
Chapter 6
Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) has experienced a renaissance in com-
putational mechanics in recent years. Due to the increased computing power, the
additional effort due to the search algorithm, among other things, is no longer so
significant. Nevertheless, some shortcomings are still present as will be shown in
this chapter.

Smoothed Particle Hydrodynamics (SPH) is a spatial discretization scheme devel-
oped in the seventies by Gingold and Monaghan (1977) and in parallel by Lucy
(1977). The first applications were limited to the field of astrophysics. In the mean-
time, this method has also become established in computational mechanics and is
used especially for the simulation of fluid flows with free surfaces. Although the
formulation is equally suitable for fluids and solids, different variants have been
established for the two scenarios.

The SPH subdivides the domain into individual particles at which all quantities
are evaluated. In the SPH, own technical terms have been established over the years.
In the individual sections, the corresponding definitions are discussed and related to
the usual expressions from Chap. 4.

6.1 Discretization Concept

The starting point is the description of the approximate solution in terms of an integral
function similar to Sect. 4.6.4. To be able to express u at any point, the kernel function
must possess a reproducing property. This is given for the δ-Dirac function

u (x) =
∫
Hx

δ
(
x − x′) u (

x′) dvx′ . (6.1)

On the other hand, the δ-Dirac function is neither continuous nor differentiable.
Due to these pathological properties, this approach is not suitable in the context of
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a discretization (Li and Liu 2007). In SPH, an attempt is made to get as close as
possible to the reproducing properties by means of a smooth differentiable function,
the so-called weighting or kernel functionW . The values ofW in the domain can be
controlled by the so-called smoothing length h

〈u (x)〉 =
∫
Hx

W
(
x − x′, h

)
u

(
x′) dvx′ . (6.2)

Since W is mostly chosen such that it violates the reproducing property, the result
does not match the function at the corresponding position. In the equation above this
is indicated by the angle bracket. Rather, (6.2) can be understood as an averaging.
Alternatively, the value on the right-hand side can be changed. Thus, the function u
can be approximated by the unknown values a in the neighborhood

u (x) =
∫
Hx

W
(
x − x′, h

)
a

(
x′) dvx′ . (6.3)

There are two requirements on the weighting function in SPH. In the limit as the
smoothing length approaches zero W must equal the δ-Dirac function. In addition,
to ensure that for a constant displacement field the left-hand side in (6.2) reflects the
correct value of u, a normalization property is required

lim
h→0

W
(
x − x′, h

) = δ
(
x − x′) ,

∫
Hx

W
(
x − x′, h

)
dvx′ = 1. (6.4)

In the discrete form, the sum over all particles Nx in the neighborhood of x replaces
the integral in (6.3)

u (x) =
Nx∑
J=1

W (x − xJ , h) aJvJ . (6.5)

The unit of W is 1/m3. The multiplication of the weighting function by the volume
can be interpreted as a shape function

u (x) =
Nx∑
J=1

NJ (x)aJ , NJ (x) = W (x − xJ , h)vJ . (6.6)

The weighting function is usually based on the distance r = ‖x − xJ‖. The value
has its maximum at x and decreases towards the boundary of the neighborhood.
The size of the smoothing length h usually correlates with the radius of the search
algorithm (Li and Liu 2007). To simplify the notation, instead of explicitly specifying
the coordinates, only the index of the particle is given, i.e.

vI := v (xI ) , f sI := f s (xI ) , σ I := σ (xI ) . (6.7)
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In addition, different abbreviations exist for the weighting function

W (xJ − xI , h) := W (xJ − xI ) = WI (xJ ) = WI J . (6.8)

For the calculation of derivatives, such as the divergence of stress, the integral from
(6.2) has to be differentiated

〈divσ (x)〉 = ∂

∂x

∫
Hx

W
(
x − x′) σ

(
x′) dvx′ : 1 =

∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x

dvx′ .

(6.9)
The operator : denotes the double contraction between two tensors. The use of radial
weighting functions leads to properties which can be advantageous in the context of
a discretization. SinceW is based on the distance between two points, the arguments
of the function can be interchanged

W
(
x − x′) = W

(
x′ − x

)
. (6.10)

For the derivative of the weighting function this property results in quite useful
relations

∂W
(
x − x′)
∂x

= −∂W
(
x − x′)
∂x′ = −∂W

(
x′ − x

)
∂x′ = ∂W

(
x′ − x

)
∂x

. (6.11)

The same applies for the discrete case

∂W (xI − xJ )

∂xI
= −∂W (xI − xJ )

∂xJ
= −∂W (xJ − xI )

∂xJ
= ∂W (xJ − xI )

∂xI
. (6.12)

A more detailed introduction to the discretization concept of SPH can be found, for
example, in Li and Liu (2007) or Liu and Liu (2003).

Remark 6.1 Due to the dimension, theweighting function can also be assumed to be
an operator that determines the density at a point from the mass in the neighborhood
(Price 2012)

ρ (x) =
Nx∑
J=1

W (x − xJ , h)mJ . (6.13)

If the mass mJ at each particle is constant during the calculation, the conservation
of mass is always satisfied.

Remark 6.2 InMonaghan (1992), so-called golden rules for a better approximation
are defined, without giving an exact justification. Therein, it is recommended to use
a Gaussian weighting function. However, mostly Wendland functions (Wendland
1995) are chosen for W , e.g.
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W (x − xJ , h) = 1

π h3

{(
1 − r

2 h

)4 (
1 + 4 r

2 h

)
for r ≤ 2 h

0 for r > 2 h
. (6.14)

To ensure the correct unit, the function is divided by the volume. The distances are
normalized by the smoothing length h.

6.2 Equivalence Weak Form and Reduced Order Strong
Form

The discretization concept of SPH can be applied to all variants from Sect. 4.2. Nor-
mally, the domain is only subdivided into particles. An exception is the Normalized
SPH (Randles and Libersky 2000), which is based on a two-point approach. Cal-
culations of fluid flow are usually based on the strong form whereas simulations of
solid deformations rely on the strong form with reduced order.

Substituting the relation betweenweighting and shape functions (6.6), the internal
force of the weak form (4.14) can also be formulated as a function of W

f s w f
I =

NI∑
J=1

σ J
∂NI (xJ )

∂xJ
vJ =

NI∑
J=1

σ J
∂W (xJ − xI )

∂xJ
vIvJ . (6.15)

Also, in the case of the reduced order strong form (4.23), this contribution can be
specified in more detail

f s roI = −vI

NI∑
J=1

σ J
∂NJ (xI )

∂xI
= −

NI∑
J=1

σ J
∂W (xI − xJ )

∂xI
vIvJ . (6.16)

Exploiting the properties of radial functions (6.12), it can be shown that both
approaches are equivalent

f s roI = −
NI∑
J=1

σ J
∂W (xI − xJ )

∂xI
vIvJ =

NI∑
J=1

σ J
∂W (xJ − xI )

∂xJ
vIvJ = f s w f

I .

(6.17)
The contributions from the inertia term and the dead load are identical. This shows
the equivalence between the weak form and the reduced order strong form in the
framework of the SPH. Thus, even for the strong form, the forces due to the Neumann
boundary conditions can be determined directly from (4.17).

Remark. In Randles and Libersky (1996), Belytschko et al. (1998) or Rabczuk et al.
(2004) an alternative approach is used to calculate the derivative. This variant results
directly from (6.9) taking into account (6.11)
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〈divσ (x)〉 =
∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x

dvx′ = −
∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x′ dvx′ .

(6.18)
From the equivalence theorem, the first relation corresponds to the derivative rule in
the framework of the strong form and the second to the rule of the weak form.

6.3 Integration Constraint

In Bonet and Kulasegaram (2000), it is shown that even in the SPH an additional
requirement must be fulfilled beside the reproducing conditions to satisfy the patch
test. This requirement corresponds exactly to the integration constraint. One reason
provides directly Sect. 6.2. Another justification results from the discretization con-
cept of the SPH, which follows from an integral. Thus, the divergence of stress can
alternatively be determined from the individual contributions in the neighborhood

〈divσ (x)〉 =
∫
Hx

W
(
x − x′) divσ

(
x′) dvx′ . (6.19)

Using Gauss’ integral theorem, the right-hand side can be related to the derivative
of the weighting function

∫
Hx

W
(
x − x′) divσ

(
x′) dvx′ =

∫
∂Hx

W
(
x − x′)σ

(
x′)n (

x′) dax′

−
∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x′ dvx′

(6.20)

Exploiting (6.10) and (6.11) as well as the transition x′ → x, x → xI an alternative
expression can be obtained

∫
HI

W (x − xI ) divσ (x) dvx =
∫

∂HI

W (x − xI )σ (x) n (x) dax

−
∫
HI

σ (x)
∂W (x − xI )

∂x
dvx.

(6.21)

Since W (x − xI ) vI = NI (x), this relation corresponds exactly to the integration
constraint given in (4.74). The standard patch test is satisfied if Eq. (6.20) is fulfilled
for a constant stress

∫
Hx

∂W
(
x − x′)
∂x′ dvx′ =

∫
∂Hx

W
(
x − x′)n (

x′) dax′ . (6.22)
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In discrete form, this requirement results in a constraint that each particlemust satisfy
separately

vI

NI∑
J=1

∂W (xI − xJ )

∂xJ
vJ =

{
0 inner particles
n̄I boundary particles

. (6.23)

The resulting normal vector at the boundary particle follows directly from the dis-
cretization of the right-hand side in (6.22)

n̄I =
NI∑
J=1

W (xI − xJ )nJ aJ . (6.24)

If the condition from the integration constraint is violated, a correction is needed.
An approach can be found in Bonet and Kulasegaram (2000) which is specified in
more detail in Sect. 5.1.3.

Remark. In Belytschko et al. (1998) there is a hint that (6.20) can be a reason for
an error in the approximation. However, the reference to the integration constraint is
missing. Instead, the analysis bears upon the derivative rule according to (6.18).

6.4 Alternative Derivative Rules

Besides to the variants (6.9) and (6.18) there are two additional concepts in SPH to
calculate the derivative of a quantity.

6.4.1 Product Rule

With the help of another quantity, such as the density, the divergence of stress can
be reformulated

div (ρσ) = ρdivσ + σ grad ρ leading to divσ = 1

ρ

[
div (ρσ) − σ grad ρ

]
.

(6.25)
Using the derivative rule (6.9), the divergence in SPH can also be calculated bymeans
of a difference

〈divσ (x)〉 = 1

ρ (x)

∫
Hx

[
σ

(
x′) − σ (x)

]
ρ

(
x′) ∂W

(
x − x′)
∂x

dvx′ . (6.26)

If the ratio of the densities is assumed to be one, the alternative formulation from
Randles and Libersky (1996) is obtained, which is based on the rule given by Mon-
aghan (1988)
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〈divσ (x)〉 =
∫
Hx

[
σ

(
x′) − σ (x)

] ∂W
(
x − x′)
∂x

dvx′ . (6.27)

With the representation of the derivative after (6.19)

〈divσ (x)〉 = 1

ρ (x)

∫
Hx

W
(
x − x′) [

div
(
ρ

(
x′)σ

(
x′)) − σ (x) grad ρ

(
x′)] dvx′

(6.28)
the condition from the integration constraint results to

∫
Hx

W
(
x − x′) [

div
(
ρ

(
x′)σ

(
x′)) − σ (x) grad ρ

(
x′) ]

dvx′

=
∫

∂Hx

W
(
x − x′) ρ

(
x′) [

σ
(
x′) − σ (x)

]
n

(
x′) dax′

−
∫
Hx

ρ
(
x′) [

σ
(
x′) − σ (x)

]∂W
(
x − x′)
∂x′ dvx′ .

(6.29)

To meet the standard patch test, the above relation must be fulfilled for constant
stresses. In this case, both sides are identical zero. This also applies to particles near
or at the boundary and no resulting normal vector can be obtained.

6.4.2 Quotient Rule

Another way to rewrite the divergence of stress is based on the exploitation of the
quotient rule. This approach goes back to Gingold and Monaghan (1982)

div

(
1

ρ
σ

)
= 1

ρ
divσ − 1

ρ2
σ grad ρ leading to divσ = ρdiv

(
1

ρ
σ

)
+ 1

ρ
σ grad ρ.

(6.30)
In this case, the divergence is determined by the sum of stresses scaled by the density

〈divσ (x)〉 = ρ (x)
∫
Hx

[
σ

(
x′)

ρ (x′)2
+ σ (x)

ρ (x)2

]
∂W

(
x − x′)
∂x

ρ
(
x′) dvx′ . (6.31)

A simplified form is obtained when the ratio of densities is again neglected, like in
Bonet and Lok (1999)

〈divσ (x)〉 =
∫
Hx

[
σ

(
x′) + σ (x)

] ∂W
(
x − x′)
∂x

dvx′ . (6.32)

Again, the relationship for the integration constraint must be adjusted. Based on
(6.19) the divergence can be reformulated
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〈divσ (x)〉 = ρ (x)
∫
Hx

W
(
x − x′)

[
div

(
σ

(
x′)

ρ (x′)

)
+ σ (x)

ρ (x)2
grad ρ

(
x′)

]
dvx′

(6.33)
leading to the requirement

∫
Hx

W
(
x − x′)

[
div

(
σ

(
x′)

ρ (x′)

)
+ σ (x)

ρ (x)2
grad ρ

(
x′)

]
dvx′

=
∫

∂Hx

W
(
x − x′)

[
σ

(
x′)

ρ (x′)
+ σ (x)

ρ (x)2
ρ

(
x′)

]
n

(
x′) dax′

−
∫
Hx

[
σ

(
x′)

ρ (x′)
+ σ (x)

ρ (x)2
ρ

(
x′)

]
∂W

(
x − x′)
∂x′ dvx′ .

(6.34)

For the case of a constant stress and a constant density, the requirement reduces to
the original variant given in (6.22)

∫
Hx

∂W
(
x − x′)
∂x′ dvx′ =

∫
∂Hx

W
(
x − x′)n (

x′) dax′ . (6.35)

Remark 6.1 The second golden rule in SPH (Monaghan 1992) states that the formu-
lation (6.27) should be used to calculate the derivative. This form guarantees that the
derivative is zero if the corresponding quantities are constant in the neighborhood.

Remark 6.2 In Price (2012) a derivation of the mechanical balance equation for
barotropic fluids from the discrete Euler-Lagrange equation is given. In Bonet and
Lok (1999) the starting point is the discrete potential energy. The resulting discrete
balance equations are equivalent to the formulation given in (6.31).

6.5 Reproducing Conditions

In SPH,W is usually a radial function. The reproducing conditions are not necessarily
fulfilled in the discrete case, like e.g. for the 0th and the 1st order

Nx∑
J=1

W (x − xJ ) vJ �= 1,
Nx∑
J=1

W (x − xJ ) xJ vJ �= x. (6.36)

Due to the second property in (6.4), the weighting function satisfies the 0th order
reproducing condition in the continuous case. However, in the discrete case this is
mostly not given. The same follows for the derivatives
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Nx∑
J=1

∂W (x − xJ )

∂x
vJ = −

Nx∑
J=1

∂W (xJ − x)
∂xJ

vJ �= 0

Nx∑
J=1

xJ ⊗ ∂W (x − xJ )

∂x
vJ = −

Nx∑
J=1

xJ ⊗ ∂W (xJ − x)
∂xJ

vJ �= 1.

(6.37)

Different approaches are available to restore the requirements. In the following, four
different variants are presented. The first two allow a complete fulfillment of the
reproducing conditions. The last two forms show frequently used corrections for
certain requirements. In addition, other approaches exist. An older overview can be
found in Belytschko et al. (1998).

Variant 1 Since the shape functions are basedonan integral operator, the approaches
from Sect. 4.6.4 can be directly applied to satisfy the reproducing conditions up to
the necessary order. The component ω assuming ρ = 1 in (4.140) can be identified as
the weighting functionW . The remaining factor corresponds to the correction factor

W̃ (x − xJ ) = C (x, xJ )W (x − xJ ) , C (x, xJ ) = p (0) · M (x) p̃ (x − xJ) .

(6.38)
The weighting function that fulfills the reproducing conditions is marked with a tilde
over W .

Variant 2 An alternative approach is provided by Bonet and Lok (1999). The whole
algorithm is indicated as Corrected Smoothed Particle Hydrodynamics (CSPH). It is
based on the previous variant, considering only reproducibility up to 1st order. This
allows the correction scheme to be simplified

W̃ (x − xJ ) = W (x − xJ ) α(x) [1 + β(x) · (x − xJ )] . (6.39)

The values of the vector β are determined by the restoration of the 1st order repro-
ducing condition

β(x) =
[

Nx∑
J=1

[x − xJ ] ⊗ [x − xJ ]W (x − xJ ) vJ

]
−1

Nx∑
J=1

W (x − xJ ) [xJ − x] vJ .

(6.40)
After the calculation of β, the parameter α is determined from the fulfillment of the
0th order reproducing condition

α (x) = 1∑Nx
J=1 [1 + β(x) · (x − xJ )]W (x − xJ ) vJ

. (6.41)

Variant 3 If only the 1st order reproducing condition in the derivatives has to be
satisfied, the alternative correction from Randles and Libersky (1996) can be used,
see also Bonet and Lok (1999). A normalization guarantees that the reproducing
condition of 0th order is satisfied
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W̃ (x − xJ ) = W (x − xJ )∑Nx
I=1 W (x − xI ) vI

. (6.42)

The requirement on the 1st order in the derivative can be recovered using the tensor
L analogous to Sect. 4.6.2

∂W̃ c (x − xJ )

∂x
= ∂W̃ (x − xJ )

∂x
L−1 (x) . (6.43)

Since the weighting function W̃ satisfies the reproducing condition of 0th order in
the derivatives, the tensor L can be alternatively formulated based on differences

L (x) =
Nx∑
J=1

xJ ⊗ ∂W̃ (x − xJ )

∂x
vJ =

Nx∑
J=1

(xJ − x) ⊗ ∂W̃ (x − xJ )

∂x
vJ . (6.44)

Variant 4 In Monaghan (1988), the 0th order reproducing condition in the deriva-
tives is restored by a symmetrization. If a constant displacement field is present, by
definition, the gradient is always equal to zero

grad u (x) =
Nx∑
J=1

[
uJ − u (x)

]∂W (x − xJ )

∂x
vJ . (6.45)

This relationship corresponds to the product rule given in (6.27).

6.6 Discrete Conservation Properties

In the SPH, the discretization of the divergence operator is often based on either the
product or the quotient rule. In these cases, the conditions differ from the require-
ments in Sect. 4.5.5. Therefore, a separate investigation on the conservation of global
balance equations is needed. For the mechanical case, the study is based on the inter-
nal force due to the state of stress inside the material. The derivation focuses on the
strong form with reduced order but can be applied to the other descriptions in the
same manner.

6.6.1 Product Rule

Based on (6.26), the internal force at the particle is determined from a difference
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f sI = −vI

NI∑
J=1

ρJ

ρI
[σ J − σ I ]

∂W (xI − xJ )

∂xI
vJ . (6.46)

Exploiting (6.12), this contribution can also be understood as the sum of forces
between individual particles

f sI = −
NI∑
J=1

ρJ

ρI

[
f pI J + f pJ I

]
, f pI J = σ J

∂W (xI − xJ )

∂xI
vIvJ . (6.47)

The alternative formulation given in Randles and Libersky (1996) results if the ratio
between the densities is assumed to be one.

Global balance of momentum. This requirement is satisfied if the internal forces
over all particles n sum to zero, see also Sect. 4.5.5. By substituting (6.47) into (4.86),
since W (x − xJ ) ≡ 0, if x /∈ Hx, and by exploiting the interchange of indices, the
condition can be specified in more detail

n∑
I=1

fsI = −
n∑

I=1

n∑
J=1

[
ρJ
ρI

+ ρI
ρJ

]
f pI J =

n∑
J=1

vJσ J

NJ∑
I=1

[
ρJ
ρI

+ ρI
ρJ

]
∂W (xI − xJ )

∂xI
vI = 0.

(6.48)
To satisfy conservation of momentum for arbitrary stresses, the inner loop must be
equal to zero

NJ∑
I=1

[
ρJ

ρI
+ ρI

ρJ

]
∂W (xI − xJ )

∂xI
vI = 0. (6.49)

In the version of Randles and Libersky (1996), the condition reduces to satisfying
the 0th order reproducing condition in the derivatives.

Global balance of angularmomentum.This conservation results in the requirement
that the sum over all moments due to the internal forces must be equal to zero

n∑
I=1

f sI × xI =
n∑

I=1

E : xI ⊗ f sI = 0. (6.50)

Using (6.47) and taking advantage of the interchangeability of indices, the condition
can be formulated in dependence on the addition of position vectors

n∑
I=1

n∑
J=1

E : xI ⊗ ρJ

ρI

[
f pI J + f pJ I

]

=
n∑

I=1

n∑
J=1

E :
[
ρJ

ρI
xI + ρI

ρJ
xJ

]
⊗ ∂W (xI − xJ )

∂xI
σ JvIvJ = 0.

(6.51)
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It has to be noted that the symmetry of the stress tensor is assumed in the derivation,
i.e. E : σ ≡ 0. In order to preserve angular momentum, the following condition must
be fulfilled

NJ∑
I=1

[
ρJ

ρI
xI + ρI

ρJ
xJ

]
⊗ ∂W (xI − xJ )

∂xI
vI = 1. (6.52)

If the ratio of the densities is again set to one, the requirement reduces to satisfying
the 0th and 1st order reproducing conditions in the derivatives.

6.6.2 Quotient Rule

Using the derivative rule (6.31) another variant for calculating the internal force at a
particle is obtained

f sI = −vIρI

NI∑
J=1

[
σ J

ρ2J
+ σ I

ρ2I

]
∂W (xI − xJ )

∂xI
ρJvJ . (6.53)

Taking advantage of (6.12), the force at a particle can also be interpreted as a result
of the difference of forces between particles

f sI = −
NI∑
J=1

[fI J − fJ I ] , fI J = ρIρJ
σ I

ρ2I

∂W (xI − xJ )

∂xI
vIvJ . (6.54)

The contribution fI J corresponds to the force acting from particle J on particle I ,
whereas fJ I describes the inverse relation. Another variation results when the ratio
of the densities is again set to one

fsI = −
NI∑
J=1

[
σ I

∂W (xI − xJ )

∂xI
vJ vI − σ J

∂W (xJ − xI )
∂xJ

vI vJ

]
= −

NI∑
J=1

[
fI J − fJ I

]
.

(6.55)
The only difference between both variants is the calculation of fI J . Here it has to be
noted that (6.55) using (6.6) corresponds exactly to (4.34), which is derived from the
weak form based on differences.
Global balance of momentum. If particle J is in the neighborhood of the particle I
and vice versa I is in the neighborhood of J , the global conservation of momentum
is always satisfied. Since W (x − xJ ) ≡ 0, if x /∈ Hx, the sums can be formed over
all particles and the indices can be interchanged

n∑
I=1

f sI = −
n∑

I=1

n∑
J=1

[fI J − fJ I ] = −
n∑

I=1

n∑
J=1

[fI J − fI J ] ≡ 0. (6.56)
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Global balance of angular momentum. Since the indices can be arbitrarily
exchanged, this proof can also be formulated in terms of a difference of position
vectors. Substituting (6.54) into the general condition (4.89) leads to the alternative
requirement

n∑
I=1

E : xI ⊗ fsI = −
n∑

I=1

n∑
J=1

E : xI ⊗ (fI J − fJ I ) = −
n∑

I=1

n∑
J=1

E : (xI − xJ ) ⊗ fI J = 0.

(6.57)
Unlike the conservation of momentum, this condition is not satisfied per se. By
substituting fI J from (6.54) into (6.57) and after some algebra, a requirement can be
stated

−
n∑

I=1

E :
(

NI∑
J=1

(xI − xJ ) ⊗ ∂W (xI − xJ )

∂xI
ρJvJ

)
vI

ρI
σ I = 0. (6.58)

Again, the symmetry of the stress tensor σ is exploited. The global angular momen-
tum is conserved only if the contribution in the parenthesis leads to the unit tensor

NI∑
J=1

(xI − xJ ) ⊗ ∂W (xI − xJ )

∂xI
ρJvJ = 1. (6.59)

If the ratio of densities is set to one, the requirement results in the fulfillment of the
0th and 1st order reproducing conditions in the derivatives.

Remark. If the stress tensor is isotropic, i.e., no shear stresses occur, then, in addition
to the global conservation of momentum, the condition on angular momentum is
always satisfied. In this case, (6.57) changes to

n∑
I=1

n∑
J=1

E : (xI − xJ ) ⊗ fI J =
n∑

I=1

n∑
J=1

vIvJρJ
pI
ρI

∂W (xI − xJ )

∂xI
× (xI − xJ ) = 0.

(6.60)
Since W is based on a radial function

∂W (xI − xJ )

∂xI
= ∂W

∂‖xI − xJ‖
xI − xJ

‖xI − xJ‖ , (6.61)

the force is always parallel to the distance between the particles. The cross product
between two vectors pointing in the same direction is by definition equal to zero and
angular momentum is always conserved

n∑
I=1

n∑
J=1

vIvJρJ
pI
ρI

∂W

∂‖xI − xJ‖
(

xI − xJ

‖xI − xJ‖ × (xI − xJ )

)
≡ 0. (6.62)
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6.7 Search Algorithm

The first step in the SPH is the determination of the neighborhoods. Usually, an
algorithm seeks the nearest particles. If the distance of particle J to particle I is
smaller than a given value, then J is in the neighborhood of I . Normally, the radius
correlates with the smoothing length (Li and Liu 2007). Mostly, r is in the range of
1.3–2.0 times the initial particle distance (Fig. 6.1). Since the body is usually divided
into grid-like individual particles, the radius is constant for all particles.

A redefinition of the neighborhood during the simulation can lead to a change in
the quantities, although there is no external load. In order to avoid this unphysical
behavior, the smoothing length can be adjusted. Monaghan (2002) suggests that the
density must be the same before and after the redetermination

ρI =
NI∑
J=1

mJ W (xI − xJ , hI ) , with hI :=
(
mI

ρI

) 1
3

= (vI )
1
3 . (6.63)

Since the density is a function of the smoothing length, a nonlinear system of equa-
tions results. For its solution the Newton-Raphson iteration can be applied. The
dependence of the weighting function on h must also be considered in the calcu-
lation of the force in order not to violate the balance of momentum (Nelson and
Papaloizou 1994). For a varying smoothing length an additional term � appears in
the calculation of the forces, like for the approach from (6.55)

f sI = −
NI∑
J=1

[
σ I

�I

∂W (xI − xJ , hI )

∂xI
− σ J

�J

∂W (xJ − xI , hJ )

∂xJ

]
vIvJ . (6.64)

The additional quantity � contains the derivative of the weighting function with
respect to the smoothing length

�I = 1 + hI

3 ρI

NI∑
J=1

mJ
∂W (xI − xJ , hI )

∂hI
. (6.65)

Fig. 6.1 Initial subdivision
of the domain into a grid like
distribution of particles and
determination of the
neighborhood by means of a
search radius
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A detailed derivation of this equation can be found in Price and Monaghan (2004)
or Price (2012).

Another condition on the search algorithm follows from (6.56). If particle J lies
in the neighborhood of particle I and particle I is also part of the neighborhood of
J , global momentum is conserved. If the search radii are the same for each particle,
this requirement is always met, see also Sect. 7.5.

In addition, the particle distribution in the neighborhood should be statistically
homogeneous. When simulating fluids, the neighborhood of the particles is rede-
termined at every time step. Disturbed particle distributions can occur, resulting in
penetration and a mixture of particles. To prevent this, an alternative approach is
used in Monaghan (1989). The position vector of the particle xI is not updated by
the solution function vI of the differential equation, but via a smoothing velocity

ẋI = vI + ξ

NI∑
J=1

mJ

ρI J
(vJ − vI )W (xI − xJ ), ρI J = 1

2
(ρI + ρJ ) . (6.66)

The current coordinate is calculated from the integration of ẋI . The parameter ξ is
usually selected between 0 and 0.5. This approach does not affect the balance of
momentum. If this correction is applied the algorithm is also called XSPH.

Alternatively, there are other correction schemes that allow an improved parti-
cle distribution. These are based either on remeshing techniques (Xu et al. 2009),
the introduction of an advection velocity (Adami et al. 2013), or on an Arbitrary
Lagrangian Eulerian (ALE) approach (Oger et al. 2016).

Remark. The reasons for the disturbed particle distribution are not investigated in
the presented algorithms. Instead, only attempts are made to correct the symptom.
As shown in Sect. 6.13, rank instability is a central topic in SPH. In addition, config-
urational consistency plays a role, which has not yet been investigated in the SPH.
Only if all negative effects due to a violation of the requirements listed in Sect. 4.5
can be excluded, investigations on the causes of disturbed particle distributions are
possible.

6.8 Tensile Instability

The SPH in its original form is based on the deformed configuration. As shown in
Swegle et al. (1995), to avoid a tensile instability it must be ensured that the product
of the second derivative of the weighting function with the stress at any particle J is
always less than zero. In Monaghan (2000), an approach based on artificial stresses
is introduced to avoid negative effects due to tensile instability.
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6.9 SPH for Solids

In many applications, the modeling of solids by means of SPH is based on the rule
(6.55), see e.g.Ganzenmüller (2015) orRabczuk et al. (2004). In order to avoid tensile
instabilities, the equations are discretized with respect to the initial configuration.
Mostly, the 1st Piola Kirchhoff stress tensorP is used instead ofσ. Hence, the current
volume v must be replaced by the initial volume V and the weighting function must
be evaluated with respect to X

f sI = −
NI∑
J=1

[
PI

∂W (XI − XJ )

∂XI
− PJ

∂W (XJ − XI )

∂XJ

]
VI VJ . (6.67)

For hyperelastic materials, P is calculated from the derivative of the specific strain
energy function with respect to the deformation gradient

PI = ρ0
∂ψ(FI )

∂FI
. (6.68)

To ensure that a constant displacement does not lead to strains in the body, the rule
(6.45) is mostly used to compute F. In addition, the derivative of the weighting
function is corrected based on (6.44)

FI = 1 +
NI∑
J=1

(uJ − uI ) ⊗ ∂W (XI − XJ )

∂XI
LI

−1VJ ,

LI =
NI∑
J=1

(XJ − XI ) ⊗ ∂W̃ (XI − XJ )

∂XI
VJ .

(6.69)

Hence, the reproducing condition of 1st order in the derivatives is satisfied. The
corrected derivative is also mostly applied to calculate the internal forces

f sI = −
NI∑
J=1

[
PI

∂W (XI − XJ )

∂XI
LI

−1 − PJ
∂W (XJ − XI )

∂XJ
LJ

−1

]
VI VJ . (6.70)

Due to the corrected weighting function, and due to the formulation based on the
quotient rule, momentum but not angular momentum is conserved.

6.10 SPH for Fluids

In the calculation of fluid flows, the neighborhood is always redefined in order to
simulate very large deformations. The equations are formulated with respect to the
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deformed configuration. Since the molten metal can be regarded as incompressible,
only volume preserving fluids are considered. The discretization is based on the
differential equation (3.14). For the pressure gradient the rule (6.55) is often used
(Colagrossi and Landrini 2003; Fürstenau et al. 2019)

f sI = f pI + fv
I , f pI =

NI∑
J=1

[pJ + pI ]
∂W (xI − xJ )

∂xI
vIvJ . (6.71)

Since no shear stresses occur, the global balance of momentum and angular momen-
tum are always fulfilled. The pressure can be calculated in two different ways. The
first approach is based on the direct fulfillment of the incompressibility condition.
The direct solution of this constraint leads to a clustering of particles. Alternatively,
in the SPH p can be solved by the Pressure Poisson equation (Cummins and Rudman
1999; Shao and Lo 2003 or Hu andAdams 2007). The particle velocities and position
vectors are calculated subsequently. This scheme is called Incompressible Smoothed
Particle Hydrodynamics (ISPH) and describes an own area within the SPH that is
not considered here. The second option describes the material as a barotropic fluid.
The pressure calculates from the density like presented in MacDonald (1966)

pI = ρI c20
7

[(
ρI

ρ0

)7

− 1

]
. (6.72)

The velocity of sound c0 in the liquid can be interpreted as a penalty parameter
that forces the density to be equal to its initial value. For this reason, the alterna-
tive approach pI = c20(ρI − ρ0) can also be used. The penalty parameter should be
10 times larger than the maximum velocity component (c0 ≥ 10 max vi ) to keep
the density changes in the area below one percent (Monaghan 2005). Since the
incompressibility constraint is not enforced exactly, this approach is called weakly
compressible. The density of a particle is calculated from the discretized continu-
ity equation. Often the rule (6.45) is used, which ensures a constant density, if the
velocity is constant

ρ̇I = −ρI

NI∑
J=1

(vJ − vI ) · ∂W (xI − xJ )

∂xI
vJ . (6.73)

In the SPH for fluids, the strong form is discretized directly. The required second
derivative of theweighting function in the viscous term can lead to unstable solutions.
Therefore, an approach based on two first derivatives is mostly applied

fv
I = −η vI

NI∑
J=1

ρI + ρJ

ρI

(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2
∂W (xI − xJ )

∂xI
vJ . (6.74)
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This form goes back toBrookshaw (1985), andwas extended in Espanol andRevenga
(2003) to general tensors.Bya smallmodification it canbe achieved that this approach
conserves global momentum as well as angular momentum. If the density in the
denominator is assumed to be constant, the equation can be formulated as a function
of the kinematic viscosity ν, i.e. η = ν ρ. Taking advantage of (6.12), fv

I can again
be expressed as the difference of forces between individual particles

fv
I = −

NI∑
J=1

[
fv
I J − fv

J I

]
, fv

I J = νvIρI
(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2
∂W (xI − xJ )

∂xI
vJ .

(6.75)
Analogous to (6.56), this ensures that global momentum is conserved. Since the
quantities are scalars, statement (6.62) is valid and the condition on the global con-
servation of angular momentum is also fulfilled.

6.11 Boundary Conditions

The neighborhood of particles at the boundary is not completely filled. Most shape
functions in SPHneither fulfill the reproducing conditions nor possess theKronecker-
δ property. If a constant quantity is approximated using the standard approach, dif-
ferences can be observed between the values at inner and outer particles (Takeda
et al. 1994). In the SPH, a lot of methods for imposing boundary conditions have
been established, which differ strongly from standard Galerkin schemes.

For the imposition of Dirichlet boundary conditions, four different approaches
are available. Two of them are based on the introduction of so-called ghost particles,
which lie outside the area (Libersky et al. 1993) and represent a fixed border (Fig. 6.2).
The particles are not taken into account in the calculation but lead to a completely
filled neighborhood for particles at or near the boundary. This form is often used in the
simulation of solids (Ganzenmüller 2015). Randles and Libersky (1996) presented
a variant in which the ghost particles are canceled out. For solids, the Dirichlet
boundary condition is assigned to all ghost particles. The number and distribution of
these particles result from the condition of a filled neighborhood. In fluid-structure

Fig. 6.2 Introduction of
ghost particles to impose
boundary conditions
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interactions with rigid walls, similar approaches for the imposition of boundary
conditions are available (Morris et al. 1997; Adami et al. 2012). To fulfill the normal
and tangential boundary conditions for fluids from (3.16) and (3.17) suitable values
must be defined at the ghost particles.

A second, similar option is the mirroring of particles along the boundary, as
suggested in Colagrossi and Landrini (2003) or Macia et al. (2011). This also leads
to ghost particles outside the area. Suitable values must be defined at these particles,
to impose the boundary conditions accurately.

Alternatively, the Dirichlet boundary conditions can be replaced by forces. Esti-
mates can be based on the Lennard Jones potential (Monaghan 1994) or on radial
functions (Monaghan andKajtar 2009). InBonet andKulasegaram (2000) the penalty
method is applied to impose Dirichlet boundary conditions. The prerequisite for this
approach is the fulfillment of the reproducing conditions at the boundary.

A fourth possibility is the direct integration of the boundary conditions into the
differential equations. Corresponding approaches can be found in Kulasegaram et al.
(2004), Macia et al. (2012) or Ferrand et al. (2013).

Neumann boundary conditions are usually imposed as particle forces. Since no
direct information about the surface is available in SPH, individual surface portions
must be assigned to each particle. This area can be estimated e.g. from (6.63) as
suggested in Soleimani (2017)

aI = h2I = (vI )
2
3 . (6.76)

Alternatively, the area belonging to a particle can be determined using the weighting
function (Antoci et al. 2007). The force is introduced into the body via a layer of
particles at the boundary. Another approach for imposing Dirichlet and Neumann
boundary conditions based on fixed ghost particles can be found in Marrone et al.
(2011).

A study that compares different approaches for fluid-structure interactions can
be found in Valizadeh and Monaghan (2015). This investigation concludes that the
modeling based on fixed ghost particles leads to the most physically meaningful
results.

6.12 Oscillations

The simulation of shock waves or convection-dominated flows can show artificial
oscillations in the velocity and pressure field. Therefore an artificial viscosity is
introduced in Monaghan and Gingold (1983) to dampen this oscillation

fart visI = −vIα h c0

NI∑
J=1

ρIρJ

2(ρI + ρJ )

(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2
∂W (xI − xJ )

∂xI
vJ .

(6.77)
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In Molteni and Colagrossi (2009) it was observed that despite the artificial viscosity
high-frequency disturbances still occur in the pressure field. By the introduction of
an additional diffusion term in the continuity equation, these oscillations could be
damped out (Molteni and Colagrossi 2009; Marrone et al. 2011)

ρart densI = δ h c̄0

NI∑
J=1

[
2 (ρJ − ρI )

xJ − xI
‖xI − xJ ‖2 − grad ρI − grad ρJ

]
· ∂W (xI − xJ )

∂xI
vJ .

(6.78)
In the discretization of the gradient, the corrected derivative using the tensorL (6.43)
is used

grad ρI =
NI∑
J=1

(ρJ − ρI )
∂WI (xI − xJ )

∂xI
LI

−1. (6.79)

The application of this stabilization is known as δ-SPH. The numerical parameters
α and δ control the strength of the damping and are selected much smaller than 1.

An alternative approach is based on a formulation of the equations in a moving
frame of reference. This scheme corresponds to a coupling of the SPH with the
Arbitrary Lagrangian-Eulerian formulation (Vila 1999). An application can be found
in Marongiu et al. (2010). Since this method requires the solution of the non-linear
Riemann problem, this variant is also called Riemann SPH (Oger et al. 2016). A
comparison of different approaches can be found in Antuono et al. (2012).

6.13 Rank Instability

Belytschko et al. (2000) shows that artificial zero-energy modes also occur in the
SPH. The reasons lie in the reduced number of evaluation points, which is limited to
the number of particles. By introducing additional integration points,which are called
stress points in SPH, the negative effects due to under-integration can be diminished
(Vignjevic et al. 2000; Belytschko et al. 2000).

The approach of using stress points in SPH goes back to Dyka and Ingel (1995)
and Dyka et al. (1997) and was initially developed to correct the tensile instability.

To avoid these additional evaluation points, an alternative approach is proposed
in Bonet and Kulasegaram (2000). This correction is based on a gradient type stabi-
lization similar to the concept introduced in Sect. 5.1.2.

A third option is suggested in Ganzenmüller (2015) which is already discussed in
Sect. 5.2.4. Thereby, an additional force is introduced into the system, which actually
corrects the violation of the configurational consistency from (4.84) by employing
the penalty method

fcorI = −VI

NI∑
J=1

α
E

‖XI − XJ‖2 εI J
xI − xJ

‖xI − xJ‖W (XI − XJ ) VJ . (6.80)
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The error from the configurational consistency εI J is determined separately for each
particle pair

εI J =
[
(xI − xJ ) − 1

2
(FI + FJ ) (XI − XJ )

]
· xI − xJ

‖xI − xJ‖ . (6.81)

This approach is developed for simulating solid deformations and is formulated with
respect to the initial configuration. The size α corresponds to the penalty parameter
and is set in relation to Young’s modulus E (Ganzenmüller 2015).
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