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Abstract. Aerial image object detection and recognition has attracted increasing
attention in recent years. Many excellent detectors have been proposed. How-
ever, due to the high-resolution of aerial images, these detectors are difficult to
directly apply to aerial images. In order to solve the problem of hard processing
caused by high resolution, it is generally to resize the high-resolution images into
low-resolution images or cut the high-resolution images into small image patches.
Cutting high-resolution aerial images into small image patches without overlap
may cut an object into multiple parts whichmay lose the integrity of the object and
causes one object to be detected as multiple objects. We design a new baseline
to cut high-resolution aerial images into small image patches by using super-
pixel. Firstly, we use pixel-related GMM (Gaussian mixture model) to segment
the high-resolution aerial images into superpixel images. Then we utilize super-
pixel label to cut high-resolution aerial images into low-resolution image patches
with integrity of the object. Finally, we use YOLOv5 with CSL (Circular Smooth
Label) to detect oriented objects. Our method effectively preserves the integrity
of the object and improves the AP (Average Precision) of the object detection.
This baseline can be applied not only to object detection, but also to aerial image
segmentation, classification and so on. Experiments on the UCAS-AOD dataset
show the effectiveness of the proposed method.
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1 Introduction

In recent years, with the development of deep learning, object detection has been
improved rapidly. Many object detection methods with good performance based on deep
learning have been proposed. Although these object detection methods have achieved
remarkable results in natural scene images, they cannot be directly applied to aerial
image object detection because of the differences between aerial images and natural
scene images. Aerial image has the characteristics of dense object, arbitrary orienta-
tion and high resolution. In order to solve the problems of dense objects and arbitrary
directions, researchers have proposed some oriented object detection methods such as
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CSL (circular smooth label) [1], BBAVectors [2] and ROI transformer [3]. Because the
resolution of remote sensing image is very high, if the detector is applied to the orig-
inal image, it will consume a lot of hardware resources, so researchers generally have
two ways to apply the detector. One is to resize high-resolution aerial image into low-
resolution image for object detection, but it cannot extract enough features resulting in
inaccurate detection. The other is to cut the aerial image into small image patches for
object detection, and then merge image patches into a high-resolution aerial image. This
may cut a whole object into multiple parts, which results in an object being detected as
multiple objects. If there is overlap areas when cutting into small image patches, it will
cause great information redundancy and resource consumption.

In this paper, we aim to find a new way to transform high-resolution image into
low-resolution image for object detection, which can preserve the integrity of the object,
retain more information, and avoid information redundancy. Superpixel will be a small
area composed of adjacent pixels with similar characteristics such as color, brightness,
texture, etc. And pixels belonging to the same object will be assigned the same super-
pixel label. Therefore, we propose a new baseline for high-resolution aerial image object
detection. Specifically, we use the pixel-related GMM (Gaussian mixture model) super-
pixel segmentation method to pre-process the high-resolution aerial image, and then
cut the high-resolution aerial image into low-resolution image patches according to the
result of superpixel segmentation. When cutting, we keep all the pixels of one object
in one superpixel at the edge area to ensure the integrity of the object, and there is no
overlapping area between image patches. Finally, we take the image patches as input for
object detection. YOLOv5 object detection algorithm has good performance in speed
and detection performance. But because the aerial image object has arbitrary orienta-
tion, and YOLOv5 can only detect the object in the horizontal orientation, we cannot
directly use YOLOv5 to detect objects. Therefore, we adopt the YOLOv5 detector com-
bined with CSL as object detector, which introduces the angle variable to control the
orientation in the representation of the bounding box of the object.

The rest of this paper is structured as follows: Sect. 2 introduces the related work
about our method including the superpixel segmentation and oriented object detection.
In Sect. 3, we briefly describe the proposed method. The results of the proposed method
are provided in Sect. 4. At last, we conclude the whole work in Sect. 5.

2 Related Work

2.1 Superpixel Segmentation

The concept of superpixel is an image segmentation technology proposed and developed
by Ren andMalik [9]. It refers to irregular pixel blocks with a certain visual significance
composed of adjacent pixels with similar texture, color, brightness and other character-
istics. Superpixel uses the similarity between pixels to group pixels, and uses a small
number of superpixels instead of a large number of pixels to express image features,
and it has been widely used in image segmentation, pose estimation, object tracking,
object recognition and other computer vision applications. SLIC [10] converts the col-
orful image into a 5-dimensional feature vector of the color and XY coordinates in the
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CIELAB color space, and then constructs a distance metric for the 5-dimensional fea-
ture vector, and performs local clustering of image pixels to generate superpixels. Zhihua
Ban [11] proposed a pixel-related Gaussian mixture model (GMM) to segment images
into superpixels. GMM is a weighted sum of Gaussian functions. Each function corre-
sponds to a superpixel to set the label for pixels into superpixels. SpixelFCN [12] uses an
encoding-decoding full convolutional network to implement an end-to-end superpixel
prediction network.

2.2 Oriented Object Detection

The difference between the oriented object detector and the horizontal object detector
is that the oriented object detector relies on oriented bounding boxes (OBB), and the
horizontal object detector uses horizontal bounding boxes (HBB). The horizontal object
detector is mainly classified into two-stage and single-stage object detectors. RCNN
[4] is a typical two-stage object detection network. It first uses convolutional neural
network to extract features, then uses region proposal network (RPN) to get the propos-
als and performs ROIpool on the region of interest (ROI), and finally classifies objects
and regresses the bounding box of the proposal. Typical single-stage object detectors
are YOLO [5], RetinaNet [6], CenterNet [7], etc. Compared with the two-stage object
detector, the single-stage object detector directly predicts the bounding box of the object,
and its speed is faster than the two-stage detector. Most of the current oriented object
detector is extended from the horizontal object detector, and the angle variable is intro-
duced to control the orientation in the representation of the object’s bounding box. For
example, R2CNN [8] uses a two-stage Faster RCNN architecture, first obtains the hori-
zontal bounding box (HBB) proposals through the RPN network, then uses multi-scale
pooling (ROIPooling) for each proposal, and finally predicts the orientation and obtains
the oriented object bounding box (OBB). Based on RetinaNet, CSL [1] introduces a clas-
sification method to predict the orientation of the object to obtain an oriented bounding
box (OBB) when regressing the bounding box. BBAVectors uses a U-shaped network
based on CenterNet to generate heatmaps and obtain the center point position of the
object, and then regress to a box boundary-aware vectors (BBAVectors) to obtain an
oriented bounding box to achieve the result of oriented object detection.

3 Method

The framework of our proposed method is shown in the Fig. 1. The method we proposed
is divided into the following steps. First, we use the GMM-based superpixel segmenta-
tion algorithm to segment the high-resolution aerial image, and then use the superpixel
segmentation results to cut the high-resolution aerial image into small image patches. In
this process, the pixels belonging to one superpixel at the edge area of the patch will be
reserved. The start position of the next image patch is the end position of the superpixel
at the edge of the previous image patch. In this way, cutting the high-resolution aerial
image into small image patches not only avoid one object being cut into multiply parts,
and there is no redundant information between patches. Then we use YOLOv5 [13]
combined with CSL bounding representation to detect oriented objects.
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Fig. 1. Framework of our proposed method

3.1 Cutting Aerial Image into Image Patches Based on Superpixel

Superpixel segmentation aggregates some pixels with similar characteristics to form a
larger “element” that is more representative. And this new element will serve as the basic
unit of the latter image processing. The pixels in the same superpixel generally belong
to the same object, which can effectively separate the object from the background, and
has strong integrity.

SLIC converts the colorful image into a 5-dimensional feature vector which contains
color and XY coordinates in the CIELAB color space, and then constructs a distance
metric for the 5-dimensional feature vector, and performs local clustering of image pixels
to generate superpixels. Assuming that the image has N pixels and is to be segmented
into K superpixels, then the size of each superpixel is N/K. The distance between super
pixels is S = √

N/K (the side length of super pixels under regular conditions). The
specific steps are as follows: First, it distributes the centers of K superpixels to the pixel
points of the image and fine-tunes the position of the seed. The center of the superpixel
is moved to the point with the smallest gradient among the 9 points in the 3× 3 range, to
avoid superpixels falling on noise or boundaries. Then, two matrix LABEL and DIS are
initialized, which are respectively used to store the superpixel label each pixel belonging
to and the distance between the pixel to the center of the superpixel it belongs to. And the
distance between each pixel within 2S and the center of the superpixel is calculated. If
the distance from the point to the center of the superpixel x is less than the distance from
the point to the center of the superpixel it originally belongs to, then the point belongs to
the superpixel x. Furthermore, the DISmatrix and LABELmatrix are updated. Finally,
the above steps are iterated to obtain the minimum cost function, that is, the sum of the
distances from the pixel to the center of its corresponding super pixel.

The main idea of superpixel segmentation based on GMM is to use Gaussian
distribution to relate pixels. The main procedure of the algorithm is as follows: let
I represent the input image, W and H represent the width and height of the image,

(N is the number of pixels in the image), (xi, yi) represent the
position of the ith pixel, and ci represent gray value of the pixel (the color image is the
RGB value) of the ith pixel, zi = (xi, yi, ci) represent pixel i. Let vx and vy denote the
width and height of the superpixels, K is the number of super pixels. When K is known,
vx and vy can be obtained as follow.



260 J. Lin et al.

vx = vy =
⌊√

W · H
K

⌋
. (1)

When vx and vy are known, K can be obtained from the following formula:

nx =
⌊
W

vx

⌋
, ny =

⌊
H

vy

⌋
, K = nx · ny. (2)

Let θk =
{
ûk, �̂k

}
denote the parameters of the Gaussian distribution model corre-

sponding to the k-th superpixel, and Ik is used to denote the area where the kth superpixel
is distributed (this area is initially limited to an area with width of 3 vx and height of
3 vy), Where ûk represents the mean value vector and �̂k represents the covariance
matrix. Then the Gaussian distribution probability density function corresponding to a
superpixel can be expressed by

p(z, θ) = 1

(2π)
D/2

√
det(�)

exp

{
−1

2
(z − u)T�−1(z − u)

}
. (3)

where D represents the number of elements in the pixel vector z. The Ki is used to
represent the label of the pixel in the area where the kth superpixel is distributed. Let Li
denote the random variable of the superpixel label of pixel i, the pixel-related Gaussian
mixture model can be expressed by

Pi(z) =
∑

k∈Ki
Pr(Li = k)p(z; θk), ∀i ∈ V . (4)

wherePr(Li = k) represents the probability that the superpixel label of pixel i is k, which
is represented by Pi and defined as a constant, so (4) can be simplified to:

Pi(z) = Pi

∑
k∈Ki

P(z; θk), ∀i ∈ V . (5)

Whenparameter set θk =
{
ûk, �̂k

}
is determined, the labelLi of pixel i is determined

by

Li = argk max
k∈Ki

p(zi; θk)

�k∈Kip(zi; θk)
(6)

If labels Li of each pixel i is determined. The parameter set θ can be obtained by
maximum likelihood estimation:

f (θ) =
∑

i∈V lnpi(zi)

=
∑

i∈V lnPi+
∑

i∈V ln
∑

k∈Ki
p(zi; θk). (7)

where
∑

i∈v lnPi is a constant, and maximizing f (θ) is equivalent to maximizing
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L(θ) =
∑
i∈V

ln
∑
k∈Ki

p(zi; θk) =
∑
i∈V

ln
∑
k∈Ki

Ri,k
p(zi; θk)

Ri,k

≥
∑

i∈V
∑

k∈Ki
Ri,k ln

p(zi; θk)

Ri,k
(8)

After initializing parameter set θ, R and θ are iterative updated using the EM algo-
rithm to obtain its best estimate. Until EM algorithm converges, the result of super pixel
segmentation is obtained.

We preprocess the high-resolution aerial image by using superpixel segmentation
method, and retain the super pixel segmentation results. Let I denote the high-resolution
aerial image, W and H represent the width and height of the origin high-resolution
aerial image. Let (xi, yi) represent the position of the ith pixel, where xi ∈ {1, 2, ...,W },
yi ∈ {1, 2, ...,H }. We use matric SP denote the superpixel label of each pixel obtained
by the superpixel segmentation algorithm. Let Li represent the superpixel label of pixel
i, as shown in the following formula:

Li = SP(xi, yi) (9)

Take the first image patch (starting from the upper left corner of the image) as an
example to illustrate our method based on the superpixel to cut high-resolution aerial
image into image patches. We initialize the width and height of the image patch asw and
h, and the starting position of each row and column of the patch is 0. We use superpixel
labels to cut the high-resolution aerial image into image patches. We use the vector flag1
to save the superpixel label of pixels (when xi = w in each row of the image), as shown
in the following formula:

flag1(i) = SP(w, i), i ∈ {1, 2, ..., h} (10)

Let i ∈ {1, 2, ..., h}, find the pixel i with the largest xi which superpixel label is
flag1(i) in the ith row, and record the value of xi in the vector flag_x, and save it in
flag_w, and record the maximum value of xi in flag_w as x_max.

We use vector flag2 to save the superpixel label of each column of the image when
yi = h, as shown in the following formula:

flag2(j) = SP(j, h), j ∈ {1, 2, ..., x_max} (11)

Let j ∈ {1, 2, ..., x_max}, find the pixel j with the largest yj whose superpixel label
is flag2(j) in the jth column, and record its yj value in the vector flag_y, and save it in
flag_h, and record the maximum value of yj in flag_y as y_max.

At this time, the width and height of image patch become x_max and y_max. And
we record the position of pixels the image patch, which should take from each row and
each column of the original high-resolution aerial image. Same as the above steps, the
row starting position of the second patch is the value stored in the flag_x vector, and
the column starting position is the value stored in flag_y. This is to avoid information
redundancy. The width and height of the image patch are initialized as w and h, and
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the second image patch can be obtained according to the above steps until all the image
patches are obtained.

The Fig. 2 is an example of using our method to cut high-resolution aerial image
into image patches, in which the resolution of the aerial image is 1280 × 659 and image
patches are taken with the width of 640 and height of 659. We only take the first patch
as example. In Fig. 2 (a), we directly cut the high-resolution aerial image into image
patches without superpixel segmentation. The two cars in the bottom right corner of the
patch are cut into two parts. And Fig. 2 (b) is the result of cutting the high-resolution
aerial image into image patches based the proposed method. We use the red dots to show
the edge positions, which is obtained using superpixel labels to expand the edges of
patch. The horizontal coordinate of each row of red dots is the value stored in the vector
flag_w, and the largest value is x_max.

Fig. 2. An example of the low-resolution patch. The result of cutting high-resolution aerial image
into image patches without superpixel is shown in (a). The result of cutting high-resolution aerial
image into image patches with surperpixel is shown in (b). (Color figure online)

3.2 Oriented Object Detection Based on YOLOv5

The object detector based on neural network generally consists of the following parts:
Input, Backbone, Neck, Prediction. Input is the input terminal, which is generally an
image or image batches. Backbone performs feature extraction on the input data. Neck
realizes the extraction of multi-scale features. Prediction uses the extracted features to
predict the location of the objects and the object category.

The network framework of YOLOv5 is shown in Fig. 3.
YOLOv5 has the advantages of fast detection and high accuracy. However, it is based

on horizontal bounding boxes (HBB). We use a combination of CSL and YOLOv5 [14]
to realize oriented object detection.
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Fig. 3. The network framework of YOLOv5

4 Experiments

4.1 Dateset

We use the UCAS_AOD [15] dataset for experiments. UCAS_AOD is annotated by the
Pattern Recognition and Intelligent System Development Laboratory of the University
of Chinese Academy of Sciences, and it contains two types of objects and background
negative samples. The resolution of aerial images ranges from 1280 × 659 to 1372 ×
972, and the number of samples is given in Table 1. For this dataset, we cut the high-
resolution aerial image into 2 image patches in the horizontal direction. All experiments
are implemented on a desktop machine equipped with an Intel(R) Core (TM) i5-8600k
CPU @ 3.60 GHz and 16.0 GB RAM.

Table 1. UCAS_AOD dataset

Plane image Plane sample Car image Car sample negative

Version1 600 3591 310 4475 492

Version2 400 3891 200 2639 408

Total 1000 7482 510 7114 910

4.2 Superpixel Segmentation Comparison Experiments

For SLIC and GMM-based superpixel segmentation algorithms, we have done com-
parative experiments, and the experimental results are shown in Fig. 4. Where, (a) is
the original aerial high-resolution image for super pixel segmentation, (b) is a partial
enlarged image of aerial image, (c) is the result image of SLIC superpixel segmentation,
(d) is a partial enlargement of the result image of SLIC superpixel segmentation, (e) is
the result of GMM-based super pixel segmentation, and (f) is a partial enlarged image
of GMM-based superpixel segmentation. It can be intuitively observed from the seg-
mentation result image and the partial enlarged image that the superpixel segmentation
based on GMM is better than SLIC in preserving the integrity of the object. In addition,
the SLIC algorithm took 15.2200 s on the image with the resolution of 1280 × 659,
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while the GMM-based superpixel segmentation only took 0.67967 s, therefore we chose
the GMM-based superpixel segmentation algorithm to pre-process the high-resolution
aerial image.

4.3 Experimental Results of Cutting High-Resolution Aerial Image

The results of the comparison between cutting the high-resolution aerial image into
image patches with superpixel and without superpixel are shown in Fig. 5. Where, (a) is
the original high resolution aerial image for cutting into image patches, (b) and (c) are
image patches obtained by cutting the high-resolution aerial image into image patches
based on superpixels, (d) and (e) are image patches obtained by cutting high-resolution
aerial image into image patches without superpixels. It can be clearly seen that when
the high-resolution aerial image is directly cut into patches, the car circled in red in the
original high-resolution image is cut into two parts, and our method avoids the car from
being cut into two parts and retains the integrity of the whole object.

Fig. 4. Superpixel segmentation comparison experiments. (a) is the original aerial high-resolution
image for super pixel segmentation, (b) is a partial enlarged image of aerial image, (c) is the result
image of SLIC super-pixel segmentation, (d) is a partial enlargement of the result image of SLIC
super-pixel segmentation, (e) is the result of GMM-based super pixel segmentation, and (f) is a
partial enlarged image of GMM-based superpixel segmentation.

4.4 Oriented Object Detection

We first cut the UCAS_AOD dataset into low-resolution image patches, and then ran-
domly divide it into a training set and a testing set at a ratio of 9:1. And then, we use
YOLOv5 network combined with CSL to realize oriented object detection. The object
detection AP (Average Precision) and mAP (mean Average Precision) of two methods
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Fig. 5. Comparison between using superpixel-based cutting high resolution aerial image into
image patches and direct cutting, (a) is the original high resolution aerial image for cutting into
image patches, (b) and (c) are image patches obtained by cutting the high-resolution aerial image
into image patches based on superpixels, (d) and (e) are image patches obtained by cutting high-
resolution aerial image into image patches without superpixels. (Color figure online)

to cut high- resolution aerial image to small image patches are shows in Table 2. As
shown in Table 2, our method improved by 0.223% in car category AP and improved by
0.071% in plane category AP compared with cutting high-resolution aerial image into
image patches without suerpixel. Our method has improved on the mAP by 0.147%.
And the oriented object detection results of cutting high- resolution into image patches
with superpixel or not are shown in Fig. 6. Figure 6 (a) is the result of detection in
patches cutting from high-resolution aerial image without superpixel and Fig. 6 (b) is
the result of detection in patches cutting from high-resolution aerial image based on
superpixel. As shown in Fig. 6 (a) and Fig. 6 (b), the detection performance at the edge
area of cutting has been improved by our method. If cutting the high-resolution aerial
image into image patches without superpixel, the objects in the edge area will be cut
into multiple parts which will not be detected in the following object detection. Cutting
high-resolution image into image patches by our method can preserve the integrity of
objects in the edge area that is helpful for the detector to detect the object correctly.

Table 2. The object detection mAP of two cutting methods

AP of CAR AP of PLANE mAP

Our method 44.137% 45.047% 44.591%

Without superpixel 43.914% 44.976% 44.444%
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Fig. 6. Comparison of object detection in patches between using superpixel-based cutting high
resolution aerial image into image patches and direct cutting, (a) are the results of object detection
in patches from cutting high-resolution aerial image into images patches directly, and (b) are the
results of object detection in patches from cutting high-resolution aerial image into images patches
based on superpixel.
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5 Conclusion

In this paper, we propose a new baseline for object detection in high-resolution aerial
image. In general, the resolution of remote sensing image is very high. Therefore, if the
detector is applied to the original image, it will consume a lot of hardware resources.
Cutting the high-resolution aerial image into image patches can be divided into two
cases. In the case of no overlapping areas between patches, the object located at the
edge area of the patches will be cut into multiple parts, causing the detector to fail to
accurately detect these objects. In the case of overlapping areas between patches, this
will lead to a lot of information redundancy and consume a lot of resources. Compared to
the previous cutting method, our proposed cutting method based on superpixel will not
cut a whole object into multiple parts and cause information redundancy, and improves
the performance of detector.
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