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Abstract. Due to rapidly relative motion between target and infrared imaging
platform, clutter background, etc., robust small infrared aerial target detection is
still an open problem. A novel small infrared aerial target detection method using
spatial and temporal cues is proposed in this paper. First, using spatial cues,we take
target candidate detection as a binary classification problem. Target candidates
in each single frame are detected via interesting pixel detection and a trained
LightGBM model. Then, using temporal cues, we model the local smoothness
and global continuous characteristic of the target trajectory as short-strict and
long-loose constraints. The trajectory constraints within image sequence are used
in detecting the true small infrared aerial targets from numerical target candidates.
Experiment results on the public dataset SIATD show that the proposed method
performs better than other existingmethods in detecting small infrared aerial target
and shows great robustness toward clutter backgrounds.

Keywords: Aerial · Small infrared target detection · Spatial and temporal cues ·
Trajectory constraint · LightGBM

1 Introduction

Infrared detection has advantages of all-day and all-weather operation, high resolution,
etc. Thus, infrared detection system has been widely used in air platform early warning,
guidance, etc. [1]. Due to the rapidly relative motion and clutter backgrounds, small
aerial target detection is still an open problem for the airborne infrared detection system.

Existing infrared detectionmethods can be categorized into single frame basedmeth-
ods and multiple successive frames based methods. Single frame based methods detect
the small infrared target mainly using the differences between the target and background.
The small infrared target is often modeled as a spot target of isotropic distribution and
this kind method is easy to be implemented and efficiently. However, cues provided by a
single frame may be inadequate for robust small infrared target detection. The temporal
cues contained in multiple successive frames are important to robust small infrared tar-
get detection [1]. Multiple successive frames based methods boost the performance of
small target detection by associating multiple image data. However, the adoption of the
temporal cues increases the computational complexity. And such existing methods have
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trouble in detecting small aerial targets for airborne infrared detecting systems focused
in this paper.

Existing works have demonstrated that temporal cues play an important role in
robust small infrared target detection, especially for complex cases. For the targets,
we find that the true targets exhibit continuous and smooth long trajectories while the
clutter does not. Based on the facts, this paper tackles the problem of small infrared
aerial target detection by using spatial and temporal cues. The proposed method firstly
detects the target candidates from each frame using interesting pixel selection and a
trained highly efficient gradient boosting decision tree (LightGBM) [2] model. Then
based on the short-strict and long-loose constraints, the true targets are detected from
numerical target candidates by trajectory segment growth and merging. Experimental
results indicate that our method can detect the small infrared aerial targets robustly and
achieves superior performance than other existing methods.

2 Related Works

Most related works to this paper are summarized in this section. As mentioned above,
existing small infrared target detection methods can be classified into single frame and
multiple frames based methods.

2.1 Single Frame Based Methods

Single frame based methods detect the small infrared targets from a single image. They
are mainly using the difference between the target and the background.

Moradi et al. [3] modeled the spot target using the point spread function of the
imaging system. Such a method is simple and efficient. However, it performs poorly
under clutter backgrounds. Based on the remote imaging and infrared imaging char-
acteristics, researchers modeled the background as approximately common or uniform
components. Compared to the background, the small target has a small spatial spread.
The small target is detected by subtracting the estimated background. Gao et al. [4]
modeled the background using Infrared Patch-Image (IPI) reconstruction. Xue et al. [5]
introduced multiple sparse constraints in reconstruction. These methods usually work
well only when the background satisfies the assumption of large space expansion, and
the background modeling takes a lot of time. Zhao et al. [6] extract spatial size and
contrast information of small infrared targets in the max-tree and min-tree and proposed
a novel detection method based on multiple morphological profiles. The method suffers
a high false alarm rate for clutter backgrounds.

For CNN-related methods, Dai et al. [7] preserved and highlighted the small target
feature by exploiting a bottom-up attentional modulation integrating the low-level fea-
tures into the high-level features of deeper layers. And the authors of [8] constructed
a Generative Adversarial Networks (GAN), upon U-Net, to learn the features of small
infrared targets and directly predict the intensity of targets.
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2.2 Multiple Frames Abased Methods

Single frame basedmethods have trouble in detecting small infrared targets under clutter
backgrounds.Multiple frames basedmethods introduce temporal cues in target detecting
via association between successive frames.

Marco et al. [9] proposed a generalized likelihood ratio test based method for small
target detection in sea background. [10] adopted passion distribution in energy accumu-
lation for small infrared target detection. Single pixel association methods are sensitive
to clutter backgrounds or isolated spot noise. Li et al. [11] enhanced the small infrared
target via saliency analysis based on motion and appearance. The spatio-temporal tensor
model is adopted to model the background in [12, 13]. The multiple subspace learning
is adopted to modify [14] in [15]. Such methods cannot handle rapidly changing back-
grounds well. In addition, the methods are often complex and cannot meet the needs of
real-time applications.

Most of existing exploration works are single frame based methods. Temporal cues
have not been adopted in the mentioned works. Although the performance of related
works has been improved, they have difficulties in detecting small infrared aerial targets
under clutter backgrounds.

3 Small Infrared Aerial Target Detection using Spatial
and Temporal Cues

The proposed method firstly detects target candidates from each frame using a trained
LightGBM model. Then the trajectory candidates are generated by linking the target
candidates within successive frames. The true trajectories that meet the short-strict and
long-loose constraints are detected finally.

3.1 Target Candidate Detection for Each Frame

Due to remote imaging, the small aerial targets are presented as spot targets in the image.
And, the spot targets may brighter or darker than their surroundings. This paper takes
the target candidate detection for each frame as a binary classification problem. For
each interesting pixel, we extract features in the local region centered on it. Then the
trained LightGBM model takes the features as input and determines the pixel is a target
candidate or not.

Interesting Pixel Detection. The small infrared targets only correspond to s small part
of pixels in the images. In order to detect the small infrared target efficiently, we extract
the interesting pixels which are more likely to be the target from the image and enter
the following process. As mention above, the small infrared aerial target focused in this
paper is often presented as a spot target. It may brighter or darker than its neighbors. This
paper adopts positive and negative median filter to detect interesting pixels, as shown in
Eq. (1).

Label(x, y) =
{
1, I(x, y) > (k1 + median((x, y)))|I(x, y) < (median((x, y)) + k2)
0, otherwise

(1)
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For the input image I , Label(x, y)=1 indicates the pixel (x, y) is an interesting pixel and
Label(x, y)=0 denotes not. median((x, y)) calculates the median value in a local region
of certain size centered on (x, y). We set the parameters k1 = 15 to select the brighter
targets and k2 = −20 to select the darker targets.

FeatureExtraction andLearning. This paper adopts LightGBM[2] in target candidate
detection. This paper extracts features for each interesting pixel in the local region which
is as rectangle centered on it and computes 7 features from the local region, including
kurtosis γ2, skew Sk , entropy H , mean μ, variance σ 2, maximum vmax and minimum
vmin. Let LR1×R2(x, y) denotes the local rectangle region centered on the pixel (x, y)
of size R1 × R2. We flat the region into vector V={v0, v1, ......, vN−1}N=R1×R2 . The
definitions of the 7 features are as Eq. (2) shows. p(.) denotes the probability of the
intensity value and it can be inferred from the intensity histogram of the input image.

kurtosis : γ2 = μ4
σ 4 − 3 variance : σ 2 = 1

N

∑
vi∈V

(vi − μ)

skew : Sk = μ3
σ 3 maximum : vmax = max

vi∈V
(vi)

entropy : H (V) = − ∑
vi∈V

p(vi) log p(vi) minimum : vmin = min
vi∈V

(vi)

mean : μ= 1
N

∑
vi∈V

vi

(2)

In the training dataset, the small infrared aerial targets are annotated. We take the
pixels within the regions centered on the label positions of size 3×3 as positive samples.
The remaining pixels in the images can be taken as negative samples. The 7 dimension
feature vector by multi-scale processing strategy is calculated for each sample to train
the LightGBM model.

3.2 Target Detection Using Trajectory Constraints

The target candidates in each frame have been detected as mentioned above. We use the
homograph transform to model the inter-frame movement in this paper. The registration
between successive frames is built by SURF [16] feature point extraction and matching.
Then we remap the target candidates in each frame to the coordinate of the first frame
within the time window.

We intend to detect the true targets whose trajectories obey the short-strict and long-
loose constraints. In the captured image sequence, the true target form a continuous
and smooth long trajectory. The long trajectory can be used to distinguish targets from
back- grounds robustly. This paper models the target’s movement as a piecewise uniform
motion. We impose the strict constraint, uniform motion, on the trajectory in a small
time interval to eliminate the interference of noise as much as possible. On the contrary,
we impose the relax constraint on the trajectory in a long time range to extend the length
of the trajectory as much as possible. The trajectory synthetizing and validation include
trajectory segment growth and merging. They are detailed as the following.
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Trajectory Segment Growth with Short-Strict Constraint. Trajectory segment
growth links the target candidates in the current frame to the existing trajectory seg-
ments properly. This paper models the target movement as uniform motion, i.e. under
the short-strict constraint, in a small time interval. We set the small time interval is 3
successive frames in this paper. Trajectory segments are growing under the short-strict
constraint. Given the existing trajectory segment set

{
T i

}
M and the target candidate set{

ctj

}
N
in the current frame t.

Fig. 1. Trajectory segment growth with short-strict constraint.

As shown inFig. 1,we take a sample trajectory segmentT i = {· · · , nit−3, n
i
t−2, n

i
t−1

}
to detail the implementation of trajectory segment growth. nit−1 is the detected target in
the last frame (t − 1). Under the uniform motion constraint in the small time interval,
we define the cost of linking ctj to T i. The link involves nit−2, n

i
t−1 and ctj . Using nit−2

and ctj , we get the ideal middle point ni
′
t−1 under the uniform motion constraint. dij is

the Euclidean distance between nit−1 and ni
′
t−1. The cost C(i, j) of the link is defined as

Eq. (3).

C(i, j) = dij∥∥nit−2 − nit−1

∥∥
2

=
∥∥∥nit−2 + ctj − 2nit−1

∥∥∥
2

2 × ∥∥nit−2 − nit−1

∥∥
2

(3)

The smaller the C(i, j) is, the more the link is met with the short-strict constraint. The
cost matrixC contains all possible links’ cost values.We define the binary linkingmatrix
A1 in Eq. (4).

A1(i, j) =
{
1,C(i, j) ≤ σ1

0,C(i, j) > σ1
(4)

σ1 is the cost threshold and is set 0.2. We also restrict the absolute velocity value of
the target. The restriction for the target candidates ct−1

j and ctj in successive frames is
defined as Eq. (5). σ2, a velocity threshold, is set 10.

CoV
(
ct−1
j , ctj

)
=

{
1,

∥∥nit−2 − nit−1

∥∥
2 ≤ σ2

0,
∥∥nit−2 − nit−1

∥∥
2 > σ2

(5)

For an existing trajectory segment, if more than one target candidate meet Eq. (3–4), we
link the trajectory segment to each target candidate and record every new link as a new
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trajectory segment. In order to find new target, we also link the target candidates
{
ctj

}
N

in the current frame t and the candidates
{
ct−1
j

}
N ′ in the last frame (t−1) under Eq. (5)

to form new trajectory segments.

TrajectorySegmentMergingwithLong-LooseConstraint. Due to noise interference
or clutter background, it results in that the true target trajectory is divided into sev-eral
segments. Trajectory segment merging intends to link the trajectory segments which
correspond to the same target. The merging is performed according to the similarity
between trajectory segments. Figure 2 presents three track segment pairs with different
relative positions. Comparing to the segments in Fig. 2(a, c), the segments in Fig. 2(b)
are more likely to corresponding to the same target.

This paper summarizes the features of the track segments which are correspond-ing
to the same target as follows: (a) The track segments do not overlap in time. (b) The
extension of the track segments is close to each other. (c) The velocity values of different
track segments are close to each other. We take two track segments and as samples to
detail the definition of the similarity measure, as shown in Fig. 3.

Fig. 2. Track segment pairs with different relative positions. (The dot line represents the extension
of the track segment.)

Fig. 3. Similarity measure for trajectory segment merging

T 1 and T 2 do not overlap in time. T 1 ends at frame (t − 4) and T 2 starts at frame (t − 1).
According to the uniform motion constraint, we extend T 1 and T 2 to frame (t − 3) and
(t − 2). The extended target positions are

{
p1t−3, p

1
t−2

}
and

{
p2t−3, p

2
t−2

}
. If T 1 and T 2

belong to the same target trajectory, we link n1t−4 and n2t−1. Under the uniform motion
constraint, the interpolated target positions are

{
pt−3, pt−2

}
as shown in Fig. 5. This

paper uses the distances between extended target positions and the interpolated target
positions to define the similarity measure s

(
T 1,T 2

)
between T 1 and T 2 as Eq. (6).

s
(
T 1,T 2

)
= (t − 1) − (t − 4) − 1

t−2∑
k=t−3

(∥∥p1k − pk
∥∥
2 + ∥∥p2k − pk

∥∥
2

) (6)

The above is a detail description of the similarity definition of two trajectory segments
T 1 and T 2 with a time interval 2. For other cases, the similarity is calculated similar to
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the above definition. The similarity matrix S=[
s
(
T i,T j

)]
M×M is a symmetric matrix

(S(i, j) = S(j, i)) with zero diagonal elements (S(i, i) = 0). We get the binary link
matrix A2 as Eq. (7).

A2(i, j) =
{
1, S(i, j) ≥ σ3

0, S(i, j) < σ3
(7)

Where σ3 = 0.1 is a set threshold. The parameter corresponds to the degree of relaxation
of the long-loose constraint. Considering the continuous of the target movement, we give
priority to merging long trajectory segments. We sort the trajectory segments according
to their lengths in a descend order, i.e. the first row A2 in corresponding to the longest
trajectory segment in

{
T i

}
M .

We delete the trajectory segment without growth or merging in last 5 frames from
the list.

After trajectory segment growth and merging, we detect small aerial infrared target
according to the length of the trajectory. The length threshold σ5 is defined as Eq. (8).

σ5 = �μ × L� (8)

Where μ is a constant. L is the length of the time window. If the length of a trajectory is
larger than σ5, the corresponded target candidates are detected as true targets. The target
can be detected continuously through the trajectory segment growth. We assume that
there is at most one target in a position at the same time. Thus for the crossed trajectory
segments, we keep the longest trajectory and eliminate others.

4 Experiments

4.1 Experimental Settings

To validate the performance of the proposed algorithm qualitatively and quantitatively,
we conduct experiments on the public datasets SIATD [17]. We perform comparisons
between our method with representative existing methods, including single frame based
methods (RIPT [18], MLCM [19], AGADM [20]) and multiple frames based method
(TIPI [21]). For the compared methods, we use the implementations released by the
authors and default parameter settings suggested in their papers. For the proposed
method, the parameters are set as follows: local region size R1 × R2: 3 × 3, 7 × 7,
11 × 11, 15 × 15, length percentage μ: 0.15, and time window length L: 20. For con-
veniently, we denote our target candidate detection algorithm as “Med-LGBM” and the
whole method as “Proposed”.

We appoint that the target is correctly detected if the detection locates in the 3-pixel
neighborhood of the ground truth in the experiments within this paper.

4.2 Target Detection from Image Sequence

In this section, we conduct experiments of small infrared aerial target detection from
image sequences in the SIATD dataset. The proposed method firstly detects target can-
didates from each single frame via interesting pixels detection and a trained LightGBM
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Table 1. Target candidate detection on the testing subset of SIATD dataset.

Algorithm Recall Precision Fβ − measure Average number of target
candidate per frame

Inter-frame differencing 0.73 0.30 0.43 3.96

Med-LGBM 0.74 0.84 0.79 0.87

model as described in Sect. 3.1. For successive frames, a simple commonly used target
candidate detection method is inter-frame differencing and thresholding. We compare
the simple method with the proposed target candidate detection method on the testing
subset of the SIATD dataset. For the inter-frame differencing based method, we perform
inter-frame registration as described in Sect. 3.2. And the threshold is determined adap-
tively via Otsu [22]. The LightGBM model trained on the training subset of the SIATD
dataset. The results are presented in Table 1.

The results in Table 1 show that the proposed target candidate detection method
achieves higher recall and precision than the inter-frame differencing based method. It
is about 0.87 target candidates on average detected by the proposedmethodwhichmakes
the following trajectory growth and merging as efficient as possible. It should be noted
that there are at most 3 true targets in each frame and the target may move out of view
in SIATD. Thus the average number of target candidate per frame of Med-LGBM is
less than 1. The low average number indicates the high precision of the proposed target
candidate detection method to some extent.

This paper detects the true targets from target candidates using trajectory constraints.
The short-strict and long-loose constraints described in Sect. 3.2 make the proposed
method enable to track long target trajectories. We present two detected trajectories
within two sample image sequences from SIATD in Fig. 4. It can be seen from Fig. 4 that
the targets’ trajectories are tortuous but smooth and continuous. The proposed method
detects them correctly.

Fig. 4. The detected trajectories for two sample image sequences form SATD dataset.

We train the LightGBM model using the training subset in SIATD. For fairness, we
only reported the results on the testing subset in this section. Figure 5 shows sample
detection results from the SIATD dataset.

We note that only the correct detections are labeled for the compared methods. Due
to too many false alarms detected by some compared methods (e.g. the 2nd–th row in
Fig. 5), this paper don’t labeled the false detections for clearly. However, there are
not much false detection outputted by our method and we labeled them in presented
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Fig. 5. Sample detection results of AGADM, RIPT,MLCM, TIPI and the proposed method. (The
detected target are labeled by “ ” and the true targets are labeled by “ ” .)

results. The results in Fig. 5 show that existing algorithms have trouble in detecting the
small infrared aerial targets, especially for targets under clutter backgrounds. Clutter
backgrounds bring great difficulties for AGADM, RIPT and MLCM. False targets are
detected in the clutter background area as shown in Fig. 5. TIPI has trouble in modeling.

the quick changing of the background. Strong edges bring false detections as shown
in the 3rd row in Fig. 5. While the proposed method detects the targets correctly and
performs better than other algorithms. As shown in the 2nd column in Fig. 5, a darker
target locates in the building region. The proposed method detects it correctly while
others not.

For quantitative evaluation, the quantitative evaluations of each algorithm on the
testing subset are reported in Table 2, including results of each scene type and the whole
testing subset.

Table 2. Quantitative evaluation of AGADM, RIPT, MLCM, TIPI and the proposed method on
the testing subset of SATD. (P for precision, R for recall and F for Fβ − measure.)

Up
looking

Head up
looking

Down
looking
(Vegetation)

Down looking
(Water)

Down looking
(Building)

Whole

AGADM P 0.14 0.14 0.03 0.01 0.01 0.01

R 0.33 0.33 0.18 0.07 0.05 0.02

F 0.20 0.20 0.06 0.02 0.02 0.01

RIPT P 0.33 0.33 0.26 0.32 0.30 0.30

R 0.79 0.79 0.63 0.78 0.74 0.75

F 0.47 0.47 0.38 0.46 0.44 0.43

(continued)



Small Infrared Aerial Target Detection Using Spatial and Temporal Cues 145

Table 2. (continued)

Up
looking

Head up
looking

Down
looking
(Vegetation)

Down looking
(Water)

Down looking
(Building)

Whole

MLCM P 0.26 0.26 0.14 0.13 0.13 0.05

R 0.61 0.61 0.33 0.33 0.33 0.13

F 0.36 0.36 0.20 0.19 0.20 0.08

TIPI P 0.03 0.01 0.01 0.01 0.00 0.01

R 0.37 0.02 0.01 0.01 0.00 0.08

F 0.07 0.01 0.01 0.01 0.00 0.02

Med-
LGBM

P 0.54 0.42 0.87 0.50 0.68 0.68

R 0.87 0.85 0.72 0.88 0.59 0.76

F 0.67 0.56 0.79 0.64 0.64 0.72

Proposed P 0.95 0.76 0.99 0.93 0.98 0.92

R 0.66 0.65 0.60 0.69 0.57 0.63

F 0.78 0.72 0.75 0.79 0.72 0.75

As mentioned above, clutter backgrounds bring great challenges for existing single
frame based methods. AGADM, RIPT and MLCM achieve lower precisions than the
proposed method. The cluttered degrees of the backgrounds within the Down looking
scene are higher than that within the Up looking scene generally. The performances of
the compared methods decrease with the increase of the cluttered degree as shown in
Table 2. Our target candidate detectionmethodMed-LGBMachieves better performance
than them. LightGBM is a learning based method. Its performance heavily depends on
the training data. We reported the results for each scene type separately and the whole
testing subset in Table 2. The results on the whole testing subset are similar to those on
different scene types. It indicates that Med-LGBM can deal with a variety of complex
scenes.

TIPI cannot handle quick changing clutter background well and achieves poor per-
formance on SIATD dataset a shown in Table 2. By introducing the short-strict and
long-loose trajectory constraints, the proposed method achieves superior performance
than other existing algorithms in detecting small infrared aerial targets as shown in Table
2.

The results in Table 2 indicate that the precision is improved greatly from Med-
LGBM to Proposed by introducing trajectory constraints. The false detections are
removed effectively. The clutter within the background cannot form a smooth and contin-
uous trajectory as the true target does. However, as Table 2 shows, the recall is decreased
from Med-LGBM to Proposed. It means that some correct detected targets are removed
wrongly in trajectory growth and merging. We analyzed the experimental results and
found that most of the removed correct detected target candidates are isolated detected
targets. There is no detected target close to them in the previous and the subsequent
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frames. So they cannot form valid trajectory segments and are removed from the final
detection.

5 Conclusions

This paper tackles the challenge of small infrared aerial target detection. According to the
characteristics of continuity and smoothness of target trajectory, a novel small infrared
aerial target detection method using spatial and temporal cues is proposed in this paper.
For the target candidate detection from each single frame, using the spatial cues, this
paper treats it as a binary classification problem.We use interesting pixel detection and a
trained LightGBMmodel to detect target candidates. For the temporal cues, we adopt the
piecewise uniform motion model to approximate the target movement. The true targets
are detected from the target candidates using the short-strict and long-loose constraints.
The constraints are used in trajectory segment growth and merging. Experiments on
the publicly available dataset SIATD indicate that the proposed method achieves better
performance than other existing methods.
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