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Abstract Higher-order finite element methods are applied to electronic structure
calculation in the context of the finite element method. For this purpose, the Kohn-
Sham formalism of density functional theory is cast in a setting that is amenable to
a finite element discretization. Both all-electron and pseudopotential formulations
are presented, the latter incorporating both local and nonlocal contributions. Some
of the outstanding challenges in applying this numerical framework to such ab initio
methods are discussed. Finally, the approach is demonstrated with higher-order finite
element basis sets that are associated with classical Lagrange discretizations as well
as more with more recent isogeometric ones based on NURBS and B-splines.

1 Introduction

Over the past decade, finite elementmethods have been applied successfully and com-
petitively in the context of electronic structure calculation [1]. In particular within
the context of the Kohn-Sham density functional theory, efficient ab initio methods
are desirable in order to access nonphenomenological predictions of material and
interface behavior at small length scales [2]. From an engineering perspective, one
aim is to subsequently upscale this information by connecting different length scales
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using numerical methods which operate efficiently at each scale in order to reach at
multiscale descriptions of deformation and failure for material and interface design.
The triggering role of ab initio methods in this hierarchy of transitions is pivotal
because it is able to initiate this process with a truly nonphenomenological seed.
Therefore, there is an ongoing need for numerical methods which can attain desired
levels of chemical accuracy faster and more efficiently, particularly in view of the
very high computational cost of the problems involved [3–5]. From this perspective,
the advantages of the finite element method are numerous [6]. First, in comparison to
plane-wave approaches, it is a real-spacemethod that does not require transforms that
typically scale up rapidly in cost with increasing numerical resolution. Moreover, its
structure naturally accommodates both periodic material systems such as crystals in
addition to nonperiodic ones such as isolated molecules, unlike plane waves which
assume periodicity from the outset. Second, in comparison to a real-space approach
such as the finite-difference method, it preserves the variational structure that under-
lies density functional theory, similar to plane-wave discretizations. When combined
with systematic improvability due to the completeness of the basis sets, this property
ensures monotonic convergence in total energy–a property that is critical when one
wishes to assess the solution quality. Such systematic improvability is missing in
widely employed real-space methods based on Gaussian basis sets which retain the
variational structure but cannot ensure that convergence achieved through the addi-
tion of multiple basis members is indeed due to having achieved the minimum total
energy and not an artifact of incompleteness.

Density functional theory is an approach to solving the Schrödinger equation
and the Kohn-Sham formalism is a theoretical framework that renders this approach
feasible in a numerical setting [7]. The finite element method has recently been
applied as a particular numerical setting in various contexts which range from time-
independent periodic cases to time-dependent nonperiodic ones [6, 8–14]. Overall,
the level of efficiency achieved is now competitive with, and in several cases already
beyond, time-honored practices based on plane-waves for periodic problems and
Gaussian basis sets for nonperiodic ones. The sparse structure of the matrices which
emanate from finite element basis sets as well as the suitability of the framework
to parallelization are contributing factors to this competitiveness. Moreover, higher-
order basis sets are crucial if such problems are to be solved in reasonable times due
to the insufficient convergence rate of linear ones, and the finite element method is
naturally amenable to the incorporation of such discretizations. In the majority of
these studies, and in all recent applications, basis sets are derived fromLagrange-type
elements. As an alternative discretization scheme, following various earlier studies
[15–17] but by building upon and benefiting from efficient eigensolvers to address
comparatively larger material systems [18], the use of NURBS and B-splines was
explored in [19], motivated by the isogeometric analysis approach [20]. The goal
of this contribution is to summarize the finite element formulation of this ab initio
problem and to present examples which indicate routes to even higher efficiency if
isogeometric basis sets are employed as higher-order finite elements.
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2 Density Functional Theory

The focus of the present study is on an isolated material system M consisting of N
electrons and M nuclei, each with charge Z A (A ∈ 1, . . . , M). In a pseudopotential
setting, the set of electrons is associatedwith the valence structure only and the nuclei
are replaced by ions that are assigned a net charge that is augmented by those of the
core electrons. The configuration of M is determined through the nucleus locations
RA that define rA = r − RA where the spatial position vector in unbounded space is
indicated as r and integration over this spacewill be denoted by 〈·〉. The external local
potential generated by the nuclei can then be expressed as νext = ∑

A νA(rA) where,
introducing rA = |rA|, νA = −Z Am A(rA) are spherically symmetric potentials. For
the all-electron setting m A(x) = 1/x delivers the classical Coulomb expression of
the potential whereas in the local pseudopotential setting m A(x) acts as an ion-
dependent mollifier which is chosen such that it delivers the regularized form of
1/x , i.e. m(0) is well-defined and m(x) matches or rapidly approaches 1/x beyond
a prescribed distance. In the case of nonlocal pseudopotentials, the electron-ion
interaction is nonlocal such that the external potential as well as the corresponding
energy contribution will entail additional terms that will be shortly commented upon.

Assuming a closed-shell structure without consideration for spin effects and
degeneracy, N/2 real orthonormal spatial orbitals ψi (r) are introduced which
describe a noninteracting reference system of N electrons in the Kohn-Sham for-
malism of density functional theory. The electron density can then be expressed as
ρ(r) = 2

∑
i ψ2

i and, in atomic units, the energy as a functional of the density takes
the form

E = Ts + EH + Een + Enn + Exc . (1)

Here, Ts is the exact kinetic energy of the reference system, EH is the Hartree energy
that corresponds to the classical electrostatic interactions among the electrons, Een

is associated with the electron-nucleus interactions while Enn is associated with
nucleus-nucleus ones and, finally, Exc is the exchange-correlation energy which
accounts for errors in the kinetic energy and electron-electron interaction expres-
sions:

Ts = 2
∑

i

〈 ψi (− 1
2∇2) ψi 〉 , EH = 1

2 〈ρ vH 〉 , Een = 〈ρ vext〉 , (2)

Enn = 1

2

∑

A

∑

B �=A

Z A Z B

|RA − RB | , Exc = 〈ρ εxc〉 . (3)

Within these expressions, εxc is the exchange-correlation energy per electron and vH

is the Hartree potential that is defined through the Poisson equation

− 1
4π ∇2vH = ρ . (4)



530 İ. Temizer

Each contribution to the total energy E depends on the set of orbitals ψi , either
directly or indirectly through ρ. The ground state electronic structure is determined
through the minimization of E over ψi , leading to the Kohn-Sham equation

(− 1
2∇2 + veff) ψi = εi ψi (5)

where veff = vH + vext + vxc, εi are the orbital energies and the exchange-correlation
potential vxc is defined through the variation δExc = 〈vxc δρ〉. Although the definition
of vxc is general, the present studywill be restricted to the local density approximation
where εxc will be a function of ρ only and therefore vxc = εxc + ρ ∂εxc/∂ρ. Overall,
the summarized theory can also easily be extended to account for open-shell problems
and degeneracies through the incorporation of fractional occupancy, although this
will not be explicitly indicated in this presentation.

In comparison to the all-electron setting, the pseudopotential setting delivers a
significantly more efficient numerical approach because it eliminates the explicit
presence of the core electrons, thereby reducing the stringent requirements on the
discretization as well as the number of orbitals which need to be calculated [21].
Although local pseudopotentials may suffice for some material systems [22], most
cases require nonlocal pseudopotentials for accuracy and transferability [23]. For
this purpose, the total energy (1) is augmented by a contribution

EN L =
∑

i

〈ψi (r) vN L(r, r′) ψi (r′)〉 , vN L =
∑

A


A(rA, rA
′ ) (6)

where nonlocality explicitly manifests itself. Similarly, the effective potential veff in
the Kohn-Sham equation (5) is augmented by the nonlocal part vN L of the pseu-
dopotential that is composed of a sum of atom-dependent nucleus-centered nonlocal
contributions 
A. For an efficient numerical implementation, the preferred form of
these contributions is based on a separable form. Presently, this implementation will
not be explicitly discussed.

It is noted that it is possible to evaluate the exact Hartree potential vH corre-
sponding to a given electron density ρ, albeit at a high numerical cost. This cost is
circumvented by solving the Poisson equation (4) instead. Now, however, vH will
be obtained to within the numerical error that is associated with the chosen dis-
cretization. Consequently, the overall problem for rendering the energy stationary
towards the ground state electronic structure takes on a saddle-point form rather than
one of minimization [24]. The practical consequence of this is that nonvariational
results may be obtained if the finite element discretization is not chosen carefully,
thereby rendering difficulties in the assessment of the solution quality. The finite ele-
ment formulation to be discussed next assumes a single discretization that is chosen
judiciously for the solution of both the Poisson and Kohn-Sham equations.
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3 Finite Element Discretization

Because veff within (5) is nonlinear in the set of orbitalsψi , (4) and (5) must be solved
iteratively to self-consistency in order to determine the ground state electronic struc-
ture, typically together with amixing scheme in order to tune convergence. Presently,
this solution approach will be built on the finite element method. Introducing test
functions {η, ϕ} and carrying out standard manipulations, the weak forms of the
Poisson and Kohn-Sham equations may be expressed as

1
4π 〈∇η · ∇vH 〉 = 〈η ρ〉 , 1

2 〈∇ϕ · ∇ψi 〉 + 〈ϕ veff ψi 〉 = εi 〈ϕ ψi 〉 (7)

Invoking a single discretization for both problems that is described by a set of shape
functions NI , these expressions take the form

[P]{vH } = {d} , [H ]{ψi } = εi [M]{ψi } . (8)

Here, defining L I J = 〈∇NI · ∇NJ 〉,

PI J = 1
4π L I J , dI = 〈NI ρ〉 , HI J = 1

2 L I J + 〈NI veff NJ 〉 (9)

while, based on the discretizations vH = ∑
I vI

H NI and ψi = ∑
I ψ I

i NI , {vH } and
{ψi } collect the degrees of freedom vI

H and ψ I
i , respectively. Overall, in view of the

spherical symmetry of the potentials involved in all-electron and pseudopotential
settings for a single atom, virtually the same formulation applies to the radial case
as well, which is advantageous in comparing different finite element discretizations
as well as in generating discrete orbital solutions for possible use as enrichment
functions in the three-dimensional case [12, 13].

The solutionof the generalized eigenvalue problem (8)2 can scale in a prohibitively
unfavorable fashion depending on the solution algorithm. Presently, a subspace iter-
ation method will be employed based on the Chebyshev filtering of the spectrum
through a modification of the original algorithm that was proposed for a standard
eigenvalue problem [18]. Clearly, the ability to modify the finite element discretiza-
tion or to process the mass matrix in order to arrive at a standard version is desirable
to attain faster solutions. For isogeometric discretizations, such as those that are
based on NURBS or B-splines, row-sum lumping retains the positive-definiteness of
the mass matrix. However, without additional modification of the original solution
algorithm for a standard version, this leads to significantly reduced accuracies. On
the other hand, lumping is not suitable for classical higher-order Lagrange elements
but the combination of reduced-order Gauss-Lobatto quadrature schemes in com-
bination with spectral finite elements delivers a diagonal mass matrix which allows
invoking the original algorithm [6]. Because the aim is to carry out the electronic
structure calculation at a level that matches the desired chemical accuracy, these
aspects additionally influence how different discretizations compete in terms of effi-
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ciency, in particular in view of the fact that isogeometric discretizations typically
deliver significantly higher accuracy per degree of freedom. A detailed comparison
of various competing factors remains an open issue.

4 Numerical Investigations

As a radial case, the Magnesium atom will be considered. In the all-electron setting,
Slater exchange is employed together with Vosko-Wilk-Nusair parametrization of
correlation. The resolution is controlled through a parameter eo which would scale
with the number of elements in a linear discretization, not shown due to low accu-
racy. The error in the total energy E (in hartrees) is assessed with respect to the
reference result Eo = −199.139 406 315 that is converged to 10−9 accuracy. In the
pseudopotential setting, Perdew-Zunger parameterization of correlation is employed
together with the evanescent core local pseudopotential [22]. The reference result
that is converged to 10−11 accuracy is Eo = −0.847 598 456 26. The target chemical
accuracy is 10−3 in the all-electron setting and 2 × 10−4 in the pseudopotential one.

The results in Fig. 1 indicate the significantly less stringent discretization require-
ments in the pseudopotential case where the target accuracy is already achieved at
very coarse discretizations. Here, classical Lagrange discretizations are denoted by L
whereas N denotes an isogeometric discretization based onNURBS or B-splines, the
following number being associated with the order chosen in each case. The asymp-
totic convergence rates are measured from the last three points in the data set for a
given discretization and noted next to the corresponding line as half of the negative
slope. The optimal value of the convergence rate measured in this fashion is equal to
the discretization order and it is clear that this value has been achieved in all cases.
However, the factor in the finite element error estimate expression also significantly
contributes to the efficiency with which target accuracy is achieved. Indeed, it is
observed that in both cases N3 delivers a faster route to convergence than both L4
and L5 choices and this trend is preserved until significantly low errors are observed.
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Fig. 1 All-electron and local pseudopotential results for the Magnesium atom in the radial case
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Fig. 2 Isosurfaces for ρ (left) and vH (right) for the buckyball where red spheres indicate the ions

Because the number of elements does not decrease in an isogeometric discretization
as the order increases in a standard implementation that is based on the classical finite
element structure, it is advantageous to limit the order. In this respect, cubic NURBS
and B-splines appear to offer competitive accuracy in return for the computational
burden in the context of electronic structure calculation [19].

As a large-scale three-dimensional example with nonlocal pseudopotentials, the
buckyball (C60 molecule) is considered. The setup of this analysis follows the details
in [19] and requires the calculation of 120 orbitals. Therein, however, it was not
possible to approach the target accuracy. Presently, an error of 1.07 × 10−4 Ha per
atom has been achieved with an N3 discretization that contains 790,773 degrees of
freedom, which satisfies the stringent pseudopotential calculation accuracy require-
ment. The corresponding solution is visualized in Fig. 2. It is noted that the error for
an L5 discretization with 1,357,579 degrees of freedom on the same mesh structure
remained above 4 × 10−4 Ha per atom. Recalling that the Kohn-Sham formalism
leads to a generalized nonlinear eigenvalue problem, the efficient extraction of a
large number of eigenpairs towards the solution of such problems on discretizations
with O(106) degrees of freedom continues to pose a computational challenge.

5 Conclusion

Kohn-Sham density functional theory provides a rich foundation for constructing
nonphenomenological multiscale approaches through which the understanding of
material and interface behavior can be advanced. The finite element method offers
an effective numerical framework in addressing the corresponding computational
complexity, specifically in the context of higher-order discretizations. Numerous
challenges must still be addressed in order to further explore and harness its poten-
tial advantages in electronic structure calculation. Presently, the accuracy gains per
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degree of freedom have been limited due to nearly uniformmeshes employed. Adap-
tive mesh refinement in classical and isogeometric discretizations is an important
next step towards a more effective utilization of the computational resources. This
will enable addressing larger scale problems where geometry optimization may be
required towards the determination of equilibrium structures or ab initio molecular
dynamics may be pursued at the next scale towards the continuum.
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