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Abstract. Fine-grained visual categorization (FGVC) that aims to rec-
ognize objects from subcategories with very subtle differences remains a
challenging task due to the large intra-class and small inter-class vari-
ation caused by, e.g., deformation, occlusion, illumination, background
clutter, etc. A great deal of recent work tackles this problem by forc-
ing the network to focus on partial discriminable features using atten-
tion mechanisms or part-based methods. However, these methods neglect
the point that the network may learn to discriminate objects from
identity-unrelated features, for instance, when backgrounds are discrim-
inable in training samples, degrading the network’s generalization abil-
ity. In this paper, for the first time, we use disentangled representation
learning to disentangle the fine-grained visual feature into two parts:
the identity-related feature and the identity-unrelated feature. Only the
identity-related feature is used for the final classification. Since identity-
unrelated information is neglected in classification, intra-class variation is
reduced while inter-class variation is amplified through the disentangle-
ment, improving the classification performance as a result. Experimental
results on three standard fine-grained visual categorization datasets, i.e.,
CUB-200-2011 (CUB), Stanford Cars (CAR) and FGVC-Aircraft (AIR),
demonstrate the effectiveness of our method and show that we achieve
state-of-the-art performance on the benchmarks.

Keywords: Fine-grained visual categorization · Disentangled
representation learning · Adversarial learning

1 Introduction

The tasks of fine-grained visual categorization (FGVC) are to classify object
categories that are similar in appearance and subtle in differences, e.g., bird
species [19], car models [8], aircraft [12] and retail commodity [20], etc. Such
tasks are more challenging than generic object classification. For one thing, true
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Fig. 1. Feature comparison between the proposed DNet and the Baseline. The former
uses disentangle representation learning to get disentangled identity-related features
for classification, whereas the latter does not. X and X ′ are of the same class label but
Y is a different class. The heat maps show the absolute differences between the feature
pairs while dinter and dintra denote the Euclidian distances between the feature pairs.
dintra
dinter

represents the ratio of inter-class distance to intra-class distance. Note that the
ratio of inter-class distance to intra-class distance of the DNet is significantly larger
than that of the Baseline.

discriminative information is much less due to the subtlety of inter-class dif-
ferences. For another, annotated training data is very deficient due to the dif-
ficulties of data collection. Benefiting from the progress of deep learning, the
recognition performance of FGVC has been significantly improved in the past
years [2,5,6,11]. A great deal of recent work tackles this problem by forcing the
network to focus on partial discriminative features using attention mechanisms
or part-based methods. For instance, Fu et al. [4] proposed a reinforced atten-
tion proposal network to learn discriminative region attention and region-based
feature representation at multiple scales. Sun et al. [17] proposed an attention-
based convolutional neural network that first learns multiple attention region
features of each input image through the one-squeeze multi-excitation (OSME)
module and then applies a multi-attention multi-class constraint in a metric
learning framework. Zheng et al. [26] proposed a part learning approach by
using a channel grouping network to generate multiple parts by clustering and
then classified these parts features to predict the categories of input images.
To avoid costly annotations of parts or key areas for training some researchers
used weakly supervised methods or tried to explicitly constraint the model to
locate discriminative regions. For instance, Peng et al. [15] proposed the object
part attention model (OPAM) for weakly supervised fine-grained image classifi-
cation, in which part-level attention is exploited to select discriminative parts of
objects and an object spatial constraint is used to ensure selected parts highly
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representative. Yang et al. [23] proposed a self-supervision mechanism to local-
ize informative regions without the need for part annotations. Chen et al. [2]
proposed a destruction and construction learning method to learn discrimina-
tive regions and features by first partitioning the input image into local regions,
then shuffling them by a region confusion mechanism, and finally restoring the
original spatial layout of local regions through a region alignment network.

All of the methods just mentioned intend to learn a model which is able
to locate the discriminative information for fine-grained visual categorization,
and either explicitly or implicitly guide the model with information such as part
annotations, part-based constraints, and attention mechanisms. However, these
methods neglect the point that the network may learn to discriminate objects
from identity-unrelated features, for instance, when backgrounds are discrimina-
tive in training samples, degrading the network’s generalization ability. In this
paper, for the first time, we use disentangled representation learning to disen-
tangle the fine-grained visual feature into two parts: the identity-related feature
and the identity-unrelated feature. Only the identity-related feature is used for
the final classification. Since the identity-unrelated information is neglected in
classification, intra-class variation is reduced while inter-class variation is ampli-
fied through the disentanglement, improving the classification performance as a
result. We visualize the pair-wise absolute differences of the features for classi-
fication of three images X, X ′ and Y , as shown in Fig. 1. X and X ′ are of the
same class label which is different from the label of Y . Obviously, regarding our
DNet, the identity-related features of X and X ′ are visually more similar than
those of X and Y . And, quantitatively, the ratio of inter-class distance to intra-
class distance of the DNet is significantly larger than that of the Baseline as well
in these examples. It suggests the effectiveness of disentangled representation
learning in reducing intra-class variation while amplifying inter-class variation
for fine-grained visual categorization.

The contributions of this paper can be summarized as follows,

– We propose for the first time to use disentangled representation learning for
fine-grained visual categorization, and we propose a disentanglement network
(DNet) that combines two strategies for training.

– We evaluate the proposed method on three benchmarks for fine-grained visual
categorization. Experimental results demonstrate the effectiveness of the pro-
posed method and show that the proposed DNet achieves state-of-the-art
performance.

The remainder of this paper is organized as follows: We review the related
work in Sect. 2. In Sect. 3, we will elaborate on our methods. Experimental results
are presented and analyzed in Sect. 4, and the paper is finally concluded in Sect. 5

2 Related Work

2.1 Fine-Grained Visual Categorization

There have been a variety of methods designed to distinguish fine-grained
categories. Strong supervised fine-grained classification uses additional manual
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annotation information such as bounding box or part annotation. It can reduce
the clutter of background and improve the accuracy of classification. And it
has certain interpretability. The frameworks of early works [1,24] are similar to
detection, which select regions and classify the pose-normalized objects. They
use bounding- box/part annotations during the training and inference phase.
Although this setting makes fine-grained classification more useful in practice,
it is very expensive to obtain annotation information and has poor universality.
Therefore, the research of fine-grained image classification is gradually replaced
by weak supervision. This paper will mainly consider the last setting, where
bounding-box/part annotations are not needed either at the training or infer-
ence phase.

In order to learn without fine-grained annotations, Xiao et al. [22] proposed
a two-level attention algorithm, which uses the selective search algorithm [18]
to detect and extract the foreground image from the original image to reduce
the interference of the background and get the candidate region with local dis-
crimination. Lin et al. [10] proposed the Bilinear CNN model, which used high-
order images to capture the relationship between feature channels, and achieved
84.1% classification accuracy on CUB-200-2011. And Bilinear CNN has done a
lot of work towards improvement and simplification in the later related research.
Later, in order to obtain local feature information better-attention mechanism
was introduced into fine-grained image classification. Fu et al. [4] develop a
recurrent attention module to recursively learn discriminative region attention
and region-based feature representation at multiple scales in a mutually rein-
forced way. Chen et al. [2] deconstructed and re-constructed input images to
find discriminative regions and features. Zheng et al. [27] proposed a trilinear
attention sampling network to learn features from different details.Vgg-16/Vgg-
19, ResNet, DenseDet, and GoogleNet are often used as backbone networks for
fine-grained classification, among which ResNet-50 is the one most used. In this
paper, we also use ResNet-50 as the backbone to construct our DNet model.

2.2 Disentangled Representations

The disentangled representation is a kind of distributed feature representation
that could separate the latent codes into disjoint explanatory factors. It can be
used to learn not only representations that each factor corresponds to a single
interpretable factor of variation in data sets of which the interpretable latent
factors are not too many for applications such as image and video generation,
but also representations of merely coarse interpretability in data sets of which
the interpretable latent factors are too many or too hard to be correctly sepa-
rated for applications such as image recognition and classification. There are two
popular strategies in learning disentangled representations for image recognition
and classification. One strategy is to use a pair of images to guide the repre-
sentation learning from a generative perspective. It requires that the generated
image decoded from a swapped representation, which is obtained by swapping
the identity-unrelated factors of the two disentangled representations, should
be close to the input image with the same identity-unrelated factors so that
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the identity-related factors are an invariant representation for recognition and
classification. The other strategy is to use a single image to guide the representa-
tion learning from a discriminative perspective, in which methods of adversarial
learning are usually used to squeeze out identity-unrelated factors from the latent
codes. For instance, Zhang et al. [25] use an encoder-decoder network to disen-
tangle the appearance feature and gait feature of the human body in the walking
videos. Gait features are extracted by a similarity loss between two videos from
the same person. DrNet [3] disentangles content and pose vectors with a two-
encoders architecture, which removes content information in the pose vector by
generative adversarial training. Peng et al. [14] proposes a pose independent
feature representation method to find a rich embedding layer to encode identity-
related features and identity-unrelated features. A new feature reconstruction
metric is proposed to learn how to disentangle the features.

However, the first strategy does not work well in the case where the identity-
unrelated factors are too complicated to encode. In especially the fine-grained
birds’ categorization concerted here, the backgrounds of a pair of images could
be so different that the identity-unrelated factors of the two images may not
even intersect semantically. So it is very hard to encode the identity-unrelated
factors by which a swapped representation can be decoded validly. Therefore, in
this paper, we adopt the first strategy to learn disentangling feature represen-
tation and decompose the depth feature into two parts: identity-related feature
and identity-unrelated feature. They are then decoded under the constraints of
minimizing the reconstruction error. And the Euclidian distance between the
identity-related features of the image pair is minimized as usual to learn an
invariant representation for classification. Since the swapping strick is abandoned
in the adjusted first strategy, the identity-unrelated factors in the disentangled
representations are learned with very weak constraints. To make up this, we use
the second strategy to purposefully guide the learning of the identity-unrelated
factors in an adversarial manner.

3 Method

In this section, we propose a disentanglement network (DNet) for fine-grained
visual categorization, as shown in Fig. 2. It combines two strategies of dis-
entangled representation learning to disentangle identity-related and identity-
unrelated components in the feature obtained by ResNet-50. Our DNet consists
of a backbone network, two encoders E1 and E2, two classifiers Cnoid and Cid,
and one decoder D, in which two subnetworks could be identified, i.e., the single
sample adversarial learning subnetwork and the paired samples disentanglement
subnetwork, as shown in Fig. 3.

The former aims to train the encoder E1 using adversarial learning with a
single sample so that it outputs identity-unrelated feature only, corresponding to
the first strategy of disentangled representation learning mentioned in Sect. 2.2,
while the latter aims to jointly train both the encoders E1 and E2, the decoder
D and the classifier Cid using a pair of samples of the same categorical label,
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Fig. 2. Overview of the proposed DNet and the Baseline model. Note that the back-
bones of the two models are both ResNet-50. Also note that the disentangled repre-
sentation learning is used in our DNet but not used in the Baseline.

corresponding to the second strategy of disentangled representation learning.
Note that during inference time, only the backbone, the encoder E2, and the
classifier Cid are needed. Our DNet is trained in two stages sequentially, which
will be discussed in detail in the following.

3.1 The Single-Sample Adversarial Learning Subnetwork
(SSALNet)

This subnetwork will be trained first. Given a sample X, let’s denote by I =
B(X) the feature map obtained by compositing the ResNet-50 network and the
average pooling layer. The encoder E1 and the classifier Cncid are trained with
adversarial learning by alternately performing the following two steps. In the
first step, the encoder E1 is fixed, the classifier Cncid is trained to minimize the
following cross-entropy loss:

Ladv1 = −
Nid∑

j=1

p[j] log(softmax(Cncid(fncid))[j]), (1)

where Nid is the number of classes, p is the one-hot label corresponding to the
input X, p[j] denotes the jth entry of p, fncid = E1(I) represents the output
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Fig. 3. Overview of the two subnetworks of the proposed DNet. (a) and (b) show,
respectively, the single-sample adversarial learning subnetwork and the paired-samples
disentanglement subnetwork.

codes of the encoder E1 with I as input, softmax(·) indicates the softmax func-
tion. In the second step, we update the encoder E1 with the classifier Cncid being
fixed. The way to ensure that the feature fncid has lost all information about
identity is that it produces the same prediction for all classes after being sent
into the classifier Cncid [28]. One way to impose this constraint is to assign the
probability of each id label to be 1

Nid
in the softmax cross-entropy loss. The

problem of this loss is that it would still backward gradient for updating param-
eters even if it reaches the minimum, so the Euclidean distance is used instead
in [28], which is also utilized here. Thus, with fixed Cncid, E1 is trained with the
following loss:

Ladv2 =
Nid∑

j=1

‖softmax(Cncid(fncid))[j] − 1
Nid

‖22. (2)

3.2 The Paired-Samples Disentanglement Subnetwork (PSDNet)

If the SSALNet is well trained, the encoder E1 tends to output identity-unrelated
features. Then, given two samples X and X ′ of the same class label, the PSDNet
is trained to learn the final disentangled representation and the classifier Ccid for
fine-grained visual categorization under four losses, i.e., the Ladv2 loss, the recon-
struction loss, the classification loss and the identity similarity loss. Hopefully,
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under the constraint of the Ladv2 loss, E1 should repel identity-related informa-
tion, under the constraint of the reconstruction loss the features fcid outputted
by the encoder E2 should be complementary to fncid, hence fcid are basically
identity-related; under the constraint of the identity similarity loss, fcid and f ′

cid

should be similar and therefore E2 are supposed to be invariant to identity-
unrelated changes of input images; under the constraint of the classification loss,
the E2 should produce discriminative feature and Ccid should be discriminative.
The Ladv2 loss has been defined in Sect. 3.1, the rest three losses are described
as follows.

Reconstruction Loss. In PSDNet, the feature I is first disentangled by the
encoders E1 and E2 separately into fncid and fcid, which are then concatenated
and decoded by the decoder D to get a reconstructed feature Ĩ. The recon-
struction loss is to punish the differences between Ĩ and I, which is defined as
follow,

Lrcons = ‖Ĩ − I‖22 = ‖D({fncid, fcid}) − I‖22, (3)

where {fncid, fcid} denotes the concatenation of fncid and fcid.

Classification Loss. Only the identity-related feature fcid is used for classifi-
cation. The classification loss is just the cross-entropy loss as usually defined,
i.e.,

Lcls = −
Nid∑

j=1

p[j] log(softmax(Ccid(fcid))[j]). (4)

Identity Similarity Loss. Since the input images X and X ′ are of the same
class label, ideally the two identity-related features fcid and f ′

cid corresponding
to X and X ′, respectively, should be identical for the purpose of classification.
Note that the backbone is shared by X and X ′. So the identity similarity loss is
used to punish the differences between fcid and f ′

cid, which is defined by

LIdsim = ‖fcid − f ′
cid‖22. (5)

The overall loss LPSDNet for training the PSDNet is:

LPSDNet = αLadv2 + βLrcons + γLcls + θLIdsim (6)

where α, β, γ and θ are coefficients to balance these losses.

4 Experiments

We evaluate the performance of our proposed DNet on three standard fine-
grained object recognition datasets: CUB-200-2011 (CUB) [19], Stanford Cars
(CAR) [8] and FGVC-Aircraft (AIR) [12]. We do not use any bounding box/part
annotations in all our experiments. The category label of the image is the only
annotation used for training.
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4.1 Implementation Details

The input images are resized to a fixed size of 512-512 and randomly cropped
into 448-448. Random rotation and random horizontal flip are applied for data
augmentation. The average pooling layer connected to the backbone ResNet
maps an output of the backbone to a feature of size 2048 × 1 × 1. The encoders
E1, E2 both consist of 1024 convolution kernels of size 1×1. The classifiers Cncid

and Ccid are both a fully connected layer that maps a 1024 dimensional vector
to a Nid dimensional one. The decoder D consists of 2048 convolution kernels
of size 1 × 1. fncid and fcid are feature vectors of dimensions 1024. In addition,
in view of that the bird images in the CUB-200-2011 dataset have very large
variations in birds’ posture, age, shooting angle and etc., we manually annotate
these images into two classes, i.e., the normal and the extremal classes. The
former are images of normal birds’ posture, age, shooting angle and etc. while
the latter corresponds to extremal cases. In the training phase, X ′ is selected
from those normal images only in this dataset.

Table 1. Comparison of the proposed DNet with state-of-the-art methods on CUB-
200-2011 (CUB) [19], Stanford Cars (CAR) [8] and FGVC-Aircraft (AIR) [12]. The best
results are in bold. Note that our DNet outperforms all of the competing methods.

Method Accuracy (%)

CUB-200-2011 Stanford Cars FGVC-Aircraft

M-CNN (+BBox) (PR, 2018) [21] 84.2% - -

HS-net (+BBox) (CVPR, 2017) [9] 87.5% - -

lB-CNN (CVPR, 2017) [7] 84.2% 90.9% 87.3%

MA-CNN (ICCV, 2017) [26] 86.5% 92.8% 89.9%

NTS-net (ECCV, 2018) [23] 87.5% 93.9% 91.4%

DCL (CVPR, 2019) [2] 87.8% 94.5% 93.0%

TASN (CVPR, 2019) [27] 87.9% 93.8% -

Bi-modal PMA (IEEE TIP, 2020) [16] 87.5% 93.1% 90.8%

Cross-X (CVPR, 2020) [11] 87.7% 94.6% 92.6%

CIN (AAAI, 2020) [5] 88.1% 94.1% 92.6%

ACNet (CVPR, 2020) [6] 88.1% 94.6% 92.4%

Baseline 84.0% 92.4% 89.7%

DNet 88.3% 95.0% 92.7%

Baseline and DNet are both trained for 200 epochs to obtain stable accura-
cies, and learning rates decay by a factor of 10 for every 40 epochs. We set α=1,
γ = 1, θ = 10 for all experiments reported in this paper. It is worth mentioning
that we use dynamic adjustment to train the reconstruction loss. From epoch 1
to 60, β is set to 1 and from epoch 60 to 200 it is set to 0.1.
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4.2 Performance Comparison

The results on CUB-200-2011, Stanford Cars, and FGVC-Aircraft are presented
in Table 1. Considering that some of the compared methods use image-level
labels or bounding box annotations, the information of extra annotations is
also presented in parentheses for direct comparisons. As can be seen, our DNet
significantly outperforms the Baseline on the three benchmarks, having gains
of 4.3%, 2.6% and 3.0%, respectively, on CUB-200-2011, Stanford Cars, and
FGVC-Aircraft, justifying the effectiveness of the proposed method. Moreover,
DNet surpasses state-of-the-art methods on CUB-200-2011 and Stanford Cars
and is also very competitive on FGVC-Aircraft. Considering the simple struc-
tures of the encoders and decoder used in DNet, it suggests that disentangled
representation learning is promising in improving the performance of fine-grained
visual categorization.

Fig. 4. Ratios of average inter-class distance to average intra-class distance of Our
DNet and the Baseline model on CUB-200-2011 test data, computed in the one-vs-rest
manner.

4.3 Ablation Study

We conduct ablation studies on CUB-200-2011 dataset to validate that the pro-
posed DNet is effective in reducing inter-class variation meanwhile amplifying
intra-class variation. We evaluate inter-class and intra-class distances of feature
vectors of Baseline and DNet on the test data of CUB-200-2011. Since the num-
ber of inter-class distances is a big combinatorial number for CUB-200-2011
which has 200 categories, it is not suitable to use class distance matrices for
evaluation. In view of that a multi-class classification can be splitted into multi-
ple binary classification problems using the one-vs-rest method [13], we use this
method to reduce the large amount of inter-class distances into 200 average inter-
class distances, which is equal to the number of average intra-class distances. In
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doing this, we obtain 200 ratios of average inter-class distance to average intra-
class distance for each model. By plotting these ratios, we can visually compare
different models’ performance in reducing inter-class variation meanwhile ampli-
fying intra-class variation. Figure 4 shows the 200 ratios of average inter-class
distance to average intra-class distance of the Baseline and our DNet, respec-
tively. The average ratio of each model, specifically 2.07 and 1.35, is plotted as
a dash line in corresponding color. As can be seen, our DNet is significantly
better than the Baseline, justifying the effectiveness of the proposed method in
reducing inter-class variation meanwhile amplifying intra-class variation.

5 Conclusion

We proposed the network DNet that uses disentangled representation learning
to extract feature representation for FGVC. As far as we know, this is the first
time to utilize feature disentanglement to solve the tasks of FGVC. In view of the
difficulties in disentangling features of images with complicated backgrounds, we
combined two strategies to train the DNet. Experimental results show that the
proposed method achieves state-of-the-art performance. Considering the simple
structures of the encoders and decoder used in DNet, we believe that disentan-
gled representation learning is promising for FGVC.
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