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Abstract. The multiple class imbalanced problem is still less investi-
gated than its binary counterpart. In particular, the sources of its difficul-
ties have not been sufficiently studied so far. Therefore, in this paper we
summarize the few literature works on the difficulty factors and present
our own latest research results. The binary method for an identification
of the types of minority examples is generalized for multiple imbalance
classes. The second part of this paper presents three our recent meth-
ods for learning classifies from multi-class imbalanced data which exploit
information on the aforementioned difficulty factors.
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1 Introduction

In imbalanced data at least one class, further called the minority class, contains
a much smaller number of examples than other majority classes. Imbalanced
classes pose serious difficulties for learning classifiers as the algorithms are biased
towards the majority class examples and fail to recognize the instances from the
minority class as accurate as possible [5,10].

Most of current research have been placed on constantly proposing new algo-
rithms and less on studying why this class imbalanced problem is so difficult.
However, some researchers have attempted to better understand the nature of the
imbalance data and key properties of its underlying distribution. They noticed
that the class imbalance ratio is not necessarily the only, or main, problem
causing this performance decrease. Imbalanced data are often affected by other
difficulty factors, which in turn cause the degradation of classification perfor-
mance, sometimes even stronger than the global imbalance ratio [8,13,29,31].
The data difficulty factors are related to characteristics of class distribution,
such as decomposition of the class into rare sub-concepts, overlapping between
classes or presence of rare minority examples inside the majority class regions.
With respect to data distribution characteristics Napierala et al. proposed in
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[27] to distinguish different types of examples – safe or unsafe to be learnt (e.g.
borderline, rare or outliers) and present the methods for their identification.

Nevertheless this analysis and most of the methods concern binary imbal-
anced problems only. Despite this, in some applications it is necessary to deal
with multiple imbalanced classes and to improve the recognition of more than
one of the minority classes. Such multi-class imbalanced data occur, e.g., in
medical diagnosis (where few important and rare diseases may occur), technical
diagnostics with several degrees of the device failures, text categorization, etc.

The multi-class imbalanced problems are so far less investigated than their
binary counterpart. The number of specialized approaches is definitely much
smaller. In general, the multi-class learning problems are recognized as harder
than two class ones, however the sources of these difficulties have not been suf-
ficiently studied so far. The essential questions to be examined are as follows:

– Should the previously identified binary imbalanced data factors be adapted
to multiple classes?

– Does the nature of the multi-class problems lead itself to rather new and
different factors that cause deterioration of classifier’s predictions?

So far, only a few hypotheses on such issues can be found in the literature.
Therefore the first part of this paper is devoted to discussing the already identi-
fied data difficulty factors and presenting our own latest research results. Then,
we discuss how the earlier binary method for an identification of the types of
examples and their level of difficulty [27] can be generalized for multiple classes
[22]. We describe the usage of the specialized grid clustering [21] to discover
sub-concepts within minority classes and to find rare examples or outliers.

The other contribution includes a brief presentation of three recent methods,
introduced by the author and his coauthors, for multi-class imbalanced data
which exploit information on the aforementioned difficulty factors. These are
SOUP resampling method [11], the rule induction multi-class BRACID algorithm
[26] and a multi-class extension of Roughly Balanced Bagging ensemble [23].
The paper ends with a discussion of open problems and further perspectives for
research on multi-class imbalanced problems.

2 Related Works on Classification of Multi-class
Imbalanced Data

The current approaches to multi-class imbalances are usually divided into the
following categories [5]:

– binary decomposition approaches that transform the multi-class problem into
the set of binary ones and apply existing methods for improving binary prob-
lems,

– specialized approaches, which could be further split intro multi-class pre-
processing, variants of cost-sensitive learning, algorithm modifications –
including dedicated ensembles.



Classification of Multi-class Imbalanced Data: Data Difficulty Factors 59

Following the authors of [5], the most popular are decomposition approaches
which are based on the ensembles previously proposed to solve complex multi-
class tasks[19]. The most often used frameworks are:

One-versus-all ensemble (OVA), which constructs binary classifiers to rec-
ognize a particular class against the remaining ones aggregated into one class
[7]. During prediction, the test instance is classified by all base classifiers and is
assigned to the class of the most confident base classifier.

One-versus-one ensemble (OVO), which constructs binary classifiers for all
pairs of classes. The training set for a particular base classifier contains learn-
ing examples from the selected pair of classes only. The prediction for the new
instance can be taken by majority voting of base classifiers’ predictions or by
weighted voting with confidence scores, or more complex aggregations [6,19].

These frameworks can be easily used in combination with techniques for
binary imbalanced data. Moreover, they are often used with oversampling or
undersampling approaches [6].

The specialized multi-class imbalanced re-sampling methods, e.g., oversam-
pling Static-SMOTE, Global-CS or MDO [1,35], attempt to increase the cardi-
nalities of minority class towards the size of the biggest class.

The selective hybrid re-sampling is done in SPIDER3 [33], where relations
between classes are captured by pre-defined misclassification costs. SMOTE and
Clustered Undersampling Technique (SCUT) [2] applies EM clustering for each
majority class, and some examples are randomly removed from these clusters.
The minority classes are oversampled with the standard SMOTE.

The final group of specialized methods aims at modifying neural networks
or ensembles. The authors either try to integrate over-sampling in the network
or propose different loss functions that direct the training the networks towards
better recognition of minority classes. Boosting algorithms are also combined
with specialized re-sampling, see e.g. [32].

3 Difficulty Factors in Imbalanced Data

3.1 Earlier Studies on Binary Imbalanced Classes

Imbalanced data are characterized with a global imbalance ratio. For binary
classes it defined as a ratio of the majority class cardinality and minority one
or a percentage of the minority class in all examples in the dataset. Besides this
ratio researchers such as [8,13,31] noticed that other characteristics of examples
distributions in the attribute space, called data difficulty factors also deteriorate
classifier predictions. They mainly include:

– the fragmentation of the minority class into smaller, rare sub-concepts [15],
– the impact of too strong overlapping between classes,
– the presence of small, isolated groups of minority examples located deeply

inside the majority class region.
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The first factor comes from experimental observations that the minority class
usually does not form a homogeneous region (single concept) in the attribute
space, but is scattered into smaller sub-concepts spread over the space, often
surrounded by examples from the majority class. Experimental studies, e.g. [15,
29] demonstrated its important impact.

The second factor corresponds to high overlapping between regions of minor-
ity and majority class examples in the attribute space. In particular it may occur
in the complex boundary regions of both classes which are not clearly separated
and contain mixed instances from minority and majority classes. Sanchez et al.
also demonstrated that the local imbalanced ratio in the overlapping region is
more influential than the global imbalanced ratio [8].

The third factor corresponds to rare cases, which are defined as isolated, very
small, groups of minority examples (e.g., containing 1–3 examples) located more
deeply inside regions of the other class [27]. They could be even single examples
lying either inside this class or in empty regions of the attribute space. This is
different from the first factor, which refers to the decomposition of the minority
class into larger sub-clusters containing more examples than rare cases.

A related view on data difficulty factors leads to distinguishing different types
of minority examples, usually called as safe or unsafe, based on the number of
minority and majority class examples near them [18].

The special method for an identification of more detailed four types minority
examples was proposed by Napierala and Stefanowski in [27]. It is based on
analyzing class labels of examples in their local neighborhood defined either
by k-nearest neighbours or by kernels. For instance, if k = 5 neighbourhood is
considered, then the example is labelled as a safe example if all five or four its
neighbors belong to its class. If three or two neighbors belong to the same class
as the considered example, then it is labelled as borderline. If there are not the
same class examples in k neighbourhood it is an outlier and a rare one for the
remaining proportion.

Besides using labels of example types which depend on such proportions, the
authors of [27] defined a coefficient expressing a safe level of the given example
x – being a local estimator of conditional probability of its assignment to the
target class as

p(C|x) =
kC

k
, (1)

where C is the class of example x, k is the number of neighbours and kC is the
number of neighbours which belongs to class C.

Experimental studies on the role of the aforementioned factors have shown
that data complexities occur in imbalanced datasets, may play a key role in
explaining the difference between the performance of various classifiers [27] and
proposing new algorithms for improving classifiers.

3.2 Multi-class Difficulties

Researchers working on multi-class imbalanced data often argue that these data
are more difficult than binary ones. However, this and some other hypothe-
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ses were already considered for standard, balanced, machine learning tasks. For
instance, the claim that decision boundaries between multiple classes are more
complex and non-linear than simpler boundaries for binary classes follows the
older works, in particular in the context of specialized ensembles such as pairwise
coupling [14] (which inspires binary decomposition OVO), see e.g. a chapter in
[19]. However, there are other newer hypotheses or observations resulting from
experiments with multi-class imbalanced datasets. We summarize them below:

– Wang and Yao [32] analysing their experimental results made an observa-
tion that different predictive accuracy may be related to considering various
configuration of types (sizes) of classes. They distinguish two configuration
multi-majority and multi-minority referring to the datasets with only one
majority or only one minority class and all the other classes being of the
same type. Following experiments they concluded that that multi-majority
class configurations were more difficult than multi-minority ones.

– Buda et al. [4] paid attention to yet another configuration of multiple classes
– gradual imbalance, which contains classes of linearly growing sizes.

– Krawczyk claimed that a given class can be a minority class with respect to
some classes, and at the same time the majority one to another subset of
classes [17]. It makes re-sampling approaches difficult1.

The needs for transferring the idea of types of minority examples [27] into
multi-class data was discussed in [17,22]. Independently, the authors of [30] also
adopted the binary example types to the multi-class setting, however in the
simplest one-vs-all manner. They studied the performance of classifiers trained
on a dataset with oversampled minority examples of one type (using the brute
force strategy for testing many variants of random oversampling examples of
the particular type). Their results showed improvements of classifiers for almost
all datasets, although the authors did not present any methods for tuning the
degrees of oversampling nor selecting the variant of example type selection.

Lango has recently carried out a comprehensive experimental study with
specially generated synthetic datasets [24]. His main conclusions are as follows:

– The class overlapping was the very influential factor when combined with the
higher imbalances. Changing the imbalance ratio presented a limited impact
on the recognition of datasets without class overlapping or its slight amount.

– The types of the class size configurations with multiple majority classes were
more difficult than multi minority ones. In the second configuration, recogni-
tion of the smallest classes were worse than in the former one. The gradual
class size configuration with the intermediate classes played a special role
between them depending whether the these classes are closer to minority or
majority classes.

1 In our opinion this hypothesis may be particularly interesting for the gradual imbal-
ance configuration, where some classes may be intermediate ones with respect to
their sizes. Furthermore we share Krawczyk’s view that it may lead to ambiguities
in the decision on the degree of modifications of the examples in oversampling or
undersampling. It will be even more difficult when such classes overlap, which the
author did not take into account.



62 J. Stefanowski

– The analysis of interrelations between different types of classes showed that
the increase of overlapping between the minority and majority classes led
to the stronger deterioration of classifier performance than between minority
ones. The impact of the intermediate classes depends on the direction of
overlapping with other classes. Its overlapping with the minority class caused
faster deterioration of the recognition of minority class than itself, so it played
a similar role to majority classes.

– An increasing the number of classes was the most influential for a smaller
number of classes.

4 Identifying Types of Examples in Multi-class
Imbalanced Data

The generalization of types of examples for multiple classes should take into
account at least some of the difficulty factors.

Napierala et al. noticed in [22] that analyzing mutual relations between
classes shows that some minority classes can be treated as more closely related
to each other than to the majority class. As discussed in the previous section the
degree of overlapping between various classes may be different. Thus the new
multi-class type of examples may also strongly depend on their relations to other
classes. For instance, a given example may be of a borderline type for certain
classes and at the same time a safe example for the remaining classes. However
using existing binary decomposition approaches to estimate data difficulty or
the similar adaptation from [30] cannot properly handle these situations.

These motivations have led Napierala et al. to model relations between mul-
tiple imbalanced classes by means of additional information about similarity
between pairs of classes. This information could be either acquired from users -
experts or more automatically estimated from class distributions in the attribute
space [22]. It means that one needs information which classes can be treated as
more similar to each other than to the rest of the classes. Furthermore, this class
similarity may correspond to the expert’s interpretation of a mutual position of
examples in the neighborhood of the example from a given class. An intuition
behind this neighborhood is the following: if example x from a given class has
some neighbors from other classes, then neighbors from the class with higher
similarity are more preferred.

Let us come back to a medical diagnosis case considered in [22]. Two classes
corresponding to similar types of the same asthma should be considered as closer
to each other than similar to other types of non-asthma as they need completely
different therapies.

Defining it more precisely, it is assumed that for each pair of classes Ci, Cj the
degree of their similarity is defined as a real valued number μij ∈ [0; 1]. Similarity
of a class to itself is defined as μii = 1. The degree of similarity does not have
to be symmetric, i.e. for some classes Ci, Cj it may happen that μij �= μji.

Although the values of μij are defined individually for each dataset, the
general recommendation of [22] is to have higher similarities (μig → 1) for other
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minority classes Cg, while similarities to majority classes Ch should be rather
low (μih → 0). This recommendation follows the earlier discussed data difficulty
factors, in particular on higher difficulty of the multi-majority case.

In the case of missing expert’s preferences to defining these class similarities
for the given dataset, the authors of [11] proposed to use the heuristics which
follows class sizes as the basic symptom of class interrelations. This is defined
as:

μij =
min(|Ci|, |Cj |)
max(|Ci|, |Cj |) (2)

where |Ci| is the number of examples of Ci class.
These degrees of similarities are used to generalize the idea of an identifi-

cation of types of examples. If one considers the k nearest neighborhood, then
determining the number of examples from the majority class in the neighborhood
of the example allows to assess how safe the example is, and then to establish
its type. Let us start from defining the safe level for the multiple classes.

Considering a given example x belonging to the minority class Ci its safe
level is defined with respect to l classes of examples in its neighborhood as:

safe(xCi
) =

∑l
j=1 nCj

μij

k
(3)

where μij is a degree of similarity, nCj
is a number of examples from class Cj

inside the considered neighborhood of x and k is a total number of neighbors.
The general interpretation of the safe level of the example is as follows: the lower
the value, the more unsafe (difficult) is the example.

The safe levels could be exploited in two ways: either as the direct value,
or by transforming the continuous levels into discrete intervals corresponding to
types of example (as done in [27]). In Sect. 6 we will show how to use safe levels
in SOUP preprocessing methods and how types of the examples are used inside
BRACID rule induction algorithm.

In Table 1 we present some of experimental results from [22], which show that
the recognition of minority classes is related to their average safe levels.

Table 1. Sensitivity of minority classes for three classifiers and average safe levels in
these classes for new-thyroid, ecoli and cleveland datasets

CART NBayes 3NN Average safe level

Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3

NT 0.94 0.83 0.94 0.86 0.71 0.89 0.77 0.78

EC 0.60 0.85 0.78 0.68 0.30 0.90 0.48 0.75 0.84 0.57 0.91 0.82

CL 0.28 0.11 0.07 0.14 0.25 0.15 0.08 0.00 0.00 0.29 0.32 0.34
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5 Discovering Split of Classes into Sub-concepts and
Rare Examples

An identification of sub-concepts in the minority class is typically done by using
clustering algorithms. Nearly all approaches exploit k-means algorithms which
are run on examples of a single class, without analyzing their relation to remain-
ing classes. Japkowicz et al. showed how the discovered clusters in both minority
and majority classes could be used for random oversampling them [15]. The sur-
vey [31] covers other clustering approaches and presents their applications. The
use of density algorithms such as DBCAN was considered much less frequently.
However, the use of clustering algorithms for real-world datasets is still a non-
trivial task, in particular tuning their parameters.

In [21], authors introduced a completely different grid-based algorithm, called
ImGrid. The algorithm works in the following steps: 1) dividing the attribute
space into grid cells, 2) joining similar adjacent cells taking into account their
minority class distributions, 3) labeling examples according to difficulty factors,
4) forming minority sub-clusters.

The number of cells and the division of the attribute range into a number
of intervals are estimated with a special heuristics [21]. The cells of the grid are
joined based on example distributions, where each cell should contain enough
examples, and by means of the statistical tests for the comparison of two discrete
distributions. For binary classes it is done with Barnard’s test. Clusters are
formed after joining several cells. Each cluster is assigned one of four difficulty
labels: safe, borderline, rare, or outlier, following rules developed by Napierala in
[27]. To sum up, unlike other clustering ImGrid simultaneously does two things:
detects clusters and categorizes them. More precisely it detects minority sub-
clusters, outliers, rare cases, and class overlapping in binary imbalanced data.
Furthermore, due to its small dependency on parameter tuning, ImGrid could
be used to analyze real world datasets easier than previous algorithms.

Recently, it was generalized for multiple classes [16]. The main changes are
the following. A special variant of Pearson χ2 test (inspired by the solution from
ChiMerge discretization) is used to evaluate similarities of class distributions
in adjacent cells. Moreover, new heuristics for ordering cells are introduced in
order to get larger clusters. Then, the new rules for labelling clustered cells were
introduced as a multiple class generalization of intervals over the safe level, which
were earlier considered in [27]. They are better suited for handling overlapping
between several classes and identifying rare cases and outliers.

The multiple class ImGrid was validated on 12 synthetic datasets showing
its ability to re-discover a structure of three classes.

6 Multi-class Hybrid Resampling Algorithm SOUP

Following a critical discussion of earlier resampling multi-class techniques, such
as Global-CS or Static-SMOTE, the authors of [11] introduced a new method
called called Similarity Oversampling and Undersampling Preprocessing (abbrev.
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SOUP), which combines undersampling with oversampling and exploits the infor-
mation about the difficulty of examples according to their safe levels.

The authors of SOUP decided that, all majority classes are undersampled
and all minority classes are oversampled to the cardinality being the median of
the sizes of the biggest minority and the smallest majority class. The resulting
resampled dataset has a balanced class distribution, but also with a reasonable
size, which is not present in other multi-class resampling methods.

The resampling is done following information on the safe levels of the exam-
ples presented in Sect. 4. The undersampling of the majority classes is performed
by removing the most unsafe examples. It means that it removes the examples
located near the boundaries with minority classes or inside their regions. On
the other hand, the oversampling of minority classes is performed in the oppo-
site direction, i.e. the safest examples are duplicated as firsts, enhancing the
representation of clear minority concepts.

As the safe level of a particular example in the final distribution is changing
while performing consecutive steps of resampling, the classes are ordered. Under-
sampling majority classes is done from the biggest to the smallest one while the
minority classes are oversampled from the smallest to the biggest one. Moreover
after each resampling step safe levels of all examples are recomputed.

The experiments [11] showed that SOUP outperformed baseline classifiers
and Static-SMOTE and Global-CS – the two popular pre-processing methods
for multi-class imbalances. Moreover SOUP is slightly better then OVO with
re-sampling and competitive to MRBBag (discussed in Sect. 8). Selected results
from [11] for using J.8 trees are presented in Table 2.

Table 2. Comparison of specialized multi-class methods vs. SOUP and multiple
RBBagging – with respect to G-mean for selected real-world data sets

Dataset Baseline Global Static OVA OVO SOUP mRBBag

tree CS SMOTE Oversam. Oversam.

balancescale 0.0 0.340 0.080 0.302 0.526 0.614 0.683

car 0.847 0.940 0.897 0.184 0.939 0.938 0.917

cleveland 0.000 0.000 0.032 0.287 0.288 0.256 0.155

cmc 0.483 0.478 0.452 0.510 0.509 0.520 0.517

dermatology 0.945 0.952 .927 0.082 0.921 0.960 0.960

ecoli 0.728 0.719 0.738 0.000 0.805 0.0.721 0.768

flare 0.446 0.570 0.431 0.000 0.544 0.575 0.546

glass 0.625 0.715 0.699 0.000 0.698 0.667 0.405

led7digit 0.785 0.770 0.756 0.120 0.779 0.790 0.778

vehicle 0.912 0.912 0.915 0.164 0.923 0.909 0.943

winequality 0.421 0.464 0.356 0.456 0.492 0.448 0.525
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7 Multi-class Variant of BRACID Algorithm

7.1 Rule Induction from Binary Imbalanced Data with BRACID

Although induction of rules from examples is one of the well studied tasks in
machine learning, rule-based classifiers have not been studied in the context of
imbalanced data as intensively as other algorithms. A fairly small number of rule
classifiers specialized for imbalanced data has been introduced so far, for their
review see e.g. [26]. BRACID (the acronym of Bottom-up induction of Rules
And Cases for Imbalanced Data) is the most accurate of these algorithms,

To handle the data difficulty factors, the authors of BRACID [26] decided
to use a hybrid representation of rules and single instances, where more general
rules cover larger, homogeneous regions with more examples and instances should
handle non-linear class borders and rare minority cases or outliers. The rules are
induced in a special Bottom-up rule sequential process. It starts from the set of
the most specific rule (single, seed learning examples) and in the next iteration it
tries to generalize its condition in the direction of the nearest neighbour example
from the same class, provided that it does not decrease the classification abilities
of the whole rule set evaluated with measures specific for imbalanced data.

An exploitation of types of difficulty of learning examples estimated by anal-
ysis the k-nearest neighborhood of seed examples is one of the main features of
BRACID. The difficult type [27] assigned to each seed example influences the
rule generalization, as for the unsafe minority example it is possible to generate
additional rules covering it. As a result, the number of minority class rules, as
well as their support, are increased and they are more likely to win with the
stronger majority rules while classifying new instances. For details see [26].

7.2 Generalizing BRACID for Multiple Imbalanced Classes

As BRACID was proposed for binary classes only. In a recent paper [25] two
ways of its generalizations for multiple classes were studied: (1) exploitation of
binary decomposition ensemble frameworks OVO and using the original binary
BRACID within them; (2) generalization of BRACID with a new scheme for
inducing a single set of rules from all multiple classes.

The second generalization partly follows a typical sequential schema for an
iterative induction of rules from successive classes. In each iteration, for each class
the temporary training dataset is constructed. It contains positive examples from
the considered class and the negative examples from all other classes (similar to
the OVA approach). BRACID algorithm is run on such data and only rules
describing the considered class are added to the final set of rules, while the
other class rules are discarded. At the end, the complete set contains rules from
all classes. An important modification of rule generalization takes into types
of classes, i.e. whether the positive class is a minority or majority one. More
precisely when the majority class is considered then (1) the internal k-nearest
neighbor generalization is done to a single nearest example for safe seed examples
and (2) to one, best of rules induced by generalization to k nearest examples for
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Table 3. Comparison of rule classifiers – PART, OVO Bracid and multiple BRACID
– with respect to G-mean for selected real-world data sets.

Dataset PART OVO-B m-BRACID

Balancescale 0.3136 0.4086 0.6789

Car 0.7925 0.9022 0.9004

Cleveland 0.0597 0.1750 0.2322

cmc 0.4431 0.4897 0.4691

Dermatology 0.8943 0.9204 0.9082

Ecoli 0.6373 0.7404 0.7976

Flare 0.1716 0.3904 0.4639

Glass 0.3174 0.1883 0.4256

Led7digit 0.7918 0.7736 0.7713

Vehicle 0.9147 0.9221 0.9323

Winequality 0.2917 0.4529 0.5338

unsafe example. For the minority class it is unchanged. This modification limits
the number of produced rules for majority classes.

In [25] experiments on similar multi-class datasets as [11] were done. Their
results show that this generalization of BRACID is better than the adaptive
using of the binary BRACID within OVO ensemble, both with respect to higher
predictive abilities and the number of rules. Some of these comparative results
are shown in Table 3. In case of producing still too many rules they can be
post-pruned with the special weighted coverage algorithm [28].

8 Multi-class Extension of Bagging Ensemble

Generalizations of bagging ensembles are quite effective for binary imbalanced
data. Lango et al. studied in [23] Roughly Balanced Bagging, which is one of
the most efficient under-sampling bagging for binary imbalanced classes and it
often works better than generalizations of boosting. It exploits a random under-
sampling before generating component classifiers, which reduces the presence
of the majority class examples inside each bootstrap sample of the finally con-
structed bagging. The random number of majority examples to be sampled to
the bootstrap is estimated according to the negative binomial distribution, while
the number of sampled minority examples is equal to the size of the minority
class inside the original training dataset. Finally, these numbers of examples are
sampled from each class with replacement and predictions of the learned based
classifiers are aggregated with the majority voting.

Lango and Stefanowski proposed in [23] its generalization to Multi-class
Roughly Balanced Bagging (further abbreviated as MRBBag). The main mod-
ification concerns a construction of bootstrap samples, which is realized in the
following way. The number of examples to be sampled from each class to the
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bootstrap is estimated from the multinomial distribution, which is defined by
the following probability mass function:

p(n1, n2, ..., nc) =
n!

n1!n2! · · · nc!
pn1
1 pn2

2 · · · pnc
c

where p1, p2, ..., pc and n =
∑c

i=1 ni are the parameters of the distribution.
The authors handle the multi-class imbalance problem by obtaining roughly

balanced bootstrap samples also with respect to class probabilities, so they fix
values p1, p2, ..., pc to the same constant value equal to 1

c , such that
∑c

i=1 pi = 1.
This parameterizes the upper formula. After learning component, base classifier
the final decision of the classifier is constructed by the majority voting. For the
pseudocode of this algorithm see [23].

In [23] MRBBag algorithm, constructed with J4.8 trees, was evaluated on
several artificial and UCI real-life imbalanced datasets. It outperformed other
tree and general ensemble classifiers with respect to G-mean and averaged F1-
score (both adapted for the multi-class evaluation). Refer also to its performance
in Table 2. Moreover MRBBag was further extended to deal with feature selection
for highly dimensional data, see details in [23]. This variant was successfully
applied to solve the task of categorization of twitter short text messages [20].

9 Software Implementations of Specialized Algorithms
for Multi-class Imbalanced Data

The methods for dealing with binary imbalanced data are already implemented
in various software libraries. The representatives are: imbalanced-learn with
scikit-learn in Python, KEEL, WEKA and its extensions in Java or several R
libraries such as IRIC or ClimbR. In case of methods for multi-class imbalanced
data there are nearly no public available software implementations. In the past
year two open source software kits were proposed: multi-imbalance Python
library [9], Matlab toolkit Multiple-imbalance [34].

The first library was developed by the author’s co-operators and it imple-
ments state-of-the-art approaches for multi-class imbalanced problems, which
are divided into three general categories: (1) binary decomposition approaches
(OVO, OVA and ECOC), (2) specialized pre-processing (Global-CS, Maha-
lanobis Distance Oversampling (MDO), Static-SMOTE, SPIDER3 and SOUP),
and (3) other ensembles (MRBagging and SOUP-bagging). So it covers methods
discussed in this paper.

On the other hand, the Matlab toolkit contains 18 methods, mainly variants
of Adaboost or ECOC and specialized tree classifiers.

10 Future Research Directions and Conclusions

Looking at the current literature, we could expect that many new methods
will still be proposed to improve the classification of imbalanced data, includ-
ing multi-class variants. It is hoped, however, that these expected proposals
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will go beyond simple adaptations of known approaches or exploitation of the
binary decomposition frameworks, and in particular they will take advantage
of the aforementioned data difficulty factors. Below some personal opinions are
expressed as to the research directions.

Cost sensitive learning for multiple classes should estimate misclassification
costs for each example also with their difficulty levels. The current proposals are
too much oriented to global imbalance ratios.

In terms of further research on data difficulties, it is necessary to more care-
fully explore the differences in the impact of overlapping between different class
types and in the context of different class size configurations. In particular, this
applies to a more detailed analysis of the intermediate classes in the so-called
gradual configurations that appear to be more difficult than configurations with
sharp changes of class size between minority and majority ones.

In particular the role of rare examples for many classes, which previously had
a large impact on deteriorating the classification of imbalanced binary data, has
not been sufficiently studied for multiple classes yet.

New preprocessing methods should be developed for better dealing with over-
lapping between various classes as they are more critical than in the binary prob-
lems. It should also be assessed to what extent changes (e.g. by resampling) in
the size of overlapping classes will affect the recognition of other classes.

Other approaches for discovery sub-concepts in multiple classes could be still
studied, in particular with exploiting density based clustering.

Deeper research on specialized artificial neural networks should be under-
taken. The current few studies are too focused on including random re-sampling
or relatively simple modifications of the optimized loss function. This is desir-
able given the current strong interest in image recognition or natural language
processing using deep neural networks.

An open question concerns multi-class and highly dimensional datasets. Fea-
ture random sampling does not take into account internal relations between
classes. Furthermore, more research is needed on the specialized construction of
new features, projections of the original ones into new representation space, like
in embedded representations in deep networks or similarity learning.

Nearly all current research were done on static multi-class imbalanced data.
On the other hand data streams with concept drifts occur in many modern
applications of Big Data [12]. They are naturally imbalanced and the global
imbalance ratio may vary over time. However, the data factors such as class
split into factors, overlapping or presence of rare case may also change (similarly
to typical drifts) and their drifts are definitely local as it was recently shown
for binary imbalanced streams [3]. Their experiments demonstrated that these
drifts deteriorate predictive performance of popular stream classifiers and posed
needs for the developments of new specialized online algorithms. However such
studies should be done with more complex multiple classifiers. Furthermore new
online clustering algorithms for detection of the class split, their changes over
time and appearance of new classes in the streams are necessary.
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