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Abstract. Temporal action detection is used to detect the start and end times and
classify the potentially specific actions in a video. Prior studies in temporal action
detection perform weak because they can not fully understand the whole input
video’s temporal structure and context information, and fail to adapt to the diversity
of action time span. We propose a novel Timeception Single Shot Action Detector
(TC-SSAD) to solve the problems mentioned above. In detail, we leverage the
multiple Timeception layers to generatemulti-scale feature sequences, where each
Timeception layer uses depthwise-separable temporal convolution with multi-
scale convolution kernels to capture the diversity of time spans. Besides, we use
the super-event modules to learn the entire input video’s temporal structure and
contextual information. The experimental results on THUMOS14 dataset show
that when IoU threshold is 0.5, our method achieves 38.2% and 44.3% mAP on
Two-stream features and Two-stream i3D features respectively, which is better
than Decouple-SSAD network based method by 2.4% and 0.6%. Our method on
Activitynet-1.3 dataset achieves 20.4%mAP,which is better thanDecouple-SSAD
network based method by 0.61% as far as Two-stream features on concerned.

Keywords: Temporal action detection · Multi-scale convolution kernel ·
Super-event module · Temporal structure and context

1 Introduction

With the development of the Internet and the proliferation of personal smart mobile
devices, people are generating, storing and using large amounts of video [1, 2]. Most
videos are long untrimmed videos, which often contain multiple action instances and
have more interference from background and irrelevant actions. Action detection is
detecting action instances in long videos, including the start and end times corresponding
to action instances and action categories. Action detection is more practical, and its
progress can promote a large number of related tasks from real-time applications, such
as extracting highlights from sports videos, to automatic video subtitles and other higher-
level tasks [3].

Like the object detection task, the common temporal action detectionmethods can be
divided into two-stage and single-stage. The Two-stage method uses sliding windows or
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some specific methods (sliding window or action probability curve) to generate propos-
als and then classifies these action proposals. First of all, the common sliding window
method can only produce short proposals no larger than the predefined window size
[4]. Second, because the two-stage detection method train action proposal generation
and classification separately, the time boundary of action proposals before classification
has been fixed. The indirect optimization strategy can not get the optimal solution[5].
At the same time, the single-stage method ignores the action proposal generation and
directly predict the time boundary and categories confidence of actions. This type of
method encapsulates two subtasks of localization and classification into a single net-
work but ignores the characteristics of each subtask. Since the single-stage methods
share the same feature map when predicting the action category and coordinate offset
values, this coupling characteristic may affect the accuracy of each task. Therefore,
Decouple-SSAD [5] network introduces parallel classification and localization units
through deconvolution operation to decouple two subtasks.

The diversity of time spans of action segments in videos is one of themain reasons for
the poor performance of current action detection methods. The traditional single-stage
action detection methods shorten the length of the feature sequence and increase the
receptive field of each temporal position in feature sequences by stacking multiple 1D
temporal convolutional layers, thereby predicting the coordinate offsets and categories
confidence of the action proposals. These 1D temporal convolutional layers usually use
convolution kernels with a fixed scale. Therefore, the receptive fields corresponding to
each temporal position in the generated feature map sequence are fixed. Therefore, these
methods cannot adapt well to the diversity of the time spans of action segments.

Compared with the spatial contextual information of pictures in object detection,
the temporal structure and contextual information of the video may be more important
for obtaining accurate time boundaries and classification results [3]. The single-stage
methods cannot effectively use the temporal contextual information of action proposals
due to the characteristics of generation and classification action proposals at the same
time. To solve these problems, we propose TC-SSAD, aDecouple-SSADbased network.
The main contributions of this paper are:

(1) In this paper, we use Timeception layer with multi-scale convolution kernel to con-
struct the backbone network, which is used to obtain multi-scale feature sequences.
Instead of using 1D temporal convolution layer with a fixed kernel size, the multi-
scale convolution kernel can better capture the diversity of action segments during
a period.

(2) We also introduce a super-event module to model the whole input video’s tem-
poral structure and context information. This module obtains the super-event
representation, which can effectively enhance the performance of action detection.

2 Related Work

2.1 Temporal Action Proposal Generation

Temporal action detection can be decomposed into two sub-tasks: action proposal gen-
eration and classification. High-quality action proposals are essential to enhance the
effectiveness of action detection task.
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The methods for generating temporal action proposals can be divided into two major
categories: the first type of methods formulates it as a binary classification problem on
sliding windows. Among them, SCNN-prop [6] trains a C3D network [7] for action
proposal generation. TURN [8] builds video units in a pyramid manner and improves
the recall rate of action proposal generation through temporal boundary regression. The
second type of methods uses the Temporal Action Grouping (TAG) [9, 10] algorithm to
aggregate consecutive high-scoring intervals as action proposals based on Snippet-level
action scores. For example, Boundary Sensitive Network (BSN) [11] generates action
proposals based on three sets of actions curves, but this kind method based on action
scores may be omitted dense and short actions due to the difficulty in distinguishing very
close start and end peaks in the action score curves.

2.2 Temporal Action Detection

S-CNN [6] solved this problem by constructing a proposal generation network, a clas-
sification network, and a localization network based on 3D convolution. CDC [12] uses
convolution-deconvolution operations on the basis of C3D network to predict the actions
of frame-level granularity. Inspired by the Faster R-CNN [13] algorithm, R-C3D [14]
extended the Faster R-CNN framework to the field of action detection, showed its ver-
satility on different datasets. On the basis of R-C3D, TAL-Net [3] has researched and
improved how to deal with the diversity of action time spans and how to use temporal
contextual information, obtained state-of-the-art performance on THUMOS14 dataset
[15].

The single-stage SSAD [16] network skips the process of generating action proposals
and uses traditional 1D temporal convolutional layers to directly perform boundary
regression and classification on multiple generated action proposals. Similarly, SS-TAD
[17] uses reinforcement learning to train the RNN structure, which is end-to-end and
directly performs action detection.

3 Methodology

3.1 Overview of TC-SSAD

Figure 1 presents TC-SSAD, a single stage action detection network based on Decouple-
SSAD [5].

First, Two-stream i3D network [18] is used to encode the frame sequence corre-
sponding to a long video into 1D feature sequence. The generated feature sequence goes
through two traditional 1D temporal convolutional layers and a maximum pooling layer
to reduce the time dimension. After that, the feature sequence is sent to a multi-unit
network to generate multi-scale feature sequences. Multi-unit network consists of three
parts: backbone unit, classification and localization unit. The backbone unit is com-
posed of multiple Timeception layers [19] and super-event modules [20] in a cascade
manner. Furthermore, parallel classification and localization units are constructed from
the deep feature sequences of the backbone unit through deconvolution operations and
the fusion of the prevIoUs layer feature sequences. The two parallel units focus on the
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Fig. 1. Overview of TC-SSAD

task of action category confidence generation and coordinate regression, respectively. In
addition, in order to learn the temporal structure and contextual information of the entire
input video, multi-scale features generated by each Timeception layer of the backbone
unit passes the super-event module to obtain the super-event representation, the learned
super-event representation is fused with the multi-scale feature sequences generated by
two parallel units to obtain the final feature expressions. A series of multi-scale feature
sequences generated by three units pass the classification prediction layer and the local-
ization prediction layer to predict categories confidence and coordinate offsets values
corresponding to the action proposals. Classification loss, regression loss, and overlap
loss are used to optimize different units during the training phase. Post-processing and
non-maximum suppress (NMS) are performed on the generated action instances during
testing phase to obtain the final results.

3.2 Backbone Unit

The backbone unit of TC-SSAD consists of Timeception layers and the corresponding
super-event modules in a cascade manner.

Timeception Layer. For input feature F, hypothesis the feature dimension of F is
dm =R

{T×L×L×C}, where T is the temporal dimension, L is spatial dimension, C is the
number of channels. Figure 2 presents the multi-scale feature sequences of the backbone
unit are obtained by the Timeception layers through the following steps:

Firstly, the input features are divided into some groups according to channels to
reduce the dependency and complexity between channels. The feature dimension of each
group is gm =R

{T×L×L×C/N }. Then, each group uses a temporal convolution module to
convolve the obtained feature sequences. Specially, each group is further divided into 5
units, and the middle 3 units use depthwise-separable temporal convolution with multi-
scale convolution kernels to reduce the amount of network parameters while ensuring
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Fig. 2. Architecture of Timeception layer

that the network can well adapt to the diversity of the time spans of action segments. The
leftmost unit only uses maximum pooling with kernel size K = 2 and stride S = 1. A 2D
convolution with kernel size after each unit is used to enhance the non-linear expression
ability of this Timeception layer. Last, the output of the 5 units through concatenation
operation to obtain the final output feature sequences of this group. Finally, for the output
features of each group, first perform shuffle operations on these features to exchange
information between different channels to ensure the randomness of the channels when
the next Timeception layer performs grouping operations. We concat the output features
of each group and then go through the maximum pooling layer with kernel size K =
2 and stride S = 2 to get the final output features of this layer. Specifically, after each
Timeception layer, the time dimension of feature sequence is reduced to 1/2, and the
number of channels is increased to 1.25 times. For the features input the backbone
unit, after three Timeception layers, feature sequences of 3 different scales are finally
generated for subsequent processing.

Super-Event Module. As shown in Fig. 3 super-event representation is obtained by the
temporal structure filters in the super-event module by learning the soft attention weights
of each type of action. Temporal structure filters capture temporal context in videos by
paying attention to the frame information of some temporal positions and representing
the variable length input video features as fixed length feature vectors.

For the feature sequence with time dimension T, each temporal structure filter can
be determined by the following formula:

∧
xn = (T − 1) · (tanh(xn) + 1)

2
∧
γn = exp(1 − 2 · | tanh(γn)|)
F[t, n] = 1

Znπ
∧
γn

((
t− ∧

xn
)

∧
γn

)2

(1)
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where t ∈ {1, …, T}, n ∈ {1, …, N}, two parameters xn and γn are used to control the
center and width of the Cauchy distribution, Zn is a normalization constant, In particular,
for each super-event module, only two parameters xn and γn need to be learned.

Because the number of action categories is much larger than the number of temporal
structure filters. In order to use a fixed number of temporal structure filters to represent
multiple types of actions, it is necessary to combine the temporal structure filter and
soft attention mechanism to obtain the final super-event representation, as shown in the
following formula:

SC =
M∑
m

Ac,m ·
T∑
t

Fm[t] · vt

Ac,m = exp
(
Wc,m

)
∑M

k exp
(
Wc,k

)
(2)

where Sc is the finally obtained super-event representation,M is the number of temporal
structure filters, Vt represents the video features, that is, the output of the Timeception
layer, Ac,m represents the soft attention weight corresponding to each temporal structure
filter. The subscript C represents the number of video action categories.

3.3 Classification and Localization Units

Like the backbone unit, each parallel unit contains three kinds of multi-scale feature
sequences. Each type feature sequences are obtained by averaging the corresponding
deeper feature sequences in the backbone unit through deconvolution operation with
shallow feature sequences. The specific decoupling process can be expressed by the
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following formula:

f Lk =
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(
f fn

)
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(
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(
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(
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)
,D

(
f L+1
k

)))
, if 1 ≤ L < Nf

(3)

where C represents the traditional temporal convolution operation, D represents the
deconvolution operation, S represents the corresponding element addition and fusion
operation, Nf is the number of layers of the Timeception layer in the backbone unit, and
L is used to indicate which layer is currently operated on.

3.4 Classification and Localization Prediction Layers

For the multi-scale feature sequences generated by the three units. First, a series of
anchors with different basic scale BSand aspect ratio RS are predefined for each temporal
position of the feature sequence.

For a series of predefined anchors obtained above, we send the corresponding feature
sequence to the classification and localization prediction layer to generate the prediction
result vector Vpred = (Scls, Sover,�c,�W ), where Scls and Sover are categories confi-
dence and overlapping confidence,�c and�W are predicted centre andwidth coordinate
offset values. It is worth noting that for the classification unit, we generate the result
vectors through a multi-class prediction layer because it focuses on classification tasks.
The localization unit focuses on localization tasks, and we generate the result vectors
through a binary classification prediction layer. For each predefined anchor, the final
prediction results can be obtained by the following formula:

ϕC = μC + α1μW · �C

ϕW = μW · exp(α2 · �W )
(4)

whereμc andμw are the predefined center point and width, respectively. The parameters
α1 and α2 are used to control the degree of influence of the predicted value on the result.
ϕc and ϕw are final predicted results.

3.5 Loss Function

Training TC-SSAD networks is a multi-task optimization problem. The final loss
function is:

L = Lcls + λLreg + βLover (5)

where Lcls, Lreg , Lover are classification loss function, localization loss function and
overlap loss function. For the multi-classification tasks in this paper, we use the common
softmax loss function. We use the Smooth L1 loss function to measure the degree of
error between the predicted coordinate values and the true values. Finally, we use the
mean square error loss function to measure the overlap between the predicted action
proposals and the real annotations.
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4 Experiments

4.1 Datasets and Evaluation Metrics

THUMOS14 Dataset [15]. The dataset contains videos from 20 sports action classes,
with a total duration of more than 24 h. We use the validation set to train the model and
evaluate it on the test set. The validation and test sets contain 200 and 213 untrimmed
videos with temporal annotations. The average duration of each video is more than 3
min and contains more than 15 action instances, which makes the dataset particularly
challenging.

ActicityNet-1.3 Dataset [21]. The dataset contains 19994 videos, each video contains
about 1.5 action instances, about 36% of which are background clips, and there are 200
kinds of actions in total. The whole data set is divided into training set, verification set
and test set according to the ratio of 2:1:1, and the test set is not open for competition,
so most researches test the model performance on the validation set.

Evaluation Metrics. In this paper, the public evaluation code is used to evaluate the
experimental results. We use mean Average Precision (mAP) as the main evaluation
metrics. For the predicted action proposals, we only mark the result as correct if the
prediction category is correct and the intersection ratio with ground truth is greater than
the specified IoU threshold.

4.2 Implementation Details

For THUMOS14 [15] and ActivityNet-1.3 [21] datasets we set batch size is 24; the
learning rate for the first 38 epochs to 0.0001 and the learning rate for the last 3 epochs to
0.00001.Adaptivemoment estimation (Adam) algorithm is used to optimize the network,
and Xavier algorithm randomly initializes network parameters before training. In the
test phase, we use non-maximum suppression (NMS) to remove redundant prediction
results (NMS threshold is 0.2). For the Timeception layers, we set groups equal to 4. The
weight of classification loss is 1, and the weight of location loss and overlap loss is 10.
For THUNOS14 dataset, we set Bs = {1/16, 1/8, 1/4}, Rs = {0.5, 0.75, 1, 1.5, 2}; For
ActivityNet-1.3 dataset, we set Bs = {1/16, 1/12, 1/8, 1/6, 1/4}, Rs = {0.15, 0.25, 0.5,
0.75, 1, 1.5, 2, 3}. For two datasets, the convolution kernel size K = {3, 5, 7} and the
number of temporal structure filters N = 3 are used in the following experiments. Due
to the large scale of ActicityNet-1.3 dataset, we did not specifically extract its features
but directly used the Two-stream features provided by BSN [11].

4.3 Experimental Results

Results of THUMOS14 Dataset. When using a single GTX TITANX GPU, the train-
ing time of the verification set composed of 200 videos on the THUMOS14 dataset is
about 102min, and the test time is about 4min. The experimental results of THUMOS14
dataset [15] are shown in Table 1.
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Table 1. Experimental results of THUMOS14 dataset.

Method Feature Model mAP(%)@IoU = 0.5

Spatial Temporal Fuse

Decouple-SSAD [5] Bn-Inception Decouple-SSAD(512) 22.1 33.1 35.8

Inception_V3 Decouple-SSAD(512) 30.7 44.2 43.7

TC-SSAD Bn-Inception DS + TC(512) 23.9 35.1 36.6

Bn-Inception DS + TC + SE(512) 23.3 36.9 38.2

i3D DS + TC(512) 32.5 35.6 38.2

i3D DS + TC + SE(512) 33.1 41.1 42.3

i3D DS + TC + SE(1024) 36.4 41.0 44.3

In the feature column, “Bn-Inception” and “Inception_V3” are the original Two-
stream feature extraction backbone networks, while Two-Stream i3D network [25] is the
feature extraction network used in this paper. In the model column, “Decouple-SSAD”
indicates the method adopted in [5], “DS” indicates the use of parallel decoupling units,
“TC” indicates the use of Timeception layers, “SE” indicates whether to use the super-
event modules, and the bracket is the window size when extract feature. As can be seen
from the table, the highest mAP value obtained by our method is 44.3%.

Effectiveness of Timeception Layer and Super-Event Module. In order to verify the
validity of the Timeception layers and the super-event modules in our model. First, we
use the same features for experiments. The results of the first four rows of Table 1 show
that when using only the Timeception layers, there is some improvement over Decouple-
SSAD. Spatial and Temporal features increased by 1.8% and 2.0%, respectively, and the
result after fusion increased by 0.8%. Besides, when the super-event module is added,
the performance is improved significantly, and the fused mAP is increased from 35.8%
to 38.2%.

Impact of Different Features on Results. Because a traditional Two-stream network
uses 2D convolution, it cannot capture the temporal dependency between frames.Aswith
Decouple-SSAD, we first extract the Two-stream i3D features with 512-frame window
size. Based on these features, only the Timeception layers can be used to achieve the
same effect after the original super-event representation was added. The results illustrate
the effectiveness of i3D network for spatiotemporal modelling.

In addition, we further expanded the window to 1024 frames (about 34 s in duration),
and we found that the network’s performance was further improved, from 42.3% to
44.3%.We suspect that this is mainly because the long video contains the richer temporal
structure and contextual information, and the super-event modules can effectively learn
the temporal structure and contextual information in these input videos to further enhance
network performance.

Per-class AP. We compared the AP values of each action category after fusion between
our method and Decouple-SSAD at IoU = 0.5. The results are shown in Fig. 4 Our
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method shows good detection performance on two different video features. Through the
analysis of “basketball dunk”, “billiards” and other categories of video, we find that the
duration of these categories of action is very different, and our method performs well in
these categories of video.

Fig. 4. Comparison of per-class Average Precision and mAP with overlap threshold 0.5 in
THUMOS14 test set.

Results of ActivityNet-1.3 Dataset. We also make a comparative experiment on
Activitynet-1.3 dataset [21]. During the experiment, we all used the Two-stream fea-
tures provided by BSN [11]. The results of mAP and average mAP (0.5:0.05:0.95) when
IoU = {0.5,0.75,0.95} after fusion are shown in Table 2.

Table 2. Experimental results of activityNet-1.3 dataset.

Method Feature Model mAP(%)@IoU

0.5 0.75 0.95 AVG

Decouple-SSAD [5] Two-stream Decouple-SSAD 33.15 19.99 1.78 19.81

TC-SSAD Two-stream DS + TC 34.11 20.17 2.47 20.41

Two-stream DS + TC + SE 33.61 20.71 2.32 20.42

Table 2 shows that the average mAP is still 0.61% higher than that of Decouple-
SSAD in ActivityNet-1.3 dataset. In particular, we find that the results are not effectively
improved after using super-event modules, and the results under some thresholds are still
reduced. This is because ActivityNet-1.3 dataset contains 200 types of actions, and each
video contains only about 1.5 action instances. Most of the action instances occupymore
than half of the whole video. In this case, there is no rich temporal structure and context
information to learn.
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4.4 Visualization of Temporal Action Detection Results

In Fig. 5 The temporal action detection results of THUMOS14 dataset are visualized.
Each row contains the predicted start and ends time and category of the action, and the
sampled frame image is used at the top to display the content of the video. As shown in
Fig. 5, Our method is more accurate in predicting the start and end time of actions. The
results show that the proposed method is more effective.

60.7S                   Basketball Dunk 65.5S

60.77S             Basketball Dunk 65.37S

149.7S       Basketball Dunk 151.3S

60.84S        Basketball Dunk 64.75S

149.37S   Basketball Dunk 151.80S

148.88S            Basketball Dunk 152.07S

Timeline

GT Decouple-SSAD Ours

(a)

48.5S         Tennis Swing 50.4S

47.89S         Tennis Swing 50.27S

117.7S                  Tennis Swing 119.7S

47.24S        Tennis Swing 50.87S

117.30S                     Tennis Swing 120.04S

117.10S              Tennis Swing 119.17S

Timeline

GT Decouple-SSAD Ours

(b)

Fig. 5. Qualitative visualization of TC-SSAD model predictive action instances. (a) Detection
results after fusion under UCF101 pre-trained Two-stream features; (b) Detection results after
fusion under Kinetics pre-trained Two-stream features, where we use Two-Stream i3D network
[18].
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4.5 Comparison with State-of-the-Art Methods

The performance comparison between TC-SSAD and current mainstream methods on
ActivityNet-1.3 dataset [21] is shown in Table 3. It is not difficult to find that TC-SSAD
does not perform well on ActivityNet-1.3 dataset.

Table 3. Comparison of mAP under different IoU thresholds with state-of-the-art methods in
ActivityNet-1.3 dataset.

Methods mAP(%)@IoU

0.5 0.75 0.95 Average

Singh et al. [22] 26.01 15.22 2.61 14.62

CDC [12] 45.30 26.00 0.20 23.80

TAG-D [9] 39.12 23.48 5.49 23.98

BSN [11] 52.50 33.53 8.85 33.72

GTAN [23] 52.61 34.14 8.91 34.31

TC-SSAD 33.61 20.71 2.32 20.42

The first reason is that the action time span of ActivityNet-1.3 dataset changes too
much. Some action instances almost occupy the whole video time, while some action
instances only take less than 1 s. Using the anchor of preset scale can not capture
the actions with too many time spans; Second, due to large scale of ActicityNet-1.3
dataset, we directly use the two-stream feature provided by [11] instead of the sliding
window method in Decouple-SSAD for feature extraction. The length of all video fea-
ture sequences provided is 100. After multi-layer backbone unit, the length of feature
sequence is gradually shortened. Therefore, the receptive field of each time sequence
position of the feature sequence output by the deep network layer corresponding to the
original video will be too large, resulting in a significant decrease in the sensitivity to
some short-term actions, especially for the case of original video with a long time.

For THUMOS14 dataset, Table 4 lists the mAP values of two-stage and single-stage
methods under different IoU thresholds. In terms of mAP value, our method is superior
to most mainstream temporal action detection methods on THUMOS14 dataset.

Table 4. Comparison of mAP under different IoU thresholds with state-of-the-art methods in
THUMOS14 dataset.

Two-stage action detection

Methods mAP(%)@IoU

0.1 0.2 0.3 0.4 0.5

SCNN [6] 47.7 43.5 36.3 28.7 19.0

SST [24] – – 37.8 – 23.0

(continued)
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Table 4. (continued)

Two-stage action detection

Methods mAP(%)@IoU

0.1 0.2 0.3 0.4 0.5

CDC [12] – – 40.1 29.4 23.3

TURN [8] 54.0 50.9 44.1 34.9 25.6

R-C3D [14] 54.5 51.5 44.8 35.6 28.9

SSN [10] 66.0 59.4 51.9 41.0 29.8

BSN [11] – – 53.5 45.0 36.9

TAL-Net [3] 59.8 57.1 53.2 48.5 42.8

P-GCN [25] 69.5 67.8 63.6 57.8 49.1

Single-stage action detection

SMS [26] 51.0 45.2 36.5 27.8 17.8

SSAD [16] 50.1 47.8 43.0 35.0 24.6

SS-TAD [17] -– – 45.7 – 29.2

GTAN [23] 69.1 63.7 57.8 47.2 38.8

Decouple-SSAD [5] 66.4 65.1 60.9 53.4 43.7

TC-SSAD 69.1 67.0 63.0 55.0 44.3

5 Conclusion

In this paper, we propose a single-stage temporal action detection network TC-SSAD.
By cascading the Timeception layer and super-event module, and the network can better
adapt to the diversity of action time span in the video and effectively use the temporal
structure and context information of the whole input video. The experimental results
show that the mAP of TC-SSAD in THUMOS14 datasets is 44.3%, which is 2.4%
higher than Decouple-SSAD network. In ActivityNet-1.3 dataset, the average mAP is
20.4%, better than the Decouple-SSAD network 0.61%.

However, the current research is still far from practical applications. In future work,
we should consider how to improve the detection accuracy of these difficult action
categories, how to build a lightweight end-to-end network and combine it with other
video tasks such as video description.
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