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Abstract. The widely deployed power transmission line expedites
developing the age of electricity. Thus, it is necessary to maintain a
power system with a great quantity of manpower and material resources,
especially for crucial equipment, such as insulator string. However, the
current main inspection method relies on artificial with the problem of
time-consuming and labor-intensive. There is a trend of utilizing deep
learning techniques on unmanned aerial vehicles (UAVs) to accomplish
the inspection task, but its development is restricted by the limitation
of energy. In this paper, we propose a semi-supervised cloud edge collab-
orative insulator string anomaly detection framework. Specifically, an
anchor-free object detector is deployed on the edge device for locat-
ing the insulator. On the cloud side, we propose a generative insulator
defect detection model based on the autoencoder (AE) with a generator-
discriminator pattern. Particularly, we introduce the variational memory
encoder-decoder architecture to model defect-free insulator data distri-
bution. Furthermore, the adversarial strategy is employed to regularize
the generated data space with input data space. In the end, the anomaly
can be detected if its data space is an outlier of training defect-free dis-
tribution. Comprehensive experiments demonstrate that our method can
effectively reduce the computational load, meanwhile archiving superior
performance, including accuracy (0.968) and recall (0.985), for defect
recognition using a standard insulator data set.
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1 Introduction

The transmission line connects power plants, substations, and users to form a
transmission grid and a distribution network, and its status greatly influences the
safety and reliable operation of the whole power system. Accordingly, the con-
dition monitoring for transmission lines has always been the focus of attention,
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especially for the main component such as the insulator string. Insulator plays a
conductor insulation and mechanical support function in the power transmission
task, yet vulnerable due to the long-term exposure in the external environment.
And a plenty of fact proof that insulator failure is the main reason causing the
electrical accidents [1]. Moreover, it is challenging to screen the status of insula-
tors, since deployed on high-voltage lines with strong currents. The traditional
manual inspection method is cumbersome and inefficient, which need to black-
out first, and then the staff members are supposed to climb to the position of
insulator for checking its condition [1]. Thus, researchers and developers make a
lot of effort on designing techniques of insulator string anomaly detection tasks.

Last few years, appreciating the maturity of Micro-Electro-Mechanical Sys-
tems (MEMS) techniques, people have witnessed unprecedented developments
of the unmanned aerial vehicles (UAVs) field [2,3]. UAVs equipped with cam-
eras can obtain a large amount of insulator image data, however, the lack of
automatic status monitoring of insulator string methods brings a heavy burden
workload of the developers. It is impractical to manually identifying defective
insulators from such an enormous data source. In this case, a series of methods
have been proposed for insulator detection and fault recognition, and they can
be generally divided into two categories: (1) traditional image processing-based
techniques [4,5]; (2) deep learning-based [6,7] algorithms. The former methods
commonly make use of factors like color, shape, and texture features to analyze
the insulator string, but limited by the sensitivity to the complex background
and hard to get a trade-off between the detection speed and accuracy [1]. On the
other hand, deep learning is an overwhelming technique on industrial of things
[8,9]. There are many works that utilize deep convolutional neural networks
(DCNNs) to inspect the equipment condition of the transmission line. Such as
Zhao et al. [10] represent the insulator status by applying a multi-patch CNN
feature extraction method, and [6] proposes a cascading DCNN for the defect
recognition tasks.

It is a trend to deploy those algorithms on UAVs to realize real-time power
transmission line condition screening, yet is hindered because of two main rea-
sons. Firstly, the methods mentioned above [6] require high computational costs,
and the accuracy of detection methods can not be guaranteed, so that the real-
time video is needed to transmitted from UAVs to the local server to ensuring,
which causes much energy wasting. In addition, the data island phenomenon that
is the small-scale, inaccessible, inconsistent, and of poor quality fine-annotated
data, hampers the deployment of those mentioned deep learning models in prac-
tical applications scenarios.

In this paper, we propose a novel cloud edge collaborative intelligence method
for insulator string defect-recognition to mitigate those challenges, as Fig. 1
shown. Specifically, the whole framework is divided into two parts. In edge
devices (UAVs), we locate the insulator with an anchor-free object detector,
which only needs labels of the location of insulator but fault part. It is sim-
ple and inexpensive to prepare large-scale training data. When the insulator is
detected, the image will be transported to the cloud server and predicted by the
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Fig. 1. The proposed cloud edge collaboration framework includes two parts: (a) insu-
lator detection (b) defect recognition. The solid line is the forward propaganda and the
dashed line represents the back propaganda.

defect recognition network following. The main contributions of this work are
the following:

1) We deploy an anchor-free object detector to locate the insulator on the
UAVs. We improve the CenterNet [13] with an extra angle regression, for reduc-
ing the energy consumption and predicting the insulator string with the oriented
bounding box, respectively.

2) To address the scarcity of faulty insulator data, a generative insulator
defect detection model based on the autoencoder with a generator-discriminator
pattern is proposed. Particularly, we introduce the variational memory encoder-
decoder architecture to model defect-free insulator data distribution. It mitigates
the overly-smooth problem of traditional variational autoencoder (VAE). Fur-
thermore, the adversarial strategy is employed to regularize the generated data
space with input data space.

The remainder of this paper is structured as follows. Section 2 presents the
related work about insulator anomaly detection using CNNs. Section 3 introduces
the proposed architecture of the cloud edge collaborative network. Section 4
presents the results of the experiments and provides comparisons to other work.
Finally, the conclusions are demonstrates in Sect. 5.
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2 Related Work

The availability of large-scale data sets and the high performance of GPU have
enabled deep learning to develop rapidly, which powers many computer vision
filed. Likewise, the application of deep learning methods for condition monitor-
ing of transmission line equipment is gaining momentum. The most common
method for insulator condition screening usually extracts the insulator string
from the complex background first and then identifies the defect location. There
are many works [7,14] adopt the representative deep convolutional network such
as Fast-RCNN and Faster-RCNN to locate the insulators, but it is hard to real-
ize real-time inspection due to their complicated calculation. [9] et al. detect the
insulator string from coarse to fine with traditional method and CNN respec-
tively, and then take advantage of the segmentation result in the previous step to
identify the defect position. A cascading architecture is utilized in [6,16], which
deploy different CNN for the insulator location and defect-recognition task, and
both works contain a crop operation between two different networks.

The generative anomaly detection models attract lots of attention, it only
needs normal samples, which alleviate the bottleneck of scarce defective insulator
images. Thus, those methods avoid being over-fitting problem under the few-shot
learning. For example, Kang et al. [15] integrate a deep material classifier and
a deep denoising autoencoder together into a multitask learning framework and
only need normal insulator samples for training a defect detection network. Deep
autoencoder [22,23] is basically consisted of an encoder that able to extract the
high-dimensional representation of input images, and a decoder to reconstruct
the encoded data. The autoencoder(AE) technique has been extensively used
now for anomaly detection in the unsupervised setting. But there exists a prob-
lem that it may perform too “well”, that leading to a “great” reconstruction of
anomalies. Exiting VAEs-based work [17], however, are observed can only learn
an ambiguous model, which exists the same issues like the standard AE, due
to the lack of constraints. Furthermore, MemAE [18][19] is introduced to alle-
viate this problem based on the reconstruction of the most relevant item of the
input in the memory module to enlarge the difference of the normal sample and
novelty. Yet it ignores the local feature learning and is limited by the capability
of storage, the over-smooth [20] problem is arisen by utilizing the mean square
loss function with averaging effect. The adversarial autoencoder networks [25,26]
blends the autoencoder architecture with the adversarial loss concept introduced
by GAN [24]. Inspired by these works, we convert the insulator defect detection
to an unsupervised anomaly detection problem, and an implicate-explicate com-
bined generative insulator defect detection model based on the autoencoder with
an adversarial pattern is introduced.

3 Method

The whole framework consist of two phases: insulator detection on the edge
device and defect recognition on cloud, and they are supposed to be processed
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separately. In the following, we will introduce an anchor-free oriented insulators
detector and reconstruction-based defect detection network, respectively.

3.1 Insulator Detection on the Edge Device

For the purpose of reducing energy consumption, we introduce the CenterNet
[13] which is a simpler and efficient anchor-free keypoint-based detector com-
pared with corresponding bounding box-based detectors. The common object
detection algorithm heavily relies on the time-consuming post-grouping process,
which is not suitable for deployment on the edge device. Moreover, it is observed
that the aspect ratios of insulator string are mostly larger than general objects,
which may be even larger than 20. The larger aspect ratios lead to a bad per-
formance in the fault detection task because the predicted regions contain much
meaningless background information. In this paper, we extend Zhou’s work [13]
to the oriented insulator string detection task.

Specifically, our network use the Deep Layer Aggregation (DLA) [31] as back-
bone, whose parameters are less than ResNet50. Feature maps for prediction are
fused from multi-layer of backbone network. We build it on a U-shaped archi-
tecture, whose size is 4 times smaller than the input image. The progressively
combination of shallow and deep layer provides a comprehensive fine and coarse
granularity information. In particular, given a RGB image as input I ∈ RW×H×3,
where W and H represents the width and height, respectively, the output fea-
ture map X ∈ R

W
4 ×H

4 ×C (C denotes the channel) is then fed into our four
branch heads: heatmap (H ∈ R

W
4 ×H

4 ×1), offset (O ∈ R
W
4 ×H

4 ×2), box-parameter
(B ∈ R

W
4 ×H

4 ×2), and angle map (A ∈ R
W
4 ×H

4 ×1).
The grand truth is denoted as (x, y, w, h, α), where x, y denotes the centers’

coordinates and w, h, α is the weight, height, and angle. Following, we use the
focal loss to train the heatmap:

LH = − 1
N

∑

i

{
(1 − Hi)αlog(Hi) ifĤi = 1

(1 − Ĥi)βHα
i log(1 − Hi) otherwise,

(1)

where Ĥi refer to the Ground Truth and Hi is predicted heatmap values, α and
β are the hyper-parameters. The offset between the scaled center point and the
predicted is:

o = (
x

4
− x̂

4
,
y

4
− ŷ

4
). (2)

And the offset is trained by minimizing a smooth L1 Loss:

LO =
1
N

∑

i

SmoothL1(oi − ôi). (3)

Likewise, the box parameters bi = [wi, hi] and angle αi are trained with offset oi

using smooth L1 Loss, which denotes as LB and LA, respectively. Finally, the
network is optimized by the sum of LH , LO, LB , and LA.
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3.2 Defect Recognition on the Cloud Server

In this paper, we propose an adversarial Variational memory autoencoder net-
work. Opposite of object detection-based anomaly detection methods, this paper
utilizes an implicit method based on Variational autoencoder (VAE) architec-
ture to model normal data distribution. It can alleviate the dilemma of defining
encompasses of a real-world high-diversity outlier, owing to the abnormal insula-
tor sample is hard and costly to collect. In the following part, we firstly provide
the structure of Variational autoencoder architecture; then we introduce mem-
ory module architecture; in the end, we will give the whole framework process
combining Variational memory autoencoder and discriminator and the corre-
sponding loss functions.

Variational Memory Autoencoder consists of three components: (i) the
encoder network for learning a meaningful latent representation of the input
normal data on its manifold space; (ii) the Variational part for learning a data
generating distribution, and the memory module which given random samples
from latent space distribution, it can retrieve the most homogeneous item; (iii)
the decoder network for reconstructing the item from the memory module. In
the training phase, the parameter of the network only trained on normal data. In
the inference stage, the memory module is fixed. Therefore, the normal samples
can be reconstructed well with its homogeneous memory item while the defective
insulator string leads to a high reconstruction error due to it has to retrieve the
most relevant normal item.

The objective of the encoder is to learn an approximation to the posterior
distribution p(z|x) of defect-free data, however, it is cumbersome and intractable
to analytically approach, due to the high computationally expensive sampling
of Markov Chain Monte Carlo (MCMC) methods. Alternatively, the Variational
autoencoder approximates the posterior distribution p(z|x) as a family of possi-
ble distribution p(z) which is able to be generated by our controllable data, such
as Gaussian distribution, Poisson, binomial, etc. In this paper, we follow the
work [17] which uses the Gaussian distribution p(z) = Normal(0, 1). So that,
we maneuver the approximation of p(z|x) as p(z). In our task, only given the
normal samples, the encoder network models its probability distribution p(z|x):

p(z|x) =
p(x|z)p(z)

p(x)
=

p(x|z)p(z)∑
z p(x|z)p(z)

. (4)

In the second stage, it concludes two modules: variational function and mem-
ory table. The variational function taken the mean and standard deviations
of the latent embedding feature of the current input image from the encoder
forms data generating distribution p(z|x). Essentially, the variational parameter
is independent of each other, therefore, we can multiply together to give a joint
probability:

p(z|x) ≈ p(z) =
N∏

i=1

pi(zi). (5)
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Fig. 2. Insulator string detection results comparison

We employ Kullback-Leibler (KL) divergence to measure their similarity:

KL(p(z)||p(z|x)) = Ez∼plogp(z) − Ez∼plogp(z|x)
= Ez∼plogp(z) − Ez∼plogp(z, x) + logp(x).

(6)

Through minimize KL divergence, we achieve approximation p(z|x) as p(z).
The new feature vector ẑ is sampled from the “learned” latent space p(z|x),
which is feed into our memory module and stored at the memory slots matrix
M = {m1,m2, ...,mi, ...,mN} ∈ R

N×F , where N means the number of mem-
ory slots and F represents dimension of every latent feature that is memo-
rized. Simultaneously, the similarity coefficients Wi is denoted as cosine distance
between input ẑ and the memory item mi as:

Wi =
ẑ · mT

i

||ẑ|| · ||mi|| .
(7)

In the end, following [18], the final embedding feature z′ is retrieved and feed
into decoder with soft address method with the similarity coefficients Wi:

z′ =
N∑

i=1

exp(Wi)∑N
i=1 exp(Wi)

mi. (8)

LD = logD(x) + log(1 − D(G(z′))) (9)

The decoder network p(x|z′) learns to reconstruct the input space distri-
bution given latent representation distribution. The architecture of decoder is
symmetrical with encoder network. In the sum, the loss function of variational
memory autoencoder (LV MAE) consists two parts, reconstruction loss and KL:

LV MAE = MSE(x, x̂) + KL(p(z)||p(z|x)), (10)

where MSE is the mean square error between input and reconstructed images.
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Fig. 3. The comparison of reconstruction normal insulator (left), defective insulator
(right) of our method and other baselines. (a) input samples (b) reconstruction of
AE (c) reconstruction of MemAE [18] (d) reconstruction of Variational AE [17] (e)
reconstruction of our proposed method (Color figure online)

Adversarial Discriminator. Moreover, autoencoder is inherently blurry,
inspired by the Ganomaly [27], we introduce the discriminator to improve the
reconstruction image quality and senses. The objective of the discriminator net-
work is to classify the input x and the reconstructed x̂ as real or fake, respectively.
The discriminator is constructed by multi-layer perception neural networks. In
addition, the decoder network in this paper is treated as a generator, which recon-
structs an image from the latent space in order to interfere with the judgment
of the discriminator network. The discriminator can be trained by minimizing
the loss function as: where D denotes the discriminator function, G represents
the generator function. x means the input image and z’ is the output of the vari-
ational memory autoencoder. Furthermore, the generator is adversarial trained
by maximizing the second part of the discriminator loss function:

LG = log(1 − D(G(z′))). (11)

4 Experiments

Our method for insulator string detection and defect recognition are evaluated in
this section independently. The data set we used comes from [6], which includes
600 high resolution normal insulator string images and 248 images with bunch-
drop defect. The dataset are captured by an UAV with a DJI M200 camera. All
positive samples includes one or more anomaly-free insulators. Negative cases are
defective insulator images. Besides, the experiment is conducted based on the
configuration as: Intel Core i7-7600, and GTX 1080 GPU with 8-GB memory.

4.1 Implementation Detail

For the insulator detection experiment, the fully convolutional upsampling ver-
sion of DLA is utilized to obtain an informative feature map. Following the work
in [13], the original convolution at each upsampling layer is replaced by 3× 3
deformable convolution. The input image is resized to 512× 512 before sending
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to the detection network. And then a high-resolution feature map (128× 128)
can be acquired. Moreover, a series of data augmentation such as cropping, ran-
dom flip, and scaling is used to increase the robustness of our model. We train
our detection model with 8 batch-size, and the learning rate is set as 2e–4 which
is supposed to drop 10 times at 90 and 120 epochs. In addition, we use Adam
[29] to optimize the objective function. For the defect recognition experiment,
we cropping and rotating the inspection bounding box, which is predicated on
the normal insulator data set, to a horizontal level. And then resizing the result
to 68 × 500 before feeding into the autoencoder network. Meanwhile, we build an
encoder network with ResNet50, and the decoder is symmetrical to the encoder.
The memory size N of the memory module is set as 1000. And we train with
batch-size 8 and learning rate 10e–4 for every 500 epochs. Furthermore, we still
utilize Adam as the optimizer in this experiment.

Fig. 4. The discrepancy between input samples and reconstruction result of our method
in normal sample (left) and defective sample (right) (a) input samples (b) reconstruc-
tion result (c) the discrepancy. (Color figure online)

4.2 Experiment Results

Figure 2 gives the insulator detection results using different methods. (a), (e)
indicate the manual label, and the middle two columns are predicted by the
CenterNet-ResNet18 and CenterNet-ResNet50 respectively. We yield the best
performance utilizing the CenterNet-Dla34 as (d) and (h) shown, which locate
the insulator string with high accuracy. Besides, the precision, recall, F1 score,
parameter, and testing speed comparison are reported at Table 1. The first three
rows are tested with anchor-based detection methods, and the remaining models
are all based on CenterNet. From the reported results, we can see that under
the high inference speed, our framework achieves superior precision and recall.

Figure 3 compares the reconstruction images generated by different meth-
ods, and for better visualization, we enclose the defective area by red lines. The
standard AE “generalize” so well on both normal and defective image as (b)
represent, thus it can not recognize the abnormal data according to the differ-
ence of reconstruction error. Moreover, the generalization capability of MAE is
unsatisfied, which means it may only perform well on trained data. The VAEs
learn the generating distribution of training data so that it is able to reconstruct
a more normal-like image. But as shown in (d), the reconstruction images are too
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Table 1. Detection performance for different methods.

Method Precision Recall F1 Parameter Testing speed

Faster R-CNN [7] 0.791 0.573 0.665 138M 180 ms/image

ILN-VGG16 [6] 0.904 0.966 0.934 136M 115 ms/image

Cascaded DNN [30] 0.882 0.861 0.871 – 387 ms/image

CenterNet-ResNet18 0.876 0.571 0.691 14.91M 34 ms/image

CenterNet-ResNet50 0.910 0.455 0.607 31.16M 48 ms/image

CenterNet-DLA34 (ours) 0.946 0.864 0.903 20.32 M 52 ms/image

Table 2. The performance of our model compared with the SOTA methods.

Method Precision Recall F1

Autoencoder 0.410 0.516 0.457

Memory autoencoder [18] 0.512 0.677 0.583

Ganomaly [27] 0.509 0.903 0.651

Variational autoencoder [17] 0.704 0.954 0.810

Ours 0.968 0.985 0.9769

blurry to distinguish the defect region. The bottom row (e) indicates the output
of our proposed model, which efficiently mitigates the issues mentioned above.
Besides, the absent piece of defect insulator has been ’patched’ after reconstruc-
tion. In this case, the faulty insulator is able to get a higher reconstruction error
compared with the normal insulator.

Figure 4 shows the discrepancy between the input image and reconstruction
image. The first column represents the normal insulator, and the second column
is the defective insulator with a bunch-drop fault. The defective region is high-
lighted with bright color, and the normal part maintains a dark blue color as
(c) shown. From the discrepancy result, we can easily locate the fault. Table 2
compare the value of precision, recall, and F1 score between four methods with
our proposed model. The standard autoencoder without any constraints gets the
lowest precision and recall score. Besides, simply appending the memory mod-
ule and variation process achieve no significant improvement. The precision of
Ganomaly can not meet the detection requirement. It shows that our method
yields the best performance with the result of 0.9688, 0.9853, and 0.9769 respec-
tively which is highlighted in bold in Table 2.

5 Conclusion

In this paper, a cloud edge collaborative insulator string anomaly detection
framework is proposed. We depart the defect inspection task into two indepen-
dent procedures: (1) insulator detection; (2) defect recognition. The former step
is carried out by improving an anchor-free detector called CenterNet, which is
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able to alleviate the calculation burden of the edge device. Moreover, we intro-
duce an adversarial autoencoder model with a variation process and memory
module for defect recognition. The experiment results proof that the proposed
framework can achieve state-of-the-art performance on abnormal detection. In
further work, we will explore the knowledge distillation methods on edge devices
to prune the network and anomaly detection generative model on the cloud side.
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