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Abstract We propose a curvilinear virtual element method (VEM) for the asymp-
totic homogenization of fibre-reinforced composites with straight long fibres having
general curvilinear cross sections. This technique is able to exactly represent the
microstructural curvilinear geometry still granting all the standard features of VEM
methods for elliptical boundary value problems. Themethod is here applied to doubly
periodic fibre arrangements. Accuracy and computational efficiency of the proposed
homogenization procedure is confirmed by numerical examples by comparison with
semi-analytical solutions.

1 Introduction

Compositematerials are extensively usedmaterials inmany engineering applications
due to their interesting properties, as, for instance, high strength-to-weight ratio and
tunable features of the constituents.

The present communication focuses on fibre reinforced composite materials anal-
ysed via asymptotic homogenization method. In particular, the analysis is here devel-
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oped for composites with long fibre-like inclusions having random size and shape of
the cross section, and doubly periodic space distribution within the hosting medium.
In this latter case, the computation of homogenized quantities will require solving a
boundary value problem at the microscale on the unit cell domain [1–3].

In this framework, a major issue of micro scale computational modeling is rep-
resented by meshing curved fibre/matrix subdomains and relevant interfaces thus
requiring efficient discretization for any realization and any given loading condition
for a composite.

Recently, the Virtual Element Method (VEM) has been introduced and proved an
efficient alternative to standard finite element method [4, 5]. It represents a gener-
alization of the FE method with the capability of dealing with very general polyg-
onal/polyhedral meshes. The VEM has already been successfully adopted to solve
linear elasticity problems [6–8], as well as with complex material nonlinearity such
as plasticity, viscoelasticity, damage and shape memory problems, see, e.g. [9–13]
for a short representative list of related works. In the framework of computational
homogenization, VEM based procedures with straight edges have been proposed in
[14, 15], for evaluating homogenized material moduli of a doubly periodic compos-
ite material reinforced by cylindrical circular inclusions, either with linear elastic or
inelastic material behavior, while the same problem with random inclusion has been
tackled with a VEM procedure in [16].

In this communication we present a curvilinear VEM method (i.e. with the pos-
sibility of using curvilinear polygonal elements [17–20]) for the antiplane shear
homogenization problem of doubly periodic composites with fibres having general
cross section. In particular, VEM elements characterized by linear and higher order
polynomial approximation are proposed.Homogeneous and functionally graded con-
stitutive laws are considered for the fibre constituents of the composite. Numerical
applications are developed to assess the effectiveness of the proposed VEM elements
by comparisonswithmore established techniques showing efficiency of the proposed
methodology.

2 Asymptotic Homogenization of Doubly Periodic Fibre
Reinforced Composite Materials

We here consider a composite material with two material components, a surrounding
matrix with long cylindrical fibre-like inclusions, embedded into it according to a
doubly periodic grid characterized by an angle φ, as can be seen in Fig. 1a. The
bimaterial microstructure in the plane orthogonal to the ffibres consists of a two
dimensional array of unit cells, developing periodically along the x1 and φ directions,
see Fig. 1b. The cell sides measure L1 and L2 respectively, being φ the cell angle.

In order to compute the effective material shear moduli of the composite via
asymptotic homogenization a family of problems is introduced, indexed by a param-
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Fig. 1 Compositematerialwith long cylindrical inclusions.aMicrostructure latticewith cell doubly
periodic arrangement. b Unit cell fibre/matrix geometric features

eter ε: the ratio of the microstructure size to the total size of the analysis region
(Fig. 1a). The homogenization limit is obtained by letting ε go to zero.

In the framework of antiplane shear deformation, the problem of determining the
longitudinal displacement field wε in the composite domain is stated as follows:

div(G∇wε) = 0 , in�f
ε ∪ �m

ε ; (1)

[[G∇wε · ν]] = 0 , on�ε ; (2)

G∇wε · ν = 1

ε
D[[wε]] , on�ε . (3)

Here �f
ε and �m

ε denote fibre and matrix domains respectively, �ε is the union of
fibre/matrix interfaces, ν is the normal unit vector to �ε pointing into�m

ε , and square
brackets [[ · ]] denote the jump of the enclosed quantity across the interface, defined
as extra-fibre value minus intra-fibre value.

Equation (1) is the field equilibrium equation; Eq. (2) represents the continu-
ity of the normal-to-interface component of the shear stress hence equilibrium
at fibre/matrix interface; (3) describes the interface constitutive law, being D a
material parameter characterizing fibre/matrix strength. These equations must be
complemented by suitable boundary conditions on the boundary of the domain
� = �f

ε ∪ �ε ∪ �m
ε .

Fibres and matrix are assumed to be linear elastic, and their shear moduli are
collected in the constitutive tensor G, which specializes in

G = Gf in �f
ε , G = Gm in �m

ε . (4)

Fibre/matrix interfaces are assumed to have zero-thickness and can encompass
a spring-layer model, with linear relation for the displacement discontinuity [[wε]]
and interface traction G∇wε · ν, with D a given spring constant parameter [21–23].
According to this model, interfaces have a physical thickness t which, though much
smaller than the microstructural length scales L1 and L2, rescales as the latter ones
in the homogenization process.
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2.1 Homogenized Equilibrium Equation and Effective
Material Moduli

The asymptotic homogenization method employed to derive the homogenized or
effective constitutive tensor of the composite material is briefly recapped in this
section. More details and theoretical background may be found for example in [1,
3] and in [24, 25] for the specific problem of antiplane shear deformation.

As shown in Fig. 1a, two different length scales characterize the problem under
consideration. Hence, two different space variables are introduced: the macroscopic
one, x , and the microscopic one, y = x/ε, y ∈ Q, being Q the unit cell (see Fig. 1b),
whose intra-fibre space, extra-fibre space and fibre-matrix interface are denoted by
Qf , Qm and �, respectively. Accordingly, the divergence and gradient operators are
given by the following relations:

div = divx + 1

ε
divy , ∇ = ∇x + 1

ε
∇y . (5)

An asymptotic expansion of the unknown displacement field is considered in the
form:

wε(x, y) = w0(x, y) + εw1(x, y) + ε2w2(x, y) + · · · , (6)

where w0 is the macroscopic or average value of the field variable, w1, w2 are Q-
periodic functions in y representing perturbations in the field variable due to the
microstructure, with zero integral average over Q.

Introducing the cell function χ(y), the function w1 is represented in the following
form [1, 3]:

w1(x, y) = −χ(y) · ∇xw0(x) , (7)

where the components χh, h = 1, 2, are the unique, null average, Q-periodic solu-
tions of the ensuing cell problem [24, 25].

The problem for w2 hence results:

divy[G(∇yw2 + ∇xw1)] = −divx [G(∇yw1 + ∇xw0)] , in df ∪ dm ; (8)

[[G(∇yw2 + ∇xw1) · ν]] = 0 , on�; (9)

G(∇yw2 + ∇xw1) · ν = D[[w2]] , on� . (10)

Integrating (8) both in Qf and in Qm, using the Gauss-Green Lemma, adding the
two contributions and exploiting (9), the following equation is obtained:

1

|Q|
∫
df∪dm

divx [G(∇yw1 + ∇xw0)]da = 0 , (11)

where da is the area element of df ∪ dm and | · | is the Lebesguemeasure. Substituting
(7) into (11), the homogenized equation for the macroscopic displacement w0 is
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finally derived:
divx (G#∇xw0) = 0 . (12)

Here ∇xw0 is the macroscopic shear strain, and

G# = 1

|Q|
∫
df∪dm

G(I − ∇ᵀ
y χ) da (13)

are the effective shear moduli, where the superscript ᵀ denotes the transpose.
Equation (13) yields the effective shear moduli of the composite material in terms

of the cell functionχ , solution of the cell problem. In the following section, a curvilin-
ear virtual element methodology to solve the above problem for various is presented.

3 C0 Curved Virtual Element Method

A weak formulation for the cell problem is provided by the virtual work principle
[15, 16]. In this regard, the space of the admissible auxiliary cell functions χ̃ which
are shift d-periodic is introduced, i.e. for s ∈ {1, 2}:

Ṽ =
{
χ̃ ∈ L2(d) such that χ̃ |df ∈ H 1(df) for ,

χ̃ |dm ∈ H 1(dm), χ̃(y1, y2)+ys is d-periodic
}
.

We denote by V the space of the admissible d-periodic variations of Ṽ. The bilinear
form characterizing the variational formulation is:

a(χ̃s, δχs) = −
∫
d
divy[G(∇yχ̃s)] δχs dx (14)

which, applying Gauss-Green lemma, considering the constitutive equation and that
unit normal vectors to ∂dm on opposite sides of the unit cell are opposite, becomes:

a(χ̃s, δχs) =
∫
d
∇yδχs · G(∇yχ̃s)dx +

F∑
j=1

∫
�

[[δχs]] D [[χ̃s]] d. (15)

The form a(·, ·) is symmetric, continuous and coercive on Ṽ, hence the variational
problem is well posed.
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3.1 The Virtual Element Space

In order to devise a discretization of the boundary value problem under consideration
adopting virtual elements with curved edges, we exploit the construction outlined
in [14, 16, 17]. Let Th be a simple polygonal mesh on d, i.e. any decomposition of
d in a finite set of simple polygons e, without holes and with boundary given by a
finite number of edges. Whenever an element has an edge lying on an interface �,
such edge is then allowed to be curved in order to describe exactly the geometry of
the problem. We assume that each interface � is parametrized by an invertible C1

mapping γ from an interval in the real line into �. It is not restrictive to assume that
each curved edge is a subset of only one � and therefore regular. In order to simplify
the notation in the following we sometimes drop the index j , simply use � and

γ : [0, L] −→ �

to indicate a generic curved part of the fibre/matrix interface and its associated
parametrization.

The virtual element space is built elementwise. Indicating with E ∈ Th a generic
polygonal element of.Note that E mayhave somecurved edge, layingon somecurved
interface � ( j ∈ {1, 2, .., F}). For any of such curved edges e, let γ e : [a, b] → e
denote the restriction of the parametrization describing � to the edge e. Then we
indicate the space of mapped polynomials (living on e) as

P̃k(e) =
{
p ◦ γ −1

e : p ∈ Pk[a, b]
}
.

The local virtual element space on E is then defined as

Vh(E) =
{
v ∈ H 1(E) ∩ C0(E) : v|e ∈ Pk(e) if e is straight,

v|e ∈ P̃k(e) if e is curved,−	v ∈ Pk−2(E)
}
.

(16)

The associated degrees of freedom are (see [17] for the simple proof)

• pointwise evaluation at every vertex of polygon E ;
• pointwise evaluation at k − 1 distinct points lying on every edge of E ;
• area-averaged moments

∫
E v pk−2 for all pk−2 ∈ Pk−2(E).

The global space is obtained by a standard procedure preserving interelement C0−-
continuity:

Ṽh =
{
v ∈ Ṽ : v|E ∈ Vh(E) ∀E ∈ Th

}
,
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(a) (b)

Fig. 2 Square unit cell with elliptical inclusion. Curvilinear meshes. a Triangles. b Voronoi-like
polygons

Global degrees of freeedom are the obvious extension of the local ones. The dis-
cretization of the problem is a combination of the scheme proposed in [14] for the
case with standard straight edges and the curved-edge technology introduced in [17]
for a model linear diffusion problem. Implementation details can thus be found in
the aforementioned references.

3.2 Numerical Test

A composite arrangement with elliptical inclusions in square matrices is considered,
cf. Fig. 2 with maximum/minimum axis ratio of 2 [26]. Fibre/matrix shear stiffness
contrast factor is here G f /Gm = 18, with perfect interfaces. The solution for the
shear moduli are computed for the Tri-mesh and Poly-mesh discretizations, as can
be appreciated from Fig. 2, and compared to a reference solutions obtained with
quadratic triangular displacement-based finite elements on a very fine mesh. The
homogenized principal shear moduli are reported in Fig. 3 confirming the accuracy
of the method even in case of complex curvilinear fibre cross section geometry. The
accuary of the present computation opens the door for the proposed methodology
to even more involved geometries of the composite constituents, i.e. when cross
fibre sections may present sharply curved edges which may be selected as to taylor
material specific features [26].
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Fig. 3 Unit cell with
elliptical fibre inclusion.
Homogenized principal
shear moduli for isotropic
homogeneous constituents.
Red triangle: Tri-mesh;
green-pentagon: Poly-mesh;
black squares: Quad-mesh
for Q4 reference solution.
Aspect ration κ = 2, shear
constrast ξ = 20
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4 Conclusion

In this contribution we have presented a curvilinear VEM for homogenization of
unidirectional fiber-reinforced composite materials with inclusion curvilinear cross
section. The procedure proves efficient and accurate as confirmed by several numer-
ical results.
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