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Abstract. In this paper we discuss incomplete data sets with missing
attribute values interpreted as “do not care” conditions. For data min-
ing, we use two types of probabilistic approximations, global and satu-
rated. Such approximations are constructed from two types of granules,
characteristic sets and maximal consistent blocks. We present results of
experiments on mining incomplete data sets using four approaches, com-
bining two types of probabilistic approximations, global and saturated,
with two types of granules, characteristic sets and maximal consistent
blocks. We compare these four approaches, using an error rate computed
as the result of ten-fold cross validation. We show that there are signifi-
cant differences (5% level of significance) between these four approaches
to data mining. However, there is no universally best approach. Hence,
for an incomplete data set, the best approach to data mining should be
chosen by trying all four approaches.

Keywords: Data mining · Rough set theory · Characteristic sets ·
Maximal consistent blocks · Probabilistic approximations

1 Introduction

Incomplete data sets are affected by missing attribute values. In this paper, we
consider an interpretation of missing attribute values called a “do not care”
condition. According to this interpretation, a missing attribute value may be
replaced by any specified attribute value.

For rule induction we use probabilistic approximations, a generalization of
the idea of lower and upper approximations known in rough set theory. A prob-
abilistic approximation of the concept X is associated with a probability α; if
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α = 1, the probabilistic approximation becomes the lower approximation of X;
if α is a small positive number, e.g., 0.001, the probabilistic approximation is
reduced to the upper approximation of X. Usually, probabilistic approximations
are applied to completely specified data sets [18,20–27], such approximations
are generalized to incomplete data sets, using characteristic sets, in [13,14], and
maximal consistent blocks in [1,2].

Missing attribute values are usually categorized into lost values and “do not
care” conditions. A lost value, denoted by “?”, is unavailable for the process of
data mining, while a ‘do not care” condition, denoted by “*”, represents any
value of the corresponding attribute.

Recently, two new types of approximations were introduced, global proba-
bilistic approximations in [3] and saturated probabilistic approximations in [8].
Results of experiments on an error rate, evaluated by ten-fold cross validation,
were presented for characteristic sets in [6–8] and for maximal consistent blocks
in [1,2]. In these experiments, global and saturated probabilistic approximations
based on characteristic sets were explored using data sets with lost values and
“do not care” conditions. Results show that among these four methods there is
no universally best method.

The main objective of this paper is a comparison of four approaches to mining
data, using two probabilistic approximations, global and saturated, based on two
granules, characteristic sets and maximal consistent blocks, in terms of an error
rate evaluated by ten-fold cross validation.

Rule induction was conducted using a new version of the Modified Learning
from Examples Module, version 2 (MLEM2) [5,12]. The MLEM2 algorithm is
a component of the Learning from Examples using Rough Sets (LERS) data
mining system [4,11,12].

2 Incomplete Data

We assume that the input data sets are presented in the form of a decision table.
An example of the decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent variables are
called attributes and a dependent variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. In Table 1, A = {Temperature,
Wind, Humidity} and d is Trip. The value for a case x and an attribute a will
be denoted by a(x). For example, Temperature(1) = normal.

The set X of all cases defined by the same value of the decision d is called
a concept. For example, a concept associated with the value yes of the decision
Trip is the set {1, 2, 3}.

A block of the attribute-value pair (a, v), denoted by [(a, v)], is the set {x ∈
U | a(x) = v} [10]. For incomplete decision tables, the definition of a block of an
attribute-value pair is modified in the following way:

– if for an attribute a and a case x we have a(x) = ?, the case x should not be
included in any blocks [(a, v)] for all values v of attribute a;
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Table 1. A decision table

Attributes Decision

Case Temperature Wind Humidity Trip

1 normal * no yes

2 high no ? yes

3 * ? no yes

4 normal * * no

5 ? yes * no

6 very-high * ? no

7 very-high ? * no

8 ? ? yes no

– if for an attribute a and a case x we have a(x) = ∗, the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1, the blocks of attribute-value pairs are:

[(Temperature, normal)] = {1, 3, 4}, [(Wind, yes)] = {1, 4, 5, 6},
[(Temperature, high)] = {2, 3}, [(Humidity, no)] = {1, 3, 4, 5, 7},
[(Temperature, very-high)] = {3, 6, 7}, [(Humidity, yes)] = {4, 5, 7, 8},
[(Wind, no)] = {1, 2, 4, 6}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– if a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x);

– if a(x) = ? or a(x) = ∗, then K(x, a) = U .

For Table 1 and B = A,
KA(1) = {1, 3, 4}, KA(5) = {1, 4, 5, 6},
KA(2) = {2}, KA(6) = {3, 6, 7},
KA(3) = {1, 3, 4, 5, 7}, KA(7) = {3, 6, 7}, and
KA(4) = {1, 3, 4}, KA(8) = {4, 5, 7, 8}.

A binary relation R(B) on U , defined for x, y ∈ U in the following way

(x, y) ∈ R(B) if and only if y ∈ KB(x)

will be called the characteristic relation. In our example R(A) = {(1, 1), (1, 3),
(1, 4), (2, 2), (3, 1), (3, 3), (3, 4), (3, 5), (3, 7), (4, 1), (4, 3), (4, 4), (5, 1), (5,
4), (5, 5), (5, 6), (6, 3), (6, 6), (6, 7), (7, 3), (7, 6), (7, 7), (8, 4), (8, 5), (8, 7),
(8, 8)}.

We quote some definitions from [1]. Let X be a subset of U . The set X is
B-consistent if (x, y) ∈ R(B) for any x, y ∈ X. If there does not exist a B-
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consistent subset Y of U such that X is a proper subset of Y , the set X is called
a generalized maximal B-consistent block. The set of all generalized maximal B-
consistent blocks will be denoted by C (B). In our example, C (A) = {{1, 3, 4},
{2}, {3, 7}, {5}, {6, 7}, {8}}.

Let B ⊆ A and Y ∈ C (B). The set of all generalized maximal B-consistent
blocks which include an element x of the set U , i.e. the set

{Y |Y ∈ C (B), x ∈ Y }
will be denoted by CB(x).

For data sets in which all missing attribute values are “do not care” condi-
tions, an idea of a maximal consistent block of B was defined in [19]. Note that
in our definition, the generalized maximal consistent blocks of B are defined for
arbitrary interpretations of missing attribute values. For Table 1, the generalized
maximal A-consistent blocks CA(x) are

CA(1) = {{1, 3, 4}}, CA(5) = {{5}},
CA(2) = {{2}}, CA(6) = {{6, 7}},
CA(3) = {{3, 7}, {1, 3, 4}}, CA(7) = {{3, 7}, {6, 7}}, and
CA(4) = {{1, 3, 4}}, CA(8) = {{8}}.

3 Probabilistic Approximations

In this section, we will discuss two types of probabilistic approximations: global
and saturated.
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Fig. 1. The bankruptcy data set
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Fig. 2. The breast cancer data set

3.1 Global Probabilistic Approximations Based on Characteristic
Sets

An idea of the global probabilistic approximation, restricted to lower and upper
approximations, was introduced in [16,17], and presented in a general form in
[3]. Let X be a concept, X ⊆ U . A B-global probabilistic approximation of the



Mining Incomplete Data 7

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e 
(%

) 

Parameter alpha

CS, Global
CS, Saturated
MCB, Global
MCB, Saturated

Fig. 3. The echocardiogram data set
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Fig. 4. The hepatitis data set
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Fig. 5. The image segmentation data
set
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Fig. 6. The iris data set
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Fig. 7. The lymphography data set

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e 
(%

) 

Parameter alpha

CS, Global
CS, Saturated
MCB, Global
MCB, Saturated

Fig. 8. The wine recognition data set

concept X, based on characteristic sets, with the parameter α and denoted by
apprglobal

α,B (X) is defined as the following set
⋃

{KB(x) | ∃ Y ⊆ U ∀x ∈ Y, Pr(X|KB(x)) ≥ α}. (1)

Obviously, for some sets B and X and the parameter α, there exist many
B-global probabilistic approximations of X. In addition, the algorithm for com-
puting B-global probabilistic approximations is of exponential computational
complexity. Therefore, in our experiments we used a heuristic version of the
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definition of B-global probabilistic approximation, called a MLEM2 B-global
probabilistic approximation of the concept X, associated with a parameter α
and denoted by apprmlem2

α,B (X) [3]. This definition is based on the rule induc-
tion algorithm MLEM2 [12]. The MLEM2 algorithm is used in the Learning
from Examples using Rough Sets (LERS) data mining system [4,11,12]. The
approximation apprmlem2

α,B (X) is constructed from characteristic sets KB(y), the
most relevant to the concept X, i.e., with |X ∩ KB(y)| as large as possible and
Pr(X|KB(y)) ≥ α, where y ∈ U . If more than one characteristic set KB(y)
satisfies both conditions, we pick the characteristic set KB(y) with the largest
Pr(X|KB(y)). If this criterion ends up with a tie, a characteristic set is picked
up heuristically, as the first on the list [3].

In this paper, we study MLEM2 B-global probabilistic approximations based
on characteristic sets, with B = A. Such approximations are called, for simplicity,
global probabilistic approximations associated with the parameter α, denoted by
apprglobal

α (X). Similarly, for B = A, the characteristic set KB(X) is denoted by
K(x).

Let Eα(X) be the set of all eligible characteristic sets defined as follows

{K(x) | x ∈ U,Pr(X|K(x)) ≥ α}. (2)

A heuristic version of the global probabilistic approximation based on char-
acteristic sets is presented below.

Global probabilistic approximation
based on characteristic sets algorithm
input: a set X (a concept), a set Eα(X),
output: a set T (apprglobal

α (X))
begin

G := X;
T := ∅;
Y := Eα(X);
while G 
= ∅ and Y 
= ∅

begin
select a characteristic set K(x) ∈ Y
such that |K(x) ∩ X| is maximum;
if a tie occurs, select K(x) ∈ Y
with the smallest cardinality;
if another tie occurs, select the first K(x);
T := T ∪ K(x);
G := G − T ;
Y := Y − K(x)

end
end

For Table 1, all distinct global probabilistic approximations based on charac-
teristic sets are
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apprglobal
1 ({1, 2, 3}) = {2},

apprglobal
0.667 ({1, 2, 3}) = {1, 2, 3, 4},

apprglobal
0.4 ({1, 2, 3}) = {1, 2, 3, 4, 5, 7},

apprglobal
1 ({4, 5, 6, 7, 8}) = {4, 5, 7, 8},

apprglobal
0.75 ({4, 5, 6, 7, 8}) = {1, 4, 5, 6, 7, 8},

3.2 Saturated Probabilistic Approximations Based on Characteristic
Sets

Another heuristic version of the probabilistic approximation is based on selection
of characteristic sets while giving higher priority to characteristic sets with larger
conditional probability Pr(X|K(x)). Additionally, if the approximation covers
all cases from the concept X, we stop adding characteristic sets.

Let X be a concept and let x ∈ U . Let us compute all conditional probabilities
Pr(X|K(x)). Then, we sort the set

{Pr(X|K(x)) | x ∈ U}. (3)

Let us denote the sorted list of such conditional probabilities by α1, α2,...,
αn, where α1 is the largest. For any i = 1, 2,..., n, the set Ei(x) is defined as
follows

{K(x) | x ∈ U,Pr(X|K(x)) = αi}. (4)

If we want to compute a saturated probabilistic approximation, denoted by
apprsaturated

α (X), for some α, 0 < α ≤ 1, we need to identify the index m such
that

αm ≥ α > αm+1, (5)

where m ∈ {1, 2, ..., n} and αn+1 = 0. Then, the saturated probabilistic approx-
imation apprsaturated

αm
(X) is computed using the following algorithm.

Saturated probabilistic approximation
based on characteristic sets algorithm
input: a set X (a concept), a set Ei(x) for
i = 1, 2,..., n and x ∈ U , index m
output: a set T (apprsaturated

αm
(X))

begin
T := ∅;
Yi(x) := Ei(x) for all i = 1, 2,..., m and x ∈ U ;
for j = 1, 2,..., m do

while Yj(x) 
= ∅
begin
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select a characteristic set K(x) ∈ Yj(x)
such that |K(x) ∩ X| is maximum;
if a tie occurs, select the first K(x);
Yj(x) := Yj(x) − K(x);
if (K(x) − T ) ∩ X 
= ∅

then T := T ∪ K(x);
if X ⊆ T then exit

end
end

For Table 1, all distinct saturated probabilistic approximations based on char-
acteristic sets are

apprsaturated
1 ({1, 2, 3}) = {2},

apprsaturated
0.667 ({1, 2, 3}) = {1, 2, 3, 4},

apprsaturated
1 ({4, 5, 6, 7, 8}) = {4, 5, 7, 8},

apprsaturated
0.75 ({4, 5, 6, 7, 8}) = {1, 4, 5, 6, 7, 8},

3.3 Global Probabilistic Approximations Based on Maximal
Consistent Blocks

A special case of the global probabilistic approximation, limited only to lower
and upper approximations and to characteristic sets, was introduced in [16,17].
A general definition of the global probabilistic approximation was introduced in
[9].

A B-global probabilistic approximation based on Maximal Consistent Blocks
of the concept X, with the parameter α and denoted by apprglobal

α,B (X) is defined
as follows

∪{Y | Y ∈ Cx(B), x ∈ X, Pr(X|Y ) ≥ α}.

Obviously, for given sets B and X and the parameter α, there exist many
B-global probabilistic approximations of X. Additionally, an algorithm for com-
puting B-global probabilistic approximations is of exponential computational
complexity. So, we decided to use a heuristic version of the definition of B-
global probabilistic approximation, called the MLEM2 B-global probabilistic
approximation of the concept X, associated with a parameter α and denoted
by apprmlem2

α,B (X) [3]. This definition is based on the rule induction algorithm
MLEM2. The approximation apprmlem2

α,B (X) is a union of the generalized maxi-
mal consistent blocks Y ∈ C (B), the most relevant to the concept X, i.e., with
|X ∩ Y | as large as possible and with Pr(X|Y ) ≥ α. If more than one gen-
eralized maximal consistent block Y satisfies both conditions, the generalized
maximal consistent block Y with the largest Pr(X|Y ) ≥ α is selected. If this
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criterion ends up with a tie, a generalized maximal consistent block Y is picked
up heuristically, as the first on the list [3].

Special MLEM2 B-global probabilistic approximations, with B = A, are
called global probabilistic approximations associated with the parameter α, and
are denoted by apprmlem2

α (X).
Let Eα(X) be the set of all eligible generalized maximal consistent blocks

defined as follows

{Y |Y ⊆ C (A), P r(X|Y ) ≥ α}.

A heuristic version of the global probabilistic approximation is computed
using the following algorithm

Global probabilistic approximation
based on maximal consistent blocks algorithm
input: a set X (a concept), a set Eα(X),
output: a set T ( a global probabilistic approximation apprmlem2

α (X)) of X
begin

G := X;
T := ∅;
Y := Eα(X);
while G 
= ∅ and Y 
= ∅

begin
select a generalized maximal consistent block Y ∈ Y
such that |X ∩ Y | is maximum;
if a tie occurs, select Y ∈ Y
with the smallest cardinality;
if another tie occurs, select the first Y ∈ Y ;
T := T ∪ Y ;
G := G − T ;
Y := Y − Y

end
end

For Table 1, all distinct global probabilistic approximations based on maximal
consistent blocks are

apprglobal
1 ({1, 2, 3}) = {2},

apprglobal
0.667 ({1, 2, 3}) = {1, 2, 3, 4},

apprglobal
1 ({4, 5, 6, 7, 8}) = {5, 6, 7, 8},

apprglobal
0.5 ({4, 5, 6, 7, 8}) = {3, 5, 6, 7, 8},

apprglobal
0.333 ({4, 5, 6, 7, 8}) = {1, 3, 4, 5, 6, 7, 8},
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3.4 Saturated Probabilistic Approximations Based on Maximal
Consistent Blocks

Saturated probabilistic approximations are unions of generalized maximal con-
sistent blocks while giving higher priority to generalized maximal consistent
blocks with larger conditional probability Pr(X|Y ). Additionally, if the approx-
imation covers all cases from the concept X, we stop adding generalized maximal
consistent blocks.

Let X be a concept and let x ∈ U . Let us compute all conditional probabilities
Pr(X|Z), where Z ∈ {Y |Y ⊆ C (A), P r(X|Y ) ≥ α}. Then we sort the set

{Pr(X|Y ) | Y ⊆ C (A)}
in descending order. Let us denote the sorted list of such conditional probabilities
by α1, α2,..., αn. For any i = 1, 2,..., n, the set Ei(X) is defined as follows

{Y | Y ⊆ C (A), P r(X|Y ) = αi}.

If we want to compute a saturated probabilistic approximation, denoted by
apprsaturated

α (X), for some α, 0 < α ≤ 1, we need to identify the index m such
that

αm ≥ α > αm+1,

where m ∈ {1, 2, ..., n} and αn+1 = 0. The saturated probabilistic approximation
apprsaturated

αm
(X) is computed using the following algorithm

Saturated probabilistic approximation
based on maximal consistent blocks algorithm
input: a set X (a concept), a set Ei(X) for i = 1, 2,..., n, index m

output: a set T (a saturated probabilistic approximation apprsaturated
αm

(X)) of X
begin

T := ∅;
Yi(X) := Ei(X) for all i = 1, 2,..., m;
for j = 1, 2,..., m do

while Yj(X) �= ∅
begin

select a generalized maximal consistent block Y ∈ Yj(X)
such that |X ∩ Y | is maximum;
if a tie occurs, select the first Y ;
Yj(X) := Yj(X) − Y ;
if (Y − T ) ∩ X �= ∅

then T := T ∪ Y ;
if X ⊆ T then exit

end
end



Mining Incomplete Data 13

For Table 1, any saturated probabilistic approximation based on maximal
consistent blocks for is the same as corresponding global probabilistic approxi-
mation based on maximal consistent blocks for the same concept.

3.5 Rule Induction

Once the global and saturated probabilistic approximations associated with a
parameter α are constructed, rule sets are induced using the rule induction
algorithm based on another parameter, also interpreted as a probability, and
denoted by β. This algorithm also uses the MLEM2 principles [15], and was
presented, e.g., in [3].

MLEM2 rule induction algorithm
input: a set Y (an approximation of X) and a parameter β,
output: a set T (a rule set),
begin

G := Y ;
D := Y ;
T := ∅;
J := ∅;
while G 
= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩ G 
= ∅};
while (T = ∅ or [T ] 
⊆ D) and T (G) 
= ∅

begin
select a pair t = (at, vt) ∈ T (G) with
maximum of |[t] ∩ G|; if a tie occurs,
select a pair t ∈ T (G) with the smallest
cardinality of [t]; if another tie occurs,
select the first pair;
T := T ∪ {t};
G := [t] ∩ G;
T (G) := {t | [t] ∩ G 
= ∅};
if at is symbolic {let Vat

be the domain of at}
then
Ts := Ts ∪ {(at, v)|v ∈ Vat

}
else {at is numerical, let t = (at, u..v)}
and Tn := Tn ∪ {(at, x..y) | disjoint x..y
and u..v} ∪ {(at, x..y | x..y ⊇ u..v};

T (G) := T (G) − (Ts ∪ Tn);
end {while};
if Pr(X | [T ]) ≥ β

then
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begin
D := D ∪ [T ];
T := T ∪ {T};

end {then}
else J := J ∪ {T};

G := D − ∪S∈T ∪J [S];
end {while};

for each T ∈ T do
for each numerical attribute at with
(at, u..v) ∈ T do

while (T contains at least two different
pairs (at, u..v) and (at, x..y) with
the same numerical attribute at)

replace these two pairs with a new pair
(at, common part of (u..v) and (x..y));

for each t ∈ T do
if [T − {t}] ⊆ D then T := T − {t};

for each T ∈ T do
if ∪S∈(T −{T})[S] = ∪S∈T [S] then T := T − {T};

end {procedure}.

For example, for Table 1 and α = β = 0.5, using the global probabilistic
approximations, the MLEM2 rule induction algorithm induces the following
rules:

(Temperature, very-high) & (Headache, yes) → (Flu, yes)

(Temperature, high) & (Cough, yes) → (Flu, yes)

(Headache, no) & (Cough, no) → (Flu, no)

and

(Temperature, normal) → (Flu, no)

4 Experiments

For our experiments, we used eight data sets taken from the Machine Learning
Repository at the University of California at Irvine. For every data set, a new
record was created by randomly replacing 35% of existing specified attribute
values by “do not care” conditions.

In our experiments, the parameter α varied between 0.001 and 1 while the
parameter β was equal to 0.5. For any data set, ten-fold cross validation was
conducted. Results of our experiments are presented in Figs. 1, 2, 3, 4, 5 6 and 7,
where “CS” denotes a characteristic set, “MCB” denotes a generalized maximal
consistent block, “Global” denotes a MLEM2 global probabilistic approxima-
tion and “Saturated” denotes a saturated probabilistic approximation. In our
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experiments, four methods for mining incomplete data sets were used, since we
combined two types of granules from which approximations are constructed:
characteristic sets and generalized maximal consistent blocks with two versions
of probabilistic approximations: global and saturated.

These four methods were compared by applying the distribution free Fried-
man rank sum test and then by the post-hoc test (distribution-free multiple
comparisons based on the Friedman rank sums), with a 5% level of significance.

For three data sets: bankruptcy, image segmentation and iris, two methods:
global and saturated probabilistic approximations based on maximal consistent
blocks are significantly better (error rates evaluated by ten-fold cross validation
are smaller) than global probabilistic approximations based on characteristic
sets. Additionally, for the iris data set saturated probabilistic approximations
based on maximal consistent blocks are significantly better than saturated prob-
abilistic approximations based on characteristic sets.

On the other hand, for the data set lymphography, saturated global approxi-
mations based on characteristic sets are better than both global and saturated
probabilistic approximations based on maximal consistent blocks. For the data
set wine recognition, saturated probabilistic approximations based on charac-
teristic sets are better than both global probabilistic approximations based on
characteristic sets and saturated probabilistic approximations based on maximal
consistent blocks.

For three data sets, breast cancer, echocardiogram and hepatitis, pairwise
differences in an error rate, evaluated by ten-fold cross validation between these
four approaches to data mining, are statistically insignificant.

5 Conclusions

We compared four methods for mining incomplete data sets, combining two
granules, characteristic sets and generalized maximal consistent blocks with two
types of probabilistic approximations, global and saturated. Our criterion of
quality was an error rate evaluated by ten-fold cross validation. As follows from
our experiments, there are no significant differences between the four methods.
The main conclusion is that for data mining all four methods should be applied.
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22. Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J.

Approx. Reason. 40, 81–91 (2005)
23. Wong, S.K.M., Ziarko, W.: INFER–an adaptive decision support system based on

the probabilistic approximate classification. In: Proceedings of the 6-th Interna-
tional Workshop on Expert Systems and their Applications, pp. 713–726 (1986)

24. Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49,
255–271 (2008)

25. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate con-
cepts. Int. J. Man-Mach. Stud. 37, 793–809 (1992)

26. Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59
(1993)

27. Ziarko, W.: Probabilistic approach to rough sets. Int. J. Approx. Reason. 49, 272–
284 (2008)


	Mining Incomplete Data Using Global and Saturated Probabilistic Approximations Based on Characteristic Sets and Maximal Consistent Blocks
	1 Introduction
	2 Incomplete Data
	3 Probabilistic Approximations
	3.1 Global Probabilistic Approximations Based on Characteristic Sets
	3.2 Saturated Probabilistic Approximations Based on Characteristic Sets
	3.3 Global Probabilistic Approximations Based on Maximal Consistent Blocks
	3.4 Saturated Probabilistic Approximations Based on Maximal Consistent Blocks
	3.5 Rule Induction

	4 Experiments
	5 Conclusions
	References




