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Abstract. Object detection in remote sensing images is a typical computer vision
application, which has broad requirements in practice. Recently, attention mech-
anisms have been widely utilized in a diverse range of visual tasks such as object
detection and semantic segmentation. Aimed at the characteristics of remote sens-
ing objects such as rotation variations and inter-class similarity, a question we ask
is, what kind of attention mechanism do we really need? In this article, we pro-
pose a novel attention refinement one-stage anchor-free object detector (AROA)
that leverages attention mechanisms to refine the performance of remote sensing
object detection in a one-stage anchor-free network framework. Specifically, we
first design an asymmetric spatial self-attention (AS2A) mechanism to capture
rich long-range spatial contexts and eliminate the rotate distortion. Then, to solve
the issue of inter-class similarity and boost the multiclass identification capabil-
ity, we propose a channel attention mechanism, named chain-connected chan-
nel attention (C3A), which connects the adjacent attention blocks like a chain
and dramatically mines the channel relationships. In addition, we also introduce
an IoU-wise module (IM) to strengthen the correlation between localization and
classification branches and filter out the detected boxes with low positioning qual-
ity. Extensive experimental results on the DOTA and NWPU VHR-10 datasets
demonstrate the effectiveness of the proposed AROA.

Keywords: Object detection · Remote sensing images · Attention
mechanisms · Anchor-free · One-stage

1 Introduction

With the fast-paced development of unmanned aerial vehicles (UAVs) and remote sens-
ing technology, remote sensing image analysis has been increasingly applied in fields
such as land surveying, environmental monitoring, and emergency relief. Object detec-
tion in remote sensing images is regarded as a high-level computer vision task which is
purposed to pinpoint the targets in a remote sensing image. Due to the characteristics
of remote sensing targets such as complex backgrounds, sparse texture, multiple scales,
and variations of orientations, remote sensing object detection remains a challenging
and significant research issue.
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In recent years, due to outstanding learning ability, the most advanced detection
models have been developed by deep convolutional neural networks (DCNNs). Two-
stage and one-stage are two basic research paradigms for remote sensing object detec-
tion. Two-stage detectors [1,2] resolve the task of object detection in two steps. The
first step is to generate numerous region proposals as candidate regions of the objects.
The second step is to extract the features of each region proposal from the backbone
network and feed the features into the classifier and regressor for classification and
position fine adjustment. Despite the two-stage detectors being effective and accurate,
the computational cost is fairly high because of the complex traversal process of the
region proposals. Compared with two-stage detectors, one-stage detectors [3–6] directly
predict the classification and localization in a simple pipeline, which is more computa-
tionally efficient. Nevertheless, anchor-based one-stage detectors that rely on anchors
mechanism would result in complicated computations related to anchor boxes. There-
fore, research on one-stage anchor-free detectors that emancipate the model from mas-
sive computations on anchors has drawn much attention in recent years. To the best
of our knowledge, many scholars have begun to design one-stage anchor-free detectors
[7–17] used in remote sensing images. For instance, X-LineNet [7] detected the ori-
ented aircraft in remote sensing images by predicting a pair of middle lines segments
inside each bounding box. Combined with CornerNet [5] and CenterNet [18], Chen et
al. [8] utilized an end-to-end fully convolutional network (FCN) to identity the targets
according to the predicted corners, center, and angle of the ship. Shi et al. [17] trans-
formed the vehicle detection task into the multitask learning issue of center keypoint
and morphological sizes. These methods illustrated significant advantages for applying
one-stage anchor-free detectors to extract remote sensing targets. Nevertheless, due to
the cluttered arrangement, rotation variations, and inter-class similarity, conventional
one-stage anchor-free detectors cannot be applicable to remote sensing object detection
task directly.

Similar to the selective mechanism of human visual attention system, the attention
in computer vision attends to the discriminative and valuable feature representation and
restrain the information useless. Concretely, non-local neural network [19] (NLNN) is
the most classical mechanism of spatial self-attention, which can capture long-range
spatial contexts in order to obtain rich semantic information. Some works have made
several attempts to incorporate NLNN in remote sensing object detection task. Li et al.
[10] designed a cross-layer attention to obtain the non-local correlation between small
objects. Wang et al. [11] inserted the NLNN block into the feature pyramid network
to provide the richer spatial association information. However, the above-mentioned
NLNN attention has serious rotate distortion, leading to performance degradation for
multi-orientation remote sensing objects. Therefore, inspired by the asymmetric convo-
lution, we proposed a novel asymmetric spatial self-attention (AS2A) which strength-
ens the input of the NLNN with a 3 × 3 square convolution and two asymmetric central
skeleton parts of the square convolution, i.e., 1 × 3 convolution and 3 × 1 convolu-
tion. AS2A can be exploited to capture rich long-range spatial contexts and enhance
the rotational robustness. Beyond spatial attention, squeeze and excitation network [20]
(SENet), which can be served as the pioneer of channel attention for classification task,
adaptively assign the attention weights of different channels. Wu et al. [12] made use
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Fig. 1. The architecture of the proposed AROA, where C3, C4 and C5 represent the feature maps
of the backbone network. P3 to P7 and A3 to A7 denote the feature levels of feature pyramid
network (FPN) used for subsequent attention refinement and regression head, respectively. The
shared regression head consists of three branches: classification, localization, and IoU score pre-
diction, respectively. W, H, and C indicate the height, weight, and channel of the feature map,
respectively.

of the SENet to enhance the small target capture capability. Zhang et al. [13] proposed
a selective concatenation module to fuse the low- and high-level features by the SENet
attention mechanism. However, as far as we know, these methods only integrate a single
SE block into the network, which lacks of the adequate representation ability to identify
different categories of targets with similar appearance. To solve this problem, we design
a chain-connected channel attention (C3A) to connect the multiple adjacent SE blocks
for learning the deep channel relationships and discriminating the multiclass remote
sensing objects with inter-class similarity. In addition, to filter out the low-quality detec-
tion boxes in densely arranged remote sensing objects, we propose an IoU-wise module
(IM) to predict the Intersection-over-Union (IoU) for each detected box and the final
bounding box confidence is set as the harmonic mean of the predicted IoU score and
classification score. This can dramatically pull down the box probability as long as
the localization or classification score has a rather small probability, so as to remove
the low-quality bounding box. The experimental results have shown that the proposed
attention mechanisms and IoU-wise module effectively improve the multiclass object
detection performance.

2 Methodology

Figure 1 illustrates the architecture of our method. Based by FCOS [6], we implement a
one-stage anchor-free detector as a fundamental framework. The input remote sensing
images utilize a backbone network to extract features to FPN, and a shared regres-
sion head is used to perform the classification, localization, and IoU score prediction
tasks. In this letter, the proposed AS2A is employed behind the FPN for refining the
feature representations of each level and the C3A is merged before the final classifica-
tion branch to boost the classification performance. Moreover, IM can be formulated
as the harmonic mean of classification and localization confidences for the final non-
maximum suppression post-processing and average precise computational.
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Fig. 2. Details of the position-wise spatial attention module inspired by [19]. C, W, H denote the
channel, width, and height dimensions of the feature maps, respectively.

2.1 Asymmetric Spatial Self-attention

Observation shows that the targets in remote sensing images usually has a complicated
background and multi-orientation patterns. Therefore, to obtain the long-range valuable
context information and eliminate the rotate distortion, our method incorporates the
asymmetric convolution which enhances the central cross section of square convolution
in the input of the non-local network. As shown in Fig. 2, on the one hand, we first feed
the given pyramid feature maps P ∈ R

C×W×H into two convolution units with the ker-
nels of 1×3 and 3×1, resulting in two feature maps P3×1,P3×1 ∈R

C/r×W×H , where r is
set to 4 in our method. Next, P3×1 and P3×1 are reshaped to R

(C/r)×(W×H). In addition,
P3×1 follows the operation of transpose, which results in P3×1 ∈ R

(W×H)×(C/r). Then,
we multiply the two feature maps and perform an operation of softmax on the calculated
position-wise matrix to obtain the spatial attention maps M ∈ R

(W×H)×(W×H):

mi, j =
exp(P1×3

i ·P3×1
j )

∑W×H
i=1 exp(P1×3

i ·P3×1
j )

(1)

where mi, j assesses the effect of the ith position on the jth position. On the other hand,
we feed the pyramid feature maps P into a 3 × 3 convolution unit to obtain a feature
map P3×3 of the same shape and reshape it to R

C×(W×H). Then, we multiply P3×3

by the transpose of spatial attention map M and reshape the output feature maps F
to R

C×W×H . Finally, we obtain the final output feature maps O by an element-wise
summation operation between F and given feature map P as follows:

Oj = δFj+Pj = δ
W×H

∑
i=0

(mj,iP
3×3
i )+Pj (2)

where δ is initialized to 0 and learnable to balance the weights between the features that
traverse all positions and original features. Thus, the asymmetric spatial self-attention
mechanisms adaptively enhance the long-range correlation of the spatial contexts and
eliminate the rotate distortion, thus improving the representation capability for the sub-
sequent per-pixel classification and regression.
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Fig. 3. Diagram of the proposed C3A. In the first SE block, we use average pooling to squeeze
the feature and max-pooling in the second SE block.

2.2 Chain-Connected Channel Attention

For reducing the effect of inter-class similarity in the multiclass remote sensing objects,
it is necessary to adaptively rescale features across channels and boost the feature
representation capability for classification task. Based on SENet, we design a chain-
connected channel attention to learn the channel relationships and enhance category
discrimination. For one SE attention block, we first squeeze the given feature maps
Z ∈ R

W×H×C by a squeezer s : S = s(Z), where S ∈ R
1×1×C is the output vector and

s is the squeeze operation, e.g., average pooling and max-pooling. Then, we feed the
output S into an exciter e : E = e(S,u) = σ(conv1ρ(conv2S)), where E ∈ R

1×1×C is
the output of the excitation operation, u denotes the scaling factor of channels and is
set to 4 in our method, ρ is a ReLU function, σ is a sigmoid function, and conv1 and
conv2 indicate 1 × 1 convolution layers to rescale the channel number. Next, we can
obtain the final output feature maps U ∈ R

W×H×C of one attention block by a fuser
f :U = f (E,Z) = (E ⊗Z)⊕Z, where ⊗ represents element-wise multiplication and ⊕
denotes the element-wise summation operation. In addition, to deeply mine the chan-
nel relationships, we connect the adjacent attention blocks like a chain by a connector
c : c(αS,β Ê) = so f tmax(αS,β Ê), where Ê denotes the output vector of the exciter in
the previous attention block, α and β are learnable parameters. Finally, we can obtain
the final chain channel attention optimized output feature map Oc ∈ R

W×H×C as fol-
lows:

Oc = f (Ec,Zc) = f ((e(c(αSc,β Ê),u),Zc) (3)

where Oc, Zc, Ec, and Sc represent the feature maps and vectors used in the final atten-
tion block for the classification prediction. Figure 3 illustrates a two attention block
connected structure. In our method, we adopt a triple attention blocks-connected pat-
tern for best performance.
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2.3 IoU-Wise Module

Due to the cluttered arrangement of remote sensing targets, the bad positioning detec-
tion boxes which have not well enclosed the grounding truth will generate a larger IoU
with adjacent objects and severely hinders detection precision improvement. Therefore,
the quality of localization is also an important index affecting the remote sensing object
detection. Therefore, in this article, we propose an IoU-wise module to tackle this prob-
lem. As shown in Fig. 1, different from FCOS, we design an IoU-wise branch, in par-
allel with the localization regression branch to predict the IoU of each regressed box.
To reduce the computational complexity, the IoU-wise module is only composed of a
1×1 convolution, batch normalization, and sigmoid activation layer. The predicted IoU
score PIoU falls in the range of 0 to 1 and is trained with binary cross entropy. Finally,
we can obtain the final prediction confidence PFin for the NMS and AP computational
processes as follows:

PFin = 2/(
1

PIoU
+

1
PCls

) (4)

where PCls represents the classification score. Therefore, IM will filter out the low-
quality boxes and retain the detection boxes with high IoU score and classification
score.

3 Experiments and Result Analysis

3.1 Datesets

In this article, we conduct experiments on two remote sensing datasets: DOTA [21] and
NWPU VHR-10 [22].

DOTA. Comprised of 15 categories targets, it has 1,411 images and 188,282 instances
annotated with horizontal and oriented bounding boxes. In our experiments, only the
annotations of the horizontal bounding boxes are utilized. In addition, the validation,
test, and training images have corresponding ratios of 1/6, 1/3, and 1/2. Each image has
a size within 800 × 800 to 4,000 × 4,000 pixels.

NWPU VHR-10. These images contain 10 geospatial object classes, having 3,775 tar-
get instances. 715 RGB images and 85 sharpened color infrared images are included.
Among them, 715 RGB images were collected from Google Earth with spatial resolu-
tions ranging from 0.5 m to 2 m, while 85 pan-sharpened infrared images with a spatial
resolution of 0.08 m were collected from Vaihingen data. These object instances were
manually labelled with horizontal borders by experts.

3.2 Experimental Details

In the experiments, ResNet-100, which is initialized with the weights pretrained on
ImageNet, is used as the backbone network. We use stochastic gradient descent
(SGD) to optimize the network and set the initial learning rate to 0.001. The learn-
ing rate is reduced by a factor of 1.8 every 20k iterations. In addition, the weight
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Table 1. Comparisons on DOTA with the State-of-the-Art Detectors. We choose the threshold of
IoU which is 0.5 during calculating AP

Method Pl Bd Br Gft Sv Lv Sh Tc Bc St Sbf Ra Ha Sp He mAP FPS

SSD [3] 76.84 57.26 27.09 30.73 23.96 56.91 41.73 80.83 37.53 36.01 33.85 32.98 63.19 29.89 20.48 43.25 15.65

Faster R-CNN [1] 75.23 56.07 39.94 33.71 26.29 47.43 29.64 81.24 27.01 31.56 28.50 32.10 53.10 45.73 35.04 42.84 7.13

CornerNet [5] 87.33 66.23 34.32 52.98 65.93 72.11 74.02 88.93 72.53 74.02 41.77 55.23 50.98 54.18 24.99 61.09 1.13

FCOS [6] 88.53 68.21 34.78 58.33 65.98 74.22 76.34 88.34 74.18 76.59 44.88 57.23 52.90 57.92 23.01 62.76 16.85

P-RSDet [14] 89.02 73.65 47.33 72.03 70.58 73.71 72.76 90.82 80.12 81.32 59.45 57.87 60.79 65.21 52.59 69.82 12.78

CAD-Net [15] 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.44 60.93 62.08 67.02 62.23 69.90 6.82

RetinaNet [4] 88.92 67.67 33.55 56.83 66.11 73.28 75.24 90.87 73.95 75.07 43.77 56.72 51.05 55.86 21.46 62.02 7.34

IENet [16] 80.20 64.54 39.82 32.07 49.71 65.01 52.58 81.45 44.06 78.51 46.54 56.73 64.40 64.24 36.75 57.14 17.05

O2-DNet [17] 89.91 82.14 47.33 67.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04 15.28

SCRDet [2] 90.18 81.88 55.30 73.29 72.09 77.55 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 75.35 3.37

SAOA 88.33 82.73 56.02 71.58 72.98 77.59 78.29 88.63 83.33 86.61 65.93 63.52 76.03 78.43 61.33 75.41 15.65

The abbreviations are defined as: Pl: Plane, Bd: Baseball diamond, Br: Bridge, Gft: Ground field track, Sv: Small vehicle, Lv: Large vehicle, Sh:Ship, Tc: Tennis court, Bc:

Basketball court, St: Storage tank, Sbf: Soccer-ball field, Ra: Roundabout, Ha: Harbor, Sp: Swimming pool, and He: Helicopter.

Fig. 4. Detection results of three one-stage detectors on NWPU VHR-10.

decay and momentum are set as 0.0001 and 0.9, respectively. The experiments
are conducted in PyTorch1.1 using an NVIDIA GeForce RTX 2080 Ti 11 GB and
CPUE52603v4@2.20 GHz CPU. We randomly divide the training and testing sets of
NWPU VHR-10 according to the rate of 7:3. Additionally, we use the batch sizes of
10 for DOTA and 12 for the NWPU VHR-10 dataset. In our model, we set the vital
parameters γ = μ = 4 for best performance.

3.3 Experimental Results and Analysis

In this article, three frequently-used evaluation metrics, the average precision (AP) and
the mean average precision (mAP), are adopted to evaluate the accuracy of the detectors
in our experiments. In addition, we use a common metric, frames per second (FPS), to
measure the speed of object detection.

Comparing with State-of-the-Art Detectors. To verify the effectiveness of our
AROA, we compare it with several state-of-the-art detectors. As shown in Table 1,
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Fig. 5. Visualization of attention map of the AS2A (middle) and C3A (right).

Fig. 6. (a), (b), and (c) represent the precision-recall curves at IoU = {0.5, 0.75, 0.9} for vehicle,
bridge, and basketball court. The red, blue, and green curves represent the results of AROA,
FCOS, and RetinaNet, respectively. (Color figure online)

we compare our method with seven remote sensing detectors on DOTA. For a fair
comparison, the backbone network of all compared methods is selected as ResNet-
100 and the input image size of all methods is resized to a fixed scale (800 × 800).
We also utilize data augmentation to enlarge the datasets such as flipping, rotation,
and so on. The proposed AROA achieves 75.41% in mAP at a relatively fast speed
with 15.65 FPS, outperforming all reported anchor-based detectors (SSD, Faster R-
CNN, RetinaNet, CAD-Net, and SCRDet). It is about five as fast at almost the same
accuracy compared with SCRDet, which manifests the high accuracy and efficiency of
our method. In addition, Fig. 4 shows the detection results of FCOS, RetinaNet, and
our AROA on NWPU VHR-10. The AP values of ten class objects on the proposed
AROA are all higher than the other two one-stage detectors, which also demonstrates
the advantage of our method for remote sensing object detection. Meanwhile, we per-
form the comparison experiments on three multi-orientation, high inter-class similarity,
and low-discernibility targets (vehicle, basketball court, and bridge). Figure 6 shows
the precision-recall curves of AROA, FCOS and RetineNet. We can see that our AROA
achieves better performance than FCOS and RetinaNet. Moreover, it is remarkable that
with a stricter IoU threshold, AROA takes a larger improvement over FCOS and Reti-
naNet, which indicates that AROA can locate the objects more accurately. As shown
in Fig. 5, we present the partial attention maps of the AS2A and the C3A. We observe
that the AS2A effectively enhances the object information, especially for the orienta-
tion information. Meanwhile, the C3A improves the classification ability by generating
more discriminative feature maps.



AROA: Attention Refinement One-Stage Anchor-Free Detector 277

Fig. 7. The green, red, and yellow bounding boxes represent the true positives, false positives,
and true negatives, respectively (Color figure online)

Table 2. Ablation study of the proposed AROA on NWPU VHR-10.

Setting mAP FPS

Baseline 89.21% 17.13

Baseline + C3A 90.36% 16.98

Baseline + AS2A 90.79% 16.71

Baseline + IM 90.56% 16.89

Baseline + C3A + IM 92.91% 16.61

Baseline + C3A + AS2A 92.12% 15.83

Baseline + AS2A + IM 92.65% 16.04

AROA 93.45% 15.65

Ablation Study. We perform an ablation study to study the effects of the proposed
AS2A, C3A and IM over the NWPU VHR-10 dataset. Eight network models are trained
for the ablation study. First, Baseline: The basic network structure in FCOS does not
include the centerness branch. Next, three network models which add the components
of AS2A, C3A, and IM, respectively. Then, AROA: The full implementation of the pro-
posed AROA architecture in Fig. 1. In addition, three network models which equip with
paired components are included to verify the complementarity of the three proposed
modules. As shown in Table 2, the Baseline model can only achieve mAP of 89.21%
at 17.13 FPS. After adding AS2A, C3A and IM to the Baseline model sequentially,
the mAP is improved by 1.15%, 1.58%, and 1.35%, respectively. The same situation
occurs in three models with different paired components, which illustrates that three
improvement modules are complementary. Finally, the proposed AROA that combines
the AS2A, C3A and IM achieves a 4.24% mAP improvement compared to the Base-
line model, pushing the mAP to 93.45% with a relatively little additional computational
cost (a decrease of 1.48 FPS). As shown in Fig. 7, some targets that are not detected or
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imprecisely located with the Baseline (the first row) are accurately detected with our
AROA (the second row).

4 Conclusion

In this article, the challenge issues of complicated background, rotation variations, and
interclass similarity are identified in remote sensing object detection. Aimed at these
problems, we presents a novel attention refinement one-stage anchor-free detector. The
core components contain asymmetric spatial self-attention and chain-connected chan-
nel attention which are designed to refine spatial and channel feature expression. More-
over, an IoU-wise module is proposed to strengthen the correlation between localization
and classification for accurate object detection. Extensive experiments demonstrate the
superiority of our method for object detection in remote sensing images. In future work,
we will design more auxiliary modules to achieve the detection of oriented targets in
remote sensing images.
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