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Abstract. In this work, we bridge possibility theory with intuitionistic
L-fuzzy sets, by identifying a special class of possibility distributions cor-
responding to intuitionistic L-fuzzy sets based on a complete residuated
lattice with an involution. Moreover, taking the �Lukasiewicz n-chains as
structures of truth degrees, we propose an algorithm to compute the intu-
itionistic L-fuzzy set corresponding to a given possibility distribution, in
case it exists.
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1 Introduction

Possibility distributions are the building blocks of possibility theory [15]. The
concept of possibility was investigated by several scholars, expecially by Shackle
[32], Lewis [27], Cohen [10], and Zadeh [33]. Moreover, possibility theory and
its applications were widely explored by Dubois, Prade and colleagues in many
works [12,13,16].

A possibility distribution πx is a map associated to a variable x, from a uni-
verse U to a totally ordered scale L with a top and bottom, such as the unit
interval [0, 1]. Depending on the interpretations, πx(u) estimates the degree of
ease, the degree of unsurprizingness or of expectedness, the degree of acceptabil-
ity or of preference related to the proposition “the value of x is u” [14]. Here,
we focus on possibility distributions arising when a degree of plausibility needs
to be assigned to an L-set as in the following example1.

Suppose that V is a collection of features regarding a flat (for instance small
size and low price). Then, each specific flat F is associated to an L-set ωF : V → L,
where ωF(v) is the truth degree to which F has the attribute v of V. Therefore, we
could consider a possibility distribution π such that π(ωF) expresses the degree
of possibility that a given customer prefers a given flat F (described by ωF) before
he/she knows it in advance.

1 L-sets were introduced by Goguen [21] as generalizations of fuzzy sets.
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Specifically, we deal with possibility distributions whose domain is composed
of all L-sets on a given universe assuming that L is a complete residuated lattice
with an involution [24]. Besides, they are interpreted as preference functions,
thus standing for a counterpart to utility functions [11,17].

Mainly, we aim to discover the existing connections between this type of
possibility distributions and intuitionistic L-fuzzy sets, a generalization of intu-
itionistic fuzzy sets, based on a lattice L instead of [0, 1] as the set of truth-
values. To this purpose, we view intuitionistic L-fuzzy sets as generalizations of
orthopairs, which are pairs of disjoint subsets of a universe used to model uncer-
tainty [7]. Given a set of propositional variables V, an orthopair (P,N) on V has
an epistemic meaning: P is the set of variables known to be true, N is the set of
variables known to be false, and V \ (P ∪N) is the set of unknown variables by a
given agent. In [8], the authors provided the following correspondence between
orthopairs and Boolean possibility distributions: An orthopair on V generates a
Boolean possibility distribution whose domain Ω is made of all evaluation func-
tions on V. On the other hand, not all Boolean possibility distributions having
Ω as domain are generated by an orthopair on V. Consequently, orthopairs on
V individuate a special class of Boolean possibility distributions on Ω. In this
article, we intend to extend this correspondence by using fuzzy logic. More pre-
cisely, we identify intuitionistic L-fuzzy sets of a given universe V with particular
possibility distributions, which assign a degree of L to each L-set of V.

In providing theoretical results, we suppose that complete residuated lattices
with an involution are our algebraic structures of truth values [19]. However,
examples and algorithms are confined to finite substructures of the standard
�Lukasiewicz MV-algebra [6,28]. Our choice depends on that �Lukasiewicz impli-
cation is usually used for fuzzy logic applications because it is the only plausible
continuous implication operation on [0, 1] [31].

The article is organized as follows. The next section reviews some basic
notions and results regarding residuated lattices and intuitionistic fuzzy sets.
In Sect. 3, we firstly assign a special possibility distribution to each intuitionis-
tic L-fuzzy set. Then, we prove that possibility distributions corresponding to
intuitionistic L-fuzzy sets are normal. After that, confining to IMTL-algebras,
we establish under what conditions a possibility distribution assumes value 0. In
Sect. 4, we firstly show that there exist normal possibility distributions not gen-
erated by an intuitionistic L-fuzzy set. Then, we find the intuitionistic L-fuzzy set
that generates a given possibility distribution, in case it exists. Moreover, in Sub-
sect. 4.1, considering the �Lukasiewicz n-chains as algebraic structures of truth
degrees, we provide procedures to compute the possibility distribution generated
by a given intuitionistic L-fuzzy set, and vice-versa, the intuitionistic L-fuzzy set
generating a given possibility distribution. Finally, in the last section, we briefly
discuss the potential developments of our results.

2 Preliminaries

This section describes some notations, preliminary notions and results, which
will be used in this article.
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2.1 Algebraic Structures of Truth Values

As basic structures of truth degrees, we choose complete residuated lattices,
which are widely adopted for applications of fuzzy logic [22,23,26].

Definition 1 [25]. A residuated lattice is an algebra 〈L,∧,∨,⊗,→,0,1〉, where

(i) 〈L,∧,∨,0,1〉 is a bounded lattice;
(ii) 〈L,⊗,1〉 is a commutative monoid, i.e. ⊗ is a binary operation that is com-

mutative, associative, and a ⊗ 1 = a for each a ∈ L;
(iii) a⊗ b ≤ c if and only if a ≤ b → c, for each a, b, c ∈ L (adjunction property).

A residuated lattice (L,∧,∨,⊗,→,0,1) is complete if its reduct (L,∧,∨) is
a complete lattice. In a residuated lattice, a unary operation named negation is
derived as follows: ¬x = x → 0, for each x ∈ L. In this paper, we deal with
residuated lattices where the negation is an involution, namely the so-called
double negation law holds: ¬¬x = x for each x ∈ L. The following proposition
lists some properties satisfied by every residuated lattice with an involution.

Proposition 1. Let 〈L,∧,∨,⊗,→,0,1〉 be a residuated lattice, then the follow-
ings hold for each a, b, c ∈ L:

(i) a ∧ b ≤ a and a ∧ b ≤ b;
(ii) if a ≤ b and a ≤ c then a ≤ b ∧ c;
(iii) a ∨ b = 1 if and only if a = 1 or b = 1;
(iv) a ∧ b = 1 if and only if a = 1 and b = 1;
(v) a ∧ b = 0 if and only if a = 0 or b = 0;
(vi) a ⊗ b = 1 if and only if a = 1 and b = 1;
(vii) a → b = 1 if and only if a ≤ b;
(viii) if ¬ is an involution, then a → b = ¬b → ¬a.

Special residuated lattices with an involution are the so-called IMTL-algebras,
which are the algebraic structures for monoidal t-norm based logic with an invo-
lutive negation.

Definition 2 [18]. A residuated lattice with an involution 〈L,∧,∨,⊗,→,0,1〉 is
an IMTL-algebra if and only if it satisfies the pre-linearity axiom:

(a → b) ∨ (b → a) = 1 for each a, b ∈ L. (1)

In providing examples and algorithms, we must restrict to a class of finite
substructures

{〈�Ln,∧,∨,⊗,→, 0, 1〉 with n ∈ N} (2)

of the standard �Lukasiewicz MV-algebra [6], where �Ln is the n-element
�Lukasiewicz chain given by �Ln = {k/n | 0 ≤ k ≤ n and n ∈ Z}, and the
operations in (2) are defined as follows: let a, b ∈ �Ln, then a ∧ b = min(a, b),
a ∨ b = max(a, b), a ⊗ b = max(0, a + b − 1) (�Lukasiewicz conjunction), and
a → b = min(1, 1 − a + b) (�Lukasiewicz implication). Moreover, ¬a = 1 − a for
each a ∈ �Ln. These structures also satisfy the pre-linearity axiom defined by (1).
For convenience, we will indicate a residuated lattice (L,∧,∨,⊗,→,0,1) with
its support L.
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2.2 Intuitionistic Fuzzy Sets and Intuitionistic L-fuzzy Sets

Intuitionistic fuzzy sets (IF sets for short) were introduced by Atanassov in [1,2]
to generalize the concept of fuzzy sets in order to explicitly take into account
the non-belongingness to a set. More formally:

Definition 3. Let X be a universe such that X �= ∅. An intuitionistic fuzzy set
A of X is defined as A = {(x, μ(x), ν(x)) | x ∈ X}, where the maps μ : X → [0, 1]
and ν : X → [0, 1] satisfy the condition μ(x) + ν(x) ≤ 1, for each x ∈ X.

The values μ(x) and ν(x) are respectively called degree of membership and
non-membership of x to A, and 1 − (μ(x) + ν(x)) is called hesitation margin of
x to A.

Let us observe that an IF set coincides with a fuzzy set when the hesitation
margin of each element of the starting universe is equal to 0. In this work, we
look at IF sets as generalizations of orthopairs by using fuzzy logic. Given a
universe X, (P,N) is an orthopair on X if and only if P,N ⊆ X and P ∩ N = ∅
[7]. It is easy to understand that (P,N) can be identified with a particular
intuitionistic fuzzy set {(x, μ(x), ν(x)) | x ∈ X}, where μ and ν coincides with
the characteristic functions of P and N , respectively. That is, orthopairs coincide
with the Boolean sub-collection of IF sets.

IF sets were extended to intuitionistic L-fuzzy sets (ILF sets for short) consid-
ering an appropriate lattice L instead of [0, 1] as the set of truth-values [3,4,20].
Our results are based on intuitionistic L-fuzzy sets valued on a complete resid-
uated lattice satisfying the double negation law.

Definition 4. Let 〈L,∧,∨,⊗,→,0,1〉 be a complete residuated lattice having an
involution ¬, and let X be a non-empty set. An intuitionistic L-fuzzy set A of
X is defined by A = {(x, μ(x), ν(x)) | x ∈ X}, where μ : X → L and ν : X → L
satisfy the condition μ(x) ≤ ¬ν(x), for each x ∈ X2.

The components of an intuitionistic L-fuzzy set (μ, ν) of X satisfy the identity
μ(x) ⊗ ν(x) = 0 for each x ∈ X. Thus, if 〈[0, 1],∧,∨,⊗,→, 0, 1〉 is the standard
�Lukasiewicz MV-algebra, they represent contrary properties [5].

For convenience, in the sequel, we briefly write (μ, ν) to denote the intuition-
istic L-set {(μ(x), ν(x)) | x ∈ X} when X is clear from the context.

3 From Intuitionistic L-Fuzzy Sets to Possibility
Distributions

In this section, we firstly assign a particular possibility distribution to each intu-
itionistic L-fuzzy set. Then, we prove that possibility distributions corresponding
to ILF sets are normal. After that, confining to complete IMTL-algebras, we
establish under what conditions a possibility distribution assumes value 0.
2 We notice that, as in Definition 3, μ and ν have a symmetrical role, in the sense that

μ(x) ≤ ¬ν(x) is equivalent to ν(x) ≤ ¬μ(x).



Possibility Distributions Generated by Intuitionistic L-Fuzzy Sets 153

3.1 Possibility Distributions

A possibility distribution is a map from a universe X to a totally ordered scale
L equipped with a top, a bottom, and an order-reversing map (such as the unit
interval [0, 1] with the function assigning 1−λ to each λ ∈ [0, 1]). The universe of
discourse can be an attribute domain, a set of interpretation of a propositional
language, etc. In this work, we focus on possibility distributions having the
following form

π : LV → L, (3)

where L is a complete residuated lattice with an involution, and LV is the set of
all L-sets of a non-empty universe V, i.e., LV = {ω | ω : V → L}. Of course, since
we choose complete residuated lattices with an involution as algebraic structures
of truth degrees, our results also hold for the standard definition of possibility
distribution, where L is a totally ordered scale. We use the symbol Π to denote
the set of all possibility distributions given by (3), i.e., Π = {π | π : LV → L}.

In possibility theory, a very important role is played by normal possibility
distributions [15].

Definition 5. A possibility distribution π ∈ Π is normal if and only if there
exists ω ∈ LV such that π(ω) = 1. Moreover, given π ∈ Π, we put K(π) = {ω ∈
LV | π(ω) = 1}, and we call K(π) the kernel of π.

3.2 Possibility Distributions Generated by Intuitionistic L-fuzzy
Sets

Every intuitionistic L-fuzzy set (μ, ν) determines a possibility distribution
π(μ,ν) ∈ Π.

Definition 6. Let ω ∈ LV , then

π(μ,ν)(ω) =
∧

v∈V
(μ(v) → ω(v)) ⊗ (ν(v) → ¬ω(v)). (4)

We call π(μ,ν) the possibility distribution generated by (μ, ν).

Let us point out that our possibility distributions play a different role from
those based on rough set theory [9,29,30]. Indeed, a possibility distribution,
defined by (4), is viewed as a preference function that arises by aggregating the
mappings of an intuitionistic L-fuzzy set, which are interpreted as preference
functions too3. This interpretation can be better understood from the following
illustrative example, where a possibility distribution is generated by an intu-
itionistic L-set in a concrete situation.

3 Additionally, given a intuitionistic L-fuzzy set (μ, ν), the value π(μ,ν)(ω) can be also
understood as an answer to a bipolar fuzzy query given by (μ, ν), where μ and ν
respectively express positive and negative elastic constraints.
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Example 1. Imagine that a real estate agent wants to discover the degree of
possibility to which a given client C prefers a given flat F that he/she does not
know in advance, starting from a pair of specific preference functions, expressed
by the client on a set of features concerning apartments.

Then, let V = {v1, . . . , v10} be a collection of features regarding flats (for
instance small size and low price), and let �L5 = {0, 0.25, 0.5, 0.75, 1} be the
5-element �Lukasiewicz chain (see Subsect. 2.1). We suppose that

– each flat F is described by an �L5-set ωF : V → �L5, where ωF(v) is the truth
degree to which F has the attribute v of V;

– the preferences of a given customer C on the attributes of V are described by
an intuitionistic �L5-fuzzy set (μC, νC) of V. This means that given v ∈ V, C
prefers apartments having the attribute v with a degree at least μC(v) and
at most ¬νC(v) (i.e., C prefers apartments that do not have v with a degree
at least ν(v)) in the scale �L5. For example, if v is the attribute small size,
then μ(v) = 0.5 and ν(v) = 0.25 respectively mean that the customer prefers
flats being small at least 0.5 and not more than 0.75 in the scale �L5, since
¬ν(v) = 0.75.
Let us notice that μ and ν are also fuzzy constraints: given v ∈ V, μ(v)
and ¬ν(v) represent degrees of priority, namely a suitable flat must have the
attribute v with a degree between μ(v) and ¬ν(v), according to the preference
of C. Moreover, we say that μ and ν are respectively positive and negative
preference functions because their interpretation is based on the customer
preferences about the presence or the absence of certain properties in its
ideal apartment.

Hence, π(μC,νC) : �LV
5 → �L5 given by (4), is a new preference function, where

π(μC,νC)(ωF) is the degree of possibility that customer C prefers apartment ωF, and
it is computed by aggregating μC and νC that capture the preferences expressed
by C on the attributes of V. In other words, π(μC,νC) is a possibility distribution
prescribing to what extent a flat is judged to be suitable for C according to the
constraints given by (μC, νC). For example, let Fi and Fj be flats represented
by ωFi

and ωFj
, and let C be a customer whose preferences are represented by

(μC, νC) (see Table 1). By Eq. 4, π(μC,νC)(ωFi) = 1 and π(μC,νC)(ωFj ) = 0.25. This

Table 1. Values assumed by ωFi , ωFj , μC and νC on V

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

ωFi 0.5 0.5 0.75 1 0 0.5 0.25 0.5 0.5 0.25

ωFj 0.75 0.5 0.5 0.25 0.25 0.5 0.75 1 0 0.25

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

μC 0.25 0.25 0.75 1 0 0 0 0.25 0.25 0.25

νC 0.5 0.5 0.25 0 0.25 0.5 0.75 0.25 0 0.5
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means that we can believe that C prefers ωFi more than ωFj . Consequently, the
real estate agent could propose ωFi

to C directly and exclude ωFj
.

In the following example, we find the possibility distribution generated by a
given ILF set.

Example 2. Let V = {a, b}, and let �L5 = {0, 0.25, 0.5, 0.75, 1} be the 5-
element �Lukasiewicz chain (see Subsect. 2.1). Then, Π is composed of the �L5-sets
ω1, . . . , ω25 : {a, b} → �L5 defined by Table 2. We consider the ILF set (μ, ν) given
by {(a, 0.25, 0.25), (b, 0.5, 0.5)} (i.e. μ(a) = 0.25, μ(b) = 0.5, ν(a) = 0.25, and
ν(b) = 0.5).

Then, by (4), the possibility distribution generated by (μ, ν) is given by

π(μ,ν)(ωi) =

⎧
⎪⎨

⎪⎩

1 if i ∈ {1, 2, 3},

0.5 if i ∈ {4, 8, 9, 12, 13, 16, 17, 20, 21, 25},

0.75 otherwise.
(5)

Table 2. Values assumed by ω1, . . . , ω25 on {a, b}

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13

a 0.25 0.5 0.75 0 0 0 0 0 0.25 0.25 0.25 0.25 0.5

b 0.5 0.5 0.5 0 0.25 0.5 0.75 1 0 0.25 0.75 1 0

ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21 ω22 ω23 ω24 ω25

a 0.5 0.5 0.5 0.75 0.75 0.75 0.75 1 1 1 1 1

b 0.25 0.75 1 0 0.25 0.75 1 0 0.25 0.5 0.75 1

Remark 1. When L = {0,1} and V is a set of propositional variables, Eq. 4
provides the following correspondence between Boolean possibility distributions
and orthopairs, which has already been shown in [8]. Given an ILF set (μ, ν),
then μ : V → {0,1} and ν : V → {0,1} are respectively the characteristic
functions of the sets Oμ and Oν that form an orthopair on V. Furthermore,
{0,1}V consists of all Boolean evaluation functions on V. Hence, it is easy to
check that given π ∈ Π and ω ∈ {0,1}V , π(ω) = 1 (according to Eq. 4) if and
only if ω is a model of the propositional formula φμ ∧ φν such that

φμ :=

{∧
v∈Oμ

v if Oμ �= ∅
� otherwise

and φν :=

{∧
v∈Oν

¬v if Oν �= ∅
� otherwise

where ∧,¬, and � are respectively interpreted with the conjunction, the nega-
tion, and the top of a Boolean algebra.
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An intuitionistic L-fuzzy set (μ, ν) determines also a collection of L-sets I(μ,ν):

I(μ,ν) = {ω : V → L such that μ(v) ≤ ω(v) ≤ ¬ν(v) for each v ∈ V}. (6)

Remark 2. I(μ,ν) is a non-empty set since μ ∈ I(μ,ν).

The following theorem states that I(μ,ν) coincides with the kernel of π(μ,ν),
and so with K(π(μ,ν)) = {ω ∈ LV | π(μ,ν)(ω) = 1}.

Theorem 1. Let (μ, ν) be an intuitionistic L-fuzzy set, and let ω ∈ LV . Then,
π(μ,ν)(ω) = 1 if and only if ω ∈ I(μ,ν).

Proof. Let ω ∈ LV such that π(μ,ν)(ω) = 1. Then, by (4),
∧

v∈V(μ(v) → ω(v)) ⊗
(ν(v) → ¬ω(v)) = 1, for each v ∈ V.

Using Proposition 1 (items (iii), (vi), and (vii)), we have that μ(v) ≤ ω(v)
and ν(v) ≤ ¬ω(v), for each v ∈ V.

Moreover, by Proposition 1(viii), ν(v) ≤ ¬ω(v) implies ¬¬ω(v) ≤ ¬ν(v) for
each v ∈ V, and since ¬ is an involution, we finally get ω(v) ≤ ¬ν(v) for each
v ∈ V. Hence, μ(v) ≤ ω(v) ≤ ¬ν(v) for each v ∈ V, and so, we can conclude that
ω belongs to I(μ,ν) (see (6)).

Analogously, we can prove that if ω ∈ I(μ,ν) then π(μ,ν)(ω) = 1.

Example 3. Consider Example 2, then I(μ,ν) = {ω1, ω2, ω3}, which is also equal
to K(π(μ,ν)).

Therefore, as an immediate consequence of Theorem 1 and Remark 2, we have
that possibility distributions generated by an intuitionistic L-set are always nor-
mal.

Corollary 1. Let π ∈ Π. If π is generated by an intuitionistic L-fuzzy set, then
π is normal.

3.3 Possibility Distributions Generated by Intuitionistic L-fuzzy
Sets Based on an IMTL-algebra

In this subsection, confining to complete IMTL-algebras, we discover when a
possibility distribution (generated by an ILF set) assumes value 0.

At first, let us prove the following lemma.

Lemma 1. Let 〈L,∧,∨,⊗,→,0,1〉 be a complete IMTL-algebra, and let (μ, ν)
be an intuitionistic L-fuzzy set. Then, (μ(v) → ω(v)) ∨ (ν(v) → ¬ω(v)) = 1, for
each v ∈ V.

Proof. Let v ∈ V such that μ(v) → ω(v) �= 1. Since the pre-linearity axiom
holds, we get ω(v) → μ(v) = 1. By Proposition 1(vii), ω(v) ≤ μ(v). Moreover,
by Definition 4, μ(v) ≤ ¬ν(v). Hence, ω(v) ≤ ¬ν(v) that is equivalent to ω(v) →
¬ν(v) = 1. Finally, by Proposition 1 (viii), we get ν(v) → ¬ω(v) = 1.

Analogously, let v ∈ V, if ν(v) → ¬ω(v) �= 1, then we can prove that μ(v) →
ω(v) = 1.

By Proposition 1(iv), we conclude that (μ(v) → ω(v))∨ (ν(v) → ¬ω(v)) = 1.
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A possibility distribution generated by an ILF set (valued on a complete
IMTL-algebra) is equal to 0 only in some particular cases. More precisely, the
next theorem holds.

Theorem 2. Let 〈L,∧,∨,⊗,→,0,1〉 be a complete IMTL-algebra, let (μ, ν) be
an intuitionistic L-fuzzy set, and let ω ∈ LV . Then, π(μ,ν)(ω) = 0 if and only if
there exists v ∈ V such that μ(v) = 1 and ω(v) = 0, or μ(v) = 0 and ω(v) = 1.

Proof. (⇐) This implication is trivial.
(⇒) Let ω ∈ LV such that π(μ,ν)(ω) = 0. Then, by Proposition 1 (v), there exists

v ∈ V such that

(μ(v) → ω(v)) ⊗ (ν(v) → ¬ω(v)) = 0. (7)

By Lemma 1,
μ(v) → ω(v) = 1 or ν(v) → ¬ω(v) = 1. (8)

Eventually, by Definition 1 (a ⊗ 1 = a for each a ∈ L), Eqs. (7) and (8) imply
that μ(v) = 1 and ω(v) = 0, or μ(v) = 0 and ω(v) = 1.

Example 4. Consider Example 2. Then, π(μ,ν)(ω) �= 0 for each ω ∈ �L
{a,b}
5 . In

fact, μ(a), μ(b) /∈ {0, 1}.

4 From Possibility Distributions to Intuitionistic Fuzzy
Sets

This section mainly aims to find the intuitionistic L-fuzzy set that generates a
given possibility distribution π : LV → L by means of Eq. 4.

Let us recall that Eq. 4 leads to define a normal possibility distribution for
each intuitionistic L-set. On the other hand, it is not always possible to do
the opposite. Namely, there exist normal possibility distributions from LV to L
that do not correspond to any intuitionistic L-fuzzy set by means of Eq. 4. The
following is an example.

Example 5. Consider Example 2, we can prove that no intuitionistic �L5-fuzzy
set generates the possibility distribution π : �L

{a,b}
5 → �L5 defined by the following

formula: let ωi ∈ �L
{a,b}
5 ,

π(ωi) =

{
1 if i ∈ {1, 2, 3},

0 otherwise.
(9)

Since the pre-linearity axiom holds in 〈�L5,∧,∨,⊗,→, 0, 1〉, we can apply
Theorem 2. Consequently, in case π is generated by an intuitionistic �L5-fuzzy
set, it must be ωi(a) ∈ {0, 1} or ωi(b) ∈ {0, 1}, for each i ∈ {4, . . . , 25}. But,
this contradicts Table 2, where ωi(a) and ωi(b) do not belong to {0, 1} for each
i ∈ {10, 11, 14, 15, 18, 19}.



158 S. Boffa and D. Ciucci

In the sequel, we write Π∗ to indicate the set of all possibility distributions
of Π that are generated by an intuitionistic L-fuzzy set.

Now, we want to establish when a given possibility distribution belongs to
Π∗. In order to do this, we firstly associate an intuitionistic L-fuzzy set to every
possibility distribution starting from its kernel.

Definition 7. Given π ∈ Π and v ∈ V, then μπ, νπ : V → L are defined as
follows:

μπ(v) =
∧

ω∈K(π)

ω(v) and νπ(v) =
∧

ω∈K(π)

¬ω(v). (10)

We can prove that the functions given by (10) form an intuitionistic L-fuzzy
set.

Proposition 2. Let π ∈ Π, then (μπ, νπ) is an intuitionistic L-fuzzy set.

Proof. By Proposition 1(i), we get
∧

ω∈K(π)

ω(v) ≤ ω(v) and
∧

ω∈K(π)

¬ω(v) ≤ ¬ω(v), for each v ∈ V. (11)

Moreover, by Proposition 1 (vii, viii),
∧

ω∈K(π)

¬ω(v) ≤ ¬ω(v), implies that ω(v) ≤ ¬
∧

ω∈K(π)

¬ω(v) for each v ∈ V.

(12)
Hence, by (10), we can conclude that μπ(v) ≤ ¬νπ(v), for each v ∈ V.

Since (μπ, νπ) is an intuitionistic L-fuzzy set, it generates a new possibility
distribution (by means of Eq. 4) that we denote with π∗. In general, π∗ does not
coincide with π. For example, it is easy to verify that if π is given by (5) then π∗

is given by (9). Consequently, π∗ �= π. Of course, π = π∗ implies that π ∈ Π∗,
and more precisely that π is generated by the intuitionistic L-fuzzy set (μπ, νπ).
Furthermore, the following theorem shows that (μπ, νπ) is the only intuitionistic
L-fuzzy set that can generate π.

Theorem 3. Let π ∈ Π. If π ∈ Π∗, then π is generated by (μπ, νπ).

Proof. Let π ∈ Π∗, there exists (μ, ν) that generates π. So, we want to prove
that (μ, ν) = (μπ, νπ).

First of all, we show that μ = μπ. Let v ∈ V. Then, by Theorem 1,
μ(v) ≤ ω(v) for each ω ∈ K(π). Consequently, by Proposition 1(ii), μ(v) ≤∧

ω∈K(π) ω(v). Namely, μ(v) ≤ μπ(v).
Moreover, if μπ(v) < μ(v), then there exists ω ∈ K(π) such that ω(v) < μ(v),

but it contradicts Theorem 1. Then, μπ(v) ≤ μ(v).
Analogously, we can prove that ν = νπ.
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Example 6. Consider the possibility distribution π(μ,ν) given by (5). For conve-
nience, we indicate π(μ,ν) with π. Example 2 shows that π is generated by (μ, ν),
which is {(a, 0.25, 0, 25), (b, 0.5, 0.5)}. Consequently, π ∈ Π∗. Moreover, Theorem
3 assures us that (μ, ν) = (μπ, νπ). Indeed, μπ(μ,ν)(a) = ω1(a) ∧ ω2(a) ∧ ω3(a) =
0.25∧ 0.5∧ 0.75 = 0.25, μπ(μ,ν)(b) = ω1(b)∧ω2(b)∧ω3(b) = 0.5∧ 0.5∧ 0.5 = 0.5,
νπ(μ,ν)(a) = ¬ω1(a) ∧ ¬ω2(a) ∧ ¬ω3(a) = 0.75 ∧ 0.5 ∧ 0.25 = 0.25, and
νπ(μ,ν)(b) = ¬ω1(b) ∧ ¬ω2(b) ∧ ¬ω3(b) = 0.5 ∧ 0.5 ∧ 0.5 = 0.5.

Using Theorem 3, we provide a necessary and sufficient condition for a pos-
sibility distribution to be generated by an ILF set.

Corollary 2. Let π ∈ Π. Then, π ∈ Π∗ if and only if π = π∗, namely

π(ω) =
∧

v∈V
(μπ(v) → ω(v)) ⊗ (νπ(v) → ¬ω(v)), for each ω ∈ LV .

The following proposition will be used in the next subsection. It shows that
the kernel of π∗ always includes that of π.

Proposition 3. Let π ∈ Π. Then, K(π) ⊆ K(π∗).

Proof. Let ω ∈ K(π). Then, by (11) and (12), we get μπ(v) ≤ ω(v) ≤ ¬νπ(v) for
each v ∈ V. Thus, by Theorem 1, ω ∈ K(π∗).

4.1 An Algorithm to Find the Intuitionistic L-fuzzy Set Generating
a Given Possibility Distribution

In this subsection, assuming that our structures of truth degrees are the
�Lukasiewicz n-chains defined by (2), we propose three algorithms to achieve
the following goals.

(i) Compute the intuitionistic �Ln-fuzzy set corresponding to a given possibility
distribution by means of (10).

(ii) Find the values assumed by the possibility distribution generated by a given
intuitionistic �Ln-fuzzy set.

(iii) Establish whether or not a given possibility distribution is generated by an
intuitionistic �Ln-fuzzy set.

Firstly, we propose the procedure INT-L-SET (see Algorithm 1) based on
Eq. 10. Its input consists of a finite set V, a positive integer n (to determine the
corresponding �Lukasiewicz n-chain), and a possibility distribution π from �LV

n to
�Ln. Its output is a pair (μ, ν) of mappings from V to �Ln. By Proposition 2, (μ, ν)
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is an intuitionistic �Ln-fuzzy set, and by Theorem 3, if π ∈ Π∗ then it generates
π.

Algorithm 1: The algorithm for finding the intuitionistic �Ln-fuzzy set
corresponding to a given possibility distribution by means of (10).

procedure INT-L-SET (V, n, π)
foreach v ∈ V do

μ(v), ν(v) → 1;
foreach ω ∈ �LV

n such that π(ω) = 1 do
μ(v) ← min{μ(v), ω(v)};
ν(v) ← min{ν(v), 1 − ω(v)};

return (μ, ν);
end procedure

The next procedure (see Algorithm 2) is constructed by using the following
proposition, where Eq. 4 is rewritten for all possibility distributions generated
by an intuitionistic �Ln-fuzzy set4.

Proposition 4. Let π be a possibility distribution generated by an intuitionistic
�Ln-fuzzy set (μ, ν), and let ω ∈ �LV

n . Then, π(ω) =
∧

v∈V αω(v), where

αω(v) =

⎧
⎪⎨

⎪⎩

μ(v) → ω(v) if ω(v) ≤ μ(v),
ν(v) → ¬ω(v) if ω(v) ≥ ¬ν(v),
1 otherwise.

(13)

Proof. Let v ∈ V such that ω(v) ≤ μ(v). By Definition 4, μ(v) ≤ ¬ν(v). Hence,
ω(v) ≤ ¬ν(v). By Proposition 1(vii,viii), ν(v) ≤ ¬ω(v), and so ν(v) → ¬ω(v) =
1. Finally, using Eq. 4, αω(v) = (μ(v) → ω(v))⊗1, hence αω(v) = (μ(v) → ω(v))
from Definition 1(ii).

Analogously, given v ∈ V such that ω(v) > μ(v), we can prove that αω(v) is
given by (13).

Proposition 4 leads to the procedure VALUE (just apply the �Lukasiewicz
operations to (13)) taking as input a finite set V, a function ω from V to �Ln, and
an intuitionistic �Ln-fuzzy set (μ, ν), and producing as output the value π(μ,ν)(ω).

4 More in general, Proposition 4 holds when we consider complete residuated lattices
with an involution and [0, 1] as support.
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Algorithm 2: The algorithm to find the values assumed by the possibility
distribution generated by the intuitionistic �Ln-fuzzy set (μ, ν).

procedure VALUE (V, ω, (μ, ν))
m ← 1;
foreach v ∈ V do

if ω(v) < μ(v) then
αv(ω) ← 1 − μ(v) + ω(v);

else
if ω(v) > 1 − ν(v) then

αv(ω) ← 2 − ω(v) + ν(v);
else

αv(ω) ← 1;

m ← min{m,αv(ω)};

return m;
end procedure

Finally, we present the procedure DISTRIBUTION to establish whether or
not a given possibility distribution π : �LV

n �→ �Ln is generated by the intuition-
istic �Ln-fuzzy set (μπ, νπ) (see Algorithm 3). In detail, firstly, the intuitionistic
�Ln-fuzzy set (μπ, νπ) is computed by INT-L-SET. Then, using the procedure
VALUE, it is checked whether or not π = π∗, where π∗ is the possibility dis-
tribution generated by (μπ, νπ). Eventually, if π = π∗, then π is generated by
(μπ, νπ). Otherwise, the answer is that π /∈ Π∗ (from Theorem 3 and Corollary
2). Moreover, by Proposition 3, we know that π(ω) = π∗(ω) for each ω ∈ K(π).
Hence, we must apply the procedure VALUE only for each ω ∈ �LV

n \ K(π).

Algorithm 3: The algorithm to establish whether or not a given possibility
distribution is generated by an intuitionistic �Ln-fuzzy set.

procedure DISTRIBUTION (V, n, π)
i ← 0;
(μ, ν) ← INT-L-SET(V, n, π);
foreach ω ∈ �Ln such that π(ω) �= 1 do

if π(ω) �= VALUE(V, ω, (μ, ν) ) then
i ← 1;
break;

if i = 1 then
print π is not generated by an intuitionistic �Ln-fuzzy set;

else
print π is generated by the intuitionistic �Ln-fuzzy set (μ, ν);

return;
end procedure
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5 Conclusions and Future Directions

In this article, we identified each intuitionistic L-fuzzy set with a special nor-
mal possibility distribution. On the other hand, we showed that not all normal
possibility distributions can be identified with an intuitionistic L-fuzzy set.

In the future, we intend to explore the connection between possibility theory
and intuitionistic L-fuzzy sets in more detail. As an example, we would like to
discover other properties (in addition to normality) characterizing possibility
distributions generated by ILF sets. Also, we could associate a collection of
ILF sets to each possibility distribution, and hence, generalize by using fuzzy
logic, the correspondence between Boolean possibility distributions and sets of
orthopairs [8].

On a longer term, the link between the two theories could be used in appli-
cations, by applying techniques developed for IFS to Possibility Theory and,
whenever possible, the other way round.
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