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Abstract. Keypoint-based methods achieve increasing attention and
competitive performance in the field of object detection. In this paper,
we propose a new keypoint-based object detection method in order to
better locate center keypoints of objects and adaptively combine key-
points to obtain more accurate bounding boxes. Specifically, to better
locate center keypoints of objects, we aggregate boundary information
by adding the center pooling operation to the original center keypoints
prediction branch. The boundary information is the location of object
boundary which is more easier to predict than object center. Further-
more, to obtain more accurate bounding boxes, we propose an adaptive
keypoint combination algorithm to map all keypoints back to the original
image so that the keypoints are combined with less localization errors.
Experiments have demonstrated the effectiveness of the our proposed
methods.
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1 Introduction

Object detection is a challenging task in computer vision. Keypoint-based object
detection methods have achieved increasing attention in the last few years. They
regard object detection as a keypoint combination problem. I.e. Detecting dif-
ferent keypoints firstly, then combining keypoints to obtain the final bounding
box. In keypoint-based methods, predicting the center keypoint accurately is
an important factor to improve the detection performance. However, the widely
used center keypoint prediction method focuses on geometric centers of objects,
which may fail to contain discriminative information of objects. Take the pedes-
trian as an example, the geometric center of a pedestrian is usually the middle
of the human body. However, the face contains more discriminative informa-
tion of a pedestrian. Besides, keypoint-based object detection methods predict
keypoints instead of bounding boxes, so they need a well-designed combination
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algorithm to obtain bounding boxes from keypoints. However, existing combi-
nation algorithms are carried out on the feature maps which are usually smaller
than the original image, so the location of keypoints is not accurate enough.

Therefore, in this paper, we focus on the following two problems in keypoint-
based methods: (1) how to better locate center keypoints and (2) how to adap-
tively combine keypoints. To better locate center keypoints, we use object bound-
ary information which is the location of object boundary. Specifically, we add
an extra center pooling [2] operation to the original center keypoints prediction
algorithm. The center pooling operation extracts boundary information of the
object, which ensures that the predicted center keypoint contains more discrim-
inative information of the object. Besides, to adaptively combine keypoints, we
map all keypoints back to the original image and carry out all operations on the
original image so that the keypoint locations are more accurate.

Based on the above two mechanisms, we design a new object detection net-
work, namely BANet (i.e. Network with Boundary information aggregation and
Adaptive keypoint combination). Given an input image, our BANet predicts four
extreme keypoints (i.e. the extremely top, bottom, left, and right points of an
object) and a center keypoint of the object, an adaptive keypoints combination
algorithm is then used to combine the predicted keypoints and obtain the final
bounding box of the object.

The previous study, ExtremeNet has similar procedure of object detection
with our BANet. However, ExtremeNet directly takes the geometric center of
an object as the center keypoint, which may not contains the discriminative
information of the object. Besides, ExtremeNet combines keypoints based on
small-size feature maps, which ignores the combination error caused by the key-
points offsets from feature maps to original images. In comparison, our BANet
improves the above two problems at the same time.

Contributions of the proposed BANet can be summaried as follows. First, we
make use of object boundary information by adding the center pooling operation
to the original center keypoints prediction algorithm for better center keypoint
prediction. Second, we propose a new keypoints combination algorithm to adap-
tively combine different keypoints, so as to improve the accuracy of bounding
box prediction. Experiments have demonstrated the effectiveness of our BANet.

2 Related Works

Deep learning based object detection can be roughly divided into two cate-
gories according to their network structure: two-stage approaches and one-stage
approaches.

Two-stage approaches decompose object detection task into two stages:
extracting Region of Interests (RoIs), classifying and regressing RoIs.

R-CNN [5] uses an selective search method [20] to locate the ROIs in the input
image. Then, each ROI is adjusted to a fixed size image and input into a CNN
model trained on ImageNet to extract features. Finally, the linear SVM classifier
is used to predict the target category. Later, SPP [6] and Fast RCNN [4] improve
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Fig. 1. Our network architecture. An image is first sent to the feature extraction mod-
ule, then the output features are sent to the detection head composed of four extreme
keypoint prediction modules to obtain extreme keypoint heatmaps and offsets, one
center keypoint prediction module in parallel to obtain center keypoint heatmap. By
combining these heatmaps and offsets, we can obtain the candidate bounding boxes.

R-CNN by designing a special pooling layer that pools each region from feature
maps instead. Faster RCNN [17] proposes Region Proposal Network (RPN) to
replace selective search method, so that the object detection network can be
trained in an end-to-end manner. RPN generate RoIs by regressing anchor boxes.
Later, anchor boxes are widely used in many object detection tasks. R-FCN [1]
further improves the efficiency of Faster-RCNN by replacing the fully connected
prediction head with a fully convolutional prediction head. Many following meth-
ods are mainly improved on the network details.

One-stage approaches remove the RoI extracting step and directly get
bounding box in a single network.

SSD [11] classifies and regresses by densely placing anchor boxes on multi-
scale feature maps. YOLO [15] divides grid on image and makes coordinate
prediction directly. DSSD [3] proposes a structure similar to hourglass network
to fuse features of different scales. At this time, there is a big performance
gap between one-stage approaches and two-stage approaches. The emergence
of RetinaNet [9] solves this problem. It proposes FocalLoss to deal unbalanced
positive and negative samples. This loss can be well applied to other networks.
CornerNet [8] is a completely different one-stage approach. It predicts the posi-
tions of different keypoints and combines them instead of getting the bounding
box directly. Therefore, CornerNet can be regarded as a bottom-up method.
ExtremeNet [23] is similar to CornerNet, but it detects four extreme points
instead of two corners.
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3 Methods

Preliminaries: Extreme-Points-Based Bounding Box Representation
In the field of object detection, an object is detected using a bounding box,
which is usually represent using two points, i.e. the top left point of the bounding
box, (x(tl), y(tl)), and the bottom right point of the bounding box, (x(br), y(br)).
Instead of using such traditional bounding box representation, in this study, we
use four extreme points [14] to represent an object, i.e. the extremely top point
of the object, (x(t), y(t)), the extremely left point of the object, (x(l), y(l)), the
extremely bottom point of the object, (x(b), y(b)), and the extremely right point
of the object, (x(r), y(r)). Obviously, these four extreme points can completely
represent the object (by using (x(l), y(t), x(r), y(b))) that represented by the tra-
ditional bounding box. Compared with the traditional bounding box represen-
tation, extreme-points-based bounding box representation has four more values,
which bring in more information. In addition, extreme-points-based bounding
box representation is easier to obtain than the traditional bounding box repre-
sentation. When annotating the traditional bounding box, we need to accurately
locate up-left corner point (x(tl), y(tl)) and bottom-right corner point (x(br), y(br))
of the box. This process usually requires multiple adjustments.

3.1 Overview of BANet

As shown in Fig. 1, our network consists of four modules, including (a) the feature
extraction module, (b) the extreme keypoint prediction module, (c) the center
keypoint prediction module, and (d) the adaptive keypoint combination module.

Given an input image I, the feature extraction module extract features
X ∈ R

C×H×W , where C denotes the number of channels; H × W denotes the
size of the feature maps. Then, based on such features X, four extreme keypoint
prediction modules are parallelly used to predict four different extreme keypoint
heatmaps, Yt, Yb, Yl, Yr ∈ R

M×H×W , where M denotes object categories, and off-
sets, Ot, Ob, Ol, Or ∈ R

2×H×W . The center keypoint prediction module uses the
extracted features X to predict the center keypoint heatmaps Yc ∈ R

M×H×W .
Then, by combining these heatmaps and offsets, the adaptive keypoint combina-
tion module obtains the candidate bounding boxes. After getting all candidate
bounding boxes, Non-maximum suppression (NMS) is used to determine the
final bounding box of the object.

Feature Extraction Module: The feature extraction module is implemented
based on the hourglass network [8,13].

Center Keypoint Prediction Module: As shown in Fig. 2 (a), the center
keypoint prediction module uses a boundary information aggregation module
followed by a single convolution to predict heatmaps. The boundary information
aggregation module consists of a center pooling branch and a single convolution
residual connection. Details will be discussed in Sect. 3.3.
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Fig. 2. Center keypoint prediction module (a) uses a boundary information aggrega-
tion module followed by a single convolution to predict heatmaps, and two convolutions
to predict offsets, while extreme keypoint prediction module (b) uses two parallel dou-
ble convolutions to predict heatmaps and offsets respectively. Boundary information
aggregation module consists of a center pooling branch and a single convolution residual
connection.

Extreme Keypoint Prediction Module: As shown in Fig. 2 (b), the extreme
keypoint prediction module uses two parallel double convolution branches to pre-
dict heatmaps and offsets of extreme keypoints. Our network uses four extreme
keypoint prediction modules to predict four extreme keypoints respectively.

Adaptive Keypoint Combination Module: The adaptive keypoint combi-
nation module is used to combine different keypoints and get candidate bounding
boxes. By using keypoint heatmaps and offsets, the process can be finished accu-
rately on original image. The detailed algorithm will be discussed in Sect. 3.4.

3.2 Boundary Information Aggregation

To better locate center keypoints, we aggregate object boundary information
inside the center keypoint prediction module. As mentioned above, directly using
the geometric center of the object as the predicted center keypoint may hamper
the performance of object detection. Therefore, to predict the center with more
discriminative information of the object, we design a module named Boundary
Information Aggregation (BIA) to aggregate boundary information of objects.
As Fig. 2 shows, the BIA module contains two parallel branches: a center pooling
branch and a simple convolution residual connection.

The center pooling [2] branch is composed of pooling operations in four direc-
tions, i.e. the left pooling, the right pooling, the bottom pooling, and the top
pooling. Given an input feature map x ∈ R

H×W , let xi,: ∈ R
1×W denote the

vector of activation scores of the i-th row of the feature map. Then, after the
left pooling, we can obtain the following vector of activation scores.

Poolleft(xi,:) = [ max
j=1,...,W

xij , max
j=2,...,W

xij , . . . ,max
j=W

xij ] (1)



BANet 153

Fig. 3. Example of the center pooling operation. The input feature maps are trained
to be sensitive to the left and right boundary (top) and the upper and lower boundary
(bottom) respectively, after center pooling, we can aggregate boundary information
and get the feature map which is sensitive to the object center.

Similarly, we can obtain the following vector of activation scores after the
right pooling.

Poolright(xi,:) = [max
j=1

xij , max
j=1,2

xij , . . . , max
j=1,...,W

xij ] (2)

Let x:,j ∈ R
H×1 denote the vector of activation scores of the j-th column of

the feature map. Then, after the top pooling, we can obtain the following vector
of activation scores.

Pooltop(x:,j) = [ max
i=1,...,H

xij , max
i=2,...,H

xij , . . . ,max
i=H

xij ] (3)

Similarly, we can obtain the following vector of activation scores after the
bottom pooling.

Poolbottom(x:,j) = [max
i=1

xij , max
i=1,2

xij , . . . , max
i=1,...,H

xij ] (4)

In order to determine whether a location in the feature map is a center
keypoint, we need to find the maximum value in its both horizontal and vertical
directions and add them together, as shown in Fig. 3. These maximum values
correspond to the boundaries of the object in four directions.

However, there are usually many objects in an image, one possible case is
that the maximum value of one object in the horizontal direction and the maxi-
mum value of another object in the vertical direction are added in a meaningless
position after center pooling, that means not even the values of center keypoint
are enhanced. Simply using the output of center pooling to predict center key-
point may be harmful, so we add an additional branch which contains a single
convolution to represent the feature map before center pooling. We add these
two outputs to obtain the final output.
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Fig. 4. Some typical central regions. The central region lies in the center of the can-
didate box (grey part), its length and width are adaptive according to the length and
width of the candidate bounding box respectively.

3.3 Adaptive Keypoint Combination

Directly combines keypoints based on the feature map (here we can also call it
heatmap) may bring in error, because the feature map is smaller (usually with
the size of 128 × 128) than the size of the original image (usually with the size
of 511 × 511). I.e. a pixel of a feature map corresponds to 4 × 4 pixels of the
original image. Therefore, the location of keypoints on feature maps are not accu-
rate. Based on such observation, we propose an adaptive keypoint combination
algorithm worked on original images by using keypoint offset information.

The process of our algorithm is as follows: (1) Five keypoint sets, C (center
keypoint set), T (top keypoint set), L (left keypoint set), B (bottom keypoint
set), and R (right keypoint set), are extracted from the predicted five keypoint
heatmaps. These keypoints correspond to the positions whose values are greater
than the pre-defined threshold τp; (2) Keypoints in C, T , L, B and R are mapped
back to the original image according to their offsets. For example, if the size of
feature map and original image are 128 × 128 and 511 × 511 respectively, and
one keypoint locate at (kx, ky) on heatmap has offset (ox, oy), after mapping,
its coordinates on original image are (4(kx + ox), 4(ky + oy)). Note that in our
model, we don’t predict offsets for center keypoints, their offsets are always 0.5.
After this step, we can get five new keypoint sets on original image, Cm, Tm, Lm,
Bm and Rm; (3) Let (l, t, r, b) represents a combination by selecting four points
from Tm, Lm, Bm and Rm respectively. Candidate boxes bbox(lx, ty, rx, by) are
obtained by enumerating all combinations of (l, t, r, b); (4) For each candidate box
bbox(lx, ty, rx, by), defines a central region. As long as a center keypoint c from
Cm falls in this region, the candidate bounding box bbox(lx, ty, rx, by) is accepted.
If there are many center keypoints fall in this region, we will choose the center
keypoint with the largest value on heatmap. The score of bbox(lx, ty, rx, by) is the
sum of the values of the four extreme keypoints and the chosen center keypoint.

We can find that how to define central region can significantly affect the
detection results. A small central region means the prediction of center keypoint
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must be more accurate, which leads to low recall rate and high accuracy, Sim-
ilarly, a large central region leads to high recall rate and low accuracy. To deal
with this trade-off, our definition is: (1) The central region is a rectangle lying
in the center of the candidate box; (2) Its height and width are adaptive accord-
ing to the height and width of the candidate bounding box respectively. Let
(ctlx, ctly) and (cbrx, cbry) donate the top-left and bottom-right corners respec-
tively, to obey the first defination, we have:

{
ctlx + cbrx = lx + rx
ctly + cbry = ty + by

(5)

To obey the second defination, we have:
⎧⎨
⎩

cbrx − ctlx = (rx − lx) ∗
(

6
rx−lx+18 + 1

6

)
cbry − ctly = (by − ty) ∗

(
6

by−ty+18 + 1
6

) (6)

Figure 4 shows some typical central regions. As we can see, when rx − lx → ∞,
we have:

cbrx − ctlx = 1
6 (rx − lx) (7)

When rx − lx → 0, we have:

cbrx − ctlx = 1
2 (rx − lx) (8)

4 Experiments

We conducted experiments on the popular MSCOCO datasets [10]. In order to
prove the competitiveness of our model, we compared it with many different one-
stage methods. Furthermore, to prove the effectiveness of the proposed methods,
we conducted ablation study and error analysis.

Implementation Details: In real implementation, the feature extraction mod-
ule was implemented based on the hourglass network [8,13]. During training, the
resolution of input image was adjusted to 511 × 511, and the resolution of output
feature map was 128 × 128. The whole network was optimized by adam optimizer
with an initial learning rate of 2.5e−4, learning rate decreased with the number
of iterations. In addition, parameters of the hourglass network (i.e. the feature
extraction module) were preloaded from the official pre-trained CornerNet [8].

Dataset and Evaluation Metrics: We evaluated the proposed model based
on the MS COCO dataset [10]. There are 80 kinds of object bounding box
annotations in MS COCO dataset. The training process of the model was based
on the train2017 dataset, the test and ablation experiments were based on the
val2017 dataset. The main evaluation criteria were average precision of fixed
recall threshold (AP ) and average recall of fixed box number (AR).
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Table 1. Comparisons with other one-stage object detectors.

Method Backbone AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

YOLOv2 [16] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

DSOD300 [18] DS/64-192-48-1 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0

GRP-DSOD320 [19] DS/64-192-48-1 30.0 47.9 31.8 10.9 33.6 46.3 28.0 42.1 44.5 18.8 49.1 65.0

SSD513 [11] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 28.3 42.1 44.4 17.6 49.2 65.8

DSSD513 [3] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4

RefineDet512 [22] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4 – – – – – –

RetinaNet800 [9] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 – – – – – –

ExtremeNet511 [23] Hourglass-104 40.3 55.1 43.7 21.6 44.0 56.1 32.0 50.2 53.1 30.7 57.8 69.9

CornerNet511 [8] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3 35.3 54.7 59.4 37.4 62.4 77.2

BANet Hourglass-104 40.7 56.5 43.6 22.4 44.9 55.8 32.5 52.1 55.4 31.5 60.2 74.8

Table 2. Ablation study and error analysis. Here bia means boundary information
aggregation, akc means adaptive keypoint combination, gt ex means using ground
truth extreme keypoints, gt ct means using ground truth center keypoints.

Method AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

BANet 40.7 56.5 43.6 22.4 44.9 55.8 32.5 52.1 55.4 31.5 60.2 74.8

BANet without bia 39.4 55.2 42.0 21.7 42.6 54.1 31.8 51.2 54.9 31.7 59.2 73.8

BANet without akc 41.0 56.2 44.2 21.9 44.8 56.9 32.2 51.1 54.1 31.3 58.6 72.0

BANet without bia & akc 39.9 54.6 42.9 20.8 43.7 54.0 31.6 49.8 52.8 30.5 57.5 69.0

BANet without bia + gt ex 52.9 66.1 56.7 34.7 60.2 64.3 36.4 56.0 58.2 39.3 65.3 68.2

BANet + gt ex 54.0 67.5 57.7 35.6 61.1 67.1 36.9 57.1 59.5 40.7 66.3 71.1

BANet without bia + gt ct 50.7 64.1 56.0 26.9 55.7 70.0 36.7 55.1 57.2 32.1 62.5 77.4

BANet + gt ct 51.3 64.8 56.7 27.3 56.1 71.5 36.9 55.7 57.7 32.3 62.8 78.8

4.1 Comparisons with Other One-Stage Object Detectors

Table 1 showed the comparison with several popular one-stage object detectors on
the MS COCO val2017 dataset. Compared with the baseline ExtremeNet [23], the
proposed BANet achieved a comparative improvement. BANet reported a test-
ing AP of 40.7%, an improvement of 0.4% over 40.3%, and a test AR100 of 55.4%,
an improvement of 2.3% over 53.1%, achieved by ExtremeNet under the same set-
ting. Moreover, BANet surpassedCornerNet [8] in AP . CornerNet used associative
embeddings to help combine different keypoints, while BANet used a pure geomet-
ric method. These results firmly demonstrate the effectiveness of BANet.

4.2 Ablation Study and Error Analyse

Boundary Information Aggregation: After adding boundary information
aggregation module, our network reached 41.0%AP and 54.1%AR, which was
1.1% and 1.3% higher than the baseline. This proved the effectiveness of our pro-
posed module. See Table 2 for more details. We can find that boundary informa-
tion aggregation had the greatest improvement on large objects, it was because
keypoint-based methods were very strict in detecting large objects. In their post-
processing, no matter large objects, medium objects and small objects, the object
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Fig. 5. Visualization of detection results. Images showed detected extreme keypoints
heatmaps (left), center keypoint heatmaps (middle), and detection results (right)
respectively.

center only occupied a pixel on the feature map, so for large objects, its location
should be more accurate.

Adaptive Keypoint Combination: Results were shown in Table 2. We can
see that the adaptive keypoint combination algorithm had little change in AP ,
but because of the use of offset information and the definition of central region,
the model greatly exceeded baseline in AR, especially for large objects, which
indicated that combination algorithms on feature maps were very strict in detect-
ing the center keypoint of large objects. After changing, the acceptable region
of candidate boxes had been expanded, especially large objects, so their recall
rates had been greatly improved.

Error Analysis: In order to further analyze the influence of boundary infor-
mation aggregation on different parts of the whole model, we used ground truth
extreme keypoint heatmaps and ground truth center keypoint heatmap to replace
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the corresponding predicted heatmaps, and compared the gap of the other part.
The specific comparative information was shown in Table 2.

Discussions: Through the experimental results, we can get the following two
conclusions: (1) After adding boundary information aggregation, the model had a
great improvement in the prediction of center keypoints. This further shows that
proposed module can obtain boundary information and locate center keypoints
more accurately. (2) Without modifying other parts of the model, boundary
information aggregation also slightly improved the prediction performance of
extreme keypoints, which showed that the model paid more attention to the
training of extreme keypoints (the proportion of loss was larger) due to the
reduction of the difficulty of center keypoint prediction.

4.3 Visualization of Detection Results

Images in Fig. 5 visualized detected heatmaps and final results. In order to show
the detected keypoints, we added a mask to the original image and highlight
different categories of keypoints with different colors on the heatmaps. These
qualitative results proved that our network can find keypoints and combine them
to obtain the final bounding boxes accurately.

5 Conclusions

In this paper, we have proposed a new keypoint-based object detection network,
namely BANet. Specifically, we propose the boundary information aggregation
algorithm to achieve better center keypoint location. Besides, we propose the
adaptive keypoint combination algorithm to obtain more accurate keypoints
combination. Experiments have demonstrated the effectiveness of our BANet.
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