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Preface

The proceedings of the International Joint Conference on Rough Sets (IJCRS 2021)
contain the results of the meeting of the International Rough Set Society (IRSS) held at
the Hotel Tatra in Bratislava, Slovakia, during September 19–24, 2021. IJCRS 2021
was organized as part of the IFSA-EUSFLAT 2021 multiconference, which also
comprised the following conferences: the 19th World Congress of the International
Fuzzy Systems Association (IFSA 2021), the 12th Conference of the European Society
for Fuzzy Logic and Technology (EUSFLAT 2021), the International Summer School
on Aggregation Operators (AGOP 2021), and the International Conference on Flexible
Query Answering Systems (FQAS 2021). Owing to the special circumstances created
by the COVID-19 pandemic, the multiconference was organized as a hybrid event,
facilitating both online and onsite participation.

The topics covered by IJCRS 2021’s submissions revolved around three major
groups:

– Core Rough Set Models and Methods: covering/neighborhood-based rough set
models, decision-theoretic rough set methods, dominance-based rough set methods,
rough Bayesian models, rough clustering, rough computing, rough-set-based feature
selection, rule-based systems, variable consistency/precision rough sets, logic in
different rough set models, handling missing values

– Related Methods and Hybridization: artificial intelligence, machine learning, data
mining, pattern recognition, decision support systems, fuzzy sets, uncertain and
approximate reasoning, information granulation, formal concept analysis, Petri nets,
natural language processing, big data processing

– Areas of Applications: medicine and health, bioinformatics, business intelligence,
telecommunications, web mining and text mining, knowledge discovery, knowl-
edge engineering and representation, risk, seismic data

IJCRS 2021 attracted a total of 26 submissions (not including invited contributions),
which underwent a rigorous reviewing process. Each submission was evaluated by two
to four experts. Based on this process, the Program Committee (PC) chairs accepted 13
contributions as full papers (7–15 pages), and 7 submissions were accepted as short
papers (4–6 pages). All of them are included in these proceedings, together with five
invited papers written by distinguished scholars in the rough set community. Fur-
thermore, the conference program featured three keynote lectures and three additional
presentations. Their abstracts may be found in the IFSA-EUSFLAT Book of Abstracts.

We would like to thank all authors for submitting their papers and the PC members
for their valuable contribution to the conference through their anonymous, detailed
review reports. We also wish to congratulate those authors whose papers were selected
for presentation and publication in the proceedings. IJCRS 2021’s success was possible
thanks to the dedication and support of many individuals and organizations. First and
foremost, we want to thank IRSS, its honorary chairs (Andrzej Skowron and Yiyu Yao)



and its Steering Committee members. Also, we want to thank the organizers of the
special session “Representing and Managing Uncertainty: different scenarios, different
tools.’’We are also very grateful to our plenary speakers (Didier Dubois, Pradipta Maji,
and Jerzy Stefanowski) and our invited paper authors (Jerzy Grzymala-Busse, Marzena
Kryszkiewicz, Pradipta Maji, Fan Min, and Jerzy Stefanowski).

Special thanks go to the organizers of the IFSA-EUSFLAT multiconference,
without their support it would have been impossible to organize this edition of IJCRS.
In particular, we want to thank Martin Štěpnička, Ladislav Šipeki, and Petr Hurtík. We
also want to express our gratitude to the developers of the EasyChair conference
management software system. Last but not least, we acknowledge the excellent
Springer support. Their diligent work was greatly appreciated as they navigated us in a
very professional and smooth manner during the compilation and editing of these
proceedings.

September 2021 Sheela Ramanna
Chris Cornelis
Davide Ciucci

vi Preface
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Mining Incomplete Data Using Global
and Saturated Probabilistic

Approximations Based on Characteristic
Sets and Maximal Consistent Blocks

Patrick G. Clark1, Jerzy W. Grzymala-Busse1,2(B), Zdzislaw S. Hippe2,
and Teresa Mroczek2

1 Department of Electrical Engineering and Computer Science, University of Kansas,
Lawrence, KS 66045, USA

jerzy@ku.edu
2 Department of Artificial Intelligence, University of Information Technology

and Management, 35-225 Rzeszow, Poland
{zhippe,tmroczek}@wsiz.rzeszow.pl

Abstract. In this paper we discuss incomplete data sets with missing
attribute values interpreted as “do not care” conditions. For data min-
ing, we use two types of probabilistic approximations, global and satu-
rated. Such approximations are constructed from two types of granules,
characteristic sets and maximal consistent blocks. We present results of
experiments on mining incomplete data sets using four approaches, com-
bining two types of probabilistic approximations, global and saturated,
with two types of granules, characteristic sets and maximal consistent
blocks. We compare these four approaches, using an error rate computed
as the result of ten-fold cross validation. We show that there are signifi-
cant differences (5% level of significance) between these four approaches
to data mining. However, there is no universally best approach. Hence,
for an incomplete data set, the best approach to data mining should be
chosen by trying all four approaches.

Keywords: Data mining · Rough set theory · Characteristic sets ·
Maximal consistent blocks · Probabilistic approximations

1 Introduction

Incomplete data sets are affected by missing attribute values. In this paper, we
consider an interpretation of missing attribute values called a “do not care”
condition. According to this interpretation, a missing attribute value may be
replaced by any specified attribute value.

For rule induction we use probabilistic approximations, a generalization of
the idea of lower and upper approximations known in rough set theory. A prob-
abilistic approximation of the concept X is associated with a probability α; if

c© Springer Nature Switzerland AG 2021
S. Ramanna et al. (Eds.): IJCRS 2021, LNAI 12872, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-87334-9_1
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α = 1, the probabilistic approximation becomes the lower approximation of X;
if α is a small positive number, e.g., 0.001, the probabilistic approximation is
reduced to the upper approximation of X. Usually, probabilistic approximations
are applied to completely specified data sets [18,20–27], such approximations
are generalized to incomplete data sets, using characteristic sets, in [13,14], and
maximal consistent blocks in [1,2].

Missing attribute values are usually categorized into lost values and “do not
care” conditions. A lost value, denoted by “?”, is unavailable for the process of
data mining, while a ‘do not care” condition, denoted by “*”, represents any
value of the corresponding attribute.

Recently, two new types of approximations were introduced, global proba-
bilistic approximations in [3] and saturated probabilistic approximations in [8].
Results of experiments on an error rate, evaluated by ten-fold cross validation,
were presented for characteristic sets in [6–8] and for maximal consistent blocks
in [1,2]. In these experiments, global and saturated probabilistic approximations
based on characteristic sets were explored using data sets with lost values and
“do not care” conditions. Results show that among these four methods there is
no universally best method.

The main objective of this paper is a comparison of four approaches to mining
data, using two probabilistic approximations, global and saturated, based on two
granules, characteristic sets and maximal consistent blocks, in terms of an error
rate evaluated by ten-fold cross validation.

Rule induction was conducted using a new version of the Modified Learning
from Examples Module, version 2 (MLEM2) [5,12]. The MLEM2 algorithm is
a component of the Learning from Examples using Rough Sets (LERS) data
mining system [4,11,12].

2 Incomplete Data

We assume that the input data sets are presented in the form of a decision table.
An example of the decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent variables are
called attributes and a dependent variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. In Table 1, A = {Temperature,
Wind, Humidity} and d is Trip. The value for a case x and an attribute a will
be denoted by a(x). For example, Temperature(1) = normal.

The set X of all cases defined by the same value of the decision d is called
a concept. For example, a concept associated with the value yes of the decision
Trip is the set {1, 2, 3}.

A block of the attribute-value pair (a, v), denoted by [(a, v)], is the set {x ∈
U | a(x) = v} [10]. For incomplete decision tables, the definition of a block of an
attribute-value pair is modified in the following way:

– if for an attribute a and a case x we have a(x) = ?, the case x should not be
included in any blocks [(a, v)] for all values v of attribute a;
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Table 1. A decision table

Attributes Decision

Case Temperature Wind Humidity Trip

1 normal * no yes

2 high no ? yes

3 * ? no yes

4 normal * * no

5 ? yes * no

6 very-high * ? no

7 very-high ? * no

8 ? ? yes no

– if for an attribute a and a case x we have a(x) = ∗, the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1, the blocks of attribute-value pairs are:

[(Temperature, normal)] = {1, 3, 4}, [(Wind, yes)] = {1, 4, 5, 6},
[(Temperature, high)] = {2, 3}, [(Humidity, no)] = {1, 3, 4, 5, 7},
[(Temperature, very-high)] = {3, 6, 7}, [(Humidity, yes)] = {4, 5, 7, 8},
[(Wind, no)] = {1, 2, 4, 6}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– if a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x);

– if a(x) = ? or a(x) = ∗, then K(x, a) = U .

For Table 1 and B = A,
KA(1) = {1, 3, 4}, KA(5) = {1, 4, 5, 6},
KA(2) = {2}, KA(6) = {3, 6, 7},
KA(3) = {1, 3, 4, 5, 7}, KA(7) = {3, 6, 7}, and
KA(4) = {1, 3, 4}, KA(8) = {4, 5, 7, 8}.

A binary relation R(B) on U , defined for x, y ∈ U in the following way

(x, y) ∈ R(B) if and only if y ∈ KB(x)

will be called the characteristic relation. In our example R(A) = {(1, 1), (1, 3),
(1, 4), (2, 2), (3, 1), (3, 3), (3, 4), (3, 5), (3, 7), (4, 1), (4, 3), (4, 4), (5, 1), (5,
4), (5, 5), (5, 6), (6, 3), (6, 6), (6, 7), (7, 3), (7, 6), (7, 7), (8, 4), (8, 5), (8, 7),
(8, 8)}.

We quote some definitions from [1]. Let X be a subset of U . The set X is
B-consistent if (x, y) ∈ R(B) for any x, y ∈ X. If there does not exist a B-
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consistent subset Y of U such that X is a proper subset of Y , the set X is called
a generalized maximal B-consistent block. The set of all generalized maximal B-
consistent blocks will be denoted by C (B). In our example, C (A) = {{1, 3, 4},
{2}, {3, 7}, {5}, {6, 7}, {8}}.

Let B ⊆ A and Y ∈ C (B). The set of all generalized maximal B-consistent
blocks which include an element x of the set U , i.e. the set

{Y |Y ∈ C (B), x ∈ Y }
will be denoted by CB(x).

For data sets in which all missing attribute values are “do not care” condi-
tions, an idea of a maximal consistent block of B was defined in [19]. Note that
in our definition, the generalized maximal consistent blocks of B are defined for
arbitrary interpretations of missing attribute values. For Table 1, the generalized
maximal A-consistent blocks CA(x) are

CA(1) = {{1, 3, 4}}, CA(5) = {{5}},
CA(2) = {{2}}, CA(6) = {{6, 7}},
CA(3) = {{3, 7}, {1, 3, 4}}, CA(7) = {{3, 7}, {6, 7}}, and
CA(4) = {{1, 3, 4}}, CA(8) = {{8}}.

3 Probabilistic Approximations

In this section, we will discuss two types of probabilistic approximations: global
and saturated.
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Fig. 2. The breast cancer data set

3.1 Global Probabilistic Approximations Based on Characteristic
Sets

An idea of the global probabilistic approximation, restricted to lower and upper
approximations, was introduced in [16,17], and presented in a general form in
[3]. Let X be a concept, X ⊆ U . A B-global probabilistic approximation of the



Mining Incomplete Data 7

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e 
(%

) 

Parameter alpha

CS, Global
CS, Saturated
MCB, Global
MCB, Saturated

Fig. 3. The echocardiogram data set
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Fig. 5. The image segmentation data
set
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Fig. 6. The iris data set
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Fig. 8. The wine recognition data set

concept X, based on characteristic sets, with the parameter α and denoted by
apprglobal

α,B (X) is defined as the following set
⋃

{KB(x) | ∃ Y ⊆ U ∀x ∈ Y, Pr(X|KB(x)) ≥ α}. (1)

Obviously, for some sets B and X and the parameter α, there exist many
B-global probabilistic approximations of X. In addition, the algorithm for com-
puting B-global probabilistic approximations is of exponential computational
complexity. Therefore, in our experiments we used a heuristic version of the
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definition of B-global probabilistic approximation, called a MLEM2 B-global
probabilistic approximation of the concept X, associated with a parameter α
and denoted by apprmlem2

α,B (X) [3]. This definition is based on the rule induc-
tion algorithm MLEM2 [12]. The MLEM2 algorithm is used in the Learning
from Examples using Rough Sets (LERS) data mining system [4,11,12]. The
approximation apprmlem2

α,B (X) is constructed from characteristic sets KB(y), the
most relevant to the concept X, i.e., with |X ∩ KB(y)| as large as possible and
Pr(X|KB(y)) ≥ α, where y ∈ U . If more than one characteristic set KB(y)
satisfies both conditions, we pick the characteristic set KB(y) with the largest
Pr(X|KB(y)). If this criterion ends up with a tie, a characteristic set is picked
up heuristically, as the first on the list [3].

In this paper, we study MLEM2 B-global probabilistic approximations based
on characteristic sets, with B = A. Such approximations are called, for simplicity,
global probabilistic approximations associated with the parameter α, denoted by
apprglobal

α (X). Similarly, for B = A, the characteristic set KB(X) is denoted by
K(x).

Let Eα(X) be the set of all eligible characteristic sets defined as follows

{K(x) | x ∈ U,Pr(X|K(x)) ≥ α}. (2)

A heuristic version of the global probabilistic approximation based on char-
acteristic sets is presented below.

Global probabilistic approximation
based on characteristic sets algorithm
input: a set X (a concept), a set Eα(X),
output: a set T (apprglobal

α (X))
begin

G := X;
T := ∅;
Y := Eα(X);
while G 
= ∅ and Y 
= ∅

begin
select a characteristic set K(x) ∈ Y
such that |K(x) ∩ X| is maximum;
if a tie occurs, select K(x) ∈ Y
with the smallest cardinality;
if another tie occurs, select the first K(x);
T := T ∪ K(x);
G := G − T ;
Y := Y − K(x)

end
end

For Table 1, all distinct global probabilistic approximations based on charac-
teristic sets are
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apprglobal
1 ({1, 2, 3}) = {2},

apprglobal
0.667 ({1, 2, 3}) = {1, 2, 3, 4},

apprglobal
0.4 ({1, 2, 3}) = {1, 2, 3, 4, 5, 7},

apprglobal
1 ({4, 5, 6, 7, 8}) = {4, 5, 7, 8},

apprglobal
0.75 ({4, 5, 6, 7, 8}) = {1, 4, 5, 6, 7, 8},

3.2 Saturated Probabilistic Approximations Based on Characteristic
Sets

Another heuristic version of the probabilistic approximation is based on selection
of characteristic sets while giving higher priority to characteristic sets with larger
conditional probability Pr(X|K(x)). Additionally, if the approximation covers
all cases from the concept X, we stop adding characteristic sets.

Let X be a concept and let x ∈ U . Let us compute all conditional probabilities
Pr(X|K(x)). Then, we sort the set

{Pr(X|K(x)) | x ∈ U}. (3)

Let us denote the sorted list of such conditional probabilities by α1, α2,...,
αn, where α1 is the largest. For any i = 1, 2,..., n, the set Ei(x) is defined as
follows

{K(x) | x ∈ U,Pr(X|K(x)) = αi}. (4)

If we want to compute a saturated probabilistic approximation, denoted by
apprsaturated

α (X), for some α, 0 < α ≤ 1, we need to identify the index m such
that

αm ≥ α > αm+1, (5)

where m ∈ {1, 2, ..., n} and αn+1 = 0. Then, the saturated probabilistic approx-
imation apprsaturated

αm
(X) is computed using the following algorithm.

Saturated probabilistic approximation
based on characteristic sets algorithm
input: a set X (a concept), a set Ei(x) for
i = 1, 2,..., n and x ∈ U , index m
output: a set T (apprsaturated

αm
(X))

begin
T := ∅;
Yi(x) := Ei(x) for all i = 1, 2,..., m and x ∈ U ;
for j = 1, 2,..., m do

while Yj(x) 
= ∅
begin
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select a characteristic set K(x) ∈ Yj(x)
such that |K(x) ∩ X| is maximum;
if a tie occurs, select the first K(x);
Yj(x) := Yj(x) − K(x);
if (K(x) − T ) ∩ X 
= ∅

then T := T ∪ K(x);
if X ⊆ T then exit

end
end

For Table 1, all distinct saturated probabilistic approximations based on char-
acteristic sets are

apprsaturated
1 ({1, 2, 3}) = {2},

apprsaturated
0.667 ({1, 2, 3}) = {1, 2, 3, 4},

apprsaturated
1 ({4, 5, 6, 7, 8}) = {4, 5, 7, 8},

apprsaturated
0.75 ({4, 5, 6, 7, 8}) = {1, 4, 5, 6, 7, 8},

3.3 Global Probabilistic Approximations Based on Maximal
Consistent Blocks

A special case of the global probabilistic approximation, limited only to lower
and upper approximations and to characteristic sets, was introduced in [16,17].
A general definition of the global probabilistic approximation was introduced in
[9].

A B-global probabilistic approximation based on Maximal Consistent Blocks
of the concept X, with the parameter α and denoted by apprglobal

α,B (X) is defined
as follows

∪{Y | Y ∈ Cx(B), x ∈ X, Pr(X|Y ) ≥ α}.

Obviously, for given sets B and X and the parameter α, there exist many
B-global probabilistic approximations of X. Additionally, an algorithm for com-
puting B-global probabilistic approximations is of exponential computational
complexity. So, we decided to use a heuristic version of the definition of B-
global probabilistic approximation, called the MLEM2 B-global probabilistic
approximation of the concept X, associated with a parameter α and denoted
by apprmlem2

α,B (X) [3]. This definition is based on the rule induction algorithm
MLEM2. The approximation apprmlem2

α,B (X) is a union of the generalized maxi-
mal consistent blocks Y ∈ C (B), the most relevant to the concept X, i.e., with
|X ∩ Y | as large as possible and with Pr(X|Y ) ≥ α. If more than one gen-
eralized maximal consistent block Y satisfies both conditions, the generalized
maximal consistent block Y with the largest Pr(X|Y ) ≥ α is selected. If this
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criterion ends up with a tie, a generalized maximal consistent block Y is picked
up heuristically, as the first on the list [3].

Special MLEM2 B-global probabilistic approximations, with B = A, are
called global probabilistic approximations associated with the parameter α, and
are denoted by apprmlem2

α (X).
Let Eα(X) be the set of all eligible generalized maximal consistent blocks

defined as follows

{Y |Y ⊆ C (A), P r(X|Y ) ≥ α}.

A heuristic version of the global probabilistic approximation is computed
using the following algorithm

Global probabilistic approximation
based on maximal consistent blocks algorithm
input: a set X (a concept), a set Eα(X),
output: a set T ( a global probabilistic approximation apprmlem2

α (X)) of X
begin

G := X;
T := ∅;
Y := Eα(X);
while G 
= ∅ and Y 
= ∅

begin
select a generalized maximal consistent block Y ∈ Y
such that |X ∩ Y | is maximum;
if a tie occurs, select Y ∈ Y
with the smallest cardinality;
if another tie occurs, select the first Y ∈ Y ;
T := T ∪ Y ;
G := G − T ;
Y := Y − Y

end
end

For Table 1, all distinct global probabilistic approximations based on maximal
consistent blocks are

apprglobal
1 ({1, 2, 3}) = {2},

apprglobal
0.667 ({1, 2, 3}) = {1, 2, 3, 4},

apprglobal
1 ({4, 5, 6, 7, 8}) = {5, 6, 7, 8},

apprglobal
0.5 ({4, 5, 6, 7, 8}) = {3, 5, 6, 7, 8},

apprglobal
0.333 ({4, 5, 6, 7, 8}) = {1, 3, 4, 5, 6, 7, 8},
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3.4 Saturated Probabilistic Approximations Based on Maximal
Consistent Blocks

Saturated probabilistic approximations are unions of generalized maximal con-
sistent blocks while giving higher priority to generalized maximal consistent
blocks with larger conditional probability Pr(X|Y ). Additionally, if the approx-
imation covers all cases from the concept X, we stop adding generalized maximal
consistent blocks.

Let X be a concept and let x ∈ U . Let us compute all conditional probabilities
Pr(X|Z), where Z ∈ {Y |Y ⊆ C (A), P r(X|Y ) ≥ α}. Then we sort the set

{Pr(X|Y ) | Y ⊆ C (A)}
in descending order. Let us denote the sorted list of such conditional probabilities
by α1, α2,..., αn. For any i = 1, 2,..., n, the set Ei(X) is defined as follows

{Y | Y ⊆ C (A), P r(X|Y ) = αi}.

If we want to compute a saturated probabilistic approximation, denoted by
apprsaturated

α (X), for some α, 0 < α ≤ 1, we need to identify the index m such
that

αm ≥ α > αm+1,

where m ∈ {1, 2, ..., n} and αn+1 = 0. The saturated probabilistic approximation
apprsaturated

αm
(X) is computed using the following algorithm

Saturated probabilistic approximation
based on maximal consistent blocks algorithm
input: a set X (a concept), a set Ei(X) for i = 1, 2,..., n, index m

output: a set T (a saturated probabilistic approximation apprsaturated
αm

(X)) of X
begin

T := ∅;
Yi(X) := Ei(X) for all i = 1, 2,..., m;
for j = 1, 2,..., m do

while Yj(X) �= ∅
begin

select a generalized maximal consistent block Y ∈ Yj(X)
such that |X ∩ Y | is maximum;
if a tie occurs, select the first Y ;
Yj(X) := Yj(X) − Y ;
if (Y − T ) ∩ X �= ∅

then T := T ∪ Y ;
if X ⊆ T then exit

end
end
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For Table 1, any saturated probabilistic approximation based on maximal
consistent blocks for is the same as corresponding global probabilistic approxi-
mation based on maximal consistent blocks for the same concept.

3.5 Rule Induction

Once the global and saturated probabilistic approximations associated with a
parameter α are constructed, rule sets are induced using the rule induction
algorithm based on another parameter, also interpreted as a probability, and
denoted by β. This algorithm also uses the MLEM2 principles [15], and was
presented, e.g., in [3].

MLEM2 rule induction algorithm
input: a set Y (an approximation of X) and a parameter β,
output: a set T (a rule set),
begin

G := Y ;
D := Y ;
T := ∅;
J := ∅;
while G 
= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩ G 
= ∅};
while (T = ∅ or [T ] 
⊆ D) and T (G) 
= ∅

begin
select a pair t = (at, vt) ∈ T (G) with
maximum of |[t] ∩ G|; if a tie occurs,
select a pair t ∈ T (G) with the smallest
cardinality of [t]; if another tie occurs,
select the first pair;
T := T ∪ {t};
G := [t] ∩ G;
T (G) := {t | [t] ∩ G 
= ∅};
if at is symbolic {let Vat

be the domain of at}
then
Ts := Ts ∪ {(at, v)|v ∈ Vat

}
else {at is numerical, let t = (at, u..v)}
and Tn := Tn ∪ {(at, x..y) | disjoint x..y
and u..v} ∪ {(at, x..y | x..y ⊇ u..v};

T (G) := T (G) − (Ts ∪ Tn);
end {while};
if Pr(X | [T ]) ≥ β

then
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begin
D := D ∪ [T ];
T := T ∪ {T};

end {then}
else J := J ∪ {T};

G := D − ∪S∈T ∪J [S];
end {while};

for each T ∈ T do
for each numerical attribute at with
(at, u..v) ∈ T do

while (T contains at least two different
pairs (at, u..v) and (at, x..y) with
the same numerical attribute at)

replace these two pairs with a new pair
(at, common part of (u..v) and (x..y));

for each t ∈ T do
if [T − {t}] ⊆ D then T := T − {t};

for each T ∈ T do
if ∪S∈(T −{T})[S] = ∪S∈T [S] then T := T − {T};

end {procedure}.

For example, for Table 1 and α = β = 0.5, using the global probabilistic
approximations, the MLEM2 rule induction algorithm induces the following
rules:

(Temperature, very-high) & (Headache, yes) → (Flu, yes)

(Temperature, high) & (Cough, yes) → (Flu, yes)

(Headache, no) & (Cough, no) → (Flu, no)

and

(Temperature, normal) → (Flu, no)

4 Experiments

For our experiments, we used eight data sets taken from the Machine Learning
Repository at the University of California at Irvine. For every data set, a new
record was created by randomly replacing 35% of existing specified attribute
values by “do not care” conditions.

In our experiments, the parameter α varied between 0.001 and 1 while the
parameter β was equal to 0.5. For any data set, ten-fold cross validation was
conducted. Results of our experiments are presented in Figs. 1, 2, 3, 4, 5 6 and 7,
where “CS” denotes a characteristic set, “MCB” denotes a generalized maximal
consistent block, “Global” denotes a MLEM2 global probabilistic approxima-
tion and “Saturated” denotes a saturated probabilistic approximation. In our
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experiments, four methods for mining incomplete data sets were used, since we
combined two types of granules from which approximations are constructed:
characteristic sets and generalized maximal consistent blocks with two versions
of probabilistic approximations: global and saturated.

These four methods were compared by applying the distribution free Fried-
man rank sum test and then by the post-hoc test (distribution-free multiple
comparisons based on the Friedman rank sums), with a 5% level of significance.

For three data sets: bankruptcy, image segmentation and iris, two methods:
global and saturated probabilistic approximations based on maximal consistent
blocks are significantly better (error rates evaluated by ten-fold cross validation
are smaller) than global probabilistic approximations based on characteristic
sets. Additionally, for the iris data set saturated probabilistic approximations
based on maximal consistent blocks are significantly better than saturated prob-
abilistic approximations based on characteristic sets.

On the other hand, for the data set lymphography, saturated global approxi-
mations based on characteristic sets are better than both global and saturated
probabilistic approximations based on maximal consistent blocks. For the data
set wine recognition, saturated probabilistic approximations based on charac-
teristic sets are better than both global probabilistic approximations based on
characteristic sets and saturated probabilistic approximations based on maximal
consistent blocks.

For three data sets, breast cancer, echocardiogram and hepatitis, pairwise
differences in an error rate, evaluated by ten-fold cross validation between these
four approaches to data mining, are statistically insignificant.

5 Conclusions

We compared four methods for mining incomplete data sets, combining two
granules, characteristic sets and generalized maximal consistent blocks with two
types of probabilistic approximations, global and saturated. Our criterion of
quality was an error rate evaluated by ten-fold cross validation. As follows from
our experiments, there are no significant differences between the four methods.
The main conclusion is that for data mining all four methods should be applied.
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Abstract. The Tanimoto similarity is widely used in chemo-informatics, biology,
bio-informatics, textmining and information retrieval to determine neighborhoods
of sufficiently similar objects or k most similar objects represented by real-valued
vectors. Formetrics such as theEuclidean distance, the triangle inequality property
is often used to efficiently identify vectors that may belong to the sought neigh-
borhood of a given vector. Nevertheless, the Tanimoto similarity as well as the
Tanimoto dissimilarity do not fulfill the triangle inequality property for real-valued
vectors. In spite of this, in this paper, we show that the problem of looking for a
neighborhoodwith respect to the Tanimoto similarity among real-valued vectors is
equivalent to the problem of looking for a neighborhood among normalized forms
of these vectors in the Euclidean space. Based on this result, we propose a method
that uses the triangle inequality to losslessly identify promising candidates for
members of Tanimoto similarity neighborhoods among real-valued vectors. The
method requires pre-calculation and storage of the distances from normalized
forms of real-valued vectors to so called a reference vector. The normalized forms
of vectors themselves do not need to be stored after the pre-calculation of these
distances. We also propose two variants of a new combined method which, apart
from the triangle inequality, also uses bounds on vector lengths to determine Tan-
imoto similarity neighborhoods. The usefulness of the new and related methods
is illustrated with examples.

Keywords: The Tanimoto similarity · The cosine similarity · The Euclidean
distance · Neighborhood · Near duplicates · k nearest neighbors · The triangle
inequality · Vector length bounds · Real-valued vector · ZPN-vector · Binary
vector

1 Introduction

The Tanimoto similarity is the most popular measure for comparing chemical structures
represented by fingerprints. It is alsowidely used in biology, bio-informatics, text mining
and information retrieval for determining neighborhoods of sufficiently similar objects
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(or near duplicates) or k most similar objects represented by real-valued vectors (please
see e.g. [1] for example applications of the Tanimoto similarity measure). The Tanimoto
similarity of two vectors is defined in terms of a dot product of both vectors and their
lengths. Sometimes, it is convenient to express the Tanimoto similarity of vectors equiv-
alently bymeans of their cosine similarity and the ratio of their lengths (see e.g. [3]). The
discovery of similar objects is challenging when datasets are large or high dimensional.
Thus methods that speed up their discovery are of high importance. In [7, 8, 11, 17], we
derived bounds on lengths of Tanimoto similar vectors, which can be efficiently used
to determine Tanimoto similarity neighborhoods. The vector length bounds derived in
[8] were related to so called ZPN-vectors whose each dimension takes one of at most
three distinct values: a positive value, zero and a negative value. Their tighter version
was offered in [17]. The length bounds for Tanimoto similar real-valued vectors were
derived in [7]. A tighter version of these bounds for real-valued vectors was obtained
in [11]. It used an upper bound on the cosine similarity that was derived in [9]. Also
in [1] a tighter version of length bounds from [7] was derived based on upper bounds
on the cosine similarity. The solution from [1] was offered for non-negative real-valued
vectors.

In the case of metrics, such as the Euclidean distance, the triangle inequality property
is often used for efficient non-lossless identification of vectors that are likely to be
sufficiently similar to a given vector [2, 3, 12–16, 19, 20, 22, 23]. It was proved in [18]
that the Tanimoto dissimilarity satisfies the triangle inequality in the case of weighted
binary non-negative vectors. In [5], it was shown how to use this property to efficiently
determine cosine similarity neighborhoods amongweighted binary non-negative vectors.
Nevertheless, the Tanimoto similarity as well as the Tanimoto dissimilarity do not satisfy
the triangle inequality property for real-valued vectors. On the other hand, even though
the cosine similarity does not fulfill the triangle inequality [3, 6, 10] either, it is possible to
transform the search of cosine similarity neighborhoods among real-valued vectors into
the search of Euclidean distance neighborhoods among normalized forms of the vectors,
and by this, to use the triangle inequality to make the discovery of cosine similar real-
valued vectors fast [3, 4, 6, 10, 12]. This result encouraged us to develop a method that
may speed up the discovery of Tanimoto similar vectors using the triangle inequality.
We obtained this goal by deriving the relationship between the Tanimoto similarity and
the Euclidean distance.

The main contribution in the paper is presented in Sects. 5 and 6 and consists in:

• Showing that the problem of looking for Tanimoto similarity neighborhoods among
real-valued vectors is equivalent to the problem of looking for neighborhoods among
normalized forms of these vectors in the Euclidean space (see Sect. 5).

• Proposing a newmethod that uses the triangle inequality to losslessly identify promis-
ing candidates formembers ofTanimoto similarity neighbourhoods among real-valued
vectors (see Sect. 5).

• Proposing two variants of a new combined method which, apart from the triangle
inequality, also uses the bounds on vector lengths to determine Tanimoto similarity
neighborhoods (see Sect. 6).

• Illustration of the usefulness of the new methods against related ones.
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Our paper has the following layout. In Sect. 2, we provide definitions of the Euclidean
distance, the cosine similarity and the Tanimoto similarity. Next we recall the definitions
of similarity and distance neighborhoods. We also recall how to adapt the discovery of
neighborhoods to discovery of k nearest neighbors. In Sect. 3, we recall how to calculate
the Euclidean and cosine neighborhoods with the triangle inequality property. Then, in
Sect. 4, we recall the method for determining Tanimoto similarity neighborhoods using
bounds on real-valued vector lengths. In Sect. 5, we derive theoretical results related to
the Tanimoto similarity and its relationship with the cosine similarity and the Euclidean
distance.Basedon these results,wepropose then a newmethod for determiningTanimoto
similarity neighborhoods by means of the triangle inequality. In Sect. 6, we propose two
variants of a new combinedmethod which use both the triangle inequality and bounds on
vector lengths to determine Tanimoto similarity neighborhoods. Section 7 summarizes
our contribution.

2 Basic Notions and Properties

2.1 The Euclidean Distance, the Cosine Similarity and the Tanimoto Similarity

In the paper, we consider vectors of the same dimensionality, say n. A vector u will be
also denoted as [u1, …, un], where ui is the value of the i-th dimension of u, i = 1..n. A
vector will be called a zero vector if all its dimensions are equal to zero. Otherwise, the
vector will be called non-zero.

Vectors’ similarity and dissimilarity can be defined inmanyways. An important class
of dissimilarity measures are distance metrics, which preserve the triangle inequality.
We say that measure μ preserves the triangle inequality if for any vectors u, v, and r,
μ(u, r) ≤ μ(u, v) + μ(v, r) or, alternatively μ(u, r) ≥ μ(u, v) − μ(v, r).

The most popular distance metric is the Euclidean distance, which takes only
non-negative values. The Euclidean distance between vectors u and v is denoted by
Euclidean(u, v) and is defined as follows:

Euclidean(u, v) =
√∑

i=1..n
(ui − vi)2.

Among most popular similarity measures are the cosine similarity and the Tanimoto
similarity, which are defined in terms of dot products of vectors and vector lengths as
follows:

cosSim(u, v) = u · v
|u| · |v| ,

TSim(u, v) = u · v
u · u + v · v − u · v = u · v

|u|2 + |v|2 − u · v ,

where

• u· v is the dot product of vectors u and v and equals
∑

i=1..n ui · vi;• |u| is the length of vector u and equals
√
u · u.
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The Tanimoto similarity takes values from interval [–1/3, 1] [21], while the cosine
similarity takes values from interval [–1, 1].

Both similarity measures as well as their dissimilarity variants: 1 – cosSim and 1 -
TSim do not satisfy the triangle inequality property in general for real valued vectors.
Nevertheless, 1 – TSim fulfills the triangle inequality property for binary vectors and
weighted binary vectors each dimension of which may take either 0 or one positive value
[18]. In our paper, however, we focus on real-valued vectors, so we cannot use directly
the triangle inequality to determine 1 - TSim dissimilarity of vectors, and in consequence
their Tanimoto similarity. In spite of this, we will derive the theoretical results that will
enable us to propose methods using the triangle inequality for determining Tanimoto
similarity neighborhoods.

2.2 ε-Neighborhoods and k Nearest Neighbors

Let sim denote a similarity measure (such as TSim and cosSim) and disSim denote a
dissimilaritymeasure (such asEuclidean, 1-TSim and 1-cosSim). disSim ε-neighborhood
of vector u in D is denoted by ε-NBdisSim

D(u) and is defined as the set of all vectors in
dataset D whose dissimilarity from u in terms of the disSim measure is not greater than
ε; that is,

sim ε-neighborhood of vector u in D is denoted by ε-SNBsim
D(u) and is defined as

the set of all vectors in dataset D whose similarity to u in terms of the sim measure is at
least ε; that is,

Instead of looking for a (dis)similarity ε-neighborhood, one may be interested in
determining k (dis)Sim nearest neighbors. The task of searching k disSim nearest neigh-
bors of vector u still can be considered as searching an ε-Euclidean neighborhood for
some ε value (possibly different for different vectors and adjusted dynamically) as fol-
lows: Let K be a set containing any k vectors from D \ {u} and ε = max{disSim(u, v)|
v ∈ K}. Then, k disSim nearest neighbors are guaranteed to be found within ε radius
from vector u; namely, they are contained in ε-NBdisSim

D(u) \ {u}. In practice, one may
apply some heuristics to determine possibly best value (that is, as little as possible) of ε

within which k-nearest neighbors of u are guaranteed to be found and the value of ε can
be re-estimated (and thus possibly narrowed) when calculating the disSim dissimilarity
between u and the next vectors from D \ (K ∪ {u}) [12, 15, 16]. The above approach
to searching k disSim nearest neighbors can be easily adapted to searching k sim near-
est neighbors. At the beginning, ε should be assigned min{sim(u, v)| v ∈ K} and then
could be re-estimated (and thus possibly increased) when calculating the similarity sim
between u and the next vectors from D \ (K ∪ {u}).



22 M. Kryszkiewicz

3 Using the Triangle Inequality Property to Calculate Euclidean
and Cosine ε-Neighborhoods

3.1 Using the Triangle Inequality to Calculate Euclidean ε-Neighborhoods

In this subsection,we recall themethod of determining ε-Euclidean neighborhoods using
the triangle inequality property, as proposed in [13, 14]. The method is based on the
following observation: As the Euclidean distance fulfills the triangle property, then for
any triple of vectors u, v and r; Euclidean(u, v) ≥ Euclidean(u, r) − Euclidean(v, r).
Thus, the difference Euclidean(u, r) − Euclidean(v, r) (as well as Euclidean(v, r) −
Euclidean(u, r)) is a pessimistic estimation of the real Euclidean distance between u and
v. Clearly, if this pessimistic estimation is greater than ε, then the real Euclidean distance
between the two vectors is also greater than ε.

Property 1. Let r, u and v be vectors and ε ≥ 0.

a) If Euclidean(u, r) − Euclidean(v, r) > ε, then Euclidean(u, v) > ε.
b) If Euclidean(u, v) ≤ ε, then Euclidean(u, r) − Euclidean(v, r) ≤ ε.

Let us assume that we would like to identify promising candidates for members of
ε-Euclidean neighborhood of vector u. Property 1 allows deducing that only vectors v
for which Euclidean(v, r) ∈ [Euclidean(u, r) − ε,Euclidean(u, r) + ε] are likely to
belong to ε-Euclidean neighborhood of u. In the remainder of the paper, checking if the
Euclidean distance of a vector from a reference vector is within a given interval will be
called the Euclidean triangle inequality condition with two bounds.

Corollary 1. (Using the Euclidean triangle inequality condition with two bounds). Let
r, u and v be vectors, the Euclidean distance threshold ε ≥ 0 and corresponding Euclidean
bounds ε1 = Euclidean(u, r) − ε and ε2 = Euclidean(u, r) + ε.

a) If Euclidean(v, r) /∈ [ε1, ε2], then Euclidean(u, v) > ε.
b) If Euclidean(u, v) ≤ ε, then Euclidean(v, r) ∈ [ε1, ε2].

The method proposed in [13, 14] assumes that the Euclidean distances from all
vectors in dataset D to so called reference vector r are pre-calculated and sorted with
respect to these distances. The reference vector is a parameter of the method. It is
suggested to build a reference vector from extreme (minimal and/or maximal) dimension
values of vectors in D. The first step in determining ε-NBEuclidean

D(u) is to identify set
R of all vectors v in D whose pessimistic estimation of the Euclidean distance to u
does not exceed ε; that is, the vectors v in D for which Euclidean(v, r) ∈ [ε1, ε2],
where ε1 = Euclidean(u, r) − ε and ε2 = Euclidean(u, r) + ε. Thanks to pre-sorting of
vectors in D, the number of vectors v for which it is checked whether Euclidean(v, r) ∈
[ε1, ε2] is restricted to at most |R| + 2. By Corollary 1, the vectors in D \ R do not
belong to ε-NBEuclidean

D(u). Hence, ε-NBEuclidean
D(u) ⊆ R. Thus, in order to determine

NBEuclidean
D(u), it suffices to calculate the Euclidean distances to u only from vectors in

R.
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Example 1. (Determining Euclidean ε-neighborhood using the Euclidean triangle
inequality condition with two bounds). Table 1 shows example set D of 10 vectors
of dimensionality n = 9, which will be used throughout the paper. We assume that the
Euclidean distances of all vectors in D to reference vector r = [−3, −2, 6, 4, −3, 0, 0,
6, 0] are pre-calculated and the vectors in D are sorted with respect to these distances.
The reference vector was created from extreme dimension values of vectors in D (see
Table 1). Our task is to calculate ε-NBcosSim

D(v5) for ε = 2. Let R be the set of vectors
in D whose pessimistic estimations of the Euclidean distances to v5 do not exceed ε.
Thus, R contains only those vectors in D whose Euclidean distances to r differ from
Euclidean(v5, r) by at most ε; that is, vectors v ∈ D for which Euclidean(v, r) ∈ [ε1,
ε2] = [9.70 −2, 9.70 +2] = [7.70, 11.70]. Hence, R = {v5, v2} and R is a superset of
NBEuclidean

D(v5). Thus, the determination of NBEuclidean
D(v5) requires 2 calculations of

the Euclidean distances to vector v5 instead of 10 calculations. Now, onemaywonder for
how many vectors v inD it was necessary to check if Euclidean(v, r) ∈ [7.70, 11.70]. As
the vectors in D are pre-sorted with respect to their Euclidean distances to the reference
vector, then this checkwas carried out only for the vectors inR plus for vectors v3 and v8.
Vector v3 is the first vector preceding v5 whose Euclidean distance to r is less than 7.70,
while vector v8 is the first vector following v5 whose Euclidean distance to r is greater
than 11.70. Thanks to pre-sorting, it is known in advance that the Euclidean distance to
r from each vector preceding v3 is less than 7.70 and that the Euclidean distance to r
from each vector following v8 is greater than 11.70. Hence, v3 and vectors preceding it
in D as well as v8 and vectors following it in D cannot belong to ε-NBcosSim

D(v5). �

Table 1. Example set of vectors D sorted with respect to their Euclidean distances to reference
vector r = [−3, −2, 6, 4, −3, 0, 0, 6, 0]. By Corollary 1, ε-NBEuclidean

D(v5) is guaranteed to be
a subset of R = {v5, v2} for ε = 2. The Euclidean triangle inequality condition check with two
bounds was carried out for all vectors in R and for vectors v3 and v8.

Please note that the calculation of the Euclidean distance between two n-dimensional
vectors requires n subtractions, nmultiplications, n−1 additions and 1 calculation of the
square root. Thus, it is costly, especially in the case of dense high dimensional data.
The method offered in [13, 14] for calculation of Euclidean ε-neighborhoods enables
considerable elimination of the costly calculation of the Euclidean distances between
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vectors. In fact, onemay usemore than one reference vector to further restrict the number
of calculations of the Euclidean distances [13, 14].

3.2 Calculating Cosine ε-Neighborhoods by Means of the Triangle Inequality

Let us startwith recalling the relationship between the cosine similarity and theEuclidean
distance.

Lemma 1 [3, 6] . Let u,v be non-zero vectors. Then:

cosSim(u, v) = |u|2 + |v|2 − Euclidean2(u, v)

2|u| · |v|
Clearly, the cosine similarity between any vectors u and v depends solely on the

angle between the vectors and does not depend on their lengths, hence the calculation
of the cosSim(u, v) may be carried out on normalized forms of vectors as follows:

A normalized form of a vector u is denoted by NF(u) and is defined as the ratio of
u to its length |u|. A vector u is defined as a normalized vector if u = NF(u). Obviously,
the length of a normalized vector equals 1. Table 2 presents the normalized forms of
vectors from Table 1.

Table 2. Normalized forms of vectors from example vector set D

NF (v#) NF (v#)1 NF (v#)2 NF (v#)3 NF (v#)4 NF (v#)5 NF (v#)6 NF (v#)7 NF (v#)8 NF (v#)9

NF (v1) -0.29 0.39 0.00 0.00 0.29 0.49 0.29 0.59 0.00
NF (v2) 0.35 -0.23 0.00 0.00 0.00 0.58 0.00 0.70 0.00
NF (v3) 0.00 0.00 0.78 0.62 0.00 0.00 0.00 0.00 0.00
NF (v4) 0.00 -0.24 0.00 0.48 0.00 0.60 0.00 -0.60 0.00
NF (v5) 0.00 0.00 0.00 0.69 -0.51 0.00 0.51 0.00 0.00
NF (v6) 0.00 0.00 -0.81 0.36 0.00 0.00 0.00 0.00 0.45
NF (v7) 0.00 0.00 0.83 0.55 0.00 0.00 0.00 0.00 0.00
NF (v8) 0.00 0.53 0.00 0.53 0.00 0.00 0.00 0.00 0.66
NF (v9) 0.00 0.00 0.00 -0.29 0.44 0.00 0.44 0.00 0.73
NF (v10) 0.00 -0.22 -0.98 0.00 0.00 0.00 0.00 0.00 0.00

Theorem 1 [3, 6] . Let u and v be non-zero vectors. Then:

cosSim(u, v) = cosSim(NF(u), NF(v)) = 2 − Euclidean2(NF(u),NF(v))

2
.

Theorem 1 allows deducing that checking whether the cosine similarity between any
two vectors does not exceed the ε threshold, where ∈ ε[−1, 1], can be carried out as
checking if the Euclidean distance between the normalized forms of the vectors does
not exceed the modified threshold ε

′
(ε) = √

2 − 2ε:
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Corollary 2 [3, 6] . Let u, v be non-zero vectors, ε ∈ [−1, 1] and ε
′
(ε) = √

2 − 2ε.
Then:

cosSim(u, v) ≥ ε ⇔ Euclidean(NF(u),NF(v)) ≤ ε
′
(ε).

Now, if for reference vector r, Euclidean(NF(v), r) - Euclidean(NF(u), r) >ε’(ε),
thenEuclidean(NF(u),NF(v))>ε’(ε) (by Property 1), and cosSim(u, v)<ε(byCorollary
2). Corollary 3 follows immediately from Corollary 2 and Corollary 1.

Corollary 3. (Using the Euclidean triangle inequality condition with two bounds).
Let u and v be non-zero vectors, r be a vector, the Tanimoto similarity threshold
ε ∈ [−1, 1], the corresponding Euclidean threshold ε

′
(ε) = √

2 − 2ε and bounds
ε

′
1(ε) = Euclidean(NF(u), r) − ε

′
(ε) and ε

′
2(ε) = Euclidean(NF(u), r) + ε

′
(ε).

a) If Euclidean(NF(v), r) /∈ [ε′
1(ε), ε

′
2(ε)], then cosSim(u, v) <ε.

b) If cosSim(u, v) ≥ε, then Euclidean(NF(v), r) ∈ [ε′
1(ε), ε

′
2(ε)].

This observation enables efficient determination of promising candidates for the
members of cosine similarity ε-neigborhood based on the Euclidean distances of nor-
malized forms of non-zero vectors to some reference vector r. Note that the reference
vector itself does not need to be normalized.

Example 2. (Determining cosine ε-neighborhood using the Euclidean triangle inequal-
ity condition with two bounds). Let ε = 0.95. We are to find promising candidates for
ε-SNBcosSim

D(v5) in example setD of vectors from Table 1, which was used in Example
1. Nevertheless, this time the Euclidean distances of normalized forms of all vectors
in D to reference vector r = [−0.29, −0.24, 0.83, 0.69, −0.51, 0, 0, 0.70, 0] were
pre-calculated and the vectors in D were sorted with respect to these distances. The
reference vector was created from extreme dimension values of normalized forms of
vectors in D (the chosen extreme dimension values are bolded in Table 2). Let R be the
set of vectors in D whose pessimistic estimations of the Euclidean distances of their
normalized forms to NF(v5) do not exceed ε

′
(ε) = √

2 − 2ε ≈ 0.32; that is, vectors v
∈ D for which Euclidean(NF(v), r) ∈ [ε

′
1(ε), ε

′
2(ε)] = [Euclidean(NF(v5), r) −ε’(ε),

Euclidean(NF(v5), r) +ε’(ε)] = [1.26 –0.32, 1.26 + 0.32] = [0.94, 1.58]. Hence, R =
{v3, v7 v5, v2} (please see Table 3) and R is a superset of SNBcosSim

D(v5). Thus, the
determination of SNBcosSim

D(v5) requires 4 calculations of the cosine similarity to vector
v5 instead of 10 calculations. As the vectors in D were pre-sorted with respect to the
Euclidean distances of their normalized forms to the reference vector, it was sufficient
to check for 5 vectors v in D whether Euclidean(NF(v), r) ∈ [ε

′
1(ε), ε

′
2(ε)]; namely for

all for vectors in R and for v1. �
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Table 3. Set of vectors in D sorted with respect to the Euclidean distances of their normalized
forms (from Table 2) to reference vector r = [−0.29, −0.24, 0.83, 0.69, −0.51, 0, 0, 0.70, 0]. By
Corollary 3, ε-SNBcosSimD(v5) is guaranteed to be a subset of R = {v3, v7, v5, v2} for ε = 0.95.
The Euclidean triangle inequality condition check with two bounds was carried out for all vectors
in R and for vector v1.

NF (v#) NF (v#)1 NF (v#)2 NF (v#)3 NF (v#)4 NF (v#)5 NF (v#)6 NF (v#)7 NF (v#)8 NF (v#)9 Euclidean (NF (v# ), r )
NF (v3) 0.00 0.00 0.78 0.62 0.00 0.00 0.00 0.00 0.00                              0.95    
NF (v7) 0.00 0.00 0.83 0.55 0.00 0.00 0.00 0.00 0.00                              0.96    
NF (v5) 0.00 0.00 0.00 0.69 -0.51 0.00 0.51 0.00 0.00                              1.26    
NF (v2) 0.35 -0.23 0.00 0.00 0.00 0.58 0.00 0.70 0.00                              1.48    
NF (v1) -0.29 0.39 0.00 0.00 0.29 0.49 0.29 0.59 0.00                              1.60    
NF (v8) 0.00 0.53 0.00 0.53 0.00 0.00 0.00 0.00 0.66                              1.61    
NF (v4) 0.00 -0.24 0.00 0.48 0.00 0.60 0.00 -0.60 0.00                              1.77    
NF (v9) 0.00 0.00 0.00 -0.29 0.44 0.00 0.44 0.00 0.73                              1.98    
NF (v6) 0.00 0.00 -0.81 0.36 0.00 0.00 0.00 0.00 0.45                              1.98    
NF (v10) 0.00 -0.22 -0.98 0.00 0.00 0.00 0.00 0.00 0.00                              2.14    

4 Using Bounds on Vector Lengths to Calculate Tanimoto
Similarity ε-Neighborhoods

In this section, we recall the bounds on lengths of Tanimoto ε-similar vectors after [7]
and illustrate their usefulness with an example.

Theorem 2 [7] . Let u and v be non-zero vectors, α = 1
2

(
1+ε
ε

+
√( 1+ε

ε

)2 − 4

)
and ε

∈ (0, 1]. If T (u, v) ≥ ε, then |v| ∈ [ 1
α
|u|, α|u|].

Example 3. (Determining Tanimoto ε-neighborhood with bounds on vector lengths).
Let ε = 0.95 and v5 be the vector in example datasetD for which we wish to calculate its
Tanimoto similarity ε-neighborhood. We will use the bounds on vector lengths in order
to reduce the number of candidates for members of ε-SNBTSim

D(v5). By Theorem 2, α
≈ 1.26 and only vectors the lengths of which belong to the interval

[ 1
α

· |v5|, α · |v5|]
≈ [ 1

1.26 · 5.83, 1.26 · 5.83] ≈ [4.62, 7.35] are likely to be sufficiently Tanimoto similar
to v5. Let R be the set of such vectors. As follows from Table 4, R = {v5, v3, v9, v7}.
Thus, only 4 out of 10 vectors in D may belong to ε-SNBTSim

D(v5). If vectors in dataset
D are sorted with respect to their lengths, then the vector length condition is checked
only for the vectors in R and for vector v8, which is the first vector following v5 in the
sorted dataset that does not fulfill the vector length condition. �
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Table 4. The TSimVectorLengthCondition approach: Example set of vectors D is sorted with
respect to their lengths. By Theorem 2, ε-SNBTSimD(v5) is guaranteed to be a subset of R = {v5,
v3, v9, v7} for ε = 0.95. The vector length condition was carried out for all vectors in R and for
vector v8.

In the remainder of the paper, the approach to determination of promising candidates
for Tanimoto ε-similarity neighbourhood that was presented in this section will be called
the TSimVectorLengthCondition approach.

5 Calculating Tanimoto ε-Neighborhoods by Means of the Triangle
Inequality

In this section, we precede the examination of the relation of the Tanimoto similarity
with the Euclidean distance by the examination of its relation with the cosine similarity.
Let us start with recalling Property 1.

Property 2 [8] . For any non-zero vectors u and v, TSim(u, v) = cosSim(u,v)
|u|
|v| + |v|

|u| −cosSim(u,v)
.

Proof. TSim(u, v) = u·v
|u|2+|v|2−u·v . After dividing the numerator and denominator of

the expression by |u| · |v|, one obtains: TSim(u, v) = cosSim(u,v)
|u|
|v| + |v|

|u| −cosSim(u,v)
. �

By Property 2, the Tanimoto similarity between two vectors depends on the cosine of
the angle between the vectors as well as on the ratio of the lengths of both vectors. One
may observe that among pairs of vectors with the same angle (and by this, with the same
cosine similarity), the pair, say (u, v), with the least value of |u|

|v| + |v|
|u| has the greatest

Tanimoto similarity. One may easily derive that |u|
|v| + |v|

|u| ≥ 2 from the inequation (|u| −
|v|)2 ≥ 0. Nevertheless, in Lemma 2, we also claim that 2 is the tight lower bound for
|u|
|v| + |v|

|u| and prove this statement.

Lemma 2. Let u and v be non-zero vectors. Then 2 is the tight lower bound for |u|
|v| + |v|

|u| .

Proof. Let us assume that |u|
|v| + |v|

|u| < 2 (*) for any non-zero vectors u and v. We

will prove by contradiction that this assumption is wrong. Let k = |u|
|v| . Then,k > 0 and

k + 1
k − 2 < 0 (by *). Hence, k2 − 2k + 1 < 0 (**). On the other hand, k2 − 2k + 1 =
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(k − 1)2 ≥ 0, which contradicts (**). Thus, there are no vectors u and v for which
|u|
|v| + |v|

|u| < 2 (***).

We also note that |u|
|v| + |v|

|u| = 2 for |u| = |v| (****). By (***) and (****), 2 is the tight

lower bound for |u|
|v| + |v|

|u| . �

Lemma 3. (Relationship between the Tanimoto similarity and the cosine similarity).

Let u and v be non-zero vectors, ε ∈ (0, 1], ε
′′
(ε, |u|, |v|) = ε

1+ε

( |u|
|v| + |v|

|u|
)
and ε

′′
(ε) =

2ε
1+ε

. Then:

a) TSim(u,v) ≥ ε ⇔ cosSim(u,v) ≥ ε
′′
(ε, |u|, |v|).

b) ε
′′
(ε, |u|, |v|) > 0.

c) ε
′′
(ε) is the tight lower bound on ε

′′
(ε, |u|, |v|).

d) ε
′′
(ε) ∈ (0, 1].

e) If TSim(u,v) ≥ ε, then cosSim(u,v) ≥ ε
′′
(ε).

Proof. Ad a) Follows from Property 2.
Ad b) Follows from the fact that ε ∈ (0, 1].
Ad c) Follows from Lemma 2.
Ad d) Follows from the fact that ε ∈ (0, 1].
Ad e) Follows from Lemma 3a) and 3c). �

We already know that checking if TSim(u,v) ≥ ε is equivalent to checking
whether cosSim(u, v) ≥ ε

′′
(ε, |u|, |v|) (by Lemma 3a). By Corollary 2, the lat-

ter condition is equivalent to the following condition expressed in terms of the
Euclidean distance between normalized forms of vectors: Euclidean(NF(u),NF(v)) ≤√
2 − 2ε′′

(ε, |u|, |v|).
Theorem 3. (Relationship between the Tanimoto similarity and Euclidean distance).
Let u and v be non-zero vectors, r be a vector, ε ∈ (0, 1], ε

′′
(ε, |u|, |v|) = =

ε
1+ε

( |u|
|v| + |v|

|u|
)
, ξ(ε, |u|, |v|) = √

2 − 2ε′′
(ε, |u|, |v|), ε

′′
(ε) = 2

1+ε
and ξ(ε) =√

2 − 2ε′′
(ε). Then:

a) TSim(u,v) ≥ ε ⇔ Euclidean(NF(u), NF(v)) ≤ ξ(ε, |u|, |v|).
b) ξ(ε) is the tight upper bound on ξ(ε, |u|, |v|).
c) ξ(ε) ∈ [0, 1).
d) If TSim(u,v) ≥ ε, then Euclidean(NF(u),NF(v)) ≤ ξ(ε).
e) If TSim(u,v) ≥ ε, then Euclidean(NF(u), r) − Euclidean(NF(u), r) ≤ ξ(ε).
f) If Euclidean(NF(u), r) − Euclidean(NF(u), r) > ξ(ε), then TSim(u,v) < ε.

g) ξ(ε, |u|, |v|) =
√
2 − 2ε

1+ε

( |u|
|v| + |v|

|u|
)
.

h) ξ(ε) =
√
2 − 4ε

1+ε
.

Proof. Ad a) Follows from Lemma 3a) and Corollary 2.
Ad b) Follows from Lemma 3c).
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Ad c) Follows from Lemma 3d).
Ad d) Follows from Theorem 3a-b).
Ad e) Follows from Theorem 3d) and Property 1b).
Ad f) Follows from Theorem 3e).
Ad g-h) Trivial. �

Corollary 4. (Using the Euclidean triangle inequality condition with two bounds).
Let u and v be non-zero vectors, r be a vector, the Tanimoto similarity threshold

ε ∈ (0, 1], the corresponding Euclidean threshold ξ(ε) =
√
2 − 4ε

1+ε
and bounds

ξ1(ε) = Euclidean(NF(u), r) − ξ(ε) and ξ2(ε) = Euclidean(NF(u), r) + ξ(ε).

a) If TSim(u, v) ≥ε, then Euclidean(NF(v), r) ∈ [ξ1(ε), ξ2(ε)].
b) If Euclidean(NF(v), r) /∈ [ξ1(ε), ξ2(ε)], then TSim(u, v) <ε.

Proof. Ad a) Follows from Theorem 3d), Theorem 3h) and Corollary 1b).
Ad b) Follows from Corollary 4a). �
Theorem 3 and Corollary 4 allow us to propose a new approach to determination of

the Tanimoto similarity by means of the triangle inequality. In this approach, we assume
that the Euclidean distances of normalized forms of all vectors inD to a reference vector
r are pre-calculated and all vectors are sorted with respect to these distances. For a
given vector u, set R of vectors v in D whose pessimistic estimations of the Euclidean
distances fromNF(v) toNF(u) do not exceed ξ(ε); that is, those vectors v inD for which
Euclidean(NF(v), r) ∈ [ξ1(ε), ξ2(ε)] are determined. By Corollary 4, R is a superset of
ε-SNBTSim

D(u).

Example 4. (Determining Tanimoto ε-neighborhood using the Euclidean triangle
inequality condition with two bounds). Let ε = 0.95. Our task is to reduce the num-
ber of promising candidates for members of SNBTSim

D(v5) by means of the triangle
inequality. To this end, we will use Corollary 4. It is assumed that the Euclidean dis-
tances of normalized forms of all vectors in D to reference vector r = [−0.29, −0.24,
0.83, 0.69, −0.51, 0, 0, 0.70, 0] (the same as in Example 2) are pre-calculated and
the vectors in D are sorted with respect to these distances (see Table 5). Let R be
the set of vectors whose pessimistic estimations of the Euclidean distance of normal-

ized forms of vectors in D to NF(v5) do not exceed ξ(ε) =
√
2 − 4ε

1+ε
≈ 0.23; that

is, R contains those vectors v in D for which Euclidean(NF(v), r) ∈ [ξ1(ε), ξ2(ε)] =
[Euclidean(NF(v5), r) − ξ(ε),Euclidean(NF(v5), r) + ξ(ε)] = [1.26 – 0.23, 1.26 +
0.23] = [1.03, 1.49]. Hence, R = {v5, v2} and R is a superset of SNBTSim

D(v5). Thus,
the determination of SNBTSim

D(v5) requires 2 calculations of the cosine similarity to
vector v5 instead of 10 calculations. As the vectors in D are pre-sorted with respect to
the Euclidean distances of their normalized forms to the reference vector, it is sufficient
(by Corollary 4) to carry out the triangle inequality check only for the vectors in R and
for vectors: v7 and v1. �

In the remainder of the paper, the proposed approach to determination of promising
candidates for Tanimoto ε-neighbourhood will be called the TSimTriangleInequality-
Condition approach.
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Table 5. The TSimTriangleInequalityCondition approach: Set of vectorsD sorted with respect to
the Euclidean distances of their normalized forms to reference vector r = [−0.29, −0.24, 0.83,
0.69, −0.51, 0, 0, 0.70, 0]. By Corollary 4, ε-SNBTSimD(v5) is guaranteed to be a subset of R =
{v5, v2} for ε = 0.95. The Euclidean triangle inequality condition check with two bounds was
carried out for all vectors in R and for vectors v7 and v1.

6 Calculating Tanimoto ε-Neighborhoods by Means of the Triangle
Inequality and Lengths of Vectors

In this section, we consider the use of both the triangle inequality and bounds on vector
lengths to reduce the number of candidates for Tanimoto similarity ε-neighborhood.
Depending onwhich condition is applied as first, the combined approachwill be called as
either TSimTriangleInequalityConditionAsFirst or TSimVectorLengthConditionAsFirst.
In both cases, we assume that the lengths of vectors inD and the distances of normalized
forms of these vectors to a reference vector are pre-calculated.

In the case of the TSimTriangleInequalityConditionAsFirst approach, it is assumed
that all vectors are sorted with respect to the Euclidean distances of their normalized
forms to a reference vector. For a given vector u, set R is determined according the
TSimTriangleInequalityCondition approach (see Corollary 4), which was proposed in
Sect. 5. Next, R is reduced to RedR containing only those vectors from R that fulfill the
condition on vector lengths (seeTheorem2). Clearly,R⊇RedR⊇ ε-SNBTSim

D(u). Please
see Table 6 for the results obtained with the TSimTriangleInequalityConditionAsFirst
approach when looking for promising candidates for ε-SNBTSim

D(v5) given ε = 0.95.
In the case of the TSimVectorLengthConditionAsFirst approach, we assume that all

vectors are sorted with respect to their lengths. For a given vector u, set R is deter-
mined according the TSimVectorLengthCondition approach (see Theorem 2), which
was described in Sect. 4. Next, R is reduced to RedR containing only those vectors
from R whose pessimistic estimations of the Euclidean distances of their normalized
forms to NF(u) do not exceed ξ(ε) (see Theorem 3 or Corollary 4). Clearly, R ⊇ RedR
⊇ ε-SNBTSim

D(u). Table 7 presents the results obtained with TSimVectorLengthCondi-
tionAsFirst approach when looking for promising candidates for ε-SNBTSim

D(v5) given
ε = 0.95.

In Table 8, we summarize the results obtainedwhen looking for promising candidates
for ε-SNBTSim

D(v5) given ε = 0.95 for five methods: (i) without any optimization, (ii)
based on vector lengths (TSimVectorLengthCondition), (iii) for the newmethod using the
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Table 6. The TSimTriangleInequalityConditionAsFirst approach: Set of vectors D is sorted with
respect to the Euclidean distances of their normalized forms to reference vector r = [−0.29, −
0.24, 0.83, 0.69, −0.51, 0, 0, 0.70, 0]. By Corollary 4, ε-SNBTSimD(v5) is guaranteed to be a
subset of R = {v5, v2} for ε = 0.95. After checking v5 and v2 w.r.t. the vector length condition
(see Theorem 2), only v5 remains in reduced set RedR of promising candidates for the members
of SNBTSimD(v5).

Table 7. The TSimVectorLengthConditionAsFirst approach: Example set of vectors D is sorted
with respect to their lengths. By Theorem 2, ε-SNBTSimD(v5) is guaranteed to be a subset of R
= {v5, v3, v9, v7} for ε = 0.95. After checking v5, v3, v9 and v7 w.r.t. the triangle inequality
condition (see Corollary 4), only v5 remains in reduced set RedR of promising candidates for the
members of SNBTSimD(v5).

triangle inequality property (TSimTriangleInequalityCondition) and (iv) for two variants
(TSimTriangleInequalityConditionAsFirst and TSimVectorLengthConditionAsFirst) of
the new combined method using both vector length condition and the triangle inequality
property.As follows fromTable 8, the newapproaches are likely to considerably decrease
the number of vectors in D for which it is necessary to carry out the costly Tanimoto
similarity calculations. It also suggests that the combined approach is likely to be more
efficient than the approaches using one of the conditions.
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7 Summary

In the paper, we showed that the problem of looking for Tanimoto similarity neighbor-
hoods among real-valued vectors is equivalent to the problem of looking for neighbor-
hoods among normalized forms of these vectors in the Euclidean space. Based on the
obtained theoretical results, we proposed a new method that uses the triangle inequal-
ity to losslessly identify promising candidates for members of the Tanimoto similarity
neighbourhoods among real-valued vectors. Also, we proposed two variants of a new
combined method which, apart from the triangle inequality, also uses the bounds on
vector lengths to determine Tanimoto similarity neighborhoods. By means of examples
we showed that the method based solely on bounds on vector lengths as well as the new
method that uses the triangle inequality may result in significant reduction of the number
of costly calculations of the Tanimoto similarities of vectors as well as we showed that
both variants of the combined method may further considerably reduce the number of
these calculations.
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Abstract. An important diagnostic technique for providing accurate
information about the spatial distribution of brain soft tissues non-
invasively is magnetic resonance (MR) imaging. In MR images, different
imaging artifacts give rise to uncertainties in brain volume segmenta-
tion into major soft tissue classes; as well as in extracting brain tumor
and evaluating its malignancy state. Among various soft computing tech-
niques, rough sets provide a powerful tool to handle uncertainties and
incompleteness associated with data, while fuzzy set serves as an analyt-
ical tool for dealing with uncertainty that arises due to the overlapping
characteristics in the data. In this regard, the paper presents a brief
review on the recent advances of rough-fuzzy hybridized approaches for
brain MR volume segmentation, brain tumor detection and gradation.

Keywords: Medical image analysis · Segmentation · Gradation ·
Rough sets · Fuzzy set · Hybrid intelligent systems

1 Introduction

Magnetic resonance (MR) imaging is an important diagnostic technique for pro-
viding accurate information about the spatial distribution of brain soft tissues
non-invasively. In the last few decades, MR imaging has evolved into the most
powerful and versatile medical imaging tool for diagnosis of neurological dis-
eases and brain cancer. The analysis of non-invasive brain MR scans enables
to impart enormous potential value for improved diagnosis, treatment planning,
and follow-up of individual patients.

However, various imaging artifacts like intensity inhomogeneity or bias field
and noise may give rise to uncertainties in segmentation of brain MR volumes
into three major soft tissue classes, namely, gray matter, white matter, and
cerebro-spinal fluid; as well as in extracting brain tumor and evaluating its malig-
nancy state. Three main factors, namely, vagueness and incompleteness in class
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definitions, imprecision in computations, and overlapping characteristics among
class boundaries, are some of the sources of this uncertainty. In this regard, the
theories of rough sets [6] and fuzzy sets [12] have been integrated to model and
handle the uncertainties in brain MR image segmentation and tumor classifica-
tion tasks. Both fuzzy sets and rough sets provide a mathematical framework
to capture the uncertainties associated with the real-life data. The rough set
theory comes up with a successful tool for data analysis by synthesizing approx-
imations of concepts or sets from the given data [6]. There are generally fuzzy
information in real-life applications and the data is real valued. Combining rough
sets and fuzzy sets, therefore, provides an important direction in reasoning with
uncertainty for real valued data.

The theory of fuzzy set is based on the notion of a membership function
on the domain of discourse, assigning a grade of belongingness to each object
in order to model an overlapping or imprecise concept. On the other hand, the
theory of rough sets is based on the ambiguity caused by limited discernibility
of the objects in the domain of discourse. The main idea here is to approximate
any crisp subset or concept by a pair of exact sets, called the upper and lower
approximations. However, in granular universe, the concepts may well be impre-
cise, since the crisp subsets may not represent these concepts. This leads to an
important direction, in which the notions of fuzzy sets and rough sets can be
integrated, to develop a model of uncertainty, stronger than either, under the
umbrella called rough-fuzzy computing [2,5].

Rough-fuzzy techniques are efficient hybrid techniques based on judicious
integration of principles of rough sets and fuzzy sets. While the membership
functions of fuzzy sets enable efficient handling of overlapping classes, the con-
cept of lower and upper approximations of rough sets deals with uncertainty,
vagueness, and incompleteness in class definitions. Since the rough-fuzzy app-
roach has the capability of providing a stronger paradigm than either of the rough
sets or fuzzy sets for uncertainty handling, it has greater promise in application
domains of medical image analysis. In this regard, the paper presents some new
algorithms, based on the theory of rough-fuzzy computing. These algorithms
have been introduced in recent past in [7], for the analysis of brain MR image
data, in the presence of intensity inhomogeneity and noise.

2 Segmentation of Brain MR Images

Segmentation is the process of partitioning an image domain into a number of
non-overlapping, meaningful, and homogeneous regions. Accurate and reliable
segmentation of brain MR images into three major soft tissue classes (Fig. 1),
namely, gray matter (GM), white matter (WM), and cerebro-spinal fluid (CSF),
is of great importance to identify the disease-specific morphological differences.
Manual segmentation of brain MR images has been a common practice in clinics.
But, it is labor intensive, time-consuming, and varies according to the expert’s
perception. It thus makes an automated, consistent, and accurate brain MR
image segmentation method desirable for clinical use.
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Fig. 1. Example of brain MR image segmentation

However, during segmentation of brain tissues, namely, GM, WM, and CSF,
some non-brain tissues may seem to be indiscernible with respect to the brain
tissues. Therefore, it may produce high classification error during segmentation
of brain tissues or lesion. Since the region of interest for segmentation is the area
containing only brain tissues, the proper surface representation of the human
cerebral cortex is thus highly desirable prior to the segmentation. So, one of
the important tasks of brain image analysis is the extraction of brain region
from non-brain region, which is known as skull stripping. The process of brain
extraction or skull stripping (Fig. 2) includes the removal of non-brain areas, like
eyes, dura, scalp, skull, etc., from brain MR volumes. It acts as an important
pre-processing step, which not only increases the segmentation accuracy, but
also minimizes the execution time of the segmentation in manifold.

Fig. 2. Skull stripping in brain MR image

Even though the problem of brain tissue segmentation has been evolved for
many years in medical research, the design of robust and efficient segmentation
algorithms is still a very challenging research topic, due to the variety and com-
plexity of the brain MR images. The inherent limitations of spatial and temporal
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resolutions of imaging devices and material heterogeneity lead to different imag-
ing artifacts in images obtained from various modalities. These imaging artifacts
include mainly noise and intensity inhomogeneity.

These artifacts introduce misclassification of brain tissues during segmenta-
tion of brain MR volumes. In real data analysis, the effects of noise and outliers
are unavoidable. Figure 3 shows the effect of noise in brain MR images, where the
example noise-free MR volume of Fig. 3(a) is corrupted with 9% noise (Fig. 3(c)).
The histograms of different tissue classes, namely, GM, WM, and CSF, gener-
ated from these noisy and noise-free brain MR volumes are also shown in Fig. 3.
The histograms of GM, WM, and CSF for the noisy brain MR volume indicate
that they are significantly overlapped with each other (Fig. 3(d)) as compared
to the histograms obtained from the corresponding noise-free brain MR image
(Fig. 3(b)).

(a) Noise-free image
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(c) Noisy image
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Fig. 3. Effects of noise in brain MR image

Another major artifact in brain MR volumes is the bias field artifact, also
known as intensity inhomogeneity. Intensity inhomogeneity in MR images gen-
erally occurs due to the faulty image acquisition process and also from imaged
object. Although this artifact is hardly observable to a person, it degrades the
quality of segmentation drastically. Bias field artifact is conventionally defined as
a smooth, but spurious, variation of intensities within same tissue class across the
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(a) Bias-induced image (b) Inhomogeneity field (c) Bias-corrected image
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Fig. 4. Effects of intensity inhomogeneity in brain MR image

image. Figure 4 presents the effects of bias field artifact on brain MR images. The
intensity non-uniformity level of bias-induced image (Fig. 4) is 80%, while both
bias-corrected and bias-induced images are noise-free in this example. Because
of the smooth spatially varying nature of this artifact, the intensity values of
a tissue class vary according to their spatial location within the image domain.
This results in modification of mean and increase in within-class variation of
each tissue class, such as GM, WM, and CSF, as shown in Fig. 4. In effect,
the overlapping region between the histograms of two tissue classes is large. In
other words, the bias field artifact increases the overlaps between the intensity
distribution of different soft tissues significantly.

Hence, it makes the segmentation process highly sensitive to this spurious
intensity variations. In order to apply any automatic image analysis tool to a
brain MR volume, a noise reduction technique as well as an inhomogeneity cor-
rection step are thus indispensable. In this regard, the following algorithms have
been introduced recently, which are developed based on rough-fuzzy computing.

1. Skull Stripping of Brain MR Volumes: Recently, Roy and Maji [8] intro-
duced an accurate and robust skull stripping algorithm, termed as ARoSi. It
is based on a novel concept, called rough-fuzzy connectedness. The connect-
edness of a voxel to the brain depends on its degree of belongingness to the
brain region as well as the degree of adjacency to the brain. The performance
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of ARoSi on several healthy and diseased real-life 3-D brain MR images, along
with a comparison with other state-of-the-art algorithms, establishes it as an
effective skull stripping method for brain MR volumes.

2. Segmentation of Bias Field Corrected Brain MR Volumes: A novel
segmentation algorithm, termed as spatially constrained rough-fuzzy c-means
(sRFCM), has been introduced in [9]. It integrates judiciously local contextual
information and the merits of rough-fuzzy clustering [1], which are very much
effective for brain MR image segmentation. The sRFCM algorithm assigns the
label of a voxel based on the labels of its local neighbors.

3. Segmentation of Bias Field Induced Brain MR Volumes: A new seg-
mentation algorithm, termed as coherent local intensity rough segmentation
(CoLoRS), has been introduced in [10], for brain MR volumes corrupted with
bias field artifact. It judiciously integrates the theory of rough sets and the
merits of coherent local intensity clustering for simultaneous segmentation
and bias field correction of brain MR volumes.

3 Brain Tumor Detection and Gradation

Treatment strategy differs significantly from one type of brain tumor to another,
ranging in grade from low to high. Patients with low-grade brain tumor may live
for a long time, giving median survival rate more than five years. In contrast,
patients with high-grade tumors have worse prognosis. Glioblastoma multiforme
is the most frequent and most malignant nervous system tumor. Glioblastomas,
shown in Fig. 5(a), develop very rapidly, and thus, yield poor median survival
rate of about 14 months. Meningiomas, shown in Fig. 5(b), for example, are
generally benign or low grade and slowly growing intracranial tumors, attached
to the dura matter.

(a) Glioblastoma (high grade) (b) Meningioma (low grade)

Fig. 5. Examples of high grade and low grade brain tumors

The prognosis for high grade brain tumors remains poor, even with aggressive
treatment strategies, including surgical resection, along with recent advances
in radiotherapy and chemotherapy. Surgery is the cornerstone of treatment for
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the majority of low-grade tumors, while post-operative radiotherapy has been
shown to lengthen the progression-free period without significantly affecting the
overall survival. Therefore, the diagnosis of brain tumors is critical for planning
therapeutic strategies, assessing prognosis, and monitoring response to therapy.
In current clinical studies, the acquired images are evaluated based on qualitative
criteria. An analysis of the characteristics of hyper-intense tissue in contrast-
enhanced T1-weighted MR image is often relied to assess the tumor malignancy.

The characteristics of brain tumors can be quantified using a variety of
image processing routines, which make the assessment highly accurate and repro-
ducible. Moreover, these automated methods of analyzing brain tumors enable
treatment planning, monitoring of therapy, examining efficacy of radiation and
drug treatments. In order to evaluate the degree of malignancy of brain tumors,
several properties or features can be extracted from tumor regions and tumors
are then classified according to these extracted features. Therefore, the necessity
of brain tumor classification, in turn, compels the accurate identification of the
tumor region.

Fig. 6. Example of tumor detection from brain MR image

For brain tumor studies, tumor segmentation is, therefore, crucial for mon-
itoring tumor growth or shrinkage in patients during therapy and studying the
differences of healthy subjects and subjects with tumor. The brain tumor detec-
tion method (Fig. 6) aims at segmentation of healthy and pathologic brain tissues
from images. Conventionally, the brain tumor from MR images is interpreted
visually and qualitatively by radiologists. Manual segmentation of brain tumor
from MR images is a time-consuming task and subject to considerable variation
in intra- and inter-operator performance. In addition, any manual segmentation
method suffers from lack of reliability and reproducibility. Therefore, a consis-
tent, accurate, automated segmentation method for clinical brain tumor seg-
mentation and volume measurement is much needed (Fig. 6). In this regard, the
following algorithms, based on rough-fuzzy computing, have been introduced.

1. Brain Tumor Detection from 3-D MR Images: The brain tumor detec-
tion from 2-D MR images using rough-fuzzy technique has been presented in
[3,4]. A new method has been introduced in [7], for segmentation of brain
tumor from MR volumes. To address the problems of uncertainty and bias
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field artifact of brain MR image segmentation, the new method uses simul-
taneous segmentation and inhomogeneity correction algorithm, described in
[10]. One of the major issues of the unsupervised brain tumor segmenta-
tion method is how to extract brain tumor accurately, since tumors may not
have clearly defined intensity or textural boundaries. Therefore, a new post-
processing method has been presented in [7], for clustering based brain tumor
detection. It combines the merits of mathematical morphology and the con-
cept of rough set based region growing approach to refine the result obtained
after segmentation, thereby, ensuring the accurateness of brain tumor seg-
mentation application.

2. Gradation of Brain Tumor Malignancy Using 3-D MR Images: A
new algorithm has been introduced in [11], using conventional MR sequences,
namely, T1, T2, T1 with contrast enhancement and FLAIR, for the assess-
ment of tumor grades.

The effectiveness of the rough-fuzzy computing based brain tumor detection
and gradation methods has been demonstrated on several real brain MR volume
databases. However, the new algorithms, mentioned here, consider only intensity
feature for each voxel. In near future, these algorithms will also be extended to
incorporate the textural properties as well to describe a voxel.
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Abstract. Machine learning methods face two main challenges in
denoising tasks. One is the lack of supervised training data, and the
other is the limited knowledge of complex unknown noise. In this paper,
for seismic denoising, we propose a new method with three techniques to
handle them effectively. First, a Generative Adversarial Network (GAN)
is employed to generate a large number of paired clean-noisy data using
real noise. Second, a deep denoising autoencoder (DDAE) is pre-trained
using these data. Third, a transfer learning technique is used to train
the DDAE further on a few field data. We have assessed the proposed
method based on qualitative and quantitative analysis. Results show that
the method can suppress seismic data noise well.

Keywords: DDAE · Denoise · GAN · Seismic data

1 Introduction

Machine learning methods, especially discriminative learning, have achieved
great success in denoising tasks for various applications. These include convo-
lutional neural network (CNN) with batch normalization and residual learning
for image denoising [1], frame-to-frame training DnCNN [2] for video denoising
[3], branch-based CNN for seismic data denoising [4], etc. They usually require a
large amount of supervised training data, i.e., clean-noisy data pairs. However,
such data are difficult to obtain in the field of seismic data processing. Therefore,
it is a challenging task to learn a denoising model with limited supervised data.

Another challenge is how to handle unknown types of noise in seismic data.
Different assumptions about the type of noise have been made when designing
the denoising methods. The most common noise assumption is additive white
Gaussian noise (AWGN) [2,5,6]. Real noise can be regarded as the addition
of independent random variables with different distributions, so the normalized
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sum is close to the Gaussian distribution. However, Gaussian noise is only an
approximation and simulation of real noise, so it cannot guarantee the noise
reduction effect on real noise.

In this paper, we propose a new seismic denoising method with three tech-
niques to handle them effectively. First, a large number of paired clean-noisy
data is generated using GAN according to actual noise. One subtask is to gener-
ate high-quality noise samples. We use a fast smooth patch search algorithm [7]
to extract noise blocks from noisy data. They are the learning goals of our GAN.
The generated noise samples are treated as additive noise. The other subtask
is to generate noisy data. We use the direct approach to superimpose the noise
samples on synthesis clean data. In this way, a large number of data pairs can
be constructed using only a small amount of data.

Second, a deep denoising autoencoder (DDAE) is pre-training using these
data. This DDAE is a fully convolutional autoencoder using rectified linear unit
(ReLU) as the activation function. The input is the noisy data, the output is the
predicted clean signal, and the optimization objective is to minimize the residual.
The training process terminates when the user-specified number of iterations is
reached. To obtain the best parameters of the model, the iteration with the least
loss is solicited.

Third, the DDAE is further trained using a transfer learning technique on a
few field data. Unlike the supervised pre-training process, our transfer learning
technique adopts the unsupervised scheme. Because the field data are not pro-
vided as clean-noisy pairs. Moreover, unlike the mean squared error (MSE) loss
employed in pre-training, a customized loss function is employed. It is a revision
of the loss function proposed in [8].

Synthetic and field data are used to evaluate the proposed method quali-
tatively and quantitatively. Results show that the proposed DDAE-GAN can
suppress the random noise while preserving the useful seismic signals.

2 Related Work

We first briefly introduce several traditional methods. Then two denoising meth-
ods based on noise modeling and autoencoder are introduced respectively.

2.1 Seismic Noise Reduction Methods

Most seismic data are inevitably mixed with noise due to human or environmen-
tal factors. Noise may disrupt many seismic processes, such as geological inter-
pretation and velocity analysis [9]. Many traditional denoising methods have
been proposed. For instance, the f -x method [10–12] processes in the Fourier
transform domain, MSSA [13] performs denoising in the frequency-space domain,
and wavelet denoising [14] uses wavelet transform to suppress noise.
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2.2 Noise Modeling Based Denoising Methods

So far, most denoising methods are based on noise modeling. BM3D [15] is
known as the golden algorithm for image denoising. It is based on the Gaus-
sian model and combined with non-local self-similar models and sparse models
to achieve a good denoising effect. The multi-scale denoising algorithm based
on Gaussian hypothesis [16] is on the basis of non-local Bayes [17]. Mixture
of Gaussian (MoG) is used to approximate various continuous distributions to
improve denoising performance [18]. However, most of these methods use a single
fixed noise model, which may limit its generalization ability and further affect
denoising performance. As a generative model, GAN can not only learn complex
distributions, but also generate data with the same distribution. For example,
the GCBD [7] algorithm applies GAN to real image noise modeling to generate
a large number of data sets.

2.3 AutoEncoder Based Denoising Methods

The unsupervised nature of autoencoder (AE) makes it widely used in denoising.
The sparse denoising autoencoder realizes the denoising of mixed noise by adding
the sparse condition [19]. The performance of using autoencoder to achieve blind
image denoising is better than the BM3D [15]. Moreover, DDAE based on trans-
fer learning is used to suppress random seismic noise [8]. These examples illus-
trate the maturity of autoencoders in denoising.

3 DDAE-GAN Based Blind Denoiser

This section presents our work in detail. Figure 1 presents an overview of our
method (DDAE-GAN).

3.1 Paried Data Constructing

Our first task is to construct paired training data sets. Similar to [7], we use
GAN to generate noise instead of noisy data. Therefore, we need to extract the
noise blocks from the noisy data as the learning goal of GAN.

Noise Block Extraction
This is a key step for GAN to simulate unknown noise. The quality of noise
block extraction determines the quality of samples generated by GAN. We use
a fast smooth patch search algorithm [7] to get the noise blocks.

Let p = (pij)d×d be a global patch sampled from the seismic data, and
q = (qij)h×h be a local patch sampled from p. A smooth block is often denoted
by s and if and only if it satisfies

|q − p| ≤ μ · |p|, (1)

and
|σ2(q) − σ2(p)| ≤ γ · σ2(p), (2)
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Fig. 1. Architecture of the proposed DDAE-GAN. (a) Generate noise data using GAN.
(b) Use the generated supervised data for pre-training. (c) Use transfer learning to
denoise field data.

where · and σ2(·) denote the mean and variance of the matrix elements, respec-
tively, and μ, γ ∈ (0, 1) are parameters.

Given a smooth block s, according to [7], we obtain a noise block as follows

v = v(s) = s − s. (3)

where s denotes a smooth block, see more details in [7].

Noise Modeling with GAN
The noise blocks obtained in the previous step is the learning goal of GAN. We
adopt Wasserstein GAN (WGAN) [20] to learn the noise distribution. WGAN
has the same structure as DCGAN [21], which is depicted in Fig. 2. The objective
function for our task is

LWGAN = max
w∈W

Ex∼Pr
[fw(x)] − Ez∼p(z) [fw (gθ(z)] , (4)

where fw is a discriminator network with parameter w and the last layer is not
a nonlinear activation layer.

3.2 Pre-training

Network Settings
Our DDAE (Fig. 3) is composed of input, noise, encoder and decoder layers. We
use the synthesized signal plus the noise generated by GAN as the pre-trained
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Fig. 2. [21] DCGAN generator used for real noise modeling. A 100-dimensional uniform
distribution z is transformed into 64 × 64 noise data through four fractionally-strided
convolutions.

data set of DDAE to obtain the best parameters. Let s = (sij)d×d be the clean
data and n′ = (n′

ij)d×d be the noise samples generated by GAN. In the noise
layer, s and n′ form noisy data d′ = s + n′. Our goal is to remove the noise
part n′ from the noisy data d′ to obtain the clean signal s. The input data d′ is
compressed into multiple abstraction levels through the coding layer to extract
important features z. The decoding layer attempts to use the extracted features
z to reconstruct clean seismic data s′.

Fig. 3. Architecture of the proposed DDAE.

Generally, seismic data is two-dimensional or three-dimensional data with
spatial transformation. We propose that DDAE uses convolutional layers instead
of fully connected layers. On the one hand, the fully connected network ignores
the location information of the data. On the other hand, the number of param-
eters will limit the depth of the network.

We use the controlled variable method to obtain the optimum DDAE topol-
ogy. For non-linearity purposes, a non-linear layer is added after each convolu-
tional layer. We have tested several activation functions such as the hyperbolic
tangent (tanh), sigmoid and rectified linear unit (ReLU). We found that using
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the ReLU function can make DDAE reach optimal performance. The ReLU
function is defined as A(x) = max(0, x).

According to the experimental results, we found that three encoding and
decoding layers are sufficient to achieve a good denoising effect. The optimal
number of output channels for each convolutional layer is as follows. In the
encoder, the number of output channels of the first convolutional layer is 32, the
second layer is 16, and the third layer is 8. In the decoder, the number of output
channels of the first transposed convolutional layer is 16, the second layer is 32,
and the third layer is the number of input data channels. The proposed DDAE’s
network topology is shown in Fig. 4.

Fig. 4. Our DDAE’s network topology.

Network Training
We use the training method of data block, that is, using a fixed-size window to
slide the input data d′. The window slides at a fixed step each time, and data
samples are generated. The window size determines the size of the sample data.
Once the window size is determined, the sliding step determines the number of
sample data. We also use a rollover strategy for data enhancement. The block
training is well adapted to the key information of seismic data which is only
locally relevant. At the same time, it avoids the waste of computing resources
during the training. In the entire network tuning process, a large input window
can result in too few samples and slower training speed. We test four group small
input window size: 32 × 32, 48 × 48, 64 × 64, and 96 × 96. Result shows that the
64 × 64 window size is the best.

Finally, we use mean square error (MSE) as the loss function of the pre-
trained model. The loss function is defined as

min
1
2

N∑
(s′ − s)2 , (5)

where N represents input window size, which we set to 64 × 64.
In Adam optimizer, the optimum η, β1, β2, and ε parameters are 0.005, 0.9,

0.999, and 10−8. During training, we use 500 epoches and a batch size of 256.
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3.3 Transfer Learning

For DDAE that processes field data, we use a new loss function, which is based
on [8]. Then the pre-trained model is used to initialize the model. The DDAE
only needs to fine-tune the weight of each node in the network layer by layer to
achieve a good denoising effect. The defined loss function is only related to the
denoised data s′ and the removed noise n′. The loss function defined for field
data is defined as

[N
∑

s′n′ − ∑
s′ ∑n′]2

N2[
∑

s′2 − (
∑

s′)2][
∑

n′2 − (
∑

n′)2]
, (6)

where s′ represents the denoised data, and n′ represents the removed noise. N
represents the size of the input window, which is set to 64 × 64.

4 Examples

We test the proposed algorithm on synthetic data and field data respectively.
The denoising performance of the proposed method compare the denoising per-
formance with two denoising methods (MSSA, wavelet transform). Three parts
of the experiment were carried out:

(1) Single Gaussian noisy data is used for evaluation.
(2) We also use mixture noise evaluation to show that the proposed method can

handle more complex noise.
(3) Finally, we use field data to evaluate the applicability of the proposed

method to real-world problems. Peak signal-to-noise ratio (PSNR) is used
as a quantitative assessment of denoising performance, expressed as

PSNR = 10 × log10(MAX2
s /MSE), (7)

where MAXs denotes the maximum value of seismic data. MSE denotes
the mean square error, that is, the square error of the clean data and the
denoised data. The unit of PSNR is dB, and the larger the value, the less
distortion.

4.1 Synthetic Examples

Gaussian Noise
We create synthetic data with a sampling rate of 2 ms, which includes 83 traces
and 1000 time samples. The data contains strong amplitude signals and weak
amplitude signals (Fig. 5(a)). We add single Gaussian noise to the synthesized
data to form noisy data (Fig. 5(b)), and its PSNR is 16 dB.
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Figures 6(a), 6(b) and 6(c) display the denoised results of MSSA, wavelet
transform and the proposed method, respectively. MSSA and wavelet transform
have a lot of residual noise, but the proposed method basically does not. In
the corresponding, the differences between the results of three methods and the
ground truth are shown in Figs. 6(d), 6(e) and 6(f). The denoised results of MSSA
and wavelet transform are quite different from ground truth, while the proposed
has only some subtle differences. In addition, the PSNR of the proposed method
is 49.52 dB, which is higher than 27.53 dB and 22.81 dB by MSSA and Wavelet
transform. Results show that the proposed method can suppress the noise while
protecting the effective signal for Gaussian noisy data.

Fig. 5. Synthetic examples. (a) Clean dataset. (b) Single Gaussian noisy dataset (PSNR
= 16 dB). (c) Mixture noisy dataset (PSNR = 25.19 dB).

Mixture Noise
Besides Gaussian noise, We also evaluate the denoising performance of several
methods for complex noise. The mixture noise used in our experiments comes
from [22]. It includes 70% Gaussian noise obeying N(0,1) distribution, 20% Gaus-
sian noise obeying N(0,0.01) distribution and 10% uniform noise. Figure 5(c)
shows an example of mixture noise with a PSNR of 25.19 dB.

Figures 7(a), 7(b) and 7(c) display the denoised results of the complex noisy
data using MSSA, wavelet transform and the proposed method, respectively. We
can observe that there is still a lot of residual noise in MSSA and wavelet trans-
form. Although there is no significant residual noise in the proposed method,
some details of the weak signal are missing. Figures 7(d), 7(e) and 7(f) show
that the proposed method has less signal leakage than MSSA and wavelet trans-
form. And the PSNRs of the denoised results are 11.66 dB, 29.45 dB, 37.67
dB. It can be seen from the denoised results and the PSNRs that the proposed
method can also remove more complex noises.
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Fig. 6. Single Gaussian noisy data denoising results. Denoised result using (a) MSSA
(PSNR = 27.53 dB), (b) wavelet transform (PSNR = 22.81 dB), (c) the proposed
method (PSNR = 49.52 dB). Differences between the clean data and the denoising
result using (d) MSSA, (e) wavelet transform, (f) the proposed method.

4.2 Field Examples

We further evaluated the denoising performance of the three methods on more
complex field data. The field data used in the experiment consists of 1,200 traces
and 800 time samples (Fig. 8). Although most of the signals in the data are
relatively strong and continuous, they are contaminated by a large amount of
incoherent noise, resulting in blurred signals. The denoised results corresponding
to MSSA, wavelet transform and the proposed method are shown in Figs. 9(a),
9(b) and 9(c), respectively. The removed noise extracted by MSSA, wavelet
transform and the proposed method are shown in Figs. 9(d), 9(e) and 9(f). We
can observe that three methods can suppress random noise. But the denoising
result of the proposed method is smoother and removes more noise than the
other two. In addition, there is no obvious continuous signal in the noise part
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Fig. 7. Mixture noisy data denoising results. Denoised result using (a) MSSA (PSNR
= 11.66 dB), (b) wavelet transform (PSNR = 29.45 dB), (c) the proposed method
(PSNR = 37.67 dB). Differences between the clean data and the denoising result using
(d) MSSA, (e) wavelet transform, (f) the proposed method.

Fig. 8. Field data.

(Fig. 9(f)), indicating that the proposed method has a certain degree of fidelity.
Therefore, the proposed method can suppress the noise while protecting the
effective signal.
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Fig. 9. Field data denoising results. Denoised result using (a) MSSA, (b) wavelet trans-
form, (c) the proposed method. Removed noise using (d) MSSA, (e) wavelet transform,
(f) the proposed method.

5 Conclusions

In this paper, we proposed a method of fusing three technologies. GAN was
employed to learn the noise distribution in actual seismic data and constructed
a large number of noisy-clean supervised data. Supervised data was used for
DDAE for pre-training, and the pre-training model redefines the loss function to
denoise the field data. We have assessed the proposed method based on synthetic
noise and real noise examples. The results showed that the proposed method
had better denoising performance than MSSA and wavelet transform. However,
a small part of the effective signal was still lost in the synthesized noise part.
Next, we will consider better protection of effective signals while suppressing
noise.
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Abstract. The multiple class imbalanced problem is still less investi-
gated than its binary counterpart. In particular, the sources of its difficul-
ties have not been sufficiently studied so far. Therefore, in this paper we
summarize the few literature works on the difficulty factors and present
our own latest research results. The binary method for an identification
of the types of minority examples is generalized for multiple imbalance
classes. The second part of this paper presents three our recent meth-
ods for learning classifies from multi-class imbalanced data which exploit
information on the aforementioned difficulty factors.
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1 Introduction

In imbalanced data at least one class, further called the minority class, contains
a much smaller number of examples than other majority classes. Imbalanced
classes pose serious difficulties for learning classifiers as the algorithms are biased
towards the majority class examples and fail to recognize the instances from the
minority class as accurate as possible [5,10].

Most of current research have been placed on constantly proposing new algo-
rithms and less on studying why this class imbalanced problem is so difficult.
However, some researchers have attempted to better understand the nature of the
imbalance data and key properties of its underlying distribution. They noticed
that the class imbalance ratio is not necessarily the only, or main, problem
causing this performance decrease. Imbalanced data are often affected by other
difficulty factors, which in turn cause the degradation of classification perfor-
mance, sometimes even stronger than the global imbalance ratio [8,13,29,31].
The data difficulty factors are related to characteristics of class distribution,
such as decomposition of the class into rare sub-concepts, overlapping between
classes or presence of rare minority examples inside the majority class regions.
With respect to data distribution characteristics Napierala et al. proposed in
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[27] to distinguish different types of examples – safe or unsafe to be learnt (e.g.
borderline, rare or outliers) and present the methods for their identification.

Nevertheless this analysis and most of the methods concern binary imbal-
anced problems only. Despite this, in some applications it is necessary to deal
with multiple imbalanced classes and to improve the recognition of more than
one of the minority classes. Such multi-class imbalanced data occur, e.g., in
medical diagnosis (where few important and rare diseases may occur), technical
diagnostics with several degrees of the device failures, text categorization, etc.

The multi-class imbalanced problems are so far less investigated than their
binary counterpart. The number of specialized approaches is definitely much
smaller. In general, the multi-class learning problems are recognized as harder
than two class ones, however the sources of these difficulties have not been suf-
ficiently studied so far. The essential questions to be examined are as follows:

– Should the previously identified binary imbalanced data factors be adapted
to multiple classes?

– Does the nature of the multi-class problems lead itself to rather new and
different factors that cause deterioration of classifier’s predictions?

So far, only a few hypotheses on such issues can be found in the literature.
Therefore the first part of this paper is devoted to discussing the already identi-
fied data difficulty factors and presenting our own latest research results. Then,
we discuss how the earlier binary method for an identification of the types of
examples and their level of difficulty [27] can be generalized for multiple classes
[22]. We describe the usage of the specialized grid clustering [21] to discover
sub-concepts within minority classes and to find rare examples or outliers.

The other contribution includes a brief presentation of three recent methods,
introduced by the author and his coauthors, for multi-class imbalanced data
which exploit information on the aforementioned difficulty factors. These are
SOUP resampling method [11], the rule induction multi-class BRACID algorithm
[26] and a multi-class extension of Roughly Balanced Bagging ensemble [23].
The paper ends with a discussion of open problems and further perspectives for
research on multi-class imbalanced problems.

2 Related Works on Classification of Multi-class
Imbalanced Data

The current approaches to multi-class imbalances are usually divided into the
following categories [5]:

– binary decomposition approaches that transform the multi-class problem into
the set of binary ones and apply existing methods for improving binary prob-
lems,

– specialized approaches, which could be further split intro multi-class pre-
processing, variants of cost-sensitive learning, algorithm modifications –
including dedicated ensembles.
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Following the authors of [5], the most popular are decomposition approaches
which are based on the ensembles previously proposed to solve complex multi-
class tasks[19]. The most often used frameworks are:

One-versus-all ensemble (OVA), which constructs binary classifiers to rec-
ognize a particular class against the remaining ones aggregated into one class
[7]. During prediction, the test instance is classified by all base classifiers and is
assigned to the class of the most confident base classifier.

One-versus-one ensemble (OVO), which constructs binary classifiers for all
pairs of classes. The training set for a particular base classifier contains learn-
ing examples from the selected pair of classes only. The prediction for the new
instance can be taken by majority voting of base classifiers’ predictions or by
weighted voting with confidence scores, or more complex aggregations [6,19].

These frameworks can be easily used in combination with techniques for
binary imbalanced data. Moreover, they are often used with oversampling or
undersampling approaches [6].

The specialized multi-class imbalanced re-sampling methods, e.g., oversam-
pling Static-SMOTE, Global-CS or MDO [1,35], attempt to increase the cardi-
nalities of minority class towards the size of the biggest class.

The selective hybrid re-sampling is done in SPIDER3 [33], where relations
between classes are captured by pre-defined misclassification costs. SMOTE and
Clustered Undersampling Technique (SCUT) [2] applies EM clustering for each
majority class, and some examples are randomly removed from these clusters.
The minority classes are oversampled with the standard SMOTE.

The final group of specialized methods aims at modifying neural networks
or ensembles. The authors either try to integrate over-sampling in the network
or propose different loss functions that direct the training the networks towards
better recognition of minority classes. Boosting algorithms are also combined
with specialized re-sampling, see e.g. [32].

3 Difficulty Factors in Imbalanced Data

3.1 Earlier Studies on Binary Imbalanced Classes

Imbalanced data are characterized with a global imbalance ratio. For binary
classes it defined as a ratio of the majority class cardinality and minority one
or a percentage of the minority class in all examples in the dataset. Besides this
ratio researchers such as [8,13,31] noticed that other characteristics of examples
distributions in the attribute space, called data difficulty factors also deteriorate
classifier predictions. They mainly include:

– the fragmentation of the minority class into smaller, rare sub-concepts [15],
– the impact of too strong overlapping between classes,
– the presence of small, isolated groups of minority examples located deeply

inside the majority class region.
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The first factor comes from experimental observations that the minority class
usually does not form a homogeneous region (single concept) in the attribute
space, but is scattered into smaller sub-concepts spread over the space, often
surrounded by examples from the majority class. Experimental studies, e.g. [15,
29] demonstrated its important impact.

The second factor corresponds to high overlapping between regions of minor-
ity and majority class examples in the attribute space. In particular it may occur
in the complex boundary regions of both classes which are not clearly separated
and contain mixed instances from minority and majority classes. Sanchez et al.
also demonstrated that the local imbalanced ratio in the overlapping region is
more influential than the global imbalanced ratio [8].

The third factor corresponds to rare cases, which are defined as isolated, very
small, groups of minority examples (e.g., containing 1–3 examples) located more
deeply inside regions of the other class [27]. They could be even single examples
lying either inside this class or in empty regions of the attribute space. This is
different from the first factor, which refers to the decomposition of the minority
class into larger sub-clusters containing more examples than rare cases.

A related view on data difficulty factors leads to distinguishing different types
of minority examples, usually called as safe or unsafe, based on the number of
minority and majority class examples near them [18].

The special method for an identification of more detailed four types minority
examples was proposed by Napierala and Stefanowski in [27]. It is based on
analyzing class labels of examples in their local neighborhood defined either
by k-nearest neighbours or by kernels. For instance, if k = 5 neighbourhood is
considered, then the example is labelled as a safe example if all five or four its
neighbors belong to its class. If three or two neighbors belong to the same class
as the considered example, then it is labelled as borderline. If there are not the
same class examples in k neighbourhood it is an outlier and a rare one for the
remaining proportion.

Besides using labels of example types which depend on such proportions, the
authors of [27] defined a coefficient expressing a safe level of the given example
x – being a local estimator of conditional probability of its assignment to the
target class as

p(C|x) =
kC

k
, (1)

where C is the class of example x, k is the number of neighbours and kC is the
number of neighbours which belongs to class C.

Experimental studies on the role of the aforementioned factors have shown
that data complexities occur in imbalanced datasets, may play a key role in
explaining the difference between the performance of various classifiers [27] and
proposing new algorithms for improving classifiers.

3.2 Multi-class Difficulties

Researchers working on multi-class imbalanced data often argue that these data
are more difficult than binary ones. However, this and some other hypothe-
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ses were already considered for standard, balanced, machine learning tasks. For
instance, the claim that decision boundaries between multiple classes are more
complex and non-linear than simpler boundaries for binary classes follows the
older works, in particular in the context of specialized ensembles such as pairwise
coupling [14] (which inspires binary decomposition OVO), see e.g. a chapter in
[19]. However, there are other newer hypotheses or observations resulting from
experiments with multi-class imbalanced datasets. We summarize them below:

– Wang and Yao [32] analysing their experimental results made an observa-
tion that different predictive accuracy may be related to considering various
configuration of types (sizes) of classes. They distinguish two configuration
multi-majority and multi-minority referring to the datasets with only one
majority or only one minority class and all the other classes being of the
same type. Following experiments they concluded that that multi-majority
class configurations were more difficult than multi-minority ones.

– Buda et al. [4] paid attention to yet another configuration of multiple classes
– gradual imbalance, which contains classes of linearly growing sizes.

– Krawczyk claimed that a given class can be a minority class with respect to
some classes, and at the same time the majority one to another subset of
classes [17]. It makes re-sampling approaches difficult1.

The needs for transferring the idea of types of minority examples [27] into
multi-class data was discussed in [17,22]. Independently, the authors of [30] also
adopted the binary example types to the multi-class setting, however in the
simplest one-vs-all manner. They studied the performance of classifiers trained
on a dataset with oversampled minority examples of one type (using the brute
force strategy for testing many variants of random oversampling examples of
the particular type). Their results showed improvements of classifiers for almost
all datasets, although the authors did not present any methods for tuning the
degrees of oversampling nor selecting the variant of example type selection.

Lango has recently carried out a comprehensive experimental study with
specially generated synthetic datasets [24]. His main conclusions are as follows:

– The class overlapping was the very influential factor when combined with the
higher imbalances. Changing the imbalance ratio presented a limited impact
on the recognition of datasets without class overlapping or its slight amount.

– The types of the class size configurations with multiple majority classes were
more difficult than multi minority ones. In the second configuration, recogni-
tion of the smallest classes were worse than in the former one. The gradual
class size configuration with the intermediate classes played a special role
between them depending whether the these classes are closer to minority or
majority classes.

1 In our opinion this hypothesis may be particularly interesting for the gradual imbal-
ance configuration, where some classes may be intermediate ones with respect to
their sizes. Furthermore we share Krawczyk’s view that it may lead to ambiguities
in the decision on the degree of modifications of the examples in oversampling or
undersampling. It will be even more difficult when such classes overlap, which the
author did not take into account.



62 J. Stefanowski

– The analysis of interrelations between different types of classes showed that
the increase of overlapping between the minority and majority classes led
to the stronger deterioration of classifier performance than between minority
ones. The impact of the intermediate classes depends on the direction of
overlapping with other classes. Its overlapping with the minority class caused
faster deterioration of the recognition of minority class than itself, so it played
a similar role to majority classes.

– An increasing the number of classes was the most influential for a smaller
number of classes.

4 Identifying Types of Examples in Multi-class
Imbalanced Data

The generalization of types of examples for multiple classes should take into
account at least some of the difficulty factors.

Napierala et al. noticed in [22] that analyzing mutual relations between
classes shows that some minority classes can be treated as more closely related
to each other than to the majority class. As discussed in the previous section the
degree of overlapping between various classes may be different. Thus the new
multi-class type of examples may also strongly depend on their relations to other
classes. For instance, a given example may be of a borderline type for certain
classes and at the same time a safe example for the remaining classes. However
using existing binary decomposition approaches to estimate data difficulty or
the similar adaptation from [30] cannot properly handle these situations.

These motivations have led Napierala et al. to model relations between mul-
tiple imbalanced classes by means of additional information about similarity
between pairs of classes. This information could be either acquired from users -
experts or more automatically estimated from class distributions in the attribute
space [22]. It means that one needs information which classes can be treated as
more similar to each other than to the rest of the classes. Furthermore, this class
similarity may correspond to the expert’s interpretation of a mutual position of
examples in the neighborhood of the example from a given class. An intuition
behind this neighborhood is the following: if example x from a given class has
some neighbors from other classes, then neighbors from the class with higher
similarity are more preferred.

Let us come back to a medical diagnosis case considered in [22]. Two classes
corresponding to similar types of the same asthma should be considered as closer
to each other than similar to other types of non-asthma as they need completely
different therapies.

Defining it more precisely, it is assumed that for each pair of classes Ci, Cj the
degree of their similarity is defined as a real valued number μij ∈ [0; 1]. Similarity
of a class to itself is defined as μii = 1. The degree of similarity does not have
to be symmetric, i.e. for some classes Ci, Cj it may happen that μij �= μji.

Although the values of μij are defined individually for each dataset, the
general recommendation of [22] is to have higher similarities (μig → 1) for other
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minority classes Cg, while similarities to majority classes Ch should be rather
low (μih → 0). This recommendation follows the earlier discussed data difficulty
factors, in particular on higher difficulty of the multi-majority case.

In the case of missing expert’s preferences to defining these class similarities
for the given dataset, the authors of [11] proposed to use the heuristics which
follows class sizes as the basic symptom of class interrelations. This is defined
as:

μij =
min(|Ci|, |Cj |)
max(|Ci|, |Cj |) (2)

where |Ci| is the number of examples of Ci class.
These degrees of similarities are used to generalize the idea of an identifi-

cation of types of examples. If one considers the k nearest neighborhood, then
determining the number of examples from the majority class in the neighborhood
of the example allows to assess how safe the example is, and then to establish
its type. Let us start from defining the safe level for the multiple classes.

Considering a given example x belonging to the minority class Ci its safe
level is defined with respect to l classes of examples in its neighborhood as:

safe(xCi
) =

∑l
j=1 nCj

μij

k
(3)

where μij is a degree of similarity, nCj
is a number of examples from class Cj

inside the considered neighborhood of x and k is a total number of neighbors.
The general interpretation of the safe level of the example is as follows: the lower
the value, the more unsafe (difficult) is the example.

The safe levels could be exploited in two ways: either as the direct value,
or by transforming the continuous levels into discrete intervals corresponding to
types of example (as done in [27]). In Sect. 6 we will show how to use safe levels
in SOUP preprocessing methods and how types of the examples are used inside
BRACID rule induction algorithm.

In Table 1 we present some of experimental results from [22], which show that
the recognition of minority classes is related to their average safe levels.

Table 1. Sensitivity of minority classes for three classifiers and average safe levels in
these classes for new-thyroid, ecoli and cleveland datasets

CART NBayes 3NN Average safe level

Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3

NT 0.94 0.83 0.94 0.86 0.71 0.89 0.77 0.78

EC 0.60 0.85 0.78 0.68 0.30 0.90 0.48 0.75 0.84 0.57 0.91 0.82

CL 0.28 0.11 0.07 0.14 0.25 0.15 0.08 0.00 0.00 0.29 0.32 0.34
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5 Discovering Split of Classes into Sub-concepts and
Rare Examples

An identification of sub-concepts in the minority class is typically done by using
clustering algorithms. Nearly all approaches exploit k-means algorithms which
are run on examples of a single class, without analyzing their relation to remain-
ing classes. Japkowicz et al. showed how the discovered clusters in both minority
and majority classes could be used for random oversampling them [15]. The sur-
vey [31] covers other clustering approaches and presents their applications. The
use of density algorithms such as DBCAN was considered much less frequently.
However, the use of clustering algorithms for real-world datasets is still a non-
trivial task, in particular tuning their parameters.

In [21], authors introduced a completely different grid-based algorithm, called
ImGrid. The algorithm works in the following steps: 1) dividing the attribute
space into grid cells, 2) joining similar adjacent cells taking into account their
minority class distributions, 3) labeling examples according to difficulty factors,
4) forming minority sub-clusters.

The number of cells and the division of the attribute range into a number
of intervals are estimated with a special heuristics [21]. The cells of the grid are
joined based on example distributions, where each cell should contain enough
examples, and by means of the statistical tests for the comparison of two discrete
distributions. For binary classes it is done with Barnard’s test. Clusters are
formed after joining several cells. Each cluster is assigned one of four difficulty
labels: safe, borderline, rare, or outlier, following rules developed by Napierala in
[27]. To sum up, unlike other clustering ImGrid simultaneously does two things:
detects clusters and categorizes them. More precisely it detects minority sub-
clusters, outliers, rare cases, and class overlapping in binary imbalanced data.
Furthermore, due to its small dependency on parameter tuning, ImGrid could
be used to analyze real world datasets easier than previous algorithms.

Recently, it was generalized for multiple classes [16]. The main changes are
the following. A special variant of Pearson χ2 test (inspired by the solution from
ChiMerge discretization) is used to evaluate similarities of class distributions
in adjacent cells. Moreover, new heuristics for ordering cells are introduced in
order to get larger clusters. Then, the new rules for labelling clustered cells were
introduced as a multiple class generalization of intervals over the safe level, which
were earlier considered in [27]. They are better suited for handling overlapping
between several classes and identifying rare cases and outliers.

The multiple class ImGrid was validated on 12 synthetic datasets showing
its ability to re-discover a structure of three classes.

6 Multi-class Hybrid Resampling Algorithm SOUP

Following a critical discussion of earlier resampling multi-class techniques, such
as Global-CS or Static-SMOTE, the authors of [11] introduced a new method
called called Similarity Oversampling and Undersampling Preprocessing (abbrev.
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SOUP), which combines undersampling with oversampling and exploits the infor-
mation about the difficulty of examples according to their safe levels.

The authors of SOUP decided that, all majority classes are undersampled
and all minority classes are oversampled to the cardinality being the median of
the sizes of the biggest minority and the smallest majority class. The resulting
resampled dataset has a balanced class distribution, but also with a reasonable
size, which is not present in other multi-class resampling methods.

The resampling is done following information on the safe levels of the exam-
ples presented in Sect. 4. The undersampling of the majority classes is performed
by removing the most unsafe examples. It means that it removes the examples
located near the boundaries with minority classes or inside their regions. On
the other hand, the oversampling of minority classes is performed in the oppo-
site direction, i.e. the safest examples are duplicated as firsts, enhancing the
representation of clear minority concepts.

As the safe level of a particular example in the final distribution is changing
while performing consecutive steps of resampling, the classes are ordered. Under-
sampling majority classes is done from the biggest to the smallest one while the
minority classes are oversampled from the smallest to the biggest one. Moreover
after each resampling step safe levels of all examples are recomputed.

The experiments [11] showed that SOUP outperformed baseline classifiers
and Static-SMOTE and Global-CS – the two popular pre-processing methods
for multi-class imbalances. Moreover SOUP is slightly better then OVO with
re-sampling and competitive to MRBBag (discussed in Sect. 8). Selected results
from [11] for using J.8 trees are presented in Table 2.

Table 2. Comparison of specialized multi-class methods vs. SOUP and multiple
RBBagging – with respect to G-mean for selected real-world data sets

Dataset Baseline Global Static OVA OVO SOUP mRBBag

tree CS SMOTE Oversam. Oversam.

balancescale 0.0 0.340 0.080 0.302 0.526 0.614 0.683

car 0.847 0.940 0.897 0.184 0.939 0.938 0.917

cleveland 0.000 0.000 0.032 0.287 0.288 0.256 0.155

cmc 0.483 0.478 0.452 0.510 0.509 0.520 0.517

dermatology 0.945 0.952 .927 0.082 0.921 0.960 0.960

ecoli 0.728 0.719 0.738 0.000 0.805 0.0.721 0.768

flare 0.446 0.570 0.431 0.000 0.544 0.575 0.546

glass 0.625 0.715 0.699 0.000 0.698 0.667 0.405

led7digit 0.785 0.770 0.756 0.120 0.779 0.790 0.778

vehicle 0.912 0.912 0.915 0.164 0.923 0.909 0.943

winequality 0.421 0.464 0.356 0.456 0.492 0.448 0.525
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7 Multi-class Variant of BRACID Algorithm

7.1 Rule Induction from Binary Imbalanced Data with BRACID

Although induction of rules from examples is one of the well studied tasks in
machine learning, rule-based classifiers have not been studied in the context of
imbalanced data as intensively as other algorithms. A fairly small number of rule
classifiers specialized for imbalanced data has been introduced so far, for their
review see e.g. [26]. BRACID (the acronym of Bottom-up induction of Rules
And Cases for Imbalanced Data) is the most accurate of these algorithms,

To handle the data difficulty factors, the authors of BRACID [26] decided
to use a hybrid representation of rules and single instances, where more general
rules cover larger, homogeneous regions with more examples and instances should
handle non-linear class borders and rare minority cases or outliers. The rules are
induced in a special Bottom-up rule sequential process. It starts from the set of
the most specific rule (single, seed learning examples) and in the next iteration it
tries to generalize its condition in the direction of the nearest neighbour example
from the same class, provided that it does not decrease the classification abilities
of the whole rule set evaluated with measures specific for imbalanced data.

An exploitation of types of difficulty of learning examples estimated by anal-
ysis the k-nearest neighborhood of seed examples is one of the main features of
BRACID. The difficult type [27] assigned to each seed example influences the
rule generalization, as for the unsafe minority example it is possible to generate
additional rules covering it. As a result, the number of minority class rules, as
well as their support, are increased and they are more likely to win with the
stronger majority rules while classifying new instances. For details see [26].

7.2 Generalizing BRACID for Multiple Imbalanced Classes

As BRACID was proposed for binary classes only. In a recent paper [25] two
ways of its generalizations for multiple classes were studied: (1) exploitation of
binary decomposition ensemble frameworks OVO and using the original binary
BRACID within them; (2) generalization of BRACID with a new scheme for
inducing a single set of rules from all multiple classes.

The second generalization partly follows a typical sequential schema for an
iterative induction of rules from successive classes. In each iteration, for each class
the temporary training dataset is constructed. It contains positive examples from
the considered class and the negative examples from all other classes (similar to
the OVA approach). BRACID algorithm is run on such data and only rules
describing the considered class are added to the final set of rules, while the
other class rules are discarded. At the end, the complete set contains rules from
all classes. An important modification of rule generalization takes into types
of classes, i.e. whether the positive class is a minority or majority one. More
precisely when the majority class is considered then (1) the internal k-nearest
neighbor generalization is done to a single nearest example for safe seed examples
and (2) to one, best of rules induced by generalization to k nearest examples for
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Table 3. Comparison of rule classifiers – PART, OVO Bracid and multiple BRACID
– with respect to G-mean for selected real-world data sets.

Dataset PART OVO-B m-BRACID

Balancescale 0.3136 0.4086 0.6789

Car 0.7925 0.9022 0.9004

Cleveland 0.0597 0.1750 0.2322

cmc 0.4431 0.4897 0.4691

Dermatology 0.8943 0.9204 0.9082

Ecoli 0.6373 0.7404 0.7976

Flare 0.1716 0.3904 0.4639

Glass 0.3174 0.1883 0.4256

Led7digit 0.7918 0.7736 0.7713

Vehicle 0.9147 0.9221 0.9323

Winequality 0.2917 0.4529 0.5338

unsafe example. For the minority class it is unchanged. This modification limits
the number of produced rules for majority classes.

In [25] experiments on similar multi-class datasets as [11] were done. Their
results show that this generalization of BRACID is better than the adaptive
using of the binary BRACID within OVO ensemble, both with respect to higher
predictive abilities and the number of rules. Some of these comparative results
are shown in Table 3. In case of producing still too many rules they can be
post-pruned with the special weighted coverage algorithm [28].

8 Multi-class Extension of Bagging Ensemble

Generalizations of bagging ensembles are quite effective for binary imbalanced
data. Lango et al. studied in [23] Roughly Balanced Bagging, which is one of
the most efficient under-sampling bagging for binary imbalanced classes and it
often works better than generalizations of boosting. It exploits a random under-
sampling before generating component classifiers, which reduces the presence
of the majority class examples inside each bootstrap sample of the finally con-
structed bagging. The random number of majority examples to be sampled to
the bootstrap is estimated according to the negative binomial distribution, while
the number of sampled minority examples is equal to the size of the minority
class inside the original training dataset. Finally, these numbers of examples are
sampled from each class with replacement and predictions of the learned based
classifiers are aggregated with the majority voting.

Lango and Stefanowski proposed in [23] its generalization to Multi-class
Roughly Balanced Bagging (further abbreviated as MRBBag). The main mod-
ification concerns a construction of bootstrap samples, which is realized in the
following way. The number of examples to be sampled from each class to the
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bootstrap is estimated from the multinomial distribution, which is defined by
the following probability mass function:

p(n1, n2, ..., nc) =
n!

n1!n2! · · · nc!
pn1
1 pn2

2 · · · pnc
c

where p1, p2, ..., pc and n =
∑c

i=1 ni are the parameters of the distribution.
The authors handle the multi-class imbalance problem by obtaining roughly

balanced bootstrap samples also with respect to class probabilities, so they fix
values p1, p2, ..., pc to the same constant value equal to 1

c , such that
∑c

i=1 pi = 1.
This parameterizes the upper formula. After learning component, base classifier
the final decision of the classifier is constructed by the majority voting. For the
pseudocode of this algorithm see [23].

In [23] MRBBag algorithm, constructed with J4.8 trees, was evaluated on
several artificial and UCI real-life imbalanced datasets. It outperformed other
tree and general ensemble classifiers with respect to G-mean and averaged F1-
score (both adapted for the multi-class evaluation). Refer also to its performance
in Table 2. Moreover MRBBag was further extended to deal with feature selection
for highly dimensional data, see details in [23]. This variant was successfully
applied to solve the task of categorization of twitter short text messages [20].

9 Software Implementations of Specialized Algorithms
for Multi-class Imbalanced Data

The methods for dealing with binary imbalanced data are already implemented
in various software libraries. The representatives are: imbalanced-learn with
scikit-learn in Python, KEEL, WEKA and its extensions in Java or several R
libraries such as IRIC or ClimbR. In case of methods for multi-class imbalanced
data there are nearly no public available software implementations. In the past
year two open source software kits were proposed: multi-imbalance Python
library [9], Matlab toolkit Multiple-imbalance [34].

The first library was developed by the author’s co-operators and it imple-
ments state-of-the-art approaches for multi-class imbalanced problems, which
are divided into three general categories: (1) binary decomposition approaches
(OVO, OVA and ECOC), (2) specialized pre-processing (Global-CS, Maha-
lanobis Distance Oversampling (MDO), Static-SMOTE, SPIDER3 and SOUP),
and (3) other ensembles (MRBagging and SOUP-bagging). So it covers methods
discussed in this paper.

On the other hand, the Matlab toolkit contains 18 methods, mainly variants
of Adaboost or ECOC and specialized tree classifiers.

10 Future Research Directions and Conclusions

Looking at the current literature, we could expect that many new methods
will still be proposed to improve the classification of imbalanced data, includ-
ing multi-class variants. It is hoped, however, that these expected proposals
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will go beyond simple adaptations of known approaches or exploitation of the
binary decomposition frameworks, and in particular they will take advantage
of the aforementioned data difficulty factors. Below some personal opinions are
expressed as to the research directions.

Cost sensitive learning for multiple classes should estimate misclassification
costs for each example also with their difficulty levels. The current proposals are
too much oriented to global imbalance ratios.

In terms of further research on data difficulties, it is necessary to more care-
fully explore the differences in the impact of overlapping between different class
types and in the context of different class size configurations. In particular, this
applies to a more detailed analysis of the intermediate classes in the so-called
gradual configurations that appear to be more difficult than configurations with
sharp changes of class size between minority and majority ones.

In particular the role of rare examples for many classes, which previously had
a large impact on deteriorating the classification of imbalanced binary data, has
not been sufficiently studied for multiple classes yet.

New preprocessing methods should be developed for better dealing with over-
lapping between various classes as they are more critical than in the binary prob-
lems. It should also be assessed to what extent changes (e.g. by resampling) in
the size of overlapping classes will affect the recognition of other classes.

Other approaches for discovery sub-concepts in multiple classes could be still
studied, in particular with exploiting density based clustering.

Deeper research on specialized artificial neural networks should be under-
taken. The current few studies are too focused on including random re-sampling
or relatively simple modifications of the optimized loss function. This is desir-
able given the current strong interest in image recognition or natural language
processing using deep neural networks.

An open question concerns multi-class and highly dimensional datasets. Fea-
ture random sampling does not take into account internal relations between
classes. Furthermore, more research is needed on the specialized construction of
new features, projections of the original ones into new representation space, like
in embedded representations in deep networks or similarity learning.

Nearly all current research were done on static multi-class imbalanced data.
On the other hand data streams with concept drifts occur in many modern
applications of Big Data [12]. They are naturally imbalanced and the global
imbalance ratio may vary over time. However, the data factors such as class
split into factors, overlapping or presence of rare case may also change (similarly
to typical drifts) and their drifts are definitely local as it was recently shown
for binary imbalanced streams [3]. Their experiments demonstrated that these
drifts deteriorate predictive performance of popular stream classifiers and posed
needs for the developments of new specialized online algorithms. However such
studies should be done with more complex multiple classifiers. Furthermore new
online clustering algorithms for detection of the class split, their changes over
time and appearance of new classes in the streams are necessary.
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Abstract. In this research a general theoretical framework for clustering
is proposed over specific partial algebraic systems by the present author.
Her theory helps in isolating minimal assumptions necessary for different
concepts of clustering information in any form to be realized in a situation
(and therefore in a semantics). It is well-known that of the limited number of
proofs in the theory of hard and soft clustering that are known to exist, most
involve statistical assumptions. Many methods seem to work because they
seem to work in specific empirical practice. A new general rough method
of analyzing clusterings is invented, and this opens the subject to clearer
conceptions and contamination-free theoretical proofs. Numeric ideas of
validation are also proposed to be replaced by those based on general
rough approximation. The essential approach is explained in brief and
supported by an example.

Keywords: Cluster validation · Clustering frameworks · General rough
sets · Mereology · Contamination problem · Ontology · Axiomatic
granular computing

1 Introduction

Hard and soft clustering processes are based on ideas of optimization that
contribute to uncertainty, vagueness and indeterminacy in associated proofs
and measures. Often convergence of algorithms or cluster validity are not
proven, and the ones proved proceed from questionable statistical and topo-
logical assumptions [1,2] about the context associated with a dataset. To see
this consider the problem of clustering six objects into two clusters. Among
other things, certain possible clusters may not be reasonable. In this situation,
what does it mean to consider the collection of all possible clusters relative to
a purely combinatorial perspective? This is just one of the ways in which sta-
tistical proofs may lose universality and relevance. Aggregation operations are
also known to become paradoxical in the context of statistical tests and decision
theory [3]. The level of context dependency in the use of clustering techniques
in the AI (and ML) literature is severe – an important heuristic is to try every
technique that is known to work in related application contexts (or use cases).
This scenario suggests that it can be useful to build a minimalist framework
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for exploring proofs, ontology, and associated methodology (and also because
application contexts are loaded with excess baggage).

The basic problem is of developing a reasonable framework with its
assumptions and not of a language of expression (though the former requires
some of the latter). Metric logics and variants (see for example [4]) in partic-
ular, cannot add much to the ideas of validation for distance-based cluster-
ing because they merely intend to express the same facts and methods in a
restricted language. Higher order rough frameworks for analyzing soft and
hard clustering are proposed in this research over axiomatic granular rough
sets as they are far more capable of handling knowledge evolution. New con-
cepts of clustering (including a definition) are also proposed.

The essence of the introduced frameworks revolve around the following
ideas:

AA language (or model) that can express clustering related information should
include at least one ternary predicate δ (with δabc interpreted as a is closer
to b than to c in some sense).

B Since all kinds of clustering involve approximations of some kind (that may
possibly be ontologically justified) in their definition, computation or vali-
dation, it is necessary to permit generalized approximations that are associ-
ated with the intrinsic structure of the data.

C It is important to avoid making wild external numeric approximations about
the data, and contaminating it [5,6]. This is also about the data being able to
speak by itself.

D Granular approximations (in the axiomatic sense) are better suited to han-
dle meaning and evolution of knowledge (but a number of rough approx-
imations may get excluded by restricting to higher granular operator
spaces/partial algebras).

E Concepts of aggregation, and commonality can be partial (as they are in real
life). It does not always make sense to combine objects or concepts for exam-
ple. Further they may be unrelated to fundamental part-of relations in the
context.

F While numeric valuations are best avoided, in some contexts they can be
meaningful. Frameworks should be able to handle this possibility.

PointsD, E, F are already considered in previous work of the present author
[5,6] in the context of higher granular operator spaces/partial algebras and
variants. These will be used with minimal explanation.

1.1 Background

The reader is expected to be familiar with the literature on abstract granular
approaches to general rough sets [5,6], and some mereology [5,7,8]. Further
concepts such as those of higher granular operator spaces/partial algebras, con-
tamination and admissible granulation will be assumed.

The process or concept of cluster validation generally refers to exploring the
quality of one or more clustering methods and possibly comparing them. In
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almost all cases, true class information is not available (that is if one avoids
looking at anything apart from the dataset) and validation methods are inher-
ently not rigorous even in comparison to statistical ones used in supervised
learning. Further they are subjective, highly contextual, are not generalizable,
and assume some heuristics that are not well understood and in some cases even the
values produced may not be clear (see [9] for example).

Rough clustering refers to clustering methods that are enhanced with rough
set theoretical ideas of what a rough cluster ought to be. These may sometimes
be seen as a two layered process in which the last layer is about interpreting
membership from a rough perspective. A rough cluster is seen as a pair con-
sisting of a lower and upper approximation of an object or as some other rep-
resentation of a rough object [10–13]. The present research though related, is
about building a general rough framework for all clustering contexts, and dif-
fers in purpose and methods.

2 New Rough Semantic Approaches

Let S =
〈
S, ΣS

〉
be a partial algebraic system over a signature Σ (the superscript

indicates interpretation on S). For any subset Σo of Σ, So =
〈
S, Σ

S
o

〉
will be

referred to as a reduct of S. For two terms s, t, s ω
= t shall mean, if both sides are

defined then the two terms are equal (the quantification is implicit), while s
ω∗
=

t shall mean if either side is defined, then the other is and the two sides are equal
(the quantification is implicit). As points can be regarded as singletons, the point-
subset distinction that is explicitly assumed in clustering theory can be discarded. That
is the partial algebraic system can include all. Apart from parthood, ternary
predicates of the form δ that satisfy some of the inner (i-coh) and near (n-coh)
coherence conditions below are of interest:

(∀a,b) δbba (i-coh)
(∀a,b, c) (δabc −→ δbac) (n-coh)

(∀a,b)¬δabb (i-coh-2)
(∀a,b, c) (δabc −→ ¬δacb) (strict n-coh)

(∀a,b, c) (δabc & δaeb −→ ¬δaec) (trans-1)

Intended meanings of δabc are a is closer to b than c in some sense, a is
more similar to b than c in some sense and variants thereof. This predicate covers
the intent of using metrics, similarities, dissimilarities, proximities, descriptive
proximities, kernels and other functions for the purpose.

For an arbitrary subset K of a set H to qualify as a cluster (under a large
number of additional constraints), many conditions that depend on δ (essen-
tially) are typically required to be satisfied. These can be written with restricted
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quantification as in (∀a,b ∈ K)(∀c ∈ Kc) δabc. But such an expression is nei-
ther elegant nor general enough or useful from a logical perspective. A better
strategy is to identify clusters with a unary predicate κ in H and express such
conditions with an additional binary part of predicate P.

In describing clustering contexts or processes, it may not always be reason-
able to combine objects (or groups formed at some step) into a new object, or
their combination may be regarded as a plural object (like some collection of
subsets of a union [5]) and it can also happen that parthood does not define the
mereological sum always [7]. Such a partial sum operation ⊕ can be expected
to satisfy all of the following properties:

a ⊕ b
ω∗
= b ⊕ a; a ⊕ a

ω
= a; a ⊕ (b ⊕ c)

ω
= (a ⊕ b) ⊕ c (ω∗ − com;ω − id;ω − asso)

δabc −→ δ(a ⊕ a)bc; δabc −→ δa(b ⊕ b)c; δabc −→ δab(c ⊕ c) (δ − sum1;δ − sum2;δ − sum3)

In general clustering contexts, it is often the case that an additional exter-
nal ordered algebraic system is used to measure (or evaluate) ideas of nearness
or proximities (in a descriptive, spatial or generalized metric sense [14]). These
may be partially ordered sets or even the semi-ring of positive reals. Aminimal-
ist structure that is always present (as an algebraic reduct) is a parthood space
[15] in which it is possible to express some idea of comparison (in a perspective
of containment) that may not necessarily be transitive.

The definition of δ can be made explicit with the help of additional maps
f : S2 �−→ H (this may not be required as shown in the example below 2) that
satisfies one or more of

δabc −→ Pf(a,b)f(a,c); Pf(a,b)f(a,c) −→ δabc; δabc ↔ Pf(a,b)f(a,c) (def1;def2;def0)

In some cases as in clustering contexts that depend on a metric, the stronger
version def0 actually holds.

Given the above concepts, it is possible to specify a number of formula using
higher order constructs that correspond to definitions of clusters. A specific
general form is (with A∗ being a subobject of A and A◦ being a generalized
complement)

(∀a ∈ A)(∀b ∈ A∗)(∀c ∈ A◦) δabc (clue)

It is not the most general form because the dependence on specific clusters
like A takes other forms. Under additional conditions, the following form has
the potential to specify clusters.

(∀a ∈ A)(∀b ∈ B)(∀c ∈ E) δabc (gclue)

B in particular can depend on A, E and possible ideas of being an A. The depen-
dence between B, E and A might also be of a higher order nature in that the
concept of a cluster is in relation to the collection of all clusters. Further addi-
tional properties may be satisfied by the collection of all clusters. The former
can all be expressed with the help of an additional unary operation κ : H �−→ H

that enables identification of cluster members.
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Based on the above considerations, the following partial algebraic systems
appears to be optimal for theoretical studies on clustering in the mentioned
perspective.

Definition 1. A partial algebraic system of the form S =
〈
S, ΣS

〉
with Σ =

{P, δ,⊕,κ,�,∨,∧, l,u,�,⊥} of type (2, 3, 2, 1, 2, 2, 2, 1, 1, 0, 0) l,u being operators
: S �−→ S satisfying the following (S is replaced with S if clear from the context. ∨ and
∧ are idempotent partial operations, κ a unary predicate for identifying clusters, and P
is a binary parthood predicate) will be referred to as aminimal soft clustering system
(MSS) whenever the conditions i-coh, n-coh, i-coh-2,trans1, clos1 and PT1, PT2,
G1, G2, G3, G4, G5, UL1, UL2, UL3, TB of the definition of high granular operator
space (GGS) [5] hold:

(∀x)Pxx; (∀x,b)(Pxb & Pbx −→ x = b) (PT1; PT2)
a ∨ b

ω
= b ∨ a; a ∧ b

ω
= b ∧ a; (a ∨ b) ∧ a

ω
= a; (a ∧ b) ∨ a

ω
= a (G1; G2)

(a ∧ b) ∨ c
ω
= (a ∨ c) ∧ (b ∨ c); (a ∨ b) ∧ c

ω
= (a ∧ c) ∨ (b ∧ c) (G3; G4)

(a � b ↔ a ∨ b = b ↔ a ∧ b = a) (G5)
(∀a ∈ S)Pala & all = al & Pauauu; (∀a,b ∈ S)(Pab −→ Palbl & Paubu) (UL1; UL2)

⊥l = ⊥ & ⊥u = ⊥ & P�l� & P�u�; (∀a ∈ S)P⊥a & Pa� (UL3; TB)

In the context of the above definition, if the condition strict n-coh (lclu) is
also satisfied, then the MSS will be referred to as strict (rough).

(∀a,b, c) (δabc −→ ¬δacb); (∀a)(κa −→ κal) (strict n-coh; lclu)

If the signature in Definition 1 is Σ∗ = {P,γ, δ,⊕,κ,�,∨,∧, l,u,�,⊥} instead
and the additional conditions on the granulation of a GGS [5] are also satis-
fied, then the resulting system will be referred to as a granular MSS (GMSS).
Granularity in this sense is essential for construction of knowledge as in [5].

The conditions defining admissible granulations mean that every approx-
imation is representable by granules in an algebraic way, that every granule
coincides with its lower approximation (granules are lower definite), and that
all pairs of distinct granules are part of definite objects (those that coincide with
their own lower and upper approximations).

Internal measures that characterize the quality of clusters in terms of
deviance from associated approximations (and therefore lack of coherence) in a
GMSS H in which ∨, and ∧ are set union and intersection respectively and \ is
a partial set difference operation are defined below:

Definition 2. In the GMSS H mentioned, let C be a clustering on �. then the lower
deficit (C�) of a cluster C ∈ C will be the set (C \ Cl)u (if defined), and its upper
deficit (Cð) will be the set (Cu \ C)u (if defined). Further C will be lu-valid iff cl =
cu = C, l-pre-valid if and only if (∃V ∈ S)Vl = C, and l-traceable if and only if
(∃V ∈ S)V = Cl. Analogous concepts of u-pre validity can be defined. In addition,
if all clusters in C are l-pre-valid (resp. lu-valid, u-pre-valid, l-traceable, u-traceable)
then C will itself be said to be l-pre-valid (resp. lu-valid, u-pre-valid, l-traceable, u-
traceable).
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Proposition 1. In the context of Definition 2, if the l-deficit (resp. u-deficit) of a clus-
ter C is computable, then it must necessarily be l-traceable (resp. u-traceable).

The central idea of lu-validity (and weakenings thereof) is that of representabil-
ity in terms of granules and approximations. These do not test the key predicate
δ for validation, and the aspect is left to the process of construction of rough
approximations. By contrast, the ∗-deficits are an internal measure of what is
lacking or what is in excess.

Delta Methodology

The framework of MSS introduced permits evaluation of clusterings relative to part-
hood and approximation operations. Because the predicate (or equivalent partial oper-
ation) and approximations are constructed by the user, the system is not inherently
constraining in any way. The proposed delta methodology consists of the following
steps:

Step-1 Define most of the MSS for the context (except for κ and δ possibly). In
addition associate mereo-ontologies with the system.

Step-2 Do feature selection if required and form a reduct of the original MSS
Step-3 Compute clusters as per desired algorithm
Step-4 Either define the new clustering in the MSS or form a newMSS with the

clustering
Step-5 Investigate through minimal additional assumptions and possible defi-

nitions of δ.

Delta Methodology: Example
For this example, the reader needs to refer to Sect. 6.3.3 of [6] by the

present author. Let H = {x1, x2, x3, x4} and T a tolerance on it generated by
{(x1, x2), (x2, x3)}. Denoting the statement that the granule generated by x1
is (x1, x2) by (x1 : x2), let the granules be the set of predecessor neighbor-
hoods: G = {(x1 : x2), (x2 : x1, x3), (x3 : x2), (x4 :)}. The different approx-
imations (lower (l), upper (u) and bited upper (ub)) are then as in [6] (the
symbols are changed here, and ∼ is an equivalence on ℘(H) defined by A ∼

B if and only if Al = Bl & Aub = Bub . Now let, S = ℘(H), P =⊆=�, and
consider the following possible definitions of δ:

δabc if and only if P(a ∪ b)(a ∪ c) & ¬P(a ∪ c)(a ∪ b) (E1)

δabc if and only if P(a ∩ c)l(a ∩ b)l & ¬P(a ∩ b)l(a ∩ c)l (E2)
δabc if and only if P(a ∪ b)u(a ∪ c)u (uE1)

δabc if and only if P(a ∪ b)(a ∪ c) (E0)

Suppose some clustering technique produces the clustering C defined by:
C = {{x1, x3}, {x2, x3}, {x2, x4}}. Then one can see that it is compatible with definitions
E1 and E0. Further the lower and upper deficits of the {x2, x4} are {x1, x2, x3} and
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{x1, x2, x3} respectively. Note that the granulation G can also be seen as a cluster-
ing relative to uE1. In the context, the MSS is S = 〈S,⊆, δ,⊕,κ,∪,∩, l,u,H, ∅〉,
with κ being specified by C. It is also easy to extend it to a GMSS.

Future Work: A much extended version of this research for a logic-oriented
audience is under revision. This includes a detailed critique of the issues with
existing cluster validation techniques. Newer methods in the context of this
research based on prototypes, rationality and other criteria and novel rough
clustering methods are part of forthcoming papers of the present author. A
joint paper on related empirical studies in education research is in progress.
Researchers and practitioners take a soft view of validation in both soft and
hard clustering. The proposed framework affords a better way of formalizing
the soft aspect. More work on this is obviously motivated.
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Abstract. Rough sets are described by an approach using possible cov-
erings in an incomplete information table with similarity of values. Lots
of possible coverings are derived in an incomplete information table. This
seems to cause difficulty due to computational complexity, but it is not,
because the family of possible coverings has a lattice structure. Four
approximations that make up a rough set are derived by using only two
coverings: the minimum and maximum possible ones which are derived
from the minimum and the maximum possible indiscernibility relations
that are equal to the intersection and the union of those from possible
tables. The approximations are equal to those derived using the mini-
mum and the maximum possibly indiscernible classes.

Keywords: Rough sets · Incomplete information · Possible coverings ·
Possible indiscernibility relations

1 Introduction

Rough sets by Pawlak [1] are based on equality of values characterizing objects.
The rough sets are used as an effective method for deriving significant rules
from a variety of data. The rough sets are usually used to complete information
tables with no similarity of objects. However, similar objects often appear in
the real world. Furthermore, data values with incomplete information appear
everywhere. So, it is not sufficient for information processing in the real world
unless we deal with similarity of objects and values with incomplete information.
This requires an extension of rough sets.

An approach most frequently used to deal with incomplete information comes
from the way that Kryszkiewicz proposed [2]. The approach takes into account
c© Springer Nature Switzerland AG 2021
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only one possibility that a value with incomplete information has. Information
loss occurs. As a result, the approach causes poor results [3,4].

Therefore, considering the possibilities that a value has, we develop rough
sets based on an approach using possible indiscernibility relations under the
similarity of values. A possible indiscernibility relation is a possible world in
possible world semantics, although Lipski used a possible table as a possible
world.

2 Rough Sets from Coverings in Complete Information
Tables

A complete information table consists of U , a non-empty finite set of objects,
D(ai), the domain of attribute ai, and AT , a non-empty finite set of attributes
where ai ∈ AT : U → D(ai). Indiscernibility relation Rδ

ai

1 meaning indistin-
guishability of objects on attribute ai ∈ AT under threshold δai

2 is:

Rδ
ai

= {(o, o′) ∈ U × U | SIMai
(o, o′) ≥ δai

}, (1)

where SIMai
(o, o′) expresses what degree objects o and o′ are similar for

attribute ai and δai
is the similarity threshold for ai.

SIMai
(o, o′) = sim(ai(o), ai(o′)), (2)

where sim(ai(o), ai(o′)) is the similarity degree of ai(o) and ai(o′), which is given
by experts such that it is reflexive, symmetric, and not transitive3.

Using Rδ
ai

, indiscernible class C(o)δ
ai

of o on ai is expressed in:

C(o)δ
ai

= {o′ | (o, o′) ∈ Rδ
ai

}. (3)

C(o)δ
ai

4 is a tolerance class.
Family Cai

of indiscernible classes on ai is:

Cai
= {C | o ∈ U ∧ C = C(o)ai

}. (4)

Clearly, ∪C∈Cai
C = U . Cai

is a covering, which is unique for ai. Using covering
Cai

, lower approximation apr
ai

(O) and upper approximation aprai
(O) of set O

for ai are:

apr
ai

(O) = {o ∈ U | C(o) ∈ Cai
∧ C(o) ⊆ O}, (5)

aprai
(O) = {o ∈ U | C(o) ∈ Cai

∧ C(o) ∩ O 	= ∅}. (6)

1 Unless confusion may arise, Rai is used.
2 δ is used in place of δai if no confusion arises.
3 Therefore, Rδ

ai
becomes a tolerance relation.

4 C(o) or C(o)ai is used in place of C(o)δ
ai

if no confusion arises.



Possible Coverings in Incomplete Information Tables 85

3 Rough Sets from Possible Coverings in Incomplete
Information Tables

A value with incomplete information is expressed in a disjunctive set of possible
value. So, v in ai(o) may be the actual one.

There are lots of possible coverings derived from an incomplete information
table [5,6], although some authors deal with only one covering [7,8]. A possible
indiscernibility relation creates a possible covering. FPRai

, the family of possible
indiscernibility relations, is:

FPRai
= {PR | PR = SRai

∪ e ∧ e ∈ P(MPPRai
)}, (7)

where P(MPPRai
) denotes the power set of MPPRai

and MPPRai
is

expressed as:

MPPRai
= {{(o′, o), (o, o′)}|(o′, o) ∈ MPRai

}, (8)
MPRai

=
{(o, o′) ∈ U × U | ∃u ∈ ai(o)∃v ∈ ai(o′)sim(u, v) ≥ δai

}\SRai
, (9)

SRai
=

{(o, o′) ∈ U × U | (o = o′) ∨ (∀u ∈ ai(o)∀v ∈ ai(o′)sim(u, v) ≥ δai
)}, (10)

where a pair in SRai
is called a certain one whereas a pair in MPRai

a possible
one. FPRai

constitutes a lattice based on set inclusion. SRai
and SRai

∪MPRai

are the minimum and the maximum possible indiscernibility relations in FPRai
,

respectively. A possible indiscernibility relation does not always correspond to a
possible table, but the following proposition hold.

Proposition 1. PRai,min = ∩PTRai
, PRai,max = ∪PTRai

, where PRai,min

and PRai,max are the minimum and the maximum possible indiscernibility rela-
tions, and PTRai

is the indiscernibility relation derived from a possible table
using formula (1).

Example 1. Let complete information table IT0 be as follows:

IT0
U a1 a2

o1 < a > < x >
o2 < b, e > < y >
o3 < c > < x, y >
o4 < d > < y >
o5 < e > < z >

PT1
U a1 a2

o1 < a > < x >
o2 < b > < y >
o3 < c > < x, y >
o4 < d > < y >
o5 < e > < z >

PT2
U a1 a2

o1 < a > < x >
o2 < e > < y >
o3 < c > < x, y >
o4 < d > < y >
o5 < e > < z >
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PT1 and PT2 are possible tables of IT0 for a1. Let similarity degree sim(u, v)
on domain D(a1) = {a, b, c, d, e} be as follows:

sim(u, v) =

⎛
⎜⎜⎜⎜⎝

1 0.2 0.9 0.6 0.1
0.2 1 0.8 0.8 0.2
0.9 0.8 1 0.2 0.3
0.6 0.8 0.2 1 0.9
0.1 0.2 0.3 0.9 1

⎞
⎟⎟⎟⎟⎠

.

In IT0, let δa1 be 0.75. <b, e> is the disjunctive set that means b or e.
SRa1 is obtained as {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o2),
(o4, o4), (o4, o5), (o5, o5), (o5, o4)}. MPRa1 is {(o2, o3), (o3, o2), (o2, o5), (o5, o2)}.
Using formulae (7)–(10), family FPRa1 of possible indiscernibility relations is
{PR1, · · · , PR4}, and 4 possible indiscernibility relations are:

PR1 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o2), (o4, o4),
(o4, o5), (o5, o5), (o5, o4)},

PR2 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o2), (o4, o4),
(o4, o5), (o5, o5), (o5, o4), (o2, o3), (o3, o2)},

PR3 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o2), (o4, o4),
(o4, o5), (o5, o5), (o5, o4), (o2, o5), (o5, o2)},

PR4 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o2), (o4, o4),
(o4, o5), (o5, o5), (o5, o4), (o2, o3), (o3, o2), (o2, o5), (o5, o2)}.

PR2 and PR3 are also equal to indiscernibility relations PT1R and PT2R from
possible tables PT1 and PT2, respectively. PR1 and PR4 are the minimum
and the maximum possible indiscernibility relations, respectively. And PR1 =
PT1R ∩ PT2R and PR4 = PT1R ∪ PT2R hold.

From PRj ∈ FPRai
, possibly indiscernible class C(o)ai,j is derived:

C(o)ai,j = {o′ | (o, o′) ∈ PRj ∧ PRj ∈ FPRai
}. (11)

Proposition 2. If PRai,k ⊆ PRai,l, then C(o)ai,k ⊆ C(o)ai,l.

This means that the family of possibly indiscernible classes for an object has
a lattice structure for set inclusion.

PCai,j , the possible covering from possible indiscernibility relation PRai,j ,
is:

PCai,j = {e | e = C(o)ai,j ∧ o ∈ U}. (12)

From Proposition 2 family FPCai
of possible coverings is a lattice for �5.

5 � is defined as E � E ′ if ∀E ∈ E∃E′ ∈ E ′ ∧ E ⊆ E′.
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Example 2. Possibly indiscernible classes in each possible indiscernibility rela-
tion PRa1,j with j = 1, . . . , 4 are obtained. For example, in PRa1,1 C(o1)a1,1,
C(o2)a1,1, C(o3)a1,1, C(o4)a1,1, and C(o5)a1,1 are {o1, o3}, {o2, o4}, {o1, o3},
{o2, o4, o5}, and {o4, o5}, respectively. In PRa1,4 C(o1)a1,4, C(o2)a1,4, C(o3)a1,4,
C(o4)a1,4, and C(o5)a1,4 are {o1, o3}, {o2, o3, o4, o5}, {o1, o2, o3}, {o2, o4, o5}, and
{o2, o4, o5}, respectively. Using these possibly indiscernible classes, possible cov-
erings are obtained as follows:

PCa1,1 = {{o1, o3}, {o2, o4}, {o2, o4, o5}, {o4, o5}},

PCa1,2 = {{o1, o3}, {o1, o2, o3}, {o2, o3, o4}, {o2, o4, o5}, {o4, o5}},

PCa1,3 = {{o1, o3}, {o2, o4, o5}},

PCa1,4 = {{o1, o3}, {o1, o2, o3}, {o2, o3, o4, o5}, {o2, o4, o5}}.

PCa1,1 and PCa1,4 are the minimum and the maximum coverings, respectively.

For the relationship between the minimum and maximum possible coverings
and coverings from possible tables, we have the following proposition.

Proposition 3. PCai,min = ∩PTCai
and PCai,max = ∪PTCai

where ∩PTCai
=

{∩ptC(o)ai
| o ∈ U ∧ C(o)ai

∈ Cai,pt}, ∪PTCai
= {∪ptC(o)ai

| o ∈ U ∧ C(o)ai
∈

Cai,pt}, and Cai,pt is the covering derived from possible table pt.

By using possible covering PCj , two approximations of O are:

apr
ai,j

(O) = {o ∈ U | C(o) ⊆ O ∧ C(o) ∈ PCj}, (13)

aprai,j(O) = {o ∈ U | C(o) ∩ O 	= ∅ ∧ C(o) ∈ PCj}. (14)

Proposition 4. If PCk � PCl for possible indiscernibility coverings PCk, PCl ∈
FPCai

, then apr
ai,k

(O) ⊇ apr
ai,l

(O), and aprai,k(O) ⊆ aprai,l(O).

This shows that the families of approximations are also lattices.
Aggregating approximations in each possible covering, certain lower approxi-

mation Sapr
ai

(O) of O, possible lower approximation Papr
ai

(O), certain upper
approximations Saprai

(O), and possible upper approximation Paprai
(O) are:

Sapr
ai

(O) = {o ∈ U | ∀PCj ∈ FPCai
o ∈ apr

ai,j
(O)}, (15)

Papr
ai

(O) = {o ∈ U | ∃PCj ∈ FPCai
o ∈ apr

ai,j
(O)}, (16)

Saprai
(O) = {o ∈ U | ∀PCj ∈ FPCai

o ∈ aprai,j(O)}, (17)
Paprai

(O) = {o ∈ U | ∃PCj ∈ FPCai
o ∈ aprai,j(O)}. (18)

Using Proposition 4, these approximations are:

Sapr
ai

(O) = apr
ai,max

(O), Papr
ai

(O) = apr
ai,min

(O), (19)

Saprai
(O) = aprai,min(O), Paprai

(O) = aprai,max(O), (20)
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where apr
ai,min

(O) and aprai,min(O) are the approximations in the minimum
possible covering, and apr

ai,max
(O) and aprai,max(O) are the approximations

in the maximum possible covering.

Example 3. We go back to Example 2. Using (13) and (14) under O =
{o2, o4}, in PCa1,1 apr

a1,1
(O) = {o2}, apra1,1(O) = {o2, o4, o5}, and in

PCa1,4 apr
a1,4

(O) = ∅, apra1,4(O) = {o2, o3, o4, o5}. Using (19) and (20),
Sapr

a1
(O) = ∅, Papr

a1
(O) = {o2}, Sapra1

(O) = {o2, o4, o5}, and Papra1
(O) =

{o2, o3, o4, o5}.

We obtain the following proposition from (19) and (20).

Proposition 5. Sapr
ai

(O) = {o | C(o)ai,max ⊆ O}, Papr
ai

(O) = {o |
C(o)ai,min ⊆ O}, Saprai

(O) = {o | C(o)ai,min ∩ O 	= ∅}, and Paprai
(O) = {o |

C(o)ai,max ∩O 	= ∅}, where minimum possibly indiscernible class C(o)ai,min and
maximum possibly indiscernible class C(o)ai,max are derived using formula (11)
in PRai,min and PRai,max, respectively.

This shows that approximations obtained in this approach are equal to those
derived using the minimum and the maximum possibly indiscernible classes
C(o)ai,min and C(o)ai,max. There exist possible tables from which these classes
can be derived. Here, C(o)ai,min and C(o)ai,max are expressed in {o′ ∈ U | (o =
o′) ∨ ∀u ∈ ai(o)∀v ∈ ai(o′)sim(u, v) ≥ δai

}, and {o′ ∈ U | ∃u ∈ ai(o)∃v ∈
ai(o′)sim(u, v) ≥ δai

}, respectively.

4 Conclusions

We have dealt with rough sets based on possible coverings under possible world
semantics in incomplete information tables with similarity of values. Lots of cov-
erings are derived in an incomplete information table, but this does not cause
difficulty due to computational complexity, because the family of possible cover-
ings is a lattice with the minimum and maximum elements. Four approximations
are derived using only the minimum and maximum possible indiscernibility rela-
tions that are equal to the intersection and the union of indiscernibility relations
from possible tables, respectively. And these approximations are equal to those
derived using the minimum and the maximum possibly indiscernible classes that
are obtained from possible tables. This justifies the approach.
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Abstract. This paper presents some functional dependency relations defined on
the attribute set of an information system. We establish some basic relationships
between functional dependency relations, attribute reduction, and closure opera-
tors. We use the partial order for dependencies to show that reducts of an infor-
mation system can be obtained from the maximal elements of a functional depen-
dency relation.

Keywords: Functional dependency relations · Attribute reduction · Closure
operators · Rough sets

1 Introduction

The concept of functional dependency (FD) was introduced by Armstrong in 1974, [1].
FD relations have been used in database theory for different purposes. Dependency rela-
tions were extensively studied in the rough set community already during 1980’s and
1990’s [10–12]. Also, a one-to-one and onto correspondence between FD relations and
closure operators was established in [6]. A notion of a generalized dependency rela-
tion between subsets of an arbitrary set was introduced by Chiaselotti and Infusino,
connecting with formal context analysis in [3]. Some algorithms based on indiscerni-
bility relations were introduced by Qu and Fu in [9] and Zhang et al. in [16] to discover
dependencies in datasets. All these works are closely related to the attribute reduction
problem.

Rough set theory, proposed by Z. Pawlak, is based on an indiscernibility relation
between objects of a non-empty setU , called Universe [7]. Attribute reduction in infor-
mation systems is a fundamental aspect of rough sets and it has been successfully
applied in many fields, such as machine learning and data mining.

The reduction of attributes is a fundamental problem in data analysis, since it allows
to build measurements that are simpler and easier to interpret. Concerning to the theory
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of rough sets, there is a great variety of works on attribute reduction [15,16], to mention
only a few.

In this paper, we use a partial order on dependencies to obtain the maximal ele-
ments. We show that the reducts of an information system can be obtained from the
maximal elements of this functional dependency relation. Since each functional depen-
dency relation defines a closure operator, the properties of this type of operator are
studied, according to [6]. The study of attribute reduction using a dependency relation
contributes to understanding this important problem.

The content of this paper is organized as follows. Section 2 presents some prelimi-
nary concepts regarding rough set theory, functional dependency relations, and closure
operators. Section 3 presents and studies, from a different perspective, the properties of
a functional dependency relation on an attribute set of an information system. Finally,
Sect. 4 presents the main conclusions of the paper and describes future work.

2 Preliminaries

2.1 Rough Sets

The rough set approach was proposed by Pawlak in 1982 as a tool for dealing with
imperfect knowledge and incomplete information [7]. The main concept of this theory
is the indiscernibility relation defined on a finite set U . The elements of this set U are
called objects, which are described by a finite set of attributes A. The pair (U, A) is
called an information system.

Each subset of attributes P ⊆ A defines an equivalence relation:

IND(P) = {(x,y) ∈U ×U : fa(x) = fa(y), ∀a ∈ P}, (1)

where fa(x) is the value of an object x ∈U for an attribute a ∈ A.
Table 1 shows an information system whereU = {1,2,3,4,5,6} is the set of objects,

organized in rows, and A = {a,b,c,d} is the set of attributes, organized in columns.
According to the information above, we have that fa(2) = B, while fb(1) = A.

If X ⊆U , the operators:

apr(X) = {x ∈U : [x]P ⊆ X}, apr(X) = {x ∈U : [x]P ∩X �= /0} (2)

are called the lower and upper approximations of X .

Example 1. For the information system shown in Table 1, it is easy to see that the sets
of attributes P = {a,b}, Q = {a,c}, and R = {a,b,c} define the same partition of U :
P = {{1},{2},{3},{4,5},{6}}.

2.2 Reducts for Information Systems

Attribute reduction involves searching for particular subsets of attributes. Generally,
it implies removing attributes that have no significance in determining indiscernible
elements. We say that a is a superfluous attribute of P if [x]P = [x]P−{a} for all x ∈U ;
otherwise, a is called indispensable in P [4].

In this paper, we want to establish a difference between reductions and reducts.
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Table 1. An information system.

Attributes

Object a b c d

1 A A B A

2 B B B C

3 C A A A

4 C B B C

5 C B B A

6 A B A B

Definition 1 [4]. The set P is independent if all of its attributes are indispensable. The
subset Q of P is a reduction of P if Q is independent and [x]Q = [x]P for all x ∈U. A
reduction of A is called a reduct.

2.3 Functional Dependency Relations

An axiomatic description of a functional dependency relation was introduced in [1],
using precise concepts and terminology of relational models of data. A dependency,
denoted as X →Y , means that the values of attributes Y are determined by the values of
attributes X , i.e. two objects with the same values of X will necessarily have the same
values for Y . We present a definition given by Matús in [6].

Definition 2 [6]. Let A be a finite set.N ⊆ P(A)×P(A) is a functional dependency
(FD) relation if for all I,J,K ⊆ A the following properties are fulfilled:

1. If I ⊇ J then (I,J) ∈ N .
2. If (I,J) ∈ N and (J,K) ∈ N , then (I,K) ∈ N .
3. If (I,J) ∈ N and (I,K) ∈ N , then (I,J∪K) ∈ N .

Order Relation. A partial order can be defined on N . If (A,B),(A′,B′) ∈ N , then
(A,B) ≥ (A′,B′) if and only if A ⊆ A′ and B ⊇ B′. It is easy to show that this relation
satisfies the following:

1. (A,B) ≥ (A,B), (reflexive).
2. If (A,B) ≥ (A′,B′) and (A′,B′) ≥ (A,B), then A= A′ and B= B′, (anti-symmetric).
3. If (A,B) ≥ (A′,B′) and (A′,B′) ≥ (A′′,B′′), then (A,B) ≥ (A′′,B′′), (transitive).

Maximal Elements. An element (A,B)∈N is maximal if and only if for all (A′,B′)∈
N such that (A′,B′) ≥ (A,B), we have that A= A′ and B= B′.
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2.4 Closure Operators

In ordered sets, the functions that preserve order relations are very important. Closure
operators are a special class of order-preserving functions. We present some concepts
about ordered structures, according to Blyth and Järvinen [2,5].

Definition 3. An order-preserving map c : P(A) → P(A) is a closure operator if

1. P ⊆ c(P), (extensive).
2. c(P) = c[c(P)], (idempotent).

Some equivalent definitions of a closure operator on the attribute set were defined
in [13] and we present one of them, as follows:

Definition 4 [13]. For each P ⊆ A subset of attributes, a closure operator can be
defined as:

c(P) = {a ∈ A : [x]P = [x]P∪{a} for all x ∈U} (3)

In [6], Matús also established a Galois connection between FD relations and closure
systems, since that each functional dependency relation defines a closure operator, and
each closure operator defines a functional dependency relation.

If N is a functional dependency relation, the function cN : P(A)→P(A) defined
as:

cN (I) =
⋃

{J ⊆ A : (I,J) ∈ N } (4)

is a closure operator.
If c is a closure operator, the relation

Nc = {(I,J) : J ⊆ c(I)} (5)

is a functional dependency relation.
Equations (4) and (5) were introduced in [6] to show the Galois connection between

functional dependencies and closure operators.

2.5 Relationships on Attribute Sets

The following results are well-known in rough set theory and are useful relationships
between equivalence classes and approximation operators for different sets of attributes
[13].

Proposition 1 [13]. If P,Q ⊆ A, a ∈ A and P ⊆ Q, then

1. [x]P ⊇ [x]Q, for all x ∈U.
2. apr

P
(X) ⊆ apr

Q
(X), for all X ⊆U.

3. [x]P∪{a} = [x]P ∩ [x]a, for all x ∈U.

Example 2. The sets of attributes P1 = {a,b,d}, P2 = {a,c,d}, and A= {a,b,c,d} have
the same partition P = {{1},{2},{3},{4},{5},{6}}}.
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3 Functional Dependency Relations

A first functional dependency (FD) relation for rough set theory was introduced by
Pawlak in [8] and later Ślezak in [14], using the indiscernibility relation, shown in
Eq. (1). If P and Q are sets of attributes, P → Q if and only if IND(P) = IND(P∪Q).

Let (U,A) be an information system, where U is a finite set and A is a finite set of
attributes. It is possible to define a functional dependency relation on A, as follows.

Definition 5. If P,Q ⊆ A are subsets of attributes, we define:

(P,Q) ∈ N1 if and only if [x]P = [y]P ⇒ [x]Q = [y]Q, ∀x,y ∈U (6)

It is easy to see that P ⊇ Q implies that (P,Q) ∈ N1. This dependency is called
a trivial dependency. If (P,Q) ∈ N , it will be represented by means of P → Q and
(P,Q) /∈ N1 will be represented with P � Q. Also, it is easy to prove the following
proposition.

Proposition 2. The relation N1 is a functional dependency on A.

This order relation is stable considering the partial order on N1 for minor elements,
as follows:

Proposition 3. If (P,Q) ∈ N1 and (P,Q) ≥ (P′,Q′), then (P′,Q′) ∈ N1.

Proof. If (P,Q) ∈ N1, then [x]P = [y]P ⇒ [x]Q = [y]Q. If [x]P′ = [y]P′ , we have that
[x]P = [y]P since P ⊆ P′, so [x]Q = [y]Q. In particular, [x]Q′ = [y]Q′ since Q ⊇ Q′.

The maximal elements for this order relation on dependencies are: {a,b} →
{a,b,c}, {a,b,d} → A, {a,c,d} → A, {b,c,d} → A, as well as all the trivial depen-
dencies P → P, with P ⊆ A.

Let us consider the closure operator cN1 defined using N1, according to Equation
(4). The following proposition establishes the equivalence between closure operators c
and cN1 .

Proposition 4. c= cN1 .

Proof. We will see that c(P) ⊆ cN1(P) and cN1(P) ⊆ c(P), for all P ⊆ A.

1. c ≤ cN . If a ∈ c(P), then [x]P = [x]P∪{a} for all x ∈U . In particular, [x]P ⊆ [x]P∪{a}
for all x ∈U , PP ≤ PP∪a, and (P,P∪a) ∈ N1, so a ∈ ∪{Q : (P,Q) ∈ N1}.

2. cN ≤ c. If a ∈ cN (P), a ∈ Q0 with (P,Q0) ∈ N1. PP ≤ PQ0 , then [x]P ⊆ [x]Q0 =
[x]Q0−a ∩ [x]a. So, [x]P ⊆ [x]a and [x]P ∩ [x]a = [x]P, then a ∈ c(P).

According to Proposition 9 in [13], the fixed points of the closure operator c, i.e. the
sets P ⊆ A such that c(P) = P, are important to describe the reducts of an information
system. We use the order relation defined on dependencies to characterize the reducts.

Proposition 5. (P,A) is maximal inN1 if and only if P is a reduct of A.

Proof. Let us suppose that (P,A) ∈ N1 is maximal. If P is not a reduct, there exists a
reduct P′ with P′ ⊂ P. Therefore, (P′,A)> (P,A) and (P,A) is not maximal.

If P is a reduct, then (P,A) ∈ N1. Now, if (P′,Q′) ∈ N1 and (P′,Q′) ≥ (P,A) then
P′ ⊆ P and Q′ ⊇ A. So Q′ = A and (P′,A) ∈ N1. If P′ ⊂ P, P contains dispensable
attributes and it is not a reduct. Therefore, P′ = P and (P,A) is maximal.
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4 Conclusions

The reducts of an information system can be obtained from the maximal elements of a
partial order defined on pairs of subsets of attributes that define dependencies.

The importance of this proposal is to initiate a systematic study of the attribute
reduction problem and its relationships with different structures that are defined on the
set of attributes, as opposed to other structures defined on the set of objects. Future
research aims at applying the definition of functional dependency to other generaliza-
tions of rough set theory and looking for connections with matroid theory.
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Abstract. This paper provides a brief overview of the Rough Set Data-
base System (the RSDS for short) for creating bibliographies on rough
sets and related fields, as well as sharing and analysis. The current ver-
sion of the RSDS includes a number of modifications, extensions and
functional improvements compared to the previous versions of this sys-
tem. The system was made in the client-server technology. Currently,
the RSDS contains over 38 540 entries from nearly 42 860 authors. This
system works on any computer connected to the Internet and is available
at http://rsds.ur.edu.pl.

Keywords: Rough set · Soft computing · Ontology · Data mining ·
Knowledge discovery · Pattern recognition · Machine learning ·
Database system

1 Generally About the RSDS

The concept of the rough set has its origin in Pawlak’s seminal article from 1982
[5]. The rough set theory [6] is a formal theory derived from the fundamental
research into the logical properties of information systems [4]. This theory is a
simple and effective methodology for database mining or knowledge discovery in
relational databases. In its abstract form, it is a new area of soft mathematics [2],
related closely to the fuzzy set theory initiated by Zadeh [26]. Rough and fuzzy
sets are complementary generalizations of classical sets. The rapid development
of these two approaches formed the basis of the “soft computing” [27] which
includes, in addition to rough sets, at least fuzzy logic, neural networks, prob-
abilistic reasoning, belief networks, machine learning, evolutionary computing
and chaos theory [1].

For some time we have seen a systematic, global increase of interest in the
rough set theory and its applications [3,7,8,24,25]. However, on the other hand,
there is a lack of publicly available bibliographic databases that facilitates access
to literature and other tools needed by users of rough sets.

The purpose of this paper is to present the latest issue of the RSDS as com-
pactly as possible, which to some extent appears to fill this gap. The system offers
a wide range of functional possibilities, including bibliography creation, modify-
ing, downloading, analyzing, visualizing and more capabilities. The bibliography
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included in the RSDS is formatted according to the BibTeX specification [28]. It
consists of the following publication types: articles, inproceedings, incollections,
books, techreports, proceedings, inbooks, phdtheses, mastertheses, manuals and
unpublished. In addition to the bibliography, the system also includes: (1) infor-
mation about software related to rough sets, (2) bibliographies of famous people
working in this field, (3) personal data of the authors of publications available in
the system. The access to the system depends on whether the user is logged in
or not. If the user is logged in, he/she can enter data into the system, edit and
classify the data he/she has entered. However, all users, logged in or not, can
download the bibliography from the system and save it to an RTF or BibTeX
file. Thanks to this possibility, the user can quickly and easily create a literature
list for his own needs without having to delve into the structure of available file
formats.

An important feature of this system is that it can successfully act as exper-
imental environment for researches related to, inter alia, broadly understood
information processing based on methods and techniques in the field of onto-
logy and rough sets as well as advanced data analysis using the methods and
techniques of statistics and graph theory. The current version of the RSDS was
made in the client-server technology, which is classified as a modern database
management technology.

Original and useful functionalities of the RSDS, as far as we know, rather
unheard of in other database systems with a similar purpose as our system are:
– Searching according to predefined classifiers [12], as well as using the onto-

logical search method [16,21], thanks to which the search for the desired
information becomes more accurate and effective.

– Possibility of searching for information in the system with the use of an
interactive world map, illustrating who and where in the world is working
on the development of the rough set theory and its applications. To date, we
have identified 72 research groups worldwide with 2 416 active members.

– Easy and convenient access to a number of statistics on the data contained in
the RSDS and their graphical representation, such as: the number of authors,
the number of and types of publications, number and years of publications,
information on the percentage of all authors who wrote a certain number of
publications at specified intervals, a list of indicators characterizing publishing
collaboration between authors [15,17]. The results obtained from such an
analysis may be useful in determining the structure of research groups in
relation to rough sets, research interests of members of these groups, mutual
cooperation between groups and research identification trends. It is also worth
adding that the data are analyzed using different statistical methods and
graph theory methods [23].

– Determining both two Pawlak numbers and the numbers of individual authors
indicating the strength of the publication relationship between the authors
represented in the RSDS database [18–20].

– Searching for information about software supporting research and experi-
ments based on the rough set methodology and biographies of prominent
people dealing with the rough set theory and its applications.
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The main page of the RSDS looks like Fig. 1.

Fig. 1. The main page

Significant functional and visualization changes in the current version of the
system include:

– implementation of a new ontological search method based on fuzzy logic,
– extension of the module for calculating Pawlak numbers and individual

authors numbers,
– update of the statistical and graphical data analysis module,
– rebuilding the interactive world map and adding the Help section,
– updating the system engine and rebuilding the user interface,
– modernizing the existing system functionalities,
– increasing the role of system administrators and amenities for registered users,
– entering data status and modification,
– extension of system-user communication.

Historically speaking, the first version of the RSDS was released almost two
decades ago, i.e. in 2003 [9], subsequent editions appeared in 2005 [11], 2008 [14]
and 2013 [22].

In the Table 1 we present the quantitative changes in the system’s biblio-
graphic data over the years.
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Table 1. The quantitative changes in the RSDS

Year of issue Number of publications Number of authors Source

2003 900 400 [9]

2004 1 400 450 [10]

2005 1 900 815 [11]

2007 3 270 1 670 [13]

2008 3 400 1 900 [14]

2010 3 800 2 250 [17]

2014 4 000 2 380 [22]

2020 38 549 42 859 [30]

2 Further Plans

As mentioned above, the system provides users with a relatively wide range of
different functionalities. Of course, they can still be expanded and improved in
various ways. In the nearest future, we plan to implement the following tasks:

– develop a method of automatic verification of the correctness of the relation-
ship between the concepts appearing in the general ontology [17],

– increase the efficiency of information retrieval and semantic analysis algo-
rithms in the system,

– expand the scope of automatic data processing in the system,
– add new functionalities regarding automatic user profile detection and data

search on the Internet,
– carry out experiments to verify the practical usefulness of our methods of

detecting behaviour patterns implemented in the system.

3 Final Remarks

We briefly introduced the RSDS, which brings together different types of com-
puter tools for the rough set community. These tools in a natural and effective
way support the user in editing, analysing and downloading bibliographies. Addi-
tionally, the system provides a wide range of methods of visualizing the results
of data analysis contained in the system. A unique feature of the system is the
possibility of using it as an experimental platform in the scientific research. An
equally important, desirable and practical feature of the RSDS is its expandabil-
ity: you can easily connect other tools to the system. It is worth to underline
that the RSDS was designed and made in accordance with modern design and
programming techniques.

Using this system makes it possible to exchange information between aca-
demics and practitioners who are interested in the foundations and applications
of rough sets. The developers of the RSDS sincerely hope that it will result in
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a marked increase of interest in rough set theory and related approaches. The
research results published in the works represented in this system will stimulate
the further development of the foundations, methods and real-life applications
of these approaches in intelligent systems [8].

It is not possible to present all aspects of the possibilities and use of the
RSDS in one paper with a significant limitation of its length. Therefore, we are
planning to prepare a separate paper to fully present the benefits of using the
RSDS.

The RSDS is being developed by the Rough Set and Petri Net Research
Group [31], operating at Rzeszów University in cooperation with the Interna-
tional Rough Set Society [29], among others.

Acknowledgment. The authors are very grateful to Professor Andrzej Skowron for
his constructive comments and encouragement to work on the development of the
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581 83 Linköping, Sweden
andrzej.szalas@liu.se

Abstract. The majority of contemporary software systems are devel-
oped using object-oriented tools and methodologies, where constructs
like classes, inheritance and objects are first-class citizens. In the cur-
rent paper we provide a novel formal framework for many-valued object-
oriented inheritance in rule-based query languages. We also relate the
framework to rough set-like approximate reasoning. Rough sets and their
generalizations have intensively been studied and applied. However, the
mainstream of the area mainly focuses on the context of information and
decision tables. Therefore, approximations defined in the much richer
object-oriented contexts generalize known approaches.

1 Introduction

Rough sets and their generalizations have intensively been studied and applied,
there is a vast literature on related techniques and problems (see, e.g., [4,16–
19,24,29,30] and references there). The mainstream of the area mainly focuses
on the context of information and decision tables. This approach has proved very
useful in applications where information structures can be derived from or mod-
eled by relational approaches. On the other hand, the majority of contemporary
software systems are developed using object-oriented tools, where constructs like
classes, inheritance and objects are first-class citizens. In particular, such con-
structs allow one to define complex taxonomies and offer means to specialize con-
cepts’ definitions when moving from general to more specific ones. In the current
paper we provide a novel definition of many-valued object-oriented inheritance
in the context of rule-based query languages and show its relationship to rough
set-like approximations. That is, we generalize approximations in two ways: from
classical to many-valued and from those based on information/decision tables to
more general, based on more complex object-oriented structures.

As the technical engines we use a many-valued framework onQL developed
in [25] and many-valued nested structures defined in [8]. More precisely, we first
extend onQL with object-oriented inheritance. Next, we indicate how nested
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structures represent onQL with inheritance. Since onQL encompasses a class of
rule-based query languages, including Asp [2,9,10,13,23] and 4ql [14,15], nested
structures serve as an abstract representation of rule-based object-oriented lan-
guages and are further used to define approximations.

The considered structures reflect (object-oriented) databases or belief bases
so we deal with finite domains. To simplify notation and considerations we
restrict the language to its propositional version. In this context, rules with first-
order variables may be seen as concisely expressed schemata which can later be
translated to propositional logic using grounding.1

The original contribution of the paper includes:

– a novel definition of object-oriented inheritance in the context of many-valued
query languages;

– a representation of objects in the context of many-valued nested structures;
– generalizations of rough set-like approximations of the used semantical struc-

tures;
– tractability results for computing queries and approximations.

The rest of the paper is structured as follows. First, in Sect. 2, we intro-
duce the formal framework used in the paper by reminding rule-based query
languages, many-valued logics and nested structures. Next, in Sect. 3, we discuss
and define many-valued inheritance. In Sect. 4 we show how approximations may
be interpreted in the introduced framework. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Many-Valued Logics

Let us start with the syntax of many-valued logics considered in this paper. The
connectives we will use are ¬,∧,∨,→, ∧̇ , ∨̇ , where ¬,∧,∨ and → are tradi-
tional connectives expressing negation, conjunction, disjunction and implication,
and the connectives ∧̇ , ∨̇ are respectively doxastic conjunction and doxastic
disjunction [8].

Definition 1 (Formulas). The following BNF grammar defines the syntax of
formulas, where F denotes the set of formulas and P denotes the set of propo-
sitional variables:
〈F〉 ::= P | ¬〈F〉 | 〈F〉 ∧ 〈F〉 | 〈F〉 ∨ 〈F〉 | 〈F〉 → 〈F〉 |

〈F〉 ∧̇ 〈F〉 | 〈F〉 ∨̇ 〈F〉
When p ∈ P, p is also called a positive literal and ¬p is a negative literal. �	

Before defining the semantics of the considered logics let us indicate the rule-
based context in which they are employed. In order to evaluate rules expressed
in many-valued logics, one typically needs two orderings:

– truth ordering for evaluating the truth value of rule’s premises;
1 This technique is actually used, e.g., in SAT solver-based implementations of Asp.
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– information ordering for fusing knowledge from different rules when they
contribute to a conclusion involving the same propositional variable.

Truth ordering is then used to define the semantics of traditional connectives
while information ordering is used for doxastic connectives. For example, order-
ings for Asp are shown in Fig. 1.

Truth ordering Information ordering

Fig. 1. Orderings for Kleene logic used in Asp.

Another example of truth and information ordering is shown in Fig. 2. These
orderings are used in the 4ql rule language, based on a four-valued logic with
non-classical truth values u and i denoting “unknown” and “inconsistent”.2

Truth ordering Information ordering

Fig. 2. Orderings used in 4ql.

Conjunction and disjunction are interpreted as the minimum and the max-
imum wrt respective ordering. To illustrate the idea consider the following two
rules:

p :- q, r. (1)
¬p :- s. (2)

According to rule (1), p obtains the truth value of the conjunction of q and r. The
rule (2) assigns the truth value of s to ¬p. The rules’ premises are evaluated using
truth ordering so, assuming that q, r, s are true, the rule (1) results in p being true
and the rule (2) assigns t to ¬p (i.e., f to p). Therefore, inconsistent information

2 Observe that removing the value i from these orderings result in orderings shown in
Fig. 1.
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about p is derived. In 4ql we use doxastic disjunction (wrt information ordering)
to fuse the results what assigns the value i to p.3 Note that using truth ordering
one would obtain the value t giving, without a good reason, a higher priority to
the first rule.

As widely accepted [22,26], in order to define the semantics of an n-valued
logic, Ln, one first has to fix:

– a set of truth values, {τ1, . . . , τn}, where n ≥ 2;
– a non-empty set D of designated truth values, acting as true.

We additionally fix a set U of ignorance representing truth values acting as
unknown, proposed in [8]. In the current paper it is needed to define the seman-
tics of inheritance and approximations.

Rule languages, like Asp and 4ql, employ the Open World Assumption so are
basically three-valued [5,7,21] with the third truth value representing ignorance.
The paraconsistent rule language 4ql is four-valued [14,15] with the fourth truth
value representing inconsistency and may be used to implement paraconsistent
rough sets [28]. Therefore we will further require that we deal with at least three
truth values with the third truth value, u, representing ignorance. Semantically,
all logic we consider in the paper are extensions of Kleene three-valued logic
K3 [12].

While the semantics of traditional connectives is based on truth ordering,
doxastic connectives reflect information ordering. Let us now formally define
the semantics of many-valued logics we deal with.

Definition 2 (Truth Values). By a set of truth values we shall mean T =
{τ1, . . . , τn} such that { f, u, t} ⊆ T. We distinguish three disjoint subsets of T,
closed under propositional connectives ∨,∧, ∨̇ , ∧̇ :

– a set D � T, called the set of designated truth values, such that t ∈ D,
f, u �∈ D;

– a set U � T, called the set of ignorance representing truth values, such that
u ∈ U, f, t �∈ U. �	

To define the semantics we need a mapping w, assigning truth values to
propositions, w : P −→ {τ1, . . . , τn}, and then its extension to all formulas of L,
reflecting the semantics of connectives,

w : F −→ {τ1, . . . , τn}. (3)

Definition 3 (Semantics of Connectives wrt Truth Values). Let T be the
set of truth values and ≤t , ≤i be orderings (truth and information ordering,
respectively).

3 Each rule is treated as a separate information source. In 4ql ignorance and incon-
sistencies may be resolved using heuristic/non-monotonic rules or additional infor-
mation sources. For simplicity we skip these aspects here. For details see [14,15].
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– The semantics of negation ¬ is given by a function ν : T −→ T, such that on
truth values f, u, t we have:4

ν(f) def= t, ν(u) def= u, ν(t) def= f. (4)

– For τ, τ ′ ∈ T,

τ ∧ τ ′ def= glb≤t
{τ, τ ′}; τ ∨ τ ′ def= lub≤t

{τ, τ ′}; (5)

τ ∧̇ τ ′ def= glb≤i
{τ, τ ′}; τ ∨̇ τ ′ def= lub≤i

{τ, τ ′}, (6)

where glb and lub denote respectively the greatest lower and the least upper
bound wrt the specified ordering, where ≤t and ≤i stand for truth and infor-
mation ordering, respectively.. �	

Remark 1 (On Undefined Values of lub and glb). Note that lub, glb do not always
have to be defined. For example, glb{f, t} wrt information ordering for Kleene
logic shown in Fig. 1 is undefined. Whenever it is referred to, the computation
fails and the computed candidate for a model is rejected. This happens, for
example, in Asp when, for some p ∈ P a rule concludes that p is t and another
rule concludes that ¬p is t (i.e., p is f). Here inconsistency is encountered and
the current candidate for a model is rejected since Asp models are required to
be consistent. �	
Example 1 (The Semantics of Negation). The semantics of negation specified
in (4) is abstract and concrete definitions are to be provided for particular logics.
E.g., in the case of three- and four-valued logics with truth values included in
{f, u, i, t} one typically defines:

ν(f) def= t, ν(u) def= u, ν(i) def= i, ν(t) def= f. (7)

Indeed, (7) with truth values {f, u, t} is assumed in Kleene logic K3 [12] and in
many other three-valued logics (even though u may have various meanings, like
“neutral”, “meaningless”, “nonsense”, etc.). The definition for i is used, e.g., in
Priest’s three-valued logic [20] and the four-valued logic used in [14,15,28]. �	

The definition can be extended to cover all formulas in the standard manner,
assuming additionally that:

τ → τ ′ def= ν(τ) ∨ τ ′. (8)

Of course, many-valued implication can be defined in many ways. Equation (8)
can be substituted by any other definition, e.g.,

τ→tτ
′ def= τ ≤t τ ′. (9)

The intention is that implication → determines inclusion in the standard sense:

A ⊆ B iff for every object x in the domain, x ∈ A → x ∈ B. (10)
4 ν is a function specific to a logic in question. The requirements (4) and (5) make the

considered many-valued logics compatible with K3 on connectives ¬, ∧, ∨.
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Remark 2 (The Status of Truth and Information Ordering). For the sake of clar-
ity of presentation, as its semantical foundation, Definition 3 uses orderings ≤t ,
≤i . Of course, one could employ logical matrices or other formalisms. The inheri-
tance framework presented in the paper is independent on the form the semantics
is presented. �	

2.2 Nested Structures

Let us now recall nested structures of [8]. They will be used to model any set of
objects defined in the onQL framework.

Definition 4 (Worlds, Nested Structures). Let P ⊆ P be a finite set of
propositional variables. By a world over P we mean any function w : P −→ T.

Let S be the smallest set containing worlds, such that whenever σ1, . . . , σn ∈ S
(n ≥ 0) then also {σ1, . . . , σn} ∈ S. Members of S are called nested structures
or structures, for simplicity. �	

In the rest of the paper, for p ∈ P, τ ∈ {τ1, . . . , τn} and a structure σ, by
〈p, τ〉 we denote that σ(p) = τ . In such cases, σ will always be known from the
context.

While worlds assign truth values to given propositional variables, nested
structures may be sets of arbitrary order with worlds serving as the “zero-order”
elements.

2.3 Rule-Based Object-Oriented Query Languages

In onQL, like in other object-oriented languages, objects are created using classes
as patterns. Classes, among others, contain rules which allow for a concise and
uniform representation of the contents of objects. It is assumed that actual
parameters used in object creation uniquely determine the object. Using param-
eters and possibly other data, rules are instantiated and can be used to compute
the object’s contents (the truth values of facts and perhaps other objects).

For example, consider a class specification in Program1 (for details see [25]):5

Assume that an object ‘person(jim)’ with ‘mother(amy)’ and ‘father(john)’ is
created. Then the rule in Lines 7–10 is instantiated to:

sibling(Z) :- mother(amy), father(john), % M=amy, F=john
person(Z).mother(amy),
person(Z).father(john),
Z=/=jim. % N=jim

Therefore, the object consists of ‘sibling(Z)’ with ‘Z’ instantiated to domain
objects (names) satisfying the rule’s premises, i.e., having ‘amy’, ‘john’ as Jim’s
mother and father, and not being ‘jim’ himself.
5 According to a convention used in rule languages, comma in rules’ premises (bodies)

is interpreted as a conjunction.
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Program 1: Example of class definition.
1 class person(N: name){ % ‘name’ is the type of N
2 class mother(name) % mother of N

3 class father(name) % father of N

4 prologue: % set mother and father as N’s parents
5 . . . % e.g., using external sources
6 rules:
7 sibling(Z) :- mother(M), father(F),
8 person(Z).mother(M), % Z has the same mother
9 person(Z).father(F), % Z has the same father

10 Z �=N. % Z is not N

11 }

Given that Tom and Eve are Jim’s siblings, the object ‘person(jim)’ both in
Asp and 4ql can be modeled by the nested structure where, for simplicity, it
is assumed that the values of all literals not listed in respective sets obtain the
value u in these sets:

person(jim) =
{ {

〈mother(amy), t〉
}
,
{
〈father(john), t〉

}
,

〈sibling(tom), t〉, 〈sibling(eve), t〉
}
.

(11)

In considering the relationship among rule-based and object-oriented lan-
guages the following additional remarks are in order.

Remark 3 (First-Order vs Propositional Literals). In the paper we consider
propositional version of many-valued logics. Accordingly, nested structures are
defined to include propositional information only. On the other hand, the nested
structure (11) contains expressions like ‘mother(amy)’. Though looking like first-
order literals, they only contain constants, so can be treated as propositional
variables with brackets added for a better readability. �	

Remark 4 (Methods). In object-oriented languages one specifies methods inter-
facing objects with their environment and specifying their behavior. Methods
allow other components of object-oriented systems to access object data. In
onQL methods are specified by propositional variables. �	

Remark 5 (Nested Structures vs Objects). Worlds in the sense of Definition 4
reflect the contents of flat objects (created on the basis of classes not containing
other classes). Sets of worlds are containers of flat objects. The induction step
in Definition 4 allows one to model objects of arbitrary finite order. That is,
unrestricted finite nesting of classes is allowed. Therefore arbitrary objects of
onQL can be modeled by nested structures.

Note also that programs in many languages, including Asp, may have many
models. Given that M1, . . . ,Mr are all models of a program, the corresponding
nested structure can be the set {M1, . . . ,Mr} consisting of these models. �	
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Definition 5 (Object Expressions). By a simple object expression we under-
stand any expression of the form ‘c(ā)’, where ‘c’ is a class name and ‘ā’ is
a tuple of constants of the domain, assuming type compatibility among formal
parameters of ‘c’ and actual parameters in ‘ā’.6

By the set of object expressions, O, we understand the smallest set of expres-
sions including simple object expressions and such that whenever each expression
in ā is in O then c(ā) ∈ O, assuming type compatibility among formal parameters
of ‘c’ and actual parameters in ‘ā’. �	

Expressions in O denote objects syntactically. Since the onQL framework is inde-
pendent of the underlying rule language, we assume that a mapping, Σ reflecting
the semantics of the rule language is given by the following two mappings:

Σ : O −→ S; (12)
Φ : S × P −→ {τ1, . . . , τn}, (13)

where O is the set of object expressions (see Definition 5), S is the set of nested
structures (see Definition 4) and P is the set of propositional variables (see Def-
inition 1).7 The mapping Σ assigns to each object a nested structure and is
dependent on the semantics of the underlying rule language. The mapping Φ
reflects the semantics of methods in nested structures, where fusing informa-
tion from different components of a nested structure is needed. For example,
when nested structures serve as belief bases, doxastic disjunction can be used to
combine results obtained from sub-components [8].

Example 2 (Illustrating Φ). Of course, Φ may be defined in various ways. The
one introduced in [8] uses ∨̇ to fuse information from different components

of a nested structure, Φ(S, p) def=
∨̇

w∈S
w(p). To illustrate the idea, consider the

following nested structure consisting of two worlds, w1 and w2, e.g., representing
the results of classifiers, each linked to a camera located at a different place:

S =
{

{〈tall(jim), t〉 , 〈tall(amy), u〉 , 〈tall(john), t〉}
︸ ︷︷ ︸

w1

,

{〈tall(jim), t〉 , 〈tall(amy), f〉 , 〈tall(john), f〉}
︸ ︷︷ ︸

w2

}
.

(14)

When
∨̇

is defined over information ordering shown in Fig. 2, we have:

Φ(S, tall(jim)) = w1(tall(jim)) ∨̇ w2(tall(jim)) = t ∨̇ t = t;
Φ(S, tall(amy)) = w1(tall(amy)) ∨̇ w2(tall(amy)) = u ∨̇ f = f;
Φ(S, tall(john)) = w1(tall(john)) ∨̇ w2(tall(john)) = t ∨̇ f = i.

�	
6 We assume here type compatibility in the sense of onQL [25].
7 Recall that we assume that objects are created using classes as patterns. Therefore

we require that actual parameters determine a unique object represented by a nested
structure.
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3 Many-Valued Dynamic Object Inheritance

In most object-oriented programming languages the approach to inheritance
is rather rigid. This creates many problems especially when multiple inheri-
tance is allowed. On the other hand, Common Lisp offers much more flexible
approach called method combination. When several methods can be selected,
one can decide how to combine their results, making dynamic inheritance user-
programmable [1,27].

The approach we propose can be located somewhere between the rigid
approaches and the Lisp-like method combination. In our approach, methods
always return truth values as their results. We will therefore allow combining
methods in a more restricted but, in our opinion, better controlled manner via
inheritance expressions which can be analyzed and verified using the background
logical formalisms.

Due to the heterogeneity and dynamics of contemporary AI/ML-based sys-
tems, in the paper we focus on inheritance at the object level. Of course, the
method can be made static by shifting the approach to the class level. However,
parameter passing and other syntactic conventions should also be addressed in
this case.

The main concept for inheritance which we introduce is that of inheritance
expressions defined as follows, where γ −� δ denotes that γ inherits from δ.

Definition 6 (Inheritance Expressions). The following BNF grammar
defines the syntax of inheritance expressions, where I denotes the set if inheri-
tance expressions and O is the set of object expressions:

〈I〉 ::= 〈O〉 | 〈I〉 −� 〈I〉 | ¬〈I〉 | 〈I〉 ∧ 〈I〉 | 〈I〉 ∨ 〈I〉 | 〈I〉 → 〈I〉 |
〈I〉 ∧̇ 〈I〉 | 〈I〉 ∨̇ 〈I〉 �	

Observe that inheritance expressions are like formulas except that rather
than propositional variables, object expressions serve as terminal symbols, and
the inheritance symbol ‘−� ’ is also a connective.

Definition 7 (Semantics of Inheritance Expressions). Semantics of
inheritance expressions is defined inductively by a mapping Ψ : I × P −→
{τ1, . . . , τn} assigning truth values to propositional variables, where mappings Σ
and Φ are specified by Eqs. (12)–(13) and U is the set of ignorance representing
truth values (see Definition 2):

– Ψ(o, p) def= Φ(Σ(o), p), where o ∈ O;

– Ψ(γ −� δ, p) def=
{

Ψ(γ, p) when Ψ(γ, p) �∈ U;
Ψ(δ, p) otherwise;

– Ψ(¬γ, p) def= ¬Ψ(γ, p);
– Ψ(γ ◦ δ, p) def= Ψ(γ, p) ◦ Ψ(δ, p), where ◦ ∈ {∧,∨,→, ∧̇ , ∨̇ }. �	

According to Definition 7, in the case of inheritance operator γ −� δ one first looks
for the most specific method defining a given method p (provided by γ). If it
appears unknown, one looks for the value of p in the expression δ.
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Given the values of propositional variables wrt inheritance expressions one
can define the semantics of arbitrary queries as follows.

Definition 8 (Semantics of Queries). The mapping Ψ is extended to arbi-
trary formulas as follows, where γ ∈ I and α, β ∈ F :

– Ψ(γ,¬α) def= ¬Ψ(γ, α);
– Ψ(γ, α ◦ β) def= Ψ(γ, α) ◦ Ψ(γ, β), where ◦ ∈ {∧,∨,→, ∧̇ , ∨̇ }. �	

The following example shows a non-conflicting multiple inheritance.

Example 3 (Inheritance). Consider a smartphone which inherits properties of a
standard phone and a camera. Figure 3 shows a suitable inheritance.

phone camera− −
smartphone

Fig. 3. Inheritance considered in Example 3.

Assume we have three objects with the following contents:8

phone =
{

〈can call, t〉
}
, 〈can make video, f〉

}
, (15)

camera =
{

〈can call, f〉
}
, 〈can make video, t〉

}
, (16)

smartphone =
{

〈can call, u〉 , 〈can make video, u〉
}
. (17)

The following inheritance expressions reflect the inheritance shown in Fig. 3. For
illustration purposes, the expressions specify two methods for information fusion:

smartphone −� (phone ∨ camera); (18)

smartphone −� (phone ∨̇ camera). (19)

Using orderings shown in Fig. 2 and Definition 7, one obtains that:

Ψ((18), can call) =
(
u−� (t ∨ f)

)
= t; (20)

Ψ((18), can make video) =
(
u−� (f ∨ t)

)
= t; (21)

Ψ((19), can call) =
(
u−� (t ∨̇ f)

)
= i; (22)

Ψ((19), can make video) =
(
u−� (f ∨̇ t)

)
= i. (23)

As shown by the results (20)–(21), the choice of ∨ as the information fusion
operator works well since properties inherited by ‘smartphone’ from ‘phone’ and
‘camera’ are not in conflict with each other. The results in (22)–(23) would be
more suitable for conflicting information whose fusion is inconsistent (see, e.g.,
Example 4 below). �	
8 For clarity, the unknown facts in ‘smartphone’ are listed explicitly.
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As the second example let us consider “Nixon diamond”, a classical scenario
used in default reasoning to illustrate the problem of inconsistent (conflicting)
conclusions.

Example 4 (Diamond Problem). The scenario is formulated as follows:

– usually, Quakers are pacifists;
– usually, Republicans are not pacifists;
– Nixon is both a Quaker and a Republican.

The question is whether Nixon is a pacifist or not?

person− −
quaker republican− −

nixon

Fig. 4. Inheritance considered in the “Nixon diamond” example.

The corresponding inheritance is shown in Fig. 4, where:

– ‘nixon’ inherits from ‘quaker’ and ‘republican’ simultaneously;
– both ‘quaker’ and ‘republican’ inherit from ‘person’.

Using inheritance expressions one has to decide how two conflicting conclu-
sions should be combined. At least the following options can be considered:

nixon−� (quaker ∧ republican)−� person; (24)

nixon−� (quaker ∨ republican)−� person; (25)

nixon−� (quaker ∧̇ republican)−� person; (26)

nixon−� (quaker ∨̇ republican)−� person. (27)

To simplify the discussion, consider four objects with the following contents:

nixon = person =
{

〈pacifist, u〉
}
, (28)

quaker =
{

〈pacifist, t〉
}
, republican =

{
〈pacifist, f〉

}
. (29)

Using orderings shown in Fig. 2, Definition 7 results in:

Ψ((24),pacifist) =
(
u−� (t ∧ f)−� u

)
= f; (30)

Ψ((25),pacifist) =
(
u−� (t ∨ f)−� u

)
= t; (31)
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Ψ((26),pacifist) =
(
u−� (t ∧̇ f)−� u

)
= u; (32)

Ψ((27),pacifist) =
(
u−� (t ∨̇ f)−� u

)
= i. (33)

In the case of (30) ‘republican’ defeats ‘quaker’. The case of (31) is opposite:
‘quaker’ defeats ‘republican’. The expressions in (32) and (33) do not priori-
tize ‘quaker’ nor ‘republican’. When one considers objects as independent non-
prioritized information sources, the choice of information fusion using ∨̇ is more
appropriate.9 �	

Remark 6 (Differences Between Inheritance and Shadowing). Notice the differ-
ence between inheritance and belief shadowing as defined in [8]:

– inheritance focuses on methods; queries are computed after methods are eval-
uated. Shadowing concentrates on queries without inheriting methods;

– inheritance prioritizes methods from the most specific to the most general
ones. In shadowing the order is inverted: query evaluation starts from the
outermost layer;

– while inheritance is defined for the context of object-oriented rule-based query
languages, shadowing concentrates on belief bases. �	

Complexitywise, we have the following theorem, where we address data com-
plexity. That is, we assume that the size of the query (α) is constant.

Theorem 1 (Data Complexity of Queries). Assume that computing truth
values of connectives and the values of Φ is tractable. Then for every γ ∈ I and
α ∈ F , computing the truth value Ψ(γ, α) is tractable wrt the size of Σ(o), where
Σ and Φ are specified by (12)–(13) and o is an object involved in γ with the
maximal size of Σ(o). �	

4 Approximations

Let us now discuss approximations in the context of many-valued logics we deal
with (for an alternative approach see, e.g., [11]). Three-valued interpretations of
approximations are very natural since the boundary region gives rise to the third
truth value ‘unknown’ (see [4,5,7] and references there). Four-valued paracon-
sistent rough sets have been discussed, e.g., in [28]. When more truth values are
present, or non-classical truth values are interpreted differently, new phenomena
can be observed. Let us first define standard approximations, where E is the
elementary relation modeling indiscernibility, similarity, proximity, etc.

Definition 9 (Approximations, Elementary Relations, Approximate
Sets). Let D be a domain of elements (objects), c ⊆ D and let σ be a binary

9 In fact, it is compatible with belief fusion in 4ql and belief bases of [8].
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relation on D. Then the lower approximation c+E and the upper approximation
c⊕
E of c wrt E are:

c+E
def=

{
x | ∀y

(
E(x, y) → y ∈ c

)}
; (34)

c⊕
E

def=
{
x | ∃y

(
E(x, y) ∧ y ∈ c

)}
. (35)

The set c±
E

def= c⊕
E \ c+E is called the boundary region of c wrt E. The relation E

is called the elementary relation for approximations c+E, c⊕
σ . The pair 〈c+σ , c⊕

σ 〉
is called an approximate set. �	

Definition 9 can be adapted to the many-valued case assuming that c and E
are many-valued rather than classical. The next definition serves the purpose,
where quantifiers and the membership relation are understood as follows:10

– we treat ∀ and ∃ as the conjunction and disjunction over domain elements:

∀y
(
α(y)

) def≡
∧

d∈D

α(d); ∃y
(
α(y)

) def≡
∨

d∈D

α(d); (36)

– we denote y ∈ c by c(y) and, for each d ∈ D, treat each c(d) as a propositional
variable. In such a case, worlds provide information about truth values of each
c(d), thus for d ∈ c. Similarly, for d, e ∈ D, we encode E(d, e) as a propositional
variable.

In classical rough sets there is no need to define the negative region (being the
lower approximation of negative information) since it is the complement of the
upper approximation of a given set. In the many-valued case approximations of
the negative region appear useful and sometimes needed. Therefore the following
definition covers also these cases.

Definition 10 (Many-Valued Approximations). Let L be a many-valued
logic with the set D of designated truth values. Let D be a domain of elements
(objects), c ⊆ D and let σ be a binary relation on D. Given that c and E are given
by an inheritance expression γ ∈ I, the lower approximation c+E, upper approx-
imation c⊕

E, negative lower approximation c−
E and the negative upper approxi-

mation c�
E of c wrt E are:11

c+E
def=

{
x | Ψ

(
γ,∀y

(
E(x, y) → y ∈ c

))
∈ D

}
; (37)

c⊕
E

def=
{
x | Ψ(γ,∃y

(
E(x, y) ∧ y ∈ c

))
∈ D

}
; (38)

c−
E

def=
{
x | Ψ

(
γ,∀y

(
E(x, y) → y �∈ c

))
∈ D

}
; (39)

c�
E

def=
{
x | Ψ(γ,∃y

(
E(x, y) ∧ y �∈ c

))
∈ D

}
; . (40)

�	
10 Recall that the domains we deal with are finite.
11 Observe that approximations are classical two-valued sets.
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Example 5 (Many-Valued Approximations). Let, for some object o, Σ(o) = S,
where S is the nested structure defined by (14). S specifies the (four-valued) set
tall ⊆ D, where D = {jim, amy, john}. Let E be the (reflexive and symmetric
closure) of the relation consisting of 〈jim, john〉.

To illustrate the approach, consider two variants of the four-valued logic
with truth values {f, u, i, t} and orderings shown in Fig. 2 serving as the seman-
tical basis for connectives. The variants differ in the choice of designated truth
values:12

(i) D ={t}, (ii) D ={t,i}.

Let us first calculate queries low(x), up(x), nlow(x) and nup(x) for each
x ∈ D, useful for calculating approximations:

low(x) def= Ψ
(
o,∀y

(
E(x, y) → tall(y)

))
– for lower approximation;

up(x) def= Ψ
(
o,∃y

(
E(x, y) ∧ tall(y)

))
– for upper approximation;

nlow(x) def= Ψ
(
o,∀y

(
E(x, y) → ¬tall(y)

))
– for negative lower approximation;

nup(x) def= Ψ
(
o,∃y

(
E(x, y) ∧ ¬tall(y)

))
– for negative upper approximation.

We have:

low(jim)= i, up(jim)= t, nlow(jim)= f, nup(jim)= i,
low(amy)= f, up(amy)= f, nlow(amy)= t, nup(amy)= t,
low(john)= i, up(john)= t, nlow(john)= f, nup(john)= i.

Therefore, according to Definition 10, the approximations of tall wrt E are:13

variant(i) : tall+E = ∅, tall⊕E = {jim, john},
tall−E = {amy}, tall�E = {amy};

variant(ii) : tall+E = {jim, john}, tall⊕E = {jim, john},
tall−E = {amy}, tall�E = {jim, amy, john}.

�	

Since approximations can be expressed as queries, we have the following
corollary from Theorem 1.

Corollary 1 (Data complexity of approximations). Assume that comput-
ing truth values of connectives and the values of Φ is tractable. Let the domain
D be fixed. Then for every γ ∈ I, c ⊆ D and E ⊆ D × D, computing the approx-
imations c+E, c⊕

E and c±
E is tractable wrt the size of Σ(o), where Σ and Φ are

specified by (12)–(13) and o is an object involved in γ with the maximal size of
Σ(o). �	

12 The assumption that i is a designated truth value is not artificial – see, e.g., the
Priest logic [20].

13 Since approximations are two-valued sets, we list elements belonging to a set.
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5 Conclusions

In the paper we have developed a tractable framework for object-oriented inheri-
tance in many-valued query languages. The use of nested structures of [8] allowed
us to define inheritance abstracting from a particular query language. In partic-
ular, it is compatible with onQL [25] and can be adapted to languages like Asp
or 4ql as well as their many-valued generalizations.

It is worth noticing that the class of propositional many-valued logics with
connectives definable by computable functions,14 including the logics behind
Asp or 4ql, can be shown decidable. In fact, signed tableaux provide us with
a useful verification technique (for an example of tableaux for Kleene logic and
Asp see, e.g., [6]). Though the worst case complexity of tableaux is exponential,
the technique is widely used.15

The research initiated in this paper can be continued in many direc-
tions. First, in traditional rough sets one frequently considers approximations
obtained by removing part of information, e.g., selected attributes from infor-
mation/decision tables. Using the framework provided in the current paper, such
an extension can also be achieved. However, it deserves a separate study. Next,
in many application areas an elementary relation and/or a crisp set are not
explicitly given. Computational Asp-based methods for dealing with such cases
in the framework of standard rough sets are provided in [7]. Along these lines one
can abstract from elementary relations and consider nested structures as approx-
imate sets containing literals. This direction could also be seen as a generalization
of orthopairs [3]. Finally, algebraic properties of many-valued approximations in
the context of inheritance expressions are worth further investigations.
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Abstract. In this paper, we consider decision trees that use both con-
ventional queries based on one attribute each and queries based on
hypotheses about values of all attributes. Such decision trees are sim-
ilar to ones studied in exact learning, where membership and equiva-
lence queries are allowed. We present dynamic programming algorithms
for minimization of the depth of above decision trees and discuss results
of computer experiments on various data sets and randomly generated
Boolean functions.

Keywords: Decision tree · Hypothesis · Depth

1 Introduction

Decision trees are widely used in many areas of computer science and related
fields, for example, test theory (initiated by Chegis and Yablonskii [6]), rough
set theory (initiated by Pawlak [8–10]), and exact learning (initiated by Angluin
[4,5]). These theories are closely related. In particular, attributes from rough
set theory and test theory correspond to membership queries from exact learn-
ing. Exact learning considers additionally the so-called equivalence queries. The
notion of “minimally adequate teacher” that allows both membership and equiv-
alence queries was discussed by Angluin in [3]. Relations between exact learning
and PAC learning proposed by Valiant [11] were discussed in [4]. In this paper,
we add the notion of a hypothesis to the model that has been considered in
rough set theory as well in test theory. This model allows us to use an analog of
equivalence queries.

Let T be a decision table with n conditional attributes f1, . . . , fn having
values from the set ω = {0, 1, 2, . . .} in which rows are pairwise different and
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each row is labeled with a decision from ω. For a given row of T , we should
recognize the decision attached to this row. To this end, we can use decision
trees based on two types of queries. We can ask about the value of an attribute
fi ∈ {f1, . . . , fn} on the given row. We will obtain an answer of the kind fi = δ,
where δ is the number in the intersection of the given row and the column fi.
We can also ask if a hypothesis f1 = δ1, . . . , fn = δn is true, where δ1, . . . , δn

are numbers from the columns f1, . . . , fn, respectively. Either this hypothesis
will be confirmed or we obtain a counterexample in the form fi = σ, where
fi ∈ {f1, . . . , fn} and σ is a number from the column fi different from δi. The
considered hypothesis is called proper if (δ1, . . . , δn) is a row of the table T . We
consider the depth of a decision tree as its time complexity, which is equal to
the maximum number of queries in a path from the root to a terminal node of
the tree.

Decision trees using hypotheses can be essentially more efficient than the
decision trees using only attributes. Let us consider an example, the problem of
computation of the conjunction x1 ∧ · · · ∧ xn. The minimum depth of a decision
tree solving this problem using the attributes x1, . . . , xn is equal to n. However,
the minimum depth of a decision tree solving this problem using proper hypothe-
ses is equal to 1: it is enough to ask only about the hypothesis x1 = 1, . . . , xn = 1.
If it is true, then the considered conjunction is equal to 1. Otherwise, it is equal
to 0.

We consider the following five types of decision trees:

1. Decision trees that use only attributes.
2. Decision trees that use only hypotheses.
3. Decision trees that use both attributes and hypotheses.
4. Decision trees that use only proper hypotheses.
5. Decision trees that use both attributes and proper hypotheses.

For each type of decision trees, we design a dynamic programming algorithm
that, for a given decision table, finds the minimum depth of a decision tree of the
considered type for this table. Note that algorithms for the minimization of the
depth for decision trees of type 1 were considered in [1] for decision tables with
one-valued decisions and in [2] for decision tables with many-valued decisions.

For the conjunction of n variables, the considered algorithms construct a
decision tree of type 1 with the depth equal to n and the decision trees of types
2, 3, 4, and 5 with the depth equal to 1.

It is interesting to study not only specially chosen examples as the conjunc-
tion of n variables. We compute the minimum depth of a decision tree for each of
the considered five types for eight decision tables from the UCI ML Repository
[7]. We do the same for randomly generated Boolean functions with n variables,
where n = 3, . . . , 6.

In particular, from the results obtained for Boolean functions it follows that,
in general case, the decision trees of types 2 and 4 are better than the decision
trees of type 1, and the decision trees of types 3 and 5 are better than the
decision trees of types 2 and 4.
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The rest of the paper is organized as follows. In Sects. 2 and 3, we consider
main notions. In Sects. 4 and 5 – dynamic programming algorithms for the depth
minimization. Section 6 contains results of computer experiments and Sect. 7 –
short conclusions.

2 Decision Tables

A decision table is a rectangular table T with n ≥ 1 columns filled with numbers
from the set ω = {0, 1, 2, . . .} of nonnegative integers. Columns of this table are
labeled with the conditional attributes f1, . . . , fn. Rows of the table are pairwise
different. Each row is labeled with a number from ω that is interpreted as a
decision. Rows of the table are interpreted as tuples of values of the conditional
attributes.

A decision table can be represented by a word over the alphabet {0, 1, ; , |}
in which numbers from ω are in binary representation (are represented by words
over the alphabet {0, 1}), the symbol “;” is used to separate two numbers from ω,
and the symbol “|” is used to separate two rows (we add to each row correspond-
ing decision as the last number in the row). The length of this word will be called
the size of the decision table.

A decision table T is called empty if it has no rows. The table T is called
degenerate if it is empty or all rows of T are labeled with the same decision.

We denote F (T ) = {f1, . . . , fn} and denote by D(T ) the set of decisions
attached to the rows of T . For any conditional attribute fi ∈ F (T ), we denote
by E(T, fi) the set of values of the attribute fi in the table T . We denote by
E(T ) the set of conditional attributes of T for which |E(T, fi)| ≥ 2.

A system of equations over T is an arbitrary equation system of the kind

{fi1 = δ1, . . . , fim = δm},

where m ∈ ω, fi1 , . . . , fim ∈ F (T ), and δ1 ∈ E(T, fi1), . . . , δm ∈ E(T, fim) (if
m = 0, then the considered equation system is empty).

Let T be a nonempty table. A subtable of T is a table obtained from T
by removal of some rows. We correspond to each equation system S over T a
subtable TS of the table T . If the system S is empty, then TS = T . Let S be
nonempty and S = {fi1 = δ1, . . . , fim = δm}. Then TS is the subtable of the
table T containing the rows from T , which in the intersection with the columns
fi1 , . . . , fim have numbers δ1, . . . , δm, respectively. Such nonempty subtables,
including the table T , are called separable subtables of T . We denote by SEP (T )
the set of separable subtables of the table T .

3 Decision Trees

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn.
We consider the decision trees with two types of queries. We can choose an
attribute fi ∈ F (T ) = {f1, . . . , fn} and ask about its value. This query has
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the following possible answers: {fi = δ}, where δ ∈ E(T, fi). We can formulate
a hypothesis over T in the form of H = {f1 = δ1, . . . , fn = δn}, where δ1 ∈
E(T, f1), . . . , δn ∈ E(T, fn), and ask about this hypothesis. This query has the
following possible answers: H, {f1 = σ1}, σ1 ∈ E(T, f1)\{δ1}, ..., {fn = σn}, σn ∈
E(T, fn)\{δn}. The first answer means that the hypothesis is true. Other answers
are counterexamples. The hypothesis H is called proper for T if (δ1, . . . , δn) is a
row of the table T .

A decision tree over T is a marked finite directed tree with the root in which

– Each terminal node is labeled with a number from the set D(T ) ∪ {0}.
– Each node, which is not terminal (such nodes are called working), is labeled

with an attribute from the set F (T ) or with a hypothesis over T .
– If a working node is labeled with an attribute fi from F (T ), then, for each

possible answer {fi(x) = δ}, δ ∈ E(T, fi), there is exactly one edge labeled
with this answer, which leave this node and there are no any other edges
leaving this node.

– If a working node is labeled with a hypothesis H = {f1 = δ1, . . . , fn =
δn} over T , then, for each possible answer H, {f1 = σ1}, σ1 ∈
E(T, f1)\{δ1}, ..., {fn = σn}, σn ∈ E(T, fn)\{δn}, there is exactly one edge
labeled with this answer, which leaves this node and there are no any other
edges leaving this node.

Let Γ be a decision tree over T and v be a node of Γ . We now define an
equation system S(Γ, v) over T associated with the node v. We denote by ξ the
directed path from the root of Γ to the node v. If there are no working nodes in
ξ, then S(Γ, v) is the empty system. Otherwise, S(Γ, v) is the union of equation
systems attached to the edges of the path ξ.

A decision tree Γ over T is called a decision tree for T if, for any node v of Γ ,

– The node v is terminal if and only if the subtable TS(Γ, v) is degenerate.
– If v is a terminal node and the subtable TS(Γ, v) is empty, then the node v

is labeled with the decision 0.
– If v is a terminal node and the subtable TS(Γ, v) is nonempty, then the node

v is labeled with the decision attached to all rows of TS(Γ, v).

A complete path in Γ is an arbitrary directed path from the root to a terminal
node in Γ . As the time complexity of a decision tree, we consider its depth that is
the maximum number of working nodes in a complete path in the tree or, which
is the same, the maximum length of a complete path in the tree. We denote by
h(Γ ) the depth of a decision tree Γ .

We will use the following notation:

– h(1)(T ) is the minimum depth of a decision tree for T , which uses only
attributes from F (T ).

– h(2)(T ) is the minimum depth of a decision tree for T , which uses only
hypotheses over T .

– h(3)(T ) is the minimum depth of a decision tree for T , which uses both
attributes from F (T ) and hypotheses over T .
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– h(4)(T ) is the minimum depth of a decision tree for T , which uses only proper
hypotheses over T .

– h(5)(T ) is the minimum depth of a decision tree for T , which uses both
attributes from F (T ) and proper hypotheses over T .

4 Construction of Directed Acyclic Graph Δ(T )

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn. We
now consider an algorithm A0 for the construction of a directed acyclic graph
(DAG) Δ(T ), which will be used for the study of decision trees. Nodes of this
graph are some separable subtables of the table T . During each iteration we
process one node. We start with the graph that consists of one node T , which is
not processed and finish when all nodes of the graph are processed.

Algorithm A0 (construction of DAG Δ(T )).

Input : A nonempty decision table T with n conditional attributes f1, . . . , fn.
Output: Directed acyclic graph Δ(T ).

1. Construct the graph that consists of one node T , which is not marked as
processed.

2. If all nodes of the graph are processed, then the algorithm halts and returns
the resulting graph as Δ(T ). Otherwise, choose a node (table) Θ that has not
been processed yet.

3. If Θ is degenerate, then mark the node Θ as processed and proceed to step
2.

4. If Θ is not degenerate, then, for each fi ∈ E(Θ), draw a bundle of edges from
the node Θ. Let E(Θ, fi) = {a1, . . . , ak}. Then draw k edges from Θ and
label these edges with systems of equations {fi = a1}, . . . , {fi = ak}. These
edges enter nodes Θ{fi = a1}, . . . , Θ{fi = ak}, respectively. If some of the
nodes Θ{fi = a1}, . . . , Θ{fi = ak} are not present in the graph, then add
these nodes to the graph. Mark the node Θ as processed and return to step
2.

The following statement about time complexity of the algorithm A0 follows
immediately from Proposition 3.3 [1].

Proposition 1. The time complexity of the algorithm A0 is bounded from above
by a polynomial on the size of the input table T and the number |SEP (T )| of
different separable subtables of T .

In general case, the time complexity of the algorithm A0 is exponential
depending on the size of the input decision tables. Note that, in Sect. 3.4 of the
book [1], classes of decision tables are described for each of which the number of
separable subtables of decision tables from the class is bounded from above by
a polynomial on the number of columns in the tables. For each of these classes,
the time complexity of the algorithm A0 is polynomial depending on the size of
the input decision tables.



128 M. Azad et al.

5 Minimizing the Depth of Decision Trees

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn.
We can use the DAG Δ(T ) to compute values h(1)(T ) , . . . , h(5)(T ). Let t ∈
{1, . . . , 5}. To find the value h(t)(T ), for each node Θ of the DAG Δ(T ), we
compute the value h(t)(Θ). It will be convenient for us to consider not only
subtables that are nodes of Δ(T ) but also empty subtable Λ of T and subtables
Tr that contain only one row r of T and are not nodes of Δ(T ). We begin
with these special subtables and terminal nodes of Δ(T ) (nodes without leaving
edges) that are degenerate separable subtables of T and step-by-step move to
the table T .

Let Θ be a terminal node of Δ(T ) or Θ = Tr for some row r of T . Then
h(t)(Θ) = 0: the decision tree that contains only one node labeled with the
decision attached to all rows of Θ is a decision tree for Θ. If Θ = Λ, then
h(t)(Θ) = 0: the decision tree that contains only one node labeled with 0 will be
considered as a decision tree for Λ.

Let Θ be a nonterminal node of Δ(T ) such that, for each child Θ′ of Θ, we
already know the value h(t)(Θ′). Based on this information, we can find the min-
imum depth of a decision tree for Θ, which uses for the subtables corresponding
to children of the root decision trees of the type t and in which the root is labeled

– With an attribute from F (T ) (we denote by h
(t)
a (Θ) the minimum depth of

such a decision tree).
– With a hypothesis over T (we denote by h

(t)
h (Θ) the minimum depth of such

a decision tree).
– With a proper hypothesis over T (we denote by h

(t)
p (Θ) the minimum depth

of such a decision tree).

Since Θ is nondegenerate, the set E(Θ) is nonempty. We now describe three
procedures for computing the values h

(t)
a (Θ), h

(t)
h (Θ), and h

(t)
p (Θ), respectively.

Let us consider a decision tree Γ (fi) for Θ in which the root is labeled with an
attribute fi ∈ E(Θ). For each δ ∈ E(T, fi), there is an edge that leaves the root
and enters a node v(δ). This edge is labeled with the equation system {fi = δ}.
The node v(δ) is the root of a decision tree of the type t for Θ{fi = δ} for which
the depth is equal to h(t)(Θ{fi = δ}). It is clear that

h(Γ (fi)) = 1 + max{h(t)(Θ{fi = δ}) : δ ∈ E(T, fi)}.

Since h(t)(Θ{fi = δ}) = h(t)(Λ) = 0 for any δ ∈ E(T, fi)\E(Θ, fi),

h(Γ (fi)) = 1 + max{h(t)(Θ{fi = δ}) : δ ∈ E(Θ, fi)}. (1)

It is clear that, for any δ ∈ E(Θ, fi), the subtable Θ{fi = δ} is a child of Θ in
the DAG Δ(T ), i.e., we know the value h(t)(Θ{fi = δ}).

One can show that h(Γ (fi)) is the minimum depth of a decision tree for Θ in
which the root is labeled with the attribute fi and which uses for the subtables
corresponding to children of the root decision trees of the type t.
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We should not consider attributes fi ∈ F (T )\E(Θ) since, for each such
attribute, there is δ ∈ E(T, fi) with Θ{fi = δ} = Θ, i.e., based on this attribute
we cannot construct an optimal decision tree for Θ. As a result, we have

h(t)
a (Θ) = min{h(Γ (fi)) : fi ∈ E(Θ)}. (2)

Computation of h
(t)
a (Θ). Construct the set of attributes E(Θ). For each

attribute fi ∈ E(Θ), compute the value h(Γ (fi)) using (1). Compute the value
h
(t)
a (Θ) using (2).

Remark 1. Let Θ be a nonterminal node of the DAG Δ(T ) such that, for each
child Θ′ of Θ, we already know the value h(t)(Θ′). Then the procedure of com-
putation of the value h

(t)
a (Θ) has polynomial time complexity depending on the

size of decision table T .

A hypothesis H = {f1 = δ1, . . . , fn = δn} over T is called admissible for
Θ and an attribute fi ∈ F (T ) = {f1, . . . , fn} if, for any σ ∈ E(T, fi)\{δi},
Θ{fi = σ} �= Θ. The hypothesis H is not admissible for Θ and an attribute
fi ∈ F (T ) if and only if |E(Θ, fi)| = 1 and δi /∈ E(Θ, fi). The hypothesis H is
called admissible for Θ if it is admissible for Θ and any attribute fi ∈ F (T ).

Let us consider a decision tree Γ (H) for Θ in which the root is labeled with
an admissible for Θ hypothesis H = {f1 = δ1, . . . , fn = δn}. The set of answers
for the query corresponding to the hypothesis H is equal to A(H) = {H, {f1 =
σ1}, . . . , {fn = σn} : σ1 ∈ E(T, f1)\{δ1}, ..., σn ∈ E(T, fn)\{δn}}. For each
S ∈ A(H), there is an edge that leaves the root of Γ (H) and enters a node v(S).
This edge is labeled with the equation system S. The node v(S) is the root of a
decision tree of the type t for ΘS, which depth is equal to h(t)(ΘS). It is clear
that

h(Γ (H)) = 1 + max{h(t)(ΘS) : S ∈ A(H)}.

We have ΘH = Λ or ΘH = Tr for some row r of T . Therefore h(t)(ΘH) = 0.
Since H is admissible for Θ, E(Θ, fi)\{δi} = ∅ for any attribute f ∈ F (T )\E(Θ).
It is clear that Θ{fi = σ} = Λ and h(t)(Θ{fi = σ}) = 0 for any attribute
fi ∈ E(Θ) and any σ ∈ E(T, fi)\{δi} such that σ /∈ E(Θ, fi). Therefore

h(Γ (H)) = 1 + max{h(t)(Θ{fi = σ}) : fi ∈ E(Θ), σ ∈ E(Θ, fi)\{δi}}. (3)

It is clear that, for any fi ∈ E(Θ) and any σ ∈ E(Θ, fi)\{δi}, the subtable
Θ{fi = σ} is a child of Θ in the DAG Δ(T ), i.e., we know the value h(t)(Θ{fi =
σ}).

One can show that h(Γ (H)) is the minimum depth of a decision tree for Θ in
which the root is labeled with the hypothesis H and which uses for the subtables
corresponding to children of the root decision trees of the type t.

We should not consider hypotheses that are not admissible for Θ since, for
each such hypothesis H for corresponding query, there is an answer S ∈ A(H)
with ΘS = Θ, i.e., based on this hypothesis we cannot construct an optimal
decision tree for Θ.
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Computation of h
(t)
h (Θ). First, we construct a hypothesis

HΘ = {f1 = δ1, . . . , fn = δn}

for Θ. Let fi ∈ F (T )\E(Θ). Then δi is equal to the only number in the set
E(Θ, fi). Let fi ∈ E(Θ). Then δi is the minimum number from E(Θ, fi) for
which h(t)(Θ{fi = δi}) = max{h(t)(Θ{fi = σ}) : σ ∈ E(Θ, fi)}. It is clear that
HΘ is admissible for Θ. Compute the value h(Γ (HΘ)) using (3). Simple analysis
of (3) shows that h(Γ (HΘ)) = h

(t)
h (Θ).

Remark 2. Let Θ be a nonterminal node of the DAG Δ(T ) such that, for each
child Θ′ of Θ, we already know the value h(t)(Θ′). Then the procedure of com-
putation of the value h

(t)
h (Θ) has polynomial time complexity depending on the

size of decision table T .

Computation of h
(t)
p (Θ). For each row r = (δ1, . . . , δn) of the decision table

T , we check if the corresponding proper hypothesis Hr = {f1 = δ1, . . . , fn = δn}
is admissible for Θ. For each admissible for Θ proper hypothesis Hr = {f1 =
δ1, . . . , fn = δn}, we compute the value h(Γ (Hr)) using (3). One can show that
the minimum among the obtained numbers is equal to h

(t)
p (Θ).

Remark 3. Let Θ be a nonterminal node of the DAG Δ(T ) such that, for each
child Θ′ of Θ, we already know the value h(t)(Θ′). Then the procedure of com-
putation of the value h

(t)
p (Θ) has polynomial time complexity depending on the

size of decision table T .

For t = 1, . . . , 5, we describe an algorithm At that, for a given decision table
T , calculates the value h(t)(T ), which is the minimum depth of a decision tree
of the type t for the table T . During the work of this algorithm, we find for each
node Θ of the DAG Δ(T ) the value h(t)(Θ).

Algorithm At (computation of h(t)(T )).

Input : A nonempty decision table T and the directed acyclic graph Δ(T ).
Output: The value h(t)(T ).

1. If a number is attached to each node of the DAG Δ(T ), then return the
number attached to the node T as h(t)(T ) and halt the algorithm. Otherwise,
choose a node Θ of the graph Δ(T ) without attached number, which is either
a terminal node of Δ(T ) or a nonterminal node of Δ(T ) for which all children
have attached numbers.

2. If Θ is a terminal node, then attach to it the number h(t)(Θ) = 0 and proceed
to step 1.

3. If Θ is not a terminal node, then depending on the value t do the following:

– In the case t = 1, compute the value h
(1)
a (Θ) and attach to Θ the value

h(1)(Θ) = h
(1)
a (Θ).
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– In the case t = 2, compute the value h
(2)
h (Θ) and attach to Θ the value

h(2)(Θ) = h
(2)
h (Θ).

– In the case t = 3, compute the values h
(3)
a (Θ) and h

(3)
h (Θ), and attach to

Θ the value h(3)(Θ) = min{h
(3)
a (Θ), h(3)

h (Θ)}.
– In the case t = 4, compute the value h

(4)
p (Θ) and attach to Θ the value

h(4)(Θ) = h
(4)
p (Θ).

– In the case t = 5, compute the values h
(5)
a (Θ) and h

(5)
p (Θ), and attach to

Θ the value h(5)(Θ) = min{h
(5)
a (Θ), h(5)

p (Θ)}.
Proceed to step 1.

Using Remarks 1–3 one can prove the following statement.

Proposition 2. For t = 1, . . . , 5, the time complexity of the algorithm At is
bounded from above by a polynomial on the size of the input table T and the
number |SEP (T )| of different separable subtables of T .

6 Results of Experiments

We make experiments with eight decision tables from the UCI ML Repository
[7]. Results are represented in Table 1. The first three columns contain the infor-
mation about the considered decision table T : its name, the number of rows,
and the number of conditional attributes. The last five columns contain values
h(1)(T ), . . . , h(5)(T ) (minimum values for each decision table are in bold).

Decision trees with the minimum depth using attributes (type 1) are opti-
mal for 5 decision tables, using hypotheses (type 2) are optimal for 4 tables,
using attributes and hypotheses (type 3) are optimal for 8 tables, using proper
hypotheses (type 4) are optimal for 3 tables, using attributes and proper
hypotheses (type 5) are optimal for 7 tables.

For the decision table soybean-small, we must use attributes to construct
an optimal decision tree. For this table, it is enough to use only attributes. For
the decision tables breast-cancer and nursery, we must use both attributes

Table 1. Experimental results for decision tables from [7]

Decision table T Number of

rows

Number of

attributes

h(1)(T ) h(2)(T ) h(3)(T ) h(4)(T ) h(5)(T )

balance-scale 625 5 4 4 4 4 4

breast-cancer 266 10 6 6 5 6 5

cars 1728 7 6 6 6 6 6

hayes-roth-data 69 5 4 4 4 4 4

nursery 12960 9 8 8 7 8 7

soybean-small 47 36 2 4 2 6 2

tic-tac-toe 958 10 6 6 5 8 6

zoo-data 59 17 4 4 4 5 4

Average 5.00 5.25 4.63 5.88 4.75
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and hypotheses to construct optimal decision trees. For these tables, it is enough
to use attributes and proper hypotheses. For the decision table tic-tac-toe,
we must use both attributes and hypotheses to construct optimal decision trees.
For this table, it is not enough to use attributes and proper hypotheses.

For n = 3, . . . , 6, we generate randomly 100 Boolean functions with n vari-
ables. We represent each Boolean function with n variables as a decision table
with n columns labeled with these variables and with 2n rows that are all possible
n-tuples of values of the variables. Each row is labeled with the decision that is
the value of the function on the corresponding n-tuple. For each function, using
its decision table representation, we find the minimum depth of a decision tree
of the type t computing this function, t = 1, . . . , 5. For each Boolean function,
each hypothesis over the decision table representing it is proper. Therefore, for
each Boolean function, h(2) = h(4) and h(3) = h(5).

Results of experiments are represented in Table 2. The first column con-
tains the number of variables in the considered Boolean functions. The last
five columns contain information about values h(1), . . . , h(5) in the format
minAvgmax .

Table 2. Experimental results for Boolean functions

Number of variables n h(1) h(2) h(3) h(4) h(5)

3 22.81633 12.06123 11.88782 12.06123 11.88782

4 33.94004 23.05004 22.97003 23.05004 22.97003

5 44.95005 44.08005 33.99004 44.08005 33.99004

6 55.99006 55.01006 55.00005 55.01006 55.00005

From the obtained results it follows that, in general case, the decision trees
of types 2 and 4 are better than the decision trees of type 1, and the decision
trees of types 3 and 5 are better than the decision trees of types 2 and 4.

7 Conclusions

In this paper, we studied modified decision trees that use both queries based on
one attribute each and queries based on hypotheses about values of all attributes.
We designed dynamic programming algorithms for minimization of the depth of
such decision trees and considered results of computer experiments. In the future,
we are planning to study the number of nodes in the modified decision trees.
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Abstract. This paper continues the analysis of the application of different triples
of t-/s-norms and their results in the weighted fuzzy Petri nets for the subject area
of passenger transport logistics. The analysis applies the range of 27 different
triples of functions which are located in-between minimal (LtN, LtN, ZsN) and
maximal (optimized) (ZtN, ZtN, LsN) triples. It also includes classical triple (ZtN,
GtN, ZsN) which is located exactly in the middle of this range and remains a good
starting point in the comparison of the achieved results. This paper includes a
deeper look on the already achieved numerical values as well as decisions and
proposes a new approach which will unleash the full potential of the net and
applied triples of functions. The idea includes the conception of application of
user’s expectation. Therefore, the decision-support system provides the results
based not only on the input values which were previously filled by the experts in
the corresponding subject area, but also on the expectations which can be either
met or rejected in the process of calculation.

Keywords: Decision-making system · Intelligent computational techniques ·
Weighted fuzzy Petri net · Triangular norms · Knowledge representation ·
Transport logistic problem

1 Introduction

The conception of application of weighted fuzzy Petri nets (wFPN) in the subject area
of passenger transport logistics (PTL) was described by the authors in papers [1–6]. In
order to analyze the development of wFPN, different approaches and applications of
numerous combinations of triples of functions were considered. Moreover, the research
of influence of triples on the numerical results and thereby decisions was conducted.
Every research starts from the creation of the tables of type “Object-property” as well
as establishing connections between them [7, 8]. These connections provide a switch
(transfer) between objects and properties in the connected tables. Each table contains
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some numbers of columns which are considered as properties and some number of
rows which are considered as objects. Additionally, each intersection may include some
fuzzy value in the range [0, 1] which describes the strength of the connection for some
property with the object. As the weight is getting closer to 1 as stronger the connection
is. Every table is filled with the knowledge provided by the experts in the relevant field
of studies. The following step is to create production rules on the basis of existing tables.
Production rules are created in accordance to the formula: IF ri1 AND (OR)… AND
(OR) rin THEN dj, where rik (k = 1,…, n) – property, and dj – object. Production rules
serve as the basis for creating wFPN, where input places – properties, output places –
objects. Also, knowledge table of type “Object-property” allows creation of a knowledge
flow: fuzzy value of the object achieved in the production rule becomes an input fuzzy
value associated with a property in the following table which was previously connected
to the current one. Thus, an object from the previous level becomes a property in the
following table. Moreover, every wFPN includes weights which describe the strength of
the connection between property and object [9, 10]. In the knowledge table, the weight
is represented at the intersection of the respective property and object, while in wFPN
the numerical value of the weight is assigned to the arc connecting the input place with
the transition. In this manner, the input value that is given to the transition is the value
of input place multiplied with the value (weight) of the arc. Each transition represents
a production rule. Therefore, based on the logical operator in the production rule, the
corresponding combination of t-/s-norms is used to form a triple of functions (In, Out1,
Out2), where In – input operator, Out1 – first output operator, Out2 - second output
operator. Additionally, each transition includes beta β(t) and gamma γ (t) [11]. The
truth degree function beta was proposed to be calculated by the following formula β(t)
= k/(k + 1) for the research of wFPN in the subject area of PTL (where k is the number
of input places connected to this transition) [12]. Yet, it is allowed to set the value for
beta β(t) by the experts in the given subject area or generated from data tables [13]. The
value for the threshold function gamma γ (t) is set by the experts. This function describes
the minimal threshold value which should be achieved by the input function in the triple
in order to fire transition t:

In(wi1 · M (pi1),wi2 · M (pi2), . . .wik · M (pik)) ≥ γ (t) > 0 (1)

where: (a) In is an input operator instantiated with some t-/s-norm; (b)wij (j = 1,…, k) is
a weight which is connected with the corresponding input place; (c)M(pij) is a marking
of an input place of transition t.

All wFPN model are simulated in a special software PNeS® which was created for
such kinds of research [14]. Paper [15] introduced graphical cube for logical ANDwhich
describes position of every possible triple in accordance to these sequences:

1. for t-norm: LtN ≤ EtN ≤ GtN ≤ HtN ≤ ZtN;
2. for s-norm: ZsN ≤ HsN ≤ GsN ≤ EsN ≤ LsN [11], where:

• ZtN(a ,b) = min(a, b), ZsN(a,b) = max(a,b) (Zadeh t-/s-norm);
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• HtN(a,b) =
{

0 for a = b = 0
ab

a+b−ab otherwise
, HsN (a,b) =

{
1 for a = b = 1

a+b−2ab
1−ab otherwise

(Hamacher t-/s-norm);
• GtN(a, b) = ab, GsN(a,b) = a + b − ab (Goguen t-/s-norm);
• EtN(a, b) = ab

2−(a+b−ab) , EsN(a,b) = a+b
1+ab (Einstein t-/s-norm);

• LtN(a, b)=max(0,a+ b− 1), LsN(a,b)=min(1,a+ b) (Lukasiewicz t-/s-norm).

These sequences were graphically represented in a form of a cube (Fig. 1).

Fig. 1. Cube with 125 combinations of triples of functions (case of logical AND).

Authors’ research of triples of function in the subject area of PTLmostly covered the
application of logical AND in the production rules [3]. Papers [3, 5] presented a research
of triples from the blue rectangle, while paper [6] presented a research of the triples from
the green rectangle. A conception of expectations is introduced in this paper to analyze
the influence of previously set output value on the real result. The main purpose of
activating the third element of the triple is to take the value from the output place and
thus correlate the previously obtained calculations.

Figure 2 presents two rectangles highlighted in green and blue colors in the cube
(Fig. 1) with a detailed list and locations of triples of functions. They are presented in
a range from the minimal (LtN, LtN, ZsN) to the maximal one (ZtN, ZtN, LsN) with
a connecting classical triple (ZtN, GtN, ZsN) in the middle. Green rectangle is located
on the bottom plane of the cube and describes the list of triples from the minimal to the
classical one, while blue rectangle is associated with a side plane and describes triples
in a range from classical to the maximal one. As far as green rectangle is located on the
bottom plane (Fig. 1), the third function of the triple (Zadeh s-norm) remains the same,
because the location of the function is associated with the bottom plane of the cube. Yet,
there are 5 alternatives of functions to choose from the horizontal lines (LtN, EtN, GtN,
HtN, ZtN) in the first place of the triple and 3 alternatives to choose from the vertical
lines (LtN, EtN, GtN) in the second place of the triple.

Blue rectangle can be described in the same manner. The difference with the green
rectangle is that it is located on the other (side) plane of the cube (Fig. 1). Thus, the
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first function (Zadeh t-norm) is stable. Also, there are 3 alternatives to choose from the
vertical lines (GtN, HtN, ZsN) in the second place of the triple and 5 alternatives from
the horizontal lines (ZsN, HsN, GsN, EsN, LsN) to choose from in the third place.

Fig. 2. The detailed representation of planes of the cube with triangular norms.

The aim of the research is to analyze the groups of triples that lie in these rectangles
because they form a chain fromminimum (LtN, LtN, ZsN) tomaximum (ZtN, ZtN, LsN)
through the classics (ZtN, GtN, ZsN). Thus, the growth and relationship of the obtained
results is the purpose of the analysis in the context of the decision-making process.

2 Fuzzy Expectations for wFPN

The research covers the disclosure of application of different combination of t-/s-norms
in the subject area of PTL. From the very beginning, authors presented the idea, where
the decision-support system wFPN was giving some decisions based on the user’s fea-
tures. Yet, there was missed a condition, where the decision may vary from the user’s
expectations. Suppose the client is afraid to fly (hence it is better not to use the aviation
branch). Based on his preferences presented in the properties list, there may occur a cir-
cumstance when the model suggests aviation type of transportation as the best one. Here
comes the situation when client’s personal fears do not meet model’s decision causing
dissonance (i.e.: a proper suggestion by the model is different from the expected one).

The conception of user’s expectation implies the idea, where output places of wFPN
are also filled with some fuzzy value in the range [0, 1]. This approach allows to consider
user’s expectation in the decision-making system. Moreover, it allows to see the impact
of the third function of the triple on the calculations in the wFPN, since it will apply the
value from the output place in the calculations to form the final output of the system.Also,
expectations of the result will be included: low expectations will lead to the decrease of
the output value, high expectation will increase the output value.

This paper aims to test two approaches: a) only final level of output is filled with
expected fuzzy values; b) all of output places are filled with expected fuzzy values.
First approach implies the influence only on the resulting output (one time influence),
while the second approach covers the analysis of all output objects in the net and setting
expectation for each of them.



138 Y. Bloshko et al.

3 The Review of wFPN Model for the Experiment on Triples
of Functions

Paper [5] presented calculations and analysis of combinations of triples from the blue
rectangle in Fig. 1. The peculiarity of the wFPN model in the subject area of PTL lies
in the circumstances, where only knowledge about input features and their truth degree
are available. Thus, in accordance to the description of activation of each element of
the triple – the last element was always neglected. The last function in the triple takes
as input: the results of the second function and the value on the output place, which is
empty and therefore does not change the final result [3]. Only 3 possible combinations
from the blue rectangle could be tested. As a result, different outputs were obtained
that could be compared and analyzed. Additionally, two different approaches of analysis
were presented and tested which also led to different results. Therefore, the analysis of
the green rectangle (Fig. 1) was performed for the same input values in order to extend
the range of values and decisions with the results obtained on the basis of previously
considered approaches.

The benefit of applied triples from the green rectangle is in their location on a different
plane of the cube. As it was mentioned before, the third element of the triple is neglected
because of the wFPN structure in this area of research. Thus, blue rectangle neglects 5
possible alternatives of the third element reducing the number of possible combination
to be tested from 15 to just 3. Yet, only one element of the triple is neglected in a green
rectangle leading to the possibility of testing and analyzing 15 combinations of triples.

This paper is a continuation of research on the use of various triples of functions, their
impact on the numerical result representing the degree of confidence in the proposed
decision and the effectiveness of the selected combination.

The visualization of the wFPN model for the experiment is presented in Fig. 3.

Fig. 3. wFPN model for the best type of transport with fuzzy expectations.
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The input values for the net are considered from the customer’s perspective and are
generalized for the output objects. Detailed properties for each branch are described
in the hierarchy [2, 4, 5]. The model itself includes 4 levels of places and 3 levels of
transitions. The first level of places represents properties and their fuzzy values from the
knowledge table of the lowest level, while the last level of places represents objects from
the top-level knowledge table. Remark: first level of nets (between first level of places
and first level of transitions) formally includes different weights, but they could not be
depicted in the Fig. 3 due to the oversaturation of their number in the representation of
the wFPNmodel. Additionally, there may occur a situation when the initially established
connection will be deleted. Even if the previously established weight has some fuzzy
value (up to 1.0), the input place with value equal to 0.0 achieved in the process of
the calculation on the previous level of transitions will neglect the connection on the
following level of transitions.

Figure 3 already includes expecting fuzzy values at the resulting output places:
expectation for the “Aviation” object is equal to 0.8, for the “Automobile vehicle” object
is equal to 0.6 and for the “Train” object is equal to 0.7. After making the calculations,
the decision suggests disclosing the means of transport. Each branch has its own input
values and fuzzy expectations (FE).

Figure 3 describes the first approach of application of fuzzy expectations, where only
the final output places are filled with some values. The second approach of the analysis
of fuzzy expectations implies the full acknowledgment of objects presented in the wFPN
model. In this case, the second and the third levels of places in Fig. 3 will be also filled
with fuzzy values. Fuzzy values for objects on the second, third and fourth levels are
presented in Table 1.

Table 1. Fuzzy values for objects on the second, third, and fourth levels.

Transport companies FE Transport kinds FE Types of transport FE

Ryanair 0,9 Lowcost airlines 0,9 Aviation 0,8

Wizzair 0,85

Air France – KLM 0,7 Classical airlines 0,8

LOT 0,75

Lufthansa 0,8

Flixbus 0,8 Bus 0,5 Automobile vehicle 0,6

Ecolines 0,85

Eurolines 0,85

Blablacar 0,4 Car 0,65

Companion 0,5

Hitchhiking 0,1

PKP 0,8 Classical train 0,7 Train 0,7

PKP intercity 0,9 High-speed train 0,8
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The next step is to apply the same input values presented in Fig. 3 for the wFPN
model as the first approach and fill in the same table with values taken from Table 1 as
the second approach.

4 The Influence of Fuzzy Expectations on the Results of the wFPN
Model

Table 2 presents outputs achieved with 29 triples of functions for the same input values
(Fig. 3). Thehighest achievedoutput values amongobjects for the same triple of functions
are marked in bold. The first observation is that the output values became higher in
comparison to the previous researches [5, 6]. It can be explained with the addition of
expectation fuzzy values which were also high and made an impact on the last level
of calculations. Also, it can be mentioned that some decisions were changed for some
triples after application of fuzzy expectations [5, 6]. Secondly, the existence of LtN
function in the triples again led to the situation that transitions were not fired, because
input value did not meet the condition for the firing (1). These outputs are marked in
italic. The only exception is triple (ZtN, LtN, ZsN) which has a possibility reach the end
of calculations.

Note to Table 2: during the operation of the net, triple (ZtN, LtN, ZsN) gave a value
of 0 for one of the sub-objects. Therefore, the transition associated with this object was
removed from the net as it did not provide any additional information in the decision
making process. Also, it necessitates to mention that outcomes for objects “Train” and
“Aviation” in case of application of a maximal triple (ZtN, ZtN, LsN) are equal, since
they have reached their maximum which is equal to 1.0. From the observational point
of view, they are treated equally best, because they cannot be compared otherwise.

The following step is to apply two strategies to find out the proper decision (object)
and triples which led to this decision [3]. Strategy 1 implies the approach on finding
out the number of triples that achieved the same output object which is most often as a
result. Strategy 2 is a mathematical approach in accordance to the following formula:

Res(Obji) = Res(LtN , LtN , ZsN )Obji + · · · + Res(ZtN ,GtN , ZsN )Obji + · · · + Res(ZtN , ZtN , LsN )Obji
Num_of _triples

(2)

Strategy 1: It is clearly shown in the Table 2 that the object “Aviation” achieves the
highest output result by the majority of triples (16 in total). Moreover, object “Train”
also achieves the highest possible outcome value equal to 1.0 after application of the
triple (ZtN, ZtN, LsN). Yet, objects “Aviation” and “Train” are treated equally only after
calculations of the maximal triple and at the same time, it is the only triple where they
cannot be compared. Remark: triple (ZtN, LtN, ZsN) is not considered because of the
possible changes in the outputs.

Strategy 2:

• “Aviation” = 4·0.8+0.809+···+0.983+1+1
16 = 13.857

16 = 0.8660625.
• “Automobile vehicle” = 4·0.6+0.617+···+0.697+0.78+0.825

16 = 10.684
16 = 0.66775.

• “Train” = 4·0.7+0.715+···+0.85+0.975+1
16 = 12.684

16 = 0.79275.
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Table 2. Resulting values of 29 triples of function for the output objects (first approach).

Triples/Decisive objects Aviation Automobile vehicle Train

(LtN, LtN, ZsN) Undefined Undefined Undefined

(LtN, EtN, ZsN) Undefined Undefined Undefined

(LtN, GtN, ZsN) Undefined Undefined Undefined

(EtN, LtN, ZsN) Undefined Undefined Undefined

(EtN, EtN, ZsN) 0,8 0,6 0,7

(EtN, GtN, ZsN) 0,8 0,6 0,7

(GtN, LtN, ZsN) Undefined Undefined Undefined

(GtN, EtN, ZsN) 0,8 0,6 0,7

(GtN, GtN, ZsN) 0,8 0,6 0,7

(HtN, LtN, ZsN) Undefined Undefined Undefined

(HtN, EtN, ZsN) 0,8 0,6 0,7

(HtN, GtN, ZsN) 0,8 0,6 0,7

(ZtN, LtN, ZsN) Undefined (0,8) 0,6 [lost one sub-object] Undefined

(ZtN, EtN, ZsN) 0,8 0,6 0,7

(ZtN, GtN, ZsN) 0,8 0,6 0,7

(ZtN, HtN, ZsN) 0,8 0,6 0,7

(ZtN, ZtN, ZsN) 0,8 0,6 0,7

(ZtN, GtN, HsN) 0,809 0,617 0,715

(ZtN, HtN, HsN) 0,815 0,632 0,731

(ZtN, ZtN, HsN) 0,824 0,642 0,767

(ZtN, GtN, GsN) 0,837 0,639 0,745

(ZtN, HtN, GsN) 0,858 0,672 0,783

(ZtN, ZtN, GsN) 0,88 0,69 0,846

(ZtN, GtN, EsN) 0,857 0,659 0,769

(ZtN, HtN, EsN) 0,885 0,704 0,818

(ZtN, ZtN, EsN) 0,909 0,727 0,885

(ZtN, GtN, LsN) 0,983 0,697 0,85

(ZtN, HtN, LsN) 1 0,78 0,975

(ZtN, ZtN, LsN) 1 0.825 1

In accordance to both strategies, the same object “Aviation” is considered as the best
one. Application of the second strategy did not make any influence on the conclusion
since object “Aviation” was considered as the best one by all applied triples of functions.
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Yet, since both triples: classical (ZtN, GtN, ZsN) andmaximal (ZtN, ZtN, LsN) provided
the same sequence of decisions as all other triples between them, it is impossible to
highlight their benefits. The only exception is two equal decisions achieved by the
maximal triple (ZtN, ZtN, LsN), which were discussed above. Moreover, lowering of
the threshold function gamma γ (t) would not change any decisions since the achieved
value there are proportional and correspond to the sequence of decisions that was already
achieved. It will only increase the number of triples supporting “Aviation” object as
the best decision and at the same time, it will lower the resulting values achieved by
the second strategy. It is worth mentioning that values in curly brackets for the triple
(ZtN, LtN, ZsN) show alternative result which can be achieved (where applicable) if the
threshold functions are lowered.

The only difference which is worth to be highlighted is the numerical outcomes of
the triple (ZtN, LtN, ZsN). In case of lowering threshold value, triple (ZtN, LtN, ZsN)
has a chance to achieve some numerical value which are highlighted in brackets. Yet,
the decision for the object “Train” remained stable “Undefined”. It can be explained
with the fact that objects which led to the decision “Train” were earlier zeroed on the
previous level of calculation due to the LtN function.

The most important observation of the results is that the rise of numerical values
directly corresponds to their location in the cube (Figs. 1, 2). Thus, as the triple is
located closer to the maximum – the higher outcome will be achieved. Additionally, the
value of expectations influenced the outcomes. Since the expectations were high, they
increased results in Table 2 compared to results presented in papers [5, 6].

The next approach to be presented is filling of all output places with fuzzy values
(Table 1) in the wFPN model (Fig. 3) which forms Table 3. In the same manner, the
highest results aremarked in bold and results whichwere achieved after lowering gamma
are in italic.

The notable difference between Tables 2 and 3 and therefore between approaches of
applying expectation fuzzy values lies in the observation of influence of LtN function
and avoidance of “Undefined” result. Even if the value was dropped to 0 in the process of
calculation of the second element of the triple, the third function of the triple could make
an influence and avoid “Undefined” output. Additionally, it correlates the low values
achieved by the triples in a green rectangle (and some in a blue one) to a higher output
numerical values. Yet, these values totally correspond to the fuzzy expectations and
therefore neglect decision-making process of the net. On the other hand, if values from
the blue rectangle are being compared in Tables 2 And 3, it is possible to estimate the
increase of resulting numerical values in the Table 3, which applied a different approach
(fuzzy expectations at every output place). Such an increase can be explained in the
following way: at each level of places (except for the very first one), fuzzy expectations
were keeping the output value high and such tendency was kept until the very last level
of output places. At the same time, the first approach (Table 2) increases only the last
level of output places, while every level of places between the very first and the last one
may have a decrease, since the third function of the triple is neglected (note: output place
is empty at the moment of firing of a transition).

Moreover, it is worth noting that last three triples of functions in the Table 3 received
the highest possible fuzzy value which is equal to 1.0 for each object at the output. In
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Table 3. Resulting values of 29 triples of function for three output objects (second approach).

Triples/Decisive objects Aviation Automobile vehicle Train

(LtN, LtN, ZsN) Undefined Undefined Undefined

(LtN, EtN, ZsN) Undefined Undefined Undefined

(LtN, GtN, ZsN) Undefined Undefined Undefined

(EtN, LtN, ZsN) 0,8 0,6 0,7

(EtN, EtN, ZsN) 0,8 0,6 0,7

(EtN, GtN, ZsN) 0,8 0,6 0,7

(GtN, LtN, ZsN) 0,8 0,6 0,7

(GtN, EtN, ZsN) 0,8 0,6 0,7

(GtN, GtN, ZsN) 0,8 0,6 0,7

(HtN, LtN, ZsN) 0,8 0,6 0,7

(HtN, EtN, ZsN) 0,8 0,6 0,7

(HtN, GtN, ZsN) 0,8 0,6 0,7

(ZtN, LtN, ZsN) 0,8 0,6 [one sub-object didn’t reach the
threshold without gamma lowering]

0,7

(ZtN, EtN, ZsN) 0,8 0,6 0,7

(ZtN, GtN, ZsN) 0,8 0,6 0,7

(ZtN, HtN, ZsN) 0,8 0,6 0,7

(ZtN, ZtN, ZsN) 0,8 0,65 0,7

(ZtN, GtN, HsN) 0,84 0,699 0,77

(ZtN, HtN, HsN) 0,845 0,718 0,781

(ZtN, ZtN, HsN) 0,858 0,779 0,814

(ZtN, GtN, GsN) 0,921 0,791 0,868

(ZtN, HtN, GsN) 0,926 0,815 0,878

(ZtN, ZtN, GsN) 0,934 0,868 0,901

(ZtN, GtN, EsN) 0,950 0,846 0,912

(ZtN, HtN, EsN) 0,953 0,868 0,919

(ZtN, ZtN, EsN) 0,957 0,906 0,933

(ZtN, GtN, LsN) 1 1 1

(ZtN, HtN, LsN) 1 1 1

(ZtN, ZtN, LsN) 1 1 1

this case, objects cannot be compared between each other, since there is no numerical
difference between them. Therefore, it can be considered as a disadvantage. Yet, if results
from these three triples are compared with the corresponding results in Table 2, it can
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be estimated that it is easier to reach the maximum output after application of fuzzy
expectations for every output place.

Additional interesting observation concerns triple (ZtN, LtN, ZsN). In the process
of calculations of the triple (ZtN, LtN, ZsN) for the object “Automobile vehicle”, one
of the sub-objects “Car” did not receive its value since condition for firing a transition
was not satisfied earlier. Yet, it is worth highlighting that results for (ZtN, LtN, ZsN)
in the Table 3 compared with results in Table 2 have a difference. In Table 2, object
“Automobile vehicle” is losing subject “Car” in any case: either threshold function is
high and transition is not fired either it is fired but LtN function zeroed output for the
object “Car”. Table 3 introduces a difference with the application of fuzzy expectations.
In case the threshold function gamma γ (t) is initially set to 0.15 for the corresponding
output object (as it is described above), the initial condition for firing a transition would
not be satisfied and object will be lost, but the remaining object allows the computation
to be completed under these conditions. This is marked in Table 3 in the same way as
in Table 2. However, in the case of lowering the value of the threshold function, the
object remains in relation to the fuzzy expectations: LtN function lowers the result of
calculations to 0, but fuzzy expectation is considered in the calculations and therefore
object “Automobile vehicle” receives two inputs for the calculations. Yet, in accordance
to calculations, another sub-object “Bus” takes an advantage over sub-object “Car” with
an influence on the resulting value of the final object “Automobile vehicle”. To sum it
up: in Table 2 object “Automobile vehicle” always receives only one input “Bus”, since
object “Car” is always getting 0 value or may not be even achieved at all (failure to
comply condition (1)), while in the Table 3, the dependence of achieving output results
lies exceptionally on the threshold function value (i.e. meeting the condition for firing
the transition) and the output as follows will be mostly dependent on the output value
which in turn is the fuzzy expectation. Thus, fuzzy expectations may serve as the saving
tool for objects that apply functions which return extremely low or zero outputs.

Moreover, in case of application of LtN function in a first place of a triple, the results
tend to be “Undefined” in every situation (Tables 2, 3). It usually happens for transitions
which have a big number of input nodes. It can be explained in the following way: each
transition on the first level has many inputs compared to 2 or 3 inputs on the second and
third levels. Thus, the peculiarity of the formula of LtN function: LtN(a, b) = max (a
+ b − 1, 0) tends to lower the output value at each iteration. Therefore, if input values
are already low, then this function may result in a 0 value after first round of iteration.
Yet, even if input values are relatively high, they tend to get lower after each iteration.
As follows, a high number of iterations tend to decrease the output value until it gets
0. In this manner, LtN function is highly ineffective with a big number of inputs since
it will directly correspond to the same number of iterations minus one leading to the
zero-output value.

Then, it necessitates to apply two strategies to reach some conclusions about results
in the Table 3.
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Strategy 1: “Aviation” object remains the best one for every triple of function. “Train”
object is the second-best option and “Automobile vehicle” object is the last suggested
option.

Remark: triple (ZtN,LtN,ZsN) does notmake any influential changes in the sequence
of decisions in strategy 1.

Strategy 2: Only results achieved with the initially set threshold function gamma γ (t)
are included. Therefore, in the range of triple from the classical to the maximal, fuzzy
expectations correlate the decision-making process of the net, while the decisive part
remains by first two functions of the triple. In case of applying triples in the range from
the minimal to the classical one, fuzzy expectation makes a higher influence neglecting
output values:

• “Aviation” = 4·0.8+0.84+···+0.957+3·1
16 = 14.384

16 = 0.899;
• “Automobile vehicle” = 3·0.6+0.65+···+0.906+3·1

16 = 12.74
16 = 0.79625;

• “Train” = 4·0.7+0.77+···+0.933+3·1
16 = 13.576

16 = 0.8485.

First observations are as follows. The sequence of proposed decisions in both strate-
gies 1 and 2 is equal in the same manner as it was for the Table 2. Additionally, lowering
of the threshold function will lead to the decrease of the resulting values for each object
but their sequence will remain the same since results from the green rectangle are located
in the same correspondence as results from the blue rectangle. The only notable differ-
ence which can be observed between strategies 2 for Tables 2 And 3 is in the increase
of numerical values for each object after application of the second strategy (where each
output place is previously filled with fuzzy expectations). Thus, the next step is to com-
pare two strategies with results achieved in Tables 2 And 3 after lowering the threshold
function gamma γ (t). Case 1 describes the situation, where fuzzy expectations are set
only for the final level of output places and Case 2 describes the situations, where fuzzy
expectations are set for every output place. Remark: triple (ZtN, LtN, ZsN) is not taken
into consideration:

• Case 1 – “Aviation” = 13.857+6·0.8
16+6 = 18.657

22 = 0.84804545454.
• Case 2 – “Aviation” = 14.384+9·0.8

16+9 = 21.584
25 = 0.86336.

• Case 1 – “Automobile vehicle” = 10.684+6·0.6
16+6 = 14.284

22 = 0.64927272727.

• Case 2 – “Automobile vehicle” = 12.74+9·0.6
16+9 = 18.14

25 = 0.7256.

• Case 1 – “Train” = 12.684+6·0.7
16+6 = 16.884

22 = 0.76745454545.

• Case 2 – “Train” = 13.576+9·0.7
16+9 = 19.876

25 = 0.79504.

As it was expected, with the addition of results from triples in the green rectangle,
the average mathematical average meaning was also decreased, because the resulting
values there are smaller than in the blue rectangle. Yet, it was proven that the sequence
of decisions remained the same with the same sequence of outputs taken from another
group of triples. Still, it is worth noting that the final calculations showed one notable
thing: the application of the second case (when every output place is previously filled
with fuzzy values) leads to higher output result compared to the first case (when only
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the final level of output places is filled with fuzzy values). It can be explained in a way
that the second case keeps values at a high level at each level of transitions, while the
first case influences only the last level of (transitions and) places.

5 Conclusions

This paper presented the conception of application of fuzzy expectations and their influ-
ence on wFPN. Additionally, different triples of functions in the range from the minimal
triple (LtN, LtN, ZsN) to the maximal one (ZtN, ZtN, LsN) were tested. The following
observations were achieved:

– the practical proof of achieved resulting values for different triples of function and their
correspondence to the location in a cube from minimal to maximal one (Fig. 1). The
case where fuzzy expectations are not applied, the decision-making process totally
relies on first two functions of the triple in a step-by-step firing sequence of wFPN
model;

– there were tested two different strategies for verification of the achieved results
(objects) and triples which provided the highest probability of its correctness between
minimal, maximal and classical triples;

– classical triple of functions (ZtN, GtN, ZsN) is proposed as the best option at this
moment. With the addition of fuzzy expectations, the same object “Aviation” was
concluded as the best one with a verification by both strategies and cases (whether
only the decisive output places are filled with fuzzy values (Table 2) or every output
place is filled with them (Table 3));

– the influence of the number of inputs for the triples from green rectangle plays a vital
role in calculations (in case fuzzy expectations are not applied): depending on the
chosen combination of norms, there exists a risk of dependence of output numerical
value to the number of inputs. If the function applies iteration for each additional
connection (arc) then there may occur a situation when the output value decreases
with each iteration, since functions in a green rectangle tend to achieve low outputs.
Moreover, the output value can drop to 0 as it occurs with the application of the
LtN function which is recommended not to be applied in accordance to the current
research;

– additionally, there may be a dependency leading to a different order of decisions
described in the previous point. Therefore, there is a need to correlate the outputs
(with the activation of the third element of the triple). LtN function is the function
which gives the lowest possible numeric value and may lead to the 0 value at some
level of places leading to the “Undefined” state at the last level of places.

In case of application of triples in the range between minimal and classical triples,
the threshold function gamma γ (t) plays a critical role: if it is too high, there is a
high probability not to reach the end of calculations, since triples in this range operates
with low numbers. The problem of application of triples from a green rectangle lies
in achieving low values. Thus, there exists a problem of not achieving any decisions
if the condition for firing a transition (1) is not satisfied and the transition does not
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fire leading to the “Undefined” state at the last level of places or (either) calculations
achieved zero value at some level of places (incl. the last one). Fuzzy expectations enable
the third element of the triple and increases the output value in any case, because of the
formulas which are described for every s-norm (yet, the transition should remain initially
fireable). The problem of applying fuzzy expectations for triples that can approach the
maximum output value. There exists a possibility of achieving the maximal value being
equal to 1.0 for each object. Thus, there is no possibility to estimate the difference
between fuzzy outputs for different objects (Tables 2, 3). Fuzzy expectations may also
correlate the problems described above, but they will withdraw decision-making process
in case of applying triples from the green rectangle, since the output will be equal to the
expectations (Tables 2, 3).

The following conclusion for the given experiment was achieved: the influence of
fuzzy expectations grows as the chosen triple of function is located closer to the minimal
triple (LtN, LtN, ZsN), while the influence of decision-making process raises as the
chosen triple is located to the maximal one (ZtN, ZtN, LsN). Thus, there is additional
advantage of the classical triple (ZtN, GtN, ZsN), since it is located exactly in the middle
and may balance the internal decision-making process with the outer expectations. The
next topic for disclosure is how to establish fuzzy expectations so that they correlate
precisely with the decision-making process. Moreover, other classes of wFPN, such as
T2GFPN [16], PFPN [17], FGFPN [18], can be used to improve the calculations with
the analysis of the effectiveness of fuzzy expectations in their application.
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Abstract. In this work, we bridge possibility theory with intuitionistic
L-fuzzy sets, by identifying a special class of possibility distributions cor-
responding to intuitionistic L-fuzzy sets based on a complete residuated
lattice with an involution. Moreover, taking the �Lukasiewicz n-chains as
structures of truth degrees, we propose an algorithm to compute the intu-
itionistic L-fuzzy set corresponding to a given possibility distribution, in
case it exists.

Keywords: Possibility distributions · Intuitionistic L- fuzzy sets ·
Complete residuated lattices · �Lukasiewicz n-chains

1 Introduction

Possibility distributions are the building blocks of possibility theory [15]. The
concept of possibility was investigated by several scholars, expecially by Shackle
[32], Lewis [27], Cohen [10], and Zadeh [33]. Moreover, possibility theory and
its applications were widely explored by Dubois, Prade and colleagues in many
works [12,13,16].

A possibility distribution πx is a map associated to a variable x, from a uni-
verse U to a totally ordered scale L with a top and bottom, such as the unit
interval [0, 1]. Depending on the interpretations, πx(u) estimates the degree of
ease, the degree of unsurprizingness or of expectedness, the degree of acceptabil-
ity or of preference related to the proposition “the value of x is u” [14]. Here,
we focus on possibility distributions arising when a degree of plausibility needs
to be assigned to an L-set as in the following example1.

Suppose that V is a collection of features regarding a flat (for instance small
size and low price). Then, each specific flat F is associated to an L-set ωF : V → L,
where ωF(v) is the truth degree to which F has the attribute v of V. Therefore, we
could consider a possibility distribution π such that π(ωF) expresses the degree
of possibility that a given customer prefers a given flat F (described by ωF) before
he/she knows it in advance.

1 L-sets were introduced by Goguen [21] as generalizations of fuzzy sets.
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S. Ramanna et al. (Eds.): IJCRS 2021, LNAI 12872, pp. 149–163, 2021.
https://doi.org/10.1007/978-3-030-87334-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87334-9_13&domain=pdf
http://orcid.org/0000-0002-4171-3459
http://orcid.org/0000-0002-8083-7809
https://doi.org/10.1007/978-3-030-87334-9_13


150 S. Boffa and D. Ciucci

Specifically, we deal with possibility distributions whose domain is composed
of all L-sets on a given universe assuming that L is a complete residuated lattice
with an involution [24]. Besides, they are interpreted as preference functions,
thus standing for a counterpart to utility functions [11,17].

Mainly, we aim to discover the existing connections between this type of
possibility distributions and intuitionistic L-fuzzy sets, a generalization of intu-
itionistic fuzzy sets, based on a lattice L instead of [0, 1] as the set of truth-
values. To this purpose, we view intuitionistic L-fuzzy sets as generalizations of
orthopairs, which are pairs of disjoint subsets of a universe used to model uncer-
tainty [7]. Given a set of propositional variables V, an orthopair (P,N) on V has
an epistemic meaning: P is the set of variables known to be true, N is the set of
variables known to be false, and V \ (P ∪N) is the set of unknown variables by a
given agent. In [8], the authors provided the following correspondence between
orthopairs and Boolean possibility distributions: An orthopair on V generates a
Boolean possibility distribution whose domain Ω is made of all evaluation func-
tions on V. On the other hand, not all Boolean possibility distributions having
Ω as domain are generated by an orthopair on V. Consequently, orthopairs on
V individuate a special class of Boolean possibility distributions on Ω. In this
article, we intend to extend this correspondence by using fuzzy logic. More pre-
cisely, we identify intuitionistic L-fuzzy sets of a given universe V with particular
possibility distributions, which assign a degree of L to each L-set of V.

In providing theoretical results, we suppose that complete residuated lattices
with an involution are our algebraic structures of truth values [19]. However,
examples and algorithms are confined to finite substructures of the standard
�Lukasiewicz MV-algebra [6,28]. Our choice depends on that �Lukasiewicz impli-
cation is usually used for fuzzy logic applications because it is the only plausible
continuous implication operation on [0, 1] [31].

The article is organized as follows. The next section reviews some basic
notions and results regarding residuated lattices and intuitionistic fuzzy sets.
In Sect. 3, we firstly assign a special possibility distribution to each intuitionis-
tic L-fuzzy set. Then, we prove that possibility distributions corresponding to
intuitionistic L-fuzzy sets are normal. After that, confining to IMTL-algebras,
we establish under what conditions a possibility distribution assumes value 0. In
Sect. 4, we firstly show that there exist normal possibility distributions not gen-
erated by an intuitionistic L-fuzzy set. Then, we find the intuitionistic L-fuzzy set
that generates a given possibility distribution, in case it exists. Moreover, in Sub-
sect. 4.1, considering the �Lukasiewicz n-chains as algebraic structures of truth
degrees, we provide procedures to compute the possibility distribution generated
by a given intuitionistic L-fuzzy set, and vice-versa, the intuitionistic L-fuzzy set
generating a given possibility distribution. Finally, in the last section, we briefly
discuss the potential developments of our results.

2 Preliminaries

This section describes some notations, preliminary notions and results, which
will be used in this article.
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2.1 Algebraic Structures of Truth Values

As basic structures of truth degrees, we choose complete residuated lattices,
which are widely adopted for applications of fuzzy logic [22,23,26].

Definition 1 [25]. A residuated lattice is an algebra 〈L,∧,∨,⊗,→,0,1〉, where

(i) 〈L,∧,∨,0,1〉 is a bounded lattice;
(ii) 〈L,⊗,1〉 is a commutative monoid, i.e. ⊗ is a binary operation that is com-

mutative, associative, and a ⊗ 1 = a for each a ∈ L;
(iii) a⊗ b ≤ c if and only if a ≤ b → c, for each a, b, c ∈ L (adjunction property).

A residuated lattice (L,∧,∨,⊗,→,0,1) is complete if its reduct (L,∧,∨) is
a complete lattice. In a residuated lattice, a unary operation named negation is
derived as follows: ¬x = x → 0, for each x ∈ L. In this paper, we deal with
residuated lattices where the negation is an involution, namely the so-called
double negation law holds: ¬¬x = x for each x ∈ L. The following proposition
lists some properties satisfied by every residuated lattice with an involution.

Proposition 1. Let 〈L,∧,∨,⊗,→,0,1〉 be a residuated lattice, then the follow-
ings hold for each a, b, c ∈ L:

(i) a ∧ b ≤ a and a ∧ b ≤ b;
(ii) if a ≤ b and a ≤ c then a ≤ b ∧ c;
(iii) a ∨ b = 1 if and only if a = 1 or b = 1;
(iv) a ∧ b = 1 if and only if a = 1 and b = 1;
(v) a ∧ b = 0 if and only if a = 0 or b = 0;
(vi) a ⊗ b = 1 if and only if a = 1 and b = 1;
(vii) a → b = 1 if and only if a ≤ b;
(viii) if ¬ is an involution, then a → b = ¬b → ¬a.

Special residuated lattices with an involution are the so-called IMTL-algebras,
which are the algebraic structures for monoidal t-norm based logic with an invo-
lutive negation.

Definition 2 [18]. A residuated lattice with an involution 〈L,∧,∨,⊗,→,0,1〉 is
an IMTL-algebra if and only if it satisfies the pre-linearity axiom:

(a → b) ∨ (b → a) = 1 for each a, b ∈ L. (1)

In providing examples and algorithms, we must restrict to a class of finite
substructures

{〈�Ln,∧,∨,⊗,→, 0, 1〉 with n ∈ N} (2)

of the standard �Lukasiewicz MV-algebra [6], where �Ln is the n-element
�Lukasiewicz chain given by �Ln = {k/n | 0 ≤ k ≤ n and n ∈ Z}, and the
operations in (2) are defined as follows: let a, b ∈ �Ln, then a ∧ b = min(a, b),
a ∨ b = max(a, b), a ⊗ b = max(0, a + b − 1) (�Lukasiewicz conjunction), and
a → b = min(1, 1 − a + b) (�Lukasiewicz implication). Moreover, ¬a = 1 − a for
each a ∈ �Ln. These structures also satisfy the pre-linearity axiom defined by (1).
For convenience, we will indicate a residuated lattice (L,∧,∨,⊗,→,0,1) with
its support L.
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2.2 Intuitionistic Fuzzy Sets and Intuitionistic L-fuzzy Sets

Intuitionistic fuzzy sets (IF sets for short) were introduced by Atanassov in [1,2]
to generalize the concept of fuzzy sets in order to explicitly take into account
the non-belongingness to a set. More formally:

Definition 3. Let X be a universe such that X �= ∅. An intuitionistic fuzzy set
A of X is defined as A = {(x, μ(x), ν(x)) | x ∈ X}, where the maps μ : X → [0, 1]
and ν : X → [0, 1] satisfy the condition μ(x) + ν(x) ≤ 1, for each x ∈ X.

The values μ(x) and ν(x) are respectively called degree of membership and
non-membership of x to A, and 1 − (μ(x) + ν(x)) is called hesitation margin of
x to A.

Let us observe that an IF set coincides with a fuzzy set when the hesitation
margin of each element of the starting universe is equal to 0. In this work, we
look at IF sets as generalizations of orthopairs by using fuzzy logic. Given a
universe X, (P,N) is an orthopair on X if and only if P,N ⊆ X and P ∩ N = ∅
[7]. It is easy to understand that (P,N) can be identified with a particular
intuitionistic fuzzy set {(x, μ(x), ν(x)) | x ∈ X}, where μ and ν coincides with
the characteristic functions of P and N , respectively. That is, orthopairs coincide
with the Boolean sub-collection of IF sets.

IF sets were extended to intuitionistic L-fuzzy sets (ILF sets for short) consid-
ering an appropriate lattice L instead of [0, 1] as the set of truth-values [3,4,20].
Our results are based on intuitionistic L-fuzzy sets valued on a complete resid-
uated lattice satisfying the double negation law.

Definition 4. Let 〈L,∧,∨,⊗,→,0,1〉 be a complete residuated lattice having an
involution ¬, and let X be a non-empty set. An intuitionistic L-fuzzy set A of
X is defined by A = {(x, μ(x), ν(x)) | x ∈ X}, where μ : X → L and ν : X → L
satisfy the condition μ(x) ≤ ¬ν(x), for each x ∈ X2.

The components of an intuitionistic L-fuzzy set (μ, ν) of X satisfy the identity
μ(x) ⊗ ν(x) = 0 for each x ∈ X. Thus, if 〈[0, 1],∧,∨,⊗,→, 0, 1〉 is the standard
�Lukasiewicz MV-algebra, they represent contrary properties [5].

For convenience, in the sequel, we briefly write (μ, ν) to denote the intuition-
istic L-set {(μ(x), ν(x)) | x ∈ X} when X is clear from the context.

3 From Intuitionistic L-Fuzzy Sets to Possibility
Distributions

In this section, we firstly assign a particular possibility distribution to each intu-
itionistic L-fuzzy set. Then, we prove that possibility distributions corresponding
to ILF sets are normal. After that, confining to complete IMTL-algebras, we
establish under what conditions a possibility distribution assumes value 0.
2 We notice that, as in Definition 3, μ and ν have a symmetrical role, in the sense that

μ(x) ≤ ¬ν(x) is equivalent to ν(x) ≤ ¬μ(x).
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3.1 Possibility Distributions

A possibility distribution is a map from a universe X to a totally ordered scale
L equipped with a top, a bottom, and an order-reversing map (such as the unit
interval [0, 1] with the function assigning 1−λ to each λ ∈ [0, 1]). The universe of
discourse can be an attribute domain, a set of interpretation of a propositional
language, etc. In this work, we focus on possibility distributions having the
following form

π : LV → L, (3)

where L is a complete residuated lattice with an involution, and LV is the set of
all L-sets of a non-empty universe V, i.e., LV = {ω | ω : V → L}. Of course, since
we choose complete residuated lattices with an involution as algebraic structures
of truth degrees, our results also hold for the standard definition of possibility
distribution, where L is a totally ordered scale. We use the symbol Π to denote
the set of all possibility distributions given by (3), i.e., Π = {π | π : LV → L}.

In possibility theory, a very important role is played by normal possibility
distributions [15].

Definition 5. A possibility distribution π ∈ Π is normal if and only if there
exists ω ∈ LV such that π(ω) = 1. Moreover, given π ∈ Π, we put K(π) = {ω ∈
LV | π(ω) = 1}, and we call K(π) the kernel of π.

3.2 Possibility Distributions Generated by Intuitionistic L-fuzzy
Sets

Every intuitionistic L-fuzzy set (μ, ν) determines a possibility distribution
π(μ,ν) ∈ Π.

Definition 6. Let ω ∈ LV , then

π(μ,ν)(ω) =
∧

v∈V
(μ(v) → ω(v)) ⊗ (ν(v) → ¬ω(v)). (4)

We call π(μ,ν) the possibility distribution generated by (μ, ν).

Let us point out that our possibility distributions play a different role from
those based on rough set theory [9,29,30]. Indeed, a possibility distribution,
defined by (4), is viewed as a preference function that arises by aggregating the
mappings of an intuitionistic L-fuzzy set, which are interpreted as preference
functions too3. This interpretation can be better understood from the following
illustrative example, where a possibility distribution is generated by an intu-
itionistic L-set in a concrete situation.

3 Additionally, given a intuitionistic L-fuzzy set (μ, ν), the value π(μ,ν)(ω) can be also
understood as an answer to a bipolar fuzzy query given by (μ, ν), where μ and ν
respectively express positive and negative elastic constraints.
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Example 1. Imagine that a real estate agent wants to discover the degree of
possibility to which a given client C prefers a given flat F that he/she does not
know in advance, starting from a pair of specific preference functions, expressed
by the client on a set of features concerning apartments.

Then, let V = {v1, . . . , v10} be a collection of features regarding flats (for
instance small size and low price), and let �L5 = {0, 0.25, 0.5, 0.75, 1} be the
5-element �Lukasiewicz chain (see Subsect. 2.1). We suppose that

– each flat F is described by an �L5-set ωF : V → �L5, where ωF(v) is the truth
degree to which F has the attribute v of V;

– the preferences of a given customer C on the attributes of V are described by
an intuitionistic �L5-fuzzy set (μC, νC) of V. This means that given v ∈ V, C
prefers apartments having the attribute v with a degree at least μC(v) and
at most ¬νC(v) (i.e., C prefers apartments that do not have v with a degree
at least ν(v)) in the scale �L5. For example, if v is the attribute small size,
then μ(v) = 0.5 and ν(v) = 0.25 respectively mean that the customer prefers
flats being small at least 0.5 and not more than 0.75 in the scale �L5, since
¬ν(v) = 0.75.
Let us notice that μ and ν are also fuzzy constraints: given v ∈ V, μ(v)
and ¬ν(v) represent degrees of priority, namely a suitable flat must have the
attribute v with a degree between μ(v) and ¬ν(v), according to the preference
of C. Moreover, we say that μ and ν are respectively positive and negative
preference functions because their interpretation is based on the customer
preferences about the presence or the absence of certain properties in its
ideal apartment.

Hence, π(μC,νC) : �LV
5 → �L5 given by (4), is a new preference function, where

π(μC,νC)(ωF) is the degree of possibility that customer C prefers apartment ωF, and
it is computed by aggregating μC and νC that capture the preferences expressed
by C on the attributes of V. In other words, π(μC,νC) is a possibility distribution
prescribing to what extent a flat is judged to be suitable for C according to the
constraints given by (μC, νC). For example, let Fi and Fj be flats represented
by ωFi

and ωFj
, and let C be a customer whose preferences are represented by

(μC, νC) (see Table 1). By Eq. 4, π(μC,νC)(ωFi) = 1 and π(μC,νC)(ωFj ) = 0.25. This

Table 1. Values assumed by ωFi , ωFj , μC and νC on V

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

ωFi 0.5 0.5 0.75 1 0 0.5 0.25 0.5 0.5 0.25

ωFj 0.75 0.5 0.5 0.25 0.25 0.5 0.75 1 0 0.25

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

μC 0.25 0.25 0.75 1 0 0 0 0.25 0.25 0.25

νC 0.5 0.5 0.25 0 0.25 0.5 0.75 0.25 0 0.5
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means that we can believe that C prefers ωFi more than ωFj . Consequently, the
real estate agent could propose ωFi

to C directly and exclude ωFj
.

In the following example, we find the possibility distribution generated by a
given ILF set.

Example 2. Let V = {a, b}, and let �L5 = {0, 0.25, 0.5, 0.75, 1} be the 5-
element �Lukasiewicz chain (see Subsect. 2.1). Then, Π is composed of the �L5-sets
ω1, . . . , ω25 : {a, b} → �L5 defined by Table 2. We consider the ILF set (μ, ν) given
by {(a, 0.25, 0.25), (b, 0.5, 0.5)} (i.e. μ(a) = 0.25, μ(b) = 0.5, ν(a) = 0.25, and
ν(b) = 0.5).

Then, by (4), the possibility distribution generated by (μ, ν) is given by

π(μ,ν)(ωi) =

⎧
⎪⎨

⎪⎩

1 if i ∈ {1, 2, 3},

0.5 if i ∈ {4, 8, 9, 12, 13, 16, 17, 20, 21, 25},

0.75 otherwise.
(5)

Table 2. Values assumed by ω1, . . . , ω25 on {a, b}

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13

a 0.25 0.5 0.75 0 0 0 0 0 0.25 0.25 0.25 0.25 0.5

b 0.5 0.5 0.5 0 0.25 0.5 0.75 1 0 0.25 0.75 1 0

ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21 ω22 ω23 ω24 ω25

a 0.5 0.5 0.5 0.75 0.75 0.75 0.75 1 1 1 1 1

b 0.25 0.75 1 0 0.25 0.75 1 0 0.25 0.5 0.75 1

Remark 1. When L = {0,1} and V is a set of propositional variables, Eq. 4
provides the following correspondence between Boolean possibility distributions
and orthopairs, which has already been shown in [8]. Given an ILF set (μ, ν),
then μ : V → {0,1} and ν : V → {0,1} are respectively the characteristic
functions of the sets Oμ and Oν that form an orthopair on V. Furthermore,
{0,1}V consists of all Boolean evaluation functions on V. Hence, it is easy to
check that given π ∈ Π and ω ∈ {0,1}V , π(ω) = 1 (according to Eq. 4) if and
only if ω is a model of the propositional formula φμ ∧ φν such that

φμ :=

{∧
v∈Oμ

v if Oμ �= ∅
� otherwise

and φν :=

{∧
v∈Oν

¬v if Oν �= ∅
� otherwise

where ∧,¬, and � are respectively interpreted with the conjunction, the nega-
tion, and the top of a Boolean algebra.
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An intuitionistic L-fuzzy set (μ, ν) determines also a collection of L-sets I(μ,ν):

I(μ,ν) = {ω : V → L such that μ(v) ≤ ω(v) ≤ ¬ν(v) for each v ∈ V}. (6)

Remark 2. I(μ,ν) is a non-empty set since μ ∈ I(μ,ν).

The following theorem states that I(μ,ν) coincides with the kernel of π(μ,ν),
and so with K(π(μ,ν)) = {ω ∈ LV | π(μ,ν)(ω) = 1}.

Theorem 1. Let (μ, ν) be an intuitionistic L-fuzzy set, and let ω ∈ LV . Then,
π(μ,ν)(ω) = 1 if and only if ω ∈ I(μ,ν).

Proof. Let ω ∈ LV such that π(μ,ν)(ω) = 1. Then, by (4),
∧

v∈V(μ(v) → ω(v)) ⊗
(ν(v) → ¬ω(v)) = 1, for each v ∈ V.

Using Proposition 1 (items (iii), (vi), and (vii)), we have that μ(v) ≤ ω(v)
and ν(v) ≤ ¬ω(v), for each v ∈ V.

Moreover, by Proposition 1(viii), ν(v) ≤ ¬ω(v) implies ¬¬ω(v) ≤ ¬ν(v) for
each v ∈ V, and since ¬ is an involution, we finally get ω(v) ≤ ¬ν(v) for each
v ∈ V. Hence, μ(v) ≤ ω(v) ≤ ¬ν(v) for each v ∈ V, and so, we can conclude that
ω belongs to I(μ,ν) (see (6)).

Analogously, we can prove that if ω ∈ I(μ,ν) then π(μ,ν)(ω) = 1.

Example 3. Consider Example 2, then I(μ,ν) = {ω1, ω2, ω3}, which is also equal
to K(π(μ,ν)).

Therefore, as an immediate consequence of Theorem 1 and Remark 2, we have
that possibility distributions generated by an intuitionistic L-set are always nor-
mal.

Corollary 1. Let π ∈ Π. If π is generated by an intuitionistic L-fuzzy set, then
π is normal.

3.3 Possibility Distributions Generated by Intuitionistic L-fuzzy
Sets Based on an IMTL-algebra

In this subsection, confining to complete IMTL-algebras, we discover when a
possibility distribution (generated by an ILF set) assumes value 0.

At first, let us prove the following lemma.

Lemma 1. Let 〈L,∧,∨,⊗,→,0,1〉 be a complete IMTL-algebra, and let (μ, ν)
be an intuitionistic L-fuzzy set. Then, (μ(v) → ω(v)) ∨ (ν(v) → ¬ω(v)) = 1, for
each v ∈ V.

Proof. Let v ∈ V such that μ(v) → ω(v) �= 1. Since the pre-linearity axiom
holds, we get ω(v) → μ(v) = 1. By Proposition 1(vii), ω(v) ≤ μ(v). Moreover,
by Definition 4, μ(v) ≤ ¬ν(v). Hence, ω(v) ≤ ¬ν(v) that is equivalent to ω(v) →
¬ν(v) = 1. Finally, by Proposition 1 (viii), we get ν(v) → ¬ω(v) = 1.

Analogously, let v ∈ V, if ν(v) → ¬ω(v) �= 1, then we can prove that μ(v) →
ω(v) = 1.

By Proposition 1(iv), we conclude that (μ(v) → ω(v))∨ (ν(v) → ¬ω(v)) = 1.
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A possibility distribution generated by an ILF set (valued on a complete
IMTL-algebra) is equal to 0 only in some particular cases. More precisely, the
next theorem holds.

Theorem 2. Let 〈L,∧,∨,⊗,→,0,1〉 be a complete IMTL-algebra, let (μ, ν) be
an intuitionistic L-fuzzy set, and let ω ∈ LV . Then, π(μ,ν)(ω) = 0 if and only if
there exists v ∈ V such that μ(v) = 1 and ω(v) = 0, or μ(v) = 0 and ω(v) = 1.

Proof. (⇐) This implication is trivial.
(⇒) Let ω ∈ LV such that π(μ,ν)(ω) = 0. Then, by Proposition 1 (v), there exists

v ∈ V such that

(μ(v) → ω(v)) ⊗ (ν(v) → ¬ω(v)) = 0. (7)

By Lemma 1,
μ(v) → ω(v) = 1 or ν(v) → ¬ω(v) = 1. (8)

Eventually, by Definition 1 (a ⊗ 1 = a for each a ∈ L), Eqs. (7) and (8) imply
that μ(v) = 1 and ω(v) = 0, or μ(v) = 0 and ω(v) = 1.

Example 4. Consider Example 2. Then, π(μ,ν)(ω) �= 0 for each ω ∈ �L
{a,b}
5 . In

fact, μ(a), μ(b) /∈ {0, 1}.

4 From Possibility Distributions to Intuitionistic Fuzzy
Sets

This section mainly aims to find the intuitionistic L-fuzzy set that generates a
given possibility distribution π : LV → L by means of Eq. 4.

Let us recall that Eq. 4 leads to define a normal possibility distribution for
each intuitionistic L-set. On the other hand, it is not always possible to do
the opposite. Namely, there exist normal possibility distributions from LV to L
that do not correspond to any intuitionistic L-fuzzy set by means of Eq. 4. The
following is an example.

Example 5. Consider Example 2, we can prove that no intuitionistic �L5-fuzzy
set generates the possibility distribution π : �L

{a,b}
5 → �L5 defined by the following

formula: let ωi ∈ �L
{a,b}
5 ,

π(ωi) =

{
1 if i ∈ {1, 2, 3},

0 otherwise.
(9)

Since the pre-linearity axiom holds in 〈�L5,∧,∨,⊗,→, 0, 1〉, we can apply
Theorem 2. Consequently, in case π is generated by an intuitionistic �L5-fuzzy
set, it must be ωi(a) ∈ {0, 1} or ωi(b) ∈ {0, 1}, for each i ∈ {4, . . . , 25}. But,
this contradicts Table 2, where ωi(a) and ωi(b) do not belong to {0, 1} for each
i ∈ {10, 11, 14, 15, 18, 19}.
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In the sequel, we write Π∗ to indicate the set of all possibility distributions
of Π that are generated by an intuitionistic L-fuzzy set.

Now, we want to establish when a given possibility distribution belongs to
Π∗. In order to do this, we firstly associate an intuitionistic L-fuzzy set to every
possibility distribution starting from its kernel.

Definition 7. Given π ∈ Π and v ∈ V, then μπ, νπ : V → L are defined as
follows:

μπ(v) =
∧

ω∈K(π)

ω(v) and νπ(v) =
∧

ω∈K(π)

¬ω(v). (10)

We can prove that the functions given by (10) form an intuitionistic L-fuzzy
set.

Proposition 2. Let π ∈ Π, then (μπ, νπ) is an intuitionistic L-fuzzy set.

Proof. By Proposition 1(i), we get
∧

ω∈K(π)

ω(v) ≤ ω(v) and
∧

ω∈K(π)

¬ω(v) ≤ ¬ω(v), for each v ∈ V. (11)

Moreover, by Proposition 1 (vii, viii),
∧

ω∈K(π)

¬ω(v) ≤ ¬ω(v), implies that ω(v) ≤ ¬
∧

ω∈K(π)

¬ω(v) for each v ∈ V.

(12)
Hence, by (10), we can conclude that μπ(v) ≤ ¬νπ(v), for each v ∈ V.

Since (μπ, νπ) is an intuitionistic L-fuzzy set, it generates a new possibility
distribution (by means of Eq. 4) that we denote with π∗. In general, π∗ does not
coincide with π. For example, it is easy to verify that if π is given by (5) then π∗

is given by (9). Consequently, π∗ �= π. Of course, π = π∗ implies that π ∈ Π∗,
and more precisely that π is generated by the intuitionistic L-fuzzy set (μπ, νπ).
Furthermore, the following theorem shows that (μπ, νπ) is the only intuitionistic
L-fuzzy set that can generate π.

Theorem 3. Let π ∈ Π. If π ∈ Π∗, then π is generated by (μπ, νπ).

Proof. Let π ∈ Π∗, there exists (μ, ν) that generates π. So, we want to prove
that (μ, ν) = (μπ, νπ).

First of all, we show that μ = μπ. Let v ∈ V. Then, by Theorem 1,
μ(v) ≤ ω(v) for each ω ∈ K(π). Consequently, by Proposition 1(ii), μ(v) ≤∧

ω∈K(π) ω(v). Namely, μ(v) ≤ μπ(v).
Moreover, if μπ(v) < μ(v), then there exists ω ∈ K(π) such that ω(v) < μ(v),

but it contradicts Theorem 1. Then, μπ(v) ≤ μ(v).
Analogously, we can prove that ν = νπ.
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Example 6. Consider the possibility distribution π(μ,ν) given by (5). For conve-
nience, we indicate π(μ,ν) with π. Example 2 shows that π is generated by (μ, ν),
which is {(a, 0.25, 0, 25), (b, 0.5, 0.5)}. Consequently, π ∈ Π∗. Moreover, Theorem
3 assures us that (μ, ν) = (μπ, νπ). Indeed, μπ(μ,ν)(a) = ω1(a) ∧ ω2(a) ∧ ω3(a) =
0.25∧ 0.5∧ 0.75 = 0.25, μπ(μ,ν)(b) = ω1(b)∧ω2(b)∧ω3(b) = 0.5∧ 0.5∧ 0.5 = 0.5,
νπ(μ,ν)(a) = ¬ω1(a) ∧ ¬ω2(a) ∧ ¬ω3(a) = 0.75 ∧ 0.5 ∧ 0.25 = 0.25, and
νπ(μ,ν)(b) = ¬ω1(b) ∧ ¬ω2(b) ∧ ¬ω3(b) = 0.5 ∧ 0.5 ∧ 0.5 = 0.5.

Using Theorem 3, we provide a necessary and sufficient condition for a pos-
sibility distribution to be generated by an ILF set.

Corollary 2. Let π ∈ Π. Then, π ∈ Π∗ if and only if π = π∗, namely

π(ω) =
∧

v∈V
(μπ(v) → ω(v)) ⊗ (νπ(v) → ¬ω(v)), for each ω ∈ LV .

The following proposition will be used in the next subsection. It shows that
the kernel of π∗ always includes that of π.

Proposition 3. Let π ∈ Π. Then, K(π) ⊆ K(π∗).

Proof. Let ω ∈ K(π). Then, by (11) and (12), we get μπ(v) ≤ ω(v) ≤ ¬νπ(v) for
each v ∈ V. Thus, by Theorem 1, ω ∈ K(π∗).

4.1 An Algorithm to Find the Intuitionistic L-fuzzy Set Generating
a Given Possibility Distribution

In this subsection, assuming that our structures of truth degrees are the
�Lukasiewicz n-chains defined by (2), we propose three algorithms to achieve
the following goals.

(i) Compute the intuitionistic �Ln-fuzzy set corresponding to a given possibility
distribution by means of (10).

(ii) Find the values assumed by the possibility distribution generated by a given
intuitionistic �Ln-fuzzy set.

(iii) Establish whether or not a given possibility distribution is generated by an
intuitionistic �Ln-fuzzy set.

Firstly, we propose the procedure INT-L-SET (see Algorithm 1) based on
Eq. 10. Its input consists of a finite set V, a positive integer n (to determine the
corresponding �Lukasiewicz n-chain), and a possibility distribution π from �LV

n to
�Ln. Its output is a pair (μ, ν) of mappings from V to �Ln. By Proposition 2, (μ, ν)
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is an intuitionistic �Ln-fuzzy set, and by Theorem 3, if π ∈ Π∗ then it generates
π.

Algorithm 1: The algorithm for finding the intuitionistic �Ln-fuzzy set
corresponding to a given possibility distribution by means of (10).

procedure INT-L-SET (V, n, π)
foreach v ∈ V do

μ(v), ν(v) → 1;
foreach ω ∈ �LV

n such that π(ω) = 1 do
μ(v) ← min{μ(v), ω(v)};
ν(v) ← min{ν(v), 1 − ω(v)};

return (μ, ν);
end procedure

The next procedure (see Algorithm 2) is constructed by using the following
proposition, where Eq. 4 is rewritten for all possibility distributions generated
by an intuitionistic �Ln-fuzzy set4.

Proposition 4. Let π be a possibility distribution generated by an intuitionistic
�Ln-fuzzy set (μ, ν), and let ω ∈ �LV

n . Then, π(ω) =
∧

v∈V αω(v), where

αω(v) =

⎧
⎪⎨

⎪⎩

μ(v) → ω(v) if ω(v) ≤ μ(v),
ν(v) → ¬ω(v) if ω(v) ≥ ¬ν(v),
1 otherwise.

(13)

Proof. Let v ∈ V such that ω(v) ≤ μ(v). By Definition 4, μ(v) ≤ ¬ν(v). Hence,
ω(v) ≤ ¬ν(v). By Proposition 1(vii,viii), ν(v) ≤ ¬ω(v), and so ν(v) → ¬ω(v) =
1. Finally, using Eq. 4, αω(v) = (μ(v) → ω(v))⊗1, hence αω(v) = (μ(v) → ω(v))
from Definition 1(ii).

Analogously, given v ∈ V such that ω(v) > μ(v), we can prove that αω(v) is
given by (13).

Proposition 4 leads to the procedure VALUE (just apply the �Lukasiewicz
operations to (13)) taking as input a finite set V, a function ω from V to �Ln, and
an intuitionistic �Ln-fuzzy set (μ, ν), and producing as output the value π(μ,ν)(ω).

4 More in general, Proposition 4 holds when we consider complete residuated lattices
with an involution and [0, 1] as support.
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Algorithm 2: The algorithm to find the values assumed by the possibility
distribution generated by the intuitionistic �Ln-fuzzy set (μ, ν).

procedure VALUE (V, ω, (μ, ν))
m ← 1;
foreach v ∈ V do

if ω(v) < μ(v) then
αv(ω) ← 1 − μ(v) + ω(v);

else
if ω(v) > 1 − ν(v) then

αv(ω) ← 2 − ω(v) + ν(v);
else

αv(ω) ← 1;

m ← min{m,αv(ω)};

return m;
end procedure

Finally, we present the procedure DISTRIBUTION to establish whether or
not a given possibility distribution π : �LV

n �→ �Ln is generated by the intuition-
istic �Ln-fuzzy set (μπ, νπ) (see Algorithm 3). In detail, firstly, the intuitionistic
�Ln-fuzzy set (μπ, νπ) is computed by INT-L-SET. Then, using the procedure
VALUE, it is checked whether or not π = π∗, where π∗ is the possibility dis-
tribution generated by (μπ, νπ). Eventually, if π = π∗, then π is generated by
(μπ, νπ). Otherwise, the answer is that π /∈ Π∗ (from Theorem 3 and Corollary
2). Moreover, by Proposition 3, we know that π(ω) = π∗(ω) for each ω ∈ K(π).
Hence, we must apply the procedure VALUE only for each ω ∈ �LV

n \ K(π).

Algorithm 3: The algorithm to establish whether or not a given possibility
distribution is generated by an intuitionistic �Ln-fuzzy set.

procedure DISTRIBUTION (V, n, π)
i ← 0;
(μ, ν) ← INT-L-SET(V, n, π);
foreach ω ∈ �Ln such that π(ω) �= 1 do

if π(ω) �= VALUE(V, ω, (μ, ν) ) then
i ← 1;
break;

if i = 1 then
print π is not generated by an intuitionistic �Ln-fuzzy set;

else
print π is generated by the intuitionistic �Ln-fuzzy set (μ, ν);

return;
end procedure
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5 Conclusions and Future Directions

In this article, we identified each intuitionistic L-fuzzy set with a special nor-
mal possibility distribution. On the other hand, we showed that not all normal
possibility distributions can be identified with an intuitionistic L-fuzzy set.

In the future, we intend to explore the connection between possibility theory
and intuitionistic L-fuzzy sets in more detail. As an example, we would like to
discover other properties (in addition to normality) characterizing possibility
distributions generated by ILF sets. Also, we could associate a collection of
ILF sets to each possibility distribution, and hence, generalize by using fuzzy
logic, the correspondence between Boolean possibility distributions and sets of
orthopairs [8].

On a longer term, the link between the two theories could be used in appli-
cations, by applying techniques developed for IFS to Possibility Theory and,
whenever possible, the other way round.
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Abstract. In this article, we study the setting of learning from fuzzy
labels, a generalization of supervised learning in which instances are
assumed to be labeled with a fuzzy set, interpreted as an epistemic pos-
sibility distribution. We tackle the problem of feature selection in such
task, in the context of rough set theory (RST). More specifically, we con-
sider the problem of RST-based feature selection as a means for data
disambiguation: that is, retrieving the most plausible precise instantia-
tion of the imprecise training data. We define generalizations of decision
tables and reducts, using tools from generalized information theory and
belief function theory. We study the computational complexity and the-
oretical properties of the associated computational problems.

Keywords: Fuzzy labels · Rough sets · Feature selection · Belief
functions · Entropy

1 Introduction

Weakly supervised learning [34] refers to Machine Learning tasks in which train-
ing instances are not required to be associated with a precise target label: the
annotations can be either imprecise or partial. Such tasks could be a conse-
quence of certain data pre-processing operations such as anonymization [24];
could be due to imprecise measurements or expert opinions; or to limit data
annotation costs [20]. Some particularly relevant instances of weakly supervised
learning are superset learning [15] (i.e. instances are associated with sets of
candidate labels), learning from evidential labels [6,9] (i.e., instances are associ-
ated with belief functions over the labels) and learning from fuzzy labels [10,13].
In this latter setting, which is the focus of this article, each instance x is
annotated with a fuzzy set μ of candidate labels. These fuzzy sets have an
epistemic semantics and represent possibility distributions πμ: only one of the
labels is the correct one and the fuzzy membership degrees, then, describe the
possibility degree of the labels. For example, an image could be tagged with
{horse : 1,pony : 0.8, zebra : 0.5,dog : 0.0}, suggesting that the animal shown
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S. Ramanna et al. (Eds.): IJCRS 2021, LNAI 12872, pp. 164–179, 2021.
https://doi.org/10.1007/978-3-030-87334-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87334-9_14&domain=pdf
http://orcid.org/0000-0002-8083-7809
https://doi.org/10.1007/978-3-030-87334-9_14


Superset Learning Using Rough Sets 165

on the picture is one among {horse,pony, zebra}: though it is not exactly known
which of them, it is known that horse is deemed more plausible than pony, which
in turn is deemed more plausible than zebra.1

While in recent years the superset learning task has been widely investi-
gated [4,16,17], also using approaches based on Rough Set theory [4,25], the
learning from fuzzy labels task has, comparatively, been given less attention
mainly due to the high computational complexity of the problem [13] and to the
difficulty of acquiring such data [14]: most works have focused on the problem of
classification [6,9,10,13,23] (in particular in those tasks where the acquisition of
such fuzzy labels is easier, e.g. multi-rater learning and self-regularized learning
[11]), while other tasks such as feature selection, despite their importance, have
mostly been ignored.

In this article, drawing from our previous work on superset feature selection
[4], we attempt to close this gap by proposing methods, based on Rough Set The-
ory (RST), Belief Function Theory (BFT) and possibility theory, to address the
problem of feature selection. Remarkably, in line with the generalized risk mini-
mization paradigm [13], we consider this task as a means for data disambiguation,
i.e., for the purpose of figuring out the most plausible precise instantiation of the
imprecise training data. For this purpose we propose a generalization of standard
Decision Tables and we describe different definitions of reducts. In particular,
in Sect. 2 we provide the necessary background knowledge on possibility theory,
Rough Set theory and Belief Function theory; in Sect. 3.1 we define a generaliza-
tion of decision tables to the learning from fuzzy label settings; in Sect. 3.2 we
introduce several notions of reducts and study their relationships and computa-
tional complexity properties; in Sect. 3.3 we propose a generalization of entropy
reducts, in order to provide an approach for performing feature selection which
is more apt at the design of heuristics or approximation algorithms; finally, in
Sect. 4, we summarize our results and describe some open problems.

2 Background

In this section, we recall basic notions of rough set theory (RST) and evidence
theory, which will be used in the main part of the article.

2.1 Possibility Theory

Possibility theory is a theory of uncertainty, alternative to probability theory,
which allows for the quantification of degrees of possibility on the basis of a
fuzzy set [33]. We recall that a fuzzy set (equivalently, a possibility distribution)
1 We note that in the learning from fuzzy labels setting, the set of candidate labels

(that is, the labels with a membership degree greater than 0) is given a disjunctive
interpretation: only one of those labels is correct, but we don’t precisely know which
one, and the membership degrees represent degrees of belief. Thus, in this article, we
do not consider the conjunctive interpretation, in which the membership degrees are
degrees of truth (and, thus, could be seen as a generalization of multi-label learning).
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F can be seen as a function F : X �→ [0, 1], that is, a generalization of the
characteristic function representation of classical sets. A possibility measure is a
function posF : 2X �→ [0, 1] such that

1. posF (∅) = 0 and posF (X) = 1,;
2. if A ∩ B = ∅ then posF (A ∪ B) = max(posF (A), posF (B)).

It can be easily seen that every possibility measure is induced by a fuzzy set F as
posF (A) = maxx∈AF (x): in this case we say that F is the possibility distribution
corresponding to the possibility measure posF .

A possibility distribution F is normal if ∃x ∈ X.F (x) = 1: in this article we
will focus on normal possibility distributions. Given α ∈ [0, 1], the alpha-cut of
F is defined as Fα = {x ∈ X : F (x) ≥ α}, while the strong α-cut is defined
as Fα+ = {x ∈ X : F (x) > α}: we recall that the collection of α-cuts of F is
sufficient to determine F [19].

The epistemic view [8] of possibility distributions refers to the common inter-
pretation under which a possibility distribution represents the degrees of belief
(of an agent) towards a set of possible alternatives. We refer the reader to [7,13]
for a discussion of epistemic possibility distributions in Machine Learning.

2.2 Rough Set Theory

Rough set theory has been proposed by Pawlak [22] as a framework for rep-
resenting and managing uncertain data, and has since been widely applied for
various problems in the ML domain (see [2] for a recent overview and survey).
We briefly recall the main notions of RST, especially regarding its applications
to feature selection.

A decision table (DT) is a triple DT = 〈U,Att, t〉 such that U is a universe
of objects and Att is a set of attributes employed to represent objects in U .
Formally, each attribute a ∈ Att is a function a : U → Va, where Va is the
domain of values of a. Moreover, t /∈ Att is a distinguished decision attribute,
which represents the target decision (also labeling or annotation) associated with
each object in the universe. We say that DT is inconsistent if the following holds:
∃x1, x2 ∈ U,∀a ∈ Att, a(x1) = a(x2) and t(x1) = t(x2).

Given B ⊆ Att, we can define the indiscernibility relation with respect to B
as xIBx′ iff ∀a ∈ B, a(x′) = a(x). Clearly, it is an equivalence relation that par-
titions the universe U in equivalence classes, also called granules of information,
[x]B . Then, the indiscernibility partition is denoted as πB = {[x]B |x ∈ U}.

We say that B ⊆ Att is a decision reduct for DT if πB ≤ πt (where the order
≤ is the refinement order for partitions, that is, πt is a coarsening of πB) and
there is no C � B such that πC ≤ πt. Then, evidently, a reduct of a decision
table DT represents a set of non-redundant and necessary features to represent
the information in DT . We say that a reduct R is minimal if it is among the
smallest (with respect to cardinality) reducts.

Given B ⊆ Att and a set S ⊆ U , a rough approximation of S (with respect to
B) is defined as the pair B(S) = 〈lB(S), uB(S)〉, where lB(S) =

⋃{[x]B | [x]B ⊆
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S} is the lower approximation of S, and uB(s) =
⋃{[x]B | [x]B ∩ S = ∅} is the

corresponding upper approximation.
Finally, given B ⊆ Att, the generalized decision with respect to B for an

object x ∈ U is defined as δB(x) = {t(x′) |x′ ∈ [x]B}. Notably, if DT is not
inconsistent and B is a reduct, then δB(x) = {t(x)} for all x ∈ U .

We note that in the RST literature, there exist several definitions of reduct
that, while equivalent on consistent Decision Tables, are generally non-equivalent
for inconsistent ones. We refer the reader to [28] for an overview of such a list
and a study of their dependencies. Moreover, we remark that, given a decision
table, the problem of finding the minimal reduct is in general ΣP

2 -complete (by
reduction to the Shortest Implicant problem [31]). We recall that ΣP

2 is the
complexity class defined by problems that can be verified in polynomial time
given access to an oracle for an NP-complete problem [1].

Finally, we recall that some previous works have investigated the general-
ization of Rough Set Theory to the case of imprecise data, both in the case of
set-valued data [4,21,25] and in the case of possibility distributions [5], or more
general uncertainty representations [30]. Nakata et al. [18] discuss a generaliza-
tion of Rough Set Theory to the case where every attribute value is expressed as
a possibility distribution and study generalized notions of rough approximations:
though this approach uses a cut-based approach similar to the one we adopt in
this paper, the authors do not study generalizations of reducts to this setting.
Ciucci et al. [5] focus on a specific type of possibility distribution (certainty
distributions) and study different notions for both rough approximations and
reducts: in our work we consider the case of general possibility distributions, but
only for the decision attribute. Also, we note that both articles [5,18] do not
consider applications to the learning from fuzzy labels setting. Finally, Trabelsi
et al. [30] considered the generalization of RST to account for evidential data in
the decision attribute and proposed a definition of reducts in that setting: while
the approach adopted by the authors shares some similarities with the approach
we propose, the former does not agree with the generalized risk minimization
principle [13] and hence cannot be applied to the task of data disambiguation.

2.3 Belief Function Theory

Belief Function theory (BFT), also known as Dempster-Shafer theory or evidence
theory, has been introduced by Dempster and subsequently formalized by Shafer
in [26]. Given a frame of discernment X, which represents all possible states of a
system under study, a basic belief assignment (bba) is a function m : 2X → [0, 1],
such that m(∅) = 0 and

∑
A∈2X m(A) = 1. The support of m is defined as

supp(m) = {A ⊆ X : m(A) > 0}.
From a bba, a pair of functions, called respectively belief and plausibility,

can be defined as follows:

Belm(A) =
∑

B:B⊆A

m(B) Plm(A) =
∑

B:B∩A �=∅
m(B) (1)



168 A. Campagner and D. Ciucci

As can be seen from these definitions, there is a clear correspondence between
BFT and, respectively, RST and possibility theory. In the first case, it is easy
to note that belief functions (resp., plausibility functions) correspond to lower
approximations (resp., upper approximations) in RST whenever the support m
is a partition of X; we refer the reader to [32] for further connections between
the two theories. In the case of possibility theory, any possibility measure (resp.
necessity measure) is a plausibility (resp. belief) function: indeed, it can be shown
that possibility theory can be seen as a special case of BFT where we require
that m is consonant [26], that is ∀A1, A2 ∈ supp(m) . A1 ⊆ A2 ∨ A2 ⊆ A1 (i.e.,
supp(m) with the order given by ⊆ is a linear order).

Finally, we recall that several generalizations of information-theoretic con-
cepts, specifically the concept of entropy (which was also proposed to generalize
the definition of reducts in RST [27]), have been defined for BFT. Most rele-
vantly, we recall the definition of optimistic aggregate uncertainty [3,4]:

OAU(m) = min
p∈P(m)

H(p), (2)

where P(m) is the set of probability distributions p such that Belm ≤ p ≤ Plm
and H(p) = −∑

x∈X p(x)log2p(x) is the Shannon entropy of p.

3 Possibilistic Decision Tables and Reducts

In this section, we extend some key concepts of rough set theory to the setting
of learning from fuzzy labels.

3.1 Possibilistic Decision Tables

In the learning from fuzzy labels setting, an object x ∈ U is not necessarily
assigned a single annotation t(x) ∈ Vt, but may instead be associated with an
epistemic statement (elicited by an agent, human or computational) encoding the
relative plausibility of a set S of candidate annotations, one of which is assumed
to be the true annotation associated with x. The relative plausibility of the
candidate annotations is expressed as a possibility distribution (or, equivalently,
as a fuzzy set) over the label set. To model this idea in terms of RST, we
generalize the definition of a decision table as follows.

Definition 1. A possibilistic decision table (PDT) is a tuple P = 〈U,Att, t, d〉,
where 〈U,Att, t〉 is a decision table, i.e.:

– U is a universe of objects of interest;
– Att is a set of attributes (or features);
– t is the (real) decision attribute (whose value, in general, is not known);
– d ∈ Att is a map from objects to possibility distributions over Vt, d : U →

F(Vt) such that the weak superset property holds: d(x)t(x) > 0 for all x ∈ U .
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Remark 1. By d(x)y we denote the possibility degree assigned to class label y
for object x. We adopt this convention (over the alternative d(x)(y)) in order to
simplify the notation.

The intuitive meaning of the possibility distribution d is that, if |d(x)0+| > 1
for some x ∈ U , then the real decision associated with x (i.e. t(x)) is not known
precisely, but is known to be in d(x)0+. Furthermore, if d(x)a > d(x)b then the
decision a is considered more plausible than decision b for object x. Nonetheless,
an alternative preferential interpretation can also be considered (similarly to
the superset learning setting [4,16]): in this context, the inequality d(x)y ≤
d(x)y′ would mean that, for object x, the label y′ is preferred to y. Interestingly,
while in the superset learning setting the two interpretations coincide (in the
sense that they define the same notion of reducts), this is not the case in the
learning from fuzzy labels setting. In the following, we will mainly focus on the
epistemic interpretation, though we will occasionally make reference also to the
preferential one when the two differ. First, we note that Definition 1 is a proper
generalization of both standard and superset decision tables (SDT) [4]: indeed,
if d(x)0+ = d(x)1 for all x ∈ U , then we have a superset decision table; and,
in the particular case where it also holds that |d(x)0+| = 1 for all x ∈ U , then
we have a standard decision table. We remark that the weak superset property
forbids the real decision t(x), for any object x, to be considered impossible (that
is, we assume that there are no labeling errors) but nothing more is assumed:
in particular, the stronger requirement that d(x)t(x) = 1 (which means that
t(x) is considered fully plausible) is not guaranteed to hold. We call this latter
requirement the strong superset property.

While both conditions can be seen as proper generalizations of the superset
property in superset learning [16,17], we argue that under the epistemic inter-
pretation of a PDT, the strong superset property is, in a specific sense, trivial:
indeed, were this property be satisfied, then the PDT P would be equivalent to
a SDT (specifically, the SDT S = 〈U,Att, t, dS〉 s.t. ∀x ∈ U.dS(x) = d(x)1) as
under the strong superset condition (i.e. d(x)t(x) = 1) the real annotation t(x) is
guaranteed to lie among those with an associated possibility degree equal to 1.

By contrast, in the preferential interpretation, the strong superset property
only implies that t(x) is the most preferred annotation for x: this, in general,
does not imply that other possible annotations should not be considered.

A PDT can be associated with a collection of compatible (standard) decision
tables, which we call instantiations of the PDT:

Definition 2. An instantiation of a PDT P = 〈U,Att, t, d〉 is a standard deci-
sion table T = 〈U,Att, t′〉 such that d(x)t′(x) > 0 for all x ∈ U . The collection of
instantiations of P is denoted I(P ).

We note that the collection I(P ) inherits a ranking of the instantiations from
the definition of the possibilistic decision attribute d:

Definition 3. Let I1, I2 ∈ I(P ) be two instantiations of a PDT P . Then we
say that I1 is (conservatively) less possible than I2, denoted I1 ≤C I2, if:

minx∈Ud(x)I1t′ ≤ minx∈Ud(x)I2t′ (3)
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We say that I1 is dominated in possibility by I2, denoted I1 ≤D I2, if:

∀x ∈ U. d(x)I1t′ ≤ d(x)I2t′ (4)

where, in both definitions d(x)Ii

t′ refers to the value of the decision attribute d
(in P ) on the label t′(x) in the instantiation Ii.

It is easy to observe that the following result holds:

Proposition 1. The order ≤C determines a possibility distribution (equiva-
lently, a fuzzy set) μI(P ) on the collection I(P ) where, for each I ∈ I(P ):

μI(P )(I) = minx∈Ud(x)It′ (5)

Proof. The result easily follows from the observation that ≤C is a weak ordering
on I(P ). Using the product fuzzy set construction [19], it is then easy to see
that we can associate with ≤C a possibility distribution which is equivalent to
μI(P ). ��

The order ≤D, on the other hand, cannot be directly associated with a
(standard) possibility distribution on I(P ), as it only defines a partial order:
thus, it defines an L-fuzzy set over the set of instantiations where, in general,
L = ([0, 1],min,max). Interestingly, the ≤D order is equivalent to the notion
of dominance [12] in multi-criteria decision making: this could suggest that this
ordering over instantiations (and the corresponding definitions of reducts) could
be of particular interest in the preferential interpretation of the learning from
fuzzy-label setting.

The following definition generalizes the notion of inconsistency for a PDT:

Definition 4. For B ⊂ Att and α ∈ [0, 1) the PDT P is (α, B)-inconsistent if

∃x1, x2 ∈ U,∀a ∈ B, a(x1) = a(x2) and d(x1)α+ ∩ d(x2)α+ = ∅ . (6)

We call such a pair x1, x2 (α, B)-inconsistent. If condition (6) is not satisfied,
then P is (α, B)-consistent. In particular, we say that P is weakly B-consistent
if it is (0, B)-consistent; while we say that P is B-consistent when it is (α,
B)-consistent for every α.

From the definition, we see that the notion of consistency (dually, inconsis-
tency) for a PDT is richer than its classical counterpart and, in general, implies
the non-existence of indiscernible objects with non-overlapping decisions, at any
given α-cut of the possibility distribution defined by d. We say that an instan-
tiation I is α-consistent with a PDT P if the following holds for all x1, x2: if
x1, x2 are (α,Att)-consistent in S, then they are consistent in I.

3.2 Possibilistic Reducts

Learning from fuzzy labels, as a proper generalization of superset learning,
encompasses the idea of data disambiguation: the goal of such a task is to jointly
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learn a function, mapping novel objects to the corresponding correct decision,
and figuring out the most plausible instantiation of the available data.

In the case of superset learning the notion of plausibility of an instantation
can be entirely captured through the principle of simplicity [13] as any two
instantiations are, a priori, equally plausible as they are both associated a possi-
bility degree equal to 1: Thus, an instantiation that can be explained by a simple
model is more plausible than an instantiation that requires a more complex one
(this approach is, in turn, inspired by the Occam’s razor principle).

In Rough Set Theory, the most natural measure of model complexity is the
size of a reduct: indeed, this approach has been applied, in superset learning, to
define so-called Minimum Description Length (MDL) reducts [4] which refer to
the minimal reducts among all reducts of all possible instantiations. The most
natural generalization of this notion to the setting of learning from fuzzy labels
leads to the following definition:

Definition 5. A set of attributes R ⊆ Att is a possibilistic reduct of a PDT
P if there exists an instantiation I ∈ I(P ) s.t. R is a reduct for I. A mini-
mum description length (MDL) instantiation is one of the instantiations of P
admitting a reduct of minimum size (compared to all the reducts of all possible
instantiations). We call the corresponding reducts possibilistic MDL reducts.

While meaningful from a conceptual perspective, it is easy to observe that
this definition of reducts disregards the most important difference between the
superset learning and learning from fuzzy label settings: that is, the instantia-
tions can be associated with an inherent measure of plausibility, given by the
orders ≤C ,≤D. Indeed, the following result trivially holds:

Proposition 2. Let P be a PDT, and let S(P ) = 〈U,Att, t, dS〉 be the SDT
defined from P s.t. ∀x. dS(x) = d(x)0+. Then, R is a possibilistic reduct (resp.
possibilistic MDL reduct) of P iff it is a superset reduct (resp. MDL reduct) of
S(P ).

Proposition 2 shows that the notion of a possibilistic reduct discards the
epistemic information expressed by the decision attribute, and is thus equivalent
to the notion of a superset reduct. In order to capture the richer semantics of
PDTs, we argue that any proper definition of reduct should take into account
not only the simplicity of the induced model (that is, the size of the reducts) but
also the epistemic information encoded by the (possibilistic) decision attribute
d. For this reason, we consider the following definitions of reducts:

Definition 6. For each α ∈ (0, 1], let S(P )α be the SDT defined from P s.t.
∀x. dα

S(x) = d(x)α. For each possibilistic reduct R, denote by I(R) ⊆ I(P ) the
collection of instantiations of P for which R is a reduct. Then, R:

– Is an α-possibilistic reduct if it is a superset reduct of S(P )α, and an α-MDL
reduct if it is also a MDL reduct of S(P )α;

– Is a C-reduct if it is a possibilistic reduct and �R′ ⊆ Att s.t. both |R′| ≤ |R|
and ∃I1 ∈ sup≤C

I(R), I2 ∈ sup≤C
I(R′). I1 <C I2

2;
2 Here sup≤C I(R) = {I ∈ I(R) : �I ′ ∈ I(R) s.t. I <C I ′}.
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– Is a λ-reduct, with λ ∈ [0, 1], if it is a possibilistic reduct and supI∈I(R)(1 −
λ)μI(P )(I) − λ |R|

|Att| is maximal among all possibilistic reducts;
– Is a D-reduct if it is a possibilistic reduct and there is no R′ ⊆ Att s.t. both

|R′| ≤ |R| and ∃I1 ∈ sup≤DI(R), I2 ∈ sup≤D
I(R′). I1 <D I2;

Given a possibilistic reduct R of a given PDT P , we denote by αR the maximum
α s.t. R is an α-possibilistic reduct of P . We note the following basic properties:

Theorem 1. The problem of finding all possibilistic reducts (resp. all C-reducts,
all λ-reducts for any given value of λ) can be polynomially reduced to the problem
of finding all α-possibilistic reducts and α-MDL reducts. In particular:

– R is a 0-possibilistic reduct iff it is a possibilistic reduct iff it is a λ-reduct
(λ = 1);

– R is a C-reduct iff �R′ s.t. both |R′| ≤ |R| and αR′ ≥ αR.

Proof. As regards possibilistic reducts, it is trivial to show that the collection of
possibilistic reducts is the same as the collection of 0-possibilistic reducts. For
all other types of reducts, the proof is constructive: we describe an algorithm
that finds all α-possibilistic and α-MDL reducts (see Algorithm 1), and show
that this procedure can be effectively used (see Algorithms 2, 3) for finding all
other types of reducts with no more than polynomial (in the number of reducts)
overhead. For a PDT P let α(P ) = {α′ ∈ (0, 1] : ∃x ∈ U, y ∈ Vt s.t. d(x)t = α′}.
The overhead for Algorithm 2 is O(n2) and for Algorithm 3 is Θ(n) (where n
is the number of reducts). Thus, the main statement of the theorem holds. The
other statements can be easily proved. ��

Algorithm 1. The brute-force algorithm for finding the α-possibilistic and α-
MDL reducts of a possibilistic decision table P .

procedure α-possibilistic-Reducts(P : possibilistic decision table)
for all α ∈ α(P ) in decreasing order do

poss-redsα ← Superset-Reducts(S(P )α)
MDL-redsα ← Find-Shortest(poss-redsα)

end for
return poss-redsα, MDL-redsα � The collections of α-possibilistic and α-MDL reducts

end procedure

We do not know if a similar technique could also be applied to compute the
D-reducts: we leave this as open problem.

As a direct consequence of Theorem 1, we can see that the problem of finding
all α-possibilistic (resp. α-MDL) reducts is not harder than finding all superset
(resp. MDL) reducts of a given SDT.

Theorem 2. The problem of finding all α-possibilistic (resp. α-MDL) reducts is
no computationally harder than the problem of finding all superset (resp. MDL)
reducts. Thus, in particular the problem of deciding whether, given a PDT P and
k ∈ N+, the α-MDL reducts of P are of size ≤ k is ΣP

2 complete.
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Algorithm 2. The algorithm for finding the C-reducts of a possibilistic decision
table P .

procedure C-Reducts(P : possibilistic decision table)
MDL-redsα ← α-Possibilistic-Reducts(P )
C-reds ← MDL-reds1
for all α ∈ α(P ) \ {1} do

for all r ∈ MDL-redsα do
if �r′ ∈ C-reds s.t. |r′| < |r| then

C-reds.append(r)
end if

end for
end for
return C-reds � The set of C-reducts

end procedure

Algorithm 3. The algorithm for finding the λ-reducts of a possibilistic decision
table P .

procedure λ-Reducts(P : possibilistic decision table, λ ∈ [0, 1])
poss-redsα ← α-Possibilistic-Reducts(P )
λ-reds ← ∅
θ ← 0
map ← ∅
for all α ∈ α(P ) in decreasing order do

for all r ∈ poss-redsα do
θ-temp ← (1 − λ)α − λ |r|

|Att|
map.append(〈r, θ-temp〉)
if θ-temp ≥ θ then

θ ← θ-temp
end if

end for
end for
lambda-reds ← all r ∈ map
return λ-reds � The set of λ-reducts

end procedure

Proof. For each α the reduction is trivial, as the problem of finding the α-MDL
reducts of P is equivalent to finding the MDL reducts of S(P )α. Note also
that |α(P )| ≤ |U ||Vt|: this implies that the problem α-MDL Reduct requires,
in the worst case, a polynomial (in the size of the PDT P ) number of calls
to a procedure for checking MDL Reducts. This can also be easily seen from
Algorithm 1. ��

Despite this result, showing that finding minimal reducts (that is, α-MDL,
C-reducts or λ-reducts) for a PDT is not harder than finding MDL reducts for
a SDT (which, in turn, is no harder than finding minimal reducts for a classical
DT), all the reduct search problems considered require worst-case exponential
time (in the size of the PDT). Indeed, while heuristics could be applied to speed
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up the computation of reducts [29] (specifically, to reduce the complexity of
the find-shortest-reducts step in Algorithm 1) the proposed algorithms still
require enumerating all the possible instantiations. Therefore, in the following
section, we propose an alternative definition of reducts in order to reduce the
computational costs.

3.3 Entropy Reducts

Following [4] we discuss an alternative definition of reduct, based on the notion of
entropy [27], which simplifies the complexity of finding a reduct for a SDT. Given
a SDT S with decision d, and W ⊆ Vt, we can define a basic belief assignment
as

m(W |[x]B) =
|{x′ ∈ [x]B : d(x′) = W}|

|[x]B | . (7)

Let P be a PDT, α ∈ [0, 1], B ⊆ Att be a set of attributes and denote by
INDB = {[x]B} the equivalence classes (granules) with respect to B. Let dα

[x]B

be the restriction of d on the equivalence class [x]B for the derived SDT S(P )α,
and let m(·|[x]αB) the corresponding bba. Then, we define the OAU entropy of
d, conditional on B and possibility degree α, as:

OAU(d|B,α) =
∑

[x]B∈INDB

|[x]B |
|U | OAU(m(·|[x]αB)) (8)

That is, the OAU entropy of a PDT (conditional on a set of attributes B and
a possibility degree α) is obtained by first computing the derived SDT S(P )α,
and then computing the (weighted) average of the OAU entropies of the bbas (see
Eq. 2) determined by the granules {[x]B : x ∈ U}. Based on the OAU entropy of
a PDT, we can define entropy reducts for PDTs:

Definition 7. Let B ⊆ Att be a set of attributes, α ∈ [0, 1]. Then, we say that
B is:

– An α-OAU super-reduct if OAU(d |B,α) ≤ OAU(d |Att, α);
– An α-OAU reduct if no proper subset of B is also a α-OAU super-reduct;
– An α-OAU ε-approximate super-reduct, with ε ∈ [0, 1), if OAU(d |B,α) ≤

OAU(d |Att, α) − log2(1 − ε);
– An α-OAU ε-approximate reduct if no proper subset of B is also an α-OAU

ε-approximate super-reduct.

Let [x]B be one of the granules with respect to an α-OAU reduct. Then, the
α-OAU instantiation with respect to [x]B is given by

decOAU(B,α)([x]B) = argmax
v∈Vt

{
p(v) | p ∈ argmin

p∈PBel

H(p)
}

, (9)

that is, (one of) the most probable among the classes under the probability
distributions which corresponds to the minimum value of entropy.
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Table 1. An example of possibilistic decision table

w x v z d

x1 0 0 0 0 0
x2 0 0 0 1 {0 : 0.5, 1 : 1.0}
x3 0 1 1 0 0
x4 0 1 1 1 {0 : 1.0, 1 : 0.5}
x5 0 1 0 1 1
x6 0 1 0 0 {0 : 0.5, 1 : 1.0}

Example 1. Let P =
〈
U = {x1, ..., x6}, A = {w, x, v, z}, d

〉
be the PDT in

Table 1. We have that α(P ) = {0.5, 1}, thus in particular S(P )0.5 assigns {0, 1}
to objects x2, x4, x6; while S(P )1 assigns 1 to objects x2, x6 and 0 to object x4.

We have OAU(d |A, 0.5) = OAU(d |B, 0.5) = 0 for B = {x, v}. Also, it
holds that OAU(d | {x}, 0.5) = OAU(d | {v}, 0.5) > 0. Thus, B is a 0.5-OAU
reduct of SDT. We note that {z} is also a 0.5-OAU reduct since, similarly,
OAU(d | z, 0.5) = 0.

The 0.5-OAU instantiation given by {x, v} is decx,v({x1, x2}) = 0, and, sim-
ilarly, decx,v({x3, x4}) = 0 (since for objects x1, ..., x4 the instantiation with
minimal OAU value is the one where all objects are assigned the label 0),
while decx,v({x5, x6}) = 1. By contrast, 0.5-OAU instantiation given by {z}
is decz({x1, x3, x6}) = 0, decz({x2, x4, x5}) = 1.

There is a single 0.5-MDL instantiation, that is decMDL({x1, x3, x6}) = 0,
and decMDL({x2, x4, x5}) = 1, which corresponds to the 0.5-MDL reduct {z}.
Thus, in this case, the 0.5-MDL reduct is equivalent to a 0.5-OAU reduct.

As regards S(P )1, we note that the decision attribute d is single-valued
(hence, there is a single instantiation) and the corresponding DT is consistent.
In this case there is a single reduct, namely C = {x, v, z}: therefore C is the only
1-MDL reduct and the only 1-OAU reduct.

Therefore we have that the set of MDL reducts is equivalent to the set of
0.5-MDL reducts (i.e. {{z}}); while the set of C-reducts is {{z}, {x, z, v}}; on
the other hand we notice that the set of λ-reducts (for varying λ) is structured
as follows: ⎧

⎪⎨

⎪⎩

{z} λ ≥ 0.5
{{z}, {x, z, v}} λ = 0.5
{{x, z, v}} 0 ≤ λ < 0.5

Note that the set of λ-reducts and C-reducts (and possibilistic reducts, by
extension) can include two sets R,R′ ⊆ Att s.t. R ⊂ R′ as long as they corre-
spond to two different instantiations of the PDT from which they are derived.

In Example 1, the set of α-MDL reducts was exactly the set of minimal (w.r.t.
size) α-OAU reducts: this is not a coincidence, we can show that this is a general
property of OAU reducts on consistent PDTs.
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Theorem 3. Let P be a PDT, α ∈ (0, 1] and assume that S(P )α is consistent.
Then, the set of consistent α-possibilistic reducts (i.e., the α-possibilistic reducts
whose corresponding instantiations are consistent) coincides with the set of α-
OAU reducts. Thus, in particular:

1. The set of consistent α-MDL reducts coincides with the set of minimal α-OAU
reducts;

2. Finding the sets of consistent C-reducts and λ-reducts (for all values of λ)
can be reduced to finding the set of α-OAU reducts for all values of α;

3. Finding the minimal α-OAU reducts is ΣP
2 -complete.

Proof. We show the proof only for the main statement: the other statements
directly follow from the definition of α-MDL reducts and from Theorems 1, 2.
Indeed, suppose that R is a consistent α-possibilistic reduct: this means that
there exists I ∈ I(R), instantiation of S(P )α that is consistent. As a consequence
OAU(d|R,α) = 0 and thus R is a α-OAU super-reduct. Suppose, further, that R
were not a α-OAU reduct: then ∃R′ ⊂ R s.t. OAU(d|R′, α) = 0, but this means
that R′ is a consistent reduct of S(P )α which is a contradiction. Therefore R is
an α-OAU reduct and the claim follows. ��

While, as a consequence of Theorem 3, the complexity of finding minimal
α-OAU reducts is the same as finding α-MDL ones, even in the approximate
case, the former approach to finding reducts is more amenable to optimization
as it does not require an explicit enumeration of the instantiations of the PDT.
Furthermore, as this approach relies on a quantitative quality measure (i.e.,
entropy), simple greedy procedures can be implemented with polynomial time
complexity (specifically, O(m2 · n), where m is the number of attributes and n
the number of objects), and the guarantee to find an α-OAU reduct (albeit not
necessarily minimal w.r.t. size).

4 Conclusion

In this article we studied the problem of feature selection in the learning from
fuzzy label setting, and introduced generalized notions of reducts as well as
algorithms for feature selection on the basis of this notion. While this paper pro-
vides a promising direction for the application of RST-based feature selection in
weakly supervised learning, it naturally leaves many questions open. Specifically,
we plan to address the following problems in future works:

– In Theorem 1, we showed that most definitions of reducts in a PDT can be
derived from the definition of α-possibilistic reducts. Similar characterization
also for D-reducts should be investigated in order to better understand the
relationship between the latter and other types of reducts;

– In Theorem 3, we showed the equivalence of α-OAU and α-possibilistic
reducts in the consistent case. The relation between these two definitions
of reduct in the general, non-necessarily consistent case, should also be inves-
tigated;
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– The definitions of reducts considered in this article, being based on the Pawlak
definition of rough approximations, can only be applied to discrete data: thus,
the generalization of the proposed approaches to encompass RST techniques
that can be applied to continuous data (neighborhood-based or fuzzy-rough
approaches) should be investigated.

– We plan to evaluate the performance of the proposed reduct definitions on
real PDTs: These, in turn, can be obtained from multi-rater annotations, or
through self-labeling techniques [11].
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Abstract. Algebraic structures are essential in fuzzy frameworks such
as fuzzy formal concept analysis and fuzzy rough set theory. This paper
studies two general structures such as right adjoint algebras and oper-
ator left residuated posets, introducing several properties which relate
them. Different extensions of the operators included in a given operator
left residuated poset are presented and a reasoned analysis is shown to
guarantee that the equivalence satisfied by the operators in this struc-
ture is not a generalization of the usual adjoint property, which is a basic
property verified by right adjoint pairs. Operator left residuated posets
are also studied in the framework of the Dedekind-MacNeille completion
of a poset.

Keywords: Operator left residuated poset · Right adjoint pair ·
Dedekind-MacNeille completion · Fuzzy modus ponens

1 Introduction

Residuated algebraic structures perform a fundamental role in many areas of
mathematics and information sciences, such as many-valued and fuzzy logics,
quantum logics and quantum computing, formal concept analysis, rough set the-
ory and fuzzy relation equations, among others [2–8,13,14,19,24,25]. In recent
years, several logical approaches have used different residuated algebraic opera-
tors as logical connectives and have investigated the relationships among these
operators. Following this research line, we will establish a comparison between
right adjoint pairs and operator left residuated posets.

Right adjoint pairs, which are composed of a conjunctor and implication
related by the well-known adjoint property, arise from right multi-adjoint alge-
bras [17]. These pairs provide more flexibility to the frameworks where they are
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used for making computations, since the commutativity and associativity proper-
ties are not required. In the literature, we can find different works where the right
adjoint pairs are widely studied from a theoretical point of view [15–18]. From an
application perspective, for instance, right adjoint pairs are considered in logic
programming for modeling knowledge systems with uncertainty, query proce-
dures and abductive reasoning [21,22,28–31,34–36], in fuzzy relation equations
for giving support mechanism for the negotiations of sellers [12] and knowing
the main actions that a considered company must perform for increasing their
benefits [1,37], in formal concept analysis and rough set theory for establishing
different degrees of preference on the attributes/objects of a database [20,32,33].

Operator left residuated posets were presented as general structures for sev-
eral non-classical logics whose underlying posets do not need to be lattices [9–11].
Indeed, these operators can be used as an algebraic semantics for the quantum
mechanics logic in a wide sense. Specifically in [10], it is shown that pseudo-
orthomodular, pseudo-Boolean and Boolean posets are a particular case of oper-
ators left residuated.

As we mentioned above, this paper relates right adjoint pairs to operator
left residuated posets, in order to study in what sense the latter generalizes the
well-known adjoint property, which is satisfied by right adjoint pairs. To reach
this goal, diverse properties will be included and different proper extensions of
the operators considered in a given operator left residuated poset will be defined.
In addition, we will study what requirements these extensions must satisfy to
ensure that they generalize the fuzzy modus ponens, in the semantical way,
following the philosophy proposed by Petr Hájek in [27]. Finally, operator left
residuated posets will be studied in the framework of the Dedekind-MacNeille
completion of a poset. This fact leads us to an important consequence, that
is, the “residuation” property verified by the operators of a given operator left
residuated poset is a restriction of the adjoint property satisfied by the operators
on the Dedekind-MacNeille completion of a poset.

The paper is organized as follows. Section 2 includes basic preliminary con-
cepts about Dedekind-MacNeille completion and Galois connections for a better
understanding. Section 3 introduces proper extensions of the operators consid-
ered in a given operator left residuated poset, as well as the required properties
for the generalization of the fuzzy modus ponens. Section 4 studies operator
left residuated posets defined on the Dedekind-MacNeille completion of a poset.
Conclusions and prospects for future work are presented in Sect. 5.

2 Preliminaries

Preliminary notions and results are included in order to make the paper self-
contained.

2.1 Dedekind-MacNeille Completion

This section recalls definitions and properties associated with the Dedekind-
MacNeille completion of a poset, which can be found for instance in [23]. First
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of all, the operators involved in the completion of a partial ordered set (poset)
are introduced.

Definition 1 ([23]). Let (P,≤) be a poset and A ⊆ P , the “upper” set and the
“lower” set of A are respectively defined as:

U(A) = {x ∈ P | a ≤ x, for all a ∈ A}
L(A) = {x ∈ P | x ≤ a, for all a ∈ A}

These operators form an antitone Galois connection, whose definition is
recalled next, together with the isotone version.

Definition 2 ([23]). Let (P,≤P ) and (Q,≤Q) be posets. The pair (↑, ↓) of map-
pings ↓ : P → Q and ↑ : Q → P is:

– An isotone Galois connection between P and Q if the next equivalence holds:

p ≤P q↑ if and only if p↓ ≤Q q

for all p ∈ P and q ∈ Q.
– An antitone Galois connection between P and Q if the next equivalence holds:

p ≤P q↑ if and only if q ≤Q p↓

for all p ∈ P and q ∈ Q.

As a consequence, the following properties are satisfied, for all A,B ⊆ P .

(i) A ⊆ LU(A) and A ⊆ UL(A)
(ii) If A ⊆ B then U(B) ⊆ U(A) and L(B) ⊆ L(A)
(iii) If x1 ≤ x2 then U(x1) ⊆ U(x2) and L(x1) ⊆ L(x2)
(iv) U(A) = ULU(A) and L(A) = LUL(A)

The Dedekind-MacNeille completion of a poset (P,≤) is defined, from the
operators U and L, as follows.

Definition 3 ([23]). Let (P,≤) be a poset. The Dedekind-MacNeille completion
of P is the set DM(P ) = {LU(A) | A ⊆ P}, which forms a complete lattice with
respect to the inclusion ordering.

It is important to emphasize that Dedekind-MacNeille completion of P forms
a closure system in the powerset of P , and therefore the infimum coincides with
the intersection and the supremum is the closure of the union.

Now, we present a technical property which will be helpful later.

Proposition 1 ([23]). Let (P,≤) be a poset. For all X ⊆ P the following
equalities hold in DM(P ):

∧

x∈X

L({x}) = L(X)
∨

x∈X

L({x}) = LU(X)

From now on, when the mappings U and L evaluate singleton sets, we will write
x instead of {x} in order to simplify the notation.
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2.2 Algebraic Structures

This section recalls the notions of right adjoint algebras and operator left resid-
uated posets.

Right adjoint algebras are right multi-adjoint algebras [17,18] in which only
one right adjoint pair is considered. These algebras generalize residuated lat-
tices, introduced by Dilworth and Ward [26], and neither the commutativity
and associativity properties nor the boundary conditions with the top element
are required.

Definition 4 ([17,18]). A right adjoint algebra (P1,≤1, P2,≤2, P3,≤3,&,↙) is
a tuple composed of three posets (P1,≤1), (P2,≤2), (P3,≤3) and two mappings
&: P1 × P2 → P3, ↙ : P3 × P2 → P1 satisfying the following equivalence

x& y ≤3 z if and only if x ≤1 z ↙ y

for all x ∈ P1, y ∈ P2 and z ∈ P3. The pair (&,↙) is called right adjoint pair
with respect to P1, P2, P3.

The previous equivalence is called adjoint property, and represents a seman-
tics fuzzy extension of modus ponens. The following properties associated with
the operators of a right adjoint pair can be obtained from the adjoint property.

Proposition 2 ([17,18]). Let (&,↙) be a right adjoint pair with respect to the
posets (P1,≤1), (P2,≤2), (P3,≤3), then the following properties are satisfied:

(i) & and ↙ are order-preserving in the first argument.
(ii) ⊥1 & y = ⊥3, �3 ↙ y = �1, for all y ∈ P2, when (P1,≤1,⊥1,�1) and

(P3,≤3,⊥3,�3) are bounded posets.
(iii) z ↙ y = max{x ∈ P1 | x& y ≤3 z}, for all y ∈ P2 and z ∈ P3.
(iv) x& y = min{z ∈ P3 | x ≤1 z ↙ y}, for all x ∈ P1 and y ∈ P2.

Another interesting property which relates right adjoint pairs with Galois con-
nection is given below.

Proposition 3. Let (P1,≤P1), (P2,≤P2), (P3,≤P3) be posets and &y : P1 →
P3, ↙y : P3 → P1 be mappings defined as &y(x) = x& y, ↙y (z) = z ↙ y,
respectively, for all x ∈ P1, z ∈ P3. The pair (&,↙) is a right adjoint pair with
respect to P1, P2, P3 if and only if (&y,↙y) is an isotone Galois connection, for
each y ∈ P2.

In this paper, we are interested in relating right adjoint algebras to operator
left residuated posets. For that reason, we will recall next the formal definition
of this structure, which was introduced by Chajda and Länger in [9].

Definition 5 ([9]). An operator left residuated poset is an ordered seventuple
(P,≤,′ ,M,R, 0, 1) composed of a bounded poset with a unary operation (P,≤,′

0, 1) and two mappings M : P × P → 2P and R : P × P → 2P satisfying the
following conditions, for all x, y, z ∈ P :
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(i) M(x, 1) = M(1, x) = L(x)
(ii) R(x, y) = P if and only if x ≤ y
(iii) R(x, 0) = L(x′)

and the equivalence:

M(x, y) ⊆ L(z) if and only if L(x) ⊆ R(y, z) (1)

In [9], the operators M and R were extended from P to 2P as follows:

M(X,Y ) =
⋃

(x,y)∈X×Y

M(x, y)

R(Y,Z) =
⋃

(y,z)∈Y ×Z

R(y, z)

for all X,Y,Z ∈ 2P . We will show in this paper that these extensions are not
suitable to satisfy Equivalence (1).

After introducing the basic concepts associated with the Dedekind-MacNeille
completion and residuated algebraic structures, we can establish a comparative
study between right adjoint algebras and operator left residuated posets.

3 Adjoint Property in Operator Left Residuated Posets

This section is devoted to comparing operator left residuated posets with right
adjoint algebras. The theoretical development will be split into three parts. The
first part introduces proper extensions of the mappings M and R, from P to 2P ,
in order to satisfy a generalization of Equivalence (1) in Definition 5. The sec-
ond part identifies the aforementioned extensions of M and R with the operators
involved in a right adjoint algebra, for studying the requirements must be veri-
fied to guarantee that these extensions semantically generalize the fuzzy modus
ponens. Taking into account the obtained results, the third part presents another
different extension of the mappings M and R, which semantically generalizes the
fuzzy modus ponens.

First of all, we include the following monotonicity properties which are
deduced from the definition of an operator left residuated poset.

Proposition 4. Given an operator left residuated poset (P,≤,′ ,M,R, 0, 1),
given x1, x2, y1, y2 ∈ P , we have that

(i) If x1 ≤ x2, then M(x1, 1) ⊆ M(x2, 1).
(ii) If y1 ≤ y2, then R(y2, 0) ⊆ R(y1, 0).
(iii) R(y, 0) ⊆ R(y, z), for all z ∈ P .

Proof. (i) Given x1, x2 ∈ P , with x1 ≤ x2, we trivially have that M(x2, 1) ⊆
M(x2, 1) = L(x2). By the monotonicity of L and Equivalence (1), we obtain
that

L(x1) ⊆ L(x2) ⊆ R(1, x2)
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that is, L(x1) ⊆ R(1, x2), and considering again Equivalence (1), we obtain the
inclusion M(x1, 1) ⊆ L(x2) = M(x2, 1).

Properties (ii) and (iii) hold similarly from the properties of R and Equiva-
lence (1).

Notice that, the usual monotonic properties of right adjoint operators are
not satisfied in general. Moreover, M and R are not defined in suitable domains
for satisfying adjoint property. Specifically, from the definition of isotone Galois
connection (Definition 2), the operators ↓ : P → Q and ↑ : Q → P are defined
between P and Q. However, given y ∈ P , the operators M( , y) : P → 2P and
R(y, ) : P → 2P are defined in the same domain and codomain and, for instance,
they cannot be composed. Therefore, M and R cannot properly generalize the
definition of right adjoint pair.

3.1 Extension of M and R to 2P

The two most simple options in order to modify the domain and codomains of
M and R preserving Equivalence (1) are explained below. The first option is to
restrict the powerset 2P to P , but this does not work because L(x) and L(z) are
in Equivalence (1). The second option is to consider the extensions presented
in [9] and recalled in Sect. 2.2, but this other possibility does not work either
because the extension of R to 2P does not satisfy Equivalence (1) in general.
For example, if we assume that L(x) ⊆ R(y, Z), with x, y ∈ P and Z ∈ 2P , then
L(x) ⊆ ⋃

z∈Z R(y, z), and this inclusion and Equivalence (1) do not imply that
M(x, y) ⊆ L(z), for all z ∈ Z, in general.

Next, proper extensions of M and R from P to 2P are defined, with the main
goal of satisfying a generalization of Equivalence (1).

Theorem 1. The mappings M̄ : 2P × 2P → 2P and R̄ : 2P × 2P → 2P , defined
as

M̄(X,Y ) =
⋃

(x,y)∈X×Y

M(x, y)

R̄(Y,Z) =
⋂

(y,z)∈Y ×Z

R(y, z)

for all X,Y,Z ∈ 2P , satisfy the property

M̄(X,Y ) ⊆ L(Z) iff LU(X) ⊆ R̄(Y,Z) (2)

Proof. Given X,Y,Z ∈ 2P , if we assume M̄(X,Y ) ⊆ L(Z), then by the definition
of M̄ and Proposition 1 we have that

M̄(X,Y ) =
⋃

(x,y)∈X×Y

M(x, y) ⊆
∧

z∈Z

L(z)

for all x ∈ X, y ∈ Y , and z ∈ Z. Hence, given y ∈ Y , and z ∈ Z, we have that

M(x, y) ⊆ L(z)
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for all x ∈ X, and applying Equivalence (1) we obtain

L(x) ⊆ R(y, z)

for all x ∈ X, and by the supremum property we obtain that
∨

x∈X L(x) ⊆
R(y, z). Therefore, by Proposition 1, we have LU(X) ⊆ R(y, z), for all y ∈ Y ,
and z ∈ Z. Hence, by the intersection property, we obtain the required inclusion

LU(X) ⊆
⋂

(y,z)∈Y ×Z

R(y, z) = R̄(Y,Z)

The other implication follows similarly.

Notice that Equivalence (2) really generalizes Equivalence (1), because
LU(x) = L(x), for all x ∈ P .

Once the extensions of M and R to 2P have been defined, we will study if
they represent the fuzzy modus ponens in the semantical way.

3.2 Requirements for a Proper Fuzzy Modus Ponens

Petr Hájek highlighted in [27] that an implication operator → semantically
extends the modus ponens to the fuzzy case if it has an associated conjunc-
tor ⊗ satisfying that y → z is the maximum element verifying the inequality
(y → z) ⊗ y ≤ z. For example, right adjoint pairs satisfy this property. By
Proposition 2, given a right adjoint pair (&,↙) with respect to a poset (P,≤),
we have that the implication can be defined as follows:

z ↙ y = max{x ∈ P | x& y ≤ z} (3)

for all y, z ∈ P .
This section focuses on studying the requirements that the mappings M̄ : 2P×

2P → 2P and R̄ : 2P × 2P → 2P , defined in Theorem 1, should satisfy in order
to Equivalence (2) semantically represents the fuzzy modus ponens.

Therefore, identifying the mappings M̄ and R̄ with & and ↙, and considering
Equivalence (2), we should prove that

M̄(R̄(Y,Z), Y ) ⊆ L(Z) (4)

for all X,Y,Z ∈ 2P . By Equivalence (1), Inclusion (4) is equivalent to

LU(R̄(Y,Z)) ⊆ R̄(Y,Z)

Since LU is a closure operator, the element R̄(Y,Z) must satisfy that
LU(R̄(Y,Z)) = R̄(Y,Z), but this equality clearly only holds when R̄(Y,Z) is
a closure element of LU . Therefore, R̄(Y,Z) 
∈ {X ∈ 2P | M̄(X,Y ) ⊆ L(Z)}
in general. As a consequence, R̄(Y,Z) cannot be the maximum of {X ∈ 2P |
M̄(X,Y ) ⊆ L(Z)}, as it happens to operators involved in right adjoint pairs.
Thus,

R̄(Y,Z) 
= max{X ∈ 2P | M̄(X,Y ) ⊆ L(Z)}
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which is fundamental in many applications in which a fuzzy modus ponens is
required.

Taking into account the previous reasoning, we need to define a new extension
of the operators M and R which is carried out below.

3.3 Extension of Operator Left Residuated Posets

This section considers an operator left residuated poset (P,≤,′ ,M,R, 0, 1), where
R(y, z) is an element of DM(P ), and so satisfies Inclusion (4) for singletons in P .
On this framework, the following extension of M and R are defined.

Theorem 2. The mappings M̃ : DM(P )×2P → 2P and R̃ : 2P ×2P → DM(P ),
defined as

M̃(X,Y ) =
⋃

(x,y)∈X×Y

M(x, y)

R̃(Y,Z) =
∧

(y,z)∈Y ×Z

R(y, z)

for all X,Y,Z ∈ 2P and where
∧

is the infimum operator in DM(P ), satisfy the
equivalence

M̃(X,Y ) ⊆ L(Z) iff LU(X) ⊆ R̃(Y,Z) (5)

In addition, we have that

R̃(Y,Z) = max{X ∈ DM(P ) | M̃(X,Y ) ⊆ L(Z)}
for all X ∈ DM(P ) and Y,Z ∈ 2P .

Proof. The proof straightforwardly follows from the proof of Theorem 1, the fact
that the elements in DM(P ) are closure elements of LU , and the last comments
in the previous section.

Notice that, since by hypothesis R(y, z) ∈ DM(P ), for all y, z ∈ P , we have
that

R̄(Y,Z) =
⋂

(y,z)∈Y ×Z

R(y, z) =
∧

(y,z)∈Y ×Z

R(y, z) = R̃(Y,Z)

Therefore, the only difference between M̄ , R̄ and M̃ , R̃ is the considered domains.
Taking into account this last comment, we can consider the extensions M̄ and

R̄ in the following reasoning. Notice that, if they are identified again with the
operators of a right adjoint pair (&,↙) defined on a poset (P,≤), then Property
(iv) of Proposition 2 is not satisfied. Specifically, if the conjunctor is written
from the implication as follows:

x& y = min{z ∈ P | x ≤ y ↙ z}
for all x, y ∈ P , considering Equivalence (2) this equality clearly implies the
inclusion

L(x) ⊆ R̄(y, M̄(x, y))
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holds for all x, y, z ∈ P , which is equivalent by Equivalence (1) to

M̄(x, y) ⊆ L(M̄(x, y))

However, this inclusion is only true when M̄(x, y) is a singleton, which is a very
restrictive property to M̄ by its definition. Since assuming that M̄(X,Y ) is a
singleton for all X,Y ∈ 2P is equivalent to say that M(x, y) is constant for all
x, y ∈ P . As a consequence of all previous comments, the extension of M and
R to 2P does not satisfy the usual properties of right adjoint pairs, in general.
Thus, Equivalence (1) could not be considered as a generalization of the adjoint
property, but as a variant.

The following section will study the operator left residuated poset on the
Dedekind-MacNeille completion framework.

4 Operator Left Residuated Posets from a
Dedekind-MacNeille Completion

This section will consider Equivalence (1) in the framework of the Dedekind-
MacNeille completion of the poset (P,≤). The first result considers the left side
of Equivalence (1).

Proposition 5. Given an operator left residuated poset (P,≤,′ ,M,R, 0, 1), the
following equivalence holds:

M(x, y) ⊆ L(z) iff LU(M(x, y)) ⊆ L(z)

for all x, y, z ∈ P .

Proof. The proof straightforwardly follows from the properties of operators L
and U .

Since both elements LU(M(x, y)) and L(z) belong to DM(P ), the inclusion
LU(M(x, y)) ⊆ L(z) can be considered on DM(P ). Moreover, if we assume as
in the previous section that R(y, z) is an element of DM(P ), for all y, z ∈ P ,
then the right side of Equivalence (1) is also considered on DM(P ). However, the
second argument of M and the first argument of R are not taken into account in
the equivalence and so, these arguments could not be extended to any powerset.
These reflexions point out the study of the following result.

Theorem 3. Let (P,≤) be a poset, M : P ×P → 2P and R : P ×P → 2P be two
mappings such that M and R are order-preserving in both second arguments. If
the mappings M̂ : DM(P )×P → DM(P ) and R̂ : P ×DM(P ) → DM(P ), defined
as

M̂(X, y) =
⋃

x∈X

M(x, y)

R̂(y, Z) =
∧

z∈Z

R(y, z)
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for all X,Z ∈ DM(P ) and y ∈ P , satisfy the adjoint property, that is,

M̂(X, y) ⊆ Z if and only if X ⊆ R̂(y, Z) (6)

then M and R satisfy Equivalence (1).

Proof. Given x, y, z ∈ P , by Equivalence (6), we have that

M̂(L(x), L(y)) ⊆ L(z) iff L(x) ⊆ R̂(L(y), L(z))

which is equivalent to
⋃

x′∈L(x)

M(x′, y) ⊆ L(z) iff L(x) ⊆
∧

z′∈L(z)

R(y, z′)

If M(x, y) ⊆ L(z), by the monotonicity of M , we have that
⋃

x′∈L(x)

M(x′, y) ⊆ M(x, y) ⊆ L(z)

and by the equivalence above and the monotonicity of R we obtain that

L(x) ⊆
∧

z′∈L(z)

R(y, z′) ⊆ R(y, z)

Since the other implication arises similarly, we have that M and R satisfy Equiv-
alence (1).

As a consequence of the previous result, we can assert that Equivalence (1)
can be considered as a weaker property of the adjoint property of operators on
the Dedekind-MacNeille completion of a poset P .

5 Conclusions and Future Work

This paper establishes a comparative study among the operators involved in right
adjoint algebras and operator left residuated posets. Two different extensions of
the operators M and R are introduced, one of these in order to show that it
satisfies a generalization of the fuzzy modus ponens in a semantical way. In
addition, a detailed reasoning is included to ensure that the equivalence satisfied
by operator left residuated posets cannot be considered as a generalization of the
usual adjoint property and that they do not satisfy other interesting properties,
such as the monotonicity properties. Finally, operator left residuated posets are
studied in the framework of the Dedekind-MacNeille completion of a poset. We
obtain that the “residuation” property satisfied by the operators of a given
operator left residuated poset is a restriction of the adjoint property, of the
operators on the Dedekind-MacNeille completion of the poset.

As a consequence, the operators satisfying this restriction could not verify
important properties, such as the monotonicity properties, and they could not
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satisfy the natural semantics fuzzy extension of the modus ponens. Hence, the
useful of this restriction in applications will be studied in the future. Moreover,
more properties and possible modifications and adaptions will be studied in
order to be considered in real cases, such as the ones related to digital forensic
and taken into consideration in the COST Action DIGital FORensics: evidence
Analysis via intelligent Systems and Practices (DigForASP).
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Abstract. We propose an adaptation of fuzzy rough sets to model con-
cepts in datasets with missing values. Upper and lower approximations
are replaced by interval-valued fuzzy sets that express the uncertainty
caused by incomplete information. Each of these interval-valued fuzzy
sets is delineated by a pair of optimistic and pessimistic approximations.
We show how this can be used to adapt Fuzzy Rough Nearest Neighbour
(FRNN) classification to datasets with missing values. In a small experi-
ment with real-world data, our proposal outperforms simple imputation
with the mean and mode on datasets with a low missing value rate.

Keywords: Fuzzy rough sets · Interval-valued fuzzy sets · Machine
learning · Missing values

1 Introduction

Fuzzy and rough sets can be used to model different types of uncertainty. Fuzzy
sets [3,23] allow us to model partial membership of a concept, while rough sets
[20,21] capture the conflicting ways in which a concept may be predicted from
a set of independent attributes. The two concepts are unified in the fuzzy rough
set [8]. If X ⊂ R

m is a dataset, and C ⊆ X a fuzzy subset, then the fuzzy rough
set induced by C is the pair of fuzzy sets (C,C). The upper approximation C
generalises the positive evidence for C in X, whereas the lower approximation
C generalises the negative evidence for C in X.

In this paper, we consider a third type of uncertainty: incomplete information.
There exists a wide range of strategies to deal with missing data [2], including
proposals that involve rough or fuzzy rough sets [22]. In particular, fuzzy rough
sets have been used for imputation [1], there have been proposals to adapt both
crisp and fuzzy decision rules to the presence of missing values [10,12,17], and in
the context of classical rough sets, [10] has provided three alternative definitions
of upper and lower approximations in datasets with missing values. In contrast,
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our strategy is to incorporate the uncertainty of incomplete information directly
into the representation of concepts, by extending the notion of fuzzy rough set.

We propose to mimic the dual approach of rough sets by modelling an opti-
mistic and a pessimistic scenario when comparing a missing value with another
value. The optimistic scenario is that the two values are really identical, while
the pessimistic scenario is that they are maximally different. We cannot know
what the ground truth is, but we know that it must lie somewhere in between
these two extremes. Formally, we can represent this with an interval-valued fuzzy
set [9, and references therein]. Since the uncertainty of incomplete information is
orthogonal to the uncertainty that arises from positive and negative information,
the resulting interval-valued fuzzy rough set is defined by four fuzzy sets: the opti-
mistic and pessimistic upper and lower approximations C

min
, C

max
, Cmin, Cmax.

This work builds on the earlier proposal for interval-valued fuzzy rough sets
in the context of feature selection [14], as well as a related proposal of ill-known
fuzzy rough sets [5] based on twofold fuzzy sets [7], but this approach has other-
wise remained relatively underexplored. We present an up-to-date definition in
Sect. 2. In Sect. 3, we modify Fuzzy Rough Nearest Neighbour (FRNN) classifica-
tion to incorporate interval-valued fuzzy rough sets, and evaluate its performance
on a number of real-live datasets.

2 Interval-Valued Fuzzy Rough Sets

Recall the formal definitions of the upper and lower approximations with Ordered
Weighted Averaging (OWA) operators [4]:

Definition 1 (Soft maxima and minima). Let w be a weight vector of length
k, with values in [0, 1] that sum to 1. The soft maximum w↓ and soft minimum
w↑ induced by w transform a collection Y of values in R into, respectively, the
weighted sums

w↓
i≤k

Y =
∑

i≤k

wi · yi+ ,

w↑
i≤k

Y =
∑

i≤k

wi · yi− ,
(1)

where yi+ and yi− are the ith largest and ith smallest elements in Y .

Definition 2 (Upper and lower approximations). Let X ⊂ R
m be a finite

multisubset for some m ∈ N, let R be a tolerance relation on R
m, w a weight

vector of some length k, T a t-norm and I a fuzzy implication. Then for any
fuzzy submultiset C of X, the upper and lower approximations C and C are the
fuzzy subsets of Rm defined by:

C(y) = w↓
x∈X

(T (R(y, x), C(x))

C(y) = w↑
x∈X

(I(R(y, x), C(x))
(2)
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While a dataset can contain instances with identical attribute values but dif-
ferent membership degrees in a concept C, the upper and lower approximations
of C only depend on attribute values, and so can be defined as fuzzy subsets of
the attribute space.

It is convenient to aggregate R from attribute-specific tolerance relations Ri

on R by means of some monotonic function f : [0, 1]m −→ [0, 1]. In line with
recent works, we let f be the mean, and we write Rf := f((Ri)i≤m).

Next, recall the definition of the interval-valued fuzzy set [9, and references
therein]:

Definition 3 (Interval-valued fuzzy set). Let X be a set. An interval-valued
fuzzy set in X is a pair of fuzzy sets (F1, F2) in X such that F1(x) ≤ F2(x) for
all x ∈ X.

Equivalently, an interval-valued fuzzy set in X can also be defined as a func-
tion X −→ I([0, 1]), where the range is the set of intervals in [0, 1], i.e. the subset
of [0, 1]× [0, 1] whose values in the first component are always less than or equal
to the values in the second component.

We can accommodate the possibility of missing data by adjoining a formal
symbol denoting a missing value to each copy of R to obtain R? := R∪ {?}, and
by letting X be a multisubset of Rm

? . The task then is to extend any choice of
Ri to ?. We define optimistic and pessimistic per-attribute relations Rmax

i and
Rmin

i by stipulating that for any a, b ∈ R:

Rmax
i (a, b) = Rmin

i (a, b) = Ri(a, b)
Rmax

i (a, ?) = Rmax
i (?, b) = Rmax

i (?, ?) = 1

Rmin
i (a, ?) = Rmin

i (?, b) = Rmin
i (?, ?) = 0

(3)

Accordingly, we define interval-valued upper and lower approximations
through the aggregated relations Rmax

f and Rmin
f :

Definition 4 (Interval-valued upper and lower approximations). Let
X ⊂ R

m
? be a finite multisubset for some m ∈ N, let w be a weight vector of

some length k, T a t-norm and I a fuzzy implication, and let (Ri)i≤m be a series
of similarity measures and f : Rm −→ [0, 1] an aggregation function such that
Rf is a tolerance relation. Then for any fuzzy submultiset C of X, the interval-
valued upper and lower approximations of C are, respectively, the interval-valued
fuzzy sets (C

min
, C

max
) and (Cmin, Cmax), defined as:

C
min

(y) = w↓
x∈X

(T (Rmin
f (y, x), C(x))

C
max

(y) = w↓
x∈X

(T (Rmax
f (y, x), C(x))

Cmin(y) = w↑
x∈X

(I(Rmax
f (y, x), C(x))

Cmax(y) = w↑
x∈X

(I(Rmin
f (y, x), C(x))

(4)
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Because t-norms and fuzzy implications are respectively monotonic and anti-
monotonic in the first argument, the pessimistic approximations C

min
and Cmin

encode the minimum membership degrees in the upper and lower approxima-
tions, while the optimistic approximations C

max
and Cmax encode the maximum

membership degrees.
The computational complexity of calculating (4) is in principle the same as

that of calculating (2), which is the computational complexity of a k-nearest
neighbour query. However it requires the implementation of k-nearest neighbour
algorithms with the distance measure corresponding to (3).

Membership in the optimistic and pessimistic approximations—like member-
ship in ordinary upper and lower approximations—is determined purely on the
basis of the attribute values of an instance, so it is possible to plot member-
ship degrees across the attribute space. This is illustrated for a toy example
in Fig. 1. Here, C is a crisp set containing two elements, one of which has a
missing attribute value, which we have represented with a line. We have cho-
sen Ri(y, x) = 1 − |yi − xi|. For crisp sets, the choice of t-norm becomes void:
T (R(y, x), C(x)) is equal to R(y, x) if C(x) = 1, and equal to 0 otherwise. Sim-
ilarly, the choice of fuzzy implication resolves to a choice of fuzzy negation; we
use the standard negation z 
−→ 1 − z. We set w =

〈
2
3 , 1

3

〉
. Darker shades of red

indicate higher membership degrees. It can be seen that membership degrees of
the optimistic approximations are uniformly higher than membership degrees of
the pessimistic approximations.

The treatment in this section is essentially an updated version of [14]. The
differences are mainly practical. Firstly, [14] uses a more general setting, where
Ri is an interval-valued relation, but this greater generality potentially obscures
the fact that this approach can be applied in any context that currently uses
ordinary fuzzy rough sets, where Ri is scalar-valued. And secondly, [14] requires
the aggregation function f to be a t-norm. As a result, Rmin

f will always be 0 if
any of the attribute values are missing, and we lose the information encoded by
the non-missing attribute values.

3 FRNN with Interval-Valued Approximations

Upper and lower approximations can be used for Fuzzy Rough Nearest Neigh-
bour (FRNN) classification [13], by calculating the membership of an unknown
instance in the upper and lower approximations of the crisp decision classes
and identifying the class with the highest membership degree. For datasets with
missing data, we can instead use the interval-valued upper and lower approxima-
tions for classification. We test this with a small experiment. As upper and lower
approximations produce equivalent results with two-class datasets, we simplify
the experiment by only using the upper approximation.

For crisp sets C, the choice of t-norm in (4) becomes void. In line with previ-
ous work [18] we use linearly decreasing weights k

k(k+1)/2 , k−1
k(k+1)/2 , . . . , 1

k(k+1)/2 ,
and set k to 20 or the size of the decision class, whichever is smaller. For the
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(a) Cmax
(b) Cmin

(c) (X \ C)
max

(d) (X \ C)
min

Fig. 1. Toy example with C = {(0.2, 0.8), (?, 0.2)}. Missing value displayed as a line.
Optimistic and pessimistic upper approximations of C and optimistic and pessimistic
lower approximations of X \ C.

tolerance relation, we select Ri(y, x) = 1 − |yi − xi|/ri, where ri is the range of
values in the training set.

We evaluate performance with the mean Area Under the Receiver Operator
Curve (AUROC) across 5-fold cross-validation. For multi-class datasets, we use
the extension of AUROC by Hand & Till (2001) [11]. We apply this to eleven
datasets with missing values selected from the UCI archive of machine learning
datasets [6]. Where applicable, we remove classes with fewer than five instances,
and select a stratified sample of 2000 instances.

We experiment with two strategies: using the mean membership values in
the optimistic and pessimistic approximations, and optimising a weighted mean
on the basis of training data.

For the second strategy, we use the efficient form of leave-one-out validation
detailed in [19]. Briefly, this entails taking a single nearest neighbour query for
the entire training set, and correcting it by removing nearest neighbour distances
from a training instance to itself. The remaining values can then be used to
calculate optimistic and pessimistic approximation memberships C \ {x}max

(x)
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and C \ {x}min
(x). We parametrise the average of these two values with a value

λ ∈ [0, 1] (5).

(1 − λ) · C \ {x}min
(x) + λ · C \ {x}max

(x) (5)

We optimise λ by calculating the resulting AUROC and applying Malherbe-
Powell optimisation [15,16] with a budget of 20 evaluations.

Note that the computational complexity of this strategy is equal to the com-
putational complexity of a k+1-nearest neighbour query with n query instances
and n target instances, where n is the size of the training set. For large n, this
can potentially be mitigated by using only a subset of the training set to optimise
λ.

Table 1. Datasets with the number of classes, instances and attributes, the rate of
missing values, and the AUROC from classification with the mean of optimistic and
pessimistic upper approximation memberships, with an optimised ratio of both, and
with normal upper approximation memberships after imputation with the mean and
mode.

Dataset c n m #? Mean Optimised Imputation

adult 2 2000 13 0.010 0.863 0.863 0.860

aps-failure 2 2000 170 0.083 0.969 0.985 0.993

arrhythmia 10 443 279 0.003 0.878 0.880 0.877

ckd 2 400 24 0.105 1.000 1.000 1.000

exasens 4 399 7 0.428 0.738 0.748 0.734

hcc 2 165 49 0.102 0.746 0.741 0.771

hepatitis 2 155 19 0.057 0.879 0.884 0.877

mammographic-masses 2 961 4 0.042 0.833 0.834 0.827

primary-tumor 15 330 17 0.039 0.779 0.777 0.775

secom 2 1567 590 0.045 0.678 0.681 0.689

soybean 19 683 35 0.098 0.993 0.995 0.996

Mean 0.851 0.854 0.854

The results are displayed in Table 1. Optimising the weighted mean increases
AUROC for 7 datasets and decreases it for 3. Applying a one-sided Wilcoxon
signed-rank test, we find that this is weakly significant (p = 0.057).

For comparison, we have also included the results obtained from simple impu-
tation with the mean (numerical attributes) or mode (categorical attributes)
of the known values in the training data. For 6 datasets, both the mean and
optimised weighted mean optimistic and pessimistic approximations achieve a
higher AUROC than simple imputation, whereas for 5 datasets, simple impu-
tation achieves a higher AUROC. If we exclude the outlying dataset exasens,
we see that the optimistic and pessimistic approximations perform better on
datasets with a lower missing value rate, and imputation on datasets with a
higher missing value rate (Fig. 2). When we fit a logistic regression model, the
odds are even at a missing value rate of 0.056.
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Fig. 2. Distribution of datasets for which imputation or the proposal of this paper
achieves higher AUROC as a function of the missing value rate, with logistic regression
fit.

4 Conclusion

In this paper we have presented an approach towards datasets with missing
values that has received relatively little attention so far. While the existing liter-
ature is typically devoted to resolving these missing values in an optimal manner,
we have argued that in the context of fuzzy rough sets, which are motivated by
a desire to model different kinds of uncertainty, it is worthwhile to also model
the uncertainty of incomplete information.

We have recalled the concept of interval-valued fuzzy rough set, which iterates
on the dualistic nature of rough sets and replaces the upper and lower approxi-
mations by interval-valued fuzzy sets: secondary pairs of approximations, reflect-
ing optimistic and pessimistic assumptions about the values that are missing.
These define a bandwidth that contains the true (but unknown) upper and lower
approximation memberships. We think that this can offer a valuable perspective
for qualitative analyses of datasets with missing values.

We have shown how the interval-valued upper and lower approximations
can be used to extend Fuzzy Rough Nearest Neighbour (FRNN) classification to
problems with missing values. From an evaluation on several real-world datasets,
we found that the best results can be obtained by taking a weighted average of
the optimistic and pessimistic approximation memberships, and by optimising
the relative weight on the basis of training data. This results in a comparable
overall performance to simple imputation with the mean and mode, but is more
directly interpretable as it does not involve the insertion of artificial values.
Further analysis revealed that our proposal in particular outperforms imputation
on datasets with a missing value rate below 0.056.

We leave the integration of interval-valued fuzzy rough sets into other algo-
rithms like fuzzy rule induction for future research.
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Abstract. Attribute reduction is a significant process of data prepro-
cessing to overcome the challenges posed by multidimensional data anal-
ysis. Missing values in the data are usually unavoidable in the real appli-
cations, so it is important to select features with high importance effi-
ciently in incomplete data. The theory of rough sets has been widely used
in attribute reduction for uncertain data mining. To enable the rough
set theory for large-scale incomplete data analysis, this paper develops a
novel distributed attribute reduction algorithm based on Apache Spark
cluster computing platform. By taking the advantage of positive approx-
imation technique for reducing the data broadcasting gradually while
reducing each redundant attribute iteratively, the proposed algorithm
can significantly accelerate the attribute reduction in leveraging a com-
puter cluster when processing large-scale incomplete data. Numerical
experiments on different UCI data sets evidences the proposed parallel
algorithm achieves high performance in terms of extensibility and scala-
bility.

Keywords: Attribute reduction · Incomplete data · Rough sets ·
Parallel computing · Apache Spark

1 Introduction

Attribute reduction aims at removing redundant attributes in the data, which
is useful for reducing the computational burden of learning, while maintaining
the accuracy of learning. Rough set theory, originally proposed by Pawlak, has
been widely applied in attribute reduction and its related techniques [1]. A great
number of attribute reduction algorithms based on rough sets have been designed
for classification learning until now.

The presence of missing value is a significant issue in data mining and knowl-
edge discovery, since the valued information available is incomplete and less
reliable. It is a challenge to deal with missing values for attribute reduction in
c© Springer Nature Switzerland AG 2021
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incomplete data. Therefore, many researchers are going into efforts to design
novel algorithms for attribute reduction in incomplete data to improve learning
performance. Du and Hu expand the similarity dominance relation in incomplete
ordered information systems and presented an attribute reduction algorithm
based on discernibility matrix and discernibility function [2]. Tan et al. mea-
sured the uncertainty of rough approximations in incomplete decision systems
using belief and plausibility functions, and constructed an attribute reduction
method based on multigranulation rough sets [3]. Shu and Shen designed a posi-
tive region based incremental attribute reduction algorithm in incomplete infor-
mation systems [4]. Qian and Shu introduced boolean reasoning techniques into
attribute reduction in consistent and inconsistent incomplete ordered informa-
tion systems with fuzzy decision [5]. Xie and Qin developed incremental attribute
reduction algorithm based on the inconsistency degree with three update strate-
gies of reduction [6]. Li and Wang proposed novel approaches for approximate
concept construction and attribute reduction based on three-way decisions in
incomplete contexts [7]. Sun et al. designed a novel attribute reduction method
by using Lebesgue and entropy measures for uncertainty analysis in incomplete
neighborhood decision systems [8]. Qian et al. extended the concept of posi-
tive approximation to incomplete information systems, and presented a positive
approximation framework for accelerating large-scale attribute reduction prob-
lem [9]. Most of the existing attribute reduction algorithms can often show good
performance on incomplete information systems with small amounts of data. As
the complexity of algorithms are usually not so much high when the amount of
data is relatively small, and the data will be loaded into the memory at one time
for the computation of optimal attribute subset.

With the gradual popularization of computer networks and the rapid devel-
opment of information technology, the rapid growth of data has become a key
problem that needs to be considered in various research fields. Parallel and dis-
tributed computing technique provide a practical pathway to meet the challenge
of explosive growth of data by exploiting usage of high performance computing
resources. Acceleration of attribute reduction algorithms within a reasonable pro-
cessing time by the adequacy of parallel computing has been addressed in some
previous works. Qian et al. designed parallel algorithms for the computation of
equivalence classes and attribute significance in order to speed up the attribute
reduction precess based on MapReduce mechanism [10]. They further introduced
the concept of hierarchical encoded decision table, and developed novel parallel
hierarchical attribute reduction algorithms in data and task parallel [11]. Chen
et al. investigated parallel attribute reduction approaches based on dominance-
based neighborhood rough sets by considering the partial orders among numer-
ical and categorical attributes [13]. Zhang et al. implemented knowledge acqui-
sition approach based on rough sets on the representative MapReduce runtime
systems of Hadoop, Phoenix and Twister [12]. El-Alfy and Alshammari intro-
duced parallel genetic algorithm to approximate the minimum attribute reduct
in the framework of decision-theoretic rough sets [14]. Zhang et al. developed
boolean matrix based parallel algorithm for computing rough approximations
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on Multi-GPU environment [15]. Raza and Oamar proposed a novel parallel
dependency calculation approach without calculating the positive region itself
for attribute reduction [16]. Yin et al. developed fast attribute reduction on
Apache Spark based on the redundant attribute batch processing method and
the single cache iteration strategy [17]. Kong et al. proposed a dynamic data
decomposition algorithm to maintain the global information on each distributed
node to accelerate attribute reduction using fuzzy rough sets in distributed pro-
cessing systems [18]. Dagdia et al. proposed an effective distributed algorithm
based on rough set theory for large-scale data pre-processing under the Spark
framework without sacrificing performance [21]. However, existing studies on
parallel attribute reduction methods are mainly devote to the complete data
without missing values. In this paper, we focus on the distributed implemen-
tation of attribute reduction for large-scale incomplete data classification. A
novel parallelization of attribute reduction algorithm based on tolerance rough
sets that exploits hardware resources of distributed computing systems is pro-
posed. It is implemented with the positive approximation technique that use
granulation orders of iteratively selected attributes to reduce the size of data
gradually, in order to mitigate the problem of data broadcasting burden in the
distributed heuristic search process of attribute reduction. Experiments on sev-
eral large-scale incomplete data sets show the time-efficiency and scalability of
the proposed algorithm.

Organization of the rest of this paper is given as follows. In Sect. 2, we review
some basic notions of attribute reduction based on tolerance rough sets and
Spark parallel programming framework. The details of the proposed parallel
algorithm for attribute reduction in incomplete information systems is presented
in Sect. 3. In Sect. 4, several performance metrics of parallel computing are used
to verify the efficiency of our algorithm. Section 5 concludes our work with future
research directions.

2 Preliminaries

In this section, we will review some basic concepts, including incomplete infor-
mation systems, tolerance rough sets, positive approximation based attribute
reduction [1,9].

In rough set theory, an information system is defined as S = (U,A, V, f),
where U = {x1, x2, ..., x|U |} is a non-empty finite set of objects, A = {a1, a2, ...,
a|A|} is a non-empty finite set of attributes, V =

⋃
a∈A Va, where Va denotes the

possible value of all objects under a certain attribute a, and f : U × A −→ V
is a function that satisfies ∀a ∈ A, x ∈ U , f(x, a) ∈ Va. A decision information
system can be denoted as S = (U,A = C ∪ d, V, f), where C is a condition
attribute set, and d is a attribute feature. If the attribute values of some objects
are missing, denoted by “∗”, in a decision information system, S can be regarded
as an incomplete decision information system, otherwise S is a complete decision
information system, which satisfies ∗ /∈ V .
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Given an incomplete decision information system S = (U,A = C ∪ d, V, f),
for any P ⊆ C, we can define a binary relation on U as follows:

T (P ) = {(x, y) ∈ U × U |f(x, a) = f(y, a) or f(x, a) = ∗ or f(y, a) = ∗}. (1)

For any two objects x, y ∈ U , if (x, y) ∈ T (P ), then we say x and y are
tolerant under attribute set P . For any x ∈ U , we defined the tolerance class of
x as TP (x) = {y ∈ U |(x, y) ∈ T (P )}. The set of all tolerance classes on U can
be defined as U/T (P ) = {TP (x)|x ∈ U}.

Let X be a subset of U , the upper and lower approximation can be con-
structed to characterize X based on the tolerance relation T (P ) as follow:

TPX = {x ∈ U |TP (x) ∩ X 	= ∅}, TPX = {x ∈ U |TP (x) ⊆ X}. (2)

The upper approximation is a set of the objects that may belong to the
subset X, and lower approximation is a set of the objects that must belong to
the subset X.

Assume that the objects are partitioned into m mutually exclusive crisp
subsets by the decision attribute d, and denoted as U/d = {d1, d2, ..., dm}, where
f(x, d) = f(y, d) for any x, y ∈ di, i ∈ {1, 2, ...,m}. The positive region of d with
respect to tolerance relation T (P ) is defined as follows:

POSP (d) =
m⋃

i=1

TP (di) =
m⋃

i=1

{x ∈ U |TP (x) ⊆ di}. (3)

Based on the Eq. (3), the dependency between conditional and decision
attributes can be expressed as γP (d) = |POSP (d)|

|U | . For any a ∈ P , the inner
and outer significance measures of a in P can be defined respectively as
Siginner(a) = γP (d) − γP−{a}(d) and Siginner(a) = γP (d) − γP−{a}(d), in order
to construct a heuristic attribute reduction algorithm from incomplete data to
remove redundant attributes while keeping the ratio of correctly classified objects
unchanged.

In order to accelerate the heuristic search process of attribute reduction, a
concept of positive approximation was proposed by exploiting the structure of
set approximation under a granulation order [9].

Let P = {P1, P2, ..., Pi} is a family of attribute sets with Pj ⊆ C, Pj ⊆
Pj+1, j = 1, 2, ..., i − 1. For any P = {P1, P2, ..., Pi}, X ⊆ U , the Pi-lower
approximation and upper approximation of X can be defined as follow:

Pi(X) = TPi
X, Pi(X) =

i⋃

n=1

TPn
Xn. (4)

where X1 = X, Xn = X − ⋃n−1
j=1 TPj

Xj , n = 2, 3, ..., i.
Suppose U/d = {d1, d2, ..., dm} is the decision partition of the incomplete

decision information system, then the positive region of d with respect to
the granulation order of P = {P1, P2, ..., Pi} can be defined as POSU

Pi
(d) =
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⋃m
n=1 Pi(dn). It is easy to find that POSU

Pi+1
(d) = POSU

Pi
(d) ∪ POS

Ui+1
Pi+1

(d)
always hold, where U1 = U , and Ui+1 = U − POSU

Pi
(d). Hence, one can design

accelerated attribute reduction algorithm based on the positive approximation
by using granulation orders on the gradually reduced universe during the itera-
tively heuristic search process.

2.1 Apache Spark Computing Model

In order to alleviate the problems of storage difficulty and computational bur-
den for large-scale data processing in real-time and validity, cluster computing
techniques have been appeared to provide reliable and efficient computation.
MapReduce, proposed by Google, is one of the representative distributed com-
puting frameworks, which has been frequently adopted for improving the perfor-
mance of data mining and machine learning algorithms [19]. However, the com-
putational results in MapReduce framework need to be stored on the Hadoop
distributed file system, which costs much time for disk I/O operations, and hence
is not suitable for iterative algorithms which need to save or reuse the interme-
diate computational results.

Apache Spark is a unified analytics engine to develop large-scale dis-
tributed programs based on the optimization of Hadoop MapReduce computing
model [20]. By introducing a Resilient Distributed Datasets (RDD) model, Spark
can store intermediate data in memory to save huge amounts of disk I/O oper-
ation time. RDD is a fault-tolerant abstraction to represent a read-only set of
objects that is distributed across multiple computing elements. RDD can save
the results of intermediate calculations in memory, these data will greatly reduce
the time it takes to read data from disk during iterative computing. Moreover,
Spark provides the function of broadcasting variables to distribute the data into
the nodes to compute, and the worker nodes can write increments to special
variables named accumulators, which further reduce the time consumption of
iterative computing. Hence, we decompose the attribute reduction algorithms
in independent tasks for a Spark implementation that will allow the users to
speed up the large-scale data analysis by taking advantage of the distributed
computational capabilities.

3 Spark Parallelization of Attribute Reduction from
Incomplete Data

Parallel algorithms of attribute reduction are implemented by dividing the
incomplete data into multiple subsets as RDD and perform calculations of posi-
tive region on multiple computational nodes in parallel. Algorithm1 begins the
attribute reduction process by parallelly calculating the positive region. Since
the object to be considered needs to compare with the other objects of the input
data. So we persist the input RDD in step 1, and broadcast it to slave nodes in
step 2. Persist is a RDD operator which can loads RDD on cache or disk physi-
cally. Then we reset the input accumulator in step 3. The accumulator can help
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us to collet the positive region across the data stored on different slave nodes
as partitions. In step 4 to step 16, we traverse each object on partitions. If the
object is tolerant with one, which has a different value on decision attribute, the
object will not be counted by accumulator. Afterwards, RDD will be unpersisted
in step 17, which avoids memory usage, and the result will be returned in step
18.

Algorithm 1. Parallel algorithm for calculating the positive region(countPos)
Input: RDD: The input RDD; //The input RDD will be divided into r partitions,

and Uk represents the set of objects on each partition, where k = 1, 2, ..., r.
Q:The set of the attributes to be computed
acc:An accumulator to collect the number of positive region in each partition

Output: the number of total positive region;

1: RDD.persist();
2: bc←broadCast(RDD);
3: acc.reset;
4: for each x ∈ Uk do
5: t ← 1
6: for each y ∈ bc do
7: if (x, y) ∈ T (Q) ∧ f(x, d) �= f(y, d) then
8: t ← 0;
9: break;

10: end if
11: end for
12: if t = 1 then
13: acc.add(1);
14: end if
15: end for
16: RDD.unpersist();
17: return acc.value

Based on the parallelly calculated results of positive region by Algorithm1,
Algorithm 2 and 3 present the parallel processes of obtaining the core attributes
based on the inner importance measure and selecting the most important
attribute in terms of outer importance measure. Furthermore, by adopting the
positive approximation technique, Algorithm4 is developed to reduce the broad-
casted data gradually during the heuristic search process of attribute reduction
according to the granulation orders of iteratively selected attributes. The imple-
mentation of Algorithm 4 is similar to Algorithm 1. But the difference is that
we do not use accumulator to collet the calculational result of positive region in
Algorithm 4. Instead, we put the object which belongs to the positive region in
terms of the currently selected features into a new RDD in step 14, and return
the new RDD in order to update the broadcasted data for the later iterative
computations.

Algorithm 5 shows the main function of the proposed parallel feature selec-
tion algorithm for incomplete incomplete decision information system based on
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Algorithm 2. Parallel algorithm for getting the core attributes (getCores)
Input: DataRDD:RDD of an incomplete decision information system IS = (U,A =

C ∪ d, V, f);
C:The set of all the conditional attributes;
acc:An accumulator to collect the number of positive region in each partition

Output: cores: All the core attributes;

1: cores ← ø; // cores is the set which conserves all the core attributes
2: Q ← ø;
3: pos count ← 0;
4: for each a in C do
5: Q ← C − a
6: pos count ← countPos(DataRDD, Q, acc);
7: Calculate Siginner(a) by pos count;
8: if Siginner(a) > 0 then
9: put a into cores;

10: end if
11: end for
12: return cores

Algorithm 3 . Parallel algorithm for getting the most important attribute
(getAttribute)
Input: subRDD:the RDD of a subset of the original dataset;

red:The set of the attributes selected currently;
acc:An accumulator to collect the number of positive region in each partition

Output: amax: the attribute with the biggest outer significance measure;

1: amax ← ø;
2: Q ← red;
3: pos count ← 0;
4: Sigouter(amax) ← 0;
5: for each a in C − red do
6: Q ← red ∪ a;
7: pos count ← countPos(subRDD, Q, acc);
8: Calculate Sigouter(a) by pos count;
9: if Sigouter(a) > Sigouter(amax) then

10: Sigouter(amax) ← Sigouter(a);
11: amax ← a;
12: end if
13: end for
14: return amax

the positive approximation. In Algorithm5, we firstly defines an accumulator
called acc in order to collet the partial results of positive region across different
slave nodes in step 4, and calculate the positive region on the whole incomplete
incomplete decision information system by Algorithm 1 in step 6, which was used
to determine whether the heuristic iteration feature selection algorithm meets
the stopping criterion. In step 7, Algorithm2 was executed to obtain the all core
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Algorithm 4. Parallel algorithm for reducing universe gradually by positive
approximation (posApproximation)
Input: RDD: The input RDD;//The input RDD will be divided into r partitions,

and Uk represents the set of objects on each partition, where k = 1, 2, ..., r.
red:The set of the attributes selected currently

Output: newRDD:The RDD of the new subset of the input after positive approxi-
mation;

1: newRDD ← ø;
2: RDD.persist();
3: bc←broadCast(RDD);
4: for each x ∈ Uk do
5: t ← 1
6: for each y ∈ bc do
7: if (x, y) ∈ T (Q) ∧ f(x, d) �= f(y, d) then
8: t ← 0;
9: break;

10: end if
11: end for
12: if t = 1 then
13: newRDD ← newRDD ∪x;
14: end if
15: end for
16: RDD.unpersist();
17: return newRDD

attributes, which are indispensable in a reduct of the incomplete decision infor-
mation system. If these are some core attributes found by Algorithm2, positive
approximation is used to reduce the universe by Algorithm4 in steps 8–13. After
that, Algorithm 3 in step 17 was used to select an optimal attribute based on the
currently selected features, and positive approximation in step 21 will further
speed up the next iteration. When the positive region of the selected attributes
is the same as the original one, the reduct will be returned in step 25.

Figure 1 describes the process of the proposed parallel attribute reduction
algorithm. Firstly, we parallelly compute the inner significance of all attributes
in an incomplete decision information system, then we select the features whose
inner significance are bigger than zero as core attributes. In the next steps, the
slave nodes parallelly compute the outer significance of the remaining features
and add the feature which show best outer significance into the reduct. Mean-
while, positive approximation was used to update the dataset if there are core
attributes or selecting an optimal attribute. By this way, we filtered the objects
in the dataset and reduce the time consumption for subsequent iterative calcula-
tions. The algorithm will perform iterative calculations until the selected features
can get the same positive region as the original incomplete decision information
system.
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Algorithm 5. Parallel incomplete attribute reduction algorithm based on the
positive approximation (PIARPA)
Input: DataRDD:RDD of an incomplete decision information system IS = (U,A =

C ∪ d, V, f);
Output: red: A reduct of the selected conditional attributes

1: red ← ø; // red is the set which conserves all the selected features
2: Pos ← 0; // Pos stores the number of positive region of the original data set
3: redPos ← 0; // redPos stores the number of positive region under the attributes

selected
4: acc ← 0; // acc is a accumulator defined in Spark used to calculate the number of

positive region
5: subRDD ← ø ;
6: Pos ← countPos(DataRDD, C, acc);
7: red ← getCores(DataRDD, C, acc);
8: if red �= ø then
9: redPos ← countPos(DataRDD, red, acc);

10: POSP1(d) ← posApproximation(DataRDD, red);
11: U1 = U − POSP1(d)
12: elseU1 = U
13: end if
14: i ← 1, R1 = red, P1 = {R1}
15: while Pos �= redPos do
16: subRDD ← Ui;
17: amax ← getAttribute(subRDD, red, acc);
18: red ← red ∪ {amax};
19: redPos ← countPos(subRDD, red, acc);
20: i ← i + 1;
21: POSPi(d) ← posApproximation(subRDD, red);
22: Ui = Ui−1 − POSPi(d);
23: Ri ← red, Pi ← {R1, R2, ..., Ri}
24: end while
25: return red

4 Experimental Evaluation

In this section, we designed several experiments to verify the performance of the
parallel algorithm. All the experiments were run on a cluster of eleven nodes,
where one node is set as master, and the rest ten nodes are set as slaves. Each
node has the following configuration, CPU: Intel Xeon E5-2682v4 @ 2.5 GHz,
CPU Cores: 4 vCPU, Total Memory: 8 GiB, Network: 0.8 Gbps, Java version:
OpenJDK 1.8, Spark version: 2.4.5. Five data sets were selected from UCI data
sets for performance testing, which are all symbolic data with missing values.
The detailed information of the data set is shown in Table 1.
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Fig. 1. Abstraction of the process of PIARPA algorithm.

Table 1. Description of data sets.

Data sets Cases Features Classes

1 Mushroom 8124 22 2

2 Audiology.standardized 200 69 24

3 Breast-cancer-wisconsin 699 9 2

4 Dermatology 366 34 6

5 Soybean-large 307 35 19

4.1 Selection of the Number of Data Partitions

In Spark parallel programming framework, all the tasks will be assigned to each
executor to process. Each executor consists of several cores, and each core of
one executor can only execute one task at a time. Usually, the number of data
partitions will greatly impact on the accelerating performance of the tasks in each
stage. So it is important to select an appropriate number of the data partitions,
which will directly affect the performance of the proposed parallel algorithms.
There are ten slaves of computer in our cluster, and each computer has 4 cores.
We use the dataset Mushroom to test the impact of the number of data partitions
on performance by increasing the number of data partitions from 1 to 60. The
experimental results are shown in Fig. 2.
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Fig. 2. The relationship between running time and number of data partitions on Mush-
room dataset of PIARPA.

From the experimental results, It can be seen that the time consumption of
the proposed algorithm is significantly reduced with the number of data parti-
tions increasing from 1 to 40. It is noticed that the total number of cores in our
cluster is equals to 40. However, when the number of the data partitions con-
tinues to increase above 40, there is not much difference in time consumption.
We can conclude that when the number of data partition is less than the total
number of the cores in the cluster, increasing the number of data partition will
significantly reduce the time consumption of parallel algorithm. But when the
number of data partitions is larger than the number of cores, there is no execu-
tor to use and the tasks have to wait, so the processing time hardly change. To
achieve the maximum parallelism, we select 4× (number of computers) as the
number of the data partition in the following experiments.

4.2 Evaluation of the Parallelism Metrics

The parallelism metrics of speedup, scaleup, and sizeup were evaluated in this
section to confirm the scalability of algorithm to process massive amount of
incomplete data. Speedup describes the changes in the running time of the algo-
rithm when increasing the number of machines in the cluster. It is calculated
as Speedup(m) = T1/Tm, where T1 and Tm are the running time of the same
task in a single processor system and a distributed processor system with m
computers.

If the speedup can maintain a linear growth, it means that multiple machines
can well shorten the time consumption of the parallel algorithm. But it is difficult
to achieve the linear speedup, because parallel algorithms are often mixed with
other calculations, and data transmission between nodes in the parallel system
will also have an impact. To verify the Speedup of PIFSPA, we select the datasets
of Audiology.standardized, Breast-cancer-wisconsin, Dermatology, and Soybean-
large, and the datasets of 10, 20, 30, 40 and 50-times of the original dataset are
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adopted to evaluate the speedup by increasing the number of computers from 1
to 10. The experimental results are shown in Fig. 3.
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Fig. 3. Speedup of PIARPA on different datasets.

From Fig. 3, we can find that the speedup performance is unsatisfactory when
the data sets is small, since the time cost on parallel computing is not dom-
inant. However, the proposed algorithm achieves better speedup performance
with the growth of data size. The speedup has shown a linear growth trend
when the dataset is 50 times than the original one. Meanwhile, we can ana-
lyze that the speedup gradually increases when the number of computers in the
cluster increases.

Scaleup is used to verify how the parallel algorithm performs on a larger
data set when there are enough computing nodes available. It is specified as
Scaleup(m) = T 1

1 /Tm
m , where T 1

1 is the running time of a task on a single
processor system, and Tm

m is the running time to complete m of the same task on
a distributed processor system with m computers. Ideally, the scaleup of a good
parallel algorithm should be closer to 1. To test the scaleup of our algorithm, we
also expand the original datasets by 10, 20, 30, 40 and 50-times, and then tested
them on clusters with computing nodes from 1 to 10 respectively. Figure 4 shows
the experimental results of scaleup on different datasets.
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Fig. 5. Sizeup of PIARPA on different datasets.

From Fig. 4, it is clear that the scaleup of the proposed parallel algorithm is
difficult to be closer to 1, because the amount of computation is not linear with
the growth of the data set. However, the scaleup is gradually flatting out with
the increase of the number of nodes, which demonstrates that our algorithm still
keeps good parallel performance when the cluster is big enough.

Sizeup measures the computing time one takes on a given system when the
dataset is m-times larger than the original dataset. The sizeup is calculated as
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Sizeup(m) = Tm/T 1, where Tm and T 1 are the running time of a single task
and m of the same task on the same distributed processor system. The sizeup
represents the variation trend of time consumption with the data set increasing.
To measure the sizeup of the proposed parallel algorithm, we also increase the
original datasets 10, 20, 30, 40 and 50-times, and select the 10-times of the
original datasets as the basic datasets. All the datasets run experiments on
clusters with computing nodes from 1 to 10 respectively. Figure 5 shows the
experimental results of sizeup with the variation of the data size.

The experimental results show that the sizeup is much larger than the growth
multiple when there are less computing nodes in the cluster. As the number of
computing nodes gradually increases to 10, the sizeup is closed to m, which is
the ideal value, and it is a linear growth. The results of sizeup show that the
proposed algorithm can scales well when more computational nodes are added.

5 Conclusions

This work aims at solving the computational difficulties of attribute reduction
algorithms with the rapid growth of data volume in incomplete information sys-
tems. We proposed an efficient algorithm based on Spark parallel programming
framework for large-scale attribute reduction. The concept of positive approxi-
mation is incorporated into the proposed algorithm to speed up calculations of
importance measure of attribute. Experimental evaluation in terms of several
parallelism metrics were carried out extensively. The experimental results show
that our parallel algorithm can achieve good parallel performance in terms of
the speedup, scaleup and sizeup. Performance tuning will be our future research
direction to further optimize the parallel performance.
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Abstract. For binary classification, the three-way decision divides sam-
ples into positive (POS) region, negative (NEG) region, and boundary
region (BND). The correct division of these boundary data is helpful
to improve the accuracy of binary classification. However, how to con-
struct the optimal feature representation from certain samples for bound-
ary domain partition is a challenge. In this paper, we propose atten-
tion enhanced hierarchical feature representation for three-way decision
boundary processing (AHT) to deal with the boundary region. Based on
the three-way decision, certain regions (positive, negative) and boundary
regions are obtained. Obtaining the hierarchical feature representations
on the positive domain and the negative domain respectively. Construct-
ing attention-enhanced fusion feature representation to guide the bound-
ary domain division of the testing set. The experimental results on five
UCI datasets show that our algorithm effectively improves binary clas-
sification accuracy.

Keywords: Three-way decision · Hierarchical feature representation ·
Attention

1 Introduction

For binary classification, the three-way decision divides all samples into three
possible decisions: positive decision, negative decision, and boundary decision:
namely, as a positive region (POS), a negative region (NEG), and a boundary
region (BND). The boundary region still needs to be divided into the posi-
tive region or the negative region. Certain regions POS/NEG can be classified
directly, while these boundary data would be further divided into certain regions
(positive region or negative region) when they obtain enough useful information.
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In order to solve binary classification problems properly, researchers have
made many contributions for processing boundary regions based on three-way
decision theory, Ma and Yao [12] proposed three types of class-specific attribute
reduces in probabilistic rough set models for boundary processing. Li et al. [11]
proposed a three-way decision model for dealing with the boundary region to
improve the binary text classification performance.

In this paper, we propose an AHT model for binary classification. The hier-
archical feature representations on the positive domain and the negative domain
are obtained respectively. Then, we use attention-enhanced fusion to obtain the
optimal feature representation to process the BND region. The experimental
results demonstrate that our algorithm achieves a good classification perfor-
mance on five UCI datasets.

2 Proposed Method

Figure 1 shows the overall flow of the proposed model. The model consists of
two parts: attention enhanced mechanism, attention fusion mechanism. Firstly,
we use a three-way decision model (Minimum Covering Algorithm: MinCA) to
divide training samples into three regions: POS, NEG, and BND. Based on
FQST, m granularities feature representations in the POS regio and n granu-
larities feature representations of the NEG region are obtained. Then, we get
the weight of each granularity of feature representation by using the attention
enhanced mechanism. In the testing set, the samples in boundary regions are
processed by the attention fusion mechanism.

Attention Enhanced Mechanism: In the POS region and the NEG region,
the fuzzy equivalence relation is constructed by the variance mutual informa-
tion. On the basis of fuzzy quotient space theory (FQST), we set a different
parameter λ to control the hierarchical structure and obtain hierarchical feature
representations. In this way, we can obtain m and n granularities of feature rep-
resentations from the POS region and the NEG region. Boundary samples in
the training dataset are used to get the weight of each granularity of the fea-
ture representations which are obtained from the positive region and negative
region. The number of samples in the BND region in the training set that are
divided correctly by using this layer of feature representation is the weight of
this granularity.

POS[j] =
q∑

i=1

sapmle sub test(BND[i], j, 1) (1)

NEG[k] =
q∑

i=1

sapmle sub test(BND[i], k, 0) (2)

POS[j] = POS[j]/q (3)

NEG[k] = NEG[k]/q (4)
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Where, POS[j] and NEG[k] are the weight of jth granularity of feature
representation in the POS region and kth granularity of feature representation
in the NEG region, j is the jth granularity of feature representation in POS
region, j ∈ [1, 2, · · · ,m]) and k is the kth granularity of feature representa-
tion in POS region, k ∈ [1, 2, · · · , n]); q is the number of samples in the BND
region; sample sub test (s, num, class) is a class function, s is a sample in BND
region, num represents the numth granularity of feature representation, and
class means positive or negative domain (0 means the negative region, 1 means
the positive region). If the sentiment polarity of comments of sth review obtained
by sample sub test(s, num, class) is the same as the original sentiment polarity,
the return value of the function is 1, otherwise, it returns 0.

Fig. 1. The overall flow of the proposed method.

Attention Fusion Mechanism: Each boundary sample is predicted by using
m granularities of feature representation on the positive domain and the n gran-
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ularities of feature representation on the negative domain respectively. And then,
the prediction result is combined with the attention weight of each granularity of
feature representation to obtain the probability of the boundary sample belongs
to the positive and negative category respectively. Finally, we can determine
which category the boundary sample belongs to.

all pos =
m∑

j=1

POS[j] ∗ predictResult[q][j] (5)

all neg =
n∑

k=1

NEG[k] ∗ predictResult[q][k] (6)

Where, all pos and all neg are the probability of the qth boundary sample
that predicted for positive and negative. predictResult[q][j] is the prediction
result of the qth boundary sample using the jth granularity feature represen-
tation in the POS region, predictResult[q][k] is the prediction result of the qth
sample using the kth granularity feature representation in the NEG region. If
the predicted result is positive, the value of predictResult is 1, otherwise, the
value of predictResult is −1.

During the testing process, the testing set is divided into three parts (positive,
negative, boundary) by using the minimum coverage radius obtained by MinCA.
The boundary samples are divided into the POS region or the NEG region. If
the value of all pos is higher than the value of all neg, the qth boundary sample
is predicted as positive, otherwise, it is predicted as negative.

3 Performance Evaluation

We use five datasets (Chess, Spambase, WPBC, WDBC, Occupancy) that come
from the UCI Machine Learning Repository [1]. Firstly, we compared the meth-
ods HFR-TWD [4] and AH3 [5] proposed in the previous work. And then, we
compare the latest algorithms for these datasets respectively.

Table 1. Comparative results on five datasets

Data HFR-TWD AH3 AHT

Chess 96.9 98.7 100.0

Spambase 98.9 98.9 99.3

WPBC 98.0 98.0 89.4

WDBC 99.6 99.8 99.6

Occupancy 99.9 99.9 99.9

Table 1 shows the results of boundary processing by three different algorithms
on five datasets. It presents that the AHT algorithm has better performance on
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Chess and Spambase datasets. For the Occupancy dataset, the classification
results of the three methods are the same. It can be seen that our method has
certain advantages for the processing of boundary samples.

According to Table 2, we can get the comparison results of the Chess dataset,
AHT has the best performance, the classification accuracy is improved. It is clear
that our algorithm improves the experimental result on the Spambase dataset,
it is up to 99.3%. Although the result of the AHT algorithm on the WPBC
dataset is not the best, our algorithm also performs well, the result of our method
comes in second. For the WDBC dataset, the result of our method is better
than other methods, it is up to 99.6%. Our algorithm also performs well on
the Occupancy dataset, the classification accuracy is up to 99.9%, the same as
the result of TWKM algorithms. From the above results, our algorithm can get
better classification results on these datasets.

Table 2. Comparative results on each dataset

Datasets Algorithm Accuracy (%) Datasets Algorithm Accuracy (%)

Chess ISbFIM [18] 89.0 Spambase IPSO-J48 [10] 98.3

WEFPM [6] 93.2 ABBDT [10] 93.7

AS-KMC [16] 94.8 SVM [8] 96.1

RfDE [19] 97.1 SVM&K-means [8] 98.0

AHT 100.0 AHT 99.3

WPBC PSO-FS [2] 78.2 WPBC GA-FS [2] 78.1

ANN-FS [2] 79.2 SMO with Ranker [14] 77.3

C4.5+DT with Ranker [14] 76.3 NB with Ranker [14] 76.3

SA-LSTSVM [15] 97.4 AHT 89.4

WDBC MBA-FS [9] 96.9 WDBC GRU-SVM[3] 93.8

L2-SVM [3] 96.1 PCA-KNN [13] 82.3

PCA-SVM [13] 86.7 EPCF Rule [13] 93.2

GNRBA [7] 98.9 PSO-FS [2] 97.2

GA-FS [2] 96.6 AN-FS [2] 97.3

TWKM [17] 93.0 AHT 99.6

Occupancy k-means [17] 89.4 Occupancy k-medoids [17] 90.3

TWKM [17] 99.9 AHT 99.9

4 Conclusion

In this paper, we proposed an AHT method to process boundary samples into a
certain region. First of all, all samples are divided into three regions by utilizing
MinCA. Then, in POS and NEG regions, we obtain different granularities feature
representations respectively based on FQST and use BND samples to get the
weight of each granularity of feature representation. Finally, the weight obtained
by the attention enhanced mechanism is used to deal with boundary samples
in the testing process. Compared with other latest algorithms, the AHT can
effectively handle samples from the boundary regions. Therefore, we can conclude
that the performance of the AHT algorithm is better.
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Abstract. As social media appeal more frequently used, the task of extracting
the mainstream opinions of the discussions arising from the media, i. e. opinion
summarization, has drawn considerable attention. This paper proposes an opinion
summarization-evaluation system containing a pipeline and an evaluation module
for the task. In our algorithm, the state-of-the-art pre-trained model BERT is
fine-tuned for the subjectivity analysis, and the advanced pre-trained models are
combined with traditional data mining algorithms to gain the mainstreams. For
evaluation, a set of hierarchical metrics is also stated. Experiment result shows
that our algorithm produces concise and major opinions. An ablation study is also
conducted to prove that each part of the pipeline takes effect significantly.

Keywords: Opinion summarization · Subjectivity analysis · Pre-trained model ·
Evaluation · Hierarchical metrics

1 Introduction

In the post-pandemic era, social media like webinars, message boards, micro blogs,
etc., have been increasingly spotlighted and used. Consequently, a special class of data,
discussion, is mushrooming all over the Internet. Compared with other textual data,
discussion has features as follows: (1) Single topic & multiple opinions; (2) Numerous
participants & big volume; (3) Short lifespan; (4) Low structuredness; (5) Multiform
expression. The data shows considerable potential for data mining and natural language
processing, especially when real-time public sentiment is in demand.

Given the properties above, we place the emphasis on the angles and sentiments of
the opinions in discussion. Hence the general process of opinion summarization is to
filter the possible opinions out of a discussion, then refine the opinions in terms of their
angles and sentiments to obtain the mainstreams.

The reason why opinion summarization requires a two-stage procedure is that a
discussion is too extensive to be processed in one go.Meanwhile, speeches in a discussion
vary a lot in length, compromising the traditional methods of treating every speech as an
equal document. Another trouble is that there are always miscellaneous but semantically
identical expressions, which is severely detrimental to generalization.
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To address the aforesaid problems, we propose an opinion summarization-evaluation
system including a pipeline and a set of evaluationmetrics. For the pipeline,we adopt pre-
trained language models to analyze the discussion semantically, and utilize data mining
algorithms to accomplish following generalization. For evaluation, we state hierarchical
metrics to assess the summary from the relevance, the sentiment orientation, and the
one-to-one correspondence between the generated and reference opinions.

In order to implement the algorithm, we also construct two Chinese corpora: a
subjectivity analysis corpus for fine-tuning BERT [3], and an opinion summarization
corpus for evaluation. An ablation study is subsequently performed by setting several
variants of our pipeline, and the result substantiates the effectiveness of our methods.

2 Related Works

There has been a long history of the research on extractive summarization, opinion min-
ing andmetrics for theseNLP tasks. In recent years, the tasks of extractive summarization
are usually fulfilled through neural network modeling, network graph method and data
mining. Neural network modeling is the focus of the field [9]. A summary-level frame-
work using SBERT with superior performance was proposed based on this method [8].
Network graph method is a mainstream [9] which stems from a research result: Human
language is also a complex network with the characteristic of small world and is scale-
free [2]. One of its most representative examples is TextRank [6]. Another important
method is data mining. A typical application of this method is clustering. Opinion min-
ing can be divided into three main levels: the text document level, the sentence level and
the subject-part level [5]. An important problem in sentence level opinion mining is to
classify sentences into subjective ones and objective ones.

Automatic evaluationmetrics mainly include BLEU [7], ROUGE [4], andMETEOR
[1].BLEU is a similarity evaluationmethodbasedon accuracy,which excels on sentences
that are well-matched on corpus-level. ROUGE is based on recall, which calculates
the co-occurrence probability of n-grams in the candidate sentences and the reference
sentences to evaluate the adequacy andfidelity [4].METEORis basedon single-precision
weighted harmonic mean and the recall of single word, and solves the problem of low
correlation between BLEU [7] and manual evaluation results [1].

3 An Opinion Summarization-Evaluation Algorithm

In this section, we first introduce our algorithm for extracting the mainstream opinions
(see Fig. 1) in Sect. 3.1. In Sect. 3.2, we state our hierarchical evaluation metrics for
opinion summarization.

3.1 Subjective Analysis and Opinion Mining

The subjectivity analysis is applied to ensure that the candidate sentences for the final
summary are qualified for opinions. With a fine-tuned BERT [3] model, the process is
formulated as a binary classification task, where most subjective statements are retained
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for the following steps and others are removed. Since there are usually extensive collo-
quial or objective speeches in a discussion, the process alleviates the problem of data
overload as well.

To proceed with the pipeline, we choose distiluse-base-multilingual-cased-v2 [10]
instead of BERT to calculate the semantic representations of the subjective sentences, as
BERT is not expert in capturing the semantic meaning of the sentences. Next, the sen-
tences are grouped with spectral clustering algorithm. Spectral clustering relies heavily
on the similarity matrix, and the encoder above is verified to work well in extracting
semantic information, therefore the two methods are complementary to each other. To
balance the integrity and conciseness of the generated summary, we recommend the
number of clusters between 3 and 6. Within the interval, we refer to silhouette coeffi-
cient, a reasonable and reliable measure to select the optimal clustering result. Moreover,
it is necessary to abandon some excessively small clusters.

For each cluster, the vector closest to the geometric center is extracted to be the
representation of the cluster, and its corresponding sentencewill be the candidate opinion
for the summary. Since it may appear colloquial, we just simply remove some irrelevant
functionwords from the sentence to get amainstreamopinion. Finally, all themainstream
opinions acquired constitute the generated summary of our algorithm (Fig. 1).

Fig. 1. A schematic diagram of the opinion summarization algorithm

3.2 Hierarchical Metrics

To perfect the opinion summarization algorithm, we state a set of hierarchical metrics,
combining automatic and artificial methods to evaluate the generate summary from three
aspects progressively.
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Evaluate the Relevance on Summary Level Automatically. While assessing a sum-
mary, it is most basic to ensure whether it is relevant to the topic, and whether it involves
most significant content of the discussion.Whendesign themetric,we refer to themethod
of collecting the word pairs between the generated and reference summary in ROUGE
[4]. For any discussion on topic u, given the generated summary Xu = {

x1u, x
2
u, . . . , xpu

}

and the reference summary Yu = {
y1u, y

2
u, . . . , yqu

}
, the relevance between Xu and Yu can

be defined as

Relevu = 1

q

q∑

i=1

Relev
(
Xu, y

i
u

)
(1)

Relev
(
Xu, yiu

)
denoting the relevance betweenXu and opinion yiu, is the average value

of the cosine similarity between the terms in yiu and their most similar terms in Xu. The
cosine similarity is computed in the semantic space induced by the model used while
clustering. Relevu ∈ [0, 1], and the larger Relevu implies higher relevance.

Evaluate the Sentiment Orientation on Summary Level Automatically. We take
the evaluation a step further by examining how the emotion tendency of the generated
summary match expectations. With fine-tuned BERT [3], opinions in the summaries can
be classified as positive or negative. Then we compare the proportions of the positive
opinions in generated summary and reference summary like

Sentiu = 1 − abc

(∑
i Countpos

(
xiu

)

p
−

∑
i Countpos

(
yiu

)

q

)

(2)

It is knowable that Sentiu ∈ [0, 1].When Sentiu= 1, the generated summary captures
the sentiment orientation of the discussion perfectly.

Evaluate the One-to-One Correspondence on Opinion Level Artificially.
Since automatic approaches may be coarse-grained and inexact, we suggest grading
the one-to-one correspondence between the generated and reference opinions manually.
Considering an opinion x inXu and y inYu, they can compose amatching pair (x, y) if they
show similarity in semantics. Thus, the one-to-one correspondence can be quantified as

Correu = min

{
θm

∑
x∈Xu,y∈Yu Scru(x, y)√

pq

}

(3)

Here θm is a bonus parameter to improve the score when all the opinions arematched.
Scru(x, y) ∈ [0, 1] is determined by the graders, and a higher value implies higher
similarity.

4 Experiments and Analysis

4.1 Experimental Settings

With discussions from a large-scale Q&A forum named Zhihu, we build two Chinese
corpora. To support the subjectivity analysis, we provide a corpus containing 7500
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sentences from 15 discussions, annotated by three annotators as subjective or not, for
fine-tuning theBERTmodel. For the sakeof evaluation,wegenerate reference summaries
for another 45 discussions to construct an opinion summarization dataset. Considering
a discussion appears as one topic or question with numerous answers in Zhihu, each
summary is made up of several thesis statements of the most popular answers.

4.2 Experiment Results and Analysis

With the hierarchical evaluation metrics in the proposal, we assess our algorithm on the
opinion summarization corpus. An ablation study is performed over our pipeline and its
two variants, using the same corpus and metrics. The results listed in Table 1 illustrate
how the critical modules mentioned above take effects.

Table 1. Results of ablation study

Pipeline Relev Senti Corre

SA & CE (Ours) 0.715 0.730 0.428

No SA & CE 0.718 0.702 0.257

SA & TextRank 0.685 0.729 0.252

Corresponding to the above two modules of our pipeline, here SA represents the
subjectivity analysis, and CE stands for center extraction, i. e. the method of extracting
the mainstream opinions from the centers of the clusters. The results prove that the
algorithm brings fantastic sentiment orientation and one-to-one correspondence, also
acceptable relevance.

First, we demonstrate the importance of the subjectivity analysis. In Table 1, No SA
& CE gets a markedly low Senti score, which indicates that removing the subjectivity
analysis critically hurts performance in capturing the sentiment orientation. Without
the subjectivity analysis, the algorithm tends to be misled by salient but overwhelming
contents and produce summaries with biased emotional perception.

Second, we observe the necessity of center extraction. As listed, SA& TextRank is
defeated by our SA & CE with especially large drops on the Relev and Corre score. A
noteworthy fact is that the center extraction gets the central sentence of each viewpoint
cluster, this way themainstreams are guaranteed to be juxtaposed, and semantic overlaps
between opinions extracted would be minimized.

Besides, note that the Corre score of our pipeline is prominently higher than the
other two. That is because the two variants can be misled by crucial and overlapping
contents easily, and the rule we use to grading the correspondence severely punishes
overlaps. Maybe there are still some unknown benefits brought by our algorithm.
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5 Conclusion and Future Works

The contributions of our paper are as follows:
First,weobserve a class of recently prevalent textual data, namelydiscussion, analyze

its features and value, and conceptualize the task of opinion summarization.
Second, we propose an opinion summarization-evaluation systemwith twomatching

Chinese corpora, and accomplish the task well.
Third, we conduct an extra ablation study to substantiate the effectiveness of our

peculiar methods, the subjectivity analysis and the center extraction.
Our opinion summarization-evaluation system paves a new way for automatic sum-

marization, while it still requires further research. In our algorithm, a more flexible
measure for clustering result shall be introduced to replace the silhouette coefficient,
and more semantic information should be taken into account when locate the centers of
the clusters. Also, we will try migrate our system to other languages by adjusting the
pre-trained model, the corpora, and some strategies accordingly.

Acknowledgement. The work is partially supported by the National Nature Science Foundation
of China (Grant No. 61976160, 61906137) and the Technology Research Plan Project of Ministry
of Public and Security (Grant No. 2020JSYJD01).
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Abstract. Social media are an essential source of meaningful data that
can be used in different tasks such as sentiment analysis and emotion
recognition. Mostly, these tasks are solved with deep learning methods.
Due to the fuzzy nature of textual data, we consider using classification
methods based on fuzzy rough sets.

Specifically, we develop an approach for the SemEval-2018 emotion
detection task, based on the fuzzy rough nearest neighbour (FRNN) clas-
sifier enhanced with ordered weighted average (OWA) operators. We use
tuned ensembles of FRNN–OWA models based on different text embed-
ding methods. Our results are competitive with the best SemEval solu-
tions based on more complicated deep learning methods.

Keywords: Fuzzy-rough nearest neighbour approach · Emotion
detection · Natural language processing

1 Introduction

Over the past decades, the increasing availability of digital text material has
allowed the domain of Natural Language Processing (NLP) to make significant
headway in a wide number of applications, such as for example in the detection
of hate speech [13] or emotion detection [19].

In this paper, we report on our work on emotion detection for the SemEval-
2018 Task 1 EI-oc: Affect in Tweets for English1 [15]. This task represents a
classification problem with tweets labeled with emotion intensity scores from 0
to 3 for four different emotions: anger, sadness, joy, and fear.

We explored this task in our previous work [11], using the weighted k Nearest
Neighbours classification approach. We chose this method over popular neural
1 https://competitions.codalab.org/competitions/17751.
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network based solutions because of its explainability. Explainable models allow
to investigate the classification progress and discover new patterns.

Our purpose in this paper is to explore the efficiency of the fuzzy-rough
nearest neighbour (FRNN) classifier [10] and its extensions based on ordered
weighted average (OWA) operators [3,12] for this task. The motivation behind
the usage of FRNN is to investigate the potential of relatively simple and trans-
parent instance-based methods for the emotion detection task, in comparison
with the black-box solutions offered by deep learning approaches. While the lat-
ter can solve sentiment analysis tasks with remarkable accuracy, they provide
very little insight about how they reach their conclusions. This does not mean
that we dismiss deep learning technology altogether; indeed, to prepare tweets
for classification, we represent them by numerical vectors using some of the most
popular current neural network based text embedding models [1,2,4,17]. This
strategy should allow us to strike the right balance between interpretability and
accuracy of the approach.

The remainder of this paper has the following structure: Sect. 2 contains an
overview of related work, focusing on the SemEval-2018 Task 1 winning solutions.
Section 3 describes the main steps of our proposal, including data preprocessing
and tweet representation and classification, and also recalls the competition’s
evaluation measures. Section 4 reports on our approach’s performance for the
training data in different setups, while Sect. 5 evaluates the best approach on
the test data. Finally, Sect. 6 provides a discussion of the obtained results and
some ideas for further research.

The source code of this paper is available online at the GitHub repository2.

2 Related Work

We start this section by briefly describing the most successful solutions3 to the
SemEval-2018 shared task. The winning approach [5] used ensembles of XGBoost
and Random Forest classification models using tweet embedding vectors, while
the second place was taken by [6], who used Long Short Term Memory (LSTM)
neural nets with transfer learning. The third place contestants [18] presented a
complex ensemble of models with Gated-Recurrent-Units (GRU) and a convo-
lutional neural network (CNN) with the role of an attention mechanism.

As is clear, the best approaches all used deep learning technology in one way
or another, thus reflecting the current state-of-the-art and trends in automated
text analysis (see e.g. [14] for a comprehensive overview). This tendency is further
reinforced by the use of the Pearson Correlation Coefficient (see formula (6) in
Sect. 3.5) as the sole evaluation measure for the competition, since this measure
lends itself well to NN-based optimization.

To gain more insight into how tweets express different emotions and emotion
intensities, instance-based methods may be used that discern tweets based on a
2 The source code: https://github.com/olha-kaminska/frnn emotion detection.
3 Competition results: https://competitions.codalab.org/competitions/17751#resu

lts.

https://github.com/olha-kaminska/frnn_emotion_detection
https://competitions.codalab.org/competitions/17751#results
https://competitions.codalab.org/competitions/17751#results
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similarity or distance metric. In particular, we want to explore the use of fuzzy
rough set techniques for this purpose. We are not the first to do so: for example,
in [21,22], Wang et al. used fuzzy rough set methods to discover emotions and
their intensities in multi-label social media textual data.

In this paper, we will use the fuzzy rough nearest neighbour (FRNN) clas-
sification algorithm originally proposed in [10], and refined later with Ordered
Weighted Average (OWA) operators [3,12].

3 Methodology

In this section, we describe the key ingredients of our methodology. At the data
level, we first discuss the data preprocessing steps and then elaborate on the
different text embedding methods we implemented. Furthermore, we introduce
the similarity relation we used to compare the tweet vectors and discuss the two
main setups we used for classification, i.e., FRNN-OWA used as a standalone
classifier and within an ensemble. We end the section by a description of the
used evaluation method.

The task we consider is the emotion intensity ordinal classification task (EI-
oc, [15]) for the emotions anger, fear, joy, and sadness. The aim is to classify
an English tweet into one of four ordinal classes. Each class represents a level of
emotion intensity: 0 stands for “no emotion can be inferred”, 1 corresponds to
“low amount of emotion can be inferred”, 2 means “moderate amount of emo-
tion can be inferred”, and 3 - “high amount of emotion can be inferred”. For
each emotion, the training, development, and test datasets were provided in the
framework of the SemEval-2018 competition. We merge training and develop-
ment datasets for training our model.

3.1 Data Cleaning

Before the embedding process, we may apply some operations to clean the tweets.
In the first, general step, we delete account tags starting with ‘@’, extra white
spaces, newline symbols (‘\n’), all numbers, and punctuation marks. We do not
delete hashtags because they can be a source of useful information [16], so we
just remove ‘#’ symbols. Also, we replace ‘&’ with the word ‘and’ and replace
emojis with their textual descriptions. We save emojis as they can be helpful for
precision improvement [23]. Emojis are represented either by punctuation marks
and/or a combination of letters, or as a small image decoded with Unicode. For
the first type, we used their descriptions from the list of emoticons on Wikipedia4

for replacement. For the second type, we use the Python package “emoji”5 for
transformation.

The second step of tweet preprocessing is stop-word removal. For this pur-
pose, the stop-words list from the NLTK package6 is used.
4 https://en.wikipedia.org/wiki/List of emoticons.
5 https://pypi.org/project/emoji/.
6 https://gist.github.com/sebleier/554280.

https://en.wikipedia.org/wiki/List_of_emoticons
https://pypi.org/project/emoji/
https://gist.github.com/sebleier/554280
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Table 1. Characteristics of the combined train and development data for the four
emotion datasets.

Characteristic Anger Joy Sadness Fear

IR 1.677 1.47 2.2 8.04

Size of the smallest class 376 410 348 217

Number of instances 2,089 1,906 1,930 2,641

Both general preprocessing and stop-word removal are optional for our pur-
poses: during the experimental stage, we will examine whether they improve
classification results or not.

We also explored some important characteristics of the datasets and pre-
sented them in Table 1. One of characteristics is the class imbalance. It is quan-
tified by the Imbalance Ratio (IR) which is equal to the ratio of the sizes of the
largest and the smallest classes in the dataset.

3.2 Tweet Embedding

We represent each tweet as a vector, or set of vectors, to perform classification.
For this purpose, we use the following word embedding techniques:

• Gensim pre-trained Word2Vec7, which contains a vocabulary with 3 mil-
lion words and phrases and assigns a 300-dimension vector to each of them,
obtained by training on a Google News dataset.

• DeepMoji8 is a state-of-the-art sentiment embedding model. Millions of tweets
with emojis were used to train the model to recognize emotions. DeepMoji
provides for each sentence (tweet) a vector of size 2,304 dimensions. The
model has implementations for several Python packages, and we used the one
on PyTorch, made available by Huggingface9.

• Universal Sentence Encoder (USE) [2] is a sentence-level embedding method,
which means it will create vectors for sentences or tweets as a whole. It
was developed by the TensorFlow team10. USE provides a 512-dimensional
vector for a text paragraph (tweet), and was trained on several data sources
for different NLP tasks such as text classification, sentence similarity, etc.
The model was trained in two ways, using a deep averaging network (DAN)
and a Transformer encoder. We chose the second type of USE after basic
experiments for our further experiments.

• Bidirectional Encoder Representations from Transformers (BERT), proposed
by Devlin et al. [4]. The Google AI Language Team developed a script11 that

7 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM.
8 https://deepmoji.mit.edu/.
9 https://github.com/huggingface/torchMoji.

10 https://www.tensorflow.org/hub/tutorials/semantic similarity with tf hub
universal encoder.

11 https://github.com/dnanhkhoa/pytorch-pretrained-BERT/blob/master/examples/
extract features.py.

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
https://deepmoji.mit.edu/
https://github.com/huggingface/torchMoji
https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
https://github.com/dnanhkhoa/pytorch-pretrained-BERT/blob/master/examples/extract_features.py
https://github.com/dnanhkhoa/pytorch-pretrained-BERT/blob/master/examples/extract_features.py
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we use to assign pre-computed feature vectors with length 768 from a PyTorch
BERT model to all the words of a tweet. If the BERT vocabulary does not
contain some word, then during the embedding, this word is split into tokens
(for example, if the word “tokens” is not in the BERT dictionary, then it can
be represented as “tok”, “##en”, “##s”), and a vector is created for each
token.

• Sentence-BERT (SBERT) is a tuned and modified BERT model developed
by Reimers et al. [17]. The model operates on the sentence level and pro-
vides vectors with the same size as the original BERT. SBERT is based on
siamese (twin) and triplet network structures, which can processes two sen-
tences (tweets) simultaneously in the same way.

• The Twitter-roBERTa-based model for Emotion Recognition presented by
Barbieri et al. [1] provides embeddings on word level similar to the original
BERT. We consider one of seven fine-tuned roBERTa-based models trained
for different tasks with specific data for each of them. The model we chose was
trained for the emotion detection task from the same SemEval competition
(E-c) using a different set of tweets [15] with emotions such as anger, joy,
sadness, and optimism.

All listed sentence-level embeddings methods are applied to the tweets as a
whole, while for the word- and token-level approaches, we calculated a tweet
vector by taking its words’ or tokens’ vectors mean. The experiments were per-
formed for all four emotion datasets and the obtained results are provided in
Sect. 4.

3.3 Similarity Relation

To be able to compare tweet vectors, we need an adequate similarity relation.
We opted for the cosine metric, given by Formula (1): [7].

cos(A,B) =
A · B

||A|| × ||B|| , (1)

Here, A and B are elements from the same vector space, A · B is their scalar
product, and ||x|| is the vector norm of element x.

As this metric returns values between −1 (perfectly dissimilar vectors), and
1 (perfectly similar vectors), we rescale them to [0,1] using Formula (2) below,
which we will use as our primary similarity relation.

cos similarity(A,B) =
1 + cos(A,B)

2
. (2)

3.4 Classification Methods

In this section, we first recall the OWA-based Fuzzy Rough Nearest Neighbor
(FRNN-OWA) classification method and then explain how to construct ensem-
bles with it to solve the emotion detection task.



236 O. Kaminska et al.

FRNN-OWA. The fuzzy rough nearest neighbour (FRNN) method [8–10] is an
instance-based classifier that uses the lower (L) and upper (U) approximations
from fuzzy rough set theory to make classifications. In order to make the method
more robust and noise-tolerant, lower and upper approximations are usually cal-
culated with Ordered Weighted Average (OWA) aggregation operators [3]. The
OWA aggregation of a set of values V using weight vector

−→
W = 〈w1, w2, ..., w|V |〉,

with (∀i)(wi ∈ [0, 1]) and
∑|V |

i=1 wi = 1, is given by Formula (3):

OWA−→
W

(V ) =
|V |∑

i=1

(wiv(i)), (3)

where v(i) is the ith largest element in V .
In this paper, we used the following types of OWA operators12:

– Strict weights, which contain only one non-zero position that does not depend
on the actual values that are being aggregated:−→
W strict

L = 〈0, 0, ..., 1〉 −→
W strict

U = 〈1, 0, ..., 0〉. Strict weights correspond to the
original FRNN proposal from [8].

– Exponential weights (Exp), which are drawn from an exponential function
with base 2:−→
W exp

L = 〈 1
2p−1 , 2

2p−1 , ..., 2p−2

2p−1 , 2p−1

2p−1 〉
−→
W exp

U = 〈 2p−1

2p−1 , 2p−2

2p−1 , ..., 2
2p−1 , 1

2p−1 〉.
– Additive weights (Add), which model linearly decreasing or increasing

weights:−→
W add

L = 〈 2
p(p+1) ,

4
p(p+1) , ...,

2(p−1)
p(p+1) ,

2
p+1 〉

−→
W add

U = 〈 2
p+1 , 2(p−1)

p(p+1) , ...,
4

p(p+1) ,
2

p(p+1) 〉.
– Inverse additive weights (Invadd) are also based on the ratio between consec-

utive elements in the weight vectors:−→
W invadd

L = 〈 1
pDp

, 1
(p−1)Dp

, ..., 1
2Dp

, 1
Dp

〉
−→
W invadd

U = 〈 1
Dp

, 1
2Dp

, ..., 1
(p−1)Dp

, 1
pDp

〉,
with Dp =

∑p
i=1

1
p , the pth harmonic number.

– Mean weights, which weight each element equally:−→
Wmean

L =
−→
Wmean

U = 〈 1p , 1
p , ..., 1

p 〉
We used the implementation of the FRNN-OWA classifier [12] provided by the
fuzzy-rough-learn package13. To classify a test instance y, the method calculates
its membership to the lower and upper approximation of each decision class C:

C(y) = OWA−→
WL

{1 − R(x, y) | x ∈ X \ C}) (4)

C(y) = OWA−→
WU

{R(x, y) | x ∈ C}) (5)

The algorithm then assigns y to the class C for which C(y) + C(y) is highest.
12 p refers to the number of elements in the OWA weight vector.
13 https://github.com/oulenz/fuzzy-rough-learn.

https://github.com/oulenz/fuzzy-rough-learn
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Usually, the computation in Formula (4) is restricted to the k nearest neigh-
bours of y from the training data belonging to classes other than C, while in
Formula (5) we consider only y’s k nearest neighbours from class C. There is
no universal rule to determine the value of the parameter k. As a default, we
can put k =

√
N
2 , where N is the size of the dataset. In order to examine the

influence of k on the obtained classification results, we will use different k values
for the best-performing approaches in our experiments for each dataset.

We performed experiments for each emotion dataset with different OWA
types for lower and upper approximations with various numbers of k.

Classifier Ensembles. We used the FRNN-OWA method both as a standalone
method and as part of a classification ensemble. For this purpose, a separate
model was trained for every choice of tweet embedding. Each model was based
on each dataset’s best setup and embedding (choice of tweet preprocessing, OWA
types, and the number of neighbours k).

To determine the test label, we use a weighted voting function on the different
outputs of our models. As possible voting functions v, we considered average,
median, maximum, minimum, and majority. In the voting function the models’
outputs receive some weights.

The full architecture of our ensemble approach is presented in Fig. 1. In
Sect. 4, we perform several experiments to detect the most accurate ensemble
setup, including the best voting function, the most suitable values of weights

−→
E ,

and the proper combination of models (feature vectors).

Fig. 1. Scheme of the ensemble architecture.
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3.5 Evaluation Method

We used 5-fold cross-validation to evaluate the results of our approaches. As
evaluation measure the Pearson Correlation Coefficient (PCC) (6) was chosen,
as it was also the evaluation measure used for the competition.

Assuming that y is the vector of predicted values and x is the vector of correct
values, we compute

PCC =
∑

i (xi − x̄)(yi − ȳ)
√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
, (6)

where xi and yi present the ith components of vectors x and y respectively
and x̄ and ȳ are their means.

The PCC measure provides a value between -1, which corresponds to a total
negative linear correlation, and 1 - a total positive linear correlation, where
0 represents no linear correlation. Hence, the best classification model should
provide the highest PCC.

After submitting the obtained test labels to the competition web page, the
PCC scores for each emotion dataset were averaged.

4 Experiments

In this section, we present our results for the classification approaches discussed
in the previous section. Initially, we explore the best individual FRNN-OWA
setup, including the preprocessing options, the chosen tweet embedding, the
OWA types and the number of neighbours k. In a second set of experiments, we
evaluate various ensemble approaches.

4.1 Detecting the Best Setup for Embeddings

We performed experiments with different OWA types to detect the best setup
for each dataset. We also investigated for each dataset whether it was beneficial
to apply tweet preprocessing and stop-words cleaning. Finally, we explored the
most suitable k value for each embedding for each emotion dataset.

First, the pipeline was performed for each embedding and emotion dataset
after general preprocessing with the same OWA type for upper and lower approx-
imations (strict, additive, exponential, and mean) and a different number of
neighbors (from 5 to 23 with step 2). As the results showed, the best results
were obtained with the additive (“add”) OWA type for most embeddings, so we
chose them for the further experiments. The best results for each dataset and
each embedding are presented in Table 2.

Next, we calculated the PCC score for all embeddings and datasets with
the best add OWA types, while varying the preparation level of the tweets: raw
tweets (no preparation at all), standard preprocessing (text transformation steps
mentioned in Sect. 3.1, excluding stop-words removal), and stop-words cleaning
(the same as above, but including stop-words removal). To examine which setup
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Table 2. The best setup for each combination of dataset and embedding.

Setup Anger Joy Sadness Fear

roBERTa-based

Tweets preprocessing Yes Yes Yes Yes

Stop-words cleaning No No No No

Number of neighbors 19 9 23 9

PCC 0.6779 0.6956 0.7062 0.6031

DeepMoji

Tweets preprocessing No No No No

Stop-words cleaning No No No No

Number of neighbors 23 19 23 21

PCC 0.5853 0.6520 0.6380 0.5745

BERT

Tweets preprocessing No No No No

Stop-words cleaning No No No No

Number of neighbors 19 17 23 7

PCC 0.4492 0.5374 0.4391 0.4500

SBERT

Tweets preprocessing Yes Yes Yes Yes

Stop-words cleaning No No No No

Number of neighbors 19 15 23 11

PCC 0.5016 0.5660 0.5655 0.5192

USE

Tweets preprocessing Yes Yes Yes Yes

Stop-words cleaning No No No No

Number of neighbors 23 23 23 21

PCC 0.5054 0.5693 0.5961 0.5764

Word2Vec

Tweets preprocessing Yes Yes Yes Yes

Stop-words cleaning Yes Yes Yes Yes

The number of neighbors 21 23 23 7

PCC 0.5009 0.5099 0.5048 0.4496

works better, we performed a statistical analysis of results with a two-sided
t-test (we assume the statistical significance of the p-value on the 0.05 level).
For calculation, the Python’s package ‘stats’ was used. Results are presented in
Table 2. As we can see, some embeddings do not require any preprocessing at all,
like DeepMoji and BERT. The standard preprocessing showed an improvement
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for other methods, and only Word2Vec seems to benefit from an additional stop-
words removal step.

For most of the experiments, the obtained p-values are below the chosen
threshold of 0.05. For some cases, the p-value was above the threshold, which
means no significant difference exists between the compared options. In this sit-
uation, for the dataset, we chose the option that works better for other datasets.
For example, for the BERT embedding, the joy dataset was the only one with
the p > 0.05, when for anger, sadness, and fear p is below 0.05 (so cleaned tweets
performed better). Hence, we will use cleaned tweets for joy because this is the
best setup for the other emotions.

Finally, for each embedding and dataset, we examined the PCC of the best
setup (the combination of the best OWA types and the most efficient text prepa-
ration) for the different number of neighbours. The highest PCC scores and the
proper k values are also listed in Table 2.

The best setup for each combination of embedding and dataset was used in
further experiments. We also can draw several intermediate conclusions. Remark-
ably, the highest PCC scores for all datasets among all embeddings were pro-
vided by the roBERTa-based model, which does not come as a surprise,since
this model was fine-tuned on similar data and its performance is in line with
earlier results for similar classification tasks [1]. The second-best approach was
DeepMoji, while BERT and Word2Vec provided the lowest scores. Also, we can
see that the PCC scores for the fear dataset are often the lowest among the other
emotions, which might probably be due to the fact that the fear dataset is the
most unbalanced dataset. Similarly, the joy dataset shows high results, as the
most balanced one.

4.2 Ensembles

To improve the PCC scores provided by individual embeddings, we also investi-
gated an ensemble approach. To determine the best setup of the ensemble, we
tuned several parameters, i.e., the voting function, the models’ weights and the
selection of the strongest embedding models.

First, we compared different voting functions for all datasets: majority, mean,
rounded mean, median, maximum, minimum. We note that for the majority
voting function implementation we use the mode() function from the Python
package stats. It chooses the most frequent label prediction, and in case of ties,
this function returns the lowest value.

Noteworthy is that some voting functions provide a float value between 0
and 3 instead of the required intensity labels 0, 1, 2, or 3. This was not a
problem, though, during training because our labels are not different classes,
but ordinal intensity labels. At testing time, the obtained values were rounded to
submit our predictions. The general setup for comparing the voting functions was
based on the six previously discussed models (one for each embedding method)
with the parameters determined in Table 2, where each predicted output has the
same weight equal to 1. The results are presented in Table 3. As we can see,
the mean voting function consistently provided the best results for all datasets,
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while median performs second best. Although the rounding of the mean’s output
decreases the PCC results, it remains the best voting function. So, for further
experiments, we will use the average as a voting function.

Table 3. Results for ensembles with different voting functions for all datasets.

Voting function Anger Joy Sadness Fear

Majority 0.6141 0.6669 0.6591 0.5665

Mean 0.6933 0.7501 0.7456 0.6723

Rounded mean 0.6485 0.7126 0.7152 0.6448

Median 0.6414 0.7150 0.7079 0.6050

Maximum 0.4856 0.4668 0.5625 0.5640

Minimum 0.5959 0.6411 0.5016 0.3885

Next, we check the use of weights assigned to the models’ outputs in the
voting function. In particular, we use confidence scores (CS) to give more weight
to the better models.

A confidence score is a float value, usually between 0 and 1, provided by a
classification model for each prediction class. This value illustrates the accuracy
of the model’s prediction for a particular class. For FRNN-OWA, the models
return four scores (one for each class). They are the mean membership degrees
in the upper and lower approximations.

To get confidence scores, we divide each score by the sum of all four class
scores. In this way, we obtain the values Ci,j : four scores (one per class label
i, i = 0, ..., 3) for every model j (j = 1, ..., 6). We use the confidence scores in the
following ways:

– Majority voting. The most intuitive approach, where we take as a prediction
the label with the highest sum of confidence scores.

– Weighted average (WA). As we saw above, the best voting function is the
mean, so we will upgrade it with confidence scores as weights to calculate the
prediction label as a weighted average of labels. The output could be a float
number, so we also check the rounded option.

Experiments were performed with all six embedding models. Results are provided
in the upper half of Table 4.

As we can see, weighted average with confidence scores performed the best.
Predictably, rounding decreased the weighted average’s score, and it is similar to
the results provided by a majority of confidence scores. If we compare them with
the values in Table 3, considering the mandatory rounding step, we can conclude
that these approaches with confidence scores do not increase PCC scores.

We analyzed the obtained confidence scores and noticed that they are close
to each other, approximately, in the range from 0.4 to 0.6. Our hypothesis is
that since we have a high dimensional task like ours, the confidence scores will
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Table 4. Results for ensembles with different usage of confidence scores for all datasets.

Approach Anger Joy Sadness Fear

Original confidence scores

Majority voting 0.6351 0.7082 0.7016 0.5700

Weighted average 0.7025 0.7424 0.7333 0.6044

WA rounded 0.6302 0.6731 0.6962 0.5549

Rescaled confidence scores

Weighted average 0.7187 0.7781 0.7630 0.6763

(α =0.0420) (α =0.0360) (α =0.0400) (α =0.0460)

WA rounded 0.6432 0.7512 0.7455 0.6430

(α =0.0420) (α =0.0320) (α =0.0320) (α =0.0460)

be close to 0.5: the upper approximation memberships will be close to 1 and the
lower ones to 0, resulting in similar values for each class. In other words, the
contribution of such a classifier is low.

To mend this issue, we perform rescaling of the original membership scores
in order to increase the differences among them. For this purpose, we subtract
the mean 0.5 from each score Ci,j and divide the result by a small value α
(0 < α < 1). Next, for each class i we compute the sum of the scores for
each model. Since the obtained values may be negative, we use the softmax
transformation to turn them into probabilities. The steps of this rescaling process
are summarized in Formula (7):

Ci =
exp(

∑
j(Ci,j − 0.5)/α)

∑
k exp(

∑
j(Ck,j − 0.5)/α)

, (7)

where α is a parameter to tune. To detect the best value of α for each dataset, we
performed a grid search, calculating PCC scores for different α values to choose
the one that provides the biggest PCC.

Finally, to calculate the predicted label, we apply the weighted average on
classes, where weights are calculated probabilities. Results of this approach with
the best α for each dataset are provided in the lower half of Table 4.

Compared with the original confidence scores and values from Table 3, scaled
scores performed better for each dataset for both average and rounded average.
Hence, we will use scaled confidence scores as models’ output weights in the
following experiments.

The last step of ensemble tuning is to determine the most accurate set of
models in the ensemble. The idea behind this is to see how the PCC score will
change depending on the models (embeddings) that we are using in the ensemble
to answer the question: is it possible to improve the score by rejecting the weak
models’ results.

For this purpose, we used grid search, where the PCC score was calculated
for each subset of all six models (features) and compared. The predicted label
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was calculated using a rounded average function with weights equal to the scaled
confidence scores. We used a rounded average since it returns integers, so we can
use them to submit to the competition web-page. In this way, we detected the
best setup for each emotion dataset. The results for cross-validation evaluation
are presented in Table 5.

As we can see, all datasets have in common the same features such as
roBERTa, DeepMoji, and USE models (we denote them with “r/D/U”). Another
one or two features are different for each dataset. We can mainly see that more
features provide better results, but the weak models’ pruning also takes place.

In the end, we could obtain the best ensemble setup with the required param-
eters for each emotion dataset.

5 Results on the Test Data

From Sect. 4 we obtained the best setup for each dataset: an ensemble of sev-
eral models based on different features with proper text preprocessing, k value,
and additive lower and upper OWA types for each. The predicted test label is
calculated as the mean of the models’ outputs with scaled confidence scores as
weights.

To measure the best ensemble’s effectiveness, we evaluate it on the test data.
We calculate PCC values for each emotion dataset and average the results, as was
done by the competition organizers. As the output of the ensemble’s mean voting
function, obtained predictions are in float format, so to satisfy the competition’s
submitting format, they were rounded to the nearest integer value. The obtained
results are presented in Table 5, where we provided results for the combined
training and development data to compare them.

Table 5. The best approach on the cross-validation and test data for all datasets.

Dataset Models Training and
development
data

Test data

Anger r/D/U, Word2Vec, BERT 0.7241 0.6388

Joy r/D/U, SBERT, BERT 0.7788 0.7115

Sadness r/D/U, SBERT 0.7719 0.6967

Fear r/D/U, Word2Vec, SBERT 0.6930 0.5705

Averaged scores 0.7419 0.6544

As we can see from Table 5, results for the test data are predictably worse
than those for the combined training and development datasets. The PCC scores
for sadness and joy datasets are higher than for anger, and fear, as usual, has
lower results.
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We submitted the predicted labels for the test data in the required format to
the competition webpage14. After submission, we took the second place in the
competition leader board with PCC = 0.654.

6 Conclusion and Future Work

In this paper, we designed a weighted ensemble of FRNN-OWA classifiers to
tackle the emotion detection task. Our approach uses several embeddings, which
are mostly sentiment-oriented and applied at sentence-level. We demonstrated
that our method, despite its simple design, is competitive to the competition’s
winning approaches, which are all black-boxes.

As a possible improvement, we may consider additional text preparation
steps, for example, bigger weights for hashtags and emojis or exclamation mark
usage, before the embedding step.

Finally, we hypothesize that the lower PCC scores for the fear dataset could
be related to the dataset’s imbalance. As a possible approach to solve this issue,
we may use specific classification machine learning methods for imbalanced data.
For example, in paper [20], several fuzzy rough set theory methods are described
specifically targeting imbalanced data sets.
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Abstract. Recurrent neural networks (RNN) has been widely used in
sentiment classification. RNN can memorize the previous information
and is applied to calculate the current output. For sentiment binary
classification, RNN calculates the probabilities and then performs binary
classification according to the probability values, and some emotions near
the median are forcibly divided. But, it does not consider the existence
of some samples that are not very clearly polarized in sentiment binary
classification. Three-way decisions theory divides the dataset into three
regions, positive region, negative region, boundary region. In the process
of training classification, the probabilities of some samples belonging to
different categories are very close, and three-way decisions can divide
them into the boundary region by setting thresholds. Reasonable pro-
cessing of the boundary region can get better results for binary classifi-
cation by adjusting the probability of samples in the boundary region.
Therefore, in this paper, we propose three-way decisions based RNN
models for sentiment classification. Firstly, we use basic RNN models to
classify the data. Secondly, we apply three-way decisions theory to set
the thresholds, divide the boundary region based on probability. Finally,
the probabilities of samples in the boundary region are adjusted and
applied in the next round of training. Experiments on four real datasets
show that our proposed models are better than corresponding basic RNN
models in terms of classification accuracy.

Keywords: Three-way decisions · Sentiment classification · Recurrent
neural networks

1 Introduction

Sentiment classification is an important basic research direction in sentiment
analysis [1], which aims to analyze peoples opinions in textual data (such as
product reviews, movie reviews, and tweets), and extract their polarity and
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viewpoint. Sentiment classification research is an important aspect of sentiment
analysis research which is a hot topic in the natural language processing field
[2]. These methods for sentiment classification are mainly divided into two cat-
egories: traditional feature-based methods and machine learning methods [3].
Deep learning methods in machine learning are used to extract reasonable fea-
tures from text and input them into a classifier model to predict sentiment
categories [4].

Sentiment classification can be either a binary (such as positive and nega-
tive) or a multi-class (such as positive, angry, sad, fearful, surprised, emotionless
and ironical [5]) problem. There are many deep learning frameworks proposed
for binary sentiment classification problems, such as feed-forward networks [6],
RNNs [7], CNNs [8], capsule networks [9], the attention mechanism [10], trans-
formers [11]. RNN is one of the most classic deep learning models. RNN models
view a text as a sequence of words and are intended to capture word depen-
dencies and text structures for sentiment classification [12]. To process sequence
data, the output of the nodes in the layer will be re-entered into this layer to real-
ize the learning history and predict the future. The two main improvements of
RNN are LSTM [13] (Long Short-Term Memory Network) and GRU [14] (Gated
Cycling Unit), both of which add additional function gates to the basic neural
unit, to better achieve the processing of long-term memory. In order to make up
for the lack of information that can not be encoded from back to front, models
based on bidirectional RNN (BRNN) [15], BiLSTM [16] and BiGRU [17,18] are
proposed.

Although the RNN models are very suitable for processing context-sensitive
serial data [19], they are not good at processing boundary data with insignificant
polarity. The task of binary sentiment analysis is to divide the texts into two
polarities (such as positive and negative). In the process of training classification,
some samples are not very clearly polarized. The probability of some samples
belonging to different categories is very close, therefore, how to increase the
difference of these samples belonging to different categories is a challenge of the
current RNN models.

Three-way decisions can divide samples into three regions when the sample
information is fuzzy or insufficient, and we can put it in the boundary region
for reprocessing. It is an effective way to solve uncertain decision-making prob-
lems [20]. Reasonable processing of the boundary region can get better results for
binary classification in the boundary region. In this paper, we propose three-way
decisions based RNN models for sentiment classification. Firstly, we use basic
RNN models to classify the data. And we apply three-way decisions theory to
divide the boundary region based on probability. Finally, we adjust the proba-
bilities of samples in the boundary region and apply the adjusted probabilities
in the next round of training. Experiments on four real datasets show that our
proposed models are better than corresponding basic RNN models in terms of
classification accuracy. Our contributions are as follows:

1. We propose three-way decisions based RNN models for sentiment classifica-
tion. We use the idea of three-way decisions for dealing with the boundary
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region to get better handling of fuzzy data and obtain better binary classifi-
cation results.

2. We divide the boundary region into the positive region and negative region,
according to adjusting the probabilities of the samples in the boundary region.
We use two adjustment strategies. The first strategy is to move the proba-
bilities closer to two polarities. The second strategy is to use parameters to
control the degree of its approach based on the first strategy. We adjust the
probability values in the output of samples in the boundary region to enhance
polarity. The adjusted data will help us train the data better.

3. Experiments on four real data sets show that our proposed models are better
than corresponding basic RNN models in terms of classification accuracy.

2 Related Work

2.1 RNN Models

Models based on RNN (such as long short term memory [21], etc.), which view a
text as a sequence of words and are intended to capture word dependencies and
text structures [22], have been used in many fields of natural language process-
ing, such as language models and syntax analysis [23], semantic role labeling [24],
semantic representation [25], dialogue [26], machine translation [27] and other
tasks. They are all excellent and even become the best methods at present. The
basic idea of the bidirectional recurrent neural networks (BRNN) is to propose
that each training sequence is two recurrent neural networks (RNN) forward
and backward, and these two are connected to an output layer. Cheng et al.
[28] augment the LSTM architecture with a memory network in place of a single
memory cell to model long-span word relations for machine reading. Zhang et al.
[29] proposed a Coordinated CNN-LSTM-Attention (CCLA) model to capture
the intrinsic semantic, emotional dependence information and the key part of the
emotional expression of the text. Feng et al. [30] developed a Context Attention
based Long Short-Term Memory (CA-LSTM) network to incorporate preced-
ing tweets for context-aware sentiment classification. Liu et al. [16] proposed
an architecture that contains a bidirectional LSTM (BiLSTM), attention mech-
anism, and the convolutional layer. Feng et al. [31] established a fine-grained
feature extraction model based on BiGRU and attention.

2.2 Three-Way Decisions

Three-way decisions theory [32] divides the problem domain into positive, bound-
ary, and negative regions. When dealing with these three regions, the strategies
of acceptance, deferment (or further investigation), and rejection were adopted
respectively. Let U denote a finite nonempty set of objects and C denote the
subset of U , C ⊆ U . And Pr(C|[x]A) denotes the conditional probability of an
object in C provided that the object is in [x]A. We normally use the following
formulas to describe the positive, negative, and boundary regions respectively:
for 0 ≤ β < α ≤ 1,
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POS(α,β)(C) = {x ∈ U | Pr(C|[x]A) ≥ α} (1)

BND(α,β)(C) = {x ∈ U | β < Pr(C|[x]A) < α} (2)

NEG(α,β)(C) = {x ∈ U | Pr(C|[x]A) ≤ β} (3)

Based on the three-way decisions theory [32], some researchers have applied
to the NLP field and achieved certain results. The practice has proved that the
three-way decisions are practical and effective methods for people to deal with
uncertain problems. Zhang et al. [33] applied three-way decisions to sentiment
classification for solving sentiment uncertainty. Zhou et al. [34] applied the con-
cept of three-way decisions in the classifier that combines lexicon-based methods
and supervised learning methods together. Zhang et al. [35] proposed a three-
way enhanced convolutional neural network model for sentence-level sentiment
classification. Zhang et al. [36] proposed a cost-sensitive combination technique
based on sequential three-way decisions in sentiment classification. Zhu et al. [37]
presented a model that integrated three-way decision and Bayesian algorithms
to distinguish microblog’s subjective sentence.

3 The Proposed Method

We propose three-way decisions based RNN models for sentiment classification.
Based on the three-way decisions theory, we divide samples into positive, neg-
ative, and boundary regions according to the output of training data. And we
adjust the probability values in the output of samples in the boundary region to
enhance polarity. The adjusted data will help us train the data better.

3.1 Algorithm

Let S denote the set of textual samples,whose samples xi ∈ S. Suppose that
Pr(xip) denotes the positive probability of xi, and Pr(xin) denotes the negative
probability. In the process of training data, the sum of the probability values
(both positive and negative) that determine the polarity of a sample is 1. Thus
the probabilities of every sample satisfy the following equation:

Pr(xip) + Pr(xin) = 1 (4)

We use the following formulas to describe the positive, negative, and bound-
ary regions respectively: for 0 ≤ β < α ≤ 1 ,

POS(α,β)(S) = {x ∈ S | α ≤ Pr(xip) ≤ 1} (5)

NEG(α,β)(S) = {x ∈ S | 0 ≤ Pr(xip) ≤ β} (6)

BND(α,β)(S) = {x ∈ S | β < Pr(xip) < α} (7)
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We view 0.5 as the center and divide the samples with probability values
within a certain range into the boundary region. We set a parameter G to con-
trol the thresholds α and β to divide three regions by the following formulas.
According to the value range of α and β, G has to be less than 0.5.

α = 0.5 + G

β = 0.5 − G

We adjust the probability value of the boundary region, and the probability
value of samples beyond this range remains unchanged. During each iteration
of model training, the probability values calculated by the RNN models are
processed by the adjustment strategy based on the three-way decisions theory,
and the processed result is brought to the next iteration. The entire learning
algorithm is summarized as Algorithm 1.

Algorithm 1. M-3Wi
Require:

dataset S, with m samples xi ∈ S, dataset V (for validation), dataset T (for testing),
batch size y, epoch number e, Sk denotes batch k of dataset S, thresholds α and β

Ensure:
Accuracy, Loss

1: Initialize trainable weights

2: for j = 1 to e do

3: for k = 1 to �m/y� do
4: [[Pr(xip) + Pr(xin)]]|xi ∈ Sk ⇐ M-training(Sk)

5: [[Pr′(xip) + Pr′(xin)]]|xi ∈ BND(α,β)(Sk) ⇐ 3Wi(Sk)
6: Loss, Accuracy⇐ Testing(Sk)

7: Update trainable weights

8: end for
9: Loss, Accuracy⇐ Testing(V )
10: end for

11: Loss, Accuracy⇐ Testing(T )

In Algorithm 1, M-training() denotes the training process of model M which
is one of the RNN models. Testing()is the process of calculating the accuracy
and loss of a dataset. And 3Wi() denotes the adjusting operations of our pro-
posed methods based on three-way decisions, in which i means the adjustment
strategies i. In order to be different from the benchmark model M, we name
our improved models based on three-way decisions as M-3W models. Due to
the use of two adjustment strategies, the improved models are named M-3W1
and M-3W2 according to the strategy. These two adjustment strategies will be
introduced in Sect. 3.2.
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3.2 Probability Adjustment Strategies

After dividing the boundary region, we need to adjust the probability values of
the boundary region samples. The following are the two adjustment strategies
proposed in this paper.

3.2.1 Probability Adjustment Strategy 1 (M-3W1)

In this strategy, the probability values of the boundary region samples is adjusted
by:

Pr′(xip) = 2Pr(xip) − 0.5 (8)

Pr′(xin) = 2Pr(xin) − 0.5 (9)

where Pr′(xip) denotes the positive probability adjusted by M-W1 of a
boundary region sample xi, and Pr′(xin) denotes the negative probability
adjusted by M-W1 of the boundary region sample xi. Since the probability value
0 ≤ Pr′(xip) ≤ 1, the value of G have to be set between 0 and 0.25. We compare
the sample distribution before and after the strategy adjustment, as shown in
Fig. 1.

Fig. 1. Comparison chart of sample binary classification before and after adjustment

As can be seen from Fig. 1, the adjusted samples will move towards two poles.
In this strategy, this adjustment will lead to the fluctuation of training results
in the process of training. In order to make the training results more smooth
and stable, we use a coefficient to control the degree of convergence to the two
poles. We describe the second strategy in Sect. 3.2.2.
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3.2.2 Probability Adjustment Strategy 2 (M-3W2)
In this strategy, the probability values of the boundary region samples is adjusted
by:

Pr′(xip) = Pr(xip) + (Pr(xip) − 0.5) ∗ wi (10)

Pr′(xin) = Pr(xin) + (Pr(xin) − 0.5) ∗ wi (11)

where Pr′(xip) denotes the positive probability adjusted by M-W2 of a
boundary region sample xi, and Pr′(xin) denotes the negative probability
adjusted by M-W2 of the boundary region sample xi, and wi denotes the strategy
coefficient of the sample xi.

The strategy coefficient is calculated by:

wi = G − |Pr(xip) − 0.5| (12)

When wi = 1, the two strategies are the same. But according to formula 12,
the value of wi will be less than 1.

The two above strategies we proposed is to better classify the polarity of
the dataset samples. In adjustment strategy 1, we add the difference between
probability and center point 0.5 to the positive and negative polar probabilities of
a sample in the boundary region, respectively, so that the positive and negative
polar probabilities converge towards two poles, or even out of the boundary
region and into the positive or negative region, in order to enhance its polarity.
To better control the degree of convergence to two poles, we added a coefficient
wi to the adjusted strategy 2.

4 Experiment

In this section, we will construct experiments to evaluate the effectiveness of the
proposed methods.

4.1 Datasets and Baseline Methods

We test our model on four binary sentiment classification benchmark datasets.
We describe each detailed dataset as follows:

– IMDB: It is a movie review dataset for binary sentiment classification. In the
dataset, there are 25,000 training samples and 25,000 test samples, of which
50% are positive samples and negative samples. The average length of each
review sample is 255.

– MR (Movie review dataset): The average length of each review is 20 in this
review set, in which there are positive samples and negative samples each
accounting for 50%.

– CR (customer review dataset): This is an annotated customer review dataset
of 14 products from Amazon. Each customer reviews the product and divides
the reviews into positive and negative. The average length of each review is
19.
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– SUBJ: This is a binary classification movie review dataset that classifies a
sentence as subjective or objective. The dataset provides 10,000 samples,
with subjective samples and objective samples each accounting for 50%. The
average length of each review is 23.

We use five RNN models as the benchmark classifiers, including RNN, LSTM,
BiLSTM, CLSTM, and GRU. We compare our methods with the benchmark
models and then analyze the accuracy in the results. In addition, we also made
a comparative experiment by adjusting the thresholds and adjusting the proba-
bility change rate.

– RNN: We use one hidden layer with 32 hidden units, batch size of 512.
– LSTM: We use one hidden layer with 64 hidden units, dropout rate of 0.3,

batch size of 512.
– CLSTM: We use one convolution layer and one max-pooling layer, filter win-

dows of 3 with 32 feature maps one hidden layer with 64 hidden units, dropout
rate of 0.2, and then use one hidden layer with 64 hidden units, batch size of
128.

– BiLSTM: We use one forward hidden layer and backward hidden layer with
64 hidden units, dropout rate of 0.3, batch size of 128.

– GRU: We use one hidden layer with 128 hidden units, dropout rate of 0.3,
batch size of 128.

4.2 Experimental Results

For the RNN models, we compare the performances of vanilla RNN, LSTM,
CLSTM, BiLSTM, GRU, and their improved models based on three-way deci-
sions. The experimental results are shown in Table 1 (% is omitted).

We compare the average accuracy of the RNN models and the models
improved with the two adjustment strategies and find that the improved models
are significantly better than their benchmark models. M-3W1 and M-3W2 give
superior performances on the four datasets.

For text classification, the methods for processing the samples in the bound-
ary region can affect classification accuracy. The models improved with the two
adjustment strategies M-3W1 and M-3W2 are also different in experimental
results. In most cases, the accuracy of M-3W2 is better than the accuracy of M-
3W1. The accuracy improvement of the benchmark model RNN is significantly
higher than that of other benchmark models.

4.3 Parameter Analysis

In the process of tuning, it is found that different value of parameter G will lead
to different experimental results, so we also analyze the classification accuracy
under different parameters, and the results are shown in the Fig. 2 and Fig. 3.
In the following experiment, we fix the parameter G from 0.1 to 0.24, and the
step size used is 0.02. Except for the parameter G, all other parameters are kept
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Table 1. Classification accuracy of different models

MODEL IMDB MR CR SUBJ

RNN 85.94 66.85 70.20 87.96

RNN-3W1 87.54 72.18 75.36 90.65

RNN-3W2 87.90 72.51 74.83 90.65

LSTM 87.32 76.91 79.14 90.50

LSTM-3W1 89.76 78.45 80.47 92.55

LSTM-3W2 89.80 79.21 80.81 92.25

BiLSTM 87.50 76.89 79.47 91.30

BiLSTM-3W1 89.80 78.84 80.74 93.85

BiLSTM-3W2 89.68 79.22 81.60 93.95

CLSTM 87.70 76.93 78.81 90.65

CLSTM-3W1 89.24 78.27 79.27 92.80

CLSTM-3W2 89.20 78.95 80.13 92.90

GRU 86.72 75.43 78.01 90.20

GRU-3W1 87.94 77.12 79.60 92.85

GRU-3W2 88.30 77.25 80.79 92.80

Fig. 2. Classification results of M-3W1 models with different parameter G

unchanged. We plot the two strategies of each dataset with parameter G changes
on the two following figures separately for comparison.

It can be seen from the two figures that the fluctuation of some broken lines
is not very obvious, which shows that the accuracy is not significantly influenced
by the parameter G on some RNN models. However, we can still find that the
fluctuation degree of the broken line increases with the increase of the average
length of the dataset, and the dataset that varies the most with the parameter is
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Fig. 3. Classification results of M-3W2 models with different parameter G

IMDB. In addition, the results show that the classification accuracy of proposed
models is better when the value of parameter G is one value from 0.18 to 0.22.

5 Conclusion

In this paper, we proposed three-way decisions based RNN models. The experi-
mental results on four benchmark datasets indicate that the RNN models with
three-way decision ideas can better classify samples into two categories and
enhance the performances of the classification. Compared with some baseline
methods, it demonstrates that the new method is more accurate.

In the future, we will focus on the research of the combination of three-
way decisions and other text classification models. In addition, the models we
proposed is for the binary classification of text analysis, and then we can consider
the sentiment analysis of multi-classification.
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Abstract. Sentiment classification identifies the polarity of text such as
positive, negative or neutral based on textual features. A tolerance near
set-based text classifier (TSC) is introduced in this paper to classify senti-
ment polarities of text with vectors from a pre-trained SBERT algorithm.
One of the datasets (Covid-Sentiment) was hand-crafted with tweets
from Twitter of opinions related to COVID. Experiments demonstrate
that TSC outperforms five classical ML algorithms with one dataset, and
is comparable with all other datasets using a weighted F1-score.

Keywords: Tolerance near sets · Transformer architecture · Sentiment
classification · BERT · SBERT

1 Introduction

Opinion mining and sentiment analysis are two popular research areas where
opinions of users are analyzed to detect sentiment polarity [4]. Microblogging
platforms such as Twitter with a large user-base, have led to a vast amount of
information for sentiment analysis [2]. Sentiment polarity detection is one of the
tasks of sentiment analysis. Several classical machine learning approaches such
as supervised, semi-supervised and unsupervised methods have been applied to
this task. These methods use either sentiment lexicons and/or a variety of hand-
crafted textual features for classification. Deep learning approaches that were
originally used to learn word embeddings from large amounts of text corpus are
now used extensively in sentiment analysis. The Attention-based transformer
architecture BERT introduced in [10] as well as several variants like RoBERTa,
ELECTRA, DistilBERT, and ALBERT [3] have gained immense popularity due
to their high classification accuracy.

In this paper, we introduced a modified form of tolerance-based algorithm
(TSC) to classify sentiments in short texts using the vector embeddings gen-
erated by the BERT model. The Tolerance near set-based (TNS) classifier was
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first introduced in [7] and applied in [9] to classify images and audio signal data
respectively. We experimented with seven datasets and the following algorithms:
Stochastic Gradient Descent (SGD), Light Gradient Boosting Machine (LGBM),
Random Forest (RF), Maximum Entropy (ME), and Support Vector Machine
(SVM). The chosen datasets were a mix of long and short words as well as several
sentiment classes. A Covid-Sentiment dataset was hand-crafted by extracting
tweets of opinions about COVID. Using a weighted F1-score, we evaluated the
performance of all the algorithms. We also experimented with the DistilBERT
model which outperformed all algorithms on all datasets. However, our goal was
to compare TSC with non-deep learning approaches. The contribution of this
work is a new application of tolerance near sets in sentiment polarity classifica-
tion. This paper is organized as follows: in Sect. 2, we describe the datasets used
in our experiments. In Sect. 3, we give the formal model, TSC algorithm, and
the transformer models used to derive vectors for our experiments. In Sect. 4, we
give analysis of our experimental results.

2 Data Sets

Table 1 shows the datasets used in our experiments. We handcrafted a dataset
referred to as Covid-Sentiment which is a subset derived from [1] using Tweets
ID from 1st April 2020 to 1st May 2020. We extracted 47,386 tweets with the
help of Twitter API. The tweets in languages other than English (ex: French,
Hindi, Mandarian, Portuguese) as well as duplicate tweets were removed. The
collected tweets used hashtags such as #Covid19, #WHO, #Wuhan, #Corona.
Extensive pre-processing of 29,981 English language tweets from the original
dataset such as removal of HTML tags, @username, hashtags, URLs, and incor-
rect spellings were also performed. A final set of 8003 tweets were hand-labelled
into 3 categories: positive, negative, and neutral sentiments. With other datasets,
subsets were created for training and test sets using random and balanced class
distribution using the Scikit-learn library1.

Table 1. Dataset information

Dataset Type Sizes Positive Negative Neutral Irrelevant

Covid–Sentiment Train,Test 7000,1003 1542,236 2124,374 3334,393 –,–

U.S. Airline Sentiment Train,Test 12000,1000 2015,130 7322,675 2663,195 –,–

IMDB Movie Review Train,Test 20000,2000 10055,1007 9945,993 –,– –,–

SST–2 Train,Test 15000,1500 8306,833 6694,667 –,– –,–

Sentiment140 Train,Test 15000,1000 7500,500 7500,500 –,– –,–

SemEval 2017 Train,Test 17001,3546 6915,1473 2551,559 7534,1513 –,–

Sanders corpus Train,Test 4059,1015 416,100 462,107 1837,484 1344,324

1 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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3 Models

In this section, a brief introduction to the main definitions underlying near
sets is given. In addition, we give the algorithm used to generate the tolerance
classes and representative vectors. We also briefly describe the specific trans-
former model used in our experiments.

3.1 Tolerance Near Sets

Tolerance near sets [6] provide an intuitive as well as mathematical basis in defin-
ing what it means for pairs of objects to be similar. The basic structure which
underlies near set theory is a perceptual system which consists of perceptual
objects (i.e., objects that have their origin in the physical world [5]).

Definition 1. Perceptual System [5]
A perceptual system is a pair 〈O,F 〉, where O is a nonempty set of perceptual
objects and F is a countable set of real-valued probe functions φi : O → R.

An object description is defined by means of a tuple of probe function values
Φ(x) associated with an object x ∈ X, where X ⊆ O as defined by Eq. 1:

Φ(x) = (φ1(x), φ2(x) . . . , φn(x)) (1)

where φi : O → R is a probe function of a single feature. The probe functions
give rise to a number of perceptual relations. This approach is useful when
decisions on nearness are made in the context of a perceptual system i.e., a
system consisting of objects and our perceptions of what constitutes features
that best describe these object. The notion of tolerance is directly related to the
idea of closeness between objects, that resemble each other with a tolerable level
of difference. A tolerance space (X,�) consists of a set X endowed with a binary
relation � (i.e., a subset � ⊂ X × X) that is reflexive (for all x ∈ X, x � x)
and symmetric (for all x, y ∈ X, x � y and y ∼ x) but transitivity of � is not
required.

Definition 2. Perceptual Tolerance Relation [6]
Let 〈O,F 〉 be a perceptual system and let B ⊆ F ,

∼=B,ε = {(x, y) ∈ O × O : ‖ φ(x) − φ(y) ‖2≤ ε} (2)

where ‖·‖2 denotes the L2 norm of a vector.

In this paper, given a set of labelled text (objects) T , where ti ∈ T , i ∈ N
and si is a sentiment label for ti. Each tweet or text ti can be represented as a
k-dimensional word vector φ(ti). We define a tolerance class of texts TC using
the definition in [6] as follows:

{(ti, tj) ∈ T × T :
φ(ti).φ(tj)

‖φ(ti)‖ ‖φ(tj)‖ ≤ ε}. (3)
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where text similarity is measured using the cosine distance measure and ε is a
user-defined tolerance level. In other words, our universe of text described by
set of vectors φ, is spread amongst tolerance classes with a tolerance level ε for
semantic textual similarity, where a tolerance class TC is maximal with respect
to inclusion. Algorithm 1 gives the method for generating tolerance classes from
the training set and Algorithm 2 gives the method for generating tolerance classes
from the test set.

Algorithm 1: Training Phase: Generating class representative vectors
Input : ε > 0, // Tolerance level

TR = {TR1, . . . , TRM} , // Training Data Set
Output: (NC, {R1, . . . , RNC} , {TextCat1, . . . , T extCatNC})

1 for i ← 1 to M do
2 for j ← i + 1 to M do
3 computeCosine(TRi, TRj , Cosineij);

4 for i ← 1 to M do
5 for j ← i + 1 to M do
6 generateToleranceclass(Cosineij , ε; SetOfPairs);

computeNeighbour(SetOfPairs, i, TR;Ni); // Compute the
neighbourhood Ni of ith training data TRi

7 for all x, y ∈ Ni do
8 if x, y /∈ SetOfPairs then
9 Ci ← Ni; // Include y from class Ni into Ci

10 H ← H ∪ {Ci};
11 // Ci is one tolerance class induced by the tolerance relation
12 computeMajorityCat(Ci;TextCati); // Determine Category by majority

voting for each Ci

13 NC ← |H|; // Number of classes
14 // End of defineClass
15 defineClassRepresentative(NC, H; {R1, . . . , RNC} , {TextCat1, . . . , T extCatNC});

// Based on mean value

3.2 Transformer Model

Transformers overcome the limitation of RNN (sequential processing of text),
and CNN (high computational cost of learning representations of long sen-
tences) by applying self-attention to compute in parallel for every word in a
sentence or document an “attention score” to model the influence each word
has on another [3]. SBERT uses siamese and triplet network structures to derive
semantically meaningful sentence embedding and adds a pooling operation to
the output of BERT/RoBERTa to derive a fixed sized sentence embedding [8].
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Algorithm 2: Learning Phase: Assigning Sentiment Classes
Input : ε > 0, // Tolerance level

TS = {TS1, . . . , TSM} , // Testing Data Set
{R1, . . . , RNC} , {TextCat1, . . . , T extCatNC} // Representative

Class and their associated categories
Output: (TS′ = {TS′

1, . . . , TS′
M}) // Testing Data Set with assigned

categories
1 for i ← 1 to M do
2 for j ← i + 1 to NC do
3 computeCosine(TSi, RCj ,Cosineij);

4 DetermineTextCat(Cosineij ;TS′) // Computes min. distance and assigns
category

4 Experiments and Analysis of Results

The BERT-base-uncased model provided by Huggingface2 was used with
PyTorch3 to generate BERT vector embeddings for the machine learning algo-
rithms. The SBERT (bert-base-nli-mean-tokens) transformer model was used to
generate vector embeddings of 1x768 dimensional vectors for the TSC algorithm.
Prototype vectors or class representatives and their classes shown in Algorithm 1
(line 15) were determined using mean values. Other schemes such as mode and
median for prototype vectors were also considered, but rejected due to poor clas-
sification performance. The training data was restricted to a maximum of 20,000
examples due to large distance matrix and memory limitations. The weighted
F1-score was used since we have imbalanced datasets. Python regex module,
NLTK stemming and lemmatization were used in pre-processing prior to gener-
ating the transformer vector embeddings.

Table 2 gives F1-scores with the best result shown in bold-face and best value
for ε. It can seen that TSC algorithm performs best with the IMDB dataset,
second best with three datasets and comparable with the others. The IMBD
dataset has an average word length of 230 words. This word length when encoded
in a 768 dimensional vector is able to establish good semantic similarity. The
Covid-Sentiment dataset contains tweets from all around the globe (in several
languages) so there are very few tweets that are similar. Hence it has the lowest
score with all algorithms. From the above result, TSC algorithm performs best
for binary sentiment classification where the average number of words in a text
are larger such as IMDB (230 words) compared to the smaller sizes of 8, 10 or
12 words.

2 https://huggingface.co/.
3 https://pytorch.org/.

https://huggingface.co/
https://pytorch.org/
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Table 2. F1-score results

Dataset TSC (best ε value) RF ME SVM SGD LGBM

Covid-Sentiment 55 (0.23) 44 57 57 58 56

U.S. Airline Sentiment 77 (0.32) 72 79 77 75 77

IMDB Movie Review Analysis 76 (0.26) 69 73 73 72 73

SST-2 85 (0.23) 83 85 86 85 85

Sentiment140 70 (0.16) 68 72 72 66 70

SemEval 2017 60 (0.26) 54 64 63 63 60

Sanders corpus 69 (0.24) 70 76 74 76 75

5 Conclusion

In this paper, we implemented a modified form of tolerance-based algorithm
(TSC) to classify sentiment polarities of short text. In addition, we also hand-
crafted a dataset from Twitter regarding opinions on COVID. We experimented
with subsets of seven well-known datasets due to computational challenges. The
chosen datasets were a mix of long and short words as well as several sentiment
classes. TSC outperforms the reported ML algorithms with one dataset, performs
second best with 3 datasets and is comparable with the remaining datasets using
a weighted F1-score. Future work will involve more experiments with larger size
datasets to investigate the performance of our proposed TSC algorithm.
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Abstract. Relation prediction is one of the important tasks of knowl-
edge graph completion, which aims to predict the missing links between
entities. Although many different methods have been proposed, most
of them usually follow the closed-world assumption. Specifically, these
methods simply treat the unknown triples as errors, which will result
in the loss of valuable information contained in the knowledge graphs
(KGs). In addition, KGs exist large amounts of long-tail relations, which
lack sufficient triples for training, and these relations will seriously affect
inference performance. In order to address above-mentioned problems,
we propose a novel relation prediction method based on three-way deci-
sions, namely RP-TWD. In this paper, RP-TWD model first obtains the
similarity between relations by K-Nearest Neighbors (KNN) to model the
semantic associations between them. The semantic association between
relations can be considered as supplementary information of long-tail
relations, and constrain the learning of KG embeddings. Then, based on
the idea of three-way decisions (TWD), the triples of specific relation are
further divided into three disjoint regions, namely positive region (POS),
boundary region (BND), and negative region (NEG). The introduction
of BND intends to represent the uncertainty information contained in
unknown triples. The experimental results show that our model has sig-
nificant advantages in the task of relation prediction compared with base-
lines.

Keywords: Knowledge graph · Link prediction · Three-way
decisions · Semantic association

1 Introduction

The early concept of knowledge graph (KG) originated from the idea of Tim
Berners-Lee, i.e. the father of the World Wide Web, about the Semantic Web [13].
It aims to use a graph structure to model and record the knowledge and associa-
tions existing in the world, so as to effectively realize a more accurate object-level
search. Knowledge graphs represent knowledge in the form of triples, that is, enti-
ties (including concepts and attribute values) are represented as nodes on the
c© Springer Nature Switzerland AG 2021
S. Ramanna et al. (Eds.): IJCRS 2021, LNAI 12872, pp. 266–278, 2021.
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graph, and the edges between nodes correspond to the relations between enti-
ties. In short, KGs utilize network structure to represent obtained knowledge.
KGs have been widely used in many fields such as search engines [19], intelligent
question answering system [7], language understanding [20], recommendation
calculation [17], big data analysis, and decision-making [9].

The objective world has countless entities, and the subjective world of
humans also contains concepts that cannot be measured. Meanwhile, there are a
greater number of complex relations between these entities and concepts. These
problems often lead to the dilemma of missing links for the existing KGs and the
incompleteness of KGs. In practical application, the incompleteness of KGs is
also the primary issue that hinders the development of most downstream tasks.
Thus, knowledge graph completion has also increased a general concern.

Recently, the most popular link prediction methods are mainly based on
knowledge graph embedding models. These methods aim to project the entities
and relations in KGs into a continuous vector space while preserving the inherent
structure and underlying semantic information, such as TransE [4], TransH [18]
and TransR [11]. However, the above methods regard each relation as indepen-
dent and ignore the interactive information between relations. Lin et al. [11] and
Zhang et al. [24] propose CTransR and HRS by using the semantic information
and structural information between relations. Nevertheless, most work ignores
the rich information contained in the unknown triples in KGs.

To address the above limitations, this paper adopts the idea of three-way
decisions [21] to propose RP-TWD model, a knowledge graph-oriented relation
prediction method based on three-way decisions. Firstly, we employ K-Nearest
Neighbor (KNN) algorithm to get K nearest neighbors of each relation and cor-
responding entity set. Then, based on the probability that the triples composed
of the relation and entities become correct triple, triples of each relation are
divided into positive region, boundary region, and negative region. Finally, the
representation of KGs is learned according to the three regions, while the bound-
ary region is used to represent uncertain knowledge.

The main contributions of this paper are summarized as follows:

(1) We use KNN algorithm to measure the similarity between relations to obtain
K-nearest neighbors of relations in KGs, and explicitly utilize it to capture
semantic associations between them and constrain the embedding learning
of relations.

(2) We propose to represent the uncertain information hidden in unknown triples
by utilizing three-way decision. Specifically, we divide the set of triples cor-
responding to each relation in KGs into three disjoint regions based on the
potential correct probability of the triples consisting of relations and entities.
For example, the boundary region for a relation is a set of triples formed by
the relation and the entity set corresponding to its neighbors, and then we
regard boundary region (originally not in KGs) also as training triples.

(3) We evaluate the effectiveness of the proposed model RP-TWD on two bench-
mark datasets FB15K-237 and WN18RR. Experimental results illustrate
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that RP-TWD achieves superior performance on relation prediction task
and performs competitively or better than existing state-of-the-art models.

The rest of this paper is organized as follows. First, we briefly introduce the
related works of three-way decision theory and knowledge graph relation pre-
diction in Sect. 2. Then, we give the detailed description of the proposed model
RP-TWD in Sect. 3. In Sect. 4, experimental results and analysis are reported.
Finally, our conclusions and future research directions are given in Sect. 5.

2 Related Work

2.1 Knowledge Graph Embedding Models

In recent years, learning distributed representations for entities and relations in
KGs, i.e. KG embedding has received increasing attention and various methods
have been designed. Enlightened by the phenomenon of semantic translation
that exists between word vectors, TransE [4] embeds both entities and relations
in the same vector space. TransE can effectively handle 1-to-1 relations, but has
troubles with complex relations like 1-to-N, N-to-1, and N-to-N relations. To
cope with these relations, based on TransE, TransH [18] learns an additional
mapping vector for each relation, which is used to project entities to relation-
specific hyperplanes. TransR [11] learns embeddings of entities and relations
in separate entity and relation spaces, respectively. Ji et al. [8] propose TransD,
which improving TransR by considering that different entities should be mapped
into different semantic spaces and reducing the computational effort. However,
KG contains multiple relation types, such as symmetry, inversion and composi-
tion types, none of the aforementioned methods can model and infer all of them
simultaneously.

Many studies have attempted to represent entities and relations in a complex
space. The RotatE model [14] defines each relation as a rotation from head entity
to tail entity based on Euler’s formula in a complex vector space. The optimiza-
tion objectives and regularization items of TorusE [5] are similar to those works
followed by TransE. In order to avoid the contradiction caused by the regular
terms mentioned above, TorusE learns the representation of KGs in a compact
space instead of learning features in an open manifold European space. Zhang
et al. [23] introduce a more expressive hypercomplex representation for model-
ing entities and relations for knowledge graph embedding through quaternion
embedding. More specifically, quaternion embedding is a hypercomplex-valued
embedding with three imaginary components, Q = a + bi + cj + dk, where the
inner product of the quaternion acts h

⊗
r as a composition operator between

head entity and relation. However, these methods regard relations as indepen-
dent and ignore the interactive information between them.

To address this problem, many studies have introduced structural informa-
tion between relations when learning the representation of KGs. CTransR [11]
is a variant model of TransR that uses clustering of entity pairs to represent the
semantic similarity between relations. Zhang et al. [24] argue that the relations
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involved in KGs follow a three-layer hierarchical relation structure (HRS), so
through clustering the relations and training them in a combined manner for
relations within a cluster, the hierarchical information between the relations can
be obtained when learning relation embeddings. However, these works treat all
the unobserved triples present in KGs as false, ignoring the uncertain information
that participated in them.

2.2 Three-Way Decisions

Three-way decisions is a simple “working with threes” and “simplify the
complex” decision theory proposed by Yao at Regina University, Canada, in
2009 [21]. The key point is to divide the domain (a whole) into three subsets
or parts through granular computing, and to adopt different decision behaviors
or processing strategies for different subsets or parts, and then to evaluate or
provide feedback on the corresponding behaviors or strategies.

Three-way decisions is an methodology to make decision under uncertainty or
insufficient information. The main idea is to partition the universe of objects into
three pair-wise disjoint regions, i.e. the positive, boundary, and negative region.
Positive rules acquired from the positive region are used to accept something,
negative rules acquired from the negative region are used to deny something, and
rules that fall on the boundary region need further observation, which is called
delayed decision-making. Zhou et al. [25] apply three-way decisions idea to spam
filtering, classifying all messages to be sorted as correct, spam, and suspicious.
Yu et al. [22] discuss a cluster analysis model for three-way decision making
and an automatic learning algorithm for the number of clusters. Aranda-Corral
et al. [1] present a three-way decision model for knowledge harnessing. Gaeta
et al. [6] propose a method based on graph theory and three-way decisions to
evaluate critical regions in epidemic diffusion. Three-way decisions is consistent
with human thinking and cognition, and can better handle the uncertainty that
arises in the actual decision-making process.

3 Our Approach

Knowledge graph consists of a collection of triples, which can be represented
as G = {(h, r, t)} ⊆ E × R × E , where E and R denote the sets of entities
(nodes) and relations (edges) respectively. The overall framework of the RP-
TWD model is shown in Fig. 1. First, we employ TransE to initialize the entities
and relations embedding in KGs. Then, KNN algorithm is utilized to calculate
the nearest neighbors of relations and the corresponding entity sets. And three-
way decisions is introduced to divide the triples composed of the relations and
different entity sets into positive region, boundary region and negative region.
The boundary region is used to express uncertainty contained in KG. Finally,
the embeddings of KGs are learned based on the three regions, and the obtained
K nearest neighbors are used to constraint relation embedding learning.
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Definition 1. For relation r, Hr = {h|h ∈ (h, r, t) ∧ r = r} represents the set
consisting of head entities of r, Tr = {t|t ∈ (h, r, t) ∧ r = r} represents the set
consisting of tail entities of r, and Er = Hr ∪ Tr = {e|h, t ∈ (h, r, t) ∧ r = r}
represents the entity set of r.

Fig. 1. Architecture of RP-TWD. Triangles of different colors indicate the entitie sets in
different regions, where red indicates positive region, orange indicates boundary region,
and blue indicates negative region. Green circle indicates the relation r1. (Color figure
online)

Definition 2. For relation r, Sr = {(h, r, t)|r ∈ (h, r, t) ∧ r = r} denotes the
triples set which containing relation r.

3.1 Relation Neighbor

Previous studies have shown that the embeddings of semantically similar rela-
tions are close to each other in the latent space. Therefore, we calculate the K
nearest neighbors of each relation by running the KNN algorithm to the relation
embeddings learned by TransE [4], where the nearest neighbors of the relation
is denoted as Nr. The similarity between two relations ri and rj is obtained by
L1 norm,

simrelation(ri, rj) = ||ri − rj ||L1 . (1)

It is reasonable to consider that entity set of relations can also reflect the sim-
ilarity between the relations. For example, the entity sets of relation producerof
and relation directorof have a high overlap rate, which means producerof and
directorof obtaining great semantic similarity. The similarity between the entity
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sets of relation ri and its neighbor is calculated according to the following equa-
tion:

simentity(Eri , Erj ) = simHead(Hri ,Hrj ) + simTail(Tri , Trj ), (2)

where Hri = {h} and Tri = {t} denotes the head and tail entity set of relation ri
respectively, and its entity set represented as Eri = Hri ∪ Tri . simHead(Hri ,Hrj )
and simTail(Tri , Trj ) severally denotes the similarity of head entity set and tail
entity set between relation ri and rj . In this paper, we utilize L1 norm to obtain
the similarity between entity pair as follows:

simHead(Hri ,Hrj ) =
∑

i

∑

j

sim(hi, hj),∀hi ∈ Hri ,∀hj ∈ Hrj , (3)

simTail(Tri , Trj ) =
∑

i

∑

j

sim(ti, tj),∀ti ∈ Tri ,∀tj ∈ Trj , (4)

where sim(hi, hj) and sim(ti, tj) are the similarity between head entity and tail
entity separately, and defined as Eqs. 5, 6:

sim(hi, hj) = ||hi − hj ||L1 , (5)

sim(ti, tj) = ||ti − tj ||L1 . (6)

The final similarity between relation ri and rj ∈ Nri is defined as:

sim(ri, rj) = δ1simrelation(ri, rj) + δ2simentity(Eri , Erj ), (7)

where Nri represents K neighbors of relation ri, δ1 and δ2 are two hyper-
parameters respectively weighting the influence of similarity of relations and
entity set.

3.2 Knowledge Representation with Three-Way Decisions

In order to effectively handle the uncertain information hidden in the unknown
triples in KGs, we make use of the notion of three-way decisions to rep-
resent dubious knowledge. RP-TWD adopts the positive region to repre-
sent the observed triples of the relation, the set of triples composed of
the relation and the entity set of its neighbors are placed in the bound-
ary region, and the negative region consists of triples that neither exists in
the positive region nor in the boundary region. For example, due to triple
(Stan Lee, placeofdeath, U.S.) existing in KG, and relation placeofdeath and
relation placeofburial obviously have high semantic similarity, it is plausible that
triple (Stan Lee, placeofburial, U.S.) is positive with some probability. Thus, we
place triples like (Stan Lee, placeofburial, U.S.) into boundary region of rela-
tion placeofburial. The positive region, boundary region and negative region of
relation r are defined as Eqs. 8, 9, 10 respectively:

POS = {(h, r, t)|(h, r, t) ∈ Sr} , (8)
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BND = {(h, r, t)|(h, ri, t) ∈ SNr
− Sr, ri ∈ Nr} , (9)

NEG = E − POS − BND, (10)

where Sr denotes the triple set of relation r, Nr denotes the K neighbors belong
to relation r, SNr

denotes the triple set of Nr, and is defined as follow:

SNr
= Sr ∪ Sri , ri ∈ Nr. (11)

We give an example below to help the readers understand our work. Suppose
there are some triples in KG, (Ana, placeofdeath, USA), (Bob, placeofburial, Ja
pan), (John, placeofbirth, UK), and for relation placeofdeath, placeofbirth and
placeofburial are its neighbors . So POS of placeofdeath is (Ana, placeofdeath,
USA), BND is (Bob, placeofdeath, Japan), (John, placeofdeath, UK) (Fig. 2).

Fig. 2. A example to explain the three regions of relation.

3.3 Loss Function

The objective function for the proposed model RP-TWD consists of three parts,
which is formalized as

L = LPOS + αLBND + βLneighbor, (12)

where the weight of the positive region is fixed to 1, and α, β are trade-off
parameters respectively weighting the influence of boundary region and relation
pairs embedding constraint. LPOS , LBND and Lneighbor are three margin-based
loss functions to measure the effectiveness of representation learning in regard
to the positive region, boundary region as well as the relation pairs, which are
defined as follows:

LPOS =
∑

(h,r,t)∈POS

∑

(h′,r,t′)∈NEG

[γ1 + f(h, r, t) − f(h′, r, t′)]+, (13)
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LBND =
∑

(h,r,t)∈BND

∑

(h′,r,t′)∈NEG

[γ2 + f(h, r, t) − f(h′, r, t′)]+, (14)

Lneighbor =
∑

(r)∈S

∑

rneighbor∈Nr

∑

(r′)∈S−
[γ3 + λf(r, rneighbor) − f(r, r′)]+, (15)

where [x]+ = max(0, x) is defined to obtain the maximum value between 0
and x. γ1, γ2 and γ3 are three positive hyper-parameters denoting each margin
of the loss functions in Eqs. 13, 14, 15, respectively, and λ denotes the simi-
larity between r and its neighbors rneighbor, S− = {r|r /∈ Nr}. f(h, r, t) and
f(r, rneighbor) are score functions as shown in Eqs. 16, 17:

f(h, r, t) = ||h + r − t||Ln
, (16)

f(r, rneighbor) = ||r − rneighbor||Ln
, (17)

which can be measured by L1 or L2 norm. Positive triples are supposed to
have lower scores than negative ones. NEG represents a set that containing the
negative triples not in KG.

We utilize stochastic gradient descent (SGD) to optimize the objective func-
tion in Eq. 12 and learn parameters of the model.

4 Experiments

4.1 Datasets

In order to evaluate the proposed model RP-TWD, we use two benchmark data
sets WN18RR and FB15K-237 as experimental data. They are subsets of the
knowledge graph WordNet [12] and Freebase [2] respectively. These datasets are
widely employed for relation prediction task of knowledge graph. The statistical
details of the datasets are shown in Table 1.

Table 1. Table statistics of datasets.

Dataset #Rel #Ent #Train #Valid #Test

FB15K-237 237 14,541 272,115 17,535 20,466

WN18RR 11 40,943 86,835 3,034 3,134

4.2 Baselines and Experiment Setting

To demonstrate the effectiveness of our model, several competitive models are
utilized as baselines, including TransE [4], DisMult [3], ComplEx [15], Sim-
plE [10] and RotatE [14].

We evaluate RP-TWD and other baselines on FB15K-237 and WN18RR.
Considering the task of relation prediction, i.e., for a given entity pair (h, t)
predicting the missing relation r to form an effective triple (h, r, t).
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Before training, we adopt TransE to initialize the embeddings of KG. We
set the training epochs to 1000, the batch size to 128, the weight coefficients α,
β to 0.5 and 0.1 respectively, the embedding dimensions are both set to 100,
the margin γ1 = γ3 = 1, γ2 = 2, λ is the similarity between r and rneighbor.
Neighbors number of WN18RR is selected to k = 1 and 2 to FB15K-237 con-
sidering only 11 relations existing in WN18RR. In addition, we employ a grid
search to select the other optimal hyper-parameters. We select learning rate
lr in {0.001, 0.002, 0.005, 0.01}, and the weight coefficient δ1 in {0.5, 0.7, 0.8}.
The final optimal of learning rate and the weight coefficient δ1 are assigned to:
lr = 0.001, δ1 = 0.7 and δ2 = 0.3.

4.3 Evaluation Metrics

For specific evaluation metrics, we employ three widely used metrics: Mean Rank
(MR) which indicates the average rank of correct relations, Mean Reciprocal
Rank (MRR) means the mean reciprocal rank of correct relations, and Hit@n
represents the proportion of correct relations ranked in the top n. Note that
higher MRR or Hit@n signify better performance, while lower value is preferred
for MR. Following the standard procedure in prior work, candidate set of relation
types is filtered, i.e. the candidate relations for (h, t) do not include any r′ where
(h, r′, t) appears in the training, validation, or test set.

Table 2. Experimental results on FB15K-237 and WN18RR.

FB15K-237 WN18RR

Model MRR MR Hits@1 Hits@3 MRR MR Hits@1 Hits@3

TransE 0.966 1.352 0.946 0.984 0.784 2.079 0.669 0.870

DisMult 0.924 1.494 0.879 0.970 0.847 2.024 0.787 0.891

ComplEx 0.875 1.927 0.806 0.936 0.840 2.053 0.777 0.880

SimplE 0.971 1.407 0.955 0.987 0.730 3.259 0.659 0.755

Rotate 0.970 1.315 0.951 0.980 0.799 2.284 0.735 0.823

RP-TWD 0.976 1.25 0.962 0.985 0.830 1.927 0.843 0.923

4.4 Experiment Results

In this section, we evaluate the RP-TWD model through the relation prediction
task, and demonstrate the performance of RP-TWD on two datasets. Table 2
shows the experimental results of our proposed RP-TWD model on FB15K-
237 and WN18RR. It can be seen from Table 2 that RP-TWD is superior to
other baselines in most indicators. Specifically, the Hit@1 of RP-TWD is 0.007%
and 0.056% higher than the best baseline on the two datasets, respectively. From
experimental results, we can observe that the RP-TWD model outperforms other
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baselines, which indicates that our model can effectively utilize semantic asso-
ciation between relations to learn the embeddings of relations. The evaluation
result of baselines comes from [16].

In addition, in order to further verify the effectiveness of the proposed model
RP-TWD in the task of long-tail relation prediction, we conduct tests on two
datasets. As shown in Table 3, we select the relations with the frequency of no
more than 1000 in the WN18RR dataset, and compare RP-TWD with TransE
on the task of predicting these long-tail relations.

Table 3. Long tail relations in WN18RR.

Relation similar to member of domain usage member of domain region

Frequency 80 629 923

As the experimental results exhibited in Fig. 3, the Hit@1 score of RP-TWD
is on average 0.263% higher than TransE. Besides, the correct relation rank
(MR) predicted by RP-TWD is 1.92 lower than TransE on average.

Fig. 3. Hit@1 and MR results of long tail relations prediction on WN18RR

Furthermore, as shown in Table 4, we select the relations that frequency
does not exceed 100 from FB15K-237, and the results are shown in Fig. 4 and
Fig. 5. In Hit@1 and MRR indicators, RP-TWD outperforms TransE, on aver-
age, 0.17% and 0.13% respectively. Moreover, as we can discover from the MR,
the correct entity ranking predicted by RP-TWD is 2.54 lower than TransE on
average. It can be obtained that RP-TWD is better than TransE in the long-
tail relation prediction task. More specifically, the introduction of the boundary
domain makes our model can catch uncertainty contained in KG and enhance
long-tail relation representation learning.
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Table 4. Long tail relations in FB15K-237.

Relation type of appearance Person Film Interests Family

Frequency 37 90 93 100 100

Fig. 4. Hit@1 and MR results of long tail relations prediction on FB15K-237.

Fig. 5. MRR results of long tail relations prediction on FB15K-237.

5 Conclusion

In this paper, we propose a novel knowledge graph relation prediction model
named RP-TWD, which considers uncertain information hidden in KGs. Inspired
by three-way decisions theory, we utilize boundary region to represent triples that
contained indeterminate knowledge. Furthermore, we employ KNN to explicitly
obtain semantic associations between relations and constrain the learning of
relation embeddings. Finally, we evaluate the proposed model on two benchmark
datasets and experimental results demonstrate the effectiveness of RP-TWD.

In the future work, we will explore to take advantage of some other uncer-
tain knowledge which potentially useful to KG completion. Besides, we plan to
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use additional information, such as logical rules, relation types, to learn more
accurate long-tail relations representation.
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Abstract. The paper describes the extended and improved version of
the Petri Net System (PNeS) compared to the version published in 2017.
PNeS is an integrated graphical computer tool for building, modify-
ing, analyzing Petri nets, as well as controlling a mobile robot. It runs
on any computer under any operating system. PNeS can be useful for
researchers, educators and practitioners, from both academia and indus-
try, who are actively involved in the work of modelling and analyzing
concurrent systems, and for those who have the potential to be involved
in these areas.

Keywords: Petri net tool · Computer based tool · Petri net ·
Concurrent system · Computer modelling · Control

1 Introduction

Petri nets are widely used in both theoretical analysis and practical modelling
of concurrent systems. Their graphical aspect allows representation of various
interactions between discrete events more easily. However, the mathematical
aspect allows formal modelling of these interactions and analysis of the modeled
system properties.

Petri nets were proposed by Carl A. Petri as a net-like mathematical tool for
the study of communication with automata [27]. Their further development was
facilitated by the fact that they present two interesting characteristics. Firstly,
they make it possible to model and visualize types of behaviour having par-
allelism, concurrency, synchronization and resource sharing. These properties
characterize concurrent systems. Secondly, the theoretic results are plentiful;
the properties of these nets have been and still are extensively studied. There
exists a large number of books, articles, and proceedings papers devoted to the
theory and applications of Petri nets, see e.g. [5–7,13,21,26,28,41,42].

The practical use of Petri nets is strongly dependent upon the existence of
adequate computer tools - helping the user to handle all the details of a large and
complex description. For Petri nets one needs at least graphical editor, analyzer,
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and simulator programs. The graphical editor gives an opportunity for loading,
saving, constructing, and editing Petri nets. The analyzer allows to perform a
formal check of the properties related to the behavior of the underlying system
e.g. concurrent operations, appropriate synchronization, freedom from deadlock,
repetitive activities, and mutual exclusion of shared resources, etc. The simulator
allows us to perform a Petri net game, i.e., the flow of tokens in the places of
the net through transitions. Simulation gives a vivid graphic description of a
system’s operation to aid in model design and debugging. Simulation becomes
necessary when performance cannot be predicted by the system performance
evaluator.

The papers [8] and [14] provide good overviews of typical Petri net tools.
Some of these tools and their applications are discussed in details in [6,21,42].
A very good resource of information about Petri net theory and its applications
is [37]. The tools such as Charlie [40], PEP [9], Petruchio [20], QPME [17] and
Snoopy [11] deserve special emphasis due to the scope of their applicability and
the functions they provide (cf. also [14]).

The objective of this paper is to present the basic information about the
extended and improved version of PNeS compared to the version released in
2017 [33]. The main changes in the system concern extending the scope of the
editor and simulator, improving the methods of analyzing net properties and
adding the possibility of controlling mobile robots from the system simulator
level. For the editor, the ability to build a hierarchical net has been added in
two ways: from detail to general (bootom - up method) and from general to detail
(top - down method). As for the simulator, it can work with non-hierarchical
nets in single firings mode, in simple and generalized steps mode, as well as with
hierarchical nets by selecting the simulation at any acceptable hierarchy level.
Additionally, the mobile robot can be controlled from the simulator level. PNeS
allows us to work with six classes of Petri nets, i.e., place/ transition nets, nets
with inhibitor arcs, self-modifying nets, place transactor nets, priority nets and
FIFO-nets. The paper focuses mainly on place/transition nets, although other
types of Petri nets are also discussed in the context of the functional capabili-
ties provided by PNeS. It is also worth emphasizing that PNeS can work with
systems such as ROSECON and Rosetta. The first is a proprietary software sys-
tem supporting automated solving of the problem of synthesis and analysis of
concurrent systems using the philosophy of rough sets [23]. The second is for
knowledge discovery and data mining, also based on the rough set methodol-
ogy [22]. Moreover, PNeS also has a help module that not only facilitates the
use of the system, but also provides basic concepts of Petri nets with examples
to illustrate these concepts. The resulting Petri nets are expressed in the PNML
formalism, which is a standard format used by many analysis tools for Petri
nets [36].

The system runs on any computer under any operating system. It has been
implemented in the Java programming language to guarantee portability and
efficiency on any computers. PNeS is a follow-up of PN-tools which has been
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designed and implemented at Pedagogical University in Rzeszów in 1986–1996.
PN-tools were run on IBM PC computers under DOS operating system [30].

The rest of this paper is organized in the following way. The Sect. 2 focuses on
the basic knowledge of Petri nets in the context of PNeS functional capabilities.
In Sect. 3, the definitions of the basic properties of Petri nets examined in the
system are recalled. Section 4 describes roughly the most fundamental methods
of Petri net analysis available in PNeS. A general description of PNeS with
examples of its use is provided in Sect. 5. Section 6 compares the system with
other systems of similar purpose, recommended in the professional literature as
worth using. In addition, this section presents the directions of further research
and final comments.

2 Preliminaries

2.1 Petri Net

The structure of a standard Petri net (a Petri net in short) is a directed graph
with two kinds of nodes, places and transitions, interconnected by arcs - in such
a way that each arc connects two different kinds of nodes (i.e., a place and
a transition and vice versa). Graphically, places are represented by circles and
transitions as rectangles. A place is an input place to a transition if there exists a
directed arc connecting this place to the transition. A place is an output place of
a transition if there exists a directed arc connecting the transition to the place. In
a Petri net can exist directed (parallel) arcs connecting a place and a transition
(a transition and a place). In such a case, in the graphical representation of a
Petri net, parallel arcs connecting a place (transition) to a transition (place) are
often represented by a single directed arc labeled with its multiplicity. The arc
label ‘1’ is omitted. A pair of a place p and a transition t is called a self-loop if
p is both an input and output place of t. A Petri net is said to be pure if it has
no self-loops. A Petri net is said to be ordinary if all of its arc multiplicities are
1’s.

The dynamic behaviour of the modeled system can be described in terms of
its states and their changes, each place may potentially hold either none or a
positive number of tokens. Pictorially, the tokens are represented by means of
gray “dots” together with the suitable positive numbers placed inside the circles
corresponding to appropriate places. We assume that if the number of tokens in
a place equals 0 then the place is empty. A distribution of tokens on places of a
Petri net is called a marking. It defines the current state of the system modeled
by a Petri net. A marking of a Petri net with n places can be represented by
an n-vector M , elements of which, denoted as M(p), are nonnegative integers
representing the number of tokens in the corresponding place p. The initial
marking, denoted as M0, is the marking determined by the initial state of a
system. A Petri net containing tokens is called a marked Petri net. In order to
simulate the dynamic behaviour of a system, a marking in a Petri net is changed
according to the following firing rule. A transition t is said to be enabled if each
input place p of t contains at least the number of tokens equal to the multiplicity
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of the directed arc connecting p to t. An enabled transition t may or may not fire
(depending on whether or not the transition is selected). A firing of an enabled
transition t removes from each input place p the number of tokens equal to the
multiplicity of the directed arc connecting p to t, and adds to each output place p
of t the number of tokens equal to the multiplicity of the directed arc connecting
t to p.

In the case of the firing rule above, it is assumed that each place can hold an
unlimited number of tokens. Such a Petri net is referred to as infinite capacity
net. When modeling many physical systems, it is natural to consider an upper
limit to the number of tokens they can store in each place. Such a Petri net
is referred to as finite capacity net. However, in the case of finite capacity net,
each place p has an associated capacity K(p), which is the maximum number of
tokens that p can hold at any given time. In the case of finite capacity nets, for
a transition t to be enabled, there is an additional condition that the number of
tokens in each output place p of t cannot exceed its capacity K(p) when fired.

This rule with the capacity constraint is called the strong transition rule,
whereas the rule without the capacity constraint is called the (weak) transi-
tion rule. In PNeS, Petri nets with certain capacities are called place/transition
nets [28].

2.2 The Ways of Working of a Petri Net

Many possibilities of increasing the usability of a Petri net by introducing differ-
ent ways of operating it have been explored. Petri nets can work in the so-called
single firings or steps. Working in the mode of single firings consists in selecting,
in accordance with the chosen strategy and the transition rule, from among all
enabled, i.e. firable, one transition to fire. There are three strategies available
in PNeS, marked symbolically MIN, MAX and RND. These strategies mean,
respectively, the selection of the transition with the lowest number, the transi-
tion with the highest number, or a transition selected randomly by the system.
With regard to the transition rules, there are three rules in PNeS: weak, medium
and strong. The difference between the medium rule and the strong rule is only
visible in nets with self-loops. Generalizing the net operation in single firing mode
are steps (simple, generalized). Working in the steps mode can be treated as fir-
ing a selected set of enabled transitions simultaneously or as a single (multiple
- in the case of generalized steps) firing them in any order [29].

2.3 Extensions of Petri Nets

The simplest extension to standard Petri nets is nets with inhibitor arcs proposed
in [10]. An inhibitor arc leads from a place p to a transition t and inhibits the
firing of t if the token load of p is not less than its multiplicity w. If w > 1,
then, additionally, an ordinary arc from p to t with multiplicity less than w is
allowed. Another extension of standard Petri nets are the so-called self-modifying
Petri net introduced in [39]. Basically self-modifying nets are standard Petri
nets in which integers as well as places are associated with the arcs. Considering
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places as ‘variables’ and the marking of a place as its ‘value’, the multiplicity of
an arc is then defined as the sum of the integers and the ‘value’ of the places
associated with this particular arc. Place transactor nets are self-modifying Petri
nets working under the “conserving” firing rule; here, a transition may only fire
if the number of tokens in the net is not changed then. Petri nets with priorities
have been suggested in [10]. Priorities can be associated with the transition such
that if t and t′ are both enabled, then the transition with the highest priority
will fire first. FIFO-nets are Petri nets in which places behave as FIFO (First
Input First Output) queues rather than counters [19].

2.4 Hierarchical Petri Nets

The basic idea behind hierarchical Petri nets is to allow to the modeller to
construct a large model by combining a number of small nets into a larger net.
PNeS enables building hierarchical nets in the class of standard Petri nets. Only
transitions can be hierarchical in the net. There are two methods for creating
such nets in the system. The first is to replace the transitions with pre-prepared
subnets that can be stored in files as blocks. The second method is to replace
part of the net (subnet) with a single transition. Both methods of building
a hierarchical net can be used simultaneously, i.e. some net elements can be
replaced with subnets and other parts of the net with single net transitions.
Regardless of how the hierarchical net is structured, the user of PNeS can select
a subnet model that is associated with the net transitions. Two models are
available: BLOCKS-WF (blocks well formed) [38] and D-BLOCKS (deterministic
blocks) [3].

3 Properties of Petri Nets

3.1 Behavioural Properties

A marking M is said to be reachable from a marking M0 if there exists a sequence
of transitions firings which transforms a marking M0 to M . The set of all possible
markings reachable from M0 is called the reachability set, and is denoted by
R(M0). A Petri net is said to be k-bounded or simply bounded if the number of
tokens in each place does not exceed a finite number k for any marking reachable
from the initial marking M0. A Petri net is said to be safe if it is 1-bounded.
A Petri net is said to be stable if total number of tokens in the net remains
constant. A deadlock in a Petri net is a marking such that no transition is
enabled. A transition t in a Petri net is live if for every marking M in R(M0),
t is firable (enabled) at a certain marking M ′ reachable from M . A Petri net is
live if every transition is live. A Petri net, for the initial marking M0, is said
to be reversible if the initial marking M0 can be reached from each marking M
in R(M0). Thus, in a reversible Petri net one can always get back to the initial
marking. A marking M ′ is said to be a home marking if, for each marking M in
R(M0), M ′ is reachable from M .
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3.2 Structural Properties

Let a Petri net be ordinary. A Petri net is called: (1) a marked graph if each
place has exactly one input transition and exactly one output transition, (2)
a state machine if each transition has exactly one input place and exactly one
output place. A Petri net is said to be: (1) free-choice if each shared place is the
only input place of its output transitions, (2) extended-free-choice if the output
transitions of each shared place have the same input places, (3) extended-simple
if it holds that if two places have at least one common output transition then
the set of all output transitions of one of the places is a subset of the set of all
output transitions of the other one, (4) state machine coverable if its set of places
is a union of components which have, as subnets, the state machine property,
where by a component of a Petri net we understand a set of places where each
input transition is also an output transition and reversely, (5) state machine
decomposable if its set of places is a union of components which, on their part,
are strongly connected state machines. A nonempty subset of places S in a Petri
net is called a siphon if every transition having an output place in S has an
input place in S. A nonempty subset of places Q in a Petri net is called a trap if
every transition having an input place in Q has an output place in Q. A siphon
(trap) is said to be minimal if it does not contain any other siphon (trap). A
trap is said to be maximal if it is not included in any other trap. A net has the
siphon-trap-property if the maximal trap of each minimal siphon is marked.

4 Analysis Methods

The most straightforward kind of analysis is simulation - which is very useful for
the understanding and debugging of a system, in particular in the design phase.
Simulation can be supported by a computer tool or it can be totally manually.
Simulation can reveal errors, but in practice never be sufficient to prove the
correctness of a system.

The basic idea behind reachability graphs is to construct a graph which con-
tains a node for each reachable state and an arc for each possible change of state.
A reachability graph can be used to prove properties of the modelled system.
For bounded systems a large number of questions can be answered. Deadlocks,
reachability and existence of marking bounds can be decided by a simple search
through the nodes of the reachability graph, while liveness and home markings
can be decided by constructing and inspecting the strongly connected compo-
nents. The reachability graph method can be totally automated - and this means
that the modeler can use the method, and interpret the results, without hav-
ing much knowledge about the underlying mathematics. For more information
see [15].

Invariant analysis allows logical properties of Petri nets to be investigated
in a formal way. There are two dual classes of invariants. A place invariant
(P-invariant) characterizes the conservation of a weighted set of tokens, while
a transition invariant (T-invariant) characterizes a set of transition sequences
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having no effect, i.e., with identical start and end markings. The main advan-
tages of invariant analysis are the low computational complexity (in particular,
compared to the method of reachability graphs). For more information see [19].

Petri nets can also be analyzed by means of reductions. The basic idea behind
this method is to modify a Petri net - without changing a selected set of prop-
erties, e.g. safeness, boundedness, and liveness. The modification of the net is
performed by means of a set of transformations rules and may be carried out
manually, automatically or interactively. In the latter case the strategy is decided
by a person, while the detailed computations and checks are made by a com-
puter. The purpose of the transformation is to obtain a small and simple net for
which it is easy to investigate the given properties. For more information see [1].

For ordinary Petri nets several kinds of analysis methods are known. One
of the methods uses structural properties, it means properties, which can be
formulated without considering the behaviour (i.e., transition sequences) of Petri
net to deduce behavioral properties. For more information see [2].

5 PNeS

5.1 General

PNeS is a fully integrated environment designed to aid engineers in modelling
and solving concurrency related problems in parallel and distributed comput-
ing systems by using Petri net technology. This system supports the user in
constructing of Petri net models as well as in modifying and analyzing. In par-
ticular, PNeS may be used to help the system designer in proving the correctness
of his or her design.

PNeS consists of three main logical parts as follows: editor, simulator, and
analyzer. Editor is a window-based graphical editor for loading, saving, con-
structing, and editing Petri nets. Simulator is a program for graphical and textual
simulation of a Petri net model. The simulation results allow for the detection of
design errors that appear at the net design stage, and also result from incorrect
modeling of the real system. Analyzer is a set of programs by means of which for
standard Petri nets: (1) Basic structural and behavioural properties of Petri nets
can be checked. The results of such analysis allow to detect syntactic (sometimes
even semantic) design errors. For certain subclasses of standard Petri nets the
structural properties can be used to deduce behavioral properties. (2) Simple
reductions of the size of a net (and in a consequence of its reachability graph)
preserving safeness, boundedness, and liveness can be executed. The use of such
reduction methods is necessary if the storage capacity of the given computer
system is not sufficient to analyze a given net. (3) Calculation of the invari-
ants and other structural information (e.g. state machine components) from a
given net which reflect certain structural properties of the modeled system are
possible. Invariant analysis can be done by computing generator sets of all P-/T-
invariants and of all nonnegative invariants. Additionally, vectors can be tested
for invariant properties.
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Fig. 1. The main window of PNeS when editing the net.

PNeS has a user-friendly interface. Figure 1 shows its general appearance
along with the content in the main editor window.

5.2 Behaviour Analyzers

For testing structural properties from which, in case of ordinary Petri nets,
liveness properties follow, the module “Structural Properties...” (available in
the option “Analysis” of the Menubar), is used.

If one is given an unknown net, using the module “Basic Properties” one
can obtain information on elementary net properties such as: the number of
places (transitions), the minimal (maximal) number of the net nodes, as well
as the maximal entrance (exit) degree of the net nodes. One can check basic
structural properties. Additionally, it is tested, whether the read-in net consid-
ered as an undirected graph, is connected. If a net is ordinary one can check
whether it is a state machine, a free-choice net, an extended free-choice, or an
extended simple net, using the “Structural Properties...” module invoked in the
“Analysis” option. These properties are related with the liveness via the siphon-
trap-property. Then the minimal siphons are computed [26,29]. If there exists
a clean (not marked) siphon, the net is not live. Next, the possible conclusion
connected with the liveness of a net follows: (1) If a given net is an extended
simple net and the siphon-trap-property holds, then a net is live. (2) If a given
net is an extended free-choice and the siphon-trap-property does not hold, then
a net is not live. (3) If for a given net the siphon-trap-property holds, then no
dead marking can be reached. This module allows also to check whether the net
is a state machine decomposable (which implies that it is bounded under any
initial marking). In addition, this module decides whether a given net is a state
machine coverable, i.e., coverable by components which are state machines.
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Fig. 2. The results of the analysis of the structural properties of the net from Fig. 1.

Fig. 3. The results of the analysis of the behavioural properties of the net from Fig. 1
(a fragment).

In the module described above possible conclusions on the behaviour proper-
ties are inferred from the structural properties on the basis of an initial marking.
If there are no information for such conclusions, we have to investigate the reach-
ability graph. The module “Coverability/Reachability Graphs...” (available in
the option “Analysis” of the Menubar) computes the coverability tree/graph [15],
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which is identical with the reachability tree/graph in the case of a bounded net. If
a given net is bounded, first, this module builds the reachability tree/graph, then
it checks whether the net is bounded, safe, live, reversible, stable, and deadlock-
free. This module also lists the dead/live transitions at an initial marking as
well as dead/live markings. Then, the module checks at each reachable marking
at which several transitions have concession whether one of these transitions
takes the concession of another upon firing. The obtained dynamic conflicts are
also written out. Moreover, the module creates the graphical representation of
reachability tree/graph and indicates nodes in the tree/graph which are dead,
duplicated. If a given net is unbounded, first, this module builds the coverability
tree/graph, then it writes out that the net is unsafe, unbounded, and nonstable.
Moreover, unbounded places are output.

The module “Reductions...” can be used to reduce the size of the given net,
so that it becomes analyzable by other modules from the option “Analysis” of
the Menubar on the one hand, and it can be used to find an equivalent small net
with known properties, i.e., boundedness, safeness, liveness. In this module has
been implemented the most essential local reductions steps known from the lit-
erature, e.g. merging of nodes which share all predecessors and successors, fusion
of equivalent places, reduction of different kinds of place/transition chains [21].

A basis for the set of all place (transition) invariants is computed by the mod-
ule “Invariants” from the option “Analysis” of the Menubar. First, this module
computes an (transposed) incidence matrix for a given Petri net as a basis for
computation of all (nonnegative) place (transition) invariants [28]. Next, from
this it derives information on boundedness and reversability properties. More-
over, in general, invariants have an interpretation in terms of the modeled system
which can be useful for its verification. It is worth to notice that several con-
clusions derived from invariants are related only to nonnegative invariants (e.g.
net coverability by P-invariants). This module computes a basis for the set of
nonnegative place (transition) invariants. Correspondingly, the set of all nonneg-
ative invariants is the set of vectors that can be generated from the computed
set by means of linear combinations with nonnegative coefficients.

The reachability/coverability problems can be solved in dialogue using the
module “Tests”. For this, first, one should use the option “Reachability/ Cov-
erability”. Then, the respective marking should be input in the way shown on
the screen. The module checks whether this marking is reachable/coverable and
announces the result. This module permits also to check the properties of place
and transition vectors, respectively. It shows whether the vector investigated is
an invariant.

When working with our analyzer we have found it difficult to model complex
systems with Petri nets, because the nets are often large and it is not quite easy
to see all the interactions between the nodes of the net. Due to that we have
found it necessary to use extended nets for our modelling purposes; but then
we need an analyzer for those nets. The fastest way to construct an analyzer
is to use existing programs as much as possible. Therefore our first step to
enable the analysis of extended nets is to translate them into Petri nets and
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Fig. 4. The results of the analysis of the place/transition invariants of the net from
Fig. 1.

to use our analyzer. All we need is an automatic extended Petri net - to the
Petri net translator (the translator). The translator is implemented first for:
self-modifying nets, nets with inhibitor arcs and some subclass of Petri nets.
The translator realizes, among others, the following tasks: (1) It forms a Petri
net corresponding to a given self-modifying net (a net with inhibitory arcs). (2)
It maps the initial marking of the self-modifying net (the net with inhibitory
arcs) into a marking of the Petri net. For more information see [29].

5.3 Controlling Robots

PNeS allows us to control Lego Mindstorms mobile robot using net simulator
module. This system acts as a robot controller based on a simulation of the Petri
nets running in the system, which is also a control model for the robot. The
robot first performs the commands sent from PNeS, and then transmits binary
information about the status of its sensors to the system. The entire control
process takes place in a feedback loop between PNeS and the robot. The current
version of the system allows the robot to perform the following tasks: avoiding
the obstacles, reaching a target, following an obstacle, finding the way out of a
labyrinth and influencing the environment by selecting the right manipulators.
The list of performed tasks depends strictly on the hardware configuration of
the available robot (cf. [16]).

Figure 5 shows an example of a Petri net in PNeS controlling the Lego Mind-
storms mobile robot performing the task of avoiding the obstacles. In addition,
the red color in the drawing shows the options in the system that allow you to
prepare a control model for the robot and run it from the system simulator level.
Due to the lack of space, a detailed description of the net and its operation was
omitted.



290 Z. Suraj and P. Grochowalski

Fig. 5. An example of a Petri net in PNeS controlling a mobile robot.

6 Conclusion and Further Work

In the paper, an overview of the functional capabilities of PNeS, examples of
their practical use and differences in relation to the previous version of this
system have been presented. By using this system, researchers and practitioners
interested in the theory and application of Petri nets obtain a method and a
tool with which main design aspects of modeled systems can be analyzed quickly
and correctly, as well described in a presentable way. Moreover, in order to allow
the Petri nets simulation to interact and synchronize with the real world, a new
functionality has been added in PNeS to control the device (robot) via the system
net simulator. Analysts, system designers and everyone who, in the framework of
project developments, has to describe coherently and vividly complex procedures
of system engineering on the basis of a theoretical method, are able to carry out
their task in a more economical and time-saving way.

Although in the last three decades, a large number of tools have been reported
in the Petri net literature, a majority of these tools are used mostly for research
and educational purposes [8,14]. From our observations, in most cases, existing
tools concern a concrete class of Petri nets or a particular method for designing
and/or analyzing of Petri net model. In a case presented here, the situation
is different. We describe in this paper an integrated and modular PNeS which
possess features universality in this sense that it can be used for several classes
of Petri nets and makes accessible various methods of the designing and analysis
of Petri net models.

Considering the need to model and analyze concurrent systems operating in
an uncertain environment, for several years we have been conducting intensive
research on the development of new fuzzy Petri nets models [31,32,34] and their
successive implementation into PNeS. As is commonly known, fuzzy Petri nets
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are useful, among others, for knowledge representation and approximate rea-
soning in intelligent decision systems [4,18,25]. We would like to continue this
research and the developed methods first to be implemented in PNeS and then
thoroughly tested on real data. We hope that one of the examples of meaningful
use of PNeS in scientific research may be its application in solving the practical
problem of passenger transport logistics modeling based on intelligent computing
techniques. Both the problem itself and an example of its solution are described
in detail in [35]. In further research related to device control, we plan to control
a group of communicating robots performing common tasks and extracting the
Petri net control model from real data describing a given type of control.

Table 1. Comparison between the recommended Petri net tools and PNeS

Finishing this section, we would like to compare the current PNeS capabilities
with those of other publicly available systems intended for Petri net users. Taking
into account five criteria, such as ‘Petri Net Supported’, ‘Component’, ‘Analysis’,
‘Environment’, ‘Free of Charge’, the authors of [14] selected five out of 20 assessed
tools dedicated to Petri nets: Charlie [40], PEP [9], Petruchio [20], QPME [17],
Snoopy [11], which they think are worth recommending. Table 1 compares the
five recommended tools with PNeS. Our system seems quite promising in this
comparison.

Acknowledgment. We thank the anonymous reviewers for their helpful comments.
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Abstract. By combining ideas from three-way decision theory,
prospect theory, and several families of multi-criteria decision-making
(MCDM) methods, including ELECTRE, PROMETHEE, TODIM, and
dominance-based rough set analysis (DRSA), we propose a new ranking-
based MCDM method called 3RD. With respect to a single criterion,
we construct a three-way ranking (i.e., trilevel ranking) of a set of deci-
sion alternatives by using an alternative as a reference in the sense of
prospect theory and a family of three-way rankings from all alternatives.
With respect to a set of criteria, we have multiple families of three-way
rankings. By adopting the TODIM procedure, we introduce a ranking
function to rank the set of alternatives according to these multiple fam-
ilies of trilevel rankings.

Keywords: Three-way decision · Prospect theory · Three-way
ranking · Multi-criteria decision-making

1 Introduction

Multi-criteria decision-making (MCDM) problems involve a set of decision alter-
natives and another set of possibly conflicting criteria. By assessing and com-
paring decision alternatives according to the set of criteria, an MCDM method
supports a decision maker to search for one optimal alternative, to construct a
set of optimal alternatives, or to sort decision alternatives into different cate-
gories [8]. For each alternative, the assessment and evaluation of the set deci-
sion alternatives can be easily done or are given. A basic task of an MCDM
method is essentially an aggregation of the results obtained from multiple crite-
ria [16,21,28].

There are three broad families of MCDM models based on, respectively, the
concepts of an outranking relation, a value (utility) function, and a set of deci-
sion rules for summarizing and representing preference information about deci-
sion alternatives. The group of ranking-based approaches ranks the set of deci-
sion alternatives directly or indirectly through pairwise comparison. A ranking
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of decision alternatives captures a decision maker’s preference. The group of
value-based approaches assigns values to decision alternatives to indicate their
performance. Although in general the two groups are not equivalent, they may
be transformed into each other. In one direction, it is possible to assign values to
decision alternatives to reflect information given by a ranking, which is a topic
of utility theory [5]. In the other direction, it is easy to obtain a ranking from the
values of decision alternatives, as being done in the ELECTRE family [1,4,19].
To increase the explanation ability of MCDM, rule-based approaches, such as
dominance-based rough set models [6,7,20], use easy-to-understand rules.

In a ranking-based aggregation method, for each criterion, a ranking of alter-
natives is given explicitly or is induced from the performance values of decision
alternatives. An MCDM method produces an aggregated ranking by, for exam-
ple, voting or minimizing the overall distance between a ranking and the set
of all rankings induced by the set of criteria [8,21]. Examples of ranking-based
methods include the ELECTRE family [1,4,19]. These methods first construct a
family of rankings of decision alternatives according to their performance values
on individual criteria and then combine the family into an aggregated ranking. In
a value-based aggregation method, performance values of decision alternatives on
the set of criteria are aggregated to rank the set of decision alternatives. Exam-
ples of value-based aggregation MCDM methods include TOPSIS family [12],
TODIM family [9], and PROMETHEE family [2]. They normally use arithmetic
operations on the performance values. Ranking-based methods are appropriate
for criteria with nominal values or linguistic descriptions that only give rankings
of decision alternatives and may not allow arithmetic operations. For criteria
with numerical values, a transformation from performance values to qualitative
rankings may lose some useful quantitative information. Value-based methods
are appropriate for criteria with numerical values, where arithmetic operations
can be easily applied. For criteria with nominal values, it is necessary to change
nominal values into numerical values. A difficulty with such a transformation is
the choice of numerical values.

Several studies attempted to combine three-way decision with MCDM [13,23,
28]. The main objective of this paper is to propose a new three-way ranking-based
MCDM method, called 3RD, by taking also advantages of value-based methods.
Guided by the philosophy of three-way decision as thinking in threes [24–27],
3RD is built based on ideas of reference points and prospect values of gain and
loss from the prospect theory [14,22], the notions of pair-wise comparision of
decision alternatives from dominance-based rough sets [6,7,20], the ELECTRE
family [1,4,19], and the PROMETHEE family [2,3], and the aggregation proce-
dure from the TODIM family [9–11,15,17]. The main features and ingredients
of 3RD are summarized as follows:

• Following the idea of reference point of prospect theory [14,22], we treat each
decision alternative a as a reference point to compare with other alternatives.
Inspired by the principle of three-way decision, with respect to a criterion, we
trisect the set of decision alternatives into three subsets (i.e., a trisection): 1)
the subset of alternatives that are observably better than a, 2) the subset of
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alternatives that are observably worse than a, and 3) the subset of alternatives
that are approximately the same as a. The first two subsets correspond to the
notions of the dominating set and the dominated set of a in dominance-based
rough set approaches.

• We design and interpret a constructive way to build a trisection of the set
of decision alternatives based on ideas from the prospect theory and the
ELECTRE, the PROMETHEE, and the TODIM families of MCDM methods.

• A trisection of the set of decision alternatives may be viewed as a three-way
ranking. In this way, we have multiple rankings, rather than a single ranking,
with respect to a single criterion. For this reason, instead of rank aggregation,
we regenerate values for decision alternatives from multiple trisections with
respect to a single criterion and aggregate the values from multiple criteria
according to the TODIM procedure.

In summary, 3RD may be viewed as a hybrid method that adopts ideas from
ranking-based and value-based methods. Moreover, 3RD only conceptually uses
the notions from existing studies and, at the same time, assigns new meanings
to these notions. A very preliminary study of 3RD suggests that we may be in
a promising territory for exploring new MCDM methods.

2 Three-Way Ranking Based Multi-criteria
Decision-Making

We propose a new method for multi-criteria decision-making based on three-way
rankings (i.e., trilevel structures or trisections) of the set of decision alternatives.

2.1 Trisecting the Set of Decision Alternatives

The information and knowledge for multi-criteria decision-making may be con-
veniently represented in a tabular form called a multi-criteria decision-making
table (MCDMT).

Definition 1. A multi-criteria decision-making table (MCDMT) is a triplet
(A,C, p), where A = {a1, . . . , an} is a finite and non-empty set of n alter-
natives, C = {c1, . . . , cm} is a finite and non-empty set of m criteria, and
p : A × C −→ V is a mapping function that maps a pair of a decision alternative
ai and a criterion cj into a value p(ai, cj) = pj(ai) ∈ V .

We divide the set of criteria into two disjoint subsets, namely, a subset of
qualitative (ordinal) criteria and another subset of quantitative (cardinal) crite-
ria [18]. An ordinal criterion may use nominal values or linguistic labels, where
only qualitative ordering information is meaningful and no arithmetic operations
can be used. A cardinal criterion may use real numbers, where, in addition to
the ordering real numbers, some arithmetic operations are allowed.

For simplicity, we use the same symbol > (or <) for both orderings of ordinal
and cardinal criteria and assume that > (or <) is asymmetric, transitive, and
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any two distinct values are comparable. The symbol ≤ (or ≥) stands for the
complement of > (or <). An assumption is made that a larger value reflects a
better performance. That is, for two alternatives a and b, “a is better than b” (or
“a is not worse than b”) with respect to criterion cj if and only if pj(a) > pj(b)
(or pj(a) ≥ pj(b)).

Consider an alternative ar ∈ A. With respect to a criterion cj ∈ C, we can
easily divide the set of alternatives into three disjoint subsets: 1) a subset D�

j (ar)
consisting of alternatives that are better than ar, 2) a subset D�

j (ar) consisting
of alternatives that are worse than ar, and 3) a subset D≈

j (ar) consisting of
alternatives that are the same as ar. Such a trisection of A in fact gives rise
to a three-way (i.e., trilevel) ranking of A. We formally define the trisection for
ordinal and cardinal criteria, respectively.

Definition 2. In an MCDMT, by treating an alternative ar ∈ A as a reference
alternative, with respect to an ordinal criterion cj ∈ C we trisect the set of
alternatives A as follows:

D�
j (ar) = {ak ∈ A | pj(ak) > pj(ar)},

D�
j (ar) = {ak ∈ A | pj(ak) < pj(ar)},

D≈
j (ar) = A − (D�

j (ar) ∪ D�
j (ar)). (1)

In the definition, we assume that distinct values of an ordinal criterion are
sufficiently different for us to rank decision alternatives. On the other hand, this
assumption may not be reasonable for a cardinal criterion. A pair of alternatives
with very close values may be considered to be practically the same. We need to
have an observable difference between two quantitative values in order to have
a clear ranking. This idea has been considered in several MCDM methods, for
example, the ELECTRE [19] and the PROMETHEE families [2].

Consider an alternative ar ∈ A and a cardinal criterion cj . We may use ar

as a reference alternative to evaluate another alternative ak. When pj(ak) ≥
pj(ar), we would have a gain of pj(ak) − pj(ar) if we used ak to substitute ar.
On the other hand, when pj(ak) < pj(ar), we would have a loss of pj(ak) −
pj(ar) if we used ak to substitute ar. Prospect theory investigates the actual
behavior of individuals when faced with decisions of potential gains and losses.
A fundamental result is that people’s perceptions of, and reactions to, gains and
losses are different. People prefer risk-averse decisions towards gains and risk-
seeking decisions towards losses. This requires an asymmetric S-shaped prospect
function, as shown Fig. 1a, to reflect the actual values of gains and losses. A
commonly used prospect function in the cumulative prospect theory is given by
a two-part formula [22]:

v(x) =

{
xα, if x ≥ 0,

(−λ)(−x)β , if x < 0,
(2)

where λ, α, and β are three parameters. By following the ideas of the TODIM
family [9–11,15,17], we substitute the variable x in the prospect function (2) with
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the difference pj(ak) − pj(ar). The result is given by Fig. 1b, in which pj(ar)
serves as the reference point. In order to capture the notions of “observably
better” and “observably worse”, we introduce a threshold t on the prospect
function. By summarizing these results, we propose a definition of trisection of
A with respect to a cardinal criterion.

reference point

(a) (b)

Fig. 1. The prospect theory value function

Definition 3. In an MCDMT, by considering an alternative ar ∈ A as the
reference alternative, with respect to a cardinal criterion cj ∈ C and a given
threshold t, we trisect the set of alternatives as follows:

D�
j (ar) = {ak ∈ A | v(pj(ak) − pj(ar)) > t},

D�
j (ar) = {ak ∈ A | v(pj(ak) − pj(ar)) < −t},

D≈
j (ar) = A − (D�

j (ar) ∪ D�
j (ar)). (3)

The threshold t may be interpreted as an observable level of the degree of
dominance. If v(pj(ak) − pj(ar)) > t, then ak is observably better than ar; if
v(pj(ak) − pj(ar)) < −t, then ak is observably worse than ar; otherwise, ak

is approximately the same as ar. We have a three-way ranking of the set of
alternatives.

In order to have a full understanding of the proposed definitions of trisections,
we show some connections to existing studies. In the dominance-based rough
set analysis (DRSA) [6,7,20], with respect to a criterion cj and a reference
alternative ar, a pair of dominating and dominated sets of alternatives of ar is
defined as follows:

D+
j (ar) = {ak ∈ A | pj(ak) ≥ pj(ar)},

D−
j (ar) = {ak ∈ A | pj(ak) ≤ pj(ar)}. (4)
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The two subsets are not disjoint, because ar ∈ D+
j (ar) and ar ∈ D−

j (ar). On
the other hand, a trisection introduced in this paper consists of pairwise disjoint
subsets. For an ordinal criterion cj , it can be easily verified that D+ = D� ∪D≈

and D− = D�∪D≈. For a cardinal criterion, these relationships hold only under
the condition t = 0. By introducing the third indifference subset of alternatives
and a threshold on the prospect function, the notion of trisections seems to
be meaningful in practice, as a small difference in values may not necessarily
support a dominance relationship.

The dominance-based rough set models basically use the sign of pj(ak) −
pj(ar), which may be interpreted in terms of a threshold of 0. In contrast, the
ELECTRE and PROMETHEE families of MCDM methods [1–4,19] directly use
the difference of pj(ak)−gj(ar) and a pair of thresholds to determine whether ak

dominates or is dominated by ar. We consider a special case formulated based
on a pair of thresholds (tp, to) satisfying the condition tp > to > 0. The same
argument is easily extended to the more general cases. With respect to a criterion
cj , the pair of thresholds is used to define a pair of a strict preference relation
Pj and an outranking relation Sj as follows:

akPjar ⇐⇒ pj(ak) − pj(ar) > tp,

akSjar ⇐⇒ pj(ak) − pj(ar) ≥ −to. (5)

It follows that for any ak, ar ∈ A, akPjar =⇒ akSjar. Based on the two relations,
for an alternative ar ∈ A, we can immediately define the following three-way
ranking:

Db
j(ar) = {ak ∈ A | akPjar} = {ak ∈ A | pj(ak) − pj(ar) > tp},

Dw
j (ar) = {ak ∈ A | ¬(akSjar)} = {ak ∈ A | pj(ak) − pj(ar) < −to},

Ds
j (ar) = A − (Db

j(ar) ∪ Dw
j (ar)). (6)

By using the prospect function (2), we can easily re-express D�
j (ar) and D�

j (ar)
as follows:

ak ∈ D�
j (ar) ⇐⇒ pj(ak) ≥ pj(ar) ∧ v(pj(ak) − pj(ar)) > t

⇐⇒ pj(ak) ≥ pj(ar) ∧ (pj(ak) − pj(ar))α > t,

⇐⇒ pj(ak) − pj(ar) > t
1
α ;

ak ∈ D�
j (ar) ⇐⇒ pj(ak) < pj(ar) ∧ v(pj(ak) − pj(ar)) < −t

⇐⇒ pj(ak) < pj(ar) ∧ (−λ)(pj(ar) − pj(ak))β < −t

⇐⇒ pj(ak) − pj(ar) < −(
t

λ
)

1
β . (7)

By setting tp = t
1
α and to = ( t

λ )
1
β , we obtain Db

j(ar) and Dw
j (ar). Therefore, the

notion of a three-way ranking with a single threshold on the prospect function
provides an explanation of the use of a pair of thresholds on the difference value
pj(ak) − pj(ar) in the ELECTRE family of MCDM method.
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2.2 Computing Dominance Values of Decision Alternatives

With respect to a single criterion, we treat each alternative as the reference
to construct a three-way ranking. For a set of n alternatives, we may have a
family of n potentially different three-way rankings. From the m criteria, we
can construct m families of three-way rankings. We now consider the problem
of building a function from these families of three-way rankings to rank the set
of decision alternatives.

Comparison of Two Alternatives on a Single Criterion. Given a criterion
cj ∈ C, a pair of alternatives (ai, ak) produces two three-way rankings:

(D�
j (ai),D�

j (ai),D≈
j (ai)),

(D�
j (ak),D�

j (ak),D≈
j (ak)). (8)

We compute the value of alternative ai in comparison with ak, denoted by
φj(ai, ak), in the similar way as being done in the TODIM family. The main
difference is that we use the two three-way trisections in Eq. (8) and the quali-
tative ordering of the values of pj(ai) and pj(ak). Corresponding to the two-part
definition of a prospect function, we consider two cases.

Case 1: pj(ai) ≥ pj(ak). It can be seen that D�
j (ai) ⊆ D�

j (ak), that is, the set
of alternatives observably better than ai is a subset of the set of alternatives
observably better than ak. The value v(pj(ai) − pj(ak)) represents the value
of gain, if we substitute ak by ai. However, this gain does not provide any
information about the relative position of ai among the set of alternative that
are observably better that ak. Intuitively, the gap between ak and ai, in terms of
the number of alternatives, determines the relative position of ai among the set
of alternative observably better than ak. The difference set D�

j (ak) − D�
j (ai)

consists of alternatives that are observably better than ak but not observably
better than ai. If we substitute ak by ai, compared with ak, we would increase
the performance by advancing to or above the levels of those alternatives in the
set D�

j (ak)−D�
j (ai). Thus, the larger is this difference set, the higher the value

of ai relative to ak. Based on this observation, we may use the cardinality of the
difference set, namely, |D�

j (ak) − D�
j (ai)|, to measure the value of ai related

to ak. In general, we may also use any positive monotonic transformation of
the cardinality as such a measure. When pj(ak) = pj(ai), ak and ai have same
performance on cj , the set D�

j (ak) − D�
j (ai) is the empty set. We have a value

of 0 for ai relative to ak.

Case 2: pj(ai) < pj(ak). It can be seen that D�
j (ai) ⊆ D�

j (ak), that is, the
set of alternatives observably worse than ai is a subset of the set of alternatives
observably worse than ak. If we substitute ak by ai, compared with ak, we would
decrease the performance by declining to or below the levels of those alternatives
in the set D�

j (ak) − D�
j (ai). In this case, |D�

j (ak) − D�
j (ai)| is the number of

alternatives between the two alternatives. The negative value of the cardinality
of the difference set, namely, −|D�

j (ak)−D�
j (ai)|, may be used to measure the

value of ai relative to ak.
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By summarizing the results of the two cases, with respect to a criterion cj ,
we use a two-part function to measure the dominance value of alternative ai

relative to alternative ak:

φj(ai, ak) =

{ |D�
j (ak) − D�

j (ai)|, if pj(ai) ≥ pj(ak),

− |D�
j (ak) − D�

j (ai)|, if pj(ai) < pj(ak).
(9)

In this definition, we focus on ai. In general, φj(ai, ai) = 0 and φj(ai, ak) is not
necessarily equal to φj(ak, ai).

Comparison of Two Alternatives on All Criteria. For a set of criteria, we
combine the dominance values of ai over ak defined by individual criteria. As
an example, we consider a simple weighted sum method. Let w = {w1, . . . , wm}
denote the weight vector, where wj is the relative importance of the criterion cj ∈
C. We assume that the weight vector satisfies two requirements: (i) ∀wj , wj > 0
and (ii)

∑m
j=1 wj = 1. By following the ideas of TODIM family methods, the

dominance value of ai over ak on multiple criteria is computed as the weighted
summation:

Φ(ai, ak) =
m∑

j=1

wjφj(ai, ak). (10)

In general, Φ(ai, ai) = 0 and Φ(ai, ak) is not necessarily equal to Φ(ak, ai).

Overall Performance Values of Alternatives. For a pair of alternatives ai

and ak, the dominance value Φ(ai, ak) may be viewed as the performance of ai

relative to ak. To obtain the overall value of ai, we can simply summarize all
dominance values of ai relative to all alternatives in A. By following TODIM,
we define the overall performance of ai by:

Ψ(ai) =
n∑

k=1

Φ(ai, ak). (11)

By inserting Eq. (10), we immediately have:

Ψ(ai) =
n∑

k=1

m∑
j=1

wjφj(ai, ak). (12)

It gives an interpretation of the overall performance in terms of individual dom-
inance values φj(ai, ak), j = 1, . . . ,m, k = 1, . . . , n.

2.3 3RD Method

Based on the results from the last subsection, we propose a new five-step MCDM
method called 3RD. As shown in Fig. 2, 3RD shares the same procedural struc-
ture of TODIM. The details of the five steps are given as follows.
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Rank the alternatives

Calculate the global perfor-
mance values of all alternatives

Calculate the overall dominance
degree of alternative ai over ak

Measure the relative dominance of
each alternative ai over another al-
ternative ak on one criterion cj

Divide the set of all alternatives into three
regions for each combination of ai and cj

Normalize the decisoin table and de-
termine the weight vector of all criteria

Using prospect theory and
three-way deicision theory,

constructing three-way rankings

Using measures defined by the dif-
ference of the cardinality of their
“better than” or “worse than” sets

Using the general-
ized TODIM method

Fig. 2. The workflow of 3RD method

Step 1: For each decision alternative ai ∈ A and a criterion cj ∈ C, divide the
set of all alternatives into three regions based on a prospect function v and a
threshold t ≥ 0:

(D�
j (ai),D�

j (ai),D≈
j (ai)). (13)

Step 2: For each pair of alternatives ai, ak ∈ A, calculate the dominance degree
of alternative ai over ak with respect to a criterion cj ∈ C:

φj(ai, ak) =

{ |D�
j (ak) − D�

j (ai)|, if pj(ai) ≥ pj(ak),

− |D�
j (ak) − D�

j (ai)|, if pj(ai) < pj(ak).
(14)

Step 3: For each pair of alternatives ai, ak ∈ A, calculate the overall dominance
degree of alternative ai over ak:

Φ(ai, ak) =
m∑

j=1

wjφj(ai, ak). (15)

Step 4: For each alternative ai ∈ A, calculate the overall performance of alter-
native ai:

Ψ(ai) =
n∑

k=1

Φ(ai, ak). (16)

Step 5: Rank all of the alternatives according to the their overall performance
Ψ(ai), that is,

ai � ak ⇐⇒ Ψ(ai) ≥ Ψ(ak). (17)
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In this paper, we use the same prospect function and the same threshold for
all criteria. As generalizations, we may consider different prospect functions and
different thresholds for different criteria. Like the ELECTRE family methods,
it is possible to define thresholds based on the value pj(ai). These changes only
affect the definitions of the trisections used in Step 1.

3 An Illustrative Example

In this section, we illustrate 3RD method by using an example taken from Gomes
and Rangel’s research [10]. We also analyze the sensitivity of the method with
respect to the parameters.

3.1 An Example Solved by the TODIM method

Gomes and Rangel [10] presented an application of TODIM method to order
residential properties with different characteristics. Their case study aims to rank
the residential properties according to selected evaluation criteria. There are 15
decision alternatives A = {a1, a2, . . . , a15} and 8 criteria C = {c1, c2, . . . , c8}.
The performance function p is described by a normalized matrix in Table 1. The
descriptions and weights of criteria are given in Table 2.

Table 1. Normalized decision alternatives’ performance taken from [10]

Alternatives Criteria

c1 c2 c3 c4 c5 c6 c7 c8

a1 0.068 0.103 0.100 0.075 0.045 0.069 0.174 0.000

a2 0.091 0.064 0.067 0.050 0.045 0.046 0.087 0.000

a3 0.068 0.123 0.033 0.050 0.091 0.057 0.043 0.000

a4 0.068 0.044 0.067 0.075 0.091 0.057 0.174 0.000

a5 0.114 0.127 0.100 0.100 0.182 0.103 0.042 0.143

a6 0.045 0.031 0.067 0.078 0.045 0.057 0.043 0.000

a7 0.023 0.030 0.033 0.025 0.045 0.046 0.000 0.143

a8 0.114 0.028 0.067 0.075 0.045 0.069 0.000 0.143

a9 0.045 0.043 0.067 0.075 0.000 0.069 0.000 0.000

a10 0.045 0.042 0.033 0.075 0.045 0.057 0.043 0.000

a11 0.091 0.099 0.067 0.050 0.091 0.080 0.130 0.143

a12 0.023 0.032 0.033 0.025 0.045 0.057 0.087 0.000

a13 0.045 0.057 0.100 0.075 0.091 0.069 0.043 0.143

a14 0.068 0.113 0.100 0.075 0.091 0.092 0.087 0.143

a15 0.091 0.064 0.067 0.100 0.045 0.069 0.043 0.143
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Table 2. Descriptions and weights of criteria taken from [10]

Criterion Description Assigned weights Normalized weights

c1 Localization 5 0.25

c2 Constructed area 3 0.15

c3 Quality of construction 2 0.10

c4 State of conversation 4 0.20

c5 Number of garage spaces 1 0.05

c6 Number of rooms 2 0.10

c7 Attractions 1 0.05

c8 Security 2 0.10

In their initial setting, the loss aversion coefficient is λ = 1 and the parameters
for the prospect value function is α = β = 0.5, which was consistent with the
traditional TODIM method. Another set of parameters is given by λ = 2.25 and
α = β = 0.88, which was suggested in a study by Tversky and Kahneman [22].
Table 3 shows the results under two settings of parameters. The number “1”
in the ordering column represents that the corresponding alternative has the
highest rank and “15” indicates that the alternative has the lowest rank.

Table 3. TODIM results from different aspects of λ, α, and β

Alternatives λ = 1 α = β = 0.5 λ = 2.25 α = β = 0.88

Normalized value Ordering Normalized value Ordering

a1 0.6916 5 0.7500 6

a2 0.3862 10 0.5196 8

a3 0.3992 9 0.5076 9

a4 0.6210 7 0.7527 5

a5 1.0000 1 0.9696 3

a6 0.2860 11 0.4044 11

a7 0.0000 15 0.1870 14

a8 0.4407 8 0.4670 10

a9 0.0202 14 0.0000 15

a10 0.2127 12 0.3384 12

a11 0.8576 3 0.9826 2

a12 0.1073 13 0.3242 13

a13 0.7188 4 0.8175 4

a14 0.9372 2 1.0000 1

a15 0.6733 6 0.7213 7
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3.2 The Procedure of 3RD Method

We set parameters as λ = 2.25, α = β = 0.88, and t = 0.05 to explain 3RD
method.

Step 1: We consider alternative a5 as the reference and use Eqs. (3) and (2) to
calculate the trisection with respect to each criterion.

For criterion c1, p1(a5) = 0.114. p1(a1) = 0.068. By using Eq. (2), v(p1(a1)−
p1(a5)) = v(−0.046) = −2.25 ∗ (0.046)0.88 = −0.150 < −0.05. Thus, a1 ∈
D�

1 (a5). By the same method for all criteria, we arrive at the trisection:

D�
1 (a5) = {a1, a2, a3, a4, a6, a7, a9, a10, a11, a12, a13, a14, a15},

D�
1 (a5) = ∅,

D≈
1 (a5) = {a5, a8}.

By following the same methods, we compute all trisections with respect to the
remaining alternatives.

Step 2: We use the pair (a5, a4) as an example to show the main ideas. For each
criterion cj ∈ C, we calculate the dominance degree of a5 over a4 by Eq. (14).

For criterion c1, p1(a5) = 0.114 > p1(a4) = 0.068. We have φ1(a5, a4) =
|D�

1 (a4) − D�
1 (a5)| = |{a5, a8} − ∅| = 2.

For criterion c7, We have φ7(a5, a4) = −|D�
7 (a4) − D�

7 (a5)| = −|{a2, a3,
a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15} − {a7, a8, a9}| = −10.

Similarly, for the rest of criteria, we have φ2(a5, a4) = |D�
2 (a4)−D�

2 (a5)| =
5, φ3(a5, a4) = |D�

3 (a4) − D�
3 (a5)| = 0, φ4(a5, a4) = |D�

4 (a4) − D�
4 (a5)| = 0,

φ5(a5, a4) = |D�
5 (a4)−D�

5 (a5)| = 1, φ6(a5, a4) = |D�
6 (a4)−D�

6 (a5)| = 2, and
φ8(a5, a4) = |D�

8 (a4) − D�
8 (a5)| = 7.

Step 3: We use the pair (a5, a4) to show the computation of the overall dom-
inance degree of a5 over a4. According to Eq. (15), Φ(a5, a4) is given as the
weighted summation of results from Step 2:

Φ(a5, a4) =
m∑

j=1

wj ∗ φj(a5, a4)

= 0.25 ∗ 2 + 0.15 ∗ 5 + 0.10 ∗ 0 + 0.20 ∗ 0 + 0.05 ∗ 1 + 0.10 ∗ 2
+ 0.05 ∗ (−10) + 0.10 ∗ 7 = 1.7.

Step 4: By Eq. (16), the overall performance of alternative a5 is calculated by
the summation of the dominance of a5 over the all alternatives in A. That is,

Ψ(a5) =
n∑

k=1

Φ(a5, ak)

= 1.1 + 2.15 + 2.95 + 1.7 + 0 + 3.2 + 7.3 + 1.75 + 3.8 + 4.3 + 0
+ 7 + 2.15 + 0.25 + 1.15 = 38.8.

Step 5. After calculating the total performance of all alternatives, we are able
to rank the set of alternatives A according to Ψ(ar), ∀ar ∈ A. Table 4 gives the
total performance values and a ranking of the 15 alternatives.
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Table 4. Total performance and ordering of alternatives

Alternatives λ = 2.25, α = β = 0.88, t = 0.05

Total performance Ordering

a1 8.20 5

a2 −7.30 8

a3 −13.90 10

a4 −7.85 9

a5 38.80 1

a6 −34.60 12

a7 −60.60 14

a8 0.60 6

a9 −34.45 11

a10 −41.75 13

a11 24.55 3

a12 −65.15 15

a13 −5.85 7

a14 25.75 2

a15 14.45 4

Table 5. Sensitivity analysis of 3RD method with different λ, α, β and t

Approahces 3RD method

Loss aversion coefficient λ = 1 λ = 2.25

Parameters α = β = 0.5 α = β = 0.88 α = β = 0.5 α = β = 0.88

Threshold t 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1

a1 4 5 5 4 5 8 4 5 5 4 5 5

a2 9 9 9 9 8 11 9 9 9 9 8 8

a3 10 10 10 10 10 9 10 10 10 10 10 10

a4 8 8 8 8 7 10 8 8 8 8 9 9

a5 1 1 1 1 1 1 1 1 1 1 1 1

a6 12 12 13 12 11 13 12 12 12 12 12 11

a7 15 15 14 15 14 7 15 15 15 15 14 12

a8 6 6 6 6 6 6 6 6 6 6 6 6

a9 11 11 11 11 12 14 11 11 11 11 11 13

a10 13 13 12 13 13 12 13 13 13 13 13 14

a11 5 4 4 5 2 2 5 4 4 5 3 3

a12 14 14 15 14 15 15 14 14 14 14 15 15

a13 7 7 7 7 9 5 7 7 7 7 7 7

a14 2 2 2 2 3 3 2 2 2 2 2 2

a15 3 3 3 3 4 4 3 3 3 3 4 4
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Fig. 3. 3RD rankings under different parameter settings

3.3 Sensitivity Analysis of 3RD

We carried out a sensitivity analysis by altering the parameters and the thresh-
old. We tested λ from {1, 2.25}, α = β from {0.5, 0.88}, and t from {0, 0.05, 0.1}.
There are a total of twelve settings to verify the stability of 3RD. The results
are shown in Table 5 and Fig. 3. It is clear that the introduced threshold t plays
an essential role in the pair-wise comparison and the final ordering. The similar
trends of rankings under the twelve settings of parameters demonstrated that
the proposed 3RD method is not very sensitive to small changes of parameters.

4 Conclusion

Thinking in threes, as the philosophy of three-way decision theory, provides a
novel view of MCDM problems. By combining thinking in threes and ideas from
existing MCDM methods, we have proposed a new three-way ranking-based
approach. Inspired by the prospect theory, with respect to a decision alterna-
tive and a criterion, we build a trisection, namely, a three-way ranking, of the
alternative set. Two subsets of the trisection correspond to the dominating and
dominated sets in the dominance-based rough set approach. The addition of
one more subset of approximately the same alternatives takes consideration of
the degree of preference, in a similar way as being done in the ELECTRE and
the PROMETHEE families methods. Based on trisections of a pair of alterna-
tives, we design measures to quantify dominance of one alternative over another
alternative on a single criterion and multiple criteria, respectively. These mea-
sures are used to compute the overall performance of alternatives and to rank
alternatives, according to the procedure of TODIM method.

Our proposed method is a three-way ranking based method called 3RD. The
advantages of 3RD can be seen from two aspects: 1) the prospect theory provides
a solid basis for constructing and interpreting a three-way ranking, and 2) there
are different ways to determine the threshold for defining an observable degree
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of dominance. Based on the preliminary results reported in this paper, we may
explore further new MCDM methods based on the philosophy of thinking and
classification in threes.
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