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Abstract. The landmark detection has been widely investigated for the
human pose with rapid progress in recent years. In this work, we aim at
dealing with a new problem: aircraft landmark detection in the wild. We
have a key observation: the aircraft is a rigid object with global structural
relationships between local landmarks. This motivates us to progressively
learn the global geometrical structure and local landmark localization in
a coarse-to-fine guidance manner. In this paper, we propose a simple yet
effective skeleton-aware landmark detection (SALD) network, including
one stream for exploiting the coarse global skeleton structure and one
stream for the precise local landmarks localization. The global skeleton
structure models the aircraft “images” into skeleton “lines”, in which
the multiple skeletons of the holistic aircraft and the parts are explic-
itly extracted to serve as the geometrical structure constraints for land-
marks. Then, the local landmark localization precisely detects the key
“points” with the guidance of skeleton “lines”. Consequently, the pro-
gressive strategy of “extracting lines from images, detecting points with
lines” significantly eases the landmark detection task by decomposing
the task into the simpler coarse-to-fine sub-tasks, thus further improv-
ing the detection performance. Extensive experimental results show the
superiority of proposed method compared to state-of-the-arts.

Keywords: Aircraft · Landmark detection · Convolutional neural
network · Skeleton

1 Introduction

Landmark detection refers to the task of locating keypoints in the given images.
In aircraft landmark detection these keypoints are predefined at aircraft end-
points and joints such as head, tip and stabilizer, as shown in Fig. 1 (a). The
aircraft landmark detection serves as an important prior work for applications
like aircraft fine-grained classification [1–3], and aircraft detection [4,5]. In this
paper, we focus on the problem of single aircraft landmark detection.
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(a) Landmark Ground Truth (b) Hourglass

(d) SALD(c) Aircraft Skeleton

Fig. 1. Illustration of the proposed skeleton-aware landmark detection (SALD). (a)
Landmark ground truth. (b) Hourglass [16] wrongly detects the right tip on the right
stabilizer due to the similarity of local features in aircraft. (c) The skeletons model the
coarse global geometrical structure of the aircraft. (d) With the guidance of the aircraft
structure, SALD predicts the precise landmark locations in a progressive coarse-to-fine
manner. The right stabilizer landmark is located near the end point of the stabilizer
part, with a correct semantic and geometrical relationship with the structure.

There are few researchers devoted to aircraft landmark detection in the wild
despite its importance. In remote sensing images, the landmarks of aircraft aerial
view images are detected by effective convolutional neural networks (CNN) and
utilized by the following aircraft type recognition and detection tasks. The focus
is on the landmark utilization rather than the detection. For instance, Zhao et al.
[2] proposed a six-layer model based on vanilla CNN [25] to regress the aircraft
landmarks and perform landmark template matching to recognize the aircraft
type. Zhou et al. [13] predicted aircraft keypoints via convolutions and designed
attention mechanism on the keypoints to enhance the features for detection. In
this paper, detecting the aircraft landmarks in the wild is more challenging due
to the vastly different appearances in variable viewpoints.

Related to the aircraft landmark detection problem, the 2D human land-
mark detection has achieved rapid progress in recent years [7,9,11,20,22,24]. To
alleviate the problems of the occlusion and variable viewpoints in human body,
the landmark relationships are studied to guide landmark detection [7,12,15,17],
which improves the robustness and accuracy. However, the landmark relation-
ships in the deformable human body mostly lie in the local body parts, and are
modelled in an implicit manner. Chen et al. [12] trained a landmark distribution
discriminator in an adversarial to make the predicted landmarks distribute nat-
urally like the real ones. Ke et al. [15] connected landmarks in the same body
part and designed a structure-aware loss to preserve the structure layout. Tang
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Fig. 2. Overview of the proposed skeleton-aware landmark detection (SALD) method.
Our network consists of a skeleton extraction sub-network for modelling the coarse
global aircraft structure and a landmark detection sub-network for precisely locating
landmarks with the structure guidance. The framework decompose the landmark detec-
tion into the two simpler sub-tasks in a progressive coarse-to-fine manner, which eases
the learning procedure and improves the detection performance.

et al. [7] classified the landmarks into five groups and jointly learned the shared
features for the landmarks without explicit constraints. In this paper, we focus
on the landmark detection for the aircraft with the rigid property, in which
the landmark relationships are not only lie in the local parts, but also exist in
the global geometrical distributions for all the landmarks. This motivates us to
explicitly model the global aircraft structure, which serves as the coarse guid-
ance to provide the structure cues and ease the precise local landmark detection
task. Consequently, the aircraft landmark detection task is decomposed into the
progressive coarse-to-fine learning of two simpler sub-tasks: extracting the coarse
global structure from the image, and locating the precise local landmarks with
the guidance of structure. As illustrated in Fig. 1, compared with Hourglass [16]
which wrongly detects the right stabilizer on the similar right tip (Fig. 1 (b)),
the aircraft skeletons serve as the global structure (Fig. 1 (c)), and guide the
correct local landmarks localization on the right stabilizer (Fig. 1 (d)).

To this end, we propose a skeleton-aware landmark detection (SALD) net-
work consisting of a structure extraction stream for explicitly modelling the
geometrical structure via the hierarchical aircraft skeletons, and a landmark
detection stream for locating the landmarks with the guidance of aircraft skele-
tons, as shown in Fig. 2. Specifically, the hierarchical skeletons have multiple
channels including the holistic skeleton channels for all the landmarks, and part
skeleton channels for the aircraft parts, such as the wings and aircraft body.
The skeletons provide the global relationships among the landmarks in geomet-
rics and semantics. With the guidance of the global understanding for aircraft
structure, the precise local landmark localization is performed to achieve the
coherency between landmark distributions and the structure. Consequently, the
two streams in SALD progressively focus on the sub-task of extracting skeleton
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“lines” from the aircraft “images”, and detecting the key “points” with the skele-
ton “lines”, which are simpler than directly detecting landmarks in the aircraft
images.

We summarize the main contributions as follows:

– We study the new problem of aircraft landmark detection in the wild. In
this task, by taking the full advantage of the rigid property, we not only
utilize local features of the landmarks, but also exploit the global geometri-
cal relationships between aircraft landmarks, which consequently achieve the
consistency between the landmark layout and aircraft structure.

– We propose a skeleton-aware landmark detection (SALD) network consisting
of two streams, including one stream for extracting the coarse global structure
from the image, and one stream for locating the precise local landmarks with
the guidance of structure. The framework decomposes the landmark detec-
tion task into two simpler sub-tasks in a progressive coarse-to-fine manner,
which eases the learning procedure, thus further improves the performance of
landmark detection.

– Extensive quantitative and qualitative evaluations on the aircraft datasets
show that SALD performs favorably against the state-of-the-art methods,
which demonstrates the effectiveness of the skeleton guidance for aircraft
landmark detection.

2 Skeleton-Aware Landmark Detection Network

2.1 Global Geometrical Structure

Skeleton Structure. To model the global geometrical structure of the rigid
aircraft, we intuitively resort to the aircraft skeleton as the representations which
is an important graphics description with intrinsic relationships to the landmark,
and possess strong constraints with the landmarks in both geometrics and seman-
tics. For instance, the aircraft tip should distribute on the wing, and the precise
location should be near the endpoint of the wing skeletons. To fully exploit the
skeletons as the global geometrical structure, we propose the hierarchical multi-
channel skeletons to present the structure of both holistic aircraft and the parts,
including the including holistic channel, body channel, left wing channel and
right wing channel as shown in Fig. 2. Specifically, the holistic channel encodes
the geometrical relationships for all the landmarks from a global viewpoint, while
the skeletons of aircraft parts in the other channels provide explicit guidances for
locating landmarks near the corresponding parts. We obtain the skeleton labels
by connecting the head, tail and wing tip landmarks with aircraft center point
which is calculated as the average coordinate of the leading and trailing edge
flaps. The label generating procedure dose not require additional manual work.
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Skeleton Extraction. To extract the aircraft skeletons, we introduce a hier-
archical deep-supervised network for the skeleton extraction sub-network which
generates high quality skeletons by fully utilizing the multi-scale spatial infor-
mation in aircraft images. Specifically, the multi-channel skeletons are side out-
putted at different scales of the network, which are deeply supervised during
training by the ground truth skeletons connected by the landmarks, as shown in
Fig. 2. Then the multi-scale side outputs are fused together through a weighted
fuse layer to generate the final multi-channel skeletons. Denoting X as the given
aircraft image, we extract the multi-channel skeletons L̂ by the skeleton extrac-
tion sub-network G, which is formulated as:

L̂ = G(X;W,wG), (1)

where wG, W denote the parameters of the side output layers and feature extrac-
tion layers. For each side output of the skeletons L̂c, we impose cross-entropy
loss function, which is defined as:

Losscske = −
∑

j∈Lc
+

logPr(L̂c
j = 1|X;W,wc

G)

−αc

∑

j∈Lc
−

logPr(L̂c
j = 0|X;wc

G),
(2)

where the function Pr(·) is computed by the output of sigmoid function on
activation value at pixel j. wc

G denotes the parameters of c-th side output layer.
αc denotes the balance weights corresponding the ratio of skeleton pixels. The
final loss for the skeleton extraction sub-network is defined as:

Lossske =
C∑

c

γcLosscske, (3)

where C is the total number of the side output layers, while γc denotes the
balance weights. The extracted hierarchical skeletons represent the coarse global
aircraft structures are then utilized for precise localization.

2.2 Local Landmark Localization

After obtaining the coarse global aircraft structure represented by the hierar-
chical skeletons, we perform the precise landmark localization under the explicit
guidance of the aircraft geometrics and landmark relationships. Specifically, we
feed the concatenation of the aircraft image and the hierarchical skeletons to
stacked Hourglass [16], in which up and down sampling processes are repeated
with intermediate conjunction and supervision to learn features across all the
scales. During training, the skeleton channels indicate the corresponding local-
ization of the aircraft parts. Taking an example, the left wing channel skeleton
explicitly represents the structure of the wing. With the guidance of the left
wing channel skeleton, the left leading and trailing edge flap should be detected
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Table 1. Effectiveness of the global skeleton structure. L and L̂ refer to the ground
truth and extracted skeletons. Y and Ŷ refer to the ground-truth and predicted land-
marks. − refers to the average Euler distances. The small deviation in the second
and third columns justify the accuracy of the skeleton extraction, while the last two
columns show that with the skeleton guidance, the landmarks are more related to the
skeleton structures. The detection performances are improved in terms of the PCKh,
which demonstrates the effectiveness of the skeleton guidance, and further illustrate
the accuracy of the skeleton extraction.

Landmarks L − Y L̂ − Y L̂ − Ŷ w/o Guidance L̂ − Ŷ w/ Guidance

Head 0 1.23 2.42 1.91
Wing tip 0 4.46 11.02 9.74
Leading edge flap 6.39 6.55 8.52 6.72
Trailing edge flap 6.07 6.96 11.36 8.20
PCKh 100 100 86.17 87.57

near the endpoint of the left wing skeleton, while the left tip should be located
near the other endpoint, which is possible to shift onto the right wing or the
stabilizers due to the similar local features without the global skeleton guidance.
Learning both global geometrical structure from the skeletons and local features
from the aircraft appearances in the images, the detection sub-network regresses
landmark heatmaps Ŷ in which the location of highest value is determined as
the final prediction. MSE loss is imposed on the heatmaps, which is defined by:

Lossland =
N∑

i

‖Ŷ i − Y i‖2, (4)

where Ŷ i denotes the heatmap for the i-th landmark. Denoting β as the balance
weight, the full objective is given by:

Loss = Lossske + βLossland. (5)

2.3 Effectiveness of the Global Skeleton Structure

Accuracy of the Skeleton Extraction. The extracted skeleton should pos-
sess the strong relationships with the aircraft landmarks in both geometrics and
semantics. Wrong skeletons will do harm to the landmark detection, even though
the structure extraction task is coarse compared with the precise localization. To
illustrate the accuracy of the skeleton extraction, we calculate the average Euler
distances between landmarks and skeletons in the 256 × 256 aircraft images in
the dataset. The small distances indicate the strong geometrical relationships
between the skeletons and landmarks. The first three columns in Table 1 show
that compared to the ground-truth skeletons which have the strongest relation-
ships with the landmarks, the extracted skeletons by SALD deviate from the
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(a) ground truth (b) w/o skeleton

(c) Holistic skeleton (d) Multi-channel skeleton

Fig. 3. The superiority of multi-channel skeleton guidance. (a) The landmark ground
truth. (b) Without skeleton guidance, the detected left tip shifts onto the wing. (c)
The holistic skeleton provides a provides a rough structure information of the aircraft,
which corrects the location of the left edge flap landmarks. (d) The multi-channel
skeleton models the structure more explicitly, in which the left wing structure is further
represented, thus obtaining better performance.

ground-truth in a small extent, but still holds the strong relationships with
the ground-truth landmarks in terms of the small distance, which can help the
landmark detection sub-network to locate the landmarks with the coarse global
understanding.

Effectiveness of the Skeleton Guidance. The last two columns in Table 1
illustrates the effectiveness of skeleton guidance. Compared with the results in
which no global geometrical constraint is imposed as shown in the fourth col-
umn, our extracted skeleton guides the detector to locate the landmarks near
the corresponding part, enforcing the landmark layout to be consistent with
the structure. The distances between landmarks and the aircraft structure in
the fifth column become smaller when the skeleton constraint is imposed, and
consequently improve the accuracy of landmark detection in terms of the quan-
titative evaluation method PCKh, thus justifying the effectiveness of skeleton
guidance and further illustrating the accuracy of the skeleton extraction.

To further show the superiority of the multi-channel skeleton guidance, we
perform the comparison between the landmark detection results with no skeleton
guidance, with only holistic skeleton guidance, and with multi-channel skeleton
guidance in Fig. 3. Without the skeleton guidance, the local features of left wings
are not discriminative enough, the landmarks on the left wing shift from the
correct location. The holistic skeleton provides a rough structure of the aircraft,
which guides the detector to locate the leading and trailing edge flaps at the
joints of left wing and aircraft body. The multi-channel skeletons model both
the holistic and part structures as more explicit cues to distinguish the left
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Fig. 4. Illustration of the landmark labelling on the ALDW dataset.

Table 2. Quantitative Comparisons with state-of-the-art methods on FGVC dataset.
SALD outperforms the competing methods, especially in landmarks on the wings whose
structure is explicitly modelled by the multi-channel skeleton.

Methods Head &
tail cone

Leading
edge flap

Wing tip Trailing
edge flap

Horizontal
stabilizer

Vertical
stabilizer

PCKh

Hourglass [16] 96.60 79.55 82.30 72.93 83.13 87.95 86.17

DAN [8] 97.46 80.52 80.82 79.49 83.80 88.22 86.78

PoseAtten [21] 97.27 81.87 77.05 78.54 86.40 89.29 87.16

PyraNet [19] 97.15 82.69 77.59 81.14 85.06 88.69 87.17

CU-Net [18] 97.54 80.43 78.29 80.75 84.38 88.28 87.14

SALD 97.98 82.89 83.47 82.55 85.74 89.37 87.57

wing and the body via additional body and left wing channel, and consequently
further improving the detection performance on left tip.

2.4 Implementation Detail

SALD is implemented using Tensorflow framework on a RTX 2080Ti GPU. The
input images are resized to 256×256 and random flip is applied for augmentation.
The skeleton balance weights αc are 186, 113, 45 and 51 for skeletons of holistic,
body, left wing and right wing, which are the average ratio of skeleton pixels in
ground truth. γc and β are set as 1. We respectively train the two sub-networks
for 200 epochs with initial learning rate 0.001, decay rate 0.99 and decay step
5000. Then we fine-tune the two sub-networks together with learning rate 0.0001
for 50 epochs. For the optimizer, the RMSprop is adopted with batch size 6.

3 Experiments

Dataset. Since there exist few datasets for the task, we apply a new dataset
for aircraft landmark detection in the wild (ALWD), in which we annotate 7819
(6245 for training and 1574 for testing) aircraft images from the FGVC [26]
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GT Hourglass SALD

Fig. 5. Visualization of landmark detection results on ALDW dataset. Under the global
geometrical skeleton guidance, SALD predicts more accurate landmarks whose layout
is consistent with the aircraft structure.

dataset and Google search. For each aircraft, we annotate the location and vis-
ibility of 12 aircraft landmarks, whose locations are defined on the joints or
endpoints of the head, wings and stabilizers as illustrated in Fig. 4.

Experiment Settings. We select five state-of-the-art human landmark detec-
tion methods: Hourglass [16], DAN [8], PoseAtten [21], PyraNet [19] and CU-Net
[18] and fine-tune them on ALDW for comparison, in which PCKh [7,21,24] is
utilized for quantitative assessment. The codes of our methods will be released
in the homepage of the author.

Evaluation on ALDW Dataset. The results in Table 2 show that SALD out-
performs the competing methods. Especially, SALD achieves significantly better
performance in landmarks on the wings whose structures are explicitly modelled
by the multi-channel skeletons, demonstrating the effectiveness of the skeleton
guidance. The qualitative comparison is shown in Fig. 5. The feature extracted
by Hourglass is not discriminative enough due to similarity of the aircraft parts,
resulting in the landmark shifts. SALD generates structure-consistent results
which distribute near the aircraft skeletons in a reasonable layout.
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Fig. 6. Visualization results of landmark detection in real scene. The SALD still obtains
accurate predictions.
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Fig. 7. Effectiveness of the skeleton guidance. The skeletons provide geometrical con-
straints for the consistency between landmark layout and aircraft structure.

Evaluation in Real Scene. We also test SALD on the aircraft images collected
from Google. The qualitative results in Fig. 6 show that we still obtain accurate
predictions. By recognizing the main structure of the aircraft in the real scene as
the guidance for the precise landmark detection, SALD achieves the coherency
between landmarks and structure, thus performing well in the real scene.

Ablation Study. We perform ablation study on the effectiveness of the multi-
channel skeleton guidance quantitatively and qualitatively. Figure 7 shows that
with the geometrical constraints of the skeletons, the detector achieves the con-
sistency with aircraft structure, and consequently obtains significant improve-
ment of detection accuracy. Table 3 further illustrates the effect of each channel.
Compared with the first row, the other rows show the improvements brought by
each skeleton channel. Especially, compared with the second row, the fourth and
fifth rows show the wing channel brings more improvement in the landmarks
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Table 3. Ablation study on the effectiveness of different skeleton channel. ∗ refers to
guiding detection with ground truth skeletons.

Holistic Body Left Wing Right wing Head Wing Stabilizer PCKh

97.95 80.23 84.32 86.17
� 97.94 82.25 84.44 86.42
� � 97.95 82.38 84.43 86.63
� � 97.97 82.87 84.43 86.61
� � 97.97 82.53 85.46 86.72
� � � � 97.98 83.03 86.13 87.57

�∗ �∗ �∗ �∗ 98.12 85.37 88.77 88.84

on the wing, demonstrating the specific contribution of the wing channel skele-
ton in guiding their corresponding landmarks. The landmark detection with all
skeleton channel guidance achieves the best performance. In the last row, the
performance of landmark detection is the best with the guidance of ground truth
skeleton, which further demonstrates the effectiveness of the skeleton guidance.

4 Conclusions

In this paper, we have studied the new problem of aircraft landmark detection
in the wild by utilizing the rigid property to progressively learn global structure
extraction and local landmark localization in a coarse-to-fine manner. Specifi-
cally, we propose a skeleton-aware aircraft landmark (SALD) method consisting
of two streams, including one stream for modelling the coarse aircraft structure
by extracting the hierarchical skeletons, and one stream for detecting the precise
landmark localization with the guidance of the global skeleton structures. Con-
sequently, the landmark detection is decomposed into two simpler sub-tasks. By
the global guidance for local landmark detection, SALD achieves the consistency
between landmark layout and aircraft structure, which improves the accuracy
and the robustness of aircraft landmark detection. Extensive experiments show
that SALD outperforms state-of-the-art landmark detection methods.
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