)
IEBVSL
CIDMINTIR-ITQ

[1

Oxford5K Paris6K
Datasets

Fig. 4. Comparison of different approaches on Oxford5K and Paris6K benchmarks

score at 71.63%. This implies that the beneficial effect of the discriminative
learning in our method can significantly improve the discriminant power of the
generated visual representation. Meanwhile, the proposed BMVIR outperforms
the DMINTIR-ITQ by 4.4% and 4.48% on respective dataset, which suggests
that the unified subspace learning framework allows discriminative and compact
binary representations.

In addition, we also compare our BMVIR algorithm with the state-of-the-
art re-ranking methods on the two benchmarks. As presented in Table4, the
proposed approach bests all competing methods on Oxford5K including recent
deep models. Surprisingly, our algorithm lags behind the state-of-the-arts on
Paris6K. We argue that the disadvantage is due to the inferior performance
of the original multi-view features and the insufficient complementarity between
the two heterogeneous features. Since the performance of our method is achieved
with very compact binary codes, this reveals the promise and the competitive
performance of BMVIR, along with the advantage in retrieval efficiency.
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Table 4. Comparison of our method with the state-of-the-arts.

Method Oxford5K | Paris6 K
R-MAC+R+QE [18] | 77.3 86.5
LME [13] 67.5 -
CroW+QE [9] 74.9 83.31
Ours 78.3 77.3
80 80
75 75
S S M—Qﬁ
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Fig. 5. Large-scale evaluation of BMVIR on Oxford5K (left) and Paris6K (right).

Scalability to Large Database. In order to evaluate the scalability of our
approach, we respectively merge the Oxford5K and Paris6K with Flickr100K for
large-scale evaluations. Different from the aforementioned setup of multi-view
features, we use the CNN and VLAD+ as the multi-view data to explore the
effect of different combinations of multiple heterogeneous features. Figure 5 illus-
trates the performance of our approach when the distractor images are incre-
mentally added to Oxford5K and Paris6K. It is shown that our approach is
hardly affected with the distractor images added incrementally, which substan-
tially demonstrates the promising scalability of our approach.

Computational Cost. In implementation, training our model costs roughly
20 s, while the similarity matching takes approximately 3 ms. In contrast, the
traditional retrieval scheme with cosine similarity takes about 10 ms in fea-
ture matching. This sufficiently demonstrates the real-time performance of our
method using compact binary codes for instance retrieval. All the experiments
are conducted under the Matlab environment using a laptop with CPU Intel
Core i5-5200U 2.2 GHz and 4 GB memory.

4 Conclusions

In this paper, we have proposed a unified binary multi-view learning framework
for accurate image re-ranking. In particular, we take advantage of multi-view
learning paradigm to integrate the binary encoding and discriminative learning
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into a unified framework, resulting in compact binary codes with sufficient dis-
criminating power for efficient and effective image re-ranking. The evaluations
on the public benchmarks and large-scale scenarios reveal that our approach
achieves the promising performance with desirable scalability.
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