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Preface

The big promise of Additive Manufacturing is the rapid production of individualized
products directly on-site andon-demand.Annual growth rates are still averagingmore
than 25%. In recent years, numerous different 3D-printing processes have become
established on the market with which various materials can be processed. Neverthe-
less, there are still several obstacles standing in the way of the breakthrough to a
standard manufacturing process. In particular, the speed of fabrication, the quality,
and the reproducibility of a printed component still do not meet the requirements of
industrial production.

To realize this, all processes during 3D printingmust be understood. The influence
of individual parameters cannot be estimated based on experiments alone, since the
speed of the processes involved is very high. Realistic simulations make it possible
to investigate all physical phenomena during Additive Manufacturing. Every single
influencing factor can be analyzed on the computer for every fraction of a second.
This allows the key factors of 3D printing to be identified.

Unfortunately, the phenomena that occur in Additive Manufacturing pose signif-
icant challenges to the simulation. Due to their strong flexibility, meshfree methods
have been a big promise for years. Large deformationswith free surfaces or the fusion
of materials can be easily realized. Meshfree methods are, thus, ideal discretization
schemes for Additive Manufacturing simulations. On the other hand, the accuracy
of the solution cannot always be guaranteed. Also, the handling strongly depends
on the problem. These reasons prevent the use of these schemes in an industrial
environment until today.

This monograph provides all requirements on spatial discretization schemes
to guarantee an accurate solution of differential equations. In addition, several
commonly used meshfree methods are presented, compared, and investigated
concerning these requirements. Smoothed Particle Hydrodynamics and the Optimal
Transportation Meshfree method are employed to simulate Selective Laser Melting.
Peridynamics is used to simulate a deposition process for medical silicone.

The basis for this monograph is my Habilitation thesis, which I wrote during my
time at the Institute for Continuum Mechanics at the Leibniz University Hannover.
The contents are aimed at graduate students, researchers, and practitioners who want
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to explore the secrets behind meshfree methods or get into the modeling of Additive
Manufacturing processes.

My special thanks go to Prof. PeterWriggers. He not only gaveme the opportunity
to do my Ph.D. and Habilitation, but also always gave me his trust and great support
over all these years. Professor Wriggers is one of the outstanding scientists in the
field of engineering and computational mechanics. Working with him has always
been a special honor for me.

I also want to express my gratitude to the Series Editors for inviting me to
contribute to this distinguished series from Springer. Along this line, I would also
like to thank Springer for a good collaboration.

Since this monograph relies on my Habilitation thesis, I would like to express my
appreciation to the reviewers, i.e. Prof. Jörg Schröder and Prof. Dennis Kochmann;
the chairmen of the committee Prof. Peter Nyhus and Prof. Jörg Wallaschek; and all
other committee members.

In addition, I would like to express my sincere thanks to my colleagues in my
research group, Tobias Bode, Jan-Philipp Fürstenau, Philipp Hartmann, andHenning
Wessels, who contributed significantly to the content and results in this monograph.
Furthermore, I would like to thank Dengpeng Huang, Sandeep Kumar, and Meisam
Soleimani for their good cooperation during my Habilitation period.
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Chapter 1
Introduction

The big promise of Additive Manufacturing (AM) is the fast production of individu-
alized products directly on site, on demand, and at low costs. Many nations, such as
the USA, Japan, or Great Britain, hope that this technology will lead to their reindus-
trialization. Countries like China see AM as an opportunity to take the lead in a field
of technology (Caviezel et al. 2017). The annual growth rates are on average about
25 percent since the records in 1998 (Wohlers Associates 2017). Revenues from 3D
printers, materials, software and accessories, as well as AM services, totaled $6.063
billion in 2016. The big potential is attributed to Additive Manufacturing in the
field of biomedical technology. In 2013, the sales turnover of medical applications
amounted to only 1.6% of the total revenue. However, forecasts expect an increase
to 21% within the next few years (Ventola 2014). Patient-specific implants, prosthe-
ses, and active pharmaceutical ingredients can become the standard in biomedical
technology through Additive Manufacturing. The idea of printing human organs is
also not a utopia and could in the future remedy the lack of donor organs.

In 1986, Charles Hull was the first to file a patent for a 3D printer (Hull 1986). He
was able to print a component layer by layer from a CAD file and called his method
stereolithography. The .stl format for importing CAD data was the abbreviation for
this technology. In the following years, numerous different printing technologies
were established on the market. Nevertheless, there are still several shortcomings
that hinder the breakthrough to a large-scale production process. In particular, the
speed of the manufacturing process, the quality, and the reproducibility of a printed
component, still do notmeet the requirements of industrialmanufacturing. To achieve
this, all phenomena during the printing processmust be comprehensively understood.
This is the only way to ensure that the material properties, as well as the shape of the
printed part, correspond to the specifications planned on the computer beforehand.

In Selective Laser Melting, around 130 parameters influence the printing process
(Yadroitsev 2009). The extremely rapid sequence of individual physical phenomena

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Weißenfels, Simulation of Additive Manufacturing using Meshfree Methods,
Lecture Notes in Applied and Computational Mechanics 97,
https://doi.org/10.1007/978-3-030-87337-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87337-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-87337-0_1


2 1 Introduction

Fig. 1.1 Consideration of different scales when modeling Additive Manufacturing

makes analysis based on experimental evaluations difficult. Realistic simulations
on the computer enable the reproduction of all physical processes during Additive
Manufacturing. The influence of each phenomenon can be individually analyzed
for each fraction of a second which helps to identify the key factors of the printing
process. This can dramatically accelerate the optimization of existing 3D printers or
pave theway for the development of newprinting technologies.Hence, the simulation
of Additive Manufacturing is a big driver for the development of next-generation 3D
printers.

In addition, realistic simulation data can be directly integrated into the manufac-
turing process. The adjustment of the process parameters that ensure an optimal print
can be based directly on this data.

Simulation means modeling phenomena and usually leads to differential equa-
tions. For accurate and efficient modeling, it is often suitable to consider the effects at
the individual scales. Different scales can also be defined in the simulation of additive
manufacturing, see Fig. 1.1. In most cases, an analytical solution is no longer possi-
ble, andmostly numerical schemes are used. In the first step, the differential equation
is converted into an algebraic equation employing a spatial and temporal discretiza-
tion. For each time step, the solution of a system of linear equations provides the
approximate solution.

TheFinite ElementMethod (FEM) is currently themostwidely used discretization
scheme. It is based on a unique subdivision of the domain into a finite number of
sections. This scheme convinces by an accurate solution of the differential equation.
Due to the fixed subdivision into elements, however, the application of the FEM to
simulate Additive Manufacturing processes requires special treatments.

Due to their flexibility, meshfree discretization schemes have been a big promise
in computationalmechanics formany years. Large deformationswith free surfaces or
the fusion of materials can be easily realized. Meshfree methods are therefore ideal
spatial discretization schemes for the simulation of Additive Manufacturing pro-
cesses. However, an accurate solution cannot always be guaranteed which prevents
the intensive use of these methods by engineers in the industry.
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The objective of this work is to provide all requirements on spatial discretization
schemes to guarantee an accurate solution of differential equations. In the context
of this work, several common meshfree methods are introduced, compared with
each other, and investigated concerning the requirements for spatial discretization
schemes.

Especially in the field of meshfree methods, there have been numerous develop-
ments since the 90s, which have been carried out inmany different groupsworldwide.
This work deals only with the most important developments from the author’s point
of view. In addition, only selectedmeshfree methods that have received special atten-
tion in recent years are presented. An insight into other schemes can be found e.g.
in Li and Liu (2007) or Liu and Liu (2015).

Two Additive Manufacturing processes are simulated employing meshfree dis-
cretization schemes. Selective Laser Melting is a laser powder bed fusion process
frequently used for printing metallic or ceramic parts. The material properties and
the shape of the final product are mainly determined by the behavior of the melt
pool. For this reason, the printing of one layer is investigated. The influence of the
cooling rate on the micromechanical behavior of the material as well as the influence
of printing many layers on the final shape of the part is not considered. Examples of
numerical investigations on these scales can be found in Schoinochoritis et al. (2017)
and Yan et al. (2018).

The fusion of powder particles is simulated in Körner et al. (2013) using the
Lattice-Boltzmann method. Also, Computational Fluid Dynamics (CFD) solvers,
which are based on an Eulerian description, are used to analyze this process com-
putationally (Yan et al. 2017). Therein, the surface is detected by the Volume of
Fluid method, which was developed in Hirt and Nichols (1981). The coupling of
this approach with the Discrete Element Method can be found in Wang et al. (2019).
Another option is the use of the Arbitrary Lagrangian–Eulerian (ALE) approach
(King et al. 2015).

To simplify the simulation of fusion and fluid flow with free surfaces, the virtual
reproduction of the Selective Laser Melting process is carried out using meshfree
solution schemes. The Optimal Transportation Meshfree (OTM) method, as well as
Smoothed Particle Hydrodynamics (SPH), are employed to discretize the differen-
tial equations. Both methods are compared and the outcomes are evaluated. A first
simulation using SPH can be found in Russell et al. (2018). However, this approach
is limited to a purely 2-dimensional description without considering the influence of
recoil pressure and phase change on the mechanical properties of the material. Also,
the curvature is not modeled accurately.

The second printing process allows the fabrication of flexible, patient-specific neu-
ral implants. Since conventional technologies are not suitable, in Stieghorst (2017)
a new approach is developed.
This work contains the following topics:

Chapter 2 gives an introduction to Additive Manufacturing. Besides presenting
different 3D printing technologies, the potentials, as well as the current gaps and
needs of Additive Manufacturing, are shown.
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Chapter 3 provides the equations for the description of 3D printing processes. A
special focus is on the effects at the boundary layer. Surface tension, Marangoni
convection, and recoil pressure are key factors in Selective Laser Melting. Also,
the description of the phase change is central to the accurate reproduction of these
processes. Photopolymerization involves a chemical reaction, which can also be
described by a differential equation.

Chapter 4 gives an introduction to the numerical solution of differential equations.
An important step is the spatial discretization. For an accurate solution, several
requirements have to be fulfilled. For this reason, all the necessary conditions are
given in detail and a new requirement is introduced.

Chapter 5 deals with meshfree Galerkin schemes. The focus is on the Optimal
Transportation Meshfree (OTM) method according to Li et al. (2010). Especially the
shortcomings of this method are pointed out. First, another scheme that can be seen
as a precursor to the OTM method is briefly presented and discussed.

Chapter 6 introduces Smoothed Particle Hydrodynamics (SPH) which was devel-
oped in the seventies by Gingold and Monaghan (1977) and in parallel by Lucy
(1977). Over the years, there have been numerous further developments. The main
field of application is the simulation of fluid flow with free surfaces. Despite the
current great popularity of this method, every variant of the SPH does not meet all
requirements on spatial discretization schemes.

Chapter 7 provides a brief introduction to Peridynamics according to Silling (2000)
and Silling et al. (2007). This scheme is a rather new meshfree method based on
computational approaches from Molecular Dynamics. After a short description, the
fulfillment of the requirements on spatial discretization schemes is checked. Addi-
tionally, it is shown that Peridynamics corresponds to a Galerkin method.

Chapter 8 deals with the numerical simulation of Selective Laser Melting. First,
the most important physical phenomena and the most important experimental obser-
vations are presented. The differential equations are discretized using SPH and the
OTM method. Their effects on the results are discussed in detail. Another focus is
the modeling of the laser together with a comparison of two different approaches.

Chapter 9 includes the description and the simulation ofDirect Poly Printing accord-
ing to Stieghorst (2017). First, the physical and chemical influencing factors, as
well as the experimental results, are presented. After modeling the printing process,
the equations are discretized using Peridynamics. Additionally, some results of the
numerical simulation are presented.
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Chapter 2
Additive Manufacturing Processes

Additive Manufacturing (AM) refers to the fabrication of products layer-by-layer
from formless raw materials based on a data triple (Fig. 2.1). This data triple consists
of a 3D model of the part to be manufactured, the material recipe, and the process
parameters. Additive Manufacturing is assigned a disruptive character since it is not
based on knowledge of conventional manufacturing processes and hence establishes
a new production paradigm (Acatech 2016). AM is often referred to as 3D printing.
However, both terms have different meanings. Additive Manufacturing refers to the
printing of functional components in an industrial environment, whereas 3D printing
hallmarks the production of decorative objects in the customer-oriented segment.
Here, both terms are used synonymously. Besides the description of different printing
technologies and their applications, this chapter shows the potentials, as well as the
gaps and needs of this still very young technology.

2.1 Potentials

In Additive Manufacturing, the materials are available in small dimensions. The part
is produced by joining these small units together. Hence, significantly more design
options in terms of geometry and material properties are available. The production
of functional gradient materials can be simplified considerably. Also, the weight of
a structure can be reduced leading to less material waste and energy consumption
Huang et al. (2015).

AM contributes to the digitalization of manufacturing. The production depends
mainly on the data triple which can be sold online or streamed. The data triple can be
created locally and shared via cloud from different developers at different locations.
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Fig. 2.1 Additive Manufacturing: Direct fabrication of products from a CAD model based on a
data triple

The production is only based on a 3D printing machine. The use of molds or
assembly work is no longer necessary. The machine can be placed anywhere and the
manufacturing process can be controlled online from another location. Alternatively,
the data triples can be stored in a cloud and released to any user.

Overproduction canbe avoided, asAdditiveManufacturing enables the production
on demand. Storing spare parts is therefore superfluous and stock holding can be
reduced. Many products no longer have to be transported unnecessarily, as they can
be manufactured directly on site. Since even complex geometries can be fabricated
as a single piece, the number of individual parts is reduced compared to conventional
processes (Caviezel et al. 2017).

Another big potential of Additive Manufacturing is the cost-effective fabrication
of small lot sizes. The number of products has only a small influence on the manufac-
turing costs since only the data triple has to be adapted. Hence, mass customization,
i.e. the fabrication of individual products for customers at the price of a product from
mass production, can be realized with AM. In addition, the time to market for prod-
ucts is reduced. Designs at different development stages can be fabricated and tested
directly. Thus, several iterations can be realized within a very short time. When the
product has its final form, it can be offered directly on the market (Tofail et al. 2018).

2.2 Printing Technologies

All 3D printing technologies have the same data preparation, which can be divided
into eight steps according to (Acatech 2016). First, the part is designed with a CAD
program. Afterward, the data is converted into the .stl format with the surface approx-
imated by triangles. Errors in the conversion must still be corrected manually. In the
next step, the object is placed virtually in the build envelope. In the case of overhangs,
support structures must be established for some methods to prevent undesired defor-
mations and residual stress. This step requires a deep understanding of the process.
Slicing cuts the body into parallel planes. For each layer, the exact sequence of print
head movement must be defined so that each layer can be filled with material. This
step is called hatching. Finally, the data triple can be generated.
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Fig. 2.2 Classification of printing technologies in AdditiveManufacturing. SLA: Stereolithoraphy,
PJ: Polymer Jetting, DPP, Direct Poly Printing, BJ: Binder Jetting, SLM: Selective Laser Melting,
SLS: Selective Laser Sintering, EBM: Electron Beam Melting, FDM: Fused Deposit Modeling

3D printers can be classified according to e.g. the joining principle (Fig. 2.2).
The selection of the printing process depends on the required build envelope, the
fabrication speed, the possible layer heights, the resolution of the material, the print-
able materials, the accuracy of the process, and the costs (Huang et al. 2015). The
focus lies here in the modeling of Selective Laser Melting and Direct Poly Printing.
Therefore, the joining principles of melting and photopolymerization are presented
in more detail.

2.2.1 Melting

The printing processes based onmelting can be divided into three different categories:

• Material extrusion
• Powder bed fusion
• Material deposition

The best-knownmaterial extrusion technology is FusedDepositionModeling (FDM)
which is also called Fused Layer Manufacturing (FLM). The wire-shaped material
is heated in the print head and deposited on the substrate or the previous layer via
a nozzle (Fig. 2.3). This 3D printing process is often used in home applications.
The materials that can be processed are limited to plastics. Mostly, amorphous ther-
moplastics such as acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), or
polyimide (PI) come into use (Acatech 2016).

In Selective Laser Sintering (SLS) and Selective Laser Melting (SLM), the mate-
rial is in the form of a powder that is evenly distributed in a bed before processing
(Fig. 2.3). The height of the powder layer is an additional process parameter. In
Selective Laser Sintering, the bed consists of materials with high and low melting
temperatures. The laser melts the latter. The movement of the unmelted particles
causes the compaction of the material (Gu et al. 2012). Due to the low tempera-
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Fig. 2.3 Schematic illustration of (left) Fused Deposition Modeling and (right) Selective Laser
Melting. (Drawings based on figures from www.additively.com)

ture, semi-crystalline thermoplastics such as polyamide (PA) or polyaryletherketone
(PAEK) can be processed in addition to metallic multi-material components (MMC).
The selection of the process parameters and of the material composition strongly
influences the properties of the printed part. Mostly, a post-treatment is necessary
for SLS.

Selective Laser Melting was developed to process pure weldable metals, to fab-
ricate materials with a high density, and to avoid post-treatment (Gu et al. 2012).
The formless material is treated in the same way as SLS, but now the material is
completely melted. With this technology, parts possessing densities of over 99% can
be achieved. Further details on this process can be found in Chap.8.

Metallic components can also be produced using material deposition. Directed
Light Fabrication (DLF) and Laser Engineered Net Shaping (LENS) (Lewis and
Schlienger 2000) correspond to this type. The material is available either as a powder
or as a wire and is fed directly to the laser beam. The resulting melt is deposited
directly at the corresponding location. The print head can usually move in 5 axes and
allows a 3D print of any geometry. Different weldable metals and metal alloys can
be processed.

2.2.2 Photopolymerization

Photopolymerization is limited to the 3D printing of polymers. The aggregate state
of the materials is always liquid. In contrast to melting, the heat source accelerates
a chemical reaction that hardens the material in a targeted manner. Various printing
concepts are available for this purpose:

www.additively.com
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Fig. 2.4 Schematic illustration of (left) Stereolithography and (right) Polyjet Modeling. (Drawings
based on figures from www.additively.com)

• VAT Photopolymerization
• Material jetting
• Material extrusion

Stereolithography (SLA) is a prominent representative of VAT photopolymerization.
The liquid covers most of the build envelope. A controllable UV laser hardens parts
of the liquid layer (Fig. 2.4). The height of a layer is adjusted via a moving platform.
The materials used in this process have so far been limited to thermosets such as
acrylic or epoxy resins.

Alternatively, these materials can be printed using Polyjet Modeling (PJ). An ink
jet head deposits the photopolymer drop by drop. A movable light source ensures
targeted curing (Fig. 2.4). Different materials can be easily mixed using different
nozzles. Waxes are often applied to create the desired cavities in the part during the
printing process.

Biocompatible silicone rubbers are often used for neural implants and cannot
be accurately printed with conventional methods so far. For this reason, Stieghorst
(2017) has developed a special deposition process that is here referred to as Direct
Poly Printing (DPP). The material is deposited in viscous form onto the substrate or
the already printed layers via a dispenser attached to a movable robot arm. A laser
source accelerates the cross-linking of the silicone. More information about this 3D
printing process can be found in Chap.9.

2.3 Applications

The first 3D printed components were only used for the visualization of objects.
Prototyping is still the most common application of AM today (Caviezel et al. 2017).
In addition, Additive Manufacturing has established itself in the fabrication of spare
parts or special tools that are not so frequently required, since the production through

www.additively.com
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3D printing is more profitable. In these contexts, the terminologies rapid prototyp-
ing, rapid repair, or rapid tooling are often used. The addition rapid is due to the
elimination of time-consuming work steps, such as the assembly of single parts or
the production of casting molds, which are not required in Additive Manufacturing
(Acatech 2016). However, nowadays, Additive Manufacturing has also established
itself as a production technology for mainly small lot sizes.

2.3.1 Aerospace Industry

In the aerospace industry, the requirements on the material are very high due to
the temporarily very high ambient temperatures. The weight must be reduced to a
minimum to ensure low consumption operation. On the other hand, the lot size is
very small. Additive Manufacturing is an ideal production technology for optimized
components, which often have complex geometries. For example, the exhaust gas
ventilation of turbines in helicopters or turbine blades with integrated ventilation
systems is usually additively manufactured (Guo and Leu 2013).

Remark With an aircraft lifetime of 30 years, every kilogram of weight saved
reduces kerosene consumption by 3900–5800L. This is equivalent to a reduction
of carbon dioxide emissions by 11–16 tons (Huang et al. 2013).

2.3.2 Automotive Industry

Due to the current economic fabrication, the series production of ordinary car parts
using Additive Manufacturing is not conceivable in the foreseeable future. How-
ever, this technology is occasionally used. For example, new, high-performance heat
exchangers possessing complex geometries are additively manufactured in series
production. A 3D print of these components is cheaper compared to alternative pro-
cesses (Caviezel et al. 2017). 3D printed components are mostly used as special
tools or assembly aids in automotive engineering. Due to the time savings in prod-
uct development, prototypes are now mainly manufactured additively. Similar to
the aerospace industry, the lot size of luxury cars or motorsports vehicles is very
low. Particularly in the latter, lightweight components with special requirements on
geometry and material properties are required, which are usually produced by 3D
printing machines (Guo and Leu 2013).
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2.3.3 Biomedical Technology

Every human being has a special anatomy. For implants and prostheses to optimally
replace the missing human function, they must be tailor-made for each patient. Addi-
tive Manufacturing offers the possibility of fabricating the individual geometries
cost-effectively compared to conventional manufacturing processes.

A congenital tracheobronchomalacia was successfully treated with the aid of a
3D printed tracheal splint (Zopf et al. 2013). The infant’s too thin bronchial tube was
sutured to the implant to correct the deformity. The elasticity of the splint allowed the
natural growth of the infant. After 21 days, the bronchial tube was fully functional.
One year after the surgery, no more negative abnormalities could be detected.

In the case of malpositions in the bone, scaffolds are often inserted to stimulate
bone growth. At first, these scaffolds take over the bearing capacity of the bone. The
scaffold have to be biocompatible and must optimally stimulate cell growth (Wang
et al. 2007; Bose et al. 2012). A study of cell growth using different 3D printed
scaffolds from hydroxyapatites can be found in Leukers et al. (2005).

In dental andhearing aid technology,AdditiveManufacturing has been established
for a long time (Caviezel et al. 2017). Especially patient-specific crowns and bridges
can nowadays be fabricated economically in large quantities. The same applies to
high-quality, individualized earmolds of a hearing aid.Another area of application for
Additive Manufacturing in medical technology is the production of special clinical
tools for surgeries.

2.3.4 Bioprinting

Bioprinting describes the fabrication of living organs and tissues. A successful 3D
print eliminates the need for transplantation. The human tissue consists of cells
with an extracellular matrix. The challenge of 3D printing is the reproducibility of
the complex heterogeneous microstructure of the human tissue (Murphy and Atala
2014). Particular attention must be paid to the formation of the vascular system
to ensure oxygen and nutrient supply to the organs (Visconti et al. 2010). For the
accurate reproduction of the extracellular matrix, a suitable substitute material must
be chosen. This consists mostly of natural or synthetic polymers. During bioprinting,
very small cell units are deposited, which grow together independently. In addition to
the exact reconstruction, the ability of the tissue to self-assemble must be supported
by the printed cells (Murphy and Atala 2014).

For bioprinting, conventional technologies are adjusted. Ink jetting methods are
often reconstructed to deposit spherical droplets consisting of extracellular matrix
and stem cells. Alternatively, extrusion-based or light-supporting printing methods
are used (Zhu et al. 2016).

Printing of complete organs that can be transplanted into the human organism is
still a long way off (Ozbolat 2015). The application currently extends more to the
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simulation of small human structures to test new clinical procedures or treatments.
These tests are designed to better understand human reaction behavior. Thus, animal
experiments can be reduced or avoided. First successful attempts to print a complete
3-dimensional vascularized tissue on a small scale are documented in Miller et al.
(2012) and Kolesky et al. (2014). In the former, a combined manufacturing process
of 3D printing and casting was developed. In Kolesky et al. (2014), the tissue was
fabricated completely by 3D printing.

Remark According to Ventola (2014), 154,324 patients in the USA were waiting
for a donor organ in 2009. Only 27,996 patients underwent transplantation. 8,863
people died while being on the waiting list.

2.3.5 Defense Industry

Similar to the aerospace industry, the defense industry mainly requires systems with
small lot sizes. In addition, individualized equipment, especially for protection, is
needed. Some products are only desired on demand and directly on site. Additive
Manufacturing thus proves to be an ideal production process in the defense industry.
3D printed parts are now said to be used in missiles, drones, and military engines
(Fey 2016).

Additive Manufacturing makes it easy to bypass government protection and con-
trol systems. Weapon systems can be fabricated uncontrolled in secrecy, or like e.g.
firearms made of plastic can pass control systems undetected (Caviezel et al. 2017).
In addition, there is the problem of dual-use. For example, additively manufactured
drones or engines can come into operation not only for civilian but also for military
applications. Therefore, there are considerations to make high-performance additive
production machines subject to approval (Caviezel et al. 2017).

2.3.6 Civil Engineering

Every building is unique. Compared to previous applications, the build envelope
is significantly larger. The use of Additive Manufacturing in civil engineering is
primarily aimed at the 3D printing of concrete structures (Bos et al. 2016). With
this method, not only the shape but also the properties can be optimized. The outer
layer can consist of self-cleaning concrete with resistance against aging. The inner
structure guarantees the bearing capacity and enables good insulation properties. On
the inside, the concrete can offer a good acoustic. 3D printing can also reduce the
amount of concrete. Since the production of cement is very energy-intensive, large
savings can be achieved.

Additive Manufacturing of building parts does not require formwork. On the
other hand, this advantage is one of the major challenges in the development of
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3D printers. Free printing means that the hydration of concrete must be controlled
to guarantee the planned width and good surface quality of individual layers. In
conventional fabrication, a vibrator ensures compaction.Thismust also beguaranteed
if the structure is printed.

2.4 Gaps and Needs

One of the biggest barriers to Additive Manufacturing is the lack of reproducibility
(Acatech 2016). The geometry and material properties are often different, although
the fabrication is based on the same data triple. The properties of the printed part
often do not correspond to the planned specifications. In addition, the slow fabrication
speed and the lack of economic efficiency hinder the breakthrough of this technology
as a powerful manufacturing process. In most cases, post-treatment is also required
to improve surface quality or to correct unwanted deformations.

Additive Manufacturing is an interplay of several disciplines (Fig. 2.5), in which
several challenges have to be solved.

2.4.1 Machines and Materials

Additive Manufacturing systems are mostly based on rapid prototyping machine
architectures (Huang et al. 2015). However, the requirements of industrial manufac-
turing are much higher. Besides ensuring a high quality and fabrication speed, new
3D printers have to work autonomously. Particularly with powder bed processes,
contact with the very fine metal powder must be avoided so that no particles enter
the human organism. The post-processing must be integrated to keep manual inter-
vention to a minimum. The maintenance intervals for 3D printers are still very short
which also increases the costs. For example, filters have to be changed frequently.
The intervals for new printers must be extended significantly (Acatech 2016).

Fig. 2.5 Additive Manufacturing as an interplay of several disciplines
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Additive Manufacturing makes it possible to separate design (data triple) from
production. To enable smaller companies an access to this market, suitable platforms
such as clouds are needed to exchange data or print jobs from other companies.

Mostly, standard materials are processed in Additive Manufacturing. However,
the requirements for the material have increased. The selection of materials for 3D
printing is still limited. It is often very difficult to produce materials, such as β-
titanium, in the desired formless structure (Huang et al. 2015). New materials that
can be processed by 3D printers must be developed. Additionally, in the production
of components, it is necessary to know the interactions between the materials during
melting.

Another barrier is the lack of standards. For example, the characteristics or the
process parameters for materials are different for machines from different manufac-
turers. The introduction of standards, the certification of machines and materials is,
in addition to the further development of printers and materials, another necessary
step for the acceptance and breakthrough of Additive Manufacturing in the industry.

2.4.2 Design and Control

The planning of a part and the production process is carried out purely on a computer.
The individual components are designed using a CAD program. During planning,
the relationships between the process, the structure, and the material properties must
be taken into account. This requires user-friendly software that supports the engineer
in the design of new parts and automatically determines the printing process and its
parameters.

To understand the relationship between process, structure, and properties, all
effects, which occur during the printing process, must be understood. This requires
themodeling of the entire process. The large temperature rates lead to strong changes
in the microstructure. The models must be able to reproduce all these aspects. By
comparing the simulation results with experimental data, the approaches can be val-
idated. For this, a lot of experimental data need to be available. Suitable sensors
must be installed in the build envelope to record temperature and displacements
in the structure. If the simulations are accurate enough, not only can the printing
process be optimized, but the process parameters can also be adapted in real-time
during printing. Sensors characterize the current state and suitable parameters are
determined based on simulation data. For this vision, efficient and highly accurate
simulation methods must be available.
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Chapter 3
Differential Equations

Additive Manufacturing involves the interaction of different physical processes. In
some printing technologies, an additional chemical reaction takes place. A thermo-
mechanical process with phase change is present if the 3D-print is based on melting.
In the case of photopolymerization, an external heat source accelerates the harden-
ing of a liquid due to a chemical reaction. Hence, mechanical, thermal, and chemical
fields need to be coupled.

This chapter summarizes the differential equations, which are required for the
modeling in the field of Additive Manufacturing. Since each solution scheme is
based either on the strong and or the weak form of the differential equation, both
formulations are presented. Only the most important equations are summarized.
A detailed introduction into continuum mechanics can be found e.g. in Truesdell
and Noll (2004), Truesdell and Toupin (1960), Silhavy (1997), Malvern (1969) or
Holzapfel (2000). Monographs especially addressing material modeling are Haupt
(2002) or Krawietz (1986). Amoremathematical introduction into elasticity presents
Marsden and Hughes (1983).

In Additive Manufacturing, boundary layer effects play a decisive role. These
include, for example, surface tension, Marangoni convection, and the transition
between the individual aggregate states. Hence, the mathematical formulations of
boundary effects are introduced as well.

3.1 Modeling of Continua

The modeling of continua is mainly based on a unique decomposition of a body into
rigid points. Each point P of the bodyB possesses a position vector x in the Euclidean
space E

3 and a mass. Due to loading, the body deforms and the individual mass
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points move. The sum of all position vectors is called configuration. Mathematically,
a configuration is a bijective mapping κ of local points into the Euclidean space

κ : B → E
3, x = κ(P, t) ∈ E

3

Bt = κ(B, t) = {κ(P, t), P ∈ B, t ∈ R} ⊂ E
3.

(3.1)

At any time t a body has a different configuration, which is abbreviated as Bt .
The sum of all configurations from t = t0 to the current time is called motion. Two
configurations are of special interest. The sum of all position vectors at the time
t = t0 indicates the initial configuration B0. The current configuration Bt represents
the body at the actual time t . Based on (3.1) a mapping ϕ of position vectors from
the initial to the current configuration can be defined

ϕ : E3 → E
3, x = ϕ(X, t) = κ(κ−1(P, 0), t) ∈ E

3. (3.2)

In continuum mechanics, two different descriptions are available. Either the dif-
ferential equations are formulated with respect to a fixed material point (Lagrangian
description, see Fig. 3.1) or a fixed point in space (Eulerian description). In the latter,
thematerial timederivative has an additional convective partwhich can lead to numer-
ical problems (Brooks and Hughes 1982). If mesh-based methods are employed to
simulate large deformations, which occur e.g. with fluid flows, the differential equa-
tions are mostly formulated with respect to a fixed point in space. Employing mesh-
free methods the equations for fluid flow can also be solved using the Lagrangian
description. This is especially advantageous if free surfaces are present like in the
case of Additive Manufacturing. For this reason, the equations, which are presented
here, are based solely on this description.

The differential equations can be formulated for the whole continuum or locally
for each mass point. In addition, a weak form also exists. Since meshfree methods
can be based on either the weak or the strong form, both descriptions are given.

Remark Besides the classical description of continua employing a decomposition
of the body into rigid mass points, some theories allow rotations of the particles. This
form is called micro-polar or Cosserat theory. An extension to deformable particles

Fig. 3.1 Lagrangian
description: Formulation of
the differential equation with
respect to mass points
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describes amicromorphic formulation.An introduction to these theories can be found
in Eringen and Kafadar (1976).

3.2 Mechanical Differential Equation

The solution function for describing the response behavior under mechanical load-
ing is the displacement u. This quantity can be specified for each mass point and
corresponds to the difference between the current and the initial position vector,
i.e. u = x − X. The mechanical differential equation for calculating the displace-
ments results from the balance of momentum together with proper constitutive and
kinematic relations.

In this short overview, all equations are given in the local form and with respect
to the current configuration. Alternative representations can be found in the afore-
mentioned textbooks.

3.2.1 Strong Form for Compressible Materials

The balance of momentum postulates that the change of the momentum in time is
equal to the sum of external forces. This statement requires the inertia term ρü to be
equal to the divergence of the Cauchy stress tensor σ and the specific dead load ρb̄

ρü = divσ + ρb̄. (3.3)

The second term on the right hand side is calculated from the density ρ and the
gravitational acceleration represented as the vector b̄. In order to fulfill the balance of
angularmomentum theCauchy stress tensormust be symmetric. According toWalter
Noll’s definition for simple and homogeneousmaterials, the stress tensor is a function
of the deformation gradient F, the temperature �, and the temperature gradient
(Truesdell and Noll 2004). Taking into account the 2nd law of thermodynamics, this
dependence is reduced to F and �. In the case of chemical reactions, the description
can be extended to the degree of cure α. For isotropic materials, the stress tensor can
be defined as a function of the right Cauchy Green tensor b. In case of hyper-elastic
materials, the stress tensor is calculated from a potential defined as the specific strain
energy function ψ

σ = ρ
∂ψ (F,�,α)

∂F
FT = 2ρb

∂ψ (b,�,α)

∂b
, b = FFT. (3.4)

The term specific indicates a quantity that is related to the mass. Thus, this infor-
mation is independent of the size of the system (Lüdecke and Lüdecke 2013). The
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constitutive equations depend on the materials used and the environmental condi-
tions. Suitable models for ψ can be found in the sections on Additive Manufacturing
in Chaps. 8 and 9. The deformation gradient provides the relationship to the solution
function

F = ∂x
∂X

= Grad x = 1 + Grad u. (3.5)

Assuming that the mass of the system remains constant during the process, the
current density can be calculated from its initial value ρ0 using the Jacobi determinant
J

ρ = ρ0

J
, J = detF. (3.6)

The derivative with respect to time yields to an alternative expression known as
the continuity equation

d

dt
(ρ J ) = 0, or ρ̇ + ρdiv v = 0. (3.7)

Therein, the vector v denotes the velocity of the mass point.

3.2.2 Strong Form for Incompressible Materials

To characterize the material behavior, the kinematic and constitutive quantities can
be divided into a volumetric, i.e. volume changing and an isochoric, i.e. volume
preserving part. The decomposition of the deformation gradient is multiplicative,
whereby the volumetric part depends only on the Jacobi determinant

F := FvolFiso, where Fvol = J
1
3 1, and detFiso = 1. (3.8)

The specific strain energy function can be divided additively into a volumetric
and an isochoric term

ψ := ψvol (J ) + ψiso
(
biso

)
, where biso = J− 2

3 b. (3.9)

The derivativewith respect to the kinematical quantity results in a split of the stress
tensor. The volumetric part corresponds to the hydrostatic pressure p. Compressive
stresses are always negative in continuum mechanics. Since p is usually defined
positively at pressure, a minus sign is introduced

σ = −p1 + 2ρb
∂ψiso

∂b
, p = −ρ

∂ψvol

∂ J
. (3.10)
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If the total volume does not change during loading at constant temperature, incom-
pressible material behavior is present. This requirement constraints the density to be
constant. Equations (3.6) and (3.7) simplify to

J − 1 = 0 or div v = 0. (3.11)

In this case, the volumetric part of the strain energy function is zero. The hydro-
static pressure is calculated from the fulfillment of the incompressibility condition
(3.11). This constraint can also be introduced into the specific strain energy function
via a Lagrange multiplier λ, where λ corresponds to the hydrostatic pressure (e.g.
Holzapfel 2000)

ψ := ψ (b) − λ(J − 1), where b = biso, and λ = p. (3.12)

From (3.11) it follows directly that the right Cauchy Green tensor is isochoric.
The derivative of the strain energy function with respect to the kinematic quantities
leads to (3.10). The derivative with respect to pressure gives the incompressibility
constraint.

Near a structure fluids show a viscous behavior. With the introduction of dissi-
pative stresses (Coleman and Gurtin 1967), incompressible Newtonian fluids can be
described as a function of the dynamic viscosity η (Malvern 1969)

σ = −p1 + 2ηd, d = grad symv = 1

2

(
grad v + grad Tv

)
. (3.13)

The viscous part is determined by the symmetric spatial velocity gradient d. For
incompressible fluids mostly the velocity v and the pressure p are chosen as the
solution functions. In this case, the pressure is calculated by fulfilling the incom-
pressibility condition div v = 0. For Newtonian fluids, the differential equation can
be directly formulated in terms of the solutions functions

ρv̇ = − grad p + 2ηdiv grad symv + ρb̄. (3.14)

3.2.3 Boundary and Initial Conditions

The supports and the loadings correspond to the mechanical boundary conditions.
A distinction is made between the essential, i.e. the Dirichlet, and the natural, i.e.
the Neumann boundary conditions. For the former, specifications are given for the
solution function. For the latter, values for its derivative have to be known which is
usually formulated in terms of an external stress vector t̄

u = ū on ∂BDu
t , σ · n = t̄ on ∂BNu

t . (3.15)
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The boundary is either of a Dirichlet or a Neumann type, i.e. ∂BDu
t ∪ ∂BNu

t =
∂Bt and ∂BDu

t ∩ ∂BNu
t = ∅. The normalized normal vector n at the surface points

outwards. In the case of fluids, conditions are given for to the velocity. For contact
with solids, the Dirichlet boundary is divided into a normal and a tangential part. In
the normal direction, it is required that a fluid cannot flow into the solid

v · n = 0 on ∂BDu
t . (3.16)

In the tangential direction, either the fluid particles stick to the surface of the solid
or they slide on the boundary. In the first case, the velocity of the fluid particles in
contact is zero. If the second case occurs, a constitutive equation for sliding must be
formulated

Stick: v = 0 Slip: v · tα �= 0 on ∂BDu
t . (3.17)

The vectors tα correspond to the two base vectors at the boundary surface (α =
1, 2). If the displacement is the solution function, the differential equation is of 2nd
order in time. In this case, the values for the displacements and the velocities at each
mass point at time t = t0 are to be given

u (t = t0) = u0, and v (t = t0) = v0 in Bt . (3.18)

If the velocity is selected as the solution function, only v (t = t0) has to be spec-
ified.

3.2.4 Interface Effects

In Additive Manufacturing, the dimensions are very small. If the material is in liquid
form, boundary layer effects such as surface tension or Marangoni convection must
be taken into account. If the temperature exceeds a critical value, part of the material
evaporates. In this case, the recoil pressure must also be considered. More details
on these phenomena can be found in Sect. 8.1. Mechanically, there is a jump of the
stress vector between the two states of aggregation

t1 = σ1n �= t2 = σ2n. (3.19)

The direction of the jump is defined by the normalized normal vector n at the
boundary layer. In this work, only the liquid phase is modeled during the liquid to
gas transition. Likewise, wetting is not included. Thus, in (3.19), only the fractions
for the liquid phase are significant, leading to the Neumann boundary condition
(3.15). The stress vector can be divided into a normal and a tangential component.
The difference from (3.19) in the normal direction corresponds to the surface tension
and the recoil pressure prec. The difference in the tangential direction describes the
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Marangoni convection. Here, the derivative with respect to the surface coordinates
xs is needed

σn = −pn + tT = − (
2γκ + prec

)
n + ∂γ

∂xs
. (3.20)

The component due to surface tension follows from the Young Laplace equation.
This pressure component is determined from the mean curvature κ and the coeffi-
cient of surface tension γ. This parameter is a function of temperature �, which in
turn can be different at each position vector xs at the surface, i.e. γ := γ(�(xs)). A
non-constant distribution of the temperature at the surface triggers the Marangoni
convection. A detailed derivation of the resulting contributions can be found in Lan-
dau and Lifshitz (1987). The recoil pressure often results from an estimate using the
Clausius-Clapeyron relation. The corresponding equation together with a reference
to further literature can be found in Sect. 8.1.6.

3.2.5 Weak Form

Galerkin solution schemes are based on the weak form of the differential equation.
Therefore, the equations are multiplied with a test function η and integrated over the
volume of the body. This description also corresponds to the principle of weighted
residuals (e.g. Schwarz 1991). Using Gauss’s integral theorem, the weak form con-
tains only first derivatives

G (η,u) =
∫

Bt

(
gradη · σ − ρη · (

b̄ − ü
))

dv −
∫

∂BNu
t

η · t̄ da = 0. (3.21)

The Neumann boundary condition is directly included in the formulation. Since
the order of the differential equation is reduced by one, only the Dirichlet boundary
conditions need to be satisfied together with η = 0 on BDu

t . A detailed derivation of
the weak form can be found in monographs on the Finite Element Method, such as
Hughes (1987) or Wriggers (2008).

3.3 Thermal Differential Equation

Additive Manufacturing processes are based on the control of the temperature � in
the body. The differential equation is derived from the 1st law of thermodynamics.
In this section, only the most important equations are presented. An introduction to
thermodynamics can be found e.g. in Lüdecke and Lüdecke (2013) or Baehr and
Kabelac (2016) and a continuum mechanical treatment in Silhavy (1997), Truesdell
and Noll (2004), Truesdell and Toupin (1960) orMiehe (1988). To be consistent with
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the previous section all equations are given in the local form and with respect to the
current configuration.

3.3.1 Strong Form

The 1st law of thermodynamics postulates that the change of the total energy in time
corresponds to the sum of mechanical work and external heat. With the introduction
of the specific internal energy u the 1st law of thermodynamics can be reformulated.
The internal stress power σ · d, the change of the heat flow q, and the internal heat
source r reasons a change of u

ρu̇ = σ · d − divq + ρr. (3.22)

The specific inner energy can be related to the specific strain energy function by
a Legendre transformation (e.g. Silhavy 1997)

ψ = u − �η. (3.23)

The quantity η corresponds to the specific entropy and can be described as a
function of the deformation gradient and the temperature η := f (F,�). Here, it has
to be noted that� corresponds to the absolute temperature, i.e.� ≥ 0. From the 2nd
law of thermodynamics the amount of internal dissipation Dint can be specified

Dint = σ · d − ρψ̇ − ρ�̇η ≥ 0. (3.24)

Since Dint is equal to zero for elastic materials, the stress (3.4), and the specific
entropy can be derived from the specific strain energy function

η(F,�) = − ∂ψ

∂�
. (3.25)

With these relations, the 1st law of thermodynamics can be rewritten

ρ�η̇ = −ρ�
∂2ψ

∂�∂F
· Ḟ − ρ�

∂2ψ

∂2�
= Dint − div q + ρr. (3.26)

A detailed derivation of the above equation can be found e.g. in Truesdell andNoll
(2004). Also the heat flow q is a constitutive quantity. The relation to the solution
function � is given by Fourier’s law

q = −K grad�. (3.27)
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In case of isotropic material behavior, the 2nd order tensor K reduces to the
thermal conductivity k multiplied by the unit tensor. The derivative of entropy with
respect to temperature corresponds to the specific heat capacity

cF = �
∂η

∂�
= −�

∂2ψ

∂2�
. (3.28)

It describes the amount of heat necessary to increase the temperature by 1 while
keeping the deformation constant. The derivative of specific entropy with respect to
the deformation gradient corresponds to the latent heat

LF = �
∂η

∂F
FT = −�

∂2ψ

∂�∂F
FT. (3.29)

The 2nd order tensor LF is symmetric due to the definition of the Cauchy stress
tensor (Silhavy 1997). If isotropic material behavior is present, this term reduces to a
scalar LF multiplied by the unit tensor. The latent heat (3.29) describes the supply of
heat necessary to increase a relative deformation by 1 at a constant temperature. For
isotropic materials, this deformation is purely volumetric. This effect is observed in
elastomers and is often referred to as theGough Joule effect (Holzapfel 2000 orMiehe
1988).With the definition of the individual quantities, the 1st law of thermodynamics
for isotropic materials can be specified more precisely

ρLF trd + ρcF�̇ = Dint − divq + ρr. (3.30)

The heat capacity and the latent heat can also be formulated with respect to stress.
If heat conduction is prevented, the supply or removal of heat is only possible through
the external source r . For elastic materials, the internal dissipation is equal to zero
and it has to hold

r = cF�̇ + LF trd = cσ�̇ + Lσ tr σ̇. (3.31)

The quantity cσ indicates the heat required to increase the temperature of a mass
by 1 at constant stress. The latent heat Lσ describes the heat necessary to increase
the volumetric stress by one at a constant temperature. A relationship between stress
and deformation-dependent quantities can be found in Silhavy (1997) or Truesdell
and Toupin (1960).

3.3.2 Boundary and Initial Conditions

The Dirichlet conditions correspond to prescribed values of the temperature at the
boundary. Neumann boundary conditions are imposed by the heat flow over the sur-
face. From a practical point of view, instead of the absolute temperature, usually only
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the temperature increase ϑ with respect to a spatially constant reference temperature
�0 is considered

ϑ = � − �0. (3.32)

For all terms that appear as derivatives, the absolute temperature can be replaced
by the relative contribution without changing the balance equations

ϑ̇ = �̇, gradϑ = grad�. (3.33)

Since ϑ is usually chosen as the solution function, the boundary conditions refer
to the temperature increase

ϑ = ϑ̄ on ∂BD�

t , q · n = q̄N on ∂BN�

t (3.34)

Analogous to the mechanical differential equation, the boundary is uniquely
divided into a Dirichlet and a Neumann part. Since the differential equation is of
1st order in time, only the temperature change at the beginning has to be specified

ϑ (t = t0) = ϑ0 in Bt . (3.35)

3.3.3 Interface Effects

If the printing process is based on melting, the material changes its aggregate state
when a critical temperature is reached. In the case of an isothermal phase change, the
interface corresponds to a surface in the body. This effect can be observed with pure
materials.With crystalline alloys andmaterials possessing a continuousmixing, there
is a temperature range at which the phase change takes place. This range is limited
at the transition from solid to liquid by the solidus and liquidus temperature and the
transition from liquid to gaseous by the bubble and dew temperature. To change the
aggregate state, additional thermal energy is required which is accompanied by a
change in volume. The additional energy for the phase change is described by the
latent heat. A detailed theoretical treatment on the phase change of metals can be
found in Glicksman (2011).

Mathematically, the process for isothermal phase change can be described by the
Stefan condition. The change of the heat flow in the direction of the normal vector at
the boundary layer nPhase corresponds to the latent heat multiplied by the velocity
of the boundary layer in the direction of phase change

(
qs − q f

) · nPhase = LFv · nPhase if � = �Phase. (3.36)



3.3 Thermal Differential Equation 29

Fig. 3.2 Schematic change of enthropy and enthalpy due to temperature. (Left) Isothermal (right)
non-isothermal phase change

This equation can also be derived from the 1st law of thermodynamics (3.26) if the
height of a continuous layer approaches zero. An analytical solution for the 1-dimen-
sional case can be found in Carslaw and Jaeger (1959) and numerical formulations
in Wang et al. (1993) or Ji et al. (2002).

If the phase change can be assumed to be isobaric and reversible, the specific
entropy is also proportional to the specific enthalpy H (Glicksman 2011)

η̇ = Ḣ

�
. (3.37)

If this relation holds, the 1st law of thermodynamics can be formulated alternatively
in terms of the specific enthalpy

ρḢ = Dint − div q + ρr. (3.38)

The isothermal phase change causes a jump in enthalpy at the critical temperature.
In case of non-isothermal phase change the enthalpy increases in the range between
the transition temperatures (Fig. 3.2). The approach of Eyres et al. (1946) describes
the latent heat in the critical temperature range solely as a function of the temperature

H = cF� + L(�). (3.39)

A numerical implementation of this approach can be found, for example, in Voller
and Prakash (1987), Chiumenti et al. (2010) or Rolph and Bathe (1982). Since the
latent heat depends only on the temperature in this method, it can also be integrated
into the specific heat capacity. This approach is only defined for non-isothermal phase
changes and called apparent heat model (Bonacina et al. 1973)

capp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cs, f � < �sol,bub

cinter =
∫ � f,g
�s, f

c(�)d�+Lmel,vap
F

�liq,dew−�sol,bub
�sol,bub ≤ � ≤ �liq,dew

c f,g � > �liq,dew

. (3.40)
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Alternatively, this phase change model can be integrated directly into the specific
strain energy function (de Saracibar et al. 2001).

Remark In the presented modeling approaches, the volume change that occurs dur-
ing a phase change is neglected. At the transition from solid to liquid, this influence
is small. However, if the state changes from liquid to gaseous, this effect is evident.
For example, 1 l water expands to a 1700 l gaseous state after vaporization.

3.3.4 Weak Form

The weak form is obtained by multiplying the 1st law of thermodynamics with a
scalar test function τ . Using Gauss’s integral theorem, the relationship can again be
divided into a volume and a surface term. For the approach from (3.38) the weak
form results to

G (τ ,�) =
∫

Bt

(
τ [ρḢ − Dint − ρr ] − grad τ · q)

dv +
∫

∂B
N�
t

τqN da = 0.

(3.41)
The order of the original differential equation is reduced by one and the Neu-

mann boundary conditions are directly included. Equation (3.41) must only fulfill
the Dirichlet boundary conditions. At these points, the test function must be zero
because the derivatives are not known, i.e. τ = 0 on ∂BD�

t .

3.4 Chemical Differential Equation

Instead of a phase change from liquid to solid, the material hardens during pho-
topolyermization as a result of a chemical reaction. In symbolic notation, the starting
material (A) reacts with the crosslinker (B) to form the product (C)

A + B → C. (3.42)

A and B are also called reactants. Using stoichiometry, the reaction can be described
by relative mass fractions

mA(t)

m
+ mB(t)

m
+ mC(t)

m
= 1 (3.43)

where mi (t), i = A, B,C indicate the mass fractions of the individual substances
at time t . During the reaction the total mass is constant

m = mA(t) + mB(t) + mC(t) = mA(0) + mB(0) = const. (3.44)
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The quantities mi (0) correspond to the mass of each constituent at the beginning
of the reaction at time t = t0. Alternatively, the conservation ofmass can be described
using a scalar variable α(t) which represents the mass fraction of the product

α(t) = mC(t)

m
. (3.45)

With this quantity and (3.44) an approach for the change of the mass fractions can
be formulated

mA(t)

m
= mA(0)

m
[1 − α(t)] ,

mB(t)

m
=

(
1 − mA(0)

m

)
[1 − α(t)] . (3.46)

The process variable can only be in the range between 0 and 1, withα(t = t0) = 0
and α(t = t∞) = 1. The constitutive equation for α must be determined by experi-
ments. Further literature on reaction kinetics can be found in Schmidt (1998) and a
detailed derivation of the above equations in Lion and Höfer (2007). A description of
the process kinetics of rubber vulcanization is given in André and Wriggers (2005).

If the chemical reaction describes a curing process, α(t) can also be defined as
the degree of cure. This value is often determined by the evolution of the reaction
heat H(t) divided by its maximum value H∞

α(t) = H(t)/H∞. (3.47)

An overview of different approaches to model curing can be found in Lion and
Höfer (2007). The model in Sourour and Kamal (1976) can be applied to describe
the chemical reactions during photopolymerization. In this case, the cross-linking is
approximated by an Arrhenius approach

α̇ =
[
A1 exp

(
− B1

�

)
+ A2 exp

(
− B2

�

)
αm

]
(1 − α)n. (3.48)

Curing describes an exothermic reaction. Itsmodeling canbe basedon the assump-
tion that the specific strain energy function also depends on the degree of cure
ψ := f (F,�,α) (Lion andHöfer 2007 or Landgraf et al. 2014). The 2nd law of ther-
modynamics indicates a dissipation due to the chemical reaction which corresponds
to the exothermic heat. For elastic material behavior, the strain energy function and
(3.48) must be chosen in such a way that the following condition is always fulfilled

Dint = −ρ
∂ψ

∂α
α̇ ≥ 0. (3.49)

Since the specific entropy depends on the degree of cure, an additional term results
from the derivative of η with respect to time. Hence, the 1st law of thermodynamics
is supplemented by two contributions due to chemical reactions where one of them
is included in the dissipation
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ρLF trd + ρcF�̇ − ρ
∂2ψ

∂�∂α
α̇ = Dint − divq + ρr. (3.50)

The third term on the left-hand side corresponds to the supply of heat at constant
temperature and deformation which is necessary to increase the degree of cure by 1.

When modeling the curing process, certain material parameters usually depend
on α. When an elastic structure is loaded, strains and stresses occur in the material.
If no further load is applied, but the cross-linking is set in motion, additional stresses
would result from the changeof thematerial parameters. This, however, is unphysical.
Therefore the assumption is made that the change of the curing process can change
material parameters but not have any influence on the stress (e.g. André andWriggers
2005). This leads to the constraint

∂σ

∂α

!= 0. (3.51)

3.4.1 Initial Conditions

The chemical differential equation only describes an initial value problem. Hence
only the degree of cure at the beginning (t = t0) is to be specified

α (t = t0) = α0 in Bt . (3.52)
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Chapter 4
Meshfree Discretization Schemes

The simulation ofAdditiveManufacturing is based on coupled differential equations.
Besides precise models for all phenomena, accurate solution schemes for differential
equations are a prerequisite for realistic reproduction. Since analytical solutions exist
only for certain special cases (Braess 2007), nowadays mainly numerical solution
schemes are employed. The first step in these methods is a spatial and temporal dis-
cretization of the differential equations. In most cases, an algebraic equation must be
solved to determine an approximate solution. Often the wrong results of a simulation
are based on errors in the spatial discretization. Therefore, the emphasis is on this
point. Time integration or solution schemes are outlined only in a subordinate way. In
the case of meshfree methods, both topics are treated analogously to the Finite Ele-
ment Method. More information on temporal discretization and on solution schemes
can be found either in the literature on the FEM e.g. in Hughes (1987), Bathe (2006),
Belytschko et al. (2000b), Wriggers (2008), Simo and Tarnow (1992) or in Wood
(1990).

For spatial discretization various approaches are available. These can be divided
into mesh-based and meshfree methods, whereas mixed variants also exist. In addi-
tion, the domain can be divided into particles or nodes plus integration points. In the
former, the system is characterized as a one-point and in the latter as a two-point
method. Moreover, there exist different concepts that represent the starting point for
spatial discretization (Fig. 4.1).

Many simulations in an industrial environment are still based on the Finite Ele-
ment Method. This scheme is particularly convincing due to an accurate solution
of differential equations in many cases. For the calculation of solid deformations,
the Lagrangian description of the differential equation is used to be able to directly
analyze the actual deformations. Flow simulations lead to very large deformations.
The elements can distort to such an extent that an accurate solution is no longer pos-
sible. For very large deformations, the Eulerian description is mostly preferred. This
leads to an advection-diffusion term in the differential equation, which can cause
numerical difficulties (Gresho and Sani 1998; Brooks and Hughes 1982). Further
problems arise when modeling free surfaces or boundary layers. This requires addi-
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Fig. 4.1 Classification of spatial discretization schemes based on concept, neighborhood and sub-
division

tional algorithms, such as Volume of Fluid (Hirt and Nichols 1981) or Level Sets
(Osher and Sethian 1988; Osher and Fedkiw 2001).

Meshfree methods, on the other hand, also allow flow simulations in a Lagrangian
description. Free surfaces, boundary layers, and the fusion of particles can be directly
represented.On the other hand,meshfreemethods usually cannot guarantee sufficient
accuracy without additional treatment. This deficiency still hinders the increased use
of these schemes in an industrial environment.

The main focus of this chapter represents the investigation of all requirements for
spatial discretization schemes to enable an accurate solution of differential equations.
Especially the divergence operator is studied in more detail since this contribution
is mostly responsible for inaccuracies.

All investigations are carried out exclusively for the mechanical differential equa-
tion represented in the Lagrangian description and with respect to the current con-
figuration. However, the individual statements can be directly transferred to other
forms.

First, themost important terms are introduced anddifferent discretization concepts
are presented. The solution of nonlinear differential equations, as they occur in the
modeling of Additive Manufacturing processes, requires special treatment. Often,
the Newton-Raphson algorithm is used in this case, which is introduced in Sect. 4.3.
Before listing all requirements for spatial discretization schemes in Sect. 4.5, possible
reference configurations are defined in Sect. 4.4. Finally, common shape functions
in the field of meshfree methods are presented in Sect. 4.6.

4.1 Points and Neighborhoods

In all solution methods, the domain is represented by a finite number of points. A
point P defines a position in space that is localized by a coordinate but has no mass.
The FEM distinguishes between integration points and nodes. At the integration
points, the integral of the weak form is evaluated. The nodes correspond to the
connection points between the individual elements. At these points, the values of
the approximate solution and its time derivatives are determined. Quantities such as
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Fig. 4.2 Two-point methods: Subdivision of the domain into nodes and integration points. Identi-
fication of support and influence domain. (Left) Mesh-based methods. (Right) Meshfree methods

the stress, the strain, or the density are calculated at the integration points. In many
meshfree methods, which also represent the domain by two different types of points,
the same terminology is mostly used. Particles correspond to points that possess a
mass and at which all quantities are evaluated. Thus, the domain is subdivided into
only one type of point.

In all discretization methods, a neighborhood is assigned to each point. A neigh-
borhood of P defines the sum of all points in the direct environment including P . In a
two-point method, the nodes in the environment of an integration point or the reverse
relation do not correspond to a neighborhood. For this reason, other terms have been
established. In the FEM, the environment of an integration point corresponds to the
element, where several integration points share the same environment. On the other
hand, an environment consisting of integration points can be assigned to each node
(Fig. 4.2), although this consideration usually plays a rather subordinate role in the
FEM. Analogous definitions can be introduced for meshfree methods that divide the
domain into two distinct types of points. In contrast to the FEM, a search algorithm
determines the environment. The sum of nodes belonging to an integration point
defines the support domain. The influence domain includes the integration points in
the environment of a node. For meshfree methods that represent the domain by indi-
vidual particles (Fig. 4.3), the support and influence domains coincide. In addition,
the criteria for a neighborhood are met. For this reason, only this term is here used
in the case of one-point methods.

Fig. 4.3 One-point meshfree
method: Subdivision of the
domain into particles and
determination of the
neighborhood by means of a
search algorithm
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4.2 Discretization Concepts

Common to allmethods,which are presented here, is the definition of the approximate
solution in the neighborhood of a point by shape or basis functions NI and coefficients
aI

u(x) =
Nx∑

I=1

NI (x)aI . (4.1)

The abbreviation Nx corresponds to the number of points in the neighborhood Hx

of x. The shape functions are defined in advance. Instead of the approximate solution,
only the unknown coefficients have to be determined. In the FEM, the approximate
solution is also called the trial function. To better show the analogies and differences,
the term trial function is mainly used in the following.

All discretization methods lead in the final form of the mechanical differential
equation to the condition that the force fI at inner nodes or particles must be equal to
zero and for nodes or particles at the Neumann boundary equal to the corresponding
force fnI

fI =
{
0 for inner nodes/particles
fnI for boundary nodes/particles

. (4.2)

The force fI breaks down into a fraction from the dead load fgI , the inertia term
f tI , and the internal force due to the state of stress inside the material f sI

fI = f tI + fgI + f sI . (4.3)

The subscript corresponds to the location where the quantity is evaluated, i.e.
fI = f (xI ). Sought are the displacements or more precisely the coefficients that
satisfy the equilibrium of forces. All discretization schemes can be classified into
four different categories. At this stage, it does not matter whether the domain is
represented by single particles or nodes plus integration points.

Remark. Often the force from the dead load and the force due to the Neumann
boundary condition are combined as the external force fextI . Thus, it can also be
required that at each particle the internal force f intI = f sI plus f

t
I must correspond to

the external force.

4.2.1 Weak Form

TheOptimal TransportationMeshfree, the Element FreeGalerkin, theMovingLeast-
Square Reproducing Kernel, and the Reproducing Kernel Particle method, respec-
tively, are based, like the FEM, on the weak form of the differential equation (3.21)
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G (η,u) =
∫

Bt

[
grad η · σ + ρη · (ü − b̄

)]
dv −

∫

∂BNu
t

η · t̄ da = 0.

Discretization schemes, which are based on the weak form, divide the domain
either into single particles or nodes plus integration points. Therefore, the discrete
equations of both variants are briefly presented.

Two-point method. In this case, the integral in (3.21) is replaced by a sum over all
integration points

ngp∑

p=1

(
grad ηp · σ p + ρpηp · (üp − b̄

))
vp =

nsgp∑

p=1

ηp · t̄pap. (4.4)

The abbreviation ngp defines the total number of integration points in the domain,
whereas nsgp corresponds to the number of evaluation points at the surface. From the
discretization of the test function

ηp =
Nsup

p∑

I=1

NI
(
xp
)
bI , grad ηp =

Nsup
p∑

I=1

bI ⊗ ∂NI
(
xp
)

∂xp

(4.5)

the weak form can be formulated in dependence on the components bI

ngp∑

p

Nsup
p∑

I=1

(
bI ⊗ ∂NI

(
xp
)

∂xp
· σ p + ρpNI

(
xp
)
bI · (up − b̄

) )
vp

=
nsgp∑

p=1

Nsup,s
p∑

I=1

NI
(
xp
)
bI · t̄pap.

(4.6)

Besides the number of nodes in the support domain Nsup
p , the number of nodes at

the surface belonging to an integration point at the boundary Nsup,s
p is needed. The

sum signs can be interchanged. Thus, the discrete form can also be represented as a
sum over all nodes n

n∑

I=1

bI ·
Nin f
I∑

p=1

(
σ p

∂NI
(
xp
)

∂xp
+ NI

(
xp
)
ρp
(
üp − b̄

)
)

vp =
ns∑

I=1

bI ·
Nin f,s
I∑

p=1

NI
(
xp
)
t̄pap.

(4.7)

At the Neumann boundary, for simplicity, we can also sum only over nodes ns

that lie at the corresponding surface. The abbreviation Nin f
I denotes the integration

points in the influence domain of the node I and Nin f,s
I include the corresponding

number of points at the surface. Since the coefficients of the test function can be
chosen arbitrarily and thus not equal to zero, the following must hold for each node
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Nin f
I∑

p=1

(
σ p

∂NI
(
xp
)

∂xp
+ NI

(
xp
)
ρp
(
üp − b̄

)
)

vp =
Nin f,s

I∑

p=1

NI
(
xp
)
t̄pap. (4.8)

The first term on the left-hand side determines the contribution of the internal
force due to the state of stress in the material

f sI =
Nin f

I∑

p=1

σ p
∂NI

(
xp
)

∂xp
vp. (4.9)

The second part leads to the inertia force and the third term to the force due to the
dead load

f tI =
Nin f

I∑

p=1

NI
(
xp
)
ρpüpvp, fgI = −

Nin f
I∑

p=1

NI
(
xp
)
ρpb̄vp. (4.10)

The expression on the right hand side results in the contribution of the force due
to the Neumann boundary condition

fnI =
Nin f,s

I∑

p=1

NI
(
xp
)
t̄pap. (4.11)

One-point method. Analogous relations can also be given for the case that the
domain is represented by single particles. The integral is replaced by the sum over
all particles n or over all particles ns at the surface with t̄ �= 0

n∑

J=1

(
grad ηJ · σ J + ρJηJ · (üJ − b̄

))
vJ =

ns∑

J=1

ηJ · t̄J aJ . (4.12)

In the discretization of the test function, only the individual values at the particles
are considered

ηJ =
NJ∑

I=1

NI (xJ )bI , grad ηJ =
NJ∑

I=1

bI ⊗ ∂NI (xJ )

∂xJ
. (4.13)

The abbreviation NJ in the sum sign corresponds to the number of particles in
the neighborhood of the particle J . The individual force components are calculated
in an analogous way to the two-point method. The internal force due to the state of
stress in the material results from the evaluation of the individual quantities in its
neighborhood

f sI =
NI∑

J=1

σ J
∂NI (xJ )

∂xJ
vJ . (4.14)
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The second term in (4.12) leads to the inertial force and the third term to the force
due to the dead load

f tI =
NI∑

J=1

NI (xJ ) ρJ üJvJ , fgI = −
NI∑

J=1

NI (xJ ) ρJ b̄vJ . (4.15)

Assuming a Kronecker-δ property of the shape function, both forces can directly
be formulated in dependence on the mass at the corresponding particle

f tI = mI üI , fgI = −mI b̄, with mI = ρIvI . (4.16)

When calculating the force due to theNeumann boundary condition, it is sufficient
to sum only over the particles Ns

I at the corresponding boundary

fnI =
Ns

I∑

J=1

NI (xJ ) t̄J aJ . (4.17)

The approximate solution must also fulfill the Dirichlet boundary conditions, i.e.
uI = ū (xI ) on ∂BDu

t .

Remark. If the same shape functions are used for the trial and the test function,
a Bubnov-Galerkin method is present. In the other case, the scheme belongs to a
Petrov-Galerkin method. As pointed out in textbooks on the FEM, e.g. Wriggers
(2008), the stiffness matrix for conservative systems must be symmetric. However,
this cannot be guaranteed for Petrov-Galerkin methods.Mostly, this approach is used
to correct numerical instabilities resulting, for example, from the advection-diffusion
term in the differential equations (Brooks and Hughes 1982).

4.2.2 Strong Form

As an alternative to the weak form, the strong form can serve as a starting point
for the simulation. In the field of meshfree methods, this form is often used for the
calculation of fluid flows. Although a formulation based on a two-point scheme is
also possible, a one-point method is more suitable, since no integration over the
domain occurs. For this reason, only the discretization of the differential equation
for fluids, which is based on a subdivision of the domain into particles, is presented
in the following. For the case of incompressible fluids, the divergence of the stress
splits into a hydrostatic and a viscous part (3.13)

div σ = − grad p + 2ηdiv grad symv.



42 4 Meshfree Discretization Schemes

By substituting into the strong form, the differential equation can be formulated
directly in dependence on the two solution functions, the pressure p and the velocity
v (3.14)

ρv̇ = − grad p + 2ηdiv grad symv + ρb̄.

When considering the strong form, the differential equation must be satisfied at each
particle

ρI v̇I + grad pI − 2ηdiv grad symvI − ρI b̄ = 0. (4.18)

The discretization of the pressure gradient is similar to (4.13). But the viscous
part needs the second derivative of the shape function

grad pI =
NI∑

J=1

pJ
∂NJ (xI )

∂xI
,

div grad symvI = 1

2

NI∑

J=1

[
vJ ⊗ ∂2NJ (xI )

∂2xI
+ ∂2NJ (xI )

∂2xI
⊗ vJ

]
: 1.

(4.19)

The multiplication symbol : denotes the double contraction of two tensors and 1
corresponds to the unit tensor. The individual forces result from the multiplication
with the volume. The contributions from the inertia term and from the dead load are
equivalent to (4.16). The internal force at the particle is determined from (4.19)

f sI = vI

[
NI∑

J=1

pJ
∂NJ (xI )

∂xI
− η

[
vJ ⊗ ∂2NJ (xI )

∂2xI
+ ∂2NJ (xI )

∂2xI
⊗ vJ

]
: 1
]

.

(4.20)
The force fnI results from the satisfaction of the Neumann boundary condition t̄

at the corresponding particles

σ InI = t̄ (xI ) , on ∂BNu
t . (4.21)

In addition, the requirement uI = ū (xI ) must be satisfied at the Dirichlet bound-
ary ∂BDu

t .

4.2.3 Reduced Order Strong Form

Alternatively, the balance equation and the kinematic or constitutive quantities can
be treated separately. The balance of momentum (3.3)

ρü = div σ + ρb̄
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requires only the first derivative. The same applies to the calculation of the kinemat-
ical relation. Thus, analogous to the weak form, the order of the highest derivative
has decreased by one. Since no integration occurs, the discrete equations are only
derived employing a one-point method. The balance equation must be fulfilled at
each particle

ρI üI − div σ I − ρI b̄ = 0. (4.22)

With the discrete form of the divergence operator, the individual force components
in (4.3) can be specified more precisely

div σ I =
NI∑

J=1

σ J
∂NJ (xI )

∂xI
, f sI = −vI

NI∑

J=1

σ J
∂NJ (xI )

∂xI
. (4.23)

The contributions from the dead load and the inertia term are exactly equal to
(4.16). The force fnI is determined analogously to the previous section. Compared
to the weak form the only difference in the calculation of the total force fI is the
determination of the internal force f sI . Besides the multiplication with the volume
and the exchanged order of the indices in the derivative of the shape function, the
sign has also changed.

4.2.4 Weak Form Based on Differences

This type constitutes the basis for the correspondence formulation within Peridy-
namics. As will be shown in Chap.6 it also leads to a typical formulation in SPH.
Since both discretization schemes are based on a subdivision of the domain into
individual particles, only this concept is considered. The gradient of the test function
in (3.21) can alternatively be approximated from a Taylor series. The function η at
the neighboring point x′ of x can also be determined from the sum of derivatives
multiplied by differences

η
(
x′) = η (x) + grad η

(
x′ − x

)+ O
((
x′ − x

)2)
, grad η = ∂η

∂x
. (4.24)

The gradient of the test function can now be determined using the method of least
squares. Only the linear part in the Taylor series is considered and the error in the
integral over the whole neighborhood is minimized

J :=
∫

Hx

ω
(
x′ − x

) ‖η (x′)− η (x) − grad η
(
x′ − x

) ‖2 dvx′ → min. (4.25)

The Euclidean norm in the integral is additionally weighted by the function ω.
The subscript at dv indicates the variable to be integrated. The gradient of the test
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function which minimizes the functional J results from the requirement that the
derivative of J with respect to grad η must be equal to zero

∂ J

∂ grad η

!= 0 → grad η =
∫

Hx

ω
(
x′ − x

) [
η
(
x′)− η (x)

]⊗ (x′ − x
)
dvx′M−1 (x) .

(4.26)

In the context of least squares, the tensorM is called moment tensor

M (x) =
∫

Hx

ω
(
x′ − x

) (
x′ − x

)⊗ (x′ − x
)
dvx′ . (4.27)

More information on least squares can be found in Sect. 4.6. Substituting (4.26)
into (3.21) and taking advantage of the symmetry of the moment tensor an alternative
form for the virtual internal work can be obtained

∫

Bt

grad η · σ dv =
∫

Bt

∫

Hx

[
η
(
x′)− η (x)

] · t (x, x′) dvx′ dvx. (4.28)

To simplify the notation the vector t is introduced

t
(
x, x′) = ω

(
x′ − x

)
σ (x)M−1 (x)

[
x′ − x

]
. (4.29)

Since t
(
x, x′) = 0, if x′ /∈ Hx the integration can be extended over the entire

domain. The right-hand side in (4.28) can be transformed by exchanging indices

∫

Bt

∫

Bt

[
η
(
x′)− η (x)

] · t (x, x′) dvx′ dvx

=
∫

Bt

∫

Bt

η (x) · t (x′, x
)
dvx dvx′ −

∫

Bt

∫

Bt

η (x) · t (x, x′) dvx′ dvx

= −
∫

Bt

∫

Bt

η (x) · [t (x, x′)− t
(
x′, x

)]
dvx′ dvx.

(4.30)

Thus, the weak form can also be formulated in dependence on a difference of t

−
∫

Bt

∫

Hx

η (x) · [t (x, x′)− t
(
x′, x

)]
dvx′ dvx +

∫

Bt

ρη · (ü − b̄
)
dv

=
∫

∂BNu
t

η · t̄ da.

(4.31)

In the discrete form, the sum over all particles n replaces the integral over the
volume. The contributions from the dead load, the inertia term, and the force due
to the Neumann boundary condition are exactly the same as in Sect. 4.2.1. Only the
internal force due to the state of stress in the material is calculated differently. In the
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discrete form, the corresponding force can be further specified by substituting (4.29)
into (4.31)

f sI = −
NI∑

J=1

(
ω (xJ − xI ) σ IM−1

I [xJ − xI ] − ω (xI − xJ ) σ JM−1
J [xI − xJ ]

)
vJvI .

(4.32)
With the definition

∂NI (xJ )

∂xJ
= ω (xI − xJ )M−1

J (xI − xJ ) vI (4.33)

the inner force at a particle can be formulated in dependence on shape function
derivatives

f sI = −
NI∑

J=1

[
σ I

∂NJ (xI )
∂xI

vI − σ J
∂NI (xJ )

∂xJ
vJ

]
. (4.34)

If the derivatives in the first term sum to zero

NI∑

J=1

∂NJ (xI )
∂xI

= 0 (4.35)

Equation (4.34) corresponds exactly to the contribution from theweak form (4.14).
This is given if the shape functions satisfy the reproducing conditions in the deriva-
tives of 0th order (4.65).

Remark. The concept leading to (4.26) is similar to the so-called peridynamic deriva-
tive formulated in Madenci et al. (2016) and Madenci et al. (2018).

4.3 Solution Schemes

After discretization, the coefficients a that satisfy the equilibrium of forces have to
be computed. The contributions from each node or particle are normally summarized
in a vectorR. In the Finite Element Method, this process is called assembly. To show
the analogy to the FEM, the same term and the corresponding operator is used. Thus,
the unknown coefficients a can be solved from the condition R = 0

R (a, ä) =
n

A
I=1

(
fI − fnI

) = 0. (4.36)

For dynamic systems a time discretization is required. Afterward, the condition
reduces to R (a) = 0. If a quasi-static case is present, or an implicit time integration
scheme is used, then the unknowns are calculated from a system of linear equations.
In the case of a linear differential equation, the vector R can be directly decomposed
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into a fraction resulting from the multiplication of the stiffness matrix K with a and
a load vector p

R (a) = 0, → Ka − p = 0. (4.37)

The vector p includes all contributions from the loading that are independent
of the displacements. In this case, the coefficients a can be determined directly
from (4.37). The equations resulting form the modeling of Additive Manufacturing
processes are normally non-linear with respect to the solution functions. In these
cases, the Newton-Raphson algorithm is often selected to compute the unknowns.
This scheme determines the coefficients incrementally and is based on aTaylor series.
If only the linear part is considered, the equilibrium condition at step k + 1 can be
calculated from already known quantities at step k and the unknown increment �a

R
(
ak+1) = 0, R

(
ak+1) = R

(
ak
)+ ∂R

(
ak
)

∂a
�ak+1. (4.38)

With the definition of the tangent matrix K, the increment is computed solving a
system of linear equations

K(ak)�ak+1 = −R
(
ak
)
, K(ak) = ∂R

(
ak
)

∂a
. (4.39)

The vector ak+1 is determined directly from the increment

ak+1 = ak + �ak+1. (4.40)

Different conditions are available as termination criteria for the Newton-Raphson
algorithm, such as the Euclidean norm of the vector R. In this case, the equilibrium
is found if the norm falls below a chosen tolerance δ

‖R (ak+1
) ‖ =

√
R
(
ak+1

) · R (ak+1
) ≤ δ. (4.41)

This algorithm converges quadratically if the initial value is close to the solution
we are looking for. The disadvantage of this method is the constant recalculation
of the tangent matrix K. Further information and alternative solution schemes for
nonlinear equations can be found e.g. inWriggers (2008) orBelytschko et al. (2000b).

Remark 1. In the Finite Element Method, assembly describes the assignment of
local to global node numbers (Hughes 1987).

Remark 2. Explicit time integration schemes have the advantage that no tangent
matrix has to be calculated and no inverse has to be determined. Especially these
operations lead to high computational efforts when the number of degrees of freedom
is very large. On the other hand, with these methods, the time step size usually has
to be chosen much smaller to guarantee the stability of the integration scheme. In
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addition, no equilibrium is calculated in explicit methods. Depending on the task,
the right solution method must therefore be carefully selected.

4.4 Reference Configurations

This chapter is limited to the formulation of the differential equations with respect to
quantities of the current configuration. Furthermore, only the Lagrangian description
is considered. The individual quantities are thus related to mass points. The mass
point itself can be represented by a position vector with respect to different refer-
ence configurations. This section presents four possibilities (Fig. 4.4). For a more
descriptive presentation, the dependence on the time or load step is also given in this
section. The formulations are only presented for the discretization of the classical
weak form. Additionally, it is assumed that the domain is subdivided into nodes and
integration points. The procedure for other concepts is analogous.

4.4.1 Total Lagrangian Formulation

In the total Lagrangian formulation, all quantities are defined in dependence on the
coordinate X of the initial configuration

fI n+1 =
Nin f

I∑

p=1

σ n+1(Xp)
∂NI (Xp)

∂xp n+1
vn+1(Xp). (4.42)

For simple materials, the stress is a function of F, see also Sect. 3.2. The defor-
mation gradient is calculated from the derivative of the shape function with respect

Fig. 4.4 Different Lagrangian reference configurations to formulate discretized differential equa-
tions
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to the coordinates of the initial configuration and can thus be determined directly.
The derivative of the shape function with respect to the current coordinates results
from a multiplication with the inverse of the deformation gradient

Fp n+1 = ∂xp n+1

∂Xp
= 1 +

N∑

I=1

aI n+1 ⊗ ∂NI (Xp)

∂Xp
,

∂NI (Xp)

∂xp n+1
= ∂NI (Xp)

∂Xp
F−1
p n+1.

(4.43)
The transfer from the initial to the current configuration is called push-forward.

The inverse relation corresponds to a pull-back. A detailed treatise on this subject
can be found in Marsden and Hughes (1983) or Miehe (1988). The current volume
is calculated from the volume at the beginning v0 multiplied by the determinant of
the deformation gradient

vn+1(Xp) = detFp n+1 v0(Xp). (4.44)

This formulation is not suitable for fluid flow simulations, since the closest neigh-
boring points change during the calculation.

4.4.2 Current Lagrangian Formulation

To simulate very large deformations with meshfree methods, a redefinition of the
neighborhood at each time step is advantageous. The force can also be calculated
using quantities determined at points in the current neighborhood

fI n+1 =
Nin f

I n+1∑

p=1

σ n+1(xp n+1)
∂NI (xp n+1)

∂xp n+1
vn+1(xp n+1). (4.45)

In this case, the deformation gradient is calculated from its inverse

F−1
p n+1 = 1 −

Nsup
p n+1∑

I=1

aI n+1 ⊗ ∂NI (xp n+1)

∂xp n+1
. (4.46)

When using the Newton-Raphson algorithm, the dependence of the shape function
on the current coordinate leads to an additional part in the linearization.
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4.4.3 Updated Lagrangian Formulation

To avoid this extra effort in the linearization, an updated Lagrangian formulation can
be used as an alternative. Here, all quantities refer to the coordinates at the previous
time step tn . This formulation also allows a simulation of very large deformations

fI n+1 =
Nin f

I n∑

p=1

σ n+1(xp n)
∂NI (xp n)

∂xp n+1
vn+1(xp n). (4.47)

With the aid of the incremental deformation gradient

�Fp n+1 = ∂xp n+1

∂xp n
= 1 +

Nsup
p n∑

I=1

(aI n+1 − aI n) ⊗ ∂NI (xp n)

∂xp n

(4.48)

the current deformation gradient and the current volume can be determined

Fp n+1 = �Fp n+1Fp n, vp n+1 = det�Fp n+1vp n. (4.49)

In (4.48), the identity Xp = xp n − ap n is used. The derivative of the shape func-
tion with respect to the current coordinates results from the push-forward

∂NI (xp n)

∂xp n+1
= ∂NI (xp n)

∂xp n
�F−1

p n+1. (4.50)

4.4.4 Isoparametric Concept

Especially for mesh-based solution schemes, a formulation with respect to a con-
figuration that has a regular structure is a good choice, see Weißenfels (2019). This
also facilitates numerical integration and is called isoparametric concept in the FEM
(Irons and Zienkiewicz 1968; Ergatoudis et al. 1968). The reference system is based
on orthonormal coordinate vectors ξ

fI n+1 =
Nin f

I∑

p=1

σ n+1(ξ p)
∂NI (ξ p)

∂xp n+1
vn+1(ξ p). (4.51)

The current derivatives result from the push-forward using the Jacobi tensor j
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jp n+1 = ∂xp n+1

∂ξ p
= 1 +

Nsup∑

I=1

aI n+1 ⊗ ∂NI (ξ p)

∂ξ p
,

∂NI (ξ p)

∂xn+1
= ∂NI (ξ p)

∂ξ p
j−1
p n+1.

(4.52)
For numerical integration, the Gauss method is usually employed. If the shape

function corresponds of a polynomial, an exact integration can be ensured. The
volume is calculated from the Jacobi determinant and a weighting W

vn+1(ξ p) = det jp n+1Wp. (4.53)

The number of nodes in the influence and the support domain is defined at the
beginning and is not redetermined during the simulation. Detailed information on the
isoparametric concept can be found in the common literature on the Finite Element
Method (Hughes 1987; Dhatt and Touzot 1984; Zienkiewicz and Taylor 1989).

4.5 Requirements on Spatial Discretization Schemes

For an accurate solution of the differential equation, a lot of requirements must be
met. First, the solution has to exist and be unique. These aspects are part of functional
analysis. A detailed treatment of this subject can be found, for example, in Vainberg
(1964) and a proof in connection with nonlinear elasticity theory in Marsden and
Hughes (1983). This work assumes the existence and the uniqueness of the solution.

Further issues arise in the numerical solution of differential equations. In this case,
the solution function is approximated. Thus, it must be ensured that the given set of
possible approximations contains the solution of the differential equation. This aspect
is also part of functional analysis. If a solution exists and the approximation contains
this solution, then it must be additionally ensured that the numerical proceduremakes
the finding of the solution possible. For this, several conditions must be fulfilled.
Exactly this aspect will be discussed in more detail in this section.

Since these conditions must apply independently of the time or load step, an
explicit specification of the time is omitted. In addition, the derivations are mainly
based on the weak form. However, the individual conditions apply analogously
to other methods. If differences are found, this is noted at the appropriate place.
Before explaining the individual requirements on spatial discretization schemes,
some important terms are defined first.

4.5.1 Definitions

In the literature on numerical solution schemes, the terms consistency, completeness,
reproducing condition, convergence, stability, and locking appear frequently. To ease
further understanding, these definitions are first explained in more detail.
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Consistency, completeness, reproducing conditions. The termconsistency is found
in connection with the Finite Difference Method. This scheme solves the strong
form of the differential equation on a fixed grid. The error that arises when the true
solution u of the differential equation is substituted into the discrete formulation is
investigated. The evaluation is based on the difference between the response of the
discrete Lh and the continuous differential operator L . The difference must tend to
zero as the resolution increases

‖Lh (u) − L (u) ‖ → 0 as h → 0. (4.54)

The grid spacing h is chosen as the measure of the resolution. The arbitrary shape
and arrangement of the elements makes it difficult to prove consistency in the FEM.
Instead, the completeness of the basis or shape functions is required. An approxima-
tion is complete within a neighborhood if the error of the approximation compared
to a given function u approaches zero as the resolution increases (Belytschko et al.
2000b)

‖u (x) −
Nx∑

I=1

NI (x) aI‖ → 0 as h → 0. (4.55)

The condition can also be formulated for the entire domain. A suitable norm is
needed to estimate the error. Often, the first Hilbert norm is chosen in the FEM for
the analysis of the mechanical differential equation. This norm considers not only
the values of the function u in an integral sense, but also the first derivative

‖u‖1 =
⎛

⎝
∫

B

⎡

⎣
3∑

i=1

(ui )
2 +

3∑

i=1

3∑

j=1

(
∂ui
∂x j

)2
⎤

⎦ dv

⎞

⎠
1/2

. (4.56)

An overview of common norms in the context of numerical solution schemes
can be found e.g. in Bathe (2006). A stricter criterion represents the reproducing
condition (Belytschko et al. 2000b). In this case, it is required that the approximation
by means of basis or shape functions corresponds exactly to the given function.
Hence, in the neighborhood of x it has to hold

u (x) =
Nx∑

I=1

NI (x) u (xI ) . (4.57)

Compared to (4.1), the coefficients are replaced with the values of the function
at the nodes or particles, i.e. aI = u (xI ). As can be seen from the comparison with
(4.55), completeness is always satisfied if the approximation fulfills the reproducing
conditions.

Stability. Inmechanics this term is often found in connectionwith equilibrium states.
However, the solution procedure must also be stable. In general, stability requires
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boundedness. A system is stable if the values at two neighboring points aa and ab
remain in the neighborhood during a process (Seydel 2009). The second term ab can
be considered as a small perturbation of aa . The distance, defined in an appropriate
norm, must always be below a defined bound ε

‖aa(t) − ab(t)‖ ≤ ε. (4.58)

In the context of solution schemes, it is required that a small relative change of
the load must lead to only a small relative change of the solution at any time (Bathe
2006). Therefore, the bound on the right-hand side in (4.58) is supplemented by the
corresponding distances

‖aa(t) − ab(t)‖
‖aa(t)‖ ≤ ε

‖pa(t) − pb(t)‖
‖pa(t)‖ . (4.59)

Convergence. Convergence exists if the approximate uh tends to the true solution u
as the resolution increases

‖uh (x) − u (x) ‖ → 0 as h → 0. (4.60)

The quantity h describing the resolution must be defined in an appropriate form.
According to Lax’s equivalence theorem in the context of the Finite Difference
Method, the solution converges for a correctly posed problem if consistency and
stability are ensured. No direct proof exists for other solution schemes. In the Finite
Element Method using the isoparametric concept, convergence can be assumed for
elliptic differential equations if the conditions on completeness and stability are
satisfied.

In addition, the order of convergence α can be estimated with the help of an
inequality, see e.g. Hughes (1987)

‖uh (x) − u (x) ‖s ≤ c hα‖u‖r , α = min (k + 1 − s, r − s) . (4.61)

If the solution can be assumed to be smooth, i.e., no drastic changes or jumps
exist, r tends to infinity (Belytschko et al. 2000b). The value k denotes the order
of completeness and s the order of the Hilbert norm. The value c depends on the
problem and the material parameters but is independent of h.

For meshfree methods, two different types of convergence can be defined. A finer
resolution always describes a larger number of nodes or particles. In convergence
analysis, either the search radius can be assumed to be constant, or the number
of nodes or particles in the neighborhood. The latter corresponds to the classical
definition of convergence in the context of the FEM.

Patch test. In order to avoid a direct mathematical proof of consistency, the so-
called patch test was introduced in Bazeley et al. (1965) in the context of the FEM.
The justification of the equivalence was confirmed in Strang (1972), see also Strang
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and Fix (1973). The primary motivation was to investigate nonconforming elements.
However, this test proved to be a very pragmatic approach to evaluate general spatial
discretization concepts. The original form includes two test scenarios. If the values
a of the true solution are substituted into the system of linear equations, see (4.37),
the error must tend to zero as the resolution increases

‖Ka − p‖ → 0 as h → 0. (4.62)

In the second investigation, the values of the true solution are given only at the
boundary. At the locations in the interior, the values a must correspond to the true
solution. An extension of the original patch test can be found in Taylor et al. (1986). A
third criterion is introducedwhich also tests the stability of the formulation. Thus, the
patch test including all three scenarios can be regarded as a necessary and sufficient
proof of convergence at least for the standard FEM using the isoparametric concept.
In the additional test, Neumann boundary conditions are given. Only the minimum
number of displacements is fixed to avoid rigid body motion. Convergence exists if
the values a tend towards the true solution at a finer resolution.

Locking. This technical term is often mentioned in the context of the FEM. Locking
expresses that the displacements from a simulation are smaller than the true val-
ues (Braess 2007). Belytschko et al. (2000b) suggests an addition. Locking further
implies that the solution does not converge. If the solution converges only at a very
fine resolution, the system is characterized as excessively stiff.

4.5.2 Reproducing Conditions

A central requirement for the trial function or approximate solution comprises the
fulfillment of the completeness or more precisely the reproducing conditions. The
weak form of the mechanical differential equation has order one, so the fulfillment
of the reproducing conditions up to the 1st order is sufficient. The requirement is
limited to polynomials. An illustrative justification can be found in Hughes (1987).
Assuming that the number of points in the neighborhood remains constant, with
a finer and finer resolution of the domain, the true solution and also its derivative
approaches more and more a constant value in the neighborhoods. Therefore, the
chosen approximation must be able to reproduce the constant and linear term of a
polynomial function p (x). Based on (4.57) it has to hold

Nx∑

I=1

NI (x) p (xI ) = p (x) . (4.63)

Similarly, for the derivative it follows from (4.63)
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Fig. 4.5 (Left) 1st order reproducing condition in the derivatives of trial functions. (Right) Inte-
gration constraint for inner nodes

Nx∑

I=1

p (xI ) ⊗ ∂NI (x)
∂x

= ∂p (x)
∂x

. (4.64)

The 0th order condition is fulfilled if the constant term of the polynomial function
can be reproduced, i.e., using p(xI ) = 1 and p(x) = 1 in (4.63) and (4.64)

Nx∑

I=1

NI (x) = 1,
Nx∑

I=1

∂NI (x)
∂x

= 0. (4.65)

The extension to the condition of 1st order results from the consideration of the
linear term, i.e. p(xI ) = xI and p(x) = x

Nx∑

I=1

NI (x) xI = x,
Nx∑

I=1

xI ⊗ ∂NI (x)
∂x

= 1. (4.66)

A meaning of the reproduction condition of first order in the derivatives can be
found in Fig. 4.5. If the strong form is solved, the conditions up to the 2nd order must
be fulfilled. Hence, the shape function must also correctly reproduce the quadratic
term with p(xI ) = xI ⊗ xI and p(x) = x ⊗ x

Nx∑

I=1

NI (x) xI ⊗ xI = x ⊗ x,
Nx∑

I=1

xI ⊗ xI ⊗ ∂NI (x)
∂x

= ∂ (x ⊗ x)
∂x

. (4.67)

In addition, the requirement for the second derivative must be satisfied

Nx∑

I=1

p (xI ) ⊗ ∂2NI (x)
∂2x

= ∂2p (x)
∂2x

. (4.68)

The reproducing conditions can alternatively be derived from a Taylor series.
Such investigations are found in the context of Smoothed Particle Hydrodynamics,
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see e.g.. Bonet and Kulasegaram (2000) or Price (2012). The value at the particle or
node can also be represented as a infinitesimal sum of derivatives at x

p (xI ) = p (x) + ∂p (x)
∂x

(xI − x) + 1

2

∂2p (x)
∂2x

(xI − x)2 + O ((xI − x)3
)
. (4.69)

If the accuracy up to the 1st order is investigated, the components of higher order
terms in the Taylor series can be neglected. Substituting (4.69) into (4.63) yields to
the relation

p (x) =
Nx∑

I=1

NI (x) p (x) + ∂p (x)
∂x

Nx∑

I=1

NI (x) (xI − x) . (4.70)

A 1st order accuracy in the approximation exists when the shape functions in the
first term sum to one and the second term on the right-hand side vanishes

Nx∑

I=1

NI (x) = 1,
Nx∑

I=1

NI (x) (xI − x) = 0. (4.71)

Comparing with (4.65) and (4.66), the requirements of 1st order accuracy in the
approximation is equal to the reproducing conditions up to the 1st order. Similarly,
conditions can be defined for the accuracy of 1st order in the derivatives by substi-
tuting (4.69) into (4.64)

∂p (x)
∂x

= p (x) ⊗
Nx∑

I=1

∂NI (x)
∂x

+ ∂p (x)
∂x

Nx∑

I=1

(xI − x) ⊗ ∂NI (x)
∂x

. (4.72)

The equal sign applies only if the reproducing conditions up to 1st order in the
derivatives (4.65), (4.66) are satisfied.

4.5.3 Integration Constraint

In the Finite Element Method, the fulfillment of the patch test together with a suf-
ficiently accurate integration is considered as necessary criteria for convergence of
elliptic differential equations. If the elements are conforming, see Sect. 4.5.6, and
the shape functions fulfill the required reproducing conditions, the patch test is usu-
ally satisfied (Hughes 1987). For spatial discretization schemes based on the weak
form a precise criterion can be formulated which is based on the investigations in
Krongauz and Belytschko (1997). Due to the connection with the test function and
the integration, the name integration constraint was introduced in Chen et al. (2001).
A generalization can be found in Chen et al. (2013). Therein, the name was further
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changed to variational consistency. The criterion is based on the requirement that the
spatial discretization scheme must satisfy Gauss’s integral theorem

∫

∂B
η · σn da −

∫

B
grad η · σ dv =

∫

B
η · div σ dv. (4.73)

In the discrete form, a condition on the test shape function and on the integration
can be obtained for each node or particle. The evaluation of the integral can be limited
to the neighborhood HI of each particle I , since the shape function is equal to zero
outside HI

∫

∂HI

NI (x)σn da −
∫

HI

σ
∂NI (x)

∂x
dv =

∫

HI

NI (x)div σ dv. (4.74)

From this general context, different orders of the integration constraint can be
derived. According to the Weierstrass theorem, the stress can be represented by
variables, summarized in the vector p (x), and suitable coefficients d

σ = p(x)d. (4.75)

The coefficients can take on any non-zero values. Substituting (4.75) into (4.74)
yields to the final criterion

∫

∂HI

NI (x)p(x) ⊗ n da −
∫

HI

p(x) ⊗ ∂NI (x)
∂x

dv =
∫

HI

NI (x)
∂p(x)
∂x

dv. (4.76)

Linear displacements lead to constant stresses. The discretization scheme is there-
fore considered to be linearly exact if, in addition to the reproducing condition of 1st
order, (4.74) is satisfied for constant stresses

∫

∂HI

NI (x)n da −
∫

HI

∂NI (x)
∂x

dv = 0. (4.77)

This requirement also follows from (4.76) with p (x) = 1. If the displacements
are quadratically distributed then

∫

∂HI

NI (x)x ⊗ n da −
∫

HI

x ⊗ ∂NI (x)
∂x

dv =
∫

HI

NI (x)1 dv (4.78)

must hold for the discretization scheme to be quadratically exact. Equation (4.78) in
turn follows from (4.76) with p (x) = x. For the solution of the mechanical differ-
ential equation in the weak form, linear exactness is sufficient to pass the standard
patch test.
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Fig. 4.6 Cut through a support domain showing the resulting normal vectors at the boundary nodes
due to the integration constraint

When using numerical integration, (4.77) results in the following requirement in
case of a two-point method

Nin f
I∑

p=1

∂NI (xp)

∂xp
vp =

{
0 inner nodes
n̄I boundary nodes

. (4.79)

This condition is equivalent to the requirement that at a constant stress the force
at inner nodes must be zero (Fig. 4.5). The resulting normal vector n̄I is calculated
from the position vector xsp, the normalized normal vector np, and the area ap at the
integration points

n̄I =
Ns,in f

I∑

p=1

NI (xsp)npap. (4.80)

The integral is replaced by the sum over all integration points at the surface Ns,in f
I

associated with the boundary node I .
The vector n̄I can also be interpreted as a sum over normalized normal vectors

nI p multiplied by the corresponding area fractions aI p (Weißenfels 2019)

n̄I =
Nin f

I∑

p=1

nI paI p =
Nin f

I∑

p=1

n̄I p =
Nin f

I∑

p=1

∂NI (xp)

∂xp
vp. (4.81)

For interior nodes, the integration constraint is thus equivalent to the requirement
that the sum of all normal vectors of a node evaluated at the integration points n̄I p

must be zero. This requirement also corresponds to Stokes theorem (Fleming 2012).
At the boundary, the node is not completely surrounded by integration points and the
surface integral is not closed. The missing part corresponds to the resulting normal
vector at the surface, see Fig. 4.6.

The standard FEM always fulfills the integration constraint due to the isopara-
metric concept as demonstrated in Weißenfels (2019). In this case, only the nodes at
the boundary have a resulting normal vector other than zero, see also Fig. 4.7. Hence,
the nodes at the boundary can be detected directly without knowing the surface. If
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Fig. 4.7 Linear displacement field and resulting normal vectors for the uniaxial loading of a block
discretized with irregular element. (Left) Linear polynomial basis function (Q1). (Right) Quadratic
polynomial basis function (Q2)

the norm of the resulting normal vector is added up over all nodes, the entire surface
is obtained.

Since the integration constraint provides not only the resulting normal vector but
also the associated nodal area, surface loads can be directly converted into body
forces as shown in Weißenfels (2019) for the FEM.

Remark 1. For meshfree methods, the continuous surface force (CSF) approach of
Brackbill et al. (1992) is often used. The resulting normal vector is determined from
a color function c

n̄(x) = grad c(x). (4.82)

The quantity c may correspond to the density (Brackbill et al. 1992) or the mass
(Chen et al. 2012). A similar approach is found in the SPH to calculate the normal
vector at the particle (Randles and Libersky 1996). However, these forms do not
correspond to the integration constraint, since the equations are not derived from
Gauss’s integral theorem.

Remark 2. In Bubnov-Galerkin methods, the shape function must satisfy both the
reproducing conditions and the integration constraint. For Petrov-Galerkin methods,
on the other hand, the requirements can be considered separately, see also Sect. 5.2.6.

4.5.4 Configurational Consistency

The solution algorithm must ensure that the calculated quantities in the current con-
figuration can also be determined via a push-forward from a previous configuration.
This has to hold especially for the derivative of the shape function and for line
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elements. If the set of points in a neighborhood is constant during the calculation,
quantities can also be determined with respect to the initial configuration. If the
derivative of the shape function is calculated directly in the current configuration,
then, e.g. for a two-point method, the following must be valid

∂NI (xp n+1)

∂xn+1
= ∂NI (xp n)

∂xn
�F−1

p n+1 = ∂NI (X)

∂X
F−1
p n+1. (4.83)

The same applies for the update of line elements. The coordinates calculated by
the solution algorithm must also be determined by the deformation gradient and the
corresponding coordinates in the initial or previous configuration

xI n+1 − xp n+1 = �Fp n+1
(
xI n − xp n

) = Fp n+1
(
XI − Xp

)
. (4.84)

4.5.5 Discrete Conservation Properties

Discretization schemes must not violate any balance laws. In a purely mechanical
view, the conservation of momentum and angular momentum must be satisfied in
the discrete case as well.

Global balance of momentum. This law postulates that the change in momentum L
over time is equal to the external forces. If no external forces are acting, the change
of momentum must be equal to zero

d

dt
L =

n∑

I=1

f tI = 0. (4.85)

The abbreviation n corresponds to the total number of nodes or particles in the
domain. Conversely, it follows from Eqs. (4.2) and (4.3) that the sum of all internal
forces due to the state of stress in the material must be zero

n∑

I=1

f tI = −
n∑

I=1

f sI = 0. (4.86)

Substituting the corresponding f sI from Sect. 4.2, concrete requirements can be
stated for each concept, like for the two-point method based on the weak form. By
substituting (4.9) into (4.86) and swapping the order of summation, the requirement
can be specified more precisely

n∑

I=1

f sI =
n∑

I=1

Nin f
I∑

p=1

σ p
∂NI (xp)

∂xp
vp =

ngp∑

p=1

σ p vp

Nsup
p∑

I=1

∂NI (xp)

∂xp
= 0. (4.87)
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Hence, in order not to violate the conservation of momentum, the test shape
function must also satisfy the reproducing condition of 0th order in the derivatives.

Global balance of angular momentum. The second condition requires that the
angular momentum J is conserved. If again external forces are neglected, the change
of J over time must be zero

d

dt
J =

n∑

I=1

f tI × xI =
n∑

I=1

E : xI ⊗ f tI = 0. (4.88)

With the help of the permutation tensor E the cross product can be reformulated.
The operator : corresponds to the double contraction. A precise definition of the 3rd
order tensor E can be found, for example, in Holzapfel (2000). Due to (4.86) the
requirement can also be related to the internal force

−
n∑

I=1

E : xI ⊗ f sI = 0. (4.89)

Substituting f sI from Sect. 4.2 the criterion can be specified. When using a two-
point method based on the weak form, the requirement can be formulated more
precisely by swapping the sum signs and exploiting the symmetry of the stress tensor

n∑

I=1

E : xI ⊗
Nint

I∑

p=1

σ p
∂NI (xp)

∂xp
vp =

ngp∑

p=1

E :
⎛

⎝
Nsup

p∑

I=1

xI ⊗ ∂NI (xp)

∂xp

⎞

⎠ σ pvp = 0.

(4.90)
Since σ is symmetric, the relation E : σ ≡ 0 holds. Thus, the above equation is

always satisfied if the test shape function fulfills the reproducing condition of 1st
order in the derivatives. A similar conclusion is drawn in Belytschko et al. (1998).

4.5.6 Continuity

The condition of continuity refers to the shape functions within and across the neigh-
borhoods. It is required that the derivatives are continuous up to the order p of the
differential equation (C p continuity). Across the boundary C p−1 continuity is suf-
ficient. These two requirements ensure that the integration is well-defined (Hughes
1987). In the FEM, one speaks of conforming elements if continuity is given.
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4.5.7 Kronecker-δ Property

An advantageous but not necessary requirement is the interpolation property of the
shape function. This is given if the coefficient aI is equal to the value of the function
at the corresponding node or particle

u (xI ) =
Nx∑

J=1

NJ (xI )aJ = aI . (4.91)

The above equation is satisfied only if the shape function possesses theKronecker-
δ property

NJ (xI ) = δI J . (4.92)

If (4.91) holds, Dirichlet boundary conditions can be applied directly. Other-
wise, the imposition of these conditions is a constraint and special schemes, like the
Lagrange multiplier or the penalty method, are needed.

4.5.8 Search Algorithm

The first step in discretization schemes is the determination of the neighborhoods.
With meshfree methods, this assignment follows from a search algorithm. In the
3-dimensional case, the search area is often spherical, cuboidal, or elliptical. For a
spherical region, the point J is part of the set HP of point P if the distance ‖xJ − xP‖
is smaller than a certain radius R

HP =
{
xJ ∈ Bt

∣∣∣‖xJ − xP‖ < R
}

. (4.93)

The search algorithm itself must also meet several requirements. The distribution
of the points must allow the shape function to be computed. For moving least square
functions this results in a condition on the invertibility of the moment matrix and
for local maximum entropy functions on the convergence of the Newton Raphson
algorithm. In Liu et al. (1997), see also Li and Liu (2007), some requirements are
formulated to ensure a stable and accurate calculation. Therefore, the distribution
of the points has to be isotropic and homogeneous in the statistical mean to avoid
degenerate states. In the 1-dimensional case, it must be ensured that at least two
points form a line. In the 2-dimensional case, the requirement expands to 3 points
forming a triangle and in the 3-dimensional continuum, there must be four points
spanning a tetrahedron.

Furthermore, the search algorithmmust not have any influence on the equilibrium
of forces. If the neighborhood of point I is newly determined the force before and
after the recomputation of the neighborhood must be identical
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fI n = f0I n+1. (4.94)

Otherwise, unphysical forces occur, leading to inaccurate solutions. The index
0 denotes the force before the calculation at the considered time or load step. An
investigation on this condition can be found in Sect. 5.2.2.

Formulations in SPH or Peridynamics that are based on forces between two points
have to meet another requirement. The search algorithm must ensure that the global
balanceofmomentumandangularmomentumarenot violated.Adetaileddescription
of this requirement can be found in Chaps. 6 and 7.

4.5.9 Stability

Spatial discretization schemes are prone to two different types of instabilities that
must be avoided to get a good approximation of the solution. The first results from
a poor evaluation of the discrete equations and the second type can be observed
particularly clearly with loadings that lead to tensile stresses.

Rank instability. In the Finite Element Method, under-integration leads to a rank
deficiency of the stiffness matrix. The spectral decomposition of the element tangent
Ke

det
(
Ke − ω1

) = 0 (4.95)

into eigenvalues ω, and eigenvectors, the so-called modes, allows the reasons to be
identified more precisely. The eigenvalues belonging to the rigid body modes are
always equal to zero. Under-integration leads to the fact that also the eigenvalues
which belong to other modes are too small. For example, with a 2-dimensional four-
node element and a 1-point integration, the eigenvalues of the bending modes are
equal to zero. Thus, no strain energy can be assigned to these deformations, see
also, e.g., Wriggers (2008). Conversely, many deformation states lead to the same
strain energy. If these zero or low energy modes are excited by the external load, an
unphysical solution of the differential equation results.

The samephenomena occurwithmeshfreemethods, since there, too, the equations
are evaluated only at discrete locations in the respective neighborhood. By selecting
rational or exponential functions, it is difficult to determine in advance the number
of points for a sufficiently accurate evaluation. Analogous to the FEM, it can be
shown that no energies can be assigned to different deformation states if a sufficient
number of evaluation points is not available (Tupek and Radovitzky 2014). For one-
point methods, the possibilities to counteract under-integration are limited, since
the equations can be evaluated only at the nodes or particles. Even with meshfree
methods, the spectral decomposition of the stiffness matrix is a suitable approach to
detect a rank instability, see e.g. Puso et al. (2008) or Chen et al. (2002).

Tensile instability. In meshfree methods, another instability can be detected, which
is especially visible if the loading leads to tensile stresses. According to the study
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in Belytschko et al. (2000a), this instability occurs only when the equations are
formulatedwith respect to the deformed (current, updatedLagrangian) configuration.
A 1-dimensional analysis in Swegle et al. (1995) provides an intuitive explanation
for this phenomenon. It is demonstrated that the stresses inside the body decrease
even though the bar lengthens. This situation occurs when the second derivative of
the weighting function is positive. Similar unphysical effects could also be proven for
compressive stresses. In Swegle et al. (1995) it is also shown that an SPH formulation
with respect to the deformed configuration is unstable when the product of the second
derivative of the weighting function with the stress is larger than zero.

4.6 Shape Functions

In the FEM, the trial and test function is usually approximated with the aid of poly-
nomial functions defined on a fixed, local reference element. The connection to the
global quantities results from a coordinate transformation. With meshfree methods,
the number of points in the neighborhood can change continuously. For this reason,
shape functions are needed, which can approximate the solution function with an
arbitrarily large number and an arbitrarily distributed position of points in the neigh-
borhood. Over the years, different functions have been developed. As an example,
four frequently used variants are presented in more detail.

4.6.1 Least Square Functions

According to Weierstrass’ theorem, functions in a bounded and real interval can be
approximated sufficiently accurately via a polynomial

u (x) = p (x) d. (4.96)

The tensor d contains all unknown coefficients and the base function vector p (x)
contains the variables of the polynomial

pi = 1, x1, x2, x3, x
2
1 , x1x2, x1x3, ... (4.97)

From (4.96), shape functions can be derived if the coefficients d can be related
to the coefficients a of the approximate solution (4.1). This connection can be con-
structed from the interpolation requirement. In this case, the function values at the
node or particle are equal to the coefficients. Substituting (4.96) into (4.91) yields to
the relationship between a and d

aJ = u (xJ ) = p (xJ )d. (4.98)
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With an arbitrary number of points in the neighborhood Nx, an interpolation is diffi-
cult to implement. Using the method of least squares, the error in the approximation
can be kept small

J (d) =
Nx∑

J=1

‖aJ − p (xJ )d‖2 → min. (4.99)

For the functional J to be minimal the derivative with respect to d must be equal
to zero. From this condition, the unknown coefficients d can be determined

∂ J

∂d
= 0 → d = M−1

Nx∑

J=1

p (xJ ) ⊗ aJ , M =
Nx∑

J=1

p (xJ ) ⊗ p (xJ ) . (4.100)

The moment tensorM defines a complete dyadic product. Hence the inverse can
exist, see also remark 2. Substituting (4.100) into (4.96) yields to the relation between
u and a for an arbitrary number of points in the neighborhood

u (x) = p (x) · M−1
Nx∑

J=1

p (xJ ) aJ . (4.101)

The first three factors together yield a scalar that can be identified as a shape
function

u (x) =
Nx∑

J=1

NJ (x) aJ , NJ (x) = p (x) · M−1p (xJ ) . (4.102)

The above relation does not correspond to an interpolation, since aJ �= u (xJ ).
The error can be estimated from (4.99). The drawback of the classical method of
least squares is the increasing degradation of the approximation when the number of
particles or nodes significantly exceeds the number of entries in p (Onate et al. 1996).
A local weighting of the error at a certain point xI leads to a better approximation in
this case

J (dI ) =
Nx∑

J=1

ω (xJ − xI )
[
aJ − p (xJ )dI

]→ min. (4.103)

The weighting function ω usually corresponds to a window function that depends
on the distance between xJ and xI . In the weighted least square approach, the
unknown coefficients and the moment tensor are a function of xI

M (xI ) =
Nx∑

J=1

ω (xJ − xI )p (xJ ) ⊗ p (xJ ) . (4.104)
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Fig. 4.8 (Left) Distribution of the moving least square (MLS) shape function of the lower left node
using a linear polynomial basis function. (Middle) Derivative in x-direction. (Right) Derivative in
y-direction

The same holds for the resulting shape function

NJ (x, xI ) = ω (xJ − xI )p (x) · M (xI )−1 p (xJ ) . (4.105)

Moving least square functions follow from the transition xI → x

NJ (x) = ω (xJ − x) p (x) · M (x)−1 p (xJ ) ,

M (x) =
Nx∑

J=1

ω (xJ − x) p (xJ ) ⊗ p (xJ ) .
(4.106)

Least square shape functions fulfill the reproducing conditions up to the chosen
degree of the polynomial, but do not possess the Kronecker-δ property. This can be
seen in Fig. 4.8 which shows moving least square functions based on

w(xJ − x) =
⎧
⎨

⎩

2
3 − 4r2 + 4r3 0 ≤ r ≤ 1

2
4
3 − 4r + 4r2 − 4

3r
3 1

2 < r ≤ 1
0 r > 1

, r = ‖xJ − x‖
d

. (4.107)

An introduction into approximations using least squares presenting more details
can be found in Lancaster and Salkauskas (1986).

Remark 1. A window function results in a scalar and is often used in signal process-
ing. The values are non-zero only in an interval. Mostly the function is symmetrical
around the maximum, which is in the middle and tapers towards the boundary of the
interval.

Remark 2. Tensor or dyadic products, respectively, can be assigned to different
classes, depending on the rank of the tensor (Lindell 1992). A complete dyadic
product exists if the matrix possesses a full rank. Thus, the determinant is also
nonzero.

Remark 3. With the choice of a constant polynomial function p(x) = 1 (4.106)
reduces to the Shepard function
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NJ (x) = w (xJ − x)
W

, W =
Nx∑

J=1

w (xJ − x) . (4.108)

4.6.2 Radial Functions

Alternatives to polynomials are radial functions. This type is based on the distance
betweenpoints. The reproducing conditions are oftennotmet and suitable adaptations
are needed. Exemplary the C2 function of the Wendland class (Wendland 1995) is
presented which is often used as a weighting or kernel function in the SPH. The 0th
order reproducing condition can be satisfied by a normalization

NI (x) = wI (x)
W

, wI (x) = (1 + 3

2
r) ∗ (2 − r)3, W =

N∑

I=1

wI (x) .

(4.109)
The definition of the normalized distance r is given in (4.107). In the context of

SPH mostly only the derivative of the function is corrected to fulfill the 1st order
reproducing conditions in the derivatives. Since the standard function violates this
criterion a tensor L results from (4.66) instead of the unit tensor

L (x) =
Nx∑

I=1

xI ⊗ ∂NI (x)
∂x

. (4.110)

This tensor can now be used to restore the 1st order reproducing condition in the
derivatives

∂Nc
I (x)
∂x

= ∂NI (x)
∂x

L−1, leading to
Nx∑

I=1

xI ⊗ ∂Nc
I (x)
∂x

= 1. (4.111)

This approach goes back to Randles and Libersky (1996). In addition, other cor-
rection methods exist. Some of them are presented in Sect. 6.5.

The corrected Wendland C2 functions do not possess the Kronecker-δ property,
as can be seen in Fig. 4.9.

4.6.3 Local Maximum Entropy Functions

The local maximum entropy (LME) function, presented in Arroyo and Ortiz (2006),
is motivated by information theory and statistical mechanics. An introduction into
these topics can be found in Jaynes (1957)
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Fig. 4.9 (Left) Distribution of the corrected 1-dimensional Wendland C2 shape function of the
lower left node. (Middle) Derivative in x-direction. (Right) Derivative in y-direction

NI
(
x,λ∗) = 1

Z (x,λ∗)
exp
(−‖x − xI‖2β + λ∗ · (x − xI )

)
. (4.112)

The 1st order reproducing condition is defined as a constraint, which is enforced
by the Lagrange multiplier method. The superscript ∗ indicates that the Lagrange
multiplier λ must be determined at each evaluation point x separately. Different
variants exist for the first term in the exponent. The original form weights only the
square distance with a freely selectable parameter β (Arroyo and Ortiz 2006). In
Kumar et al. (2019) a more general form is found, in which a parameter matrix β is
multiplied on both sides by a difference

‖x − xI‖2β =
{

β‖x − xI‖2
(x − xI ) β · (x − xI )

. (4.113)

The fulfillment of the reproducing condition of 0th order can be achieved by a
normalization using

Z
(
x,λ∗) =

Nx∑

I=1

exp
(−‖x − xI‖2β + λ∗ · (x − xI )

)
. (4.114)

Sought is the Lagrange multiplier, which ensures that the 1st order reproducing
condition is satisfied

r (x,λ) =
Nx∑

I=1

NI (x,λ) (x − xI )
!= 0. (4.115)

To calculate the desired λ∗, the Newton-Raphson algorithm from Sect. 4.3 can
be applied. As pointed out in Foca (2015), the use of a regularized Newton method
facilitate finding the solution in critical cases. The LME functions possess a weak
Kronecker-δ property. Hence, the function is interpolative only at the boundary of a
convex domain (Fig. 4.10). Only there Dirichlet conditions can be directly imposed.
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Fig. 4.10 (Left) Distribution of the local maximum entropy (LME) shape function of the lower left
node. (Middle) Derivative in x-direction. (Right) Derivative in y-direction

4.6.4 Integral Functions

In Smoothed Particle Hydrodynamics, in the Reproducing Kernel Particle Method
or in the Moving Least-Square Particle Method the shape functions are based on
a linear integral operator T . With the help of a kernel function K a function u is
mapped to another function via an integral over the neighborhood Hx of x

(Tu) (x) =
∫

Hx

K
(
x, x′)u

(
x′) dvx′ . (4.116)

A convolution results if K depends on the difference between x and x′

(Tu) (x) = (K ∗ u) (x) =
∫

Hx

K
(
x − x′)u

(
x′) dvx′ . (4.117)

In this case, K is also called weighting function. The integral operator has a
reproducing property when K maps the function to itself (Aronszajn 1950)

(Tu) (x) = u (x) =
∫

Hx

K
(
x, x′) u

(
x′) dvx′ . (4.118)

An analogous relation can be stated for the convolution (4.117). In the literature,
different approaches can be found to derive shape functions from integral transforms.
Three variants are presented in more detail.

Variant 1. Similar to Sect. 4.6.1, the shape functions derived in Liu et al. (1995)
are based on polynomials. However, the unknown coefficients d from (4.96) are
calculated from (4.117) and not via the method of least square. Instead of K , a
window function ω is used. In the version of Liu et al. (1995), the argument is also
weighted by the inverse of the scalar ρ

(K ∗ u) (x) =
∫

Hx

ω

(
x − x′

ρ

)
u
(
x′) dvx′ . (4.119)
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Since this variant is motivated from the wavelet transformation, ρ is also called
dilation. In the least square approach, the difference a(xI ) − u (xI ) at each node or
particle is minimized via the squared error. Using convolution, the identity between
both vectors can be described in a weighted integral form

∫

Hx

ω

(
x − x′

ρ

)
a
(
x′) dvx′ =

∫

Hx

ω

(
x − x′

ρ

)
u
(
x′) dvx′ . (4.120)

The displacements on the right-hand side can be approximated by u
(
x′) =

p
(
x′) d according to Weierstrass theorem. With the dyadic multiplication of both

integrands from the left by the vector p and with the definition of the associated
moment tensor M

M (x) =
∫

Hx

ω

(
x − x′

ρ

)
p
(
x′)⊗ p

(
x′) dvx′ (4.121)

the unknown coefficients d can be determined from the identity (4.120)

d = M (x)−1
∫

Hx

ω

(
x − x′

ρ

)
p
(
x′)⊗ a

(
x′) dvx′ . (4.122)

Substituting (4.122) into (4.96), the approximate solution u in the neighborhood
can again be expressed in terms of the coefficients a

u (x) = p (x) · M−1 (x)
∫

Hx

ω

(
x − x′

ρ

)
p
(
x′) a

(
x′) dvx′ . (4.123)

In the discrete form, (4.123) can be formulated in terms of shape functions

u (x) =
Nx∑

J=1

NJ (x) aJ , NJ (x) = ω

(
x − xJ

ρ

)
p (x) · M−1 (x) p (xJ ) vJ .

(4.124)

Remark 1. The difference between the moving least square approximation (4.106)
and (4.124) is the multiplication by the volume. Thus, the weighting function ω has
a different unit compared to (4.106).

Remark 2. A reproducing kernel (convolution) would exist, if a
(
x′) = u

(
x′) in

(4.123)

u (x) =
∫

Hx

K
(
x, x′) u

(
x′) dvx′ , K

(
x, x′) = ω

(
x − x′

ρ

)
p (x) · M−1 (x) p

(
x′) .

(4.125)

Remark 3. The Wendland function presented in Sect. 4.6.2 is a suitable candidate
for a window function due to its properties.
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Variant 2. Starting from the idea of deriving shape functions from a linear integral
operator, an alternative formulation is presented in Liu et al. (1997). Motivated by
the Weierstrass theorem, it is postulated that a function in the neighborhood of a
fixed point x̄ can be approximated via a polynomial which argument is shifted and
normalized

u (x, x̄) = p
(
x̄ − x

ρ

)
d (x̄) . (4.126)

Similar to the least square approach, the error in (4.91) is minimized. In con-
trast to Sect. 4.6.1, the functional consists of the weighted error integrated over the
neighborhood of x̄. The displacement u(x′, x̄) is approximated using (4.126)

J (d (x̄)) =
∫

Hx̄

ω

(
x̄ − x′

ρ

)∥∥∥∥a
(
x′)− p

(
x̄ − x′

ρ

)
d (x̄)

∥∥∥∥
2

dvx′ → min. (4.127)

The computation of the unknown coefficients d corresponds to the procedure
described in Sect. 4.6.1

d (x̄) = M−1 (x̄)
∫

Hx

ω

(
x̄ − x′

ρ

)
p
(
x̄ − x′

ρ

)
⊗ a

(
x′) dvx′ ,

M (x̄) =
∫

Hx

ω

(
x̄ − x′

ρ

)
p
(
x̄ − x′

ρ

)
⊗ p

(
x̄ − x′

ρ

)
dvx′ .

(4.128)

By substituting (4.128) into (4.126), the solution function can again be described
in terms of a

u (x, x̄) = p
(
x̄ − x

ρ

)
· M−1 (x̄)

∫

Hx̄

ω

(
x̄ − x′

ρ

)
p
(
x̄ − x′

ρ

)
a
(
x′) dvx′ .

(4.129)
By evaluating at a fixed point in the domain, the above equation corresponds to a

weighted least square approach. A moving least square approximation results from
the transition x̄ → x.

u (x) = p (0) · M−1 (x)
∫

Hx

ω

(
x − x′

ρ

)
p
(
x − x′

ρ

)
a
(
x′) dvx′ . (4.130)

In the discrete form, (4.130) can be represented in terms of shape functions and
associated coefficients

u (x) =
Nx∑

J=1

NJ (x) aJ , NJ (x) = ω

(
x − xJ

ρ

)
p (0) · M−1 (x) p

(
x − xJ

ρ

)
vJ .

(4.131)

Remark 1. If a
(
x′) = u

(
x′), (4.130) corresponds to a mapping with a reproducing

kernel (convolution).
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Remark 2. Variant 1 results from a shift of the argument in the base function vector
by x and setting ρ = 1.

Variant 3. A third variant is given e.g. in Chen et al. (1996). The starting point is to
correct the convolution (4.119) so that the function in the integral corresponds to a
reproducing kernel

u (x) =
∫

Hx

K
(
x, x′) u

(
x′) dvx′ , K

(
x, x′) = C

(
x, x′)ω

(
x − x′

ρ

)
. (4.132)

The correction factor C is chosen to depend on a given vector p̃ and unknown
coefficients

C (x, y) = p̃
(
x − x′) · d (x) . (4.133)

The vector d is determined such that the kernel K has a reproducing property.
The vector u within the integral of (4.132) can also be expressed by a Taylor series
around x

u
(
x′) = u (x) + ∂u (x)

∂x

(
x − x′)+ O

((
x − x′)2) . (4.134)

By substituting (4.134) into (4.132), conditions for a reproducible kernel can be
established

u (x) =
∫

Hx

p̃
(
x − x′) · d (x) ω

(
x − x′

ρ

)

(
u (x) + ∂u (x)

∂x

(
x − x′)+ O

((
x − x′)2)

)
dvx′ .

(4.135)

The equal sign in (4.135) is satisfied if and only if the first term equals to one

∫

Hx

p̃
(
x − x′) · d (x) ω

(
x − x′

ρ

)
dvx′ = 1, (4.136)

and the other terms to zero
∫

Hx

p̃
(
x − x′) · d (x) ω

(
x − x′

ρ

) (
x − x′)k dvx′ = 0, for each k = 1, ..., n.

(4.137)
The quantity n corresponds to the number of terms in the Taylor series that contain

a derivative larger or equal to one. Both conditions can also be combined. In (4.136)
the expression

(
x − x′)0 can be added. The last factor in the integral on the right-

hand side can be expressed by the base function vector p. The same applies to the
right-hand side. In this case, the function is evaluated at the point x = x′
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∫

Hx

p̃
(
x − x′) · d (x) ω

(
x − x′

ρ

)
p
(
x − x′) dvx′ = p

(
x − x′)

∣∣∣
x=x′

= p (0) .

(4.138)
Here it is important to note that the number of terms in the Taylor series (4.134)

must equal the number of terms in p. From the evaluation of (4.138), the unknown
coefficients can be determined

d (x) = M−1 (x) p (0) , M (x) =
∫

Hx

ω

(
x − x′

ρ

)
p̃
(
x − x′)⊗ p

(
x − x′) dvx′ .

(4.139)
By substituting (4.139) into (4.132) and taking advantage of (4.133), a similar

formulation as in variant two (4.130) results

u (x) = p (0) · M−T (x)
∫

Hx

ω

(
x − x′

ρ

)
p̃
(
x − x′)u

(
x′) dvx′ . (4.140)

Also the correction factor can now be specified in detail

C
(
x, x′) = p (0) · M−T (x) p̃

(
x − x′) (4.141)

If the base function vector is chosen in (4.133), i.e. p̃ = p, then both formulations
are equivalent. All three variants have in common that the shape functions fulfill the
reproducing conditions up to the desired order.

Remark. Since the third variant is based on a correction, shape function derivatives
can be directly computed without any differentiation (Li and Liu 1998). In this
context, the term implicit gradient is used. A corrected kernel can be designed to
map the k-th-derivative of the function u

∂ku (x)
∂kx

=
∫

Hx

C
(
x, x′)ω

(
x − x′

ρ

)
u
(
x′) dvx′ . (4.142)

Exploiting the Taylor series (4.134) together with the approach for the correction
(4.133) an equation can be constructed to determine the unknown coefficients d

∂ku (x)
∂kx

=
∫

Hx

p̃
(
x − x′) · d (x) ω

(
x − x′

ρ

)

(
u (x) + ∂u (x)

∂x

(
x − x′)+ O

((
x − x′)2)

)
dvx′ .

(4.143)

The equal sign only holds, if the relation

∫

Hx

p̃
(
x − x′) · d (x) ω

(
x − x′

ρ

)
p
(
x − x′) dvx′ = 1

k!
∂kp

(
x − x′)

∂kx

∣∣∣
x=x′

(4.144)
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is satisfied. From this equation the unknown coefficients can be calculated. Substi-
tuting d into (4.142) yields the approximation of the k-th derivative

∂ku (x)
∂kx

= 1

k!
∂kp

(
x − x′)

∂kx

∣∣∣
x=x′

· M−T (x)
∫

Hx

ω

(
x − x′

ρ

)
p̃
(
x − x′)u

(
x′) dvx′ .

(4.145)
The only difference between (4.145) and (4.140) is the first factor that can be

easily calculated beforehand. As noted in Hillman et al. (2020), the implicit gradient
approach is equivalent to the peridynamic derivatives from Madenci et al. (2016).
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Chapter 5
Meshfree Galerkin Methods

The Finite Element Method based on a Lagrangian description of the differential
equation is mostly used to simulate the behavior of solids under loadings. With
this scheme, a good approximation of the solution can be achieved, provided that
the elements do not distort too much. However, this restriction limits the range of
applications. To increase the flexibility of Galerkin methods, approaches are pursued
which allow the determination of the test and trial function on an almost arbitrary
distribution of nodes in the corresponding neighborhood. A variety of meshfree
methods based on the weak form were developed over the years. In the context of
this chapter, two methods are presented in more detail. The Reproducing Kernel
Particle Method (RKPM) exemplifies one type of meshfree Galerkin scheme. Due
to numerous developments in the last years, which are especially based on this
method, the RPKM is investigated with respect to the fulfillment of the criteria for
spatial discretization schemes. TheOptimal TransportationMeshfree (OTM)method
represents a relatively new procedure and is therefore examined in more detail. In
addition to these, other discretization schemes based on the weak form exist. An
overview can be found, for example, in Li and Liu (2007).

5.1 Reproducing Kernel Particle Method

A first attempt to resolve the rigid subdivision of the domain into elements led to
the Diffuse Element Method (Nayroles et al. 1992). The approach to approximate
the trial and test function is analogous to the Finite Element Method. However, the
domain is not subdivided into elements and the number of nodes Nsup

p in the support
domain of an integration point can now be arbitrary (Fig. 5.1). The shape functions
are based on the moving least square concept from Sect. 4.6.1. However, the weak
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Fig. 5.1 Subdivision of the
domain into nodes and
integration points in case of a
two-point meshfree Galerkin
method

form is not evaluated with respect to local orthonormal reference elements, but at
global coordinates.

The inconsistency in the derivative of the shape function was later corrected in
Belytschko et al. (1994). In addition, the name of the schemewas changed to Element
Free Galerkin Method. Often, instead of the classical moving least square functions,
the corresponding equivalents are applied, which derive from integral operators.
When using the first or third variant from Sect. 4.6.4, the name Reproducing Kernel
Particle Method (Liu et al. 1995) has become established. The application of the
second variant from Sect. 4.6.4 leads to the Moving Least-Square Reproducing Ker-
nel Method (Liu et al. 1997). All the shape functions that are used in these schemes
satisfy the reproducing conditions from Sect. 4.5.2.

Two-point method. In the first publications, the Gauss quadrature rule is applied to
evaluate the volume integral. In Belytschko et al. (1994) the domain is subdivided
into individual cells. Each cell consists of a certain number of integration points
ncell . This value is determined by the number of nodes m in the cell, like e.g. for the
2-dimensional case

ncell = nQ × nQ, nQ = √
m + 2. (5.1)

The number of cells mc is related to the total number of nodes n in the domain mc =√
n. The applications focus on simulations to predict the deformation behavior of

solids. Therefore, the equations are usually formulatedwith respect to the coordinates
of the initial configuration. The trial and test function at the integration point can be
approximated from the nodal values in the support domain

u(Xp) =
Nsup

p∑

I=1

NI (Xp)aI , η(Xp) =
Nsup

p∑

I=1

NI (Xp)bI . (5.2)

The actual force at a node is calculated analogously to (4.42) with the evaluation of
the individual quantities with respect to the initial configuration
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fI n+1 =
Nin f

I∑

p=1

σn+1(Xp)
∂NI (Xp)

∂xp n+1
vn+1(Xp).

One-point method. Using background cells to locate integration points does not
correspond to a truemeshfreemethod. In order to increase the flexibility and to reduce
the computational efforts, an evaluation of the integral at the nodes has become more
popular. In this case, (5.2) changes to

u(XI ) =
NI∑

J=1

NI (XJ )aJ , η(XI ) =
NI∑

J=1

NI (XJ )bJ . (5.3)

The neighborhoods for approximating the trial as well as the test function, and thus
for computing the force at a node, are identical

f sI n+1 =
NI∑

J=1

σn+1(XJ )
∂NI (XJ )

∂xJ n+1
vn+1(XJ ). (5.4)

Here it is important to note that the abbreviation NI above the sum sign denotes the
number of nodes in the neighborhood of node I .

5.1.1 Search Algorithm

For most methods, the neighborhoods are determined from a search algorithm. In
Liu et al. (1997) or in Li and Liu (2007), criteria are listed, which must be fulfilled
for an admissible node or particle distribution, see also Sect. 4.5.8. The equations are
mostly formulated with respect to the initial configuration. The additional condition
that the force at a node must be identical before and after the search is thus omitted
in this case.

5.1.2 Rank Instability

Themoving least square functions are rational. For a sufficiently accurate integration,
a correspondingly large number of evaluation points is required. In De and Bathe
(2001), for example, it is shown in the context of the Finite Sphere Method that 144
integration points are needed in the neighborhood to achieve a convergent response
in the two-dimensional case.

The evaluation of the integral at the nodes limits the total number. In addition, the
derivative of the shape function at the node I of the neighborhood HI of I is equal to
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zero. As a consequence, artificial zero-energy modes result (Beissel and Belytschko
1996). A detailed analysis for the 1-dimensional case can be found in Puso et al.
(2008) or Hillman and Chen (2016). Over the years, different approaches to stabilize
the negative effects due to under-integration emerged. Two different concepts are
briefly presented.

Strain smoothing stabilization.Chen et al. (2001) proposes an alternative derivative
rules based on averaging. For the case of large deformations (Chen et al. 2002), the
derivatives are determined from the averaged gradient in the neighborhood. By using
Gauss’s integral theorem, this quantity can also be obtained by evaluating a surface
integral

Grad u = 1

vol(HX)

∫

HX

Grad u dV = 1

vol(HX)

∫

∂HX

u ⊗ N dA. (5.5)

The bar above a quantity denotes its averaged value. From the discretization of (5.5)
using (4.1) an averaged derivative of the shape function can be constructed

Grad u (XI ) =
NI∑

J=1

aJ ⊗ ∂ N̄J (XI )

∂XI
= 1

vol(HXI )

∫

�I

NI∑

J=1

aJ ⊗ NJ (X)N (X) dA.

(5.6)
By neglected the components the individual derivative can be calculated from the
evaluation of a boundary integral

∂ N̄J (XI )

∂XI
= 1

vol(HXI )

∫

�I

NJ (X)N (X) dA, vol(HXI ) =
∫

HXI

dV . (5.7)

To determine the normalized normal vectorN and to evaluate the integral, it is neces-
sary to know the surface �I belonging to node I . Therefore, in Chen et al. (2001) the
domain is uniquely decomposed into individual Voronoi cells. Thus, this approach,
called Stabilized Conforming Nodal Integration (SCNI), no longer corresponds to
a true meshfree method. To preserve the smoothing or averaging character for sta-
bilization, and to avoid a unique decomposition of the domain into individual cells,
alternatively, the Stabilized Non-Conforming Nodal Integration (SNNI) approach
(Chen et al. 2007) can be applied. Here, each node is assigned its own cell, which
can be spherical or cuboidal. The decomposition is no longer unique and the indi-
vidual cells may overlap.

In Puso et al. (2008) it is shown that both approaches are not sufficient to stabilize
the negative effects due to under-integration, see also Hillman and Chen (2016).
Especially when the surface-to-volume ratio is small or when the domain is resolved
very finely, artificial zero-energy modes appear even with this scheme. Therefore,
in Chen et al. (2007), see also Puso et al. (2008), it is recommended to evaluate
the weak form additionally at locations inside the cells. Therefore, the cells can be
further subdivided into triangles, for instance.
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Gradient based stabilization.To avoid rank instability, an additional termGstab can
be added to the weak form as suggested in Beissel and Belytschko (1996). In terms
of a penalty formulation, the strong form of the differential equation is enforced to
be satisfied

Gstab (u,η) = c
∫

Bt

divq · (divσ + ρb̄
)
dv. (5.8)

The penalty parameter c must be determined appropriately before the calculation.
For the additional test function q, an analogous approach as for η can be made. In
Gstab, the second derivative of the shape function occurs. Since this value is nonzero
at the central node of the neighborhood, a stabilizing effect can be obtained.

A similar but simplified approach, which is more suitable for the non-linear case,
can be found in Puso et al. (2008). Instead of the strong form, an additional term
based on the deformation gradient and the second derivative of the shape function is
added.

Another stabilization is presented in Hillman and Chen (2016). Therein, the test
and trial functions are evaluated not only at one point but in the whole neighborhood.
The discrete virtual internal work Gi from (4.12) is calculated alternatively

Gi (η,u) ≈
n∑

J=1

∫

HXJ

gradη (XJ ,X) · σ (xJ , x) dV . (5.9)

The test function is determined from a Taylor series around the location XJ , which
is terminated after the linear term

η (XJ ,X) =
NJ∑

I=1

NI (XJ )bI +
NI∑

I=1

∂NI (XJ )

∂XJ
· (X − XJ ) uJ . (5.10)

The trial function is discretized in an analogous way. The advantage of this approach
is not only the reduction of computational efforts compared to the previous correc-
tions. Moreover, it does not require any additional numerical parameter. When using
reproducing kernel functions, the derivative of the shape function in (5.10) can be
determined directly in terms of implicit gradients (4.145).

5.1.3 Integration Constraint

In Dolbow and Belytschko (1999) it is shown that for a two-point subdivision of the
domain the integration error depends not only on the number but also on the location
of the integration points. A proper adjustment of the background cells to the support
domains leads to an improved solution. The integration constraint determines the
optimal location. Two approaches, which are developed in the context of a one-point
method, are presented to satisfy this requirement.
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Conforming nodal integration. The unique decomposition of the domain into
Voronoi cells in the framework of Stabilized Conforming Nodal Integration together
with the shape function derivatives based on averaging ensures that the integration
constraint is always satisfied (Chen et al. 2001). Integrating (5.7) leads to (4.77)

∫

HXJ

∂ N̄J (X)

∂X
dV =

NJ∑

I=1

∂ N̄J (XI )

∂XI
VI =

NJ∑

I=1

1

vol(HXI )

(∫

�I

NJ (X)N dA

)
VI

=
NJ∑

I=1

∫

�I

NJ (X)N dA =
∫

∂HXJ

NJ (X)N dA.

(5.11)
The above relation is only valid because the domain is uniquely subdivided into
individual sections. In this case, the volume of a section corresponds exactly to the
volume of a node, i.e. vol(HXI ) = VI . Secondly, the nodes in the close environment
share a common interface. However, the normal vectors point in the opposite direc-
tion. During summation, the surface integrals cancel at interior nodes. A detailed
explanation can be found in Chen et al. (2001).

Modified test function. The SCNI approach does not belong to a true meshfree
method due to the subdivision of the domain into non overlapping Voronoi cells.
Another possibility consists in the correction of the test shape function. This approach
is borrowed from SPH (Bonet and Kulasegaram 2000) and can be used for methods
that are not based on a unique subdivision of the domain. The derivative of the test
function is thereby enriched by an additional contribution

∂ ÑI (X)

∂X
= ∂NI (X)

∂X
+

d∑

i=1

∂ψI (X)

∂Xi
βi . (5.12)

The abbreviation d denotes the dimension. A suitable choice must be made for
the derivative of the function ψ. Different variants can be found in Bonet and
Kulasegaram (2000), Puso et al. (2008) or Chen et al. (2013). The unknown coeffi-
cients β are determined such that the integration constraint is satisfied for each node.
An application of this correction in conjunction with Peridynamics can be found in
Bode et al. (2021).

5.2 Optimal Transportation Meshfree Method

The Optimal Transportation Meshfree (OTM) method (Li et al. 2010) is understood
as a combination of the optimum theorywithmeshfree shape functions and amaterial
point sampling. An introduction to optimum theory can be found in Villani (2013).
InWeißenfels andWriggers (2018) it is shown that the discrete equations can also be
derived from the weak form. Analogous to the approaches from the previous section,
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the test and trial function at the integration point are computed from the coefficients
at the nodes in the support domain. The OTMmethod according to Li et al. (2010) is
based on an updated Lagrangian formulation. Thus, the current values are calculated
from the shape functions of the previous load or time step

up n+1 =
Nsup

p n∑

I=1

NI (xp n)aI n+1, η p n+1 =
Nsup

p n∑

I=1

NI (xp n)bI n+1. (5.13)

In the OTM method, integration points are also called material points. To ensure
consistency in the formulation, only the term integration point is used. The actual
force at a node is calculated analogously to the equations in Sect. 4.4.3

fI n+1 =
Nin f

I n∑

p=1

σ p n+1
∂NI (xp n)

∂xp n+1
vp n+1. (5.14)

The number of integration points Nin f
I n in the influence domain of node I results

directly from the support domains. The derivative of the shape function with respect
to the current coordinates, and the current volume

∂NI (xp n)

∂xp n+1
= ∂NI (xp n)

∂xp n
�F−1

p n+1, vp n+1 = det�Fp n+1vp n

are determined via the incremental deformation gradient

�Fp n+1 = 1 +
Nsup

p n∑

I=1

(aI n+1 − aI n) ⊗ ∂NI (xp n)

∂xp n
, Fp n+1 = Fp n�Fp n+1.

The current nodal coordinates result directly from the computed coefficients

xI n+1 = XI + aI n+1. (5.15)

Since the constitutive relations are nonlinear within the examples of the follow-
ing sections, the solution scheme presented in Sect. 4.3 is used to the compute the
unknown coefficients. The main difference of the OTM method compared to the
approaches of the previous section is the update of the integration points. These
points move relative to the nodal coordinates, and the new location can be estimated
using the shape functions

xp n+1 =
Nsup

p n∑

I=1

NI
(
xp n

)
xI n+1. (5.16)



84 5 Meshfree Galerkin Methods

Fig. 5.2 Initial subdivision of the domain into triangles in 2D. Removal of mesh results in location
of integration points and nodes

After these updates, the support domains and the shape functions are redefined.
Before starting the calculation, the initial coordinates of the integration points and
the nodes must be determined. Often, the domain is divided into triangles (2D) or
tetrahedra (3D). Afterwards, the element connection list is jettisoned (see Fig. 5.2).

The OTM method in this form does not fulfill all requirements of Sect. 4.5. In
addition to presenting possible algorithms for determining the support domains, the
following sections provide an insight into the challenges of this method. In the end,
an alternative algorithm is presented that satisfies the integration constraint together
with the reproducing conditions for the trial functions. All investigations are limited
to the quasi-static case to avoid influences from the inertia term.

Remark Since the OTM method can be derived from the weak form, this scheme
can also be formulated with respect to other configurations.

5.2.1 Tensile Instability

The OTM method is based on the use of local maximum entropy (LME) functions
from Sect. 4.6.3. In the original form, the equations are formulated with respect to
the updated Lagrangian configuration. Thus, a suitable approach is needed to avoid
negative effects due to tensile instability. In Arroyo and Ortiz (2006) it is recom-
mended to adapt the numerical parameter β of the LME function to the resolution
of the computational domain

β = γ

h2
. (5.17)

The parameter h correlates with the characteristic distance between nodes and corre-
sponds to the element size in the FEM. The value γ characterizes the locality of the
shape function. As the value increases, the influence of the nodes close to the edge
of the support domain decreases. A too-large value can lead to a non-convergence
of the algorithm for the determination of the unknown Lagrange multiplier. Rosolen
et al. (2010) recommends a value in the range of γ = 0.8 − 4.
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5.2.2 Support Domain

After updating the coordinates, the support domain for each integration point is
redetermined. Two different approaches are presented.

Search algorithm. In Weißenfels and Wriggers (2018) a search algorithm is pro-
posed to determine the nodes in the neighborhood of an integration point, see also
Fig. 5.3. This approach is suitable for computing the fusion of particles in Additive
Manufacturing processes. All nodes which distance is smaller than a previously
defined radius αp Rp corresponds to the set of nodes of the support domain p

Hsup
p =

{
xI ∈ Bt

∣∣∣‖xI − xp‖ < αp Rp

}
. (5.18)

The number of nodes in Hsup
p defines Nsup

p . The parameter αp controls the size of
the search area.

Update support domain. Another approach is to adapt the radius R of the support
domain to the deformation of the body via the incremental deformation gradient

Vp n+1 = det�Fp n+1Vp n, → Rp n+1 = (
det�Fp n+1

)1/3
Rp n. (5.19)

With the redetermination of the search radius, the parameter β must be adjusted to
reduce the negative effects due to a tensile instability. From (5.17), an update rule
can be obtained for the 1-dimensional case. With (5.19) and replacing R with h this
relation can be directly extended to the 3-dimensional case

βp n+1 = γ

h p n+1
= βp n

(
h p n

h p n+1

)2

βp n+1 = 1
(�Fp n+1

)2/3 βp n. (5.20)

Fig. 5.3 Algorithmic scheme to compute nodes which belong to the support domain of an integra-
tion point
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The initial value R0 can be estimated from the LME function. Due to the exponential
character, the values decreases rapidlywith increasing distance.With the definition of
a small cutoff value ε, R0 can be determined from (4.112) using the first formulation
in (4.113)

exp
(−βR2

0

) = ε → R0 =
√

−log ε

β
. (5.21)

This approach considers only the volumetric expansion of the support domain. How-
ever, the body can deform in any shape depending on the loading. To overcome this
limitation, an anisotropic adjustment of the support domain is proposed in Kumar
et al. (2019). Instead of a sphere, the nodes that lie inside an ellipsoid defines the
support domain of the integration point p

(
xp n − xI n

)
Mp n · (

xp n − xI n
) ≤ 1. (5.22)

The initialization of the matrix M can be realized using the assumption that the
support domain is spherical at the beginning

M0 = 1

R2
0

1. (5.23)

The redetermination of the search area results from the update of line elements

xp n+1 − xI n+1 = �Fp n+1
(
xp n − xI n

)
. (5.24)

The tensor M at the new time step follows directly from (5.22) using (5.24)

Mp n+1 = �F−T
p n+1Mp n�F−1

p n+1. (5.25)

Corresponding to the search area, the tensor β must also be adapted to avoid tensile
instabilities. This quantity is updated in an analogous way to the tensorM using the
second approach in (4.113) together with (5.24)

β p n+1 = �F−T
p n+1β p n�F−1

p n+1. (5.26)

5.2.3 Integration Constraint

The update of the support domain is not designed to meet all mandatory criteria of
Sect. 4.5. The local maximum entropy (LME) functions fulfill the reproducing con-
ditions for trial shape functions. They also possess a weak Kronecker-δ property. But
standard search algorithms do not lead to the fulfillment of the integration constraint
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Fig. 5.4 (Left) Geometry, dimensions, and boundary conditions of the uniaxial test case. (Right)
Subdivision of the domain into nodes (grey) and integration points (red)

automatically. The negative effects of such a violation can be shown using a sim-
ple test example. Due to the advantage regarding the simulation of fusion processes
within Additive Manufacturing the search algorithm of Weißenfels and Wriggers
(2018) is employed. A block is loaded at the upper side with a displacement of 5mm
in the vertical direction. Due to the uniaxial loading, negative effects due to under-
integration are not expected. The geometry, dimensions, and boundary conditions
can be found in Fig. 5.4. The material is assumed to behave non-linear elastic, and is
approximated by a Neo–Hookean model. The Lame parameters can be derived from
Young’s modulus (E = 1 · 106 N/mm2) and Poisson ratio (ν = 0.2)

σp n+1 = λ

2 Jp n+1

(
J 2
p n+1 − 1

) + μ

Jp n+1

(
bp n+1 − 1

)
. (5.27)

The load is applied in 10 steps. The parameter of the LME function is γ = 2.0
and the extension factor of the search algorithm is set initially to α = 1.5. The
true solution results in a homogeneous normal stress in vertical direction of σ22 =
−7.567·105 N/mm2 and a horizontal displacement ux = 0.547mm. The equations
are formulated with respect to the total Lagrangian description to avoid errors due
to a violation of the configurational consistency and tensile instability. The OTM
method without any stabilization or nodal shifting algorithm leads to an unphysical
solution (Fig. 5.5). Since resulting nodal normal vectors also occur at inner nodes
(Fig. 5.5), the integration constraint is violated and reasons the unphysical solution.
To measure the violation the norm of the resulting normal vectors is summed up over
all inner nodes ninner and weighted by the volume of the body V

eIC = 1

V

ninner∑

I=1

‖nI‖. (5.28)

For the above example the error amounts to eIC = 0.196087.
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Fig. 5.5 Total Lagrangian OTM algorithm without stabilization or nodal shifting algorithm. (Left)
Vertical normal nodal stress distribution σ22. (Right) Resulting nodal normal vectors

Conclusion.TheOTMmethodwithout any special treatment does not fulfill the inte-
gration constraint. Hence, an unphysical solution of the differential equation results.
The integration constraint refers to the influence domain. The reproducing conditions
of the trial shape function are based on the support domain. This complicates the
simultaneous fulfillment of both requirements. Until now, there is no true meshfree
Galerkin method that fulfills both criteria, if the integration is evaluated at separate
points. A first formulation is presented in Sect. 5.2.6.

Remark In the original publication on the OTMmethod (Li et al. 2010) and in other
publications, there is no information on the integration constraint. Only the need to
use a nodal shifting algorithm based on r-adaptivity (Thoutireddy and Ortiz 2004;
Mosler and Ortiz 2006) is mentioned briefly.

5.2.4 Configurational Consistency

Another reason for unphysical solutions can be the violation of the configurational
consistency if the equations are formulated with respect to the updated Lagrangian
description. To exclude negative effects from the search algorithm, the example from
the previous section was calculated with a fixed assignment of nodes to integration
points. Therefore, the domain is subdivided into 9-node elements (Fig. 5.6). The
time step size is decreased to �t = 0.01s to emphasize possible negative effects
more strongly. The outcome of the OTMmethod formulated with respect to the total
Lagrangian description leads to the true solution since the integration constraint is
fulfilled (σ22 = −7.567 · 105 N/mm2, ux = 0.547mm). If the differential equation
is given with respect to the updated Lagrangian configuration, an unphysical solu-
tion is obtained (Fig. 5.7). The negative effects result again from the violation of the
integration constraint (eIC = 0.975286). However, the non-fulfillment of the con-
figurational consistency reasons the unphysical outcome. At each load step, the
error is very small, but during the calculation this value accumulates (Fig. 5.6) which
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Fig. 5.6 (Left) Subdivision of the domain in non-overlapping support domains. (Right) Error due
to a violation of the integration constraint over time using an updated Lagrangian description

Fig. 5.7 Displacement boundary conditions: Horizontal nodal displacements. (Left) Total
Lagrangian description. (Right) Updated Lagrangian description

can destroy the simulation results (Fig. 5.7). In Weißenfels and Wriggers (2018), a
method was introduced which leads to better results using the OTM method. The
motivation for this approach was the stabilization of under-integration. In fact, the
system is forced to fulfill the configurational consistency using the penalty method.
In this approach, a second contribution is added to the internal force. This extra term
results from the multiplication of the normalized error of (4.84) with the penalty
parameter ε

f s,corrI n+1 = f sI n+1 + ε

Nsup
p n∑

I=1

NI (xp n)
xI n+1 − xp n+1 − �Fp n+1

[
xI n − xp n

]

‖xI n − xp n‖ . (5.29)

To weight integration points closer to the node more strongly, the error is multiplied
by the shape function. The application of this concept leads to accurate vertical
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Fig. 5.8 Updated Lagrangian description. (Left) Influence of the penalty parameter on the error due
to a violation of the integration constraint. (Right) Horizontal nodal displacements using a penalty
parameter of ε = 10 · 106

stresses, if the penalty parameter is sufficiently high. In this case, the error due to
the violation of the integration constraint is almost zero (Fig. 5.8). However, the
horizontal displacements are larger compared to the true solution (Fig. 5.8).

When calculating the above example with a force boundary condition, the situa-
tion is even worse. To demonstrate the negative effects, a line load of 4·104 N/mm
in vertical direction is applied on top of the block instead of the displacements. The
formulation with respect to the total Lagrangian description leads again to the true
solution (Fig. 5.9). If the updated Lagrangian formulation is employed a result can
only be obtained with a penalty parameter larger than ε = 1 · 105. However, the ver-
tical displacements are much stronger compared to the total Lagrangian formulation.

In the last test, the effects of increasing the number of integration points are
examined. Again, the updated Lagrangian formulation is considered. The stabiliza-
tion given in (5.29) is neglected. If displacement boundary conditions are applied,
an increase in the total number of integration points from 128 to 288 shows a stabi-
lized effect (Fig. 5.10). The true vertical stress σ22 results, but like in the stabilized
case the horizontal displacements are over predicted. However, the error due to the
violation of the integration constraint is almost zero (eIC = 0.00390164). If a force
boundary condition is imposed and the number of integration points is increased to
1152 a solution can be computed. However, like in the stabilized case, the vertical
deformation is too strong. Additionally, an error due to the violation of the integration
constraint is still present (eIC = 0.918779).

Conclusion. If theOTMmethod is not formulatedwith respect to the total Lagrangian
configuration, the configurational consistency can be violated which leads to inaccu-
rate results. A correction scheme, which is often used in meshfree methods, enforces
the algorithm to exactly reproduce the continuum-mechanical update of line ele-
ments. Using this stabilization the error due to a violation of the integration constraint
can be corrected. However, unphysical results occur nevertheless. An increase of
integration points leads to a similar unphysical outcome like in the stabilized case.
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Fig. 5.9 Force boundary conditions: Vertical nodal displacements. (Left) Total Lagrangian descrip-
tion. (Right) Updated Lagrangian description using a stabilization with ε = 10 · 105

Fig. 5.10 (Left) Displacement boundary condition: Horizontal nodal displacements in the case of
288 integration points. (Right) Force boundary condition: Vertical nodal displacements in the case
of 1152 integration points

5.2.5 Rank Instability

In the Finite Element Method, under-integration usually results in an unphysical
solution, which can especially be observed under loadings leading to bending. The
behavior of a cantilever arm loaded vertically is investigated to determine whether
the OTM method shows negative effects due to under-integration. The line load
at the right edge is set to 16N/mm. The Lame parameters in (5.27) are chosen as
λ = 400943.27N/mm2 and μ = 80.194N/mm2. The load is applied in 50 steps.
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Fig. 5.11 (Left) Geometry, dimensions, and boundary conditions of the cantilever. (Right) Vertical
nodal displacements using the OTM method in a Lagrangian description without stabilization

Fig. 5.12 Subdivision of support domain into triangles and localization of the corresponding inte-
gration points within each triangle

The geometry, dimensions, and boundary conditions can be found in Fig. 5.11. The
search radius parameter is chosen so that effects from the violation of the integration
constraint can be neglected, i.e. α = 4.5. The parameter for the LME shape function
is γ = 2.0. In addition, the differential equation is formulated with respect to the
total Lagrangian description to exclude negative effects from the violation of the
configurational consistency and tensile instability. A closer look at Fig. 5.11 shows
a non-smooth displacement field. To investigate whether these unphysical variations
result fromunder-integration, a concept for addingmore evaluation points per support
domain is implemented. In contrast to the previous example, the number of support
domains remains constant. After the search algorithm, each domain is subdivided
into triangles (Fig. 5.12). A different number of integration points can be located in
each triangle

f sI n+1 =
Ntri

p n+1∑

t=1

N g p∑

g=1

Nsup
p n+1∑

I=1

σg n+1
∂NI (Xg)

∂xg n+1
vt

g n+1. (5.30)

The area vt
n+1 g at the additional integration points is calculated from the total area

vp n+1 and the area of the corresponding triangle atp n+1 using the Gauss quadrature
rule
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Fig. 5.13 (Left) Convergence behavior of horizontal displacement of upper right vertex by adding
more integration points per triangle. (Right) Vertical nodal displacements in case of 1 integration
point per triangle

vt
n+1 g = vp n+1

atp n+1

asump n+1

Wg, asump n+1 =
Ntri

p n+1∑

i=1

aip n+1.
(5.31)

TheweightsWg for different integration points in a triangle can be found in e.g. Dhatt
and Touzot (1984). As an example, the horizontal displacement at the upper right
point (5.11) is evaluated. Only more than four integration points per triangle result
in a convergent behavior (Fig. 5.13). The displacement field is also more smooth.
On the other hand, the curvature is less (Fig. 5.13) compared to the original OTM
formulation in Fig. 5.11. A convergence analysis shows a very stiff behavior of the
formulation with additional integration points (Fig. 5.14). This effect also occurs
with the FEMmethod when the domain is subdivided into 9-node elements and LME
shape functions are used. This requires 64 integration points per element to accurately
evaluate the integral. Adding the stabilization of (5.29), which was initially designed
to correct negative effects from under-integration, the OTM formulation shows an
improved behavior. However, the optimal penalty parameter depends on the number
of degrees of freedom, as can be seen in Fig. 5.14 where only a constant value of
ε = 2 · 102 is considered.
Conclusion. The OTM method solves the integral with a reduced number of inte-
gration points. Hence, effects known from under-integration occur, whereby the
solution is not very strongly distorted. The application of LME functions leads to an
excessively stiff behavior if sufficient integration points are introduced. This effect
becomes especially visible when comparing with the FEM (Fig. 5.14). Hence, in the
OTM method, under-integration reduces locking or excessively stiff behavior.
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Fig. 5.14 (Left) Convergence plot of the horizontal displacement of the upper right vertex. (Right)
Vertical nodal displacements in case of the stabilized OTM method

5.2.6 Petrov Galerkin OTM Method

The previous examples show that the integration constraint is one of the most impor-
tant criteria for Galerkin methods. Therefore, an algorithm is developed that guar-
antees the fulfillment of this condition. The integration constraint refers to the test
function in the influence domain. A Petrov–Galerkin formulation is chosen in order
not to impair the reproducing conditions of the trial function in the support domain.
In oder to avoid negative effects due to the violation of the configurational consis-
tency or tensile instability the equations are formulated with respect to the initial
configuration. The discretization of the displacements is analogous to Sect. 4.6.3.
For the test function, a modified LME approach is used which is now related to the
influence domain

N η
I

(
Xp

) = Zη
I

(
Xp

)

Zη
, Zη =

Nin f
I∑

p=1

Zη
I

(
Xp

)
,

Zη
I

(
Xp

) = exp
(−β‖Xp − XI‖

)
exp

(
λI · [

Xp − XI
])

.

(5.32)

The Lagrange multiplier is defined at the node and is calculated by fulfilling the
integration constraint

rI
(
Xp,λp

) =
Nin f

I∑

p=1

∂NI (Xp)

∂Xp
v0 p =

{
0 for inner nodes
N̄I for boundary nodes

. (5.33)
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Fig. 5.15 Initial subdivision of the domain into triangles in 2D and determination of normal vectors.
Removal of mesh results in the location of integration points and nodes as well as normal vectors

In this equation, the resulting normal vector at the boundary nodes is requested.
These vectors must be known at the beginning of the calculation. The initialization
of the OTMmethod is based on a subdivision of the domain into elements. As shown
in Weißenfels (2019), the Finite Element Method fulfills the integration constraint.
Hence, the resulting normal vector at the boundary node N̄I from an FEM discretiza-
tion can be used for the initialization of the normal vectors (Fig. 5.15). During the
simulation the current vector n̄I results froman update using the deformation gradient

n̄I =
Nin f

I∑

p=1

NI (Xp)

∂Xp
F−1
p detFpvp 0. (5.34)

The above equation corresponds to the discrete form of the Nanson formula, which
relates surface integrals between the initial and the current configuration. TheNanson
formula can be found e.g. in Wriggers (2008). Analogous to the standard LME
shape functions, (5.33) is nonlinear with respect to the unknown Lagrange multiplier
λI . This vector is calculated using the Newton-Raphson iteration. To simplify the
implementation the program package AceGen (Korelc 1997; Korelc and Wriggers
2016) can be used to automatically calculate the tangent matrix.

The test fromSect. 5.2.3 is conducted to examine the significance of the integration
constraint. The geometry, dimensions, and boundary conditions can be found in
Fig. 5.4. The original OTM method leads to a violation of the integration constraint
and inner nodes possess a resulting normal vector that is not equal to zero (Fig. 5.5).
This violation leads to an unphysical deformation of the body. If the Petrov–Galerkin
variant is chosen that automatically satisfies the integration constraint of 0th order,
the resulting normal vectors inside are identical zero and the true solution is obtained
(Fig. 5.16). This example highlights the importance of the integration constraint for
fulfilling the patch test.
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Fig. 5.16 Lagrangian Petrov–Galerkin OTM algorithm (Left) Vertical normal nodal stress (σ22)
distribution. (Right) Resulting nodal normal vectors

Fig. 5.17 Geometry, dimensions, and boundary conditions of the punch test

In the second example, the half of the upper surface of a block is loaded vertically
with a line load of 10N/mm. The geometry, dimensions, and boundary conditions
can be found in Fig. 5.17. If the force at the nodes is assumed to be constant, necking
in the middle of the upper block can be observed. This necking results from the
change of the upper surface at strong deformations. If the forces are assumed to be
constant, the stress in the middle is larger than at the vertex. Thus, the load no longer
corresponds to a constant line load. To avoid this negative effect, the stress at the
upper boundary is defined as a follower load

fextI := q nI , nI =
Nin f

I∑

p=1

NI (Xp)

∂Xp
F−1
p detFpvp 0. (5.35)

According to the approach from Weißenfels (2019), the current normal vector
and the nodal area result directly from the integration constraint (5.34). The load is
applied in 50 steps. The material is defined as non-linear elastic according to (5.27).
The Young’s modulus is selected to E = 7N/mm2 and the Poisson ratio to ν = 0.44.
The parameter for the LME function is γ = 2.0. The value for the search radius is
selected as α = 2.5. The displacement field of the Petrov–Galerkin OTM method
corresponds to the FEM solution employing linear triangular elements (Fig. 5.18).
In addition, the convergence behavior shows that the algorithm is very stiff and does
not converge smoothly (Fig. 5.18).
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Fig. 5.18 Punch test: (Left) Vertical normal nodal stress (σ22) distribution. (Right) Convergence
diagram comparing FEM solutions using 9-node polynomial (Quad9), 9-node LME (LME9), and
3-node polynomial (Tri3) shape functions with the outcome of the PG-OTM approach

Conclusion. The fulfillment of the integration constraint is a prerequisite for an
accurate solution of the differential equation. Using a Petrov–Galerkin formulation,
the OTM method can be forced to fulfill this condition. On the other hand, this
variant leads to a stiff response. This behavior can also be derived from the studies in
the previous section. Therein, it is shown that LME shape functions favor a too stiff
response behavior. The outcomes are similar to a FEM solution with linear triangular
elements. In addition, the algorithm is not stable for weakly compressible material
behavior.

Remark 1 Using aBubnov–Galerkin approach the test N η
I and the trial N

u
I functions

are identical. This leads in the case of a conservative system, like in the previous
examples, to a symmetric tangent that is physically reasonable. The Petrov–Galerkin
formulation can also be interpreted as a disturbed Bubnov–Galerkin approach since
each test function can be decomposed into a trial function and a disturbed contribution
ÑI

N η
I = Nu

I + ÑI . (5.36)

The second term leads to an additional contribution and reasons the unsymmetric
tangent. However, the additional term corrects the shortcomings of the Bubnov–
Galerkin approach.

Remark 2 The imposition of a surface load as follower load, like in the last exam-
ple, also leads to an unsymmetric tangent. In this case, one speaks of a body-attached
follower load. This is unphysical since static loads are conservative and must, there-
fore, lead to a symmetric tangent (Schweizerhof and Ramm 1984). However, in the
last example, physically reasonable results are obtained.
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Chapter 6
Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) has experienced a renaissance in com-
putational mechanics in recent years. Due to the increased computing power, the
additional effort due to the search algorithm, among other things, is no longer so
significant. Nevertheless, some shortcomings are still present as will be shown in
this chapter.

Smoothed Particle Hydrodynamics (SPH) is a spatial discretization scheme devel-
oped in the seventies by Gingold and Monaghan (1977) and in parallel by Lucy
(1977). The first applications were limited to the field of astrophysics. In the mean-
time, this method has also become established in computational mechanics and is
used especially for the simulation of fluid flows with free surfaces. Although the
formulation is equally suitable for fluids and solids, different variants have been
established for the two scenarios.

The SPH subdivides the domain into individual particles at which all quantities
are evaluated. In the SPH, own technical terms have been established over the years.
In the individual sections, the corresponding definitions are discussed and related to
the usual expressions from Chap. 4.

6.1 Discretization Concept

The starting point is the description of the approximate solution in terms of an integral
function similar to Sect. 4.6.4. To be able to express u at any point, the kernel function
must possess a reproducing property. This is given for the δ-Dirac function

u (x) =
∫
Hx

δ
(
x − x′) u (

x′) dvx′ . (6.1)

On the other hand, the δ-Dirac function is neither continuous nor differentiable.
Due to these pathological properties, this approach is not suitable in the context of
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a discretization (Li and Liu 2007). In SPH, an attempt is made to get as close as
possible to the reproducing properties by means of a smooth differentiable function,
the so-called weighting or kernel functionW . The values ofW in the domain can be
controlled by the so-called smoothing length h

〈u (x)〉 =
∫
Hx

W
(
x − x′, h

)
u

(
x′) dvx′ . (6.2)

Since W is mostly chosen such that it violates the reproducing property, the result
does not match the function at the corresponding position. In the equation above this
is indicated by the angle bracket. Rather, (6.2) can be understood as an averaging.
Alternatively, the value on the right-hand side can be changed. Thus, the function u
can be approximated by the unknown values a in the neighborhood

u (x) =
∫
Hx

W
(
x − x′, h

)
a

(
x′) dvx′ . (6.3)

There are two requirements on the weighting function in SPH. In the limit as the
smoothing length approaches zero W must equal the δ-Dirac function. In addition,
to ensure that for a constant displacement field the left-hand side in (6.2) reflects the
correct value of u, a normalization property is required

lim
h→0

W
(
x − x′, h

) = δ
(
x − x′) ,

∫
Hx

W
(
x − x′, h

)
dvx′ = 1. (6.4)

In the discrete form, the sum over all particles Nx in the neighborhood of x replaces
the integral in (6.3)

u (x) =
Nx∑
J=1

W (x − xJ , h) aJvJ . (6.5)

The unit of W is 1/m3. The multiplication of the weighting function by the volume
can be interpreted as a shape function

u (x) =
Nx∑
J=1

NJ (x)aJ , NJ (x) = W (x − xJ , h)vJ . (6.6)

The weighting function is usually based on the distance r = ‖x − xJ‖. The value
has its maximum at x and decreases towards the boundary of the neighborhood.
The size of the smoothing length h usually correlates with the radius of the search
algorithm (Li and Liu 2007). To simplify the notation, instead of explicitly specifying
the coordinates, only the index of the particle is given, i.e.

vI := v (xI ) , f sI := f s (xI ) , σ I := σ (xI ) . (6.7)
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In addition, different abbreviations exist for the weighting function

W (xJ − xI , h) := W (xJ − xI ) = WI (xJ ) = WI J . (6.8)

For the calculation of derivatives, such as the divergence of stress, the integral from
(6.2) has to be differentiated

〈divσ (x)〉 = ∂

∂x

∫
Hx

W
(
x − x′) σ

(
x′) dvx′ : 1 =

∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x

dvx′ .

(6.9)
The operator : denotes the double contraction between two tensors. The use of radial
weighting functions leads to properties which can be advantageous in the context of
a discretization. SinceW is based on the distance between two points, the arguments
of the function can be interchanged

W
(
x − x′) = W

(
x′ − x

)
. (6.10)

For the derivative of the weighting function this property results in quite useful
relations

∂W
(
x − x′)
∂x

= −∂W
(
x − x′)
∂x′ = −∂W

(
x′ − x

)
∂x′ = ∂W

(
x′ − x

)
∂x

. (6.11)

The same applies for the discrete case

∂W (xI − xJ )

∂xI
= −∂W (xI − xJ )

∂xJ
= −∂W (xJ − xI )

∂xJ
= ∂W (xJ − xI )

∂xI
. (6.12)

A more detailed introduction to the discretization concept of SPH can be found, for
example, in Li and Liu (2007) or Liu and Liu (2003).

Remark 6.1 Due to the dimension, theweighting function can also be assumed to be
an operator that determines the density at a point from the mass in the neighborhood
(Price 2012)

ρ (x) =
Nx∑
J=1

W (x − xJ , h)mJ . (6.13)

If the mass mJ at each particle is constant during the calculation, the conservation
of mass is always satisfied.

Remark 6.2 InMonaghan (1992), so-called golden rules for a better approximation
are defined, without giving an exact justification. Therein, it is recommended to use
a Gaussian weighting function. However, mostly Wendland functions (Wendland
1995) are chosen for W , e.g.
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W (x − xJ , h) = 1

π h3

{(
1 − r

2 h

)4 (
1 + 4 r

2 h

)
for r ≤ 2 h

0 for r > 2 h
. (6.14)

To ensure the correct unit, the function is divided by the volume. The distances are
normalized by the smoothing length h.

6.2 Equivalence Weak Form and Reduced Order Strong
Form

The discretization concept of SPH can be applied to all variants from Sect. 4.2. Nor-
mally, the domain is only subdivided into particles. An exception is the Normalized
SPH (Randles and Libersky 2000), which is based on a two-point approach. Cal-
culations of fluid flow are usually based on the strong form whereas simulations of
solid deformations rely on the strong form with reduced order.

Substituting the relation betweenweighting and shape functions (6.6), the internal
force of the weak form (4.14) can also be formulated as a function of W

f s w f
I =

NI∑
J=1

σ J
∂NI (xJ )

∂xJ
vJ =

NI∑
J=1

σ J
∂W (xJ − xI )

∂xJ
vIvJ . (6.15)

Also, in the case of the reduced order strong form (4.23), this contribution can be
specified in more detail

f s roI = −vI

NI∑
J=1

σ J
∂NJ (xI )

∂xI
= −

NI∑
J=1

σ J
∂W (xI − xJ )

∂xI
vIvJ . (6.16)

Exploiting the properties of radial functions (6.12), it can be shown that both
approaches are equivalent

f s roI = −
NI∑
J=1

σ J
∂W (xI − xJ )

∂xI
vIvJ =

NI∑
J=1

σ J
∂W (xJ − xI )

∂xJ
vIvJ = f s w f

I .

(6.17)
The contributions from the inertia term and the dead load are identical. This shows
the equivalence between the weak form and the reduced order strong form in the
framework of the SPH. Thus, even for the strong form, the forces due to the Neumann
boundary conditions can be determined directly from (4.17).

Remark. In Randles and Libersky (1996), Belytschko et al. (1998) or Rabczuk et al.
(2004) an alternative approach is used to calculate the derivative. This variant results
directly from (6.9) taking into account (6.11)
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〈divσ (x)〉 =
∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x

dvx′ = −
∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x′ dvx′ .

(6.18)
From the equivalence theorem, the first relation corresponds to the derivative rule in
the framework of the strong form and the second to the rule of the weak form.

6.3 Integration Constraint

In Bonet and Kulasegaram (2000), it is shown that even in the SPH an additional
requirement must be fulfilled beside the reproducing conditions to satisfy the patch
test. This requirement corresponds exactly to the integration constraint. One reason
provides directly Sect. 6.2. Another justification results from the discretization con-
cept of the SPH, which follows from an integral. Thus, the divergence of stress can
alternatively be determined from the individual contributions in the neighborhood

〈divσ (x)〉 =
∫
Hx

W
(
x − x′) divσ

(
x′) dvx′ . (6.19)

Using Gauss’ integral theorem, the right-hand side can be related to the derivative
of the weighting function

∫
Hx

W
(
x − x′) divσ

(
x′) dvx′ =

∫
∂Hx

W
(
x − x′)σ

(
x′)n (

x′) dax′

−
∫
Hx

σ
(
x′) ∂W

(
x − x′)
∂x′ dvx′

(6.20)

Exploiting (6.10) and (6.11) as well as the transition x′ → x, x → xI an alternative
expression can be obtained

∫
HI

W (x − xI ) divσ (x) dvx =
∫

∂HI

W (x − xI )σ (x) n (x) dax

−
∫
HI

σ (x)
∂W (x − xI )

∂x
dvx.

(6.21)

Since W (x − xI ) vI = NI (x), this relation corresponds exactly to the integration
constraint given in (4.74). The standard patch test is satisfied if Eq. (6.20) is fulfilled
for a constant stress

∫
Hx

∂W
(
x − x′)
∂x′ dvx′ =

∫
∂Hx

W
(
x − x′)n (

x′) dax′ . (6.22)
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In discrete form, this requirement results in a constraint that each particlemust satisfy
separately

vI

NI∑
J=1

∂W (xI − xJ )

∂xJ
vJ =

{
0 inner particles
n̄I boundary particles

. (6.23)

The resulting normal vector at the boundary particle follows directly from the dis-
cretization of the right-hand side in (6.22)

n̄I =
NI∑
J=1

W (xI − xJ )nJ aJ . (6.24)

If the condition from the integration constraint is violated, a correction is needed.
An approach can be found in Bonet and Kulasegaram (2000) which is specified in
more detail in Sect. 5.1.3.

Remark. In Belytschko et al. (1998) there is a hint that (6.20) can be a reason for
an error in the approximation. However, the reference to the integration constraint is
missing. Instead, the analysis bears upon the derivative rule according to (6.18).

6.4 Alternative Derivative Rules

Besides to the variants (6.9) and (6.18) there are two additional concepts in SPH to
calculate the derivative of a quantity.

6.4.1 Product Rule

With the help of another quantity, such as the density, the divergence of stress can
be reformulated

div (ρσ) = ρdivσ + σ grad ρ leading to divσ = 1

ρ

[
div (ρσ) − σ grad ρ

]
.

(6.25)
Using the derivative rule (6.9), the divergence in SPH can also be calculated bymeans
of a difference

〈divσ (x)〉 = 1

ρ (x)

∫
Hx

[
σ

(
x′) − σ (x)

]
ρ

(
x′) ∂W

(
x − x′)
∂x

dvx′ . (6.26)

If the ratio of the densities is assumed to be one, the alternative formulation from
Randles and Libersky (1996) is obtained, which is based on the rule given by Mon-
aghan (1988)
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〈divσ (x)〉 =
∫
Hx

[
σ

(
x′) − σ (x)

] ∂W
(
x − x′)
∂x

dvx′ . (6.27)

With the representation of the derivative after (6.19)

〈divσ (x)〉 = 1

ρ (x)

∫
Hx

W
(
x − x′) [

div
(
ρ

(
x′)σ

(
x′)) − σ (x) grad ρ

(
x′)] dvx′

(6.28)
the condition from the integration constraint results to

∫
Hx

W
(
x − x′) [

div
(
ρ

(
x′)σ

(
x′)) − σ (x) grad ρ

(
x′) ]

dvx′

=
∫

∂Hx

W
(
x − x′) ρ

(
x′) [

σ
(
x′) − σ (x)

]
n

(
x′) dax′

−
∫
Hx

ρ
(
x′) [

σ
(
x′) − σ (x)

]∂W
(
x − x′)
∂x′ dvx′ .

(6.29)

To meet the standard patch test, the above relation must be fulfilled for constant
stresses. In this case, both sides are identical zero. This also applies to particles near
or at the boundary and no resulting normal vector can be obtained.

6.4.2 Quotient Rule

Another way to rewrite the divergence of stress is based on the exploitation of the
quotient rule. This approach goes back to Gingold and Monaghan (1982)

div

(
1

ρ
σ

)
= 1

ρ
divσ − 1

ρ2
σ grad ρ leading to divσ = ρdiv

(
1

ρ
σ

)
+ 1

ρ
σ grad ρ.

(6.30)
In this case, the divergence is determined by the sum of stresses scaled by the density

〈divσ (x)〉 = ρ (x)
∫
Hx

[
σ

(
x′)

ρ (x′)2
+ σ (x)

ρ (x)2

]
∂W

(
x − x′)
∂x

ρ
(
x′) dvx′ . (6.31)

A simplified form is obtained when the ratio of densities is again neglected, like in
Bonet and Lok (1999)

〈divσ (x)〉 =
∫
Hx

[
σ

(
x′) + σ (x)

] ∂W
(
x − x′)
∂x

dvx′ . (6.32)

Again, the relationship for the integration constraint must be adjusted. Based on
(6.19) the divergence can be reformulated
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〈divσ (x)〉 = ρ (x)
∫
Hx

W
(
x − x′)

[
div

(
σ

(
x′)

ρ (x′)

)
+ σ (x)

ρ (x)2
grad ρ

(
x′)

]
dvx′

(6.33)
leading to the requirement

∫
Hx

W
(
x − x′)

[
div

(
σ

(
x′)

ρ (x′)

)
+ σ (x)

ρ (x)2
grad ρ

(
x′)

]
dvx′

=
∫

∂Hx

W
(
x − x′)

[
σ

(
x′)

ρ (x′)
+ σ (x)

ρ (x)2
ρ

(
x′)

]
n

(
x′) dax′

−
∫
Hx

[
σ

(
x′)

ρ (x′)
+ σ (x)

ρ (x)2
ρ

(
x′)

]
∂W

(
x − x′)
∂x′ dvx′ .

(6.34)

For the case of a constant stress and a constant density, the requirement reduces to
the original variant given in (6.22)

∫
Hx

∂W
(
x − x′)
∂x′ dvx′ =

∫
∂Hx

W
(
x − x′)n (

x′) dax′ . (6.35)

Remark 6.1 The second golden rule in SPH (Monaghan 1992) states that the formu-
lation (6.27) should be used to calculate the derivative. This form guarantees that the
derivative is zero if the corresponding quantities are constant in the neighborhood.

Remark 6.2 In Price (2012) a derivation of the mechanical balance equation for
barotropic fluids from the discrete Euler-Lagrange equation is given. In Bonet and
Lok (1999) the starting point is the discrete potential energy. The resulting discrete
balance equations are equivalent to the formulation given in (6.31).

6.5 Reproducing Conditions

In SPH,W is usually a radial function. The reproducing conditions are not necessarily
fulfilled in the discrete case, like e.g. for the 0th and the 1st order

Nx∑
J=1

W (x − xJ ) vJ �= 1,
Nx∑
J=1

W (x − xJ ) xJ vJ �= x. (6.36)

Due to the second property in (6.4), the weighting function satisfies the 0th order
reproducing condition in the continuous case. However, in the discrete case this is
mostly not given. The same follows for the derivatives
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Nx∑
J=1

∂W (x − xJ )

∂x
vJ = −

Nx∑
J=1

∂W (xJ − x)
∂xJ

vJ �= 0

Nx∑
J=1

xJ ⊗ ∂W (x − xJ )

∂x
vJ = −

Nx∑
J=1

xJ ⊗ ∂W (xJ − x)
∂xJ

vJ �= 1.

(6.37)

Different approaches are available to restore the requirements. In the following, four
different variants are presented. The first two allow a complete fulfillment of the
reproducing conditions. The last two forms show frequently used corrections for
certain requirements. In addition, other approaches exist. An older overview can be
found in Belytschko et al. (1998).

Variant 1 Since the shape functions are basedonan integral operator, the approaches
from Sect. 4.6.4 can be directly applied to satisfy the reproducing conditions up to
the necessary order. The component ω assuming ρ = 1 in (4.140) can be identified as
the weighting functionW . The remaining factor corresponds to the correction factor

W̃ (x − xJ ) = C (x, xJ )W (x − xJ ) , C (x, xJ ) = p (0) · M (x) p̃ (x − xJ) .

(6.38)
The weighting function that fulfills the reproducing conditions is marked with a tilde
over W .

Variant 2 An alternative approach is provided by Bonet and Lok (1999). The whole
algorithm is indicated as Corrected Smoothed Particle Hydrodynamics (CSPH). It is
based on the previous variant, considering only reproducibility up to 1st order. This
allows the correction scheme to be simplified

W̃ (x − xJ ) = W (x − xJ ) α(x) [1 + β(x) · (x − xJ )] . (6.39)

The values of the vector β are determined by the restoration of the 1st order repro-
ducing condition

β(x) =
[

Nx∑
J=1

[x − xJ ] ⊗ [x − xJ ]W (x − xJ ) vJ

]
−1

Nx∑
J=1

W (x − xJ ) [xJ − x] vJ .

(6.40)
After the calculation of β, the parameter α is determined from the fulfillment of the
0th order reproducing condition

α (x) = 1∑Nx
J=1 [1 + β(x) · (x − xJ )]W (x − xJ ) vJ

. (6.41)

Variant 3 If only the 1st order reproducing condition in the derivatives has to be
satisfied, the alternative correction from Randles and Libersky (1996) can be used,
see also Bonet and Lok (1999). A normalization guarantees that the reproducing
condition of 0th order is satisfied
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W̃ (x − xJ ) = W (x − xJ )∑Nx
I=1 W (x − xI ) vI

. (6.42)

The requirement on the 1st order in the derivative can be recovered using the tensor
L analogous to Sect. 4.6.2

∂W̃ c (x − xJ )

∂x
= ∂W̃ (x − xJ )

∂x
L−1 (x) . (6.43)

Since the weighting function W̃ satisfies the reproducing condition of 0th order in
the derivatives, the tensor L can be alternatively formulated based on differences

L (x) =
Nx∑
J=1

xJ ⊗ ∂W̃ (x − xJ )

∂x
vJ =

Nx∑
J=1

(xJ − x) ⊗ ∂W̃ (x − xJ )

∂x
vJ . (6.44)

Variant 4 In Monaghan (1988), the 0th order reproducing condition in the deriva-
tives is restored by a symmetrization. If a constant displacement field is present, by
definition, the gradient is always equal to zero

grad u (x) =
Nx∑
J=1

[
uJ − u (x)

]∂W (x − xJ )

∂x
vJ . (6.45)

This relationship corresponds to the product rule given in (6.27).

6.6 Discrete Conservation Properties

In the SPH, the discretization of the divergence operator is often based on either the
product or the quotient rule. In these cases, the conditions differ from the require-
ments in Sect. 4.5.5. Therefore, a separate investigation on the conservation of global
balance equations is needed. For the mechanical case, the study is based on the inter-
nal force due to the state of stress inside the material. The derivation focuses on the
strong form with reduced order but can be applied to the other descriptions in the
same manner.

6.6.1 Product Rule

Based on (6.26), the internal force at the particle is determined from a difference
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f sI = −vI

NI∑
J=1

ρJ

ρI
[σ J − σ I ]

∂W (xI − xJ )

∂xI
vJ . (6.46)

Exploiting (6.12), this contribution can also be understood as the sum of forces
between individual particles

f sI = −
NI∑
J=1

ρJ

ρI

[
f pI J + f pJ I

]
, f pI J = σ J

∂W (xI − xJ )

∂xI
vIvJ . (6.47)

The alternative formulation given in Randles and Libersky (1996) results if the ratio
between the densities is assumed to be one.

Global balance of momentum. This requirement is satisfied if the internal forces
over all particles n sum to zero, see also Sect. 4.5.5. By substituting (6.47) into (4.86),
since W (x − xJ ) ≡ 0, if x /∈ Hx, and by exploiting the interchange of indices, the
condition can be specified in more detail

n∑
I=1

fsI = −
n∑

I=1

n∑
J=1

[
ρJ
ρI

+ ρI
ρJ

]
f pI J =

n∑
J=1

vJσ J

NJ∑
I=1

[
ρJ
ρI

+ ρI
ρJ

]
∂W (xI − xJ )

∂xI
vI = 0.

(6.48)
To satisfy conservation of momentum for arbitrary stresses, the inner loop must be
equal to zero

NJ∑
I=1

[
ρJ

ρI
+ ρI

ρJ

]
∂W (xI − xJ )

∂xI
vI = 0. (6.49)

In the version of Randles and Libersky (1996), the condition reduces to satisfying
the 0th order reproducing condition in the derivatives.

Global balance of angularmomentum.This conservation results in the requirement
that the sum over all moments due to the internal forces must be equal to zero

n∑
I=1

f sI × xI =
n∑

I=1

E : xI ⊗ f sI = 0. (6.50)

Using (6.47) and taking advantage of the interchangeability of indices, the condition
can be formulated in dependence on the addition of position vectors

n∑
I=1

n∑
J=1

E : xI ⊗ ρJ

ρI

[
f pI J + f pJ I

]

=
n∑

I=1

n∑
J=1

E :
[
ρJ

ρI
xI + ρI

ρJ
xJ

]
⊗ ∂W (xI − xJ )

∂xI
σ JvIvJ = 0.

(6.51)
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It has to be noted that the symmetry of the stress tensor is assumed in the derivation,
i.e. E : σ ≡ 0. In order to preserve angular momentum, the following condition must
be fulfilled

NJ∑
I=1

[
ρJ

ρI
xI + ρI

ρJ
xJ

]
⊗ ∂W (xI − xJ )

∂xI
vI = 1. (6.52)

If the ratio of the densities is again set to one, the requirement reduces to satisfying
the 0th and 1st order reproducing conditions in the derivatives.

6.6.2 Quotient Rule

Using the derivative rule (6.31) another variant for calculating the internal force at a
particle is obtained

f sI = −vIρI

NI∑
J=1

[
σ J

ρ2J
+ σ I

ρ2I

]
∂W (xI − xJ )

∂xI
ρJvJ . (6.53)

Taking advantage of (6.12), the force at a particle can also be interpreted as a result
of the difference of forces between particles

f sI = −
NI∑
J=1

[fI J − fJ I ] , fI J = ρIρJ
σ I

ρ2I

∂W (xI − xJ )

∂xI
vIvJ . (6.54)

The contribution fI J corresponds to the force acting from particle J on particle I ,
whereas fJ I describes the inverse relation. Another variation results when the ratio
of the densities is again set to one

fsI = −
NI∑
J=1

[
σ I

∂W (xI − xJ )

∂xI
vJ vI − σ J

∂W (xJ − xI )
∂xJ

vI vJ

]
= −

NI∑
J=1

[
fI J − fJ I

]
.

(6.55)
The only difference between both variants is the calculation of fI J . Here it has to be
noted that (6.55) using (6.6) corresponds exactly to (4.34), which is derived from the
weak form based on differences.
Global balance of momentum. If particle J is in the neighborhood of the particle I
and vice versa I is in the neighborhood of J , the global conservation of momentum
is always satisfied. Since W (x − xJ ) ≡ 0, if x /∈ Hx, the sums can be formed over
all particles and the indices can be interchanged

n∑
I=1

f sI = −
n∑

I=1

n∑
J=1

[fI J − fJ I ] = −
n∑

I=1

n∑
J=1

[fI J − fI J ] ≡ 0. (6.56)
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Global balance of angular momentum. Since the indices can be arbitrarily
exchanged, this proof can also be formulated in terms of a difference of position
vectors. Substituting (6.54) into the general condition (4.89) leads to the alternative
requirement

n∑
I=1

E : xI ⊗ fsI = −
n∑

I=1

n∑
J=1

E : xI ⊗ (fI J − fJ I ) = −
n∑

I=1

n∑
J=1

E : (xI − xJ ) ⊗ fI J = 0.

(6.57)
Unlike the conservation of momentum, this condition is not satisfied per se. By
substituting fI J from (6.54) into (6.57) and after some algebra, a requirement can be
stated

−
n∑

I=1

E :
(

NI∑
J=1

(xI − xJ ) ⊗ ∂W (xI − xJ )

∂xI
ρJvJ

)
vI

ρI
σ I = 0. (6.58)

Again, the symmetry of the stress tensor σ is exploited. The global angular momen-
tum is conserved only if the contribution in the parenthesis leads to the unit tensor

NI∑
J=1

(xI − xJ ) ⊗ ∂W (xI − xJ )

∂xI
ρJvJ = 1. (6.59)

If the ratio of densities is set to one, the requirement results in the fulfillment of the
0th and 1st order reproducing conditions in the derivatives.

Remark. If the stress tensor is isotropic, i.e., no shear stresses occur, then, in addition
to the global conservation of momentum, the condition on angular momentum is
always satisfied. In this case, (6.57) changes to

n∑
I=1

n∑
J=1

E : (xI − xJ ) ⊗ fI J =
n∑

I=1

n∑
J=1

vIvJρJ
pI
ρI

∂W (xI − xJ )

∂xI
× (xI − xJ ) = 0.

(6.60)
Since W is based on a radial function

∂W (xI − xJ )

∂xI
= ∂W

∂‖xI − xJ‖
xI − xJ

‖xI − xJ‖ , (6.61)

the force is always parallel to the distance between the particles. The cross product
between two vectors pointing in the same direction is by definition equal to zero and
angular momentum is always conserved

n∑
I=1

n∑
J=1

vIvJρJ
pI
ρI

∂W

∂‖xI − xJ‖
(

xI − xJ

‖xI − xJ‖ × (xI − xJ )

)
≡ 0. (6.62)
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6.7 Search Algorithm

The first step in the SPH is the determination of the neighborhoods. Usually, an
algorithm seeks the nearest particles. If the distance of particle J to particle I is
smaller than a given value, then J is in the neighborhood of I . Normally, the radius
correlates with the smoothing length (Li and Liu 2007). Mostly, r is in the range of
1.3–2.0 times the initial particle distance (Fig. 6.1). Since the body is usually divided
into grid-like individual particles, the radius is constant for all particles.

A redefinition of the neighborhood during the simulation can lead to a change in
the quantities, although there is no external load. In order to avoid this unphysical
behavior, the smoothing length can be adjusted. Monaghan (2002) suggests that the
density must be the same before and after the redetermination

ρI =
NI∑
J=1

mJ W (xI − xJ , hI ) , with hI :=
(
mI

ρI

) 1
3

= (vI )
1
3 . (6.63)

Since the density is a function of the smoothing length, a nonlinear system of equa-
tions results. For its solution the Newton-Raphson iteration can be applied. The
dependence of the weighting function on h must also be considered in the calcu-
lation of the force in order not to violate the balance of momentum (Nelson and
Papaloizou 1994). For a varying smoothing length an additional term � appears in
the calculation of the forces, like for the approach from (6.55)

f sI = −
NI∑
J=1

[
σ I

�I

∂W (xI − xJ , hI )

∂xI
− σ J

�J

∂W (xJ − xI , hJ )

∂xJ

]
vIvJ . (6.64)

The additional quantity � contains the derivative of the weighting function with
respect to the smoothing length

�I = 1 + hI

3 ρI

NI∑
J=1

mJ
∂W (xI − xJ , hI )

∂hI
. (6.65)

Fig. 6.1 Initial subdivision
of the domain into a grid like
distribution of particles and
determination of the
neighborhood by means of a
search radius
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A detailed derivation of this equation can be found in Price and Monaghan (2004)
or Price (2012).

Another condition on the search algorithm follows from (6.56). If particle J lies
in the neighborhood of particle I and particle I is also part of the neighborhood of
J , global momentum is conserved. If the search radii are the same for each particle,
this requirement is always met, see also Sect. 7.5.

In addition, the particle distribution in the neighborhood should be statistically
homogeneous. When simulating fluids, the neighborhood of the particles is rede-
termined at every time step. Disturbed particle distributions can occur, resulting in
penetration and a mixture of particles. To prevent this, an alternative approach is
used in Monaghan (1989). The position vector of the particle xI is not updated by
the solution function vI of the differential equation, but via a smoothing velocity

ẋI = vI + ξ

NI∑
J=1

mJ

ρI J
(vJ − vI )W (xI − xJ ), ρI J = 1

2
(ρI + ρJ ) . (6.66)

The current coordinate is calculated from the integration of ẋI . The parameter ξ is
usually selected between 0 and 0.5. This approach does not affect the balance of
momentum. If this correction is applied the algorithm is also called XSPH.

Alternatively, there are other correction schemes that allow an improved parti-
cle distribution. These are based either on remeshing techniques (Xu et al. 2009),
the introduction of an advection velocity (Adami et al. 2013), or on an Arbitrary
Lagrangian Eulerian (ALE) approach (Oger et al. 2016).

Remark. The reasons for the disturbed particle distribution are not investigated in
the presented algorithms. Instead, only attempts are made to correct the symptom.
As shown in Sect. 6.13, rank instability is a central topic in SPH. In addition, config-
urational consistency plays a role, which has not yet been investigated in the SPH.
Only if all negative effects due to a violation of the requirements listed in Sect. 4.5
can be excluded, investigations on the causes of disturbed particle distributions are
possible.

6.8 Tensile Instability

The SPH in its original form is based on the deformed configuration. As shown in
Swegle et al. (1995), to avoid a tensile instability it must be ensured that the product
of the second derivative of the weighting function with the stress at any particle J is
always less than zero. In Monaghan (2000), an approach based on artificial stresses
is introduced to avoid negative effects due to tensile instability.
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6.9 SPH for Solids

In many applications, the modeling of solids by means of SPH is based on the rule
(6.55), see e.g.Ganzenmüller (2015) orRabczuk et al. (2004). In order to avoid tensile
instabilities, the equations are discretized with respect to the initial configuration.
Mostly, the 1st Piola Kirchhoff stress tensorP is used instead ofσ. Hence, the current
volume v must be replaced by the initial volume V and the weighting function must
be evaluated with respect to X

f sI = −
NI∑
J=1

[
PI

∂W (XI − XJ )

∂XI
− PJ

∂W (XJ − XI )

∂XJ

]
VI VJ . (6.67)

For hyperelastic materials, P is calculated from the derivative of the specific strain
energy function with respect to the deformation gradient

PI = ρ0
∂ψ(FI )

∂FI
. (6.68)

To ensure that a constant displacement does not lead to strains in the body, the rule
(6.45) is mostly used to compute F. In addition, the derivative of the weighting
function is corrected based on (6.44)

FI = 1 +
NI∑
J=1

(uJ − uI ) ⊗ ∂W (XI − XJ )

∂XI
LI

−1VJ ,

LI =
NI∑
J=1

(XJ − XI ) ⊗ ∂W̃ (XI − XJ )

∂XI
VJ .

(6.69)

Hence, the reproducing condition of 1st order in the derivatives is satisfied. The
corrected derivative is also mostly applied to calculate the internal forces

f sI = −
NI∑
J=1

[
PI

∂W (XI − XJ )

∂XI
LI

−1 − PJ
∂W (XJ − XI )

∂XJ
LJ

−1

]
VI VJ . (6.70)

Due to the corrected weighting function, and due to the formulation based on the
quotient rule, momentum but not angular momentum is conserved.

6.10 SPH for Fluids

In the calculation of fluid flows, the neighborhood is always redefined in order to
simulate very large deformations. The equations are formulated with respect to the
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deformed configuration. Since the molten metal can be regarded as incompressible,
only volume preserving fluids are considered. The discretization is based on the
differential equation (3.14). For the pressure gradient the rule (6.55) is often used
(Colagrossi and Landrini 2003; Fürstenau et al. 2019)

f sI = f pI + fv
I , f pI =

NI∑
J=1

[pJ + pI ]
∂W (xI − xJ )

∂xI
vIvJ . (6.71)

Since no shear stresses occur, the global balance of momentum and angular momen-
tum are always fulfilled. The pressure can be calculated in two different ways. The
first approach is based on the direct fulfillment of the incompressibility condition.
The direct solution of this constraint leads to a clustering of particles. Alternatively,
in the SPH p can be solved by the Pressure Poisson equation (Cummins and Rudman
1999; Shao and Lo 2003 or Hu andAdams 2007). The particle velocities and position
vectors are calculated subsequently. This scheme is called Incompressible Smoothed
Particle Hydrodynamics (ISPH) and describes an own area within the SPH that is
not considered here. The second option describes the material as a barotropic fluid.
The pressure calculates from the density like presented in MacDonald (1966)

pI = ρI c20
7

[(
ρI

ρ0

)7

− 1

]
. (6.72)

The velocity of sound c0 in the liquid can be interpreted as a penalty parameter
that forces the density to be equal to its initial value. For this reason, the alterna-
tive approach pI = c20(ρI − ρ0) can also be used. The penalty parameter should be
10 times larger than the maximum velocity component (c0 ≥ 10 max vi ) to keep
the density changes in the area below one percent (Monaghan 2005). Since the
incompressibility constraint is not enforced exactly, this approach is called weakly
compressible. The density of a particle is calculated from the discretized continu-
ity equation. Often the rule (6.45) is used, which ensures a constant density, if the
velocity is constant

ρ̇I = −ρI

NI∑
J=1

(vJ − vI ) · ∂W (xI − xJ )

∂xI
vJ . (6.73)

In the SPH for fluids, the strong form is discretized directly. The required second
derivative of theweighting function in the viscous term can lead to unstable solutions.
Therefore, an approach based on two first derivatives is mostly applied

fv
I = −η vI

NI∑
J=1

ρI + ρJ

ρI

(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2
∂W (xI − xJ )

∂xI
vJ . (6.74)
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This form goes back toBrookshaw (1985), andwas extended in Espanol andRevenga
(2003) to general tensors.Bya smallmodification it canbe achieved that this approach
conserves global momentum as well as angular momentum. If the density in the
denominator is assumed to be constant, the equation can be formulated as a function
of the kinematic viscosity ν, i.e. η = ν ρ. Taking advantage of (6.12), fv

I can again
be expressed as the difference of forces between individual particles

fv
I = −

NI∑
J=1

[
fv
I J − fv

J I

]
, fv

I J = νvIρI
(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2
∂W (xI − xJ )

∂xI
vJ .

(6.75)
Analogous to (6.56), this ensures that global momentum is conserved. Since the
quantities are scalars, statement (6.62) is valid and the condition on the global con-
servation of angular momentum is also fulfilled.

6.11 Boundary Conditions

The neighborhood of particles at the boundary is not completely filled. Most shape
functions in SPHneither fulfill the reproducing conditions nor possess theKronecker-
δ property. If a constant quantity is approximated using the standard approach, dif-
ferences can be observed between the values at inner and outer particles (Takeda
et al. 1994). In the SPH, a lot of methods for imposing boundary conditions have
been established, which differ strongly from standard Galerkin schemes.

For the imposition of Dirichlet boundary conditions, four different approaches
are available. Two of them are based on the introduction of so-called ghost particles,
which lie outside the area (Libersky et al. 1993) and represent a fixed border (Fig. 6.2).
The particles are not taken into account in the calculation but lead to a completely
filled neighborhood for particles at or near the boundary. This form is often used in the
simulation of solids (Ganzenmüller 2015). Randles and Libersky (1996) presented
a variant in which the ghost particles are canceled out. For solids, the Dirichlet
boundary condition is assigned to all ghost particles. The number and distribution of
these particles result from the condition of a filled neighborhood. In fluid-structure

Fig. 6.2 Introduction of
ghost particles to impose
boundary conditions
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interactions with rigid walls, similar approaches for the imposition of boundary
conditions are available (Morris et al. 1997; Adami et al. 2012). To fulfill the normal
and tangential boundary conditions for fluids from (3.16) and (3.17) suitable values
must be defined at the ghost particles.

A second, similar option is the mirroring of particles along the boundary, as
suggested in Colagrossi and Landrini (2003) or Macia et al. (2011). This also leads
to ghost particles outside the area. Suitable values must be defined at these particles,
to impose the boundary conditions accurately.

Alternatively, the Dirichlet boundary conditions can be replaced by forces. Esti-
mates can be based on the Lennard Jones potential (Monaghan 1994) or on radial
functions (Monaghan andKajtar 2009). InBonet andKulasegaram (2000) the penalty
method is applied to impose Dirichlet boundary conditions. The prerequisite for this
approach is the fulfillment of the reproducing conditions at the boundary.

A fourth possibility is the direct integration of the boundary conditions into the
differential equations. Corresponding approaches can be found in Kulasegaram et al.
(2004), Macia et al. (2012) or Ferrand et al. (2013).

Neumann boundary conditions are usually imposed as particle forces. Since no
direct information about the surface is available in SPH, individual surface portions
must be assigned to each particle. This area can be estimated e.g. from (6.63) as
suggested in Soleimani (2017)

aI = h2I = (vI )
2
3 . (6.76)

Alternatively, the area belonging to a particle can be determined using the weighting
function (Antoci et al. 2007). The force is introduced into the body via a layer of
particles at the boundary. Another approach for imposing Dirichlet and Neumann
boundary conditions based on fixed ghost particles can be found in Marrone et al.
(2011).

A study that compares different approaches for fluid-structure interactions can
be found in Valizadeh and Monaghan (2015). This investigation concludes that the
modeling based on fixed ghost particles leads to the most physically meaningful
results.

6.12 Oscillations

The simulation of shock waves or convection-dominated flows can show artificial
oscillations in the velocity and pressure field. Therefore an artificial viscosity is
introduced in Monaghan and Gingold (1983) to dampen this oscillation

fart visI = −vIα h c0

NI∑
J=1

ρIρJ

2(ρI + ρJ )

(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2
∂W (xI − xJ )

∂xI
vJ .

(6.77)
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In Molteni and Colagrossi (2009) it was observed that despite the artificial viscosity
high-frequency disturbances still occur in the pressure field. By the introduction of
an additional diffusion term in the continuity equation, these oscillations could be
damped out (Molteni and Colagrossi 2009; Marrone et al. 2011)

ρart densI = δ h c̄0

NI∑
J=1

[
2 (ρJ − ρI )

xJ − xI
‖xI − xJ ‖2 − grad ρI − grad ρJ

]
· ∂W (xI − xJ )

∂xI
vJ .

(6.78)
In the discretization of the gradient, the corrected derivative using the tensorL (6.43)
is used

grad ρI =
NI∑
J=1

(ρJ − ρI )
∂WI (xI − xJ )

∂xI
LI

−1. (6.79)

The application of this stabilization is known as δ-SPH. The numerical parameters
α and δ control the strength of the damping and are selected much smaller than 1.

An alternative approach is based on a formulation of the equations in a moving
frame of reference. This scheme corresponds to a coupling of the SPH with the
Arbitrary Lagrangian-Eulerian formulation (Vila 1999). An application can be found
in Marongiu et al. (2010). Since this method requires the solution of the non-linear
Riemann problem, this variant is also called Riemann SPH (Oger et al. 2016). A
comparison of different approaches can be found in Antuono et al. (2012).

6.13 Rank Instability

Belytschko et al. (2000) shows that artificial zero-energy modes also occur in the
SPH. The reasons lie in the reduced number of evaluation points, which is limited to
the number of particles. By introducing additional integration points,which are called
stress points in SPH, the negative effects due to under-integration can be diminished
(Vignjevic et al. 2000; Belytschko et al. 2000).

The approach of using stress points in SPH goes back to Dyka and Ingel (1995)
and Dyka et al. (1997) and was initially developed to correct the tensile instability.

To avoid these additional evaluation points, an alternative approach is proposed
in Bonet and Kulasegaram (2000). This correction is based on a gradient type stabi-
lization similar to the concept introduced in Sect. 5.1.2.

A third option is suggested in Ganzenmüller (2015) which is already discussed in
Sect. 5.2.4. Thereby, an additional force is introduced into the system, which actually
corrects the violation of the configurational consistency from (4.84) by employing
the penalty method

fcorI = −VI

NI∑
J=1

α
E

‖XI − XJ‖2 εI J
xI − xJ

‖xI − xJ‖W (XI − XJ ) VJ . (6.80)
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The error from the configurational consistency εI J is determined separately for each
particle pair

εI J =
[
(xI − xJ ) − 1

2
(FI + FJ ) (XI − XJ )

]
· xI − xJ

‖xI − xJ‖ . (6.81)

This approach is developed for simulating solid deformations and is formulated with
respect to the initial configuration. The size α corresponds to the penalty parameter
and is set in relation to Young’s modulus E (Ganzenmüller 2015).
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Chapter 7
Peridynamics

Compared to SPH, Peridynamics is a more recent meshfree method. It is under-
stood as the application of Molecular Dynamics to the macroscopic description of
continua. Analogous to Molecular Dynamics (see, e.g., Griebel et al. 2013), Peri-
dynamics distinguishes between bond-based and state-based formulations. In the
former (Silling 2000), the force results solely from the displacements between two
particles. In the state-based approach (Silling et al. 2007), the force at a particle is
determined from the deformations of all particles in the neighborhood. State-based
Peridynamics further divides into an ordinary and a non-ordinary approach. In the
former, the line of action of the stress between two particles is assumed to run along
with its distance. In non-ordinary Peridynamics, this restriction is removed. More-
over, the classical continuum mechanical material laws can be used employing the
so-called correspondence formulation (Fig. 7.1). This work is limited solely to this
concept. Descriptions and applications of alternative approaches can be found, for
example, in Bobaru et al. (2016).

7.1 Correspondence Formulation

The discretization concept of Peridynamics can be assigned to the one-pointmethods.
The equations are usually based on the total Lagrangian description and formulated
with respect to the position vector X of the initial configuration. As will be shown
in this section, the equations of Peridynamics can be derived directly from the weak
form.
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Fig. 7.1 Classification of different discretization concepts in Peridynamics

7.1.1 Theory

State-based Peridynamics, formulated in Silling et al. (2007), replaces the divergence
of stress in the balance of momentum by the difference of force vector state fields T
integrated over the neighborhood HX of X

ρ0ü(X, t) =
∫
HX

[
T〈X′ − X〉 − T′〈X − X′〉] dV X′ + ρ0b̄. (7.1)

The geometry of HX is assumed to be spherical. The radius is called the horizon
and abbreviated with the symbol δ. The family of X includes all bonds within HX.
A bond corresponds to the difference X′ − X, where X′ denotes a mass point in the
neighborhood of X. Peridynamics also introduces the notion of states. This term,
borrowed from thermodynamics, describes the mapping of bonds and is denoted
by an underscore. The bond to be mapped is written inside an angle bracket. Thus,
the force vector state field T corresponds to the mapping that assigns a bond of the
family of X a vector with unit [N/m6]. The force vector state field T′ describes the
mapping of bonds of the family of X′. The correspondence formulation is based on
the introduction of the deformation vector state field Y. This state field maps the
bond into the current configuration

Y〈X′ − X〉 = x′ − x. (7.2)

The equivalence with the deformation gradient (3.5) is given if both mappings lead
to the same result. Then it follows that the strain energy density of the peridynamic
formulation V is equal to the corresponding continuum mechanical quantity W

Y〈X′ − X〉 = F(X′ − X) → V (Y) = W (F) = ρ0ψ(F). (7.3)
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In Silling et al. (2007), a reduction operatorR is introduced. Using this description,
an approximated F can be defined that results directly from the deformation vector
state field

F(Y) = R{Y} = (
Y ∗ X

)
K−1

=
∫
HX

ω
(
X′ − X

) (
x′ − x

) ⊗ (
X′ − X

)
dV X′K−1 (X) .

(7.4)

The operator ∗ corresponds to the tensor product of states and ω is indicated as
the influence function. An exact definition and more information on mathematical
rules in Peridynamics can be found in Silling et al. (2007). The shape tensor K is
determined from the tensor product of the reference position vector stateXwith itself

K = X ∗ X =
∫
HX

ω
(
X′ − X

) (
X′ − X

) ⊗ (
X′ − X

)
dV X′ . (7.5)

The 1st PiolaKirchhoff stress tensorP is calculated for hyperelasticmaterial behavior
from the derivative of the strain energy density with respect to the deformation
gradient

Ẇ = ∂W

∂F
· Ḟ(Y) = P · Ḟ(Y). (7.6)

Considering (7.4) and exploiting the symmetry of the shape tensorK, the right-hand
side can be reformulated

P · Ḟ(Y) =
∫
HX

ω
(
X′ − X

)
P (X) · (

ẋ′ − x
) ⊗ (

X′ − X
)
dV X′K−1 (X)

=
∫
HX

ω
(
X′ − X

)
P (X)K−1 (X)

(
X′ − X

) · (
ẋ′ − ẋ

)
dV X′ .

(7.7)

By considering the correspondence (7.3) the derivative of W with respect to time
must be equal to V̇ . Substituting (7.2) into (7.6) establishes a relation between P and
T

V̇ = ∂V

∂Y
• Ẏ = T • Ẏ =

∫
HX

T · (
ẋ′ − ẋ

)
dV X′ = P · Ḟ(Y). (7.8)

The operator • denotes the scalar product of two states. The comparison between
(7.8) and (7.7) provides the relationship between the 1st Piola Krichhoff stress tensor
and the force vector state field

T〈X′ − X〉 = ω
(
X′ − X

)
P (X)K−1 (X)

(
X′ − X

)
. (7.9)

Remark 1 The deformation vector state field corresponds to a non-local measure,
since only finite differences are considered. In contrast, the deformation gradient
describes a local behavior. The relation between Y and F follows from a Taylor
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series (Silling and Lehoucq 2010). The current position vector in the neighborhood
of the point P identified by X can also be represented in terms of derivatives

x′ = x
(
X′) = x (X) + ∂x

∂X

[
X′ − X

] + O
([
X′ − X

]2)
. (7.10)

Using (3.5) and exploiting (7.2) yields to the relationship between the deformation
vector state field and the deformation gradient

Y〈X′ − X〉 = x
(
X′) − x (X) = F

(
X′ − X

) + O
([
X′ − X

]2)
. (7.11)

In the limit as δ approaches zero, i.e. δ → 0, the higher order contributions can be
neglected and Y equals F.

Remark 2 To show the analogy and the differences between the descriptions in
Chap. 3 and the peridynamic formulations, the continuum mechanical abbreviations
are given. In Silling et al. (2007), the peridynamic strain energy density is indicated by
the letterW . In addition, the position vector of the initial configuration is abbreviated
by x and of the current configuration by y.

7.1.2 Relation to Weak Form

Analogous to Sect. 4.2.4, the weak form can be represented in terms of differences
with respect to the initial configuration. With the definition of the vector T

T
(
X,X′) = ω

(
X′ − X

)
P(X)M−1 (X)

[
X′ − X

]
(7.12)

the virtual internal work can be formulated in dependence on the position vector X

∫
Bt

Grad η · P dv = −
∫
B0

∫
HX

η (X) · [
T

(
X,X′) − T

(
X′,X

)]
dV X′ dV X.

(7.13)
The moment tensor of the initial configuration can be identified as the shape tensor
K

M (X) =
∫
HX

ω
(
X′ − X

) (
X′ − X

) ⊗ (
X′ − X

)
dV X′ = K (X) . (7.14)

Thus, the vector T from (7.12) corresponds exactly to the force vector state field
(7.9)

T
(
X,X′) = T〈X′ − X〉. (7.15)

Exploiting (7.13) and (7.15) the weak form with respect to the initial configuration
can be formulated in dependence on T
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−
∫
B0

∫
HX

η · [
T〈X′ − X〉 − T′〈X − X′〉] dV X′ dV x +

∫
B0

ρ0η · (
ü − b̄

)
dV

=
∫

∂BNu
0

η · T̄ dA.

(7.16)
Since the test function can be arbitrary and thus non-zero, the above equation only
holds, if (7.1) is fulfilled

ρ0ü(X, t) =
∫
HX

[
T〈X′ − X〉 − T′〈X − X′〉] dV + ρ0b̄.

However, this relation only applies to inner mass points. For mass points with T̄ �= 0,
the Neumann boundary condition must be taken into account due to (7.16).

7.1.3 Discretization

Peridynamics, like Smoothed Particle Hydrodynamics, is a one-point methods that
subdivides the entire domain into individual particles. In the discrete form, the inte-
grals are replaced by a summation over all particles n and over all particles NI in the
neighborhood of particle I . For inner particles, (7.16) or (7.1) directly yields to the
discrete relation

n∑
I=1

{
−

NI∑
J=1

[
TI 〈XJ − XI 〉 − TJ 〈XI − XJ 〉

]
VJ + ρ0

[
ü (XI ) − b̄

]}
VI = 0

(7.17)
The discretization of the force vector state field follows from (7.9). Due to the sym-
metry of the shape tensor, the relation can be reformulated

TI 〈XJ − XI 〉 = ω (XJ − XI )PIK
−1
I

[
XJ − XI

] = PIω (XJ − XI )
[
XJ − XI

]
K−1
I .

(7.18)
The subscript indicates the evaluation of a quantity at the corresponding particle, e.g.

PI := P (XI ) , KI := K (XI ) . (7.19)

The shape tensor at the particle is obtained from (7.5) by summing over all particles
in the neighborhood

KI =
NI∑
J=1

ω (XJ − XI ) (XJ − XI ) ⊗ (XJ − XI ) VJ . (7.20)
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By substituting (7.18), the discrete form of the balance equation (7.17) can be for-
mulated in dependence on the 1st Piola Kirchhoff stress tensor. The internal force
due to the state of stress in the material is given by

fsI = −
NI∑
J=1

[
ω (XJ − XI )PIK

−1
I

[
XJ − XI

] − ω (XI − XJ )PJK
−1
J

[
XI − XJ

] ]
VJ VI .

(7.21)
In its original form, Peridynamics does not use shape functions. However, the influ-
ence function ω multiplied by the distance can be interpreted as the derivative of a
weighting function

∂W (XI − XJ )

∂XI
= ω (XI − XJ ) [XI − XJ ] (7.22)

using the definition

ω (XI − XJ ) = ∂W (XI − XJ )

∂‖XI − XJ‖
1

‖XI − XJ‖ . (7.23)

Equation (7.18) can thus be alternatively formulated in dependence on weighting
functions

TI 〈XJ − XI 〉 = PI
∂W (XJ − XI )

∂XJ
K−1

I . (7.24)

With the above relation, the internal force f sI due to the state of stress in the material
can also be written as

f sI = −
NI∑
J=1

[
PI

∂W (XJ − XI )

∂XJ
K−1

I − PJ
∂W (XI − XJ )

∂XI
K−1

J

]
VI VJ . (7.25)

The contributions from the inertia term and the dead load are determined analogously
to (4.16). The calculation of the stress requires the deformation gradient. The discrete
form follows directly from (7.4) and can also be formulated on the basis of weighting
functions

FI =
NI∑
J=1

ω (XJ − XI ) (xJ − xI ) ⊗ (XJ − XI ) VJK−1
I

=
NI∑
J=1

(xJ − xI ) ⊗ ∂W (XJ − XI )

∂XJ
K−1

I VJ .

(7.26)

Since the equations within Peridynamics are formulated in their original form in the
total Lagrangian description, the phenomenon of tensile instability does not occur.
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7.2 Reproducing Conditions

Taking advantage of (7.22), the shape tensor (7.20) can also be calculated in terms of
weighting functions. Exploiting (6.12) shows thatK corresponds exactly to the neg-
ative correction tensor L (6.44) formulated with respect to the initial configuration,
see also (Ganzenmüller et al. 2015)

KI =
NI∑
J=1

(XJ − XI ) ⊗ ∂W (XJ − XI )

∂XJ
VJ

= −
NI∑
J=1

(XJ − XI ) ⊗ ∂W (XI − XJ )

∂XI
VJ = −L (XI ) .

(7.27)

The prerequisite to satisfy the 1st order reproducing condition in the derivatives is
the fulfillment of the corresponding requirement for the 0th order

NI∑
J=1

∂W (XI − XJ )

∂XI
VJ =

NI∑
J=1

ω (XI − XJ ) [XI − XJ ] VJ = 0. (7.28)

7.3 Discrete Conservation Properties

As a consequence of (7.27), and taking advantage of (6.12), (7.25) can also be
formulated with respect to the correction tensor L

f sI = −
NI∑
J=1

[
PI

∂W (XI − XJ )

∂XI
L−1

I − PJ
∂W (XJ − XI )

∂XJ
L−1

J

]
VI VJ . (7.29)

Hence, the peridynamic equations lead to the same formulations as in the SPH, if
the divergence of stress is based on the quotient rule (6.70). The only difference
is the selection of the weighting function, which follows according to (7.22) in
standard Peridynamics. As pointed out in Sect. 6.6, the global balance of momentum
is automatically conserved, since the calculation can be represented as the difference
of forces between particles

f sI =
NI∑
J=1

[fI J − fJ I ] , fI J = PI
∂W (XI − XJ )

∂XI
L−1

I VI VJ . (7.30)

However, the requirement on the global balance of angular momentum is not auto-
matically fulfilled, see also Sect. 6.6.
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Remark Approaches based on alternative non-local derivative rules lead to a force
calculation based only on the shape tensor at the particle under consideration
(Madenci et al. 2018; Tu and Li 2017)

f sI = −
NI∑
J=1

ω (XJ − XI ) [PJ − PI ]K−1
I (XJ − XI ) VI VJ . (7.31)

Taking advantage of (7.22), (7.27), (6.12), and of the symmetry ofK, the calculation
can be related to the weighting function and the correction tensor L

f sI = −
NI∑
J=1

[PJ − PI ]
∂W (XJ − XI )

∂XJ
K−1

I VI VJ

= −
NI∑
J=1

[PJ − PI ]
∂W (XI − XJ )

∂XI
L−1

I VI VJ .

(7.32)

The comparison with (6.46) shows that this variant corresponds to the approach in
the SPH which is based on the product rule.

7.4 Integration Constraint

Since the equations in Peridynamics can be derived from the weak form, the inte-
gration constraint must be satisfied. To pass the standard patch test, for a constant
stress, i.e. P := P̄ = const , it has to hold

∫
B0

Grad η · P̄ dV X =
∫

∂B0

η · P̄N dAX. (7.33)

Exploiting (7.13) and (7.9) results in the necessary requirement in the framework of
Peridynamics

−
∫
B0

∫
HX

[
ω

(
X′ − X

)
K−1 (X)

(
X′ − X

)

− ω
(
X − X′)K−1 (

X′) (
X − X′) ]

dV X′ dV X =
∫

∂B0

N dAX.

(7.34)

The discrete case leads to a condition that has to be fulfilled at each particle
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−
NI∑
J=1

[
ω (XJ − XI )K−1

I (XJ − XI )

− ω (XI − XJ )K−1
J (XI − XJ )

]
VI VJ =

{
0 inner particles
N̄I boundary particles

.

(7.35)

The resulting normal vector N̄I is determined from the discrete right-hand side in
(7.34).

Remark Since NI is difficult to determine at the boundary, a normal vector can be
defined beforehand. The shape or weighting functions must then be determined such
that the integration constraint is always satisfied. A corresponding approach can be
found in Bode et al. (2021).

7.5 Search Algorithm

The neighborhood in Peridynamics is usually spherical. All particles whose distance
to XI is smaller than a given value δ are part of the neighborhood HI of particle I

HI := {XJ ∈ B0 | ‖XJ − XI‖ < δ} . (7.36)

In standard Peridynamics, the equations are formulatedwith respect to the initial con-
figuration. The neighborhood is defined beforehand and is not changed during the
calculation. The requirements on the search algorithm for maintaining the equilib-
rium of forces during the calculation are therefore no longer necessary. The particle
distribution at the beginning of the calculation is usually grid-shaped and therefore
statistically isotropic and homogeneous. The only remaining requirement is the cor-
rect assignment of force pairs. If particle J is part of the neighborhood of I , particle
I must also be part of the neighborhood of J . If the search radii are the same, this
condition is always satisfied.

With a varying search radius δ := δ(XI ) this condition can be violated (Fig. 7.2).
Thus, the global conservation ofmomentum is not automatically fulfilled andunphys-
ical forces occur. In Silling et al. (2015) these are named ghost forces and the intro-
duction of an additional partial stress is recommended to counteract unphysical out-
comes. Another approach recommends the application of two different neighbor-

Fig. 7.2 (Left) Fulfillment
of the criterion on the search
algorithm due to constant
search radii. (Right)
Violation of the constraint
due to different search radii
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hoods to meet the requirements for the global conservation of momentum in this
case (Ren et al. 2016).

7.6 Configurational Consistency

Two approaches are developed to avoid zero energy modes, but actually these
schemes ensure the configurational consistency. Breitzman and Dayal (2018) recom-
mends to calculate a separate deformation gradient at each bond in the neighborhood
instead of just evaluating F at X

Fbond
(
X,X′) = F (X) − 1

‖X′ − X‖2
([

F (X)
(
X′ − X

) − (
x′ − x

) ]
⊗ (

X′ − X
) )

.

(7.37)
The violation of the configurational consistency (4.84) is subtracted from the original
deformation gradient F. If this deviation equals zero, (7.37) results in the standard
formulation of the deformation gradient. In Littlewood (2010) and Silling (2017) the
violation of the configurational consistency is corrected by a penalty approach. The
force vector state field is enhanced by an additional contribution similar to the OTM
method (5.29), or the SPH (6.80)

Tstab〈X′ − X〉 = T〈X′ − X〉 + c
x′ − x

‖x′ − x‖
‖x′ − x‖ − ‖F (

X′ − X
) ‖

‖X′ − X‖ . (7.38)

The parameter c corresponds to the penalty parameter.

7.7 Rank Instability

As shown in the previous sections, the correspondence formulation is equivalent to
a variant of the SPH. Thus, the negative effects due to under-integration, which are
described in Sect. 6.13, also occur in Peridynamics. No energy can be assigned to
individual deformation states. Unphysical overlaps and interpenetrations can result
(Tupek and Radovitzky 2014).

To eliminate these negative effects, different approaches are developed in the
context of Peridynamics. A comparison of some stabilization methods can be found
inBreitenfeld et al. (2014).However, the concepts fromSect. 6.13 can also be applied.
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Fig. 7.3 Subdivision of the
neighborhood into
sub-neighborhoods

7.7.1 Alternative Formulations

Tupek and Radovitzky (2014) proposes an alternative strain measure based on single
bonds. Chowdhury et al. (2019) suggests the evaluation of the peridynamic quanti-
ties in sub-neighborhoods to eliminate the negative effects due to under-integration
(Fig. 7.3). The force at the particle (7.25) is thus calculated from the sum over indi-
vidual subareas Nsub

I

f sI = −
Nsub

I∑
α=1

Nα
I∑

J=1

[
Pα
I

∂W (XJ − XI )

∂XJ

(
Kα

I

)−1 − Pα
J

∂W (XI − XJ )

∂XI

(
Kα

J

)−1
]
VI VJ .

(7.39)
In each sub-neighborhood, the calculated kinematic or constitutive quantity can be
different. This increases the number of evaluation points in the neighborhood. As
shown in Hartmann et al. (2020) this concept can lead to unphysical outcomes in the
case of large deformations.

7.7.2 Generalization of Peridynamics

In classical Peridynamics, the quantities are evaluated only at the central particle in
the respective neighborhood. This reduces the number of evaluation points. In the
generalized form introduced in Bode et al. (2020a), this limitation is removed. The
individual quantities are determined separately at each particle in the neighborhood.

As already presented in Sect. 7.1.3, the discrete balance equation as well as the
calculation of the deformation gradient can be described in dependence on radial
weighting functionsW . As shown in (6.6), there exists a relationship between shape
functions andW . Thus, the deformation gradient at any particle in the neighborhood
can also be calculated from the derivative of freely chosen shape functions (Bode
et al. 2020a)

FI (XJ ) =
NI∑
K=1

(xK − xI ) ⊗ ∂N I
K (XJ )

∂XJ
. (7.40)
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The superscript denotes the neighborhood, i,e. FI (XJ ) corresponds to the deforma-
tion gradient at the positionXJ in the neighborhood of particle I . The generalization
leads to an alternative discretization of the force vector state field. First, the stress
at each particle in the neighborhood is now different, and second, the derivative is
approximated by shape functions

TI 〈XJ − XI 〉 = − 1

VI
PI (XJ )

∂N J
I (XJ )

∂XJ
. (7.41)

Thus, the calculation for the internal force due to the state of stress in the material
changes to

f sI =
NI∑
J=1

[
1

VI
PI (XJ )

∂N J
I (XJ )

∂XJ
− 1

VJ
PJ (XI )

∂N I
J (XI )

∂XI

]
VJ VI . (7.42)

The transition to the classical correspondence formulation in Peridynamics results
from the relations

∂N I
K (XJ )

∂XJ
= ω (XK − XI ) VKK−1

I (XK − XI )

∂N I
J (XI )

∂XI
= ω (XI − XJ ) VJK−1

J (XJ − XI )

∂N J
I (XJ )

∂XJ
= ω (XJ − XI ) VIK−1

I (XI − XJ ) .

(7.43)

By substituting (7.43) into (7.40), it can be directly seen that the deformation gradient
is evaluated only at the central particle, i.e. FI (XJ ) → FI . The same is thus true for
the stress PI (XJ ) → PI .

As shown inBode et al. (2020a), no negative effects due to under-integration occur
employing this approach, provided that shape functions with a sufficiently high order
are used. Moreover, no additional numerical parameters are needed. An extension to
incompressible material behavior can be found in Bode et al. (2020b).

7.8 Boundary Conditions

Similar to SPH, Peridynamics differs from Galerkin methods regarding the imposi-
tion of boundary conditions. Mostly, the concept of ghost particles is employed. The
number and the position of the ghost particles are chosen such that the outer parti-
cles have a complete neighborhood (Macek and Silling 2007; Littlewood 2015). The
Dirichlet boundary conditions are defined at the ghost particles. In Silling and Askari
(2014) a linear distribution of these values over the position of the ghost particles
is proposed. An alternative approach uses a correction of the shape function at the
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outer layer to apply the displacements directly at the boundaries (Wu2014). So-called
general meshfree approximation functions (Wu et al. 2011) are introduced, which
possess a weak Kronecker-δ property. Neumann boundary conditions are converted
into corresponding volume forces (Madenci et al. 2018).

The generalized approach from Bode et al. (2020a) also offers a big advantage
for the imposition of boundary conditions. If the reproducing conditions are satisfied
and the shape functions in (7.42) possess the Kronecker-δ property, Dirichlet bound-
ary conditions can be applied directly. The integration constraint determines area
fractions for each particle at the boundary. These can be used to introduce Neumann
boundary conditions into the system (Weißenfels 2019). Examples for the direct
imposition of both boundary conditions can be found in Bode et al. (2020a, b) or
Bode et al. (2021).

Remark Kilic and Madenci (2010) tries to justify the application of Neumann
boundary conditions over a layer thickness. Since force densities are only deter-
mined internally in Peridynamics, force boundary conditions can only be applied
as body forces. However, since the Peridynamic equations can be derived from the
weak form, Neumann boundary conditions can be applied directly.
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Chapter 8
Modeling Selective Laser Melting

Selective Laser Melting (SLM) is a laser powder bed fusion process that frequently
comes into use for printing metal or ceramic structures. A positive connection
between the layers can only be achieved by a remelt of the particles with the under-
lying layer. The key factor for successful printing is the control of the melt pool,
which determines the shape and properties of the printed part. The parameters of the
3D printer must be set so that unwanted side effects can be excluded. The transition
from the powder to the final printed part is a sequence of numerous physical pro-
cesses that must be represented by the simulation. Suitable experimental tests are
required to validate the models. Both aspects are presented in the first two sections.
The differential equations are solved using SPH and the OTMmethod. The results of
both schemes are compared and evaluated. The presented modeling approaches can
also be used for Laser Metal Deposition or other laser powder bed fusion processes
such as Electron Beam Melting or Selective Laser Sintering.

8.1 Physical Phenomena

In Selective Laser Melting (SLM), the laser passes its energy onto the powder par-
ticles via radiation. Parts of this energy are absorbed by the material, and some are
returned to the environment by reflection. The energy or heat absorbed by the mate-
rial is transported by conduction, convection, and radiation. Due to the large laser
power, the temperature at the surface is very high and strong temperature gradients
occur. If the temperature exceeds a limit value, the aggregate state changes and the
material becomes liquid. At the uppermost layer, parts of the matter vaporize due to
the very high temperatures. The interaction of surface tension, Marangoni convec-
tion, viscosity, and recoil pressure forms the melt and determines the geometry of a
layer (Fig. 8.1). The 3D printing process causes changes on themicroscale. The phase
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Fig. 8.1 Main physical phenomena during Selective Laser Melting

change leads to a reformation of the grain boundaries which depends on the cooling
rate (Steen and Mazumder 2010). Their composition also influences the properties
of the printed part. However, microscopic effects are not discussed. Information to
this is given in Gu et al. (2012) and the references therein. Descriptions of individual
physical effects can also be found in Yadroitsev (2009), King et al. (2015), Hebert
(2016) or Yap et al. (2015).

8.1.1 Laser Matter Interaction

In Selective Laser Melting, the material is heated by the laser. The laser corresponds
to electromagnetic radiation that propagates in a given direction. Metals consist of
electrons that move around an ion lattice. The radiation excites the electrons to
vibrate. This effect causes either the electrons themselves to radiate or the lattice
structure to vibrate. The former leads to reflection or transmission, depending on the
direction of the electron radiation. The latter corresponds to the absorbed energy.
The absorption takes place over a certain depth and can be approximated by an
intensity distribution I within the material. An estimation is provided for instance
by the Beer-Lambert formula

I = I0 exp(−β z). (8.1)

Therein, I0 is the intensity at the surface and z the direction of radiation. The absorp-
tion coefficient β depends on the material, the wavelength of the laser, the radiation
intensity, the temperature, the roughness of the surface, the angle of incidence of
the radiation, and surface films (Steen and Mazumder 2010). This parameter is also
called the extinction coefficient. The reflection of metallic materials is very large and
the radiation does not penetrate deep into the material (Yadroitsev 2009). Materials
showing such behavior are called opaque. In a powder bed, the reflected radiation
hits other particles. Therefore, the total absorbed energy of a powder bed is larger
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compared to a pure metal block. The absorption also depends on the aggregate state.
In the liquid phase, the value increases by a factor of 1.5 to 2 for metals in the infrared
range (Prokhorov 2018).

8.1.2 Heat Transfer

The absorbed energy causes the lattice structure to vibrate. During thermal conduc-
tion, this energy is passed on to the adjacent lattice structures (Steen and Mazumder
2010) or released into the environment via conduction and radiation. Since a powder
bed consists of a collection of particles, different forms of heat transport occur, see
Fischer et al. (2003). These consist of conduction and radiation between materials
and over the surrounding gas. The conduction via contact is assumed to be the main
effect of heat transport (Ganeriwala and Zohdi 2016).

Thermal conductivity is a function of temperature and depends on the aggregate
state. In the liquid phase, heat transport by convection occurs additionally due to
the movement in the melt pool. An introduction to the basics of heat transfer can be
found e.g. in Polifke (2009).

8.1.3 Heat Capacity and Phase Change

The energy required to vibrate the lattice structure can be related to temperature.
The relationship depends on the material and is characterized by the heat capacity.
This quantity describes the ratio of heat input �Q to temperature change ��. The
division by mass defines the specific heat capacity c

c = �Q

m��
. (8.2)

The continuum mechanical implementation can be found in Sect. 3.3.3. If the vibra-
tions in the lattice structures are very strong, collisions between the atoms occur. The
lattice structures can be destroyed and the aggregate state of the material changes
(Jiang and Wen 2011). The energy needed to dissolve the lattice structures corre-
sponds to the latent heat and is defined as the heat input per mass required to change
the aggregate state

L = �Q

m
. (8.3)
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8.1.4 Surface Tension and Wetting

Molecules embedded in their natural environment have the lowest energy. At the
surface, molecules that are in contact with the molecules of the surrounding medium
are in a state of higher energy. Tominimize the total energy, thematerial tries to reduce
contact with foreign molecules. This is only possible if the surface is minimal. The
energy needed to increase an area by one is equal to the surface tension γ. The size
of γ depends on temperature and surfactants. The gravitational force counteracts the
surface tension. The dimensionless Bond number Bo compares these two effects.
Additionally, a characteristic length lca can be determined (Bormashenko 2017). If
this length is larger than the radius of the droplet R, the influence of surface tension
dominates and the gravitational forces can be neglected

Bo = ρ g l2

γ
, R < lca =

√
γ

ρ g
. (8.4)

The Bond number depends on the density ρ, the gravitational acceleration g, the
surface tension γ, and a characteristic length L which can be the radius.

Wetting corresponds to the behavior of liquids when they are in contact with a
solid surface. A distinction is made between two cases. Either the liquid spreads
completely or it forms a drop shape. When in contact with an ideal surface, the
resulting behavior can be estimated from the spreading parameter �

� = γSG − (γSL + γ) . (8.5)

An ideal surface is flat, chemically homogeneous, isotropic, insoluble, non-reactive
and non-expandable (Bormashenko 2017). The spreading relates the surface tension
between solid and gas γSG to the surface tension between liquid and gas γ and
between solid and liquid γSL . Complete wetting occurs when � is less than zero.
In the other case, the surface is only partially wetted (Fig. 8.2). The contact angle
between solid and liquid can be determined from the Young equation (Young 1805)

cosϕ = γSG − γSL

γ
, � = γ (cosϕ − 1) . (8.6)

Fig. 8.2 (Left) Low wettability: � > 0, contact angle between 90◦ ≤ ϕ ≤ 180◦. (Right) High
wettability: � < 0, contact angle 0◦ < ϕ < 90◦
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Fig. 8.3 Curvatures of a
perturbed water jet

Microscopically, the cohesive forces of the molecules in the liquid want to form
a droplet. The adhesive forces between the molecules of the solid and the molecules
of the liquid cause the liquid to spread on the surface. The interactions are described
via van der Waals forces. These can be divided into polar (Keesam forces and Debye
forces) and disperse (London forces) (γ = γ p + γd ). Only polar and disperse frac-
tions can interact with each other. Further information on surface tension and wetting
can be found in Bormashenko (2017) or Adamson and Gast (1997).

Remark. A frequently occurring phenomenon is the breakage of a liquid jet into
individual droplets. This effect is also known as Plateau Rayleigh instability. No
water jet is perfectly cylindrical. The imperfections lead to a wave-like propagation
in the axial direction, which can be approximated by the sum of individual sinusoidal
functions. The surface tension is proportional to the curvature and hence inversely
proportional to the radius. In the radial direction, the radius in the troughs is smaller
than in the peaks. Thus, the surface tension in the trough is larger and pushes the
liquid into the peaks. In the axial direction, the curvature in the troughs is negative
and positive in the peaks due to the wave-like propagation. In this case, the surface
tensionpushes the liquid from thepeaks into the troughs (Fig. 8.3). Thus, twodifferent
pressures compete during fluid flow. When the surface tension in the radial direction
dominates, the fluid jet breaks up into droplets. The jet is assumed to be stable
when the circumference computed from the diameter of the jet D is larger than the
wavelength l in the axial direction

π D

L
> 1. (8.7)

A derivation of this criterion can be found e.g. in Chandrasekhar (2013).

8.1.5 Marangoni Convection and Viscosity

The laser only irradiates parts of the melt. Hence, the mass points at the surface
have different temperatures. Since the surface tension is a function of temperature, a
tangential force results from its gradient and leads to the Marangoni convection. The
fluid particles flow from smaller to higher surface tension. For metallic materials, the
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Fig. 8.4 Marangoni convection and buoyancy. (Left) Small Peclet and small Prandtl number.
(Right) Small Peclet and high Prandtl number

coefficient γ decreases with temperature. Thus, the material flows from the laser to
the outside (Fig. 8.4). In addition to the temperature, the concentration of dissolved
substances influences the surface tension. With sulfur, for example, the coefficient γ
increases with temperature.

Temperature also influences density.Density changes result in a thermal buoyancy-
driven flow which points upwards (Fig. 8.4). In the Navier Stokes equations, this
effect can be included by the Boussinesq approximation (e.g. Kleinstreuer 1997).
The consequences from buoyancy are very small in Selective Laser Melting pro-
cesses (Yadroitsev 2009).

Themass transport in themelt is influencedby the viscosity. Thedynamic viscosity
η determines the relation between an applied force F and the velocity of the flow v.
The size of η can be specified by means of a viscous liquid between two plates (area
A and distance h)

η = F h

A v
. (8.8)

The viscosity depends on temperature. This relation is usually assumed to be expo-
nential (e.g. Limmaneevichitr and Kou 2000).

The geometry of themelt pool can be estimated using two dimensionless numbers.
The Peclet number Pe describes the ratio of convection to conductivity

Pe = l v

α
= l v ρ c

k
, α = k

ρ c
. (8.9)

This value is calculated from the characteristic length l, the velocity v, and the
thermal diffusivity α. The latter can also be related to the thermal conductivity k
and the specific heat capacity c. If the Peclet number is very small, heat conduction
dominates and the lower boundary of the melt pool has a concave shape (Yadroitsev
2009). As the Peclet number increases, the geometry at the bottom changes from a
flat to a convex shape for very large values. The Prandtl number Pr describes the
ratio of kinematic viscosity ν to thermal diffusivity

Pr = ν

α
= η c

k
, ν = η

ρ
. (8.10)
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With small Prandtl numbers, heat conduction dominates and the melt pool forms
spherically (8.4). At higher values, the Marangoni convection dominates and results
in a wide and flat melt pool (Yadroitsev 2009).

8.1.6 Recoil Pressure

If the temperature exceeds a critical value, the upper layer vaporizes. The gaseous
matter is ejected at high speed in the opposite direction of the laser radiation. This
results in a recoil pressure on the melt, which depends strongly on the temperature
(Bäuerle 2013; von Allmen and Blatter 2013). Analytical models for estimating
the recoil pressure during vaporization can be found in Anisimov and Khokhlov
(1995) or Klassen et al. (2014). A simplified approach is based on the Clausius
Clapeyron equation, e.g. Khairallah et al. (2016). Therein, the relation between recoil
and ambient pressure is weighted by a factor of 0.54

prec = 0.54pa exp

(�Hvap

R

(
1

�B
− 1

�

))
. (8.11)

�B corresponds to the boiling temperature. Instead of the enthalpy of vaporization
�Hvap and the gas constant R, the equation can also be related to the Boltzmann
constant kB (Khairallah et al. 2016). The conversion is givenby theAvogadro constant
NA, i.e. R = NA kB . The recoil pressure flattens the melt pool and is therefore a
desired effect in Selective Laser Melting (Kruth et al. 2004). At very high laser
power, the recoil pressure provides a strong indentation below the laser which is
called keyhole mode laser melting (e.g. Rai et al. 2007).

A lot of energy is required for the phase change from liquid to gas. The vaporized
material contains part of the absorbed energy of the laser. These lead to a reduction
of the energy in the melt pool, which accounts for up to 70–90% of the laser power
(SemakandMatsunawa1997). This energy loss results in a reductionof themaximum
temperature in the melt pool.

Remark 1 The high exit velocity of the vaporized material leads to a pressure dif-
ference in the build envelope. This phenomenon is also known as the Bernoulli effect
(Fig. 8.5).

Remark 2 If the laser power is further increased, plasma forms above the melt pool
which interacts with the laser (Bäuerle 2013).
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Fig. 8.5 Vaporization of material. (Left) Continuum flow. Low Knudsen number λ < 1. (Right)
Molecular flow, λ > 1

8.1.7 Chemical Reactions

Another boundary layer effect that affects the quality of the printed part is oxidation
or nitriding at the surface of the powder particles. The resulting ionic bonds hinder
wetting. In addition, the melting temperature in the oxidized layer is significantly
higher than in the pure metal. This can lead to brittle, porous parts in the printed
component. For this reason, special gases such as argon or nitrogen are used in the
build envelope to reduce the oxidation of the powder material (Yadroitsev 2009).

8.1.8 Powder Flow

During melting, the powder particles are set in motion. Controlling the flowability of
the powder bed is, therefore, another factor in Selective LaserMelting that influences
the quality of the printed part. The flowability depends on the contact forces between
the particles andwith the surrounding layers orwalls. These forcesmainly result from
friction and cohesion. The forces depend largely on the shape, size, size distribution,
and surface texture of the powder particles.

A measure for the particle flow is the Hausner factor (Hr ) and the Carr index
(Ci). Both measures are based on the ratio of tap (ρtd ) - to apparent density (ρad ).

Hr = ρtd

ρad
, Ci = ρtd − ρad

ρad
. (8.12)

AHausner factor between 1.0 and 1.4 or a Carr index of 5–20 characterizes good flow
characteristics. The flow property only describes the particle flow. For flowability,
the environment in which the particles are located must also be taken into account. A
spherical particle shape is advantageous for flowability. In addition, a more uniform
powder bed can be generated (EPMA 2016).
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The production of metallic powder can be realized in four different ways: chemi-
cally, by electrolysis, mechanically by grinding or crushing, or by atomization (Law-
ley 1978). Gas atomization (Dietrich et al. 2016) has proved to produce particles with
very good properties for Selective Laser Melting (Yadroitsev 2009).

Remark. The formation of pores in the powder bed can lead to air pressure gradients
(Prescott and Barnum 2000), which additionally influence the flowability.

8.2 Experimental Observations

In addition to specifying the geometry of the printed part and the material recipe, the
process parameters need to be determined. In Selective Laser Melting, primarily the
laser power, the scan rate, the diameter of the laser beam, the hatching, the height of
the powder bed, and the sieve curve of the particles are to be determined. The right
choice is critical to the quality of the printed part.

With SLM, negative side effects can occur whichmust be avoided during printing.
Many of these effects can already be seen when printing a vector on a substrate
(Figs. 8.6 and 8.7).

8.2.1 Denudation Zone

A very noticeable feature is the formation of a cleared area next to the remelted
material. This area is called the denudation zone. The cleared area depends on the
scan rate (Yadroitsev et al. 2010), the laser power, and the ambient pressure in the
chamber (Matthews et al. 2016).

Fig. 8.6 Printing of a single vector on a substrate (Yadroitsev 2009).Clear formation of a denudation
zone
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Fig. 8.7 Schematic
description of a perfectly
printed vector (cylindrical
shape) on a substrate

According to Matthews et al. (2016) the vaporization of material at the top layer
reasons the formation of the denudation zone. The shape of this zone depends on the
Knudsen number Kn which describes the ratio of the mean free wavelength of the
gas molecules λ to the characteristic length (here the diameter of a powder particle
D)

Kn = λ

D
= η

p0

√
π kB �

2m
. (8.13)

This ratio can also be expressed by the dynamic viscosity η, the ambient pressure
p0, the mass of a gas atom in the chamber m, the temperature �, and the Boltzmann
constant kB . If the Knudsen number is less than 1, a continuum flow occurs. The
vaporized particles flow vertically at high velocity out of the molten metal. The
Bernoulli effect sucks in particles form the environment (Fig. 8.5). According to an
estimate in Matthews et al. (2016) the flow of the rising jet can be turbulent. With
a Knudsen number larger than 1, the molecular flow dominates. In this case, the
vaporized metal particles escape more laterally from the melt and push the adjacent
powder particles outwards (Fig. 8.5). In Bidare et al. (2018) it is shown that the
direction of the outflowing metal vapor depends on the laser velocity. At a higher
laser power, the metal particles are emitted to the rear and to the sides.

The denudation zone has amajor impact on the process parameters.When printing
the first layer on the substrate, the hatch distance should be larger than the denudation
zone. This is the only way to provide enough powder particles for the next vector.
If the distance is too small, the laser radiation primarily strikes the substrate or the
already remelted neighboring vector. There, the reflection and the heat conduction
are larger and less energy is introduced in the system (Yadroitsev and Smurov 2011).
Printing the second layer, the entrainment of particles from the environment has the
opposite influence. Due to the denudation zone of the previous layer, more particles
are deposited in the current layer (Fig. 8.8). This leads to a strong increase in the
remelted volume (Fig. 8.9).

8.2.2 Irregular Tracks

Thegoal of 3Dprinting usingSLMis to generate continuous vectors of constantwidth
that fuse with the previous layer. The cross-section view shows a vector possessing a
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Fig. 8.8 Schematic description of printing a second vector

Fig. 8.9 Increase of volume due to printed vectors on top of the first vector (Yadroitsev 2009)

Fig. 8.10 Typical zones of forming continuous (blue, white) and non-continuous vectors (gray) in
Selective Laser melting depending on the laser power and scan rate

cylindrical shape (Figs. 8.7 and 8.6). At certain process parameters, this cylindrical
shape breaks up and agglomerates are formed, see e.g. Childs et al. (2005). This effect
is called balling. A decisive criterion is the remelted depth. According to Yadroitsev
et al. (2010) balling occurs either at a too low laser power P , a too high scan rate v,
or a too-high energy e per running meter (Fig. 8.10). The latter size corresponds to
the ratio of laser power to scan rate e = P/v.

If the laser power is too low, only the particles are melted, but there is no fusion
with the underlying layer. The surface forces cause the vector either to take on an



150 8 Modeling Selective Laser Melting

Fig. 8.11 (Left) Continuous cylindrical shape with penetration into the previous layer. (Middle)
Irregular vector with no penetration into the previous layer (Yadroitsev 2009). (Right) Remelted
vector at keyhole laser melting (King et al. 2014)

irregular shape or to break up into individual droplets. A temporal study on the
formation of droplets shows different intermediate steps (Tolochko et al. 2004).

With sufficient laser power, themelting depth reduceswhen the scan rate increases
(Fig. 8.11). In addition, the melt pool lengthens. Thus, the criterion from Eq. (8.7)
can be violated and Plateau Rayleigh instabilities occur. In Yadroitsev et al. (2010) a
criterion was developed that determines a critical size from the length and width of
the melt pool and the remelted depth. This equation was experimentally confirmed
in Gunenthiram et al. (2017).

If the energy input is very high, the melted area increases. Due to the high tem-
perature, the viscosity of the melt decreases. The capillary forces are therefore very
dominant and facilitate droplet formation (Yadroitsev et al. 2010). In addition, the
recoil pressure increases, which renders the formation of irregular vectorsmore likely
(Yadroitsev 2009).

8.2.3 Pores and Surface Roughness

Another undesired phenomenon in Selective Laser Melting is the development of
pores in thematerial and the formation of rough surfaces. Pores influence thematerial
properties and rough surfaces require post-treatment. Experimental investigations in
Thijs et al. (2010) show that a small hatching distance and/or a low scan rate facilitate
the formation of pores. If the laser power is too low, pores develop, because not all
particles are melted and islands are formed at the surface (Bauereiß et al. 2014). The
development of small pores in the interior of the material at very high laser power
was reasoned by enclosed gas if the powder particles are gas atomized.

InQiu et al. (2015) the formation of surface roughness is attributed to an oscillating
behavior of the melt pool, which can possess a high frequency and amplitude. A
dependence on the height of the powder layer was also determined. The reason for
these instabilities is assigned to the interaction of Marangoni convection and recoil
pressure. In addition, open and void-like pores were found in the evaluations of the
surface texture.
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The melt pool emits welding spatters which are directed forwards, upwards, or
backward, measured in the direction of irradiation. The size of the spatter differs
depending on the direction of ejection (Wang et al. 2017). Due to surface tension,
spherical particles are formed during cooling. Their size exceeds the dimensions of
the original particles in the powder bed by a multiple. If these particles are fused
with the previous layer, cavities can form in the powder bed which cannot be filled
during remelting (Wang et al. 2017).

At very high power, keyhole laser melting occurs, which results in a strong inden-
tation below the laser. This indentation collapses after irradiation. This process also
promotes the formation of pores (King et al. 2014).

8.2.4 Residual Stresses

The irradiation by the laser leads to the melting of the material. The prevented expan-
sion of the melt creates compressive stress on the surrounding solid material. The
yield stress decreases with increasing temperatures and plastic deformations occur
more likely (Mercelis andKruth 2006). During cooling, the prevented shrinkage gen-
erates tensile stresses (Gu et al. 2012) which again can exceed the yield stress. The
tensile stresses are larger in the exposure direction than perpendicular to it (Gusarov
et al. 2011). The residual stresses resulting from the prevented strains are indepen-
dent of the scan rate (Shiomi et al. 2004) but depends on the hatch distance (Mercelis
and Kruth 2006).

A general overview of the reasons and origins of residual stresses can be found,
for example, in Withers and Bhadeshia (2001).

8.3 Laser Modeling

The laser radiates either in a pulsating or a continuousmanner. In the former, the laser
power at a point on the beam axis can be represented as a superposition of individual
pulses (Fig. 8.12). With the definition of the maximum pulsed power Ppulse, the
duration of radiation �tpulse, and the repetition frequency frep = 1/�trep, the laser
power can be represented as the sum of individual Heaviside functions H

P (t) = Ppulse

n pulse∑
n=0

[
Hn

(
t − n

frep

)
− Hn

(
t − n

frep
− �tpulse

)]
. (8.14)

The number of pulses is abbreviated with npulse. If the laser radiates continuously,
the power is constant at all times. The continuous power Plaser , which energy is
equivalent to the case of Ppulse, is determined by the maximum pulsed power, the
repetition frequency, and the irradiation time
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Fig. 8.12 Illustration of
laser power over time for a
laser in pulsed mode and
energy equivalent laser
power for a continuous mode

Plaser = frep �tpulse Ppulse. (8.15)

The distribution of the power over the cross-section of the laser beam is generally
not constant. The distribution in radial direction can be represented by an intensity
function

P (t, r) = P (t) Irad (r) . (8.16)

This function depends on the radius r . The integral over the cross-section must result
in one to distribute the whole laser power

∫ ∞

0
Irad (r) da = 1. (8.17)

Many laser sources have a Gaussian distribution and the intensity function can be
approximated depending on the radius of the laser beam R

Irad (r) = 2

πR2 (1 − exp(−2))
exp

(−2r2

R2

)
. (8.18)

A detailed introduction to laser technology and an overview of different types of
lasers can be found in Hecht (2019).

The laser irradiation corresponds to a heat source that penetrates the material.
For modeling, the irradiation can either be represented as electromagnetic field com-
ponents using Maxwell equations (Zohdi 2012), or as discrete rays (Zohdi 2013).
The radiation penetrates the material very quickly. The energy is only absorbed by a
certain layer. Thus, irradiation can also be interpreted as an internal heat source. The
penetration depth must be estimated. In the following two sections, the ray-tracing
method and two modeling approaches of a volumetric heat source are presented.

Remark. In Zohdi (2014) four different approaches formodeling the laser irradiation
are compared, which can also be interpreted as a sophistication. The simplest model
estimates the temperature at a material point by the heat input. Influences from heat
conduction are neglected. Thus, this approach is inappropriate formodeling Selective
Laser Melting. The volumetric heat source and the ray-tracing method represent the
next two accuracy levels. The most detailed modeling is based on the Maxwell
equations.
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8.3.1 Ray-Tracing

Ray-tracing is derived from the Maxwell equations (e.g. Zohdi 2013). The laser
power is subdivided into discrete energy packets. Along the beam axis, the laser
power is discretized in time. If the laser radiates continuously, the energy of a ray
results from the multiplication of the power by a time increment�tr . To consider the
intensity distribution of the laser in the cross-section, the laser power is weighted in
the radial direction

Er = �tr Plaser wr (rr ) . (8.19)

The weighting wr corresponds to a spatial discretization and is based on the radial
intensity function of the laser

wr = Irad (rr )∑nrpl
q Irad

(
rq
) . (8.20)

This function is normalized,wherenrpl corresponds to the number of energypackages
in radial direction. If the laser is modeled using energy packages, their propagation
must also be determined. The current location of the ray xr results from the integration
in time of the propagation velocity of the laser vr , which in argon corresponds
approximately to the speed of light

ẋr = vr ≈ 3 · 108. (8.21)

When the laser hits the material, only a part of the laser power is absorbed. The
reflected contribution can be determined by the Fresnel equation

Rr = 1

2

⎡
⎣
(

n̂2

μ̂
cosθinr − a

n̂2
μ̂
cos θinr + a

)2

+
(
cos θinr − 1

μ̂
a

cos θinr + 1
μ̂
a

)2
⎤
⎦ , a = (

n̂2 − sin2θinr
)1/2

.

(8.22)
In the above equation, θinr corresponds to the angle of incidence, μ̂ to the magnetic
permeability, and n̂ to the refractive index. Details of this equation can be found e.g.
in Zohdi (2013).

8.3.2 Volumetric Heat Source

The laser radiation is absorbed by the uppermost layer, whereby the radiation
decreases with the penetration depth. Thus, the laser power can also be interpreted
as an internal heat source (Fig. 8.13). In this case, the intensity function must be
extended by a component in the axial direction. This can, for instance, be realized
independently of the radial direction
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Fig. 8.13 (Left) Laser irradiation. (Right) Axial intensity distribution within the material using a
volumetric heat source approach

P (t, r, z) = P (t) Irad (r) Idep (z) . (8.23)

In order to divide the complete laser power, the integral over the whole volume must
result in one ∫ L

0

∫ ∞

0
Irad (r) Idep (z) da dz = 1. (8.24)

The intensity function in axial direction can be formulated according to the Beer-
Lambert formula (8.1),

Idep (z) = exp(−βz)
β

(1 − exp(−βL))
. (8.25)

This function is normalized to fulfill the condition from (8.24). The penetration depth
L can be guessed by the size of the extinction coefficient β.

The powder bed possesses numerous cavities. In Gusarov et al. (2009), the coef-
ficient β was therefore defined as a function of the porosity εb and the mean particle
diameter D

β = 2(1 − εb)

2εb D
. (8.26)

A simulation approach for Selective Laser Melting based on this modified Beer-
Lambert lawcanbe found inGaneriwala andZohdi (2016). To consider the reflections
in the powder bed, an analytical approach for the intensity distribution in the axial
direction of the laser is developed in Gusarov et al. (2009)

Idep (z) = −β
dq

dξ (z)
. (8.27)

The quantity q describes a dimensionless laser energy density and ξ (z) = β z a
dimensionless coordinate in axial direction. The exact specification of this intensity
distribution can be found in Gusarov et al. (2009) or Wessels et al. (2018b). In
addition, an alternative distribution of the laser radiation in the radial direction is
proposed
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Irad (r) = 3

πR2

(
1 − r

R

)2 (
1 + r

R

)2
. (8.28)

Further approaches for volumetric heat sources can be found in Goldak et al. (1984).
Therein, the models are specially developed for the simulation of laser welding.

8.4 Modeling of Material Response

The reactions of the material to the heat input can be described by the balance of
momentum, the 1st law of thermodynamics, and suitable constitutive and kinemat-
ical equations. The melt can be assumed to be incompressible. The stress tensor is
therefore split into a hydrostatic part p and an isochoric contribution σiso

ρü = ρv̇ = − grad p1 + divσiso + ρb̄. (8.29)

In addition, the influence of latent heat during phase change must be taken into
account. For this, the formulation of the 1st law of thermodynamics in dependence
on the enthalpy is preferred

ρḢ − Dint + divq − ρr = 0. (8.30)

8.4.1 Kinematics

The surface forces generate a fluid flow in the melt. Meshfree methods allow a
consistent transition from solid deformations to fluid flow in the simulation. The
material melts very quickly due to the high laser power and no large deformations are
to be expected in the solid phase.Nevertheless,modeling based onfinite deformations
is suitable to ensure a consistent transition between the phases.

For metals, the temperature leads to a volumetric expansion of the material. This
can be modeled by a split of the Jacobi determinant into a volumetric and isochoric
part (Lu and Pister 1975)

F = FisoFvol , J = detFvol , J = J e J th, J th = exp(3α�ϑ). (8.31)

The parameter α� corresponds to the coefficient of thermal expansion. In Selective
LaserMelting, plastic deformations occurwhich can be regarded as isochoric. Hence,
the isochoric deformation gradient is further subdivided into an elastic Fiso,e and a
plastic Fiso,p contribution

Fiso = Fiso,eFiso,p. (8.32)



156 8 Modeling Selective Laser Melting

During phase change the metallic bonds are dissolved (Jiang and Wen 2011). Since
the volumetric stress results from the incompressibility, it can be assumed that only
the isochoric strains are dissolved during phase change (Wessels et al. 2018b). Thus,
Fiso can be set equal to the unit tensor 1 at phase transition which takes place at the
limit temperature �phase

Fiso = 1, if � = �phase. (8.33)

8.4.2 Constitutive Equations Solid Phase

Suitable thermo-elasto-plastic modeling is required to determine residual stresses
in the material. The rheological model used in this approach is shown in Fig. 8.14.
According to Goldak and Akhlaghi (2005) the range up to half the melting temper-
ature �mel can be described as rate-independent plasticity. At higher temperatures,
the material behaves more and more viscous.

If the material is assumed to be weakly compressible in the solid phase, the pres-
sure can be calculated from the bulk modulus K and the elastic Jacobi determinant
J e

p = −K (�)

J
lnJ e, if � < �mel . (8.34)

The bulk modulus, like most material parameters, changes with temperature. Using
a Neo-Hookian approach, the stress is calculated from the elastic isochoric right
Cauchy Green Tensor biso,e = Fiso,eFiso,e T

σ = −p1 + μ(�)

J

(
biso,e − 1

3
trbiso,e1

)
, if � < �mel . (8.35)

The elastic deformation gradient results from the evolution equation of the plastic
flow

dp = sym
(
ḞF−1 − ḞeFe−1

) = γ̇
∂ f

∂σ
. (8.36)

Fig. 8.14 Phase dependent
rheological model. Solid
phase (gray) and fluid phase
(blue)
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The elastic range is limited by the yield criterion. The yield stressY and the hardening
modulus H are assumed to decrease linearly with temperature (Wessels 2019)

f =
√
3

2
‖s‖ −

(
Y

[
1 − � − �0

�mel − �0

]
− H

[
1 − � − �0

�mel − �0

]
α

)
≤ 0. (8.37)

For elasto-plasticity, the condition γ ≥ 0, f ≤ 0 with γ f = 0 must also be ful-
filled. The rate of the isotropic hardening parameter α corresponds to the rate of the
accumulated plastic strain γ, i.e. α̇ = γ̇.

In the range � < 0.5�mel , γ is determined from the condition f = 0, if (8.37) is
violated. In the transition zone 0.5�mel ≤ � < �mel the behavior is assumed to be
viscoplastic and γ̇ is calculated directly from the yield criterion

γ̇ = 1

2

f + | f |
μ

. (8.38)

A detailed description of plasticity can be found in Lubliner (1990) or Simo (1998).

8.4.3 Constitutive Equations Fluid Phase

If the limit temperature �mel is exceeded, the melt corresponds to a viscous liquid

σ = −p1 + 2 η(�)

J

(
d − 1

3
trd 1

)
, if � ≥ �mel . (8.39)

Since weakly incompressible behavior is assumed, only the isochoric part of the
symmetric spatial velocity gradient d has to be considered. The parameter η corre-
sponds to the dynamic viscosity of the melt. If the pressure is not calculated using the
incompressibility condition, it can either be estimated using (8.34) or alternatively
interpreted as a barotropic fluid. In the second case, the pressure is computed from
(6.72)

p = ρ c20
7

[(
ρ

ρ0

)7

− 1

]
, if � ≥ �mel ,

and the density is determined from the continuity equation (3.7)

ρ̇ + ρ div v = 0.
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8.4.4 Thermal Constitutive Equations

In the 1st law of thermodynamics, the specific enthalpy and the heat conduction
are required. Neglecting the Gough-Joule effect, a direct relationship between the
specific enthalpy and the specific heat capacity c in the material results

H = c(�)ϑ̇. (8.40)

The contribution from latent heat can be easily integrated into the description of the
specific heat capacity using the apparent heat approach (Bonacina et al. 1973)

capp =
⎧⎨
⎩
cs, f if � < �s

0.5(cs, f + c f,g) + Lmel,vap(�liq,dew − �sol,bub)
−1 if �sol,bub ≤ � ≤ �liq,dew

c f,g if � > �liq,dew

.

(8.41)
This form assumes a non-isothermal phase change. The state of the material does
not change at a limit temperature but within a temperature range. The modeling
requires an explicit specification of the solidus �sol and liquidus �liq temperature at
the transition from solid to liquid and of the bubble �bub and dew temperature �dew

in the case of the phase change from liquid to gaseous.
The heat conduction is assumed to be isotropic leading to a simplified model

based on the thermal conductivity coefficient k

q = −k(�) gradϑ. (8.42)

Due to the high temperatures in thematerial, the contribution from dissipation due
to plastic deformations is negligibly small. If the temperature at the surface exceeds
a critical value, the loss of energy due to vaporized material leads to a cooling effect
which can be approximated using the enthalpy of vaporization �Hvap, the molar
mass M , the gas constant R, the sticking coefficient A, and the recoil pressure prec

(Khairallah et al. 2016)

m r = −0.82�Hvap A prec√
2 π M R �

. (8.43)

8.4.5 Neumann Boundary Conditions

TheNeumann boundary conditions for the mechanical differential equation are com-
posed of the surface tension, the Marangoni convection and the recoil pressure

t = − [
2γ(�)κ + prec (�)

]
n + grad Sγ(�). (8.44)
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The vector n corresponds to the normalized normal vector. To recoil pressure prec

computes from (8.11). The heat exchange over the surface is modeled using the
thermal coefficient h

q̄ = −h (� − �0) (8.45)

If only a part of the whole underlying layers is considered, the coefficient must be a
function of the missing layer l (h := f (l)). The influence of the radiation over the
surface can be considered negligibly small (Khairallah et al. 2016).

8.5 Solution Using SPH

With Smoothed Particle Hydrodynamics, the simulation of fluid flow is usually based
on a description with respect to the deformed configuration in combination with
an explicit time integration scheme. The strong form is directly discretized. The
quantities at the time step n are computed from the current neighborhoods which are
redetermined at every step. To simplify the notation, an indication of the time step and
the position vector is omitted, like for the volume vI := vn(xI n). If a specification is
necessary it is indicated at the appropriate place.

8.5.1 Spatial Discretization

In the simulation using SPH, the individual particles in the solid phase are assumed
to be rigid. If the critical temperature is exceeded, the primary variable v is calculated
from (3.14)

− grad p + 2ηdiv grad symv + ρb̄ − ρv̇ = 0 � ≥ �mel .

As already shown in Chap. 4, the discretized mechanical differential equation can
be formulated in terms of a force balance evaluated at each particle

f sI + fgI + f tI =
{
fnI boundary particle
0 inner particle

. (8.46)

In order to conserve global balance of momentum and angular momentum, the inter-
nal force due to the state of stress inside the material computes from (6.71) and
(6.74)

f sI =
NI∑
J=1

[
(pJ + pI ) − η

ρI + ρJ

ρ

(vI − vJ ) · (xI − xJ )

‖xI − xJ‖2 + ε2

]∂W (xI − xJ )

∂xI
vIvJ .

(8.47)
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The numeric parameter ε is set in relation to the smoothing length h, i.e. ε = 0.01 h
(Cleary and Monaghan 1999). The density is determined by the solution of the con-
tinuity equation (3.7). To ensure a constant density at constant velocity, the approach
from (6.73) is chosen

ρ̇I = −ρI

NI∑
J=1

(vJ − vI ) · ∂W (xI − xJ )

∂xI
vJ .

Assuming a barotropic fluid, the relationship between pressure and density at the
particle I results from (6.72)

pI = ρI c20
7

[(
ρI

ρ0

)7

− 1

]
.

The forces from the dead load and the inertia termare determined only fromquantities
at the particle and corresponds to (4.16)

f tI = mI üI , fgI = −mI b̄, with mI = ρIvI .

With SPH, the surface is not directly defined. However, the integration constraint
can be employed to identify particles at the boundary (Weißenfels 2019). If this
requirement is satisfied, only these particles have a non-zero resulting normal vector.
Moreover, the normof n̄I is equal to the surface fraction of the corresponding particle.
Thus, surface loads can be applied directly. From (6.23) the resulting normal vector
of a particle can be estimated

n̄I = vI

NI∑
J=1

∂W (xI − xJ )

∂xJ
vJ . (8.48)

This approach is also used in Randles and Libersky (1996) or Hirschler et al. (2017)
without mentioning the relationship to the integration constraint. In one-point meth-
ods, particles near the boundary often possess a resulting normal vector. Its value is
smaller than at the boundary. Particles below a critical value are considered to be in
the interior

n̄I ≡ 0, if ‖n̄I‖ <
vI

5h
. (8.49)

If the particles have a resulting normal vector unequal to zero, the forces from surface
tension and Marangoni convection are imposed. If the temperature is higher than the
boiling temperature, the influence of the recoil pressure is added

fnI = − [
2γ(�I ) κ̃I + prec (�I )

]
n̄I + grad SγI‖n̄I‖. (8.50)
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The force resulting from surface tension is determined by the mean curvature

κI = 1

2

(
κ1
I + κ2

I

)
. (8.51)

The curvature, in turn, computes from the derivative of the normal vectors with
respect to the local coordinates of the surface multiplied by the tangential base
vectors aβ I

BI αβ = ∂nI

∂ξα
· aβ I , aβ I = ∂xI

∂ξβ
. (8.52)

Local coordinates are not defined in SPH. Hence, an alternative way to determine
the curvature is needed. In Fürstenau et al. (2019a), first a global curvature tensor is
computed based on the corrected derivatives according to (6.43)

KI =
NI∑
J=1

(
ñJ

‖̃nJ‖ − ñI

‖̃nI‖
)

⊗ ∂W (xI − xJ )

∂xI
L−1

I vJ . (8.53)

Therein, averaged normal vectors are employed

ñI = 1

W

NI∑
J=1

W (xI − xJ ) n̄J , W =
NI∑
J=1

W (xI − xJ ) . (8.54)

Afterwards, the tensor K is transformed into a local coordinate system. The corre-
sponding base vectors gI can be constructed from the resulting normal vector and a
cartesian base vector ei

gI = {̃
nI , t̃1I , t̃

2
I

}
, t̃1I = ñI

‖̃nI‖ × ei , and t̃2I = ñI

‖̃nI‖ × t̃1I . (8.55)

The matrix T transforms the components of K to the local curvature matrix. Its
components result from the multiplication of the cartesian base vectors with there
local counterparts TI i j = ei · g j

I

BI = TT
IKITI . (8.56)

The local curvature tensor BI can be divided into a normal and a tangential part.
The eigenvalues of the tangential part correspond to the principal curvatures κ1

I , κ
2
I

(Fig. 8.15). In order to better approximate the curvature, the principal curvatures are
also averaged

κ̃I = 1

W

NI∑
J=1

κJW (xI − xJ ) . (8.57)
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Fig. 8.15 Principle
curvatures of a surface in
space

The force due to Marangoni convection in (8.50) results from the derivative of the
surface tension with respect to local tangential coordinates. The computation can be
realized analogously to the curvature calculation. Starting from the derivative with
respect to the global coordinates

grad γI =
NI∑
J=1

γJ
∂W (xI − xJ )

∂xI
L−1

I vJ (8.58)

the normal vectors can be used to compute the tangential gradient

grad SγI = grad γI −
(
grad γI · ñI

‖̃nI‖
)

ñI

‖̃nI‖ . (8.59)

To determine the temperature, the thermal differential equation (3.38) has to be solved

ρḢ − kdiv gradϑ − ρr = 0.

To better approximate the influence of latent heat, the specific enthalpy is chosen as
the solution function. The temperature is subsequently determined from an empiri-
cal relationship between specific enthalpy and temperature. In the discrete form, the
differential equation can be formulated as the equilibrium of powers that have to be
conserved at each particle separately. The discrete 1st law of thermodynamics pos-
tulates that the contribution of the specific enthalpy Ph

I together with the divergence
of heat flow Pq

I and the inner heat source Pr
I must correspond to the power density

at the Neumann boundary Pn
I

Ph
I + Pq

I + Pr
I =

{
Pn
I boundary particle

0 inner particle
. (8.60)

Similar to (8.47) the contribution of the divergence of heat flow is alternatively
discretized employing two first order derivatives (Cleary and Monaghan 1999)

Pq
I = −k

NI∑
J=1

2 (ϑJ − ϑI )
xJ − xI

‖xI − xJ‖2 + ε2
· ∂W (xI − xJ )

∂xI
vIvJ . (8.61)
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The power from the specific enthalpy results directly from the values defined at the
particle

Ph
I = vI ḢI . (8.62)

Additionally, the cooling effect (8.43) is added to particles which are influenced by
the recoil pressure

Pr
I = −0.82�Hvap A precI√

2 π M R �I
. (8.63)

The Neumann boundary condition corresponds to the laser entry. Here, a Beer-
Lambert volumetric heat source from Sect. 8.3.2 is employed to assign a power to
the particles below the laser

Pn
I = Plaser

2

πR2

β

1 − exp(−βz)
exp(−β z) exp

(
−2

r2

R2

)
. (8.64)

8.5.2 Temporal Discretization

The discretized equations contain time derivatives. To compute the velocities and the
position vectors in the next time step, the Verlet algorithm is employed

vI n+1 = vI n−1 + 2�t v̇I n, xI n+1 = xI n + �tvI n + 1

2
(�t)2v̇I n. (8.65)

The densities at the next time step are calculated analogously

ρI n+1 = ρI n−1 + 2�t ρ̇I n. (8.66)

To prevent disturbed solutions, after certain time steps the quantities are updated
using the forward Euler time integration scheme (Crespo et al. 2015)

vI n+1 = vI n + �t v̇I n, xI n+1 = xI n + �tvI n + 1

2
(�t)2v̇I n. (8.67)

This concept is also employed for the density update at these time steps

ρI n+1 = ρI n + �t ρ̇I n. (8.68)

The specific enthalpy in the next time step is determined only by the forward Euler
time integration scheme

HI n+1 = HI n + �t ḢI n. (8.69)
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In explicit integration schemes, the time step size must be limited to be numerically
stable (Courant et al. 1928; Hughes 1987 or Belytschko et al. 1976). Each contri-
bution provides a maximum time step size. Four different cases must be considered
when modeling Selective Laser Melting. These result from the contribution of the
maximum acceleration within a time step �ta as well as the viscosity �tv in (8.47),
see also (Monaghan and Kos 1999)

�ta =
√

h

ümax
, �tv = h

c0 + max
(
h(vI−vJ )·(xI−xJ )

‖xI−xJ ‖2+η2

) , (8.70)

the surface tension �tγ and from the thermal equation �t� (Fürstenau et al. 2019b)

�tγ =
√

h3ρ0
2π γmax

, �t� = h2ρ0 c

2 k
. (8.71)

The smallest value from the four contributions determines the maximum permissible
time step size

�t = 0.25min
(�ta,�tv,�tγ,�t�

)
. (8.72)

8.6 Solution Using OTM

The solution using the Optimal Transportation Meshfree method is based on an
updated Lagrangian description together with an implicit time integration scheme.
To ease the notation, an indication of the time step and the position vector is omitted,
like

NI,p := NI (xp n),
∂NI,p

∂x
:= ∂NI (xp n)

∂xp n+1
, vp = vp n+1(xp n). (8.73)

If the exact time step needs to be specified, it is reintroduced at the appropriate
place.

8.6.1 Spatial Discretization

The OTM algorithm is based on the weak form. The discretization of the mechanical
differential equation (3.21)

∫
Bt

[
ρη · (ü − b̄

) + gradη · σ
]
dv =

∫
∂Bt

η · t̄ da.
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can be specified in the final form as the equilibrium of nodal forces, see also (4.2)
and (4.3)

f sI + fgI + f tI =
{
fnI boundary node
0 inner node

. (8.74)

The internal force due to the state of stress in the material f sI , the dead load fgI , and
the inertia term f tI

fσ
I =

Nin f
I∑

p=1

σ p
∂NI,p

∂x
vp, fgI = −

Nin f
I∑

p=1

NI,pb̄mp, f tI =
Nin f

I∑
p=1

NI,püpm p (8.75)

must correspond to the force due to the Neumann boundary condition fnI at each
node. The conservation of mass is automatically fulfilled in the OTM method, since
mp = mp n+1 = const . Depending on the phase, the stress is either calculated from
(8.35) or (8.39). The solution scheme to determine the stress in case of plasticity or
visco-plasticity is based on the algorithm given in Korelc and Stupkiewicz (2014).
The implementation can also be found in Wessels (2019).

The imposition of boundary conditions in meshfree methods always requires a
special treatment. As mentioned in the previous section, boundary nodes can be
identified using the integration constraint. If this criterium is fulfilled, only a node at
the boundary possesses a resulting normal vector. Its norm corresponds to the area
of that node and the sum of all nodal areas results in the total surface of the body
(Weißenfels 2019)

n̄I =
Nin f

I∑
p=1

∂NI,p

∂x
vp, aI = ‖n̄I‖. (8.76)

To avoid an integration over the surface, the forces at the boundary can alternatively
be calculated from a volume integral using the divergence theorem, like for the
contribution from the surface tension

∫
∂Bσ

t

η · γκn da =
∫
Bt

div (γκη) dv. (8.77)

If the surface tension γ is assumed to be constant and if the change of the curvature
is neglected, the force results from the derivative of the shape function

f surI = −
Nin f

I∑
p=1

2 γκ̃p
∂NI,p

∂x
vp. (8.78)
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The contribution from the recoil pressure can be calculated analogously

frecI = −
Nin f

I∑
p=1

precp

∂NI,p

∂x
vp. (8.79)

The tangential force due to Marangoni convection corresponds to the derivative of
the surface tension coefficient with respect to local surface coordinates. Local coor-
dinates are usually not available in meshfree methods. Therefore, as in the previous
section, the derivative with respect to the global coordinates is determined first. The
tangential force computes from the projection on the tangential plane with the help
of the normal vector at the corresponding node

fmar
I = ‖n̄I‖

Nin f
I∑

p=1

grad γ |p
(
1 − n̄I

‖n̄I‖ ⊗ n̄I

‖n̄I‖
)

, grad γ |p=
Nsup

p∑
I=1

∂NI,p

∂x
γI .

(8.80)
The sum of all contributions corresponds to the force due to Neumann boundary
conditions fnI = f surI + fmar

I + frecI .
The surface tension requires the mean curvature κ. Analogous to SPH, κ is deter-

mined from the global curvature tensor K

Kp =
Nsup

p∑
I=1

n̄I

‖n̄I‖ ⊗ ∂NI,p

∂x
. (8.81)

Using the resulting normal vector (8.76) a local, orthonormal coordinate system can
be defined. These base vectors transform K to the local curvature tensor B. The
eigenvalues of the tangential part of B correspond to the principal curvatures. Also
with this approach, an averaging of the curvatures over the neighboring integration
points Nngh

p proved to be advantageous (Wessels et al. 2018b)

κ̃p = 1

Nngh
p

Nngh
p∑

q=1

κq . (8.82)

In the thermal differential equation (3.41)

∫
Bt

(
τ [ρḢ − ρr ] + k grad τ · gradϑ

)
dv +

∫
∂B

N�
t

τqN da = 0.

the change of enthalpy H in time is modeled using the apparent heat approach

Ḣ = cappϑ̇. (8.83)
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The phase change is thus assumed to be non-isothermal and the specific heat capacity
differs in the temperature ranges according to (8.41)

capp =
⎧⎨
⎩
cs, f if � < �s

0.5(cs, f + c f,g) + Lmel,vap(�liq,dew − �sol,bub)
−1 if �sol,bub ≤ � ≤ �liq,dew

c f,g if � > �liq,dew

.

The discretized equation can also be formulated as a balance of powers that must be
conserved at each node

Ph
I + Pq

I =
{
Pn
I boundary node

0 inner node
. (8.84)

The contribution from the enthalpy follows directly from the apparent heat approach

Ph
I =

Nin f
I∑

p=1

NI,pcappϑ̇pm p. (8.85)

The term due to heat conduction is calculated using Fourier’s law

Pq
I = −

Nin f
I∑

p=1

qp · ∂NI,p

∂x
vp, qp = −k

Nsup
p∑

I=1

ϑI
∂NI,p

∂x
. (8.86)

In the OTM approach, the influence of recoil pressure and surface cooling is
neglected. However, it can be implemented analogously to the previous section.

Two different concepts for modeling laser material interaction are investigated.
Thefirst approach assigns a power to each integration point below the laser employing
a volumetric heat source model. The individual contribution is determined by the
intensity function I consisting of a radial and axial factor I (xp) = Ir (r)Iz(z)

Pn
I =

Nin f
I∑

p=1

NI,p Plaser I
(
xp

)
vp. (8.87)

In the second approach, the laser power is modeled using ray-tracing. A search
algorithm determines the rays that interact with the surface. Each integration point
possesses a detection sphere with a certain radius. If a ray lies in the sphere, the
energy is assigned to that integration point (Fig. 8.16). Using only this concept the
absorbed laser power at an integration point would depend on the discretization
(Wessels et al. 2018a). To avoid this numerical artifact, a non-local formulation
is employed. The laser power of a ray at the integration point is therefore weighted
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Fig. 8.16 (Left) Search algorithm to detect rays in contact with the material. (Right) Integration
points within the influence of a ray defined by the absorption radius rabs

with a normalized distance function. The scaling parameter depends on the number of
integration points Nabs

r within the influence domain of a ray (Fig. 8.16). This approach
assumes a penetration depth of the laser into the material. The Beer-Lambert model
is employed to determine the weighting function

wr
p =

exp
(
− β‖xr−xp‖

rabs

)
Z

, Z =
Nabs
r∑

p=1

exp

(
−β‖xr − xp‖

rabs

)
. (8.88)

The laser power at an integration point is computed by the weighted, absorbed energy
of all rays Nray

p belonging to the corresponding integration point

Pn
I =

Nin f
I∑

p=1

Pray
p , Pray

p =
Nray

p∑
r=1

(1 − Rr ) Er

�tr
wr

p. (8.89)

The calculation rule for the reflection Rr and the energy input Er is given in
Sect. 8.3.1.

8.6.2 Temporal Discretization

The discretized equations contain time derivatives. To avoid very small time steps
an implicit integration scheme is preferred. The displacements at time step n + 1 are
computed using the Newmark method (Newmark 1959)

uI n+1 = uI n + �tvI n + (�t)2

2

[
2βv̇I n+1 + (1 − 2β)v̇I n

]
vI n+1 = uI n + �t

[
γv̇I n+1 + (1 − 2γ)v̇I n

]
.

(8.90)

Stability can be ensured if the two numerical parameters are selected as β = 0.25 and
γ = 0.5 leading to an amplitude error equal to zero. Thus, conservation of energy
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is guaranteed (Wood 1990). The derivative of temperature with respect to time is
integrated using the implicit Euler method

ϑI n+1 = ϑI n + �t ϑ̇I n+1. (8.91)

Remark. In Chiumenti (1998) a lumped heat capacity matrix is recommended in
(8.85) to avoid oscillations in the temperature field.

8.7 Computational Studies

Using a representative example, the effects of different modeling and discretization
concepts can be displayed very clearly. Two spherical powder particles are irradiated
by a laser. The geometry, the dimension, and the boundary conditions can be found
in Fig. 8.17. The laser moves at a velocity of vlaser = 0.2m/s. The beam radius is
30 µm. Figure8.18 shows the schematic sequence of the laser irradiation and the
fusion behavior. The powder particles and the substrate are made of 316L stainless
steel. The material parameters are taken from Company (1968) and are summarized
in Table8.1. The dependence of the heat conduction

k =
{(

9.345 + 0.0135 1
K �

)
W
m K � ≤ �mel

32.4 W
m K � > �mel

, (8.92)

and the specific heat capacity on the temperature are assumed to be linear

c =
{(

376.406 + 0.258 1
K �

)
J
K � ≤ �mel

815 J
kg � > �mel

. (8.93)

In this study, the apparent heat approach is used. Hence, the limit temperatures of a
non-isothermal phase change need to be assumed. The transition range is chosen as
200K. This leads to a solidus and liquidus temperature of�sol = 1670K and�liq =
1870K. At the transition from liquid to gas phase the bubble and dew temperature
is �bub = 3030K and �dew = 3230K, respectively.

Two studies are carried out, comparing the influence of laser modeling and spatial
discretization schemes. The third test investigates the plastic deformations that lead
to residual stresses. In the end, an entire single track is simulated. With this tool,
the optimal process parameters for Selective Laser Melting for any material can be
determined virtually.
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Fig. 8.17 Geometry, dimensions, and boundary conditions of the metal particle fusion test case.
Laser irradiation starts at the position xon and ends at xoff

Fig. 8.18 Remelting of two spherical powder particles on a substrate using OTM method and
ray-tracing

Table 8.1 Material properties of stainless steel 316L (r.t.: room temperature)

Thermomechanical parameter Symbol Value

Poisson’s ratio (r.t) ν 0.25

Compression modulus (r.t) K 0.13 GPa

Viscosity of molten metal (r.t) η 0.1kg/(s·m)

Surface tension coefficient (r.t) γ 1.78N/m

Thermal expansion coefficient
(r.t)

αth 1.75 ·10−3

Latent heat of melting
(vaporization)

Lmel (Lvap) 0.299 MJ/kg (6.09 MJ/kg)

Melting (evaporating)
temperature

�mel (�vap) 1770K (3130K)

Initial density (r.t) ρ0 7900kg/m3
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8.7.1 Comparison of Laser Modeling

The volumetric heat source assumes a certain penetration depth of the radiation
into the body without any heat conduction. The model according to Gusarov et al.
(2009) considers not only the penetration depth but also the heat transport via the
reflected radiation inside the powder bed. The parameters for the optical thickness, the
hemispherical reflectivity, and the maximum penetration depth are λ = 2, ρh = 0.7
and L = 40 µm, respectively.

The second option is ray-tracing. The decomposition into rays enables the explicit
determination of the propagation and reflection of the laser radiation. The time incre-
ment is selected to�tr = 10−6 s. Each cross-section consists of nrpl = 844 rays. The
ratio of the magnetic permeability μ̂ and the refractive indices n̂ between argon gas
and stainless steel is μ̂ = 1 and n̂ = 2.4.

Since the deformation of the substrate at the lower end is very small, only the
upper part is modeled. To estimate the temperature gradient correctly, a heat flow
condition is assumed at the lower edge. The heat transfer coefficient in (8.45) is
selected to h = 103 W/(m2 K).

The simulations are conducted using the OTMmethod to compare the twomodel-
ing concepts for laser-material interaction. The time increment of the implicit scheme
is �t = 10−6 s. The parameter for stabilizing the configurational consistency (5.29)
is set to ε = 10−8 and the parameter for the LME shape functions to γ = 1.2. The
influence of Marangoni convection, recoil pressure, and plastic deformations are
neglected in this study.

A look at the graphical evaluation in Fig. 8.19 shows the different temperature
distributions in the body. Using a volumetric heat source, the temperature gradually
decreases over the height of the particles. With ray-tracing, the concentration of
heat and thus the temperature at the surface is significantly higher. A study of the
maximum temperature in the body during the melting process (Fig. 8.20) shows that
ray-tracing leads to higher values. Therefore, the two powder particles fuses together

Fig. 8.19 Remelting of two metal particles with a substrate. (Upper line) Volumetric heat source.
(Lower line) Ray-tracing
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Fig. 8.20 Comparison ray-tracing (black dots) and volumetric heat source (green pentagons) in
dependence on the laser power. (Left) Maximum temperature in the melt. (Right) Amount of Argon
gas in the representative box indicating the remelt behavior

Fig. 8.21 Comparison ray-tracing (black dots) and volumetric heat source (green pentagons) in
dependence on the absorbed energy. (Left) Maximum temperature in the melt. (Right) Amount of
argon gas in the representative box indicating the remelt behavior

at a lower laser power (Fig. 8.20). To measure fusion, the amount of argon gas in a
representative box (Fig. 8.17) is calculated. This value is based on the ratio of the
material vmetal to the complete volume of the box vbox

� = 1 − vmetal

vbox
. (8.94)

Initially, the percentage of argon gas is 48%.
If the absorbed heat is considered instead of the laser power, the curves between the

two modeling approaches almost coincide (Fig. 8.21). Thus, both modeling concepts
reproduce the same physical behavior. Only the maximum temperature is slightly
higher in the case of ray-tracing because the heat is more concentrated at the surface.
The ratio of laser power to absorbed energy is different in both methods (Fig. 8.22)
leading to the different outcomes in Fig. 8.20.

Conclusion. Volumetric heat sources are designed for laser irradiation on straight
surfaces. This is not the case when simulating the fusion of powder particles. Thus,
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Fig. 8.22 Absorbed energy
as a function of laser power
using ray tracing (black dots)
and a volumetric heat source
(green pentagons)

a part of the heat is not assigned to the material but to the surrounding argon gas.
This explains the difference between absorbed heat and laser power in both modeling
concepts. The shape of the surfacemust be included in the formulation of a volumetric
heat source. Although the ray-tracing scheme increases the computational effort, the
change in the surface is automatically taken into account. In addition, fewer material
parameters are required compared to a volumetric heat source, since the reflection is
considered intrinsically.

Remark.The exit of heat at the lower end determines the amount of heat remaining in
the system.This value is a crucial parameter in SLMandhas to bemodeled accurately.
As shown in Wessels et al. (2018b), the melting behavior depends strongly on the
heat flow through the substrate.

8.7.2 Comparison of Solution Schemes

The second study shows a comparison between two spatial discretization schemes.
The example from the previous section is used again. The dimensions of the substrate
layer are 100 × 60 × 120 µm (length × width × height). The ambient temperature
is set to 823.1K. Both approaches use the volumetric heat source from the previous
example. The laser power is 9.2W and the scan rate 0.2m/s.

The differences between the two approaches are only the time integration scheme
and the modeling of the transition from solid to liquid phase. With SPH, the par-
ticles in the solid phase are assumed to be rigid. Since the laser melts the material
very quickly, there are no large deformations in the solid phase and this assumption
has no major influence on the deformation behavior during fusion. The comparison
in Fig. 8.23 shows strong differences between the two discretization schemes. The
material liquefies much more when the equations are discretized using SPH. When



174 8 Modeling Selective Laser Melting

Fig. 8.23 Temperature distribution duringmelting.Comparison betweenSPHand theOTMmethod

Fig. 8.24 Norm of the resulting normal vectors. (Left) Discretization based on SPH. (Right) Dis-
cretization based on the OTM method

the OTMmethod is applied, the geometry of the two spheres is visibly preserved for
longer.

Conclusion.The bigweakness of theOTMmethodwithout any additional correction
schemes is the non-fulfillment of the integration constraint. The resulting normal
vectors from this requirement are used to identify the surface nodes. The curvature is
also calculated from these vectors. Thus, a fulfillment of the integration constraint is
essential. As can be seen in Fig. 8.24 the SPH predicts the resulting normal vectors
better. In addition, the LME shape functions used in the OTM method show a too
stiff response behavior. Although the factor to stabilize the negative effects due to a
violation of the configurational consistency is very small, this additional term also
leads to an unphysical behavior.
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8.7.3 Residual Stresses

The presented approach in the context of the OTMmethod directly models the phase
transition from solid to liquid. This allows the computation of residual stresses caused
by melting and cooling. The example from the previous sections is considered again.
The parameters for the plasticity model in (8.37) and (8.38) are Y = 206.85 MPa,
H = 413.7 MPa and μp = 1 MPa/s. In addition, the dependence of the Young’s
modulus

E =
⎧⎨
⎩

(225.916 − 0.092�/K ) GPa 300 K ≤ � ≤ �sol

(706.884 − 0.392605�/K ) GPa �sol ≤ � ≤ �liq

0.195 GPa � > �liq

(8.95)

and the coefficient of thermal expansion on the temperature is considered. For the
latter, the reference temperature �0 must be adjusted accordingly

(α,�0) =
⎧⎨
⎩

(1.4604 · 10−5 1/K , 300 K ) 300 K ≤ � ≤ �mel

(4.4235 · 10−5 1/K , 1700 K ) �mel ≤ 2000 K
(1.9218 · 10−5 1/K , 2000 K ) � > 2000 K

. (8.96)

The full height of the substrate of 120 µm is considered. The ambient temperature
is 823.15K. The approach due to Gusarov et al. (2009) is used to model the laser
entry into the material. All remaining parameters are equal to the previous examples.
As can be seen in Fig. 8.25, plastic deformations occur at the boundary between the
melted and unmelted areas. This effect was also observed experimentally inMercelis
and Kruth (2006).

Fig. 8.25 Remelting of two powder particles with a substrate. (Left) Indication of melted and
unmelted nodes. (Right) Nodal accumulated plastic strains
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Fig. 8.26 Geometry and dimensions of the fully resolved single track

8.7.4 Single Track Computations

The SPH seems to lead to physically more meaningful results compared to the OTM
method. To underline this assumption, the results of a single track are compared with
experimental observations. With the help of a DEM code, the particles are deposited
on a metal plate. The geometry and dimensions are shown in Fig. 8.26. Except for
the upper surface, the displacement perpendicular to the metal plate is fixed at all
sides. The mean particle diameter is 27 µm and the standard deviation is σ = 4.25
µm. At the bottom of the substrate, the temperature is assumed to be 823.15K. The
distribution of the laser radiation in the cross-section corresponds to (8.18). The
radius of the laser beam is 35 µm. The absorption of the laser radiation is modeled
using theBeer-Lambert approach (8.25). The penetration depth is L = 28µmand the
extinction coefficient β = 0.3. The laser moves centrally along the x-direction from
x = 0.1mm to x = 0.9mm. When modeling the single track, the specific enthalpy
is selected as the solution function. Due to phase change, the relationship to the
temperature divides into three ranges

H =
⎧⎨
⎩

(136141.8 + 892.406�/K ) J/K 300 K ≤ � ≤ �mel

(1684510, 2 + 815�/K ) J/K �mel ≤ �vap

815�/K J/K � > �vap

. (8.97)

To model the Marangoni convection, the dependence of the surface tension on the
temperature must be taken into account

γ =
{
1.78 N/m 300 K ≤ � ≤ �mel

1.78 − 0.00089�/K N/m � > �mel
. (8.98)

Comparison with experiments. In Yadroitsev et al. (2010), a layer of stainless steel
316L is irradiated with a laser power of 50W. Different scan rates lead to different
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Fig. 8.27 Slices of remelted vectors (Yadroitsev et al. 2010). Laser power 50W. Scan rates 0.06,
0.08, 0.12, 0.16, 0.2 m/s (left to right)

Fig. 8.28 Comparison simulation (black line) with experiments (dashed green line) from Fig. 8.27

Fig. 8.29 Snapshots of the remelted vector in the same interval showing the increasing detail of
the balling effect with discretizations of 3 µm (left), 2 µm (middle), 1 µm (right)

penetration depths and a different radii of the vector (Fig. 8.27). The comparison with
the simulation (Fig. 8.28) shows that the occurring phenomena can be reproduced
qualitatively well using the presented SPH algorithm. Analogous to the experiment,
the penetration depth is reduced by an increase of the scan rate. The remeltedmaterial
also possesses a cylindrical shape.

A proper resolution of the domain is decisive for accurate numerical results. A
sufficient number of particles must be chosen for the solution to be in the convergent
range. Investigations in Fürstenau et al. (2019b) show that a distance of 3µmbetween
the particles in the initial state provides an almost convergent behavior. Negative
effects, like balling, can be recognized, which are not visible with a too coarse
resolution (Fig. 8.29).
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Fig. 8.30 Process map generated with simulated data using SPH for stainless steel 316L

Virtual process maps. The design of the printing process requires knowledge of the
optimum process parameters. For this purpose, process maps are usually created that
indicate the laser power and scan rate range in which 3D printing can be carried out
for a specific material on the corresponding machine. To achieve the desired result,
the remelted vector must have a cylindrical shape in a cross-section that has pene-
trated the underlying layer. The process parameters in the green area on the process
map guarantee optimal 3D printing. The creation of these maps purely experimen-
tally consumes a lot of material, time, and energy. One advantage of explicit time
integration schemes is the efficient computation of large dimensional applications on
GPUs. Using the in-house codeADDITIVE, a complete single tracewith a resolution
of 3 µm (1 million particles) is computed in about half an hour on an Nvidia GTX
Titan Black GPU. This allows the generation of virtual process maps (Fig. 8.30) with
acceptable computation time. The permissible range of laser power and scan rate can
now be determined purely virtually for each material (Fig. 8.30). This saves time,
material, and energy.

Influence of recoil pressure. In the previous studies the influence of recoil pressure
was assumed to be negligible. An additional investigation shows the influence of
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Fig. 8.31 Remelted vector (dark gray). Added physical effects from left to right: Only gravity, plus
surface tension, plus Marangoni convection, plus recoil pressure, plus surface cooling

individual physical effects on the behavior of the melt pool. If Marangoni convection
and surface tension are neglected in addition to recoil pressure and associated cooling
effect, no melting of the particles occurs. Only if the surface tension is included the
powder particles fuse together (Fig. 8.31). That demonstrates that this effect is the
main driver in SelectiveLaserMelting. IfMarangoni convection is taken into account,
the melt pool widens due to the outward surface force. In addition, the remelted area
is indented. The recoil pressure intensifies this effect. If the contribution from surface
cooling is additionally taken into account, the width of the remelted area is reduced.
At the same time its height increases. The parameters in the calculation of the recoil
pressure (8.50) and the surface cooling are the enthalpy of vaporization �Hvap =
6, 09MJ/kg, themolarmassM = 55.85g/mol, the gas constant R = 8.314kgm2/(s2

mol K) and the sticking coefficient, which can be assumed to be one for metals, i.e.
A ≈ 1.

Conclusion. The SPH formulation, presented in Sect. 8.5, meets the requirements
on conservation of balance equations. The integration constraint is only slightly vio-
lated. The radius of the search algorithm is the same for each particle. Since no
tensile stresses occur, the tensile instability plays no role. In SPH, the conservation
of the equilibrium of forces during the redefinition of the neighborhoods is mostly
not tested as well as the influence from under-integration. The shape functions do not
fulfill the reproducing conditions. Nevertheless, the results show a response behav-
ior that agrees qualitatively well with experimental outcomes. The OTM method
fulfills the reproducing conditions and conserves momentum and angular momen-
tum. However, the integration constraint is strongly violated. Due to its importance
for the calculation, especially for the forces at the surface, the SPH is preferable
compared to the OTM method at the current stage of development.
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Remark 1 The comparison of the simulation results with experimental data shows
differences in the diameters of the printed vectors. In the experiment, the laser irradi-
ates a powder bed with a height of 50 µm. The average particle diameter is 11.2 µm
and thus smaller than the diameter in the simulation. For computational reasons, it
was at that time not possible to carry out simulations with smaller particle diameters.
It is also important to check whether the influences from recoil pressure may be
neglected.

Remark 2 In meshfree methods, only the position vectors are given to represent the
geometry. For a better representation and evaluation, algorithms are available which
determine a surface from a set of points. Especially with the visualization of powder
geometries, it must be paid attention that the surfaces are reproduced accurately by
the algorithm.
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Chapter 9
Modeling Direct Poly Printing

Photopolymerization is based on a chemical reaction. The material is initially in
liquid to viscous form. As described in Chap.2, different technologies for printing
polymers exist. For the modeling, the process plays a minor role, since only the
material parameters and the geometric structure differ. This chapter concentrates on
the Additive Manufacturing process according to Stieghorst (2017). However, the
modeling approach can also be applied to stereolithography or polyjet printing.

In Direct Poly Printing (DPP), the curing process is locally controlled by a laser
to print the desired line width and height. The concept of Stieghorst (2017) was
primarily developed to fabricate patient-specific, flexible neural implants based on
biocompatible silicone. With DPP, the viscous material is deposited on a substrate
or already printed layers via a mobile dispenser. An accompanying laser irradiates
the material directly after placement (Fig. 9.1).

Analogous to Chap.8, first the main physical phenomena and the most important
experimental results are described. Afterward, the modeling of the laser-material
interaction is introduced. The differential equations are discretized using Peridy-
namics. The numerical evaluations investigate the influence of the laser power and
the extrusion velocity on the printing process.

9.1 Physical Phenomena

Many physical effects that occur during Selective Laser Melting also influence the
printing of polymers. A laser irradiates the polymer and the absorbed heat is trans-
ported within the material and simultaneously leads to an increase in temperature
in the body. In contrast to SLM, there is no phase change. The absorbed heat influ-
ences a chemical reaction that hardens the material. The laser power must be kept
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Fig. 9.1 Schematic description of Direct Poly Printing (DPP)

low so that no burns occur at the surface of the polymer. Hence, the vaporization
of material can be excluded. The process aims to harden the material right after the
extrusion. Hence, movements in the liquid material due to Marangoni convection
are negligible. Especially the control of the viscosity is crucial for a successful print.
In this section, the most important physical effects are listed, whereby analogous
phenomena to Sect. 8.1 are no longer described in detail.

9.1.1 Laser Matter Interaction

In contrast to metals, polymers are semi-transparent. In general, this can lead to
a transmission of the laser radiation through the material. The energy of the laser
divides into absorption a, reflection r and transmission t

a(λ,�) + r(λ,�) + t (λ,�) = 1. (9.1)

The individual coefficients depend not only on thematerial but also on thewavelength
of the laser radiation λ and the temperature �.

9.1.2 Heat Transfer

The depositing process does not result in a large mixing of the material in the liquid
phase. Thus, convection plays almost no role and conduction dominates the heat
transport. The emission of heat via the surface by radiation can also be neglected.
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Fig. 9.2 Molecular structure: Cross-linked polymer chains

9.1.3 Heat Capacity and Crosslinking

Analogous to Selective Laser Melting, the absorbed energy leads to a temperature
change in the body. Unlike metals, in photopolymerization, energy is not converted
into latent heat to change phase. Instead, a chemical reaction takes place, which
ensures the transition from liquid to solid. In the liquid form, the molecular chains
are mobile. The chemical reaction cross-links the molecular chains (Fig. 9.2) and the
stiffness increases. Elastomers have a wide meshed structure whereas thermosets a
close-meshed. Depending on the polymer, different types of cross-linking occur
(Elias 1996). When biocompatible silicone is printed, platinum-catalyzed cross-
linking of the silicone polymers takes place (Stieghorst 2017). In this case, cross-
linking depends on the temperature, the ratio of cross-linker to starting polymer,
the concentration of platinum catalysts, and inhibitors, which can accelerate or slow
down reactions. In addition, heat is released during cross-linking.

9.1.4 Surface Tension and Wetting

The dimensions of the individual layers must be small to print complex geometries.
Since the material is initially in a liquid state, capillary action must be taken into
account. During curing the influence of this process reduces. When it comes to over-
printing, a certain spreading must be ensured so that the first layer can be completely
wetted. The value of γ at which complete wetting is no longer possible is called
critical surface tension. With silicone rubber, the disperse portion γd determines the
surface tension. The polar part γ p is negligibly small. The surface tension of silicone
rubber is about 20 ·10−3 N/m and lower than the critical value of 24 ·10−3 N/m.
Thus, a complete wetting can be realized.
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Fig. 9.3 Change of viscosity
during chemical reaction

9.1.5 Viscosity

The effect of cross-linking is also reflected in a change of the viscosity. During the
transition from liquid to solid, the viscosity increases more or less abruptly. The time
when the drastic increase takes place is called the gel point (Fig. 9.3). The higher
the process temperature, the earlier the gel point is reached. On the other hand, the
viscosity decreases as the temperature increases.

9.2 Experimental Observations

Since 3D printing of biocompatible silicone was not possible with conventional
methods, a new technology was developed in Stieghorst (2017). For the optimal
design, some restraints have to be taken into account. To achieve a high degree
of efficiency, the laser should allow high energy absorption. With silicone rubber,
almost 90% of the energy is absorbed at a laser wavelength of 9.9 µm. The laser
power must not be too high to prevent the thermal degradation of the material. The
critical temperature for silicone rubber is 355 ◦C. If the temperature is close to this
limit, the water in the silicone can evaporate.

The adjustable process parameters are print head velocity, extrusion velocity,
laser power, nozzle diameter, initial viscosity, and substrate material. The following
experimental observations are based on the investigations in Stieghorst (2017).

9.2.1 Drop Radius

The effects of substrate material, laser power, and initial viscosity on the spreading
behavior of silicone can be determined by a simple experiment. A drop is deposited
on a substrate, irradiated by a laser, and the maximum spread is measured. In addi-
tion to biocompatibility, surface tension is particularly important when selecting the
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substrate material. Depending on the material of the substrate, an increase of the
initial radius between 25% and 175% can be observed.

The laser power also reduces the final radius. With Parylence C as substrate
material, an increase of the power to 4.85W/cm2 leads to a spread reduction of 120%.
When increased to 7.85 W/cm2, no further significant reductions can be observed
for all substrate materials.

A high initial viscosity leads to a faster cross-linking of the material. This also
reduces the initial radius. However, an outflow of the liquid through the nozzle
must be guaranteed. The maximum admissible initial viscosity depends on the dead
volume, the pot life, and the extrusion velocity.

Furthermore, the short penetration depth of the laser into the material must be
taken into account. At high temperatures, the outer layer is cross-linked first. This
can cause thermal residual stresses in the material.

9.2.2 Printing Shape

During Additive Manufacturing, the print head velocity, the diameter of the nozzle,
and the extrusion velocity also influence the geometry of the printed part. Increasing
the print head velocity leads to a reduction in both line width and height. This
relationship can be assumed to be linear. The maximum velocity depends on the
design of the printer. Vibrations in the print head at too high velocities result in an
undulating geometry of the printed layer.

With the same extrusion and print head velocity, the comparison of two different
nozzle diameters (0.2 and 0.25 mm) shows no major differences in the minimum
width and height of a layer. However, a large nozzle diameter allows a higher volume
flow, and wider and higher layers can be achieved.

A further phenomenon can be observed during printing. If each layer is excited
to an accelerated cross-linking, a stronger waviness occurs in the geometry than if
only every second layer is irradiated.

9.3 Laser Modeling

In this 3D-printing process, a laser is selected whose beam has a doughnut shape
in its cross-section (Fig. 9.4). The dispenser is in the dead center of the laser. The
intensity distribution over the cross-section can be described by a normalized radial
Gaussian function depending on the inner ri and the outer radius ra

Irad (r) = I0 exp

(
−18

(r − 0.5ri − 0.5ra)2

(0.5ra − 0.5ri )2

)
, I0 = 3

√
2

π1.5(ra − ri )(ra + ri )erf(3/
√
2)

.

(9.2)
In this approach, the laser power is modeled as a heat flow at the surface
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Fig. 9.4 (Left) Laser intensity distribution in the cross-section. (Right) Laser intensity distribution
in radial direction (Hartmann et al. 2021)

∫
∂B

N�
t

Plaser Irad da =
∫

∂B
N�
t

q · n da. (9.3)

9.4 Modeling of Material Response

Themodeling ofDirect Poly Printing is based on the coupling ofmechanical, thermal,
and chemical differential equations. The balance of momentum forms the basis for
the mechanical response behavior. The 1st law of thermodynamics provides the
temperature distribution in the material. The modeling of cross-linking is based on
the evolution equation for the degree of cure α. This quantity is coupled to the
mechanical and thermodynamic differential equations via the specific strain energy
function. The peridynamic concept based on the total Lagrangian description is used
for the discretization and the balance of momentum formulated with respect to the
initial configuration

DivP(F,ϑ,α) + ρ0b̄ = ρ0ü. (9.4)

The divergence operator with respect to X, the initial density ρ0, and the 1st Piola
Kirchhoff stress tensor P are given in (9.4). In the 1st law of thermodynamics, the
influence of the degree of cure must be considered. Neglecting the Gough–Joule
effect (3.50) formulated with respect to the initial configuration simplifies to

ρ0cFϑ̇ − ρ0
∂2ψ(F,ϑ,α)

∂ϑ∂α
α̇ = Dint − DivQ + ρ0r. (9.5)

To be consistent the Piola Kirchhoff heat flux vector Q must be used in (9.5). The
temperature difference between the absolute � and initial temperature �0 is chosen
as the primary variable, i.e. ϑ = � − �0. In the unloaded initial state at ambient
temperature, ψ = 0 must be valid. To ensure this condition, it is suitable to choose
the temperature difference as an argument of the specific strain energy function.
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9.4.1 Mechanical Constitutive Equations

In addition to mechanical loads, the effects of temperature and chemical reactions
can lead to large deformations of the body. The deformation gradient is split into
mechanical, thermal, and chemical parts. Since the temperature and the cross-linking
result to a volumetric change of the body, the latter are described by the Jacobi
determinant

F = FMF�FC , F� = J
1
3

�1, FC = J
1
3
C 1. (9.6)

In Lion and Johlitz (2012) and Landgraf et al. (2014) an approach for curing under
large deformations based on a Maxwell model is presented. It can be classified as a
finite linear viscoelastic model. To reproduce the flow behavior of the silicone more
accurately, this formulation is extended by a friction element (Hartmann et al. 2021),
see also Fig. 9.5. The necessity can be illustrated by a simple example (Hartmann
2019). For this purpose, a cylinder with a diameter of 0.25 mm and a depth of 0.5
mm is placed on a plate. The cylinder adheres to the substrate. The Young’s modulus
of the upper spring is E∞ = 15 N/mm2 and the Poisson ration ν = 0.499. The shear
modulus and viscosity in the lower branch is μ = 0.05 N/m2 and η = 0.35 Ns/m2.
If the purely viscoelastic approach is used, oscillations occur when the cylinder is
deposited. But, the material does not spread which is unphysical. This only happens
by adding a friction element (Y = 0.25N/m2) to theMaxwell curingmodel (Fig. 9.6).

Hence, the mechanical deformation gradient FM is further split into an elastic,
viscous and plastic part (Hartmann et al. 2021). To keep the number of indices as

Fig. 9.5 Rheological model
of silicone. Maxwell curing
model with an additional
friction element

0
0.2

0.1

0.2

z 
[m

m
]

0.4 00.2

x [mm]y [mm]

0 -0.2-0.2 -0.4-0.4

0
0.2

0.1

0.2

z 
[m

m
]

0.4 00.2

x [mm]y [mm]

0 -0.2-0.2 -0.4-0.4

Fig. 9.6 Spreading behavior of a viscous cylinder. Situation at t = 0,02 s. (Left) Original Maxwell
curing model. (Right) Curing model with additional friction element
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Fig. 9.7 Definition of three intermediate configurations in modeling curing of polymers

low as possible, the index M is omitted in the following, since thermal and chemical
influences are only described via the Jacobi determinant

FM = FveFp = FeFvFp. (9.7)

The modeling of the stress is based on the right Cauchy Green tensor C. The vis-
coelastic component in the Maxwell model results from a push-forward of C to the
corresponding intermediate configuration (Fig. 9.7)

C̃ve = Fve TFve = J
− 2

3
� J

− 2
3

C Fp−TCFp,−1, C = FTF. (9.8)

The tilde indicates quantities defined on this intermediate configuration. The Cauchy
Green tensor in the lower spring results from the push-forward of C to the interme-
diate elastic configuration. Quantities with respect to this configuration are marked
with a bar

C̄e = Fe TFe = Fv −TC̃veFv −1. (9.9)

In both springs a specific strain energy function can be defined in dependence on the
corresponding kinematical measures. In the approach according to Lion and Höfer
(2007) and Landgraf et al. (2014) an additional free thermochemical part ψϑα(ϑ,α)

is added
ψ := ψ∞(C̃ve,ϑ,α) + ψμ(C̄e

iso) + ψ�α(ϑ,α). (9.10)

The stress in the lower spring is purely isochoric. The first term on the right-hand
side in (9.10) is further subdivided into an isochoric and a volumetric part. The
dependence on the temperature and degree of cure is only given in the isochoric part

ψ∞(C̃e,ϑ,α) = ψiso
∞ (C̃ve

iso,ϑ,α) + ψvol
∞ (J ve). (9.11)
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To ensure that a change in crosslinking does not lead to a change in stress (see
also Sect. 3.4), Lion and Johlitz (2012) introduces a pseudo-elastic approach for the
isochoric part of the upper spring

ψ∞
iso(C̃

ve
iso,ϑ) = 1

2

∫ t

−∞
μ∞(s)

(
d

ds
C̃ve−1

iso (s)

)
ds. (9.12)

The 1st Piola Kirchhoff stress tensor results form the derivative of the specific strain
energy function with respect to C

P = FS = 2Fρ0

[
∂ψ∞(C̃ve,ϑ,α)

∂C
+ ∂ψμ(C̄e

iso)

∂C

]
. (9.13)

A detailed description of the derivative can be found in Hartmann (2019). The still
unknown chemical and thermal parts of the Jacobi determinant are directly related
to the solution functions ϑ and α by the material parameters βC and β�

J� = 1 + β�ϑ, JC = 1 + βCα. (9.14)

The material parameters in the Maxwell model depend on the temperature and the
degree of cure. This applies on the one hand to the shear modulus in the upper spring
and the dynamic viscosity

μ(�,α) := f (�)g(θ)μ0, f (�) =
(

�0

�

)pμ
�

, g(α) = pμ
1 (1 − α) + pμ

2α

η(�,α) := f (�)g(θ)η0, f (�) =
(

�0

�

)pη
�

, g(α) = pη
1(1 − α) + pη

2α.

(9.15)
The selected formulations are based on the approach described in
Hossain and Steinmann (2014). The unknown quantities Fp and Fv are calculated
from evolution equations. The standard Maxwell model is used for the viscous part

d

dt

(
Fv TFv

) = 1

τ

[
C̃ve − Fv TFv

]
, τ = η

μ
. (9.16)

The plastic deformation gradient is based on the von Mises model. To reproduce
the transition from liquid to viscoelastic polymer, the limit stress Y now depends on
the degree of cure (Hartmann et al. 2021). When the gel point αgel is reached, the
material behavior is assumed to be purely visoelastic

Y (α) :=
{
Y0 + (Ygel − Y0)

α
αgel

if α ≤ αgel

∞ if α > αgel
. (9.17)
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The evolution equation for plastic flow is formulated with respect to the current
configuration

dp = sym
[
FveḞpFp−1Fve−1

] = λ̇
∂ f

∂s
, f = ‖s‖ −

√
2

3
Y (α). (9.18)

Andetailed derivation of the relationship betweenplastic symmetric velocity gradient
dp and plastic deformation gradient can be found e.g. in Wriggers (2008). The
distinction between plastic and elastic state results from the Kuhn-Tucker condition
λ ≥ 0, f ≤ 0 and λ f = 0. The yield function f depends on the deviatoric part of
the Cauchy stress tensor σ

s = σ − 1

3
( trσ) 1, σ = 1

J
PFT. (9.19)

Details on plastic modeling and a numerical implementation can be found e.g. in
Simo (1998).

9.4.2 Thermal Constitutive Equations

The specific entropy in the 1st law of thermodynamics computes from the derivative
of the specific strain energy function (9.10) with respect to temperature

η = −∂ψ

∂ϑ
= −∂ψ∞(C̃ve,ϑ)

∂�
− ∂ψϑα

∂ϑ
. (9.20)

The derivative of entropywith respect to temperature corresponds to the heat capacity.
InLandgraf et al. (2014), the corresponding portion from the upper spring is neglected
and the specific heat capacity depends solely on the specific thermochemical strain
energy function

cF(�,α) := −�
∂2ψ�α

∂2ϑ
. (9.21)

The specific entropy is a function of the degree of cure that leads to an additional
term in the 1st law of thermodynamics

ρ0 cFϑ̇ − ρ0�
∂2ψ�α

∂ϑ∂α
α̇ = Dint − DivQ + ρ0 r

The second term on the left-hand side describes the heat required to increase the
degree of cure by one at constant temperature and deformation. The dissipative part
contains the exothermic heat due to chemical reactions and the heat loss due to
plasticity
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Dint = −ρ0
∂ψ�α

∂α
α̇ + C̃veS̃ · L̃p. (9.22)

The stress S̃ results from the push-forward of the 2nd Piola-Kirchhoff stress tensor
to the viscoelastic configuration

S̃ = J
2
3

� J
2
3
C F

pSFp,T, L̃p = ḞpFp−1 (9.23)

In (9.5), the Gough–Joule effect is neglected since this contribution can be assumed
to be very small (Boley and Weiner 1960).

Remark From the 2nd lawof thermodynamics (3.24) additional parts result from the
change of J� and JC in time. However, these are neglected, since their contributions
can also be assumed to be small.

9.4.3 Chemical Constitutive Equations

The curing process can be modeled by a differential equation. Different approaches
are available depending on the reaction behavior (Kiasat 2000). For the 3D-printing
of silicone the model according to Sourour and Kamal (1976) is employed

α̇ =
[
A1 exp

(
− B1

�

)
+ A2 exp

(
− B2

�

)
αm

]
(1 − α)n. (9.24)

This description is based on six material parameters A1, B1, A2, B2,m, n, which
have to be determined by suitable experiments.

9.5 Discretization Using Peridynamics

The discretization of the mechanical differential equation leads to an equilibrium of
forces that must be fulfilled at each individual particle

f sI + fg
I + f tI =

{
fnI boundary particle
0 inner particle

. (9.25)

The contributions from the dead load fg
I and the inertia term f tI are based only on

quantities at the corresponding particle

fg
I = −mI b̄, f tI = mI üI . (9.26)
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To avoid negative effects due to under-integration the neighborhood is further subdi-
vided based on the approach in Sect. 7.7. The internal force due to the state of stress
in the material computes analogously to (7.39)

f sI = −
Nsub

I∑
α=1

Nα
I∑

J=1

[
Pα
I

∂W (XJ − XI )

∂XJ

(
Kα

I

)−1 − Pα
J

∂W (XI − XJ )

∂XI

(
Kα

J

)−1
]
VI VJ .

The 1st Piola Kirchhoff stress tensor is a function of the deformation gradi-
ent, the temperature, and the degree of cure at the corresponding particle Pa

I :=
f(Fa

I ,�I ,αI ). The deformation gradient is determined analogously to (7.26),
whereby the evaluation only takes place over the subhorizon

Fα
I =

Nα
I∑

J=1

(xJ − xI ) ⊗ ∂W (XJ − XI )

∂XJ

(
Kα

I

)−1
VJ . (9.27)

The stress is calculated from (9.13). To ease the notation, the upper index a, indicating
the evaluation at the subhorizon, is neglected. The kinematic quantities C̃ve and C̄e

result from the deformation gradients FI , F
p
I , and Fv

I as well as the thermal and
chemical Jacobi determinantss. The plastic and viscous components are calculated
by integrating the evolution Eqs. (9.16) and (9.18) employing the implicit Euler
method. The viscous deformation gradient is determined from

Fv T
I n+1F

v
I n+1 =

(
1 + 	t

τI n+1

)−1 [
Fv T
I nF

v
I n + 	t

τI n+1
C̃ve

I n+1

]
. (9.28)

The exponential map integrator is applied to integrate the plastic evolution equation.
Exploiting the symmetry of the direction vector n, the current plastic deformation
gradient results from

Fp
I n+1 = exp

(	λIFve−1
I n+1nI n+1Fve

I n+1

)
Fp
I n, nI n+1 = ∂ f I n+1

∂s
. (9.29)

An exact derivation of the above equation in the context of FEM can be found
in Korelc and Stupkiewicz (2014). The Newton method is employed to solve the
unknown variables Fp

I , F
v
I and 	λI . The derivations contained therein are gener-

ated with the software package AceGen (Korelc and Wriggers 2016). The influence
of surface tension is not included in the simulation but can be integrated into the
algorithm analogously to Sect. 8.5.1.

The temperature at a particle result from the solution of the thermal differential
equation. In the discrete form, the powers at each particle must be in equilibrium

Pη
I + Pd

I + Pq
I =

{
Pn
I boundary particle

0 inner particle
. (9.30)
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The term Pd
I due to thermal conduction is computed using a bond based approach

introduced in Oterkus et al. (2014). The corresponding power is determined solely
by the temperature difference between particles

Pq
I = VI

NI∑
J=1

gI JκI
�J − �I

‖XJ − XI‖VJ . (9.31)

The heat conduction κI depends on the size of the neighborhood and is calculated
from the heat conduction coefficient k and the horizon δI . In bond-based formu-
lations, the reproducing conditions are not automatically fulfilled, especially at the
boundary. Therefore, the correction term gI J is introduced. This term describes the
ratio of the maximum volume of all neighborhoods to the current volume of the
particle (Hartmann et al. 2021)

κI = 6 k

δ4Iπ
, gI J = 1

2
(gI + gJ ) , gI = V̄max

VI
, V̄I =

NI∑
J=1

VJ , V̄max = max
I

V̄I .

(9.32)
The entropy and dissipation components are determined directly from the corre-
sponding values at the particle

Pη
I = −mI cI ϑ̇I + mI�I

∂2ψ�α

∂�∂α
α̇I , Pd

I = −mI
∂ψ�α

∂α
α̇I + VI C̃ve

I S̃I · L̃p
I .

(9.33)
The power from the laser is absorbed by the boundary particles, which are irradiated
by the laser. At the remaining particles at the surface, heat exchange with the envi-
ronment takes place which computes from the ambient temperature which is equal
to the ambient temperature �0 and the transition coefficient h

Pn
I :=

{
Plaser I (xsI )AI beneath the laser
h (�0 − �I ) AI contact with environment

. (9.34)

This contribution requires the surface area AI . The first step is the identification of
the boundary particles. The integration constraint (7.35) can be used for this purpose.
Each particle which possesses a non-zero resulting normal vector N̄I is treated as a
boundary particle. The norm provides the corresponding area

AI = ‖N̄I‖ =
∣∣∣∣
∣∣∣∣

NI∑
J=1

[
ω (XJ − XI )K−1

I (XJ − XI )

− ω (XI − XJ )K−1
J (XI − XJ )

]
VI VJ

∣∣∣∣
∣∣∣∣.

(9.35)

The degree of cure of a particle results directly from the discretization of the evolution
Eq. (9.24)
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α̇I =
[
A1 exp

(
− B1

�I

)
+ A2 exp

(
− B2

�I

)
αm
I

]
(1 − αI )

n. (9.36)

9.5.1 Time Integration

To determine the solution function, integration over time is required. Usually, explicit
methods are applied in Peridynamics. The acceleration is integrated using the Verlet
scheme. This method ensures an accurarcy of 2nd order

uI n+1 = uI n + vI n	t + 1

2
üI n+1(	t)2, vI n+1 = vI n + 1

2
(üI n+1 + üI n)	t.

(9.37)
The temperature and the degree of cure at the next time step are determined by the
explicit Euler scheme

�I n+1 = �I n + 	t�̇I n, αI n+1 = αI n + 	tα̇I n. (9.38)

The critical time step results from the fulfillment of the criteria for the mechanical
and thermal differential equation

	t = min

(
h

c
,
ρ0 c0
k̄

)
, c =

√
K

ρ
, k̄ = max

I

NI∑
J=1

κJ

‖XJ − XI‖ . (9.39)

The second condition is taken from Madenci and Oterkus (2014).

9.6 Computational Studies

The presented examples investigate the influence of extrusion velocity and laser
power on the deformation behavior of the deposited silicone. For this purpose, a rep-
resentative 3D-printing step is simulated which reflects the characteristic features of
the whole process (Hartmann et al. 2021). A part of the silicone is already deposited
(Fig. 9.8). In all simulations, the diameter of the extruder nozzle is 0.25 mm and
the print head moves with a velocity of 0.01 m/s. After approximately 0.05 s, the
behavior of the printing process can be assumed to be stationary. This corresponds
to a deposited layer of 0.75 mm. To fulfill the requirement (9.39) of explicit time
integration schemes, a time step size of 0.5 · 10−7 s is selected. The search radius
of the neighborhood is δ = 3 ‖	X‖. The distance between the particles in the ini-
tial configuration ‖	X‖ is constant in the entire domain. The silicone sticks to the
substrate. Thus, a particle adheres when it comes into contact with the substrate.
The displacements are then fixed in all directions and a detachment from the plate is
excluded. The characterization of the material behavior is determined by the specific
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Fig. 9.8 Geometry and
dimensions of a
representative 3D Direct
Poly Printing process

strain energy functions. A Neo-Hookian model is used leading to the specific strain
energy functions in (9.10)

ψvol
∞ = K

4

[(
J ve

)2 − 1
]

− K

2
ln(J ve), ψμ = 1

2
μ

(
tr C̄e

iso − 3
)
. (9.40)

The material parameters for the Maxwell model and the friction element is given
in Table9.1. Since the exact values for medical silicone are not known, the values
are estimated using comparable materials. For their dependence on temperature and
degree of cure the parameters in (9.14), (9.15), and (9.17) need to be specified, see
Table9.2. The viscosity is assumed to be constant. The thermal conduction coeffi-
cient κ is 0.27 W/(m2K). The heat capacity is calculated by deriving the specific
thermochemical strain energy function (9.21)

ψ�α = hF0 + 	hFSα −
(
1

2
aFϑ2 + 1

6
bFϑ3

)
(1 − α) −

(
1

2
aSϑ

2 + 1

6
bSϑ

3

)
α.

(9.41)
The corresponding material parameters can be found in Table9.3. The evolution
equation for the degree of cure (9.24) requires additional parameters, which are
summarized in Table9.4. The influence of wetting is not included in the modeling.

Table 9.1 Material parameters for the Maxwell model and the friction element

Parameter: K∞ μ∞
0 μ η Y0

Value: 20000 40 5.0 3.5 0.4

Unit: N/m2 N/m2 N/m2 Ns/m2 N/m2
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Table 9.2 Additional parameters for temperature and degree of cure dependent variables

Parameter: β� βα p� pμ
α1 pμ

α2 Ygel αgel

Value: 10−5 −0.03 5.0 5.0 613.75 1.2 0.1

Unit: 1/K – Pa N/m2 N/m2 N/m2 –

Table 9.3 Fitted material parameters for the definition of quantities based on a DSC experiment
for acrylic bone cement (Landgraf 2015)

Parameter: �hFS aF bF aS bS

Value: −80, 95 4, 5729 10−3 −1, 960010−6 4, 1210 10−3 −1, 678510−6

Unit: J/g J/(gK2) J/(gK3) J/(gK2) J/(gK3)

Table 9.4 Material parameters for the evolution equation of the degree of cure

Parameter: A1 A2 B1 B2 m n

Value: 60000.0 18000.0 25.0 30.5 2.7 1.6

Unit: – – K K – –

9.6.1 Influence of Extrusion Velocity

The first application investigates the effect of the extrusion velocity on the width of
the printed layer. The test is performed at room temperature, i.e. 20 ◦C. The laser
is switched off and the temperature in the body is assumed to be constant. Three
different extrusion velocities, ve = 0.0025 m/s, ve = 0.05 m/s and ve = 0.01 m/s are
compared.As expected, an increase in velocity leads tomorematerial being deposited
per time unit, and hence, to an increase in width (Fig. 9.9). These qualitative results
agree with the experimental observations in Stieghorst (2017). Figure9.10 depicts

Fig. 9.9 Final shape of the printed layer. (Left) Extrusion velocity of 0.0025 m/s. (Right) Extrusion
velocity of 0.01 m/s
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Fig. 9.10 Width of the layer
to diameter of the nozzle of
the final printed part along
the printing direction
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the change of width of the deposited layer along the printing direction. Themaximum
width changes from 0.18 to 0.28 mm and 0.45 mm if the velocity increases.

9.6.2 Influence of Laser Power

The second test examines the effect of heat input by the laser on the width of the
printed layer. The laser power is 1.5 W. The wavelength allows 90% of the power to
be absorbed by the material. The radii of the laser irradiation (9.2) are ri = 0.25 mm
and ra = 0.35 mm. The extrusion velocity is set to ve = 0.01 m/s. As can be seen in
Fig. 9.11, the irradiation leads to a reduction of the width from 0.45 to 0.31 mm. The
maximum temperature is 208.32 ◦C and below the critical value of 355 ◦C.
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Fig. 9.11 (Left) Temperature distribution and shape of the final printed layer. (Right) Width of the
layer to diameter of the nozzle of the final printed part along the printing direction
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9.6.3 Conclusion

The examples only show the possibilities of a numerical investigation. A realistic
simulation requires the exact specification of the material parameters for medical
silicone. In addition, the influence of wetting must be taken into account.
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