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Preface

This Festschrift is dedicated to Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr.-Ing. E.h. Peter
Wriggers on the occasion of his 70th birthday. Peter Wriggers achieved the degree
of Dipl.-Ing. and obtained his Ph.D. and Habilitation at the Universität Hannover. In
1990, he was appointed Full Professor of Mechanics at the Technische Universität
Darmstadt. Afterward, he moved back to Hannover, being in charge of the Institute
of Mechanics and Computational Mechanics (IBNM) for almost ten years and then
being appointed as Head of the Institute of Continuum Mechanics (IKM) in 2008.
Moreover, PeterWriggers has been an important collaborator of a number of interna-
tionally recognized institutes in Computational Mechanics, and among them he has
been Visiting Professor at the University of California at Berkeley in the USA and
the University of Newcastle in Australia. In his career, Peter Wriggers has received
several Prizes, amongwhichwemention the IACMComputationalMechanicsAward
and the ECCOMAS Euler Medal, as well as three Honorary Doctorates at TU Darm-
stadt, ENS Cachan and the University of Technology Poznan. Peter Wriggers has
played a leading role in the academic community, actively participating in important
scientific and administration boards.

As a scientist, Peter Wriggers has achieved outstanding results and an extraordi-
nary international reputation. He has contributions in a wide range of topics, such as
contact mechanics, meshless methods, novel finite element technologies, microme-
chanical approaches, damage mechanics, and many others. This wide range of topics
is also covered in this book, where friends, collaborators, former and current Ph.D.
students have enthusiastically contributed. Almost every continent and every scien-
tific area in Mechanics is represented, highlighting the relevance Peter Wriggers has
played in the field of Computational Mechanics. To many in our scientific commu-
nity, Peter Wriggers has been a genuine supporter or, in other words, a friend. For
most of the contributors, and surely for the Editors of this Festschrift, the encounter
with Peter Wriggers has represented a professional game changer. The observational
skills, creativity, as well as the innovativeness and professional attitude of Peter
Wriggers have been, are and will be a source of inspiration.

We are glad to be in the position to edit this Festschrift and would like to thank
SpringerVerlag for the collaboration regarding this project. In the name of all authors,
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vi Preface

we congratulate Peter Wriggers on his 70th birthday. We wish him happiness, health
and success. We are looking forward to his next successes and to learn more about
Computational Mechanics in his forthcoming inspiring works.

Garbsen, Germany
Garbsen, Germany
Garbsen, Germany
Braunschweig, Germany
Augsburg, Germany
Rome, Italy
May 2021

Fadi Aldakheel
Blaž Hudobivnik

Meisam Soleimani
Henning Wessels

Christian Weißenfels
Michele Marino
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Multiphysics Computation of
Thermomechanical Fatigue in
Electronics Under Electrical Loading

Bilen Emek Abali, Fadi Aldakheel, and Tarek I. Zohdi

Dedicated to Peter Wriggers, a real gentleman and scholar, who
is a role model to us all (B. A. Abali, F. Aldakheel and T. I.
Zohdi).

Abstract Miniaturization increases more complexity in Integrated Circuits (IC) as
well as circuit boards. Several electronic components are assembled on a Printed
Circuit Board (PCB). The board is a composite material of a fiber reinforced ther-
mosetting polymer based matrix. Within and on the board, conducting traces and
vertical interconnect access (via) carry out electrical signals. So-called Joule’s heat
causes a cyclic occurrence of thermal stresses on vias and traces leading to plastic
deformation and fatigue related damage. Multiphysics simulations make a study of
this coupled and nonlinear system possible. We demonstrate an attempt to compute
an electro-thermo-mechanical system and a damage problem by using finite element
method in space and finite difference method in time.

Keywords Multiphysics · Damage · Electro-thermo-mechanics · FEM
1 Introduction

Metals fail under monotonous loading after reaching the ultimate tensile strength
(UTS) by showing a ductile behavior. Even if the UTS is not reached, under a cyclic
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2 B. E. Abali et al.

deformation, a failure is also possible known as fatigue. In electronic devices, as a
natural consequence of switching on and off, where signals are sent in bits, the fatigue
failure is an indispensable phenomenon characterizing the lifetime of an electronic
system. There are different methods to estimate the lifetime by using empirical rela-
tions [1–3] as well as computations [4–7]. One possible experimental setting, called
an active test, is as follows. A so-called bare circuit board—a board without com-
ponents on it—is put under a cyclic electric current. The current produces Joule’s
heat that alters the temperature [8–10]. The composite PCB has adhering copper and
fiber reinforced plastics, both of different coefficients of thermal expansion. Hence,
the thermal strain mismatch between the adhering materials creates thermal stresses.
These stresses are high enough to deform the traces and vias irreversibly and the
plastic deformation is accumulated in every cycle of the electric current loading.

In this work we present the method of solving a simple system in thermo-electro-
damage mechanics by using a numerical algorithm by means of the open-source
packages developed under the FEniCS project, see [11–13]. Coupled and nonlinear
field equations are computed by using the finite element method in space and finite
differencemethod in time. For preprocessing we use Salome CAD andNetgenmesh-
ing algorithm, for visualization we use ParaView. An accelerated reliability test is
performed by applying the electric loading on a single thru-hole via on PCB.

2 Governing Equations

The system is composed of an anisotropic, linear elastic composite material and duc-
tile, conductive copper. On both ends of the copper trace, as in a real experiment, we
set the electric potential, φ in V(olt), as a harmonic function. Effected by the electric
potential difference, an electric field, E in V/m(eter), leads to an electric current,JJJ
in A(mpere)/m2, measured on the material frame. This current is the effective motion
of charges with respect to the continuum body and is modeled by Ohm’s law:

Ji = ςEi , (1)

where the electrical conductivity, ς , is a material dependent parameter. We ignore
magnetization related effects in this study, thus, the electric field is given by the
ansatz function,

Ei = −φ,i . (2)

We use a comma notation (−),i for partial derivative in space. All tensors are
expressed in Cartesian coordinates. The continuum body deforms with respect to
the laboratory frame. The electric current in the laboratory frame is given by

Ji = Ji + vi ρ z , (3)

where ρ denotes the mass density in k(ilo)g(ram)/m3, z the specific charge in
C(oulomb)/kg, and v the velocity of the continuum body, which is the rate of dis-
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placement, v = u•. By assuming small deformations we refrain from distinguishing
between reference and current placement, for an elaborate discussion we refer to
[14]. Hence, the time rate (·)• is simply the partial time derivative. The starting point
is the balance of electric charge:

∂(ρ z)

∂t
+ Ji,i = 0 , (4)

where and henceforth we understand the Einstein summation convention over
repeated indices. By using Maxwell’s equation:

ρ z = Di,i , (5)

with the charge potential (electric displacement) D in C/m2, we acquire

∂Di,i

∂t
+ Ji,i = 0 . (6)

This governing equation will be used to compute the electric potential, φ. Copper
is a conductor, so its electric polarization is not significant. Also for the composite
board, the polarization is neglected as well. Hence, we assume that both materials
for the printed circuit board are unpolarized. For the charge potential we use the
Maxwell–Lorentz aether relation:

Di = ε0Ei , (7)

with the universal constant ε0 = 8.85 · 10−12 C/(Vm). The electric current produces
so-called Joule’s heat in addition to plastic deformation. These effects alter temper-
ature T , see [15, 16]. For computing the temperature distribution, we use the balance
of entropy:

ρη• + �i,i − ρ
r

T
= 	 , (8)

where the specific (per mass) entropy, η, its flux term, �, and its production term,
	, needs to be defined. The entropy supply (radiant heat) r vanishes in this appli-
cation. By referring to the thermodynamical study for unpolarized materials in [13,
Sect. 3.3], we apply the following entropy flux and entropy production:

�i = qi
T

, 	 = − qi
T 2

T,i + 1

T
Ji Ei + 1

T
σi j

pε•
i j . (9)

Second term of the entropy production is related to the Joule’s heat and the third
term is the internal friction caused production in plasticity, by the mechanical stress,
σ , and plastic strain, pε. For the heat flux we use Fourier’s law:

qi = −κT,i , (10)
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with the material parameter κ called the thermal conductivity. For the entropy, we
use a simple material with the specific heat capacity, c, and coefficients of thermal
expansion, α, as follows:

η = c ln
( T

Tref.

)
+ 1

ρ
αi jσi j . (11)

Mechanical stress, σ , is modeled by Hooke’s law with Duhamel–Neumann
extension,

σi j = Ci jkl(εkl − pεkl − thεkl) , (12)

where we use the initial temperature as the reference (no strains condition) value,
Tref. = 300K in the linear thermal strain:

thεi j = αi j (T − Tref.) . (13)

Plastic strain, pε, is modeled by the Prandtl–Reuss approach. Linear strain
measure,

εi j = 1

2
(ui, j + u j,i ) , (14)

is the kinematic relation to displacements, u. For computing the displacement field,
we use the balance of linear momentum with the electromagnetic interaction gov-
erned by the production term,FFF , on the right-hand side,

ρu••
i − σ j i, j − ρ fi = Fi , (15)

where the specific body force, f , is simply the gravitational acceleration, which is
negligible regarding the thermal stress caused deformation. For unpolarized systems,
the production term is the Lorentz force density:

Fi = ρ z Ei + (J × B)i = Dj, j Ei , (16)

since we have assumed that magnetic flux, B, vanishes. The displacement has to
fulfill Eq. (15) such that we obtain

ρ
∂2ui
∂t2

− σ j i, j − Dj, j Ei = 0 . (17)

Additive decomposition of strain, ε = rε + pε, requires the aforementioned small
displacements. Reversible part of strains, rε, contains the elastic as well as thermal
strains.

In time, we use a finite difference scheme for the discretization. So-called time
step, dt , is kept constant. In order to calculate current (unknown) plastic strain, pε,
we utilize the (known) plastic strain from the last time step, pε0, incrementally,

pεi j = pε0i j + dt pε•
i j . (18)
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By exploiting the Prandtl–Reuss approach with kinematic hardening, by so-called
back stress, β, we obtain

pε•
mn = 〈γ 〉

(
σ 0

|i j | − β0
i j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9hσ 2

Y + (
σ 0

|i j | − β0
i j

)
Ci jkl

(
σ 0

|kl| − β0
kl

) (σ 0
|mn| − β0

mn) , (19)

where thematerial parameters h andσY are determined froma uniaxial tensile testing.
The slope of stress versus plastic strain is given by h. The yield stressσY represents the
threshold for plastic deformation. Macaulay brackets in 〈γ 〉 defines a conditional
parameter as being 1 or 0 depending on the vonMises equivalent stress, σeq, defined
by the deviatoric stress, σ|i j |, as follows:

σeq =
√
2

3
σ|i j |σ|i j | , σ|i j | = σi j − 1

3
σkkδi j , (20)

such that it becomes

〈γ 〉 =
{
1 if σeq ≥ σY

0 otherwise
. (21)

For the back stress, β, we use a linear approach for its evolution,

βi j = β0
i j + dtβ•

i j , β•
i j = c̄ pε•

i j , (22)

where we choose c̄ = 2h/3 in the simulations. Under the usual assumption of 1-D
power is equivalent to 3-D power, we obtain the equivalent strain rate:

pε•
eq =

√
3

2
pε•
i j

pε•
i j . (23)

The plastic strain accumulates in each cycle (of loading) with the latter rate of equiv-
alent strain, pεacc = ∫

cycle
pε•
eqdt , therefore, we use eacc = σY

pεacc as an accumulated
(irreversible) energy density (per volume). Indeed, the reversible energy density is
composed of the elastic part

erev = 1

2
Ci jkl(εi j − thεi j − pεi j )(εkl − thεkl − pεkl) . (24)

For computing a damage variable, we use the standard phase-field approach [17–25]
with an order parameter, ω, which is 0 for “virgin” material and 1 for fracture. A
deformation energy, ψ , which degrades by the degradation function g(ω), and a
dissipated energy because of forming the crack is used, For the deformation energy,
we use a history variable, ψmax := max(ψ,ψmax), where := means an algorithmic
update (not a mathematical equality). In this way, ψmax is monotonously growing
and enables a non-healing fracture propagation by
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ψ =
{
eacc if eacc ≥ Gc and erev + eacc ≥ ψmax

ψmax otherwise
. (25)

The fracture toughness, Gc, is determined by experiments, for copper we use
KIc = 15 MPa

√
m and C1111 = 169.1 GPa in order to obtain Gc = K 2

Ic/C1111

in the simulation. The choice of the degradation function, g(ω), is of importance,
we used the quadratic form as g(ω) = (1 − ω)2. Starting with the Griffith’s the-
ory and approximating the discrete surface by a so-called crack density function,
ψc/Gc

(
2ω + �2ω,iω,i

)
with ψc = 3Gc/(8

√
2�). It is governed by the regularized

length scale parameter � which accounts for gradient-damage mechanics.

3 Model Problem

We model a circuit board shown in Fig. 1. The used electroplated copper has a grain
size of 0.5μm according to experiments in [26]. We use a realistic wall thickness of
35μm and propose to model the copper as a cubic material. For this length-scale,
a polycristalline structure may be assumed, but we observe that the miniaturization
makes such an assumption invalid in the near future. For the composite board, we
use an orthotropic material, namely (glass) fiber-reinforced epoxy known as FR4 in
electronics industry. The stiffness tensor in Voigt’s matrix notation

CI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

, (26)

Fig. 1 Geometry used to
model a copper via (yellow)
embedded in a composite
board (green), the gray parts
are for the sake of
visualization, how the model
corresponds to a realistic
case, copper wall thickness
is 35μm and the board
height is 0.8mm
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or its inverse, the compliance matrix,

CI J = (SJ I )
−1 , SI J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Ex

− νxy
Ey

− νxz
Ez

0 0 0
1
Ey

− νyz
Ez

0 0 0
1
Ez

0 0 0
1

Gyz
0 0

sym. 1
Gzx

0
1

Gxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

is used for implementing engineering constants (moduli). Analogously for the coef-
ficients of thermal expansion, we use

αi j =
⎛
⎝

αx 0 0
αy 0

sym. αz

⎞
⎠ . (28)

All parameters are taken from [27, Table10] to [28, 29]. For copper we use

CI J =

⎛
⎜⎜⎜⎜⎜⎜⎝

169.1 122.2 122.2 0 0 0
169.1 122.2 0 0 0

169.1 0 0 0
75.42 0 0

sym. 75.42 0
75.42

⎞
⎟⎟⎟⎟⎟⎟⎠

GPa ,

αi j =
⎛
⎝
17 0 0
0 17 0
0 0 17

⎞
⎠ · 10−6 K−1 ,

σY = 100MPa , h = 615MPa , ρ = 8 940 kg/m3 ,

c = 390 J/(kg K) , κ = 385W/(Km) , ς = 5.8 · 107 S/m .

(29)

In the simulation, we reduce the resistivity by one hundred formodeling an electronic
circuit with components on it. Of course, the chosen reduction is not enough, on
purpose, we obtain high electric current such that the damage occurs in only a few
cycles in this so-called “accelerated” test. In reality, these configurations hold up to
10k cycles or more. The lifetime estimation from such accelerated tests is often
handled by empirical fit functions with a relatively low accuracy in general.

For the FR4 board, we apply the classical laminate theory and obtain the effective
parameters, we refer to [30], and use in the simulation for the board of mass density,
ρ = 2500kg/m3, with its thickness along z-axis, for mechanical response,

Ex = Ey = 34GPa , Ez = 6GPa ,

νxy = 0.05 , νxz = νyz = 0.08 ,

Gyz = Gzx = 1.6GPa , Gxy = 1.5GPa ,

(30)
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and for thermal response,

αx = αy = 13μm/(mK) , αz = 28.2μm/(mK) ,

c = 800 J/(kgK) , κ = 1.3W/(mK) .
(31)

Indeed, the board is an insulator, ς = 0.

4 Simulation and Results

The primitive variables, φ, u, T , ω are continuous functions in space and time. We
use a staggered scheme such that damage variable ω is solved separately and then φ,
u, T are solved at once. This approach relies on the fact that the damage variable is
solved by using a solver with constraints where ω = [0; 1] has an upper bound of 1
and a lower bound of 0 as value. For other variables, no constraints are implemented.
We approximate space by means of the finite element method (FEM) and time by
using finite difference method (FDM). As aforementioned, we discretize in time by
a constant time step, dt , and utilize Euler backward method with superscript zeros,
(·)0 and (·)00, indicating already computed values from the last and second last time
steps, respectively. In order to approximate the functions in a discretized space, we
multiply the governing equations by appropriate test functions, integrate by parts,
and obtain a variational form for each primitive variable,

Fφ = −
∫

�e

(
Di − D0

i + dt Ji
)
δφ,idV +

∫

∂�e

(
Di − D0

i + dt Ji
)
δφNidA , (32)

Fu =
∫

�e

(
ρ
ui − 2u0i + u00i

dtdt
δui + ωσ j iδui, j − Dj, j Eiδui

)
dV −

∫

∂�e

σ j iδui N jdA ,

(33)

FT =
∫

�e

(
ρ(η − η0)δT − dt�iδT,i − dt	δT

)
dV +

∫

∂�e

dt�iδT NidA , (34)

with Ni being the plane normal pointing outward from �e that is one finite ele-
ment. The whole computational domain, �, consists of two different materials, each
material is divided by finite elements satisfying F1 = 0 with

F1 = Fφ + Fu + FT . (35)

We can assemble by summing over all elements. Adjacent elements have opposed
Ni , so continuous primitive variables leads to vanishing boundary terms within one
material. Over the interface, ∂�I , between different materials (herein copper and
reinforced epoxy), theremayoccur jumps since thematerial parameters havedifferent
values. First weak form reads



Multiphysics Computation of Thermomechanical Fatigue … 9

Fφ = −
∫

�

(
Di − D0

i + dt Ji
)
δφ,idV +

∫

∂�I

�Di − D0
i + dt Ji�δφNidA+

+
∫

∂�

(
Di − D0

i + dt Ji
)
δφNidA , (36)

where, Ni�Di� = 0, since φ is continuous. Moreover, no electric current along the
surface normal occurs, Ni�Ji� = 0, as epoxy is an insulator and also on the bound-
aries we regulate the voltage by Dirichlet boundary conditions. Second weak form
becomes

Fu =
∫

�

(
ρ
ui − 2u0i + u00i

dtdt
δui + ωσ j iδui, j − Dj, j Eiδui

)
dV−

−
∫

∂�I

�σ j i�δui N jdA −
∫

∂�

σ j iδui N jdA ,

(37)

where the traction vectors, ti = N jσ j i , are equal in magnitude between neighboring
elements—action is equal reaction. In this example, we have free surfaces, i.e. no
mechanical loading is applied on boundaries. Third weak form reads

FT =
∫

�

(
ρ(η − η0)δT − dt�iδT,i − dt	δT

)
dV+

+
∫

∂�I

dt��i�δT NidA +
∫

∂�

dt�iδT NidA .

(38)

Temperature at the boundary is modeled by using a Robin boundary condition such
that a deviation from the reference temperature causes a heat flux, qi Ni = h̄(T −
Tref.), depending on the convective heat transfer coefficient h̄ in J/(sm2 K). Finally,
we acquire the weak form to be implemented

F1 =
∫

�

(
− (Di − D0

i )δφ,i − dt Jiδφ,i + ρ
ui − 2u0i + u00i

dtdt
δui + ωσ j iδui, j−

−Dj, j Eiδui + ρ(η − η0)δT − dt�iδT,i − dt	δT

)
dV+

+
∫

∂�I

dt��i�δT NidA +
∫

∂�

dt h̄(T − Tref.)
δT

T
dA .

(39)
For the damage variable, we use the weak form

F2 =
∫

�

(
∂g(ω)

∂ω
ψδω + 2ψc

(
δω + �2ω,iδω,i

))
dV , (40)

where the chosen degradation function delivers, ∂g(ω)

∂ω
= 2(ω − 1).
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For all primitive variables, we choose standard, continuous elements with linear
shape functions, from the same Hilbertian Sobolev space, H1, we refer to [31]
for details of the finite element method. In the case of F1 in Eq. (39), the polynomial
finite elements construct a vector space

V =
{
{φ, ui , T } ∈ [H1(�)]5 : {φ, ui , T }

∣∣∣
∂BD

= given

}
, (41)

for the computational domain, � and its closure, ∂�. Values are given on Dirich-
let boundaries, ∂�D. Specifically, the electric potential is given on both ends, by
a sinusoidal function of period 10 s. Displacements on the symmetry surfaces are
prevented along the surface normals. As known as the Galerkin procedure, test
functions stem from the same type of space

V̄ =
{
{δφ, δui , δT } ∈ [H1(B)]5 : {δφ, δui , δT }

∣∣∣
∂BD

= 0

}
. (42)

The weak form F1 in Eq. (39) is nonlinear and coupled, therefore, this type of mono-
lithic approach is useful, although computationally costly. We use a triangulation
by Netgen algorithms and solve F1 with around 100k degrees of freedom (DOFs)
transiently on a mesh with around 20k nodes. In each time step, a linearization is
performed by a standard Newton–Raphson solver, where the derivative for the
Jacobian is computed by a symbolic computation.

In the case of F2 inEq. (40), for the damage variable,ω, we use the same type of lin-
ear spacewith purely zeroNeumann condition. Physically, this choice facilitates that
the damage is not “migrating out” across boundaries. Indeed, for the irreversible crack
formation, this choice is adequate. Computationally, a Newton–Raphson solver
may cause instabilities for no Dirichlet boundaries proble, so we use a line search
method instead. Specifically, we use a component fromScalableNonlinear Equations
Solvers (SNES) as part of the PETSc library, which is a semi-smooth solver for varia-
tional inequalities (vinewtonssls) based onNewton’smethod [32].With thismethod,
we solve the minimization problem with additional constraints that the damage
parameter is restricted,ω ∈ [0; 1]. We use a finer mesh of 100k nodes for the damage
problem and project the solutions between different meshes by using the generalized
minimal residual method (gmres) iterative solver as part of the PETSc library as well.

Choosing a small resistivity on the trace, the electric current under 0.2V electric
potential difference is so high that temperature increase after a quarter of the first
cycle is around 350 ◦C as seen in Fig. 2. The temperature increase is indeed lower in
reality, mainly because of shorter signals, higher resistance due to electronic com-
ponents [33], as well as partly because of using an active ventilation and thus an
increased flux across the boundaries, given by the heat transfer coefficient, h̄. In an
accelerated test, this higher increase is acquired such that the damage starts earlier.
Of course, correlation is challenging to determine between small number of cycles in
an accelerated test to a realistic lifetime for guaranteed durability of many years. As
we start the simulation with Tref. = 300K, which is also the reference value for van-
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Fig. 2 Temperature
distribution on the board,
via, and trace at 2.5s, the
quarter of one period of
sinusoidal electric loading,
visualized on a deformed
configuration (deformation is
scaled by 50)

ishing thermal strains, temperature increase cause thermal strains. This deformation
is different in copper and FR4 board effected by differences of thermal expansion
coefficients. The adherence between copper and epoxy is modeled ideally—we are
unaware of experiments showing a fracture along the interface. This condition causes
extreme thermal strains and a plastic deformation with a released energy higher than
the fracture toughness. The damage is steered by this accumulated dissipative energy
as well as the reversible deformation energy such that the crack formation is different
than the accumulated plastic strains. Already in the second cycle in Fig. 3, we observe

Fig. 3 Damage initiation
(top) and propagation
(bottom) within the second
cycle, visualized in the
reference configuration
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a crack initiation below the corners of the via as well as roughly in the middle of the
trace, i.e. possibly the highest normal stress in analogy with a bending beam.

We emphasize that the model is not axisymmetric because of orthogonal fiber
reinforced epoxy board as well as the trace in the geometry. Thus, the crack initi-
ation and propagation happens in a 3-D framework, very challenging to detect in
experiments and recently possible by using multiphysics computations.

5 Conclusion

Especially in electronics industry, electro-thermo-mechanical systems pose multi-
physics problems to be computed [34, 35]. We have developed a robust numerical
scheme, based on [36] verified in [37], for solving electric potential, temperature,
and displacement monolithically in transient systems. All electronic devices use a
motherboard holding the electric circuitry. The connection of electronic components
by copper traces and vias gets damaged by subsequent use. This fatigue related frac-
ture is of interest to estimate the reliability of the circuitry. Since the multiphysics
problem is difficult to analyze in full detail, semi-empirical approaches are estab-
lished, where their prediction capabilities are in question. We have demonstrated a
possible, comprehensive method for solving the damage problem by the phase-field
approach in order to increase the understanding of this coupled phenomenon. Even
a phase-field model incorporating fatigue [38] may be utilized for this problem. In
order to allow a transparent and efficient exchange, the developed code under the
GNU Public license [39] is made available in [40].
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Abstract In this contribution, the phase-field PF approach to brittle fracture is
extended to model fatigue failure in the high cyclic regime. Fatigue is the primary
failure mode for more than 90% of mechanical failures. It occurs when a structure
is subjected to repeated loading at stress levels that are below the yield stress of the
material. On the modeling side, a local energy accumulation variable which takes
the loading history of a structure into account is introduced within the PF formula-
tion. This is inserted into a fatigue degradation function which degrades the fracture
material properties. To this end, only one additional parameter is proposed, that
enables the reproduction of main material fatigue features. The model performance
is demonstrated by two representative numerical examples.
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1 Introduction

Engineering materials which are subjected to time-varying loads can fail at a stress
level that is significantly lower than yielding or ultimate strength. This phenomenon is
known as fatigue failure. It accounts for the vast majority of mechanical engineering
failures worldwide. This happens without any warning compared with static loading;
i.e. it does not forma neck; thus its failure is unpredictable. The bolts in an office chair,
the crank arm on the bicycle, the pressurized oil pipelines are just a few examples
of components that are subjected to time-varying loads and may be at risk of fatigue
failure. Three stages process can describematerial fatigue: (i) Crack formationwhich
usually occurs at free surfaces and stress concentrations; (ii) the crack grows in size
in a stable and continuous manner; and in stage (iii) after the crack has grown to a
critical size, abrupt and rapid fracture occurs. It is common to differentiate between
high cycle (HCF) and low cycle (LCF) fatigue. This work focus on the high cyclic
fatigue that occurs when the applied cyclical stresses are low and failure occurs after
a large number of cycles, typically more than 10, 000 cycles. Because of the low
stresses, only elastic deformation will be considered before failure.

A great number of macro-meso-micro-nano-mechanically motivated approaches
exist in the literature to model fatigue failure behavior, see for example [1] and the
citations therein. Specifically, the continuumphase-fieldmodel for high cyclic fatigue
life prediction is employed in this work. Due to its simplicity, this methodology has
gained wide interest and started to be used in the engineering community since 2008.
From there on many scientists have worked in this field and developed phase-field
approaches for finite elements, isogeometric analysis, and lately also for the virtual
element technology. The main driving force for these developments is the possibility
to handle complex fracture phenomena within numerical methods in two and three
dimensions. In recent years, several brittle [2–4] and ductile [5–7] phase-field fracture
formulations have been proposed in the literature.

The phase-field fracture framework has been very recently extended to the fatigue
crack propagation problems in [8–11]. In this work, a phenomenological fatigue
fracture model able to reproduce the main features of high-cycle fatigue is presented.
Hereby, a new energy accumulation variable is introduced to account for the cyclic
loading history. The presented PF extension contains only one additional material
parameter.

2 Phase-Field Modeling of Brittle Fracture

In this section, we outline a variational approach to brittle fracture in elastic solids
at small strains.



Phase-Field Modeling of Fatigue Crack Propagation in Brittle Materials 17

2.1 Basic Kinematics at Small Strains

Let � ∈ Rδ with δ = 2, 3 be a solid domain. The response of fracturing solid at
material points x ∈ � and time t is described by the displacement field u(x, t) and
the crack phase-field d(x, t)with ḋ ≥ 0. Here, d(x, t) = 0 and d(x, t) = 1 represent
the unbroken and fully broken state of the material, respectively. The gradient of the
displacement field defines the symmetric strain tensor of the geometrically linear
theory as

ε = ∇su:=1

2

(
∇u + ∇uT

)
. (1)

For the phase-field problem, a sharp-crack surface topology � → �l is regularized
by the crack surface functional

�l(d) =
∫

�

γl(d,∇d) dV with γl(d,∇d) = 1

2l
d2 + l

2
|∇d|2 (2)

based on the crack surface density function γl per unit volume of the solid and
the fracture length scale parameter l that governs the regularization. Hence, the
combination of elasticity with the first-order gradient damage modeling focuses on
the set

Constitutive State Variables: C:={ε, d,∇d} . (3)

2.2 Constitutive Work Density Function

The constitutive work density function W is assumed to depend on the constitutive
state variables C introduced in Eq. (3). It consists of the sum

W (C) = Wbulk(ε, d) + W f rac(d,∇d) (4)

of a degrading elastic bulk energy Wbulk and a contribution due to fracture W f rac,
which contains the accumulated dissipative energy. The elastic bulk contribution in
Eq. (4) is assumed to be a quadratic function as

Wbulk(ε, d) = g(d) ψ(ε) with ψ(ε) = λ

2
(trε)2 + μ tr(ε2) (5)

where, λ > 0 and μ > 0 are the elastic Lame constants. The function g(d) = (1 −
d)2 models the degradation of the stored elastic energy of the solid due to fracture.
The fracture contribution in Eq. (4) is defined as

W f rac(d,∇d) = [1 − g(d)] ψc + 2
ψc

ζ
l γl(d,∇d) (6)
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where, ψc > 0 is a critical fracture energy and ζ controls the post-critical range after
crack initialization.

2.3 Governing Equations

2.3.1 Balance of Linear Momentum

The first equation is the stress equilibrium or the quasi-static form of the balance of
linear momentum defined as

Div [σ ] = 0 , (7)

by neglecting volume forces. The stress tensor is obtained from W in (4) by

σ := ∂εW = (1 − d)2σ̃ with σ̃ = λtr[ε]1 + 2με (8)

with the effective stress tensor σ̃ .

2.3.2 The Fracture Phase-Field Equation

Evolution of the regularized crack surface functional (2) can be driven by the con-
stitutive functions as outlined in [4, 6], postulating a global evolution equation of
regularized crack surface as

d

dt
�l(d) =:= 1

l

∫

�

[ (1 − d)H − ηḋ ] ḋ dv ≥ 0 , (9)

where η ≥ 0 is a material parameter that characterizes the artificial/numerical vis-
cosity of the crack propagation. The crack driving force

H = max
s∈[0,t] D(x, s) ≥ 0 with D:=ζ

〈
ψ+(ε+)

ψc
− 1

〉

+
(10)

is introduced as a local history variable that accounts for the irreversibility of the
phase-field evolution by filtering out a maximum value of what is known as the
crack driving state function D. This is achieved by introducing theMacaulay bracket
〈x〉+ := (x + |x |)/2. Note that only the tensile/positive part of the elastic energy in
(5)2 is considered for computing the crack driving force. It is defined in terms of the
positive strain tensor ε+:= ∑δ

a=1〈εa〉+ Na ⊗ Na . Here, {εa}a=1..δ are the principal
elastic strains and {Na}a=1..δ are the principal strain directions. Then the evolution
statement (9) provides the local equation for the evolution of the crack phase-field
in the domain � along with its homogeneous Neumann boundary condition as
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[ d − l2�d ] + ηḋ + (d − 1)H = 0 (11)

with ∇d · n = 0 on ∂�. Here, n represents the outward normal on ∂�.

3 Phase-Field Model for Fatigue Crack Growth

Theabove introducedphase-fieldmodel for brittle fracture is nowextended to account
for fatigue phenomena. This extension contains only one additional material parame-
ter, namely the critical fatigue energyψ f . This is achieved by modifying the fracture
energy degradation due to the repeated externally applied loads. To this end, the
constitutive work density function (4) is modified as follows

W (C) = Wbulk(ε, d) + f (ψ̄)W f rac(d,∇d) (12)

with fatigue degradation function that reduce fracture material properties as

f (ψ̄):=
⎧⎨
⎩

1 if ψ̄ < ψ f

(
2 ψ f

ψ̄+ψ f

)2
if ψ̄ ≥ ψ f

(13)

defined in terms of the accumulated energy ψ̄ . This is accumulating (active) only
during the loading and for the unloadingkept constant. The local energy accumulation
function ψ̄ is chosen such that it depends only on the positive part of the bulk elastic
energy (5)2. The incremental evolution of ψ̄ is given through the following choice:

ψ̄n+1 = ψ̄n + �ψ̄ with �ψ̄ =
∣∣∣ψ+

n+1 − ψ+
n

∣∣∣ · H
(

ψ+
n+1 − ψ+

n

�t

)
and �t = tn+1 − tn

(14)

where H(∗) is the Heaviside function and �t is the time increment. The subscribe
(·)n denotes quantities evaluates at time tn . Following same derivation procedure
for the governing equations as outlined in Sect. 2.3, it is obvious that such a fatigue
extension only changes the crack driving state function D in (10)2 as

D := ζ

〈
ψ+

f (ψ̄) · ψc
− 1

〉

+
(15)

The above modified equations along with Sect. 2.3 for the phase-field formulation
of fatigue failure are then converted into a numerical model using the finite element
method (FEM).
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4 Numerical Examples

We now demonstrate the performance of the proposed fatigue phase-field model
by means of representative boundary value problems. On the computational side, a
robust and efficientmonolithic scheme is employed using the software toolAceFEM
in the numerical implementation to compute the unknowns (displacement u and crack
phase-field d). Within each load step a quadratic convergence is achieved, due to the
fact that all formulations are linearized in a consistent manner using AceGen.

4.1 Single-Edge Notched Test

The first benchmark test considers a square plate (L = 1mm)with a horizontal notch
placed at the middle height. The prescribed cyclic loading is plotted in Fig. 1, repre-
senting HCF with 105 cycles. The elastic parameters are chosen as E = 21 kN/mm2

and ν = 0.3, the viscosity of the crack propagation η = 10−6 kNs/mm2, the crit-
ical fracture energy ψc = 1.35 × 10−3 kN/mm2, the critical fatigue energy ψ f =
40 kN/mm2 and the fracture length scale l = 0.004 mm. The specimen is discretized
using FEM with linear triangles, as depicted in Fig. 2 (left). A mesh refinement in
the expected fracture zone is applied. Furthermore, Fig. 2 shows the contour-plot of
d for different cyclic loading states up to final rupture. Herein, the crack phase-field
initiates at the notch-tip for 20000 cycles and propagates horizontally till separation
reaching 105 cycles. Figure3 shows the force associated with the displacement (left)
and the length of a developing crack (right) as a function of the cycles number. As
expected, the force decreases during cyclic loading. In turn, the crack length grows
with increasing the number of cycles until the complete failure.

Fig. 1 Single-edge notched test. Applied loading for high cycle fatigue (HCF)
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Fig. 2 Single-edge notched test. Contour plots of the fracture phase-field d for different cyclic
loading states up to final failure

Fig. 3 Single-edge notched test. Degradation of force (left) and increasing crack length (right)
depending on the number of cycles for HCF (105 cycles)

4.2 Block with Multiple Holes Under Cyclic Loading

The second model problem is concerned with analyzing brittle failure of a block
with multiple holes subjected to cyclic tension/compression loading. As a geometri-
cal setup, a square plate with length L = 1mm is considered. To test the formulations
performance, arbitrarily distributed circular holes are inserted inside the block, rang-
ing between 0.01 − 0.1 mm. We fix the bottom edge of the block and apply a cyclic
tension/compression loading at the top edge until the plate is fully broken. Figure4

Fig. 4 Blockwithmultiple holes. Contour plots of the phase-fieldd alongwith the force degradation
for different cyclic loading states up to final failure
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demonstrates the phase-field d evolution for two different cyclic loading states: Ini-
tiation at around 107 cycles (left) and final failure at 4.5 × 107 cycles (right). The
crack starts to initiates around the bigger hole in the center and propagates outward
until rupture. Furthermore, the degradation of the force depending on the number of
cycles (HCF) is also illustrated in Fig. 4 (middle).

5 Conclusion

In this contribution a numerical model was developed, which allows simulations of
fatigue crack propagation in brittle materials.
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Abstract This paper is afirst attempt tomakepossible the computationof the cycling
response of a complex elastoviscoplastic structure up to its possible limit cycle. For
this, we try to couple the non-invasive global/local iterative coupling technique with
the cycle-jumping method. The different issues regarding the method are discussed
on the basis of a 2D examples.

1 Introduction

In order to correct the drawbacks of the submodeling technique while keeping its
simplicity and flexibility, a non-invasive method was proposed which allows exact
local/global analysis while making use of the same basic tools inside an iterative
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procedure [8]. It was extended in several directions, notably in [7, 9, 10, 14, 15].
Safran Aircraft Engines was interested in exploring its potential for the detailed
analysis of complex structures undergoing viscoplastic strains that can spread over
the whole structure.

The quality of the integration of viscoplastic models is very sensitive to the time
step. The global and local models do not need the same time steps to achieve the
same precision. To handle this issue, we proposed in [2] a space/time global/local
non-invasive coupling strategy that we try to extend to cycle-jumping.

For the class of material that we study, one may observe locally accommoda-
tion (elastic response around the hardened position), adaptation (stable viscoplastic
cycle), or even ratcheting (the viscoplastic cycle evolves continuously). In general,
the structure experiences large variations during the firsts cycles, with potentially
strong stress redistribution. After that, the evolution is much smoother. The principle
to reduce the computational cost is, after the first cycles, to extrapolate the response
of the structure over a certain number of cycles [6, 16]. As such, the technique has
the potential for high efficiency but depends strongly on the choice of the criteria
to decide the number of cycles which can be skipped. In [1, 4] such drawback is
alleviated by controlling the time interpolation using the Latin Method but the latter
is quite intrusive.

The paper is organized as follows. In Sect. 2, the constitutive law, the structural
example and the reference model are presented. The main lines of the proposed
cycle-jumping method are given in Sect. 3. The principle of the coupling with the
two-scale in time and space global/local approach is discussed and illustrated in
Sect. 4. Conclusion and perspectives are provided in Sect. 5 on the basis of the cycle-
jumping procedure applied to a 3D example.

2 Reference Problem and Solution

The material model used is the one proposed in [13], adapted from the Marquis-
Chaboche’s behavior [3]. The elasticity itself is linear and isotropic. The nonlinear
part of the model is ruled by the yield function based on von Mises criterion. The
plastic strain tensor ε p is split into a fast part ( f ) and a slow part (s) with the
associated values of the cumulated plasticity p as follows:

ε̇ p = ε̇
p
f + ε̇ p

s and pi =
∫ t

0

√
3

2
ε̇

p
i : ε̇

p
i dτ with for i ∈ { f, s} (1)

The kinematic hardening X = X f is only related to the fast cumulated plasticity
and follows an Armstrong-Frederick’s formulation. The fast plasticity dominates for
strain rates in the range

[
10−5, 10−2

]
s−1 whereas the slow one dominates in the

range
[
10−9, 10−5

]
s−1. The material of interest being confidential, we make use of

the parameters given in [12] for a nickel based superalloy IN100 evolving at 800 ◦C
which is the mean temperature value during a flight.
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Fig. 1 Monolithic approach: reference model and definition of one cycle

In order to precisely assess the lifespan of the structure, a damage criterion should
be added as in [17]. The 2D example of Fig. 1 is used in the paper.

The problem outlines a turbine blade. The external loads (pressure, temperature,
centrifugal force) evolve in time according to the curve of Fig. 1 which mimics the
main phases experienced by an engine during a flight. Asymptotic elastic behaviors
like perfect elasticity or accommodation lead to high-cycle fatigue whereas plastic
shakedown (adaptation) or ratcheting conduct to low-cycle fatigue.

The example of this paper corresponds to fatigue with adaptation because the
viscous effects due to large plasticity dominate the response at the considered high
temperature regime. As a first approximation, we consider that the structure is stabi-
lized when the maxima of both total plastic strain and displacement increments are
respectively below 10−6 and 10−5, which occurs at about 150 cycles in this example.

3 Summary of the Chosen Cycle-Jumping Technique

In what follows, Yi (c) denotes the value of the internal variable Yi at the end
of cycle number c, Y ′

i (c) = Yi (c) − Yi (c − 1) approximates its “derivative” and
Y ′′

i (c) = Y ′
i (c) − Y ′

i (c − 1) its “second derivative”.
In this section, we try to summarize the chosen cycle-jumping technique which is

adapted from [5].Note that the straight procedure as described in that paper fails in our
examples, which stresses the difficulty of setting a proper cycle-jumping procedure:

1. The first aspect is the choice of a pertinent internal variable, or set of internal
variables, to estimate the number of cycles �c which can be skipped. In our case,
it appears that the best choice is the fast cumulated plasticity p f computed at the
end of cycles (the evolution of this quantity constitutes the shakedown curve as
shown in Fig. 2).

2. At any stage of the process, the computation of the possible jump is made
after the full computation of three cycles. To compute the jump �c, one first
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Fig. 2 The values at the end of cycles (top left, red dots), constitute the shakedown curve (top
right), for the selected Gauss point (bottom)

eliminates the Gauss points that are stabilized, that is for which p′′
f < 10−12.

The remaining set of Gauss points is denoted by GP. The chosen value is then

�c = qExtr MeanG P

⌊
p′

f [c]
p′′

f [c]
⌋
.

3. The quality factor qExtr is computed once for all from the previous formulae by
forcing a first jump of fixed length �c = 2 after the first three cycles.

4. To extrapolate the whole set of internal variables, we consider a first approx-
imation, denoted Ỹ ′

i , of the slope after the jump of any internal variable Ỹ ′
i
∼=

Y ′
i (c) + Y ′′

i (c)�c. The slope used to extrapolate Yi is defined as 0.7Y ′
i + 0.3Ỹ ′

i

that is Yi (c + �c) ≡ Yi (c) + (0.7Y ′
i + 0.3Ỹ ′

i )�c.
5. After the jump, one computation is needed to rebalance the structure starting from

the extrapolated values of the set of internal variables, before computing the next
three cycles.

Figure2 illustrates the first three aspects of the process.

4 Coupling with the Global/Local Method

The nonlinear global/local non-invasive coupling proposed in [2] is used in order to
insert structural details given by local models into the global coarse representation of
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the whole structure, see Fig. 1. Thanks to an iterative coupling the solution obtained
by the separate models converges toward the reference. In order to improve the
performance, as explained in the introduction, the solutions are weakly coupled in
time: the synchronization only occurs at the time steps necessary for the globalmodel,
see [2] for more details.

The quality of the integration of viscoplastic models is very sensitive to the size of
the time steps. The global and local models do not need the same time step to achieve
the same precision regarding the integration. Moreover, if one does not achieve a
compatible precision between the two models, the local-global procedure may not
converge to the reference. To handle this problem, we proposed and compared in [2]
various space/time global/local non-invasive coupling strategies. The most efficient
one, called weak time-coupling, which allowed us to achieve the desired precision,
is schematised in Fig. 3.

After the computation of three consecutive cycles by the previous coupling algo-
rithm, the question iswhichmodel to choose for the estimationof the jump length.The
critical areas being located in the local model, a common skipped length, computed
on the local model, is used in the global and local models. Then the extrapolation
strategy is applied to the global and local models and the weak coupling is applied
for the next 3 cycles. Figure4 summarises the cycle-jumping procedure with about
40 cycles computed over the 150 cycles simulated.

Fig. 3 Schematisation of the weak-time coupling strategy

Fig. 4 Overall view of the
computed and skipped cycles
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Fig. 5 Accuracy obtained with the cycle-jumping method: von Mises stress

Fig. 6 Accuracy obtained with the cycle-jumping method: total cumulated plasticity

Figures5 and 6 compare the von Mises stress and the cumulated plasticity at the
last cycle for the reference and cycle-jumping procedures. The maximum relative
errors are respectively about 2 and 0.4% compared to a fine monolithic computation.
Note that the computation is never stopped just after a jump, but after few normal
cycle computations in order to let plastic redistribution smooth the solution.

5 Conclusion

Our experience of cycle-jumping is that it is still an art to define a proper procedure.
Maybe this is due to the severity of the chosen example which reaches nearly perfect
viscoplasticity on some critical areas of the structure. For too large jumps or not
precise enough extrapolations, rebalance may not even be possible. Our proposed
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Fig. 7 Application of the proposed cycle-jumping procedure to a 3D global model

procedure leads to satisfactory results in terms of precision even if the factor of 4 for
the gain that we obtained is not as high as what can be observed on examples from
the literature about plasticity.

Let us note that it seems that 2D cases are more severe than 3D cases. This may
be due to the fact that in 3D examples, a whole section never fully evolves in a
plastic manner. This is at least what appears from our first experiments concerning
the application of the proposed cycle-jumping procedure on a global 3D example
of 1.5106 degrees of freedom over 50 cycles (see Fig. 7). In this example, the exact
same procedure as the one defined in Sect. 3 was applied.

What is still lacking, andwhichwould probably imply amore intrusive procedure,
is to include an evaluation of the quality of the solution within the process.
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Abstract We propose a curvilinear virtual element method (VEM) for the asymp-
totic homogenization of fibre-reinforced composites with straight long fibres having
general curvilinear cross sections. This technique is able to exactly represent the
microstructural curvilinear geometry still granting all the standard features of VEM
methods for elliptical boundary value problems. Themethod is here applied to doubly
periodic fibre arrangements. Accuracy and computational efficiency of the proposed
homogenization procedure is confirmed by numerical examples by comparison with
semi-analytical solutions.

1 Introduction

Compositematerials are extensively usedmaterials inmany engineering applications
due to their interesting properties, as, for instance, high strength-to-weight ratio and
tunable features of the constituents.

The present communication focuses on fibre reinforced composite materials anal-
ysed via asymptotic homogenization method. In particular, the analysis is here devel-
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oped for composites with long fibre-like inclusions having random size and shape of
the cross section, and doubly periodic space distribution within the hosting medium.
In this latter case, the computation of homogenized quantities will require solving a
boundary value problem at the microscale on the unit cell domain [1–3].

In this framework, a major issue of micro scale computational modeling is rep-
resented by meshing curved fibre/matrix subdomains and relevant interfaces thus
requiring efficient discretization for any realization and any given loading condition
for a composite.

Recently, the Virtual Element Method (VEM) has been introduced and proved an
efficient alternative to standard finite element method [4, 5]. It represents a gener-
alization of the FE method with the capability of dealing with very general polyg-
onal/polyhedral meshes. The VEM has already been successfully adopted to solve
linear elasticity problems [6–8], as well as with complex material nonlinearity such
as plasticity, viscoelasticity, damage and shape memory problems, see, e.g. [9–13]
for a short representative list of related works. In the framework of computational
homogenization, VEM based procedures with straight edges have been proposed in
[14, 15], for evaluating homogenized material moduli of a doubly periodic compos-
ite material reinforced by cylindrical circular inclusions, either with linear elastic or
inelastic material behavior, while the same problem with random inclusion has been
tackled with a VEM procedure in [16].

In this communication we present a curvilinear VEM method (i.e. with the pos-
sibility of using curvilinear polygonal elements [17–20]) for the antiplane shear
homogenization problem of doubly periodic composites with fibres having general
cross section. In particular, VEM elements characterized by linear and higher order
polynomial approximation are proposed.Homogeneous and functionally graded con-
stitutive laws are considered for the fibre constituents of the composite. Numerical
applications are developed to assess the effectiveness of the proposed VEM elements
by comparisonswithmore established techniques showing efficiency of the proposed
methodology.

2 Asymptotic Homogenization of Doubly Periodic Fibre
Reinforced Composite Materials

We here consider a composite material with two material components, a surrounding
matrix with long cylindrical fibre-like inclusions, embedded into it according to a
doubly periodic grid characterized by an angle φ, as can be seen in Fig. 1a. The
bimaterial microstructure in the plane orthogonal to the ffibres consists of a two
dimensional array of unit cells, developing periodically along the x1 and φ directions,
see Fig. 1b. The cell sides measure L1 and L2 respectively, being φ the cell angle.

In order to compute the effective material shear moduli of the composite via
asymptotic homogenization a family of problems is introduced, indexed by a param-
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Fig. 1 Compositematerialwith long cylindrical inclusions.aMicrostructure latticewith cell doubly
periodic arrangement. b Unit cell fibre/matrix geometric features

eter ε: the ratio of the microstructure size to the total size of the analysis region
(Fig. 1a). The homogenization limit is obtained by letting ε go to zero.

In the framework of antiplane shear deformation, the problem of determining the
longitudinal displacement field wε in the composite domain is stated as follows:

div(G∇wε) = 0 , in�f
ε ∪ �m

ε ; (1)

[[G∇wε · ν]] = 0 , on�ε ; (2)

G∇wε · ν = 1

ε
D[[wε]] , on�ε . (3)

Here �f
ε and �m

ε denote fibre and matrix domains respectively, �ε is the union of
fibre/matrix interfaces, ν is the normal unit vector to �ε pointing into�m

ε , and square
brackets [[ · ]] denote the jump of the enclosed quantity across the interface, defined
as extra-fibre value minus intra-fibre value.

Equation (1) is the field equilibrium equation; Eq. (2) represents the continu-
ity of the normal-to-interface component of the shear stress hence equilibrium
at fibre/matrix interface; (3) describes the interface constitutive law, being D a
material parameter characterizing fibre/matrix strength. These equations must be
complemented by suitable boundary conditions on the boundary of the domain
� = �f

ε ∪ �ε ∪ �m
ε .

Fibres and matrix are assumed to be linear elastic, and their shear moduli are
collected in the constitutive tensor G, which specializes in

G = Gf in �f
ε , G = Gm in �m

ε . (4)

Fibre/matrix interfaces are assumed to have zero-thickness and can encompass
a spring-layer model, with linear relation for the displacement discontinuity [[wε]]
and interface traction G∇wε · ν, with D a given spring constant parameter [21–23].
According to this model, interfaces have a physical thickness t which, though much
smaller than the microstructural length scales L1 and L2, rescales as the latter ones
in the homogenization process.
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2.1 Homogenized Equilibrium Equation and Effective
Material Moduli

The asymptotic homogenization method employed to derive the homogenized or
effective constitutive tensor of the composite material is briefly recapped in this
section. More details and theoretical background may be found for example in [1,
3] and in [24, 25] for the specific problem of antiplane shear deformation.

As shown in Fig. 1a, two different length scales characterize the problem under
consideration. Hence, two different space variables are introduced: the macroscopic
one, x , and the microscopic one, y = x/ε, y ∈ Q, being Q the unit cell (see Fig. 1b),
whose intra-fibre space, extra-fibre space and fibre-matrix interface are denoted by
Qf , Qm and �, respectively. Accordingly, the divergence and gradient operators are
given by the following relations:

div = divx + 1

ε
divy , ∇ = ∇x + 1

ε
∇y . (5)

An asymptotic expansion of the unknown displacement field is considered in the
form:

wε(x, y) = w0(x, y) + εw1(x, y) + ε2w2(x, y) + · · · , (6)

where w0 is the macroscopic or average value of the field variable, w1, w2 are Q-
periodic functions in y representing perturbations in the field variable due to the
microstructure, with zero integral average over Q.

Introducing the cell function χ(y), the function w1 is represented in the following
form [1, 3]:

w1(x, y) = −χ(y) · ∇xw0(x) , (7)

where the components χh, h = 1, 2, are the unique, null average, Q-periodic solu-
tions of the ensuing cell problem [24, 25].

The problem for w2 hence results:

divy[G(∇yw2 + ∇xw1)] = −divx [G(∇yw1 + ∇xw0)] , in df ∪ dm ; (8)

[[G(∇yw2 + ∇xw1) · ν]] = 0 , on�; (9)

G(∇yw2 + ∇xw1) · ν = D[[w2]] , on� . (10)

Integrating (8) both in Qf and in Qm, using the Gauss-Green Lemma, adding the
two contributions and exploiting (9), the following equation is obtained:

1

|Q|
∫
df∪dm

divx [G(∇yw1 + ∇xw0)]da = 0 , (11)

where da is the area element of df ∪ dm and | · | is the Lebesguemeasure. Substituting
(7) into (11), the homogenized equation for the macroscopic displacement w0 is
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finally derived:
divx (G#∇xw0) = 0 . (12)

Here ∇xw0 is the macroscopic shear strain, and

G# = 1

|Q|
∫
df∪dm

G(I − ∇ᵀ
y χ) da (13)

are the effective shear moduli, where the superscript ᵀ denotes the transpose.
Equation (13) yields the effective shear moduli of the composite material in terms

of the cell functionχ , solution of the cell problem. In the following section, a curvilin-
ear virtual element methodology to solve the above problem for various is presented.

3 C0 Curved Virtual Element Method

A weak formulation for the cell problem is provided by the virtual work principle
[15, 16]. In this regard, the space of the admissible auxiliary cell functions χ̃ which
are shift d-periodic is introduced, i.e. for s ∈ {1, 2}:

Ṽ =
{
χ̃ ∈ L2(d) such that χ̃ |df ∈ H 1(df) for ,

χ̃ |dm ∈ H 1(dm), χ̃(y1, y2)+ys is d-periodic
}
.

We denote by V the space of the admissible d-periodic variations of Ṽ. The bilinear
form characterizing the variational formulation is:

a(χ̃s, δχs) = −
∫
d
divy[G(∇yχ̃s)] δχs dx (14)

which, applying Gauss-Green lemma, considering the constitutive equation and that
unit normal vectors to ∂dm on opposite sides of the unit cell are opposite, becomes:

a(χ̃s, δχs) =
∫
d
∇yδχs · G(∇yχ̃s)dx +

F∑
j=1

∫
�

[[δχs]] D [[χ̃s]] d. (15)

The form a(·, ·) is symmetric, continuous and coercive on Ṽ, hence the variational
problem is well posed.
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3.1 The Virtual Element Space

In order to devise a discretization of the boundary value problem under consideration
adopting virtual elements with curved edges, we exploit the construction outlined
in [14, 16, 17]. Let Th be a simple polygonal mesh on d, i.e. any decomposition of
d in a finite set of simple polygons e, without holes and with boundary given by a
finite number of edges. Whenever an element has an edge lying on an interface �,
such edge is then allowed to be curved in order to describe exactly the geometry of
the problem. We assume that each interface � is parametrized by an invertible C1

mapping γ from an interval in the real line into �. It is not restrictive to assume that
each curved edge is a subset of only one � and therefore regular. In order to simplify
the notation in the following we sometimes drop the index j , simply use � and

γ : [0, L] −→ �

to indicate a generic curved part of the fibre/matrix interface and its associated
parametrization.

The virtual element space is built elementwise. Indicating with E ∈ Th a generic
polygonal element of.Note that E mayhave somecurved edge, layingon somecurved
interface � ( j ∈ {1, 2, .., F}). For any of such curved edges e, let γ e : [a, b] → e
denote the restriction of the parametrization describing � to the edge e. Then we
indicate the space of mapped polynomials (living on e) as

P̃k(e) =
{
p ◦ γ −1

e : p ∈ Pk[a, b]
}
.

The local virtual element space on E is then defined as

Vh(E) =
{
v ∈ H 1(E) ∩ C0(E) : v|e ∈ Pk(e) if e is straight,

v|e ∈ P̃k(e) if e is curved,−	v ∈ Pk−2(E)
}
.

(16)

The associated degrees of freedom are (see [17] for the simple proof)

• pointwise evaluation at every vertex of polygon E ;
• pointwise evaluation at k − 1 distinct points lying on every edge of E ;
• area-averaged moments

∫
E v pk−2 for all pk−2 ∈ Pk−2(E).

The global space is obtained by a standard procedure preserving interelement C0−-
continuity:

Ṽh =
{
v ∈ Ṽ : v|E ∈ Vh(E) ∀E ∈ Th

}
,
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(a) (b)

Fig. 2 Square unit cell with elliptical inclusion. Curvilinear meshes. a Triangles. b Voronoi-like
polygons

Global degrees of freeedom are the obvious extension of the local ones. The dis-
cretization of the problem is a combination of the scheme proposed in [14] for the
case with standard straight edges and the curved-edge technology introduced in [17]
for a model linear diffusion problem. Implementation details can thus be found in
the aforementioned references.

3.2 Numerical Test

A composite arrangement with elliptical inclusions in square matrices is considered,
cf. Fig. 2 with maximum/minimum axis ratio of 2 [26]. Fibre/matrix shear stiffness
contrast factor is here G f /Gm = 18, with perfect interfaces. The solution for the
shear moduli are computed for the Tri-mesh and Poly-mesh discretizations, as can
be appreciated from Fig. 2, and compared to a reference solutions obtained with
quadratic triangular displacement-based finite elements on a very fine mesh. The
homogenized principal shear moduli are reported in Fig. 3 confirming the accuracy
of the method even in case of complex curvilinear fibre cross section geometry. The
accuary of the present computation opens the door for the proposed methodology
to even more involved geometries of the composite constituents, i.e. when cross
fibre sections may present sharply curved edges which may be selected as to taylor
material specific features [26].
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Fig. 3 Unit cell with
elliptical fibre inclusion.
Homogenized principal
shear moduli for isotropic
homogeneous constituents.
Red triangle: Tri-mesh;
green-pentagon: Poly-mesh;
black squares: Quad-mesh
for Q4 reference solution.
Aspect ration κ = 2, shear
constrast ξ = 20
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4 Conclusion

In this contribution we have presented a curvilinear VEM for homogenization of
unidirectional fiber-reinforced composite materials with inclusion curvilinear cross
section. The procedure proves efficient and accurate as confirmed by several numer-
ical results.
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Abstract The mechanical behaviour of periodic three-dimensional non-
homogeneous solids can be functionally designed by optimizing their cellular com-
posite microstructure. The present contribution aims at establishing a theoretical and
methodological framework to determine the dispersion properties of periodicCauchy
materials, characterized by a generic microstructured repetitive cell. First, two con-
ceptually alternative strategies are formulated to state the continuous complex-valued
eigenproblem, governing the free undamped propagation of Blochwaves, in the finite

F. Auricchio
Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
e-mail: auricchi@unipv.it

A. Bacigalupo · M. Lepidi
Department of Civil, Chemical and Environmental Engineering, University of Genova, Genova,
Italy
e-mail: andrea.bacigalupo@unige.it

M. Lepidi
e-mail: marco.lepidi@unige.it

S. Morganti (B)
Department of Electrical, Computer, and Biomedical Engineering, University of Pavia,
Pavia, Italy
e-mail: simone.morganti@unipv.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_5

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_5&domain=pdf
mailto:auricchi@unipv.it
mailto:andrea.bacigalupo@unige.it
mailto:marco.lepidi@unige.it
mailto:simone.morganti@unipv.it
https://doi.org/10.1007/978-3-030-87312-7_5


42 F. Auricchio et al.

domain of the periodic cell. Second, a consistent mathematical procedure to convert
the governing field equations into an equivalent discrete eigenproblem, suited to be
computationally attacked through the finite element method, is outlined.

1 Introduction

The mechanical behaviour of periodic three-dimensional solids can be functionally
designed by optimizing their cellular composite architecture. Indeed, the endless
possibilities offered by microstructural customization can be profitably conjugated
with the rich variety of physical phenomena occurring in periodic media, in order
to achieve superior dynamic performances [1, 2]. The recent extraordinary devel-
opments in the fields of computational mechanics, intelligent optimization, material
micro-engineering and manufacturing technologies are paving the way to systemat-
ically transform fascinating conceptual ideas into real-world technical applications
[3, 4]. Within this scenario, the present contribution systematizes some analytical
and computational approaches to the spectral problem of determining the disper-
sion properties of periodic Cauchy materials. Different methodological strategies
are—first—theoretically established to reduce the field problem in the cell domain
(Sect. 2) and—second—adapted to be implemented within a finite element frame-
work (Sect. 3).

2 Wave Propagation in Periodic Cauchy Materials

A three-dimensional non-homogeneous Cauchy material with periodic micro-
structure is considered (Fig. 1a). The periodic cell is assumed to tessellate the infi-
nite domainM with the finite subdomainA = [−1/2 d1, 1/2 d1] × [−1/2 d2, 1/2 d2] ×
[−1/2 d3, 1/2 d3] and boundary ∂A (Fig. 1b). The partial differential equation of
motion governing the free undamped dynamics reads

∇ · (
C(x)∇u(x, t)

) = �(x)ü(x, t), ∀x ∈ M (1)

where u = uiei is the displacement of the point at position x at time t . The elastic
tensorC = Ci jhkei ⊗ e j ⊗ eh ⊗ ek and the mass density � areA-periodic according
to the periodicity vectors vp (p = 1, 2, 3), yielding

C(x + vp) = C(x), �(x + vp) = �(x), ∀x ∈ M (2)

Employing the time-Fourier transform Ft
[
g(x, t)

] = ∫ ∞
−∞ g(x, t) exp(−ıωt)dt =

ĝ(x, ω) for the generic function g(x, t), the transformed equation (1) reads
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Fig. 1 Non-homogeneous material with periodic microstructure: a tessellation of the three-
dimensional infinite domainM, b periodic cell with finite subdomain A

∇ · (
C(x)∇û(x, ω)

) + ω2�(x)û(x, ω) = 0, ∀x ∈ M (3)

where ω ∈ R is the angular frequency. Equation (3) is also known as Christoffel
equation, whose solution describes the free propagation of elastic waves.

The equation solution is pursued by following two conceptually different strate-
gies. The direct strategy is based on tackling the Christoffel equation in the periodic
cell domainA by imposing quasi-periodicity conditions at the cellular boundary ∂A.
Differently, the indirect strategy is based on tackling the Christoffel equation in the
material domainM by the Floquet-Bloch decomposition and subsequently imposing
periodicity conditions at the cellular boundary ∂A. The two alternative strategies,
which are detailed in the following, are known to return the same solution in terms
of dispersion properties of the freely-propagating elastic waves.

2.1 Direct Strategy

By virtue of the material periodicity, the Christoffel equation can be studied in
the periodic cell domain A by imposing quasi-periodicity conditions at the bound-
ary ∂A on the transformed displacements û, as well as on the associated tractions
T̂n = (

C∇û
)
n, where n = niei is the outer-pointing normal to the boundary sur-

face. According to this strategy, the partial differential problem governing the free
wave propagation reads
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∇ · (
C(x)∇û

) + ω2�(x)û = 0, ∀x ∈ A (4)

û(x + vp) = û(x) eı(k·vp), ∀x ∈ ∂A
(
C∇û

) | x+vpn(x + vp) = − (
C∇û

) | xn(x) eı(k·vp),

where k = kiei ∈ B stands for the wavevector and B = [−π/d1, π/d1] ×
[−π/d2, π/d2] × [−π/d3, π/d3] is the first Brillouin zone. Equation (4) states a dif-
ferential eigenproblem, whose complete solution is represented by the real-valued
(squared) eigenvalues ω(k) and the corresponding complex-valued vector eigen-
functions û(x,k), depending on the wavevector k ∈ B.

Decomposing the transformed displacement û = û� + ı û� into its real part û�
and imaginary part û�, the partial differential problem (4) reads

∇ · (
C(x)∇û�

) + ω2�(x)û� = 0, ∀x ∈ A (5)

∇ · (
C(x)∇û�

) + ω2�(x)û� = 0,

û�(x + vp) = û�(x) cos(k · vp) − û�(x) sin(k · vp), ∀x ∈ ∂A
û�(x + vp) = û�(x) cos(k · vp) + û�(x) sin(k · vp),
(
C∇û�

) |x+vpn(x + vp) = − (
C∇û�

) |x cos(k · vp) + (
C∇û�

) |x sin(k · vp),
(
C∇û�

) |x+vpn(x + vp) = − (
C∇û�

) |x cos(k · vp) − (
C∇û�

) |x sin(k · vp),

where the coupling between the real and imaginary parts of the unknown û is estab-
lished by the quasi-periodicity boundary conditions.

2.2 Indirect Strategy

As a suited alternative to the direct strategy, the free wave propagation can be studied
by an indirect two-step strategy. The first step consists in applying the Floquet-Bloch
decomposition to the transformed displacement

û(x) = ũ(x) eı(k·x) = ũiei eı(k j x j), ∀x ∈ M (6)

where the complex-valued Bloch amplitude ũ(x) = ũi (x)ei is aA-periodic function
in the M-domain, which indirectly satisfies the quasi-periodicity conditions (4b).
Specifically, the ũ-components satisfy

ũi (x + vp) = ũi (x), ∀x ∈ M (7)

After decomposition, it is formally convenient to express equation (3) in component
form
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(
Ci jh�ũh,�

)
, j − (

Ci jh�k�k j − ω2�δih
)
ũh+ (8)

+ ık j
[(
Ci jh� + Ci�h j

)
ũh,� + Ci�h j,�ũh

] = 0, ∀x ∈ M

where comma indicates partial derivative with respect to the spatial coordinates and
δih is the Kronecker delta.

Therefore, the second step of the indirect strategy consists in invoking thematerial
periodicity to study equation (8) in the periodic cell domainA, similarly to the direct
strategy. The key difference is that the preliminary Floquet-Bloch decomposition of
the displacement variable allows the imposition of simple periodicity conditions at
the boundary ∂A on the components ũh of the Bloch amplitudes, as well as on the
components σ̃hsns = Chsrpũr,pns of the associated tractions. Accordingly, the partial
differential problem governing the free wave propagation reads

(
Ci jh�ũh,�

)
, j − (

Ci jh�k�k j − ω2�δih
)
ũh+ (9)

+ ık j
[(
Ci jh� + Ci�h j

)
ũh,� + Ci�h j,�ũh

] = 0, ∀x ∈ A
ũh(x + vp) = ũh(x), ∀x ∈ ∂A
(
Chsrpũr,p

) ∣∣
x+vp

ns(x + vp) = − (
Chsrpũr,p

) ∣∣
xns(x),

Equation (9) states a differential eigenproblem, whose complete solution is given by
the real-valued (squared) eigenvalues ω(k) and the corresponding complex-valued
eigenfunctions ũh(x,k), depending on the wavevector k ∈ B.

Decomposing the Bloch components ũh = ũ�
h + ı ũ�

h into their real part ũ�
h and

imaginary part ũ�
h , the partial differential problem (9) reads

(
Ci jh�ũ

�
h,�

)
, j

− (
Ci jh�k�k j − ω2�δih

)
ũ�
h +

− k j
[(
Ci jh� + Ci�h j

)
ũ�
h,� + Ci�h j,�ũ

�
h

] = 0 ∀x ∈ A (10)
(
Ci jh�ũ

�
h,�

)
, j

− (
Ci jh�k�k j − ω2�δih

)
ũ�
h+

+ k j
[(
Ci jh� + Ci�h j

)
ũ�
h,� + Ci�h j,�ũ

�
h

] = 0

ũ�
h (x + vp) = ũ�

h (x), ∀x ∈ ∂A
ũ�
h (x + vp) = ũ�

h (x),(
Chsrpũ

�
r,p

) ∣∣
x+vp

ns(x + vp) = − (
Chsrpũ

�
r,p

) ∣∣
xns(x),

(
Chsrpũ

�
r,p

) ∣∣
x+vp

ns(x + vp) = − (
Chsrpũ

�
r,p

) ∣∣
xns(x),

where the coupling between the real and imaginary parts of the unknowns ũh is
established by the field equations, while the boundary conditions are uncoupled.
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3 Dispersion Properties via Finite Element Formulation

In the absence of analytical solutions for complex domain geometries, the differen-
tial eigenproblems (4) (or (5)) and (9) (or (10)) can be approached via finite element
formulations. Indeed, both strategies of solution can be equally implemented to
achieve an equivalent algebraic eigenproblem, although with different methodolog-
ical approaches. Indeed, the direct strategy can be adopted by employing standard
finite elements to discretize a pair of identical domains, each one describing the
real and imaginary parts of the mechanical variables, coupled by quasi-periodicity
boundary conditions. On the contrary, the indirect strategy requires the formulation
of ad-hoc finite elements possessing real and imaginary degrees of freedom at each
nodes.

3.1 Direct Strategy

The field equation governing the eigenproblem (4) can be treated according to a
weak formulation. Therefore, the domainA is properly discretized in finite elements.
Selecting suited interpolation functions for the transformed displacement û, the real-
valued stiffness matrix K and mass matrix M associated to the nodal transformed
displacements q̂ of the periodic cell are determined. Accordingly, an algebraic field
equation is established

(
K + ω2M

)
q̂ = f̂ (11)

where the frequency ω is real-valued and the nodal displacements q̂ and forces f̂
are complex-valued. The variables can be decomposed in real and imaginary part as
q̂ = q̂� + ı q̂� and f̂ = f̂� + ı f̂�. Generalizing the procedure proposed by Langley
for two-dimensional periodic systems [5], the nodal displacements can be condensed
in the form

q̂ = R(k)p̂ (12)

where the vector variable p̂ collects a minimal set of nodal displacements at the dis-
cretization of the boundary ∂A, and can be decomposed into its real p̂� and imaginary
part p̂� in the form p̂ = p̂� + ı p̂�. Therefore, the k-dependent condensation matrix
R(k) collects the quasi-periodicity conditions restraining the nodal displacements at
the discretization of cell boundary ∂A following from the Eq. (4b). Expressing the
matrix R through the decomposition R = R� + ıR� and substituting equation (12)
into Eq. (11) yields

(
K + ω2M

)
(R� + ıR�)

(
p̂� + ı p̂�

) = (
f̂� + ı f̂�

)
. (13)
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Therefore, expanding and collecting separately real and imaginary parts, the equation
becomes

(
K + ω2M

) [
(R�p̂� − R�p̂�) + ı(R�p̂� + R�p̂�)

] = (
f̂� + ı f̂�

)
(14)

whose left-hand and right-hand side members can be both pre-multiplied by R† =
R	

� − ıR	
� , yielding

[
R	

�
(
K + ω2M

) − ıR	
�

(
K + ω2M

) ][
(R�p̂� − R�p̂�) + ı(R�p̂� + R�p̂�)

] =
= (R	

� f̂� + R	
� f̂�) + ı(R	

� f̂� − R	
� f̂�) (15)

where the right-hand term is identically null since body forces are absent in homo-
geneous equation (4a) and by virtue of the quasi-periodicity conditions of the nodal
forces at the discretization of cell boundary ∂A.

Expanding and properly separating real and imaginary part of equation (16),
an algebraic eigenproblem is achieved. Specifically, the uncoupled field problems
related to the real and imaginary parts q̂� and q̂� of displacement (which might also
be related to the nodes of separate identical domains) are governed by condensed
real-valued stiffness and mass matrices coupling the real and imaginary parts p̂� and
p̂� of the boundary displacements

([
K�� K��
K�� K��

]
+ ω2

[
M�� M��
M�� M��

]) (
p̂�
p̂�

)
=

(
0
0

)
(16)

The algebraic equation (16) is the equivalent counterpart of the differential eigen-
problem (6). Specifically, the k-dependent matrices are

K�� = R	
�KR� + R	

�KR�, K�� = R	
�KR� − R	

�KR�, (17)

M�� = R	
�MR� − R	

�MR�, M�� = −R	
�MR� − R	

�MR�

with symmetries K�� = K��, K�� = −K��,M�� = M��, M�� = −M��.

3.2 Indirect Strategy

The field equations governing the eigenproblem (9) can be treated according to a
weak formulation. Therefore, the domainA is properly discretized in finite elements.
Selecting suited interpolation functions for the Bloch amplitude ũ, the complex-
valued pseudo-stiffness matrix G and mass matrix M associated to the nodal Bloch
amplitudes q̃ of the periodic cell are determined. Accordingly, an algebraic field
equation is established
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(
G + ω2M

)
q̃ = f̃ (18)

where the frequency ω is real-valued and the nodal amplitudes q̃ and forces f̃ are
complex-valued. Both the variables and the pseudo-stiffness matrix can be decom-
posed in real and imaginary part as q̃ = q̃� + ı q̃�, f̃ = f̃� + ı f̃� andG = G� + ıG�.
The nodal amplitudes can be condensed in the form

q̃ = Sp̃ (19)

where S is a boolean block matrix expressing the periodicity conditions follow-
ing from the boundary conditions (9b). Remarkably, the real-valued S-matrix can
straightforwardly be obtained as S = R(k = 0). Substituting equation (19) into
Eq. (18) with decomposed G-matrix yields

(
G� + ıG� + ω2M

)
S

(
p̃� + ı p̃�

) = (
f̃� + ı f̃�

)
(20)

Therefore, expanding, pre-multiplyingbyS	 and collecting separately real and imag-
inary parts, the equation becomes

[
S	(

G� + ω2M
)
Sp̃� − S	G�Sp̃�

]+
+ ı

[
S	(

G� + ω2M
)
Sp̃� + S	G�Sp̃�

] = (
S	 f̃� + ıS	 f̃�

)
(21)

where the right-hand term is identically null since body forces are absent in homo-
geneous equation (9a) and by virtue of the periodicity conditions (9c) of the nodal
forces at the discretization of cell boundary ∂A.

Expanding and properly separating real and imaginary part of equation (21), an
algebraic eigenproblem is achieved

([
G�� G��
G�� G��

]
+ ω2

[
N�� O
O N��

]) (
p�
p�

)
=

(
0
0

)
(22)

which is the equivalent counterpart of the differential eigenproblem (11). Specifically,
the k-dependent matrices are

G�� = S	G�S, G�� = −S	G�S, N�� = S	MS (23)

and the symmetry properties G�� = G��, G�� = −G��, N�� = N�� hold.

4 Conclusions

A theoretical and methodological framework for determining the dispersion proper-
ties of periodic Cauchy materials, characterized by a generic microstructured repet-
itive cell, has been formally established. Two conceptually alternative strategies,
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based on different mathematical tools, have been synthesized to state the continuous
complex-valued eigenproblem, governing the free undamped propagation of Bloch
waves. The mathematical procedures required to convert the governing field equa-
tions into an equivalent discrete eigenproblem, suited to be computationally solved
through the finite element method, have been outlined and comparatively discussed.
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1 Introduction

The Virtual Element Method (VEM) was introduced in [1] as a generalization of the
finite element method that is able to cope with general polytopal meshes, even with
non-convex and badly-shaped elements. Since its introduction, the VEM enjoyed a
large success in the numerical analysis and engineering communities (see for instance
[2] and citations therein for some sample paper in solid mechanics). In the present
contribution we concentrate on fluid mechanics and present a “super-reduced” ver-
sion of the VEM scheme introduced in [3, 4] for the Navier-Stokes equation, here
focusing on the simpler Stokes problem.

Let � ⊂ R
2 a polygonal domain. Given the positive “fluid viscosity” constant ν,

a field f representing the volumetric forces acting on the fluid and a (compatible)
assigned boundary velocity g, the Stokes problem in variational form reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find(u, p) ∈ V g × Q, such that

ν

∫

�

∇Su : ∇Sv +
∫

�

p div v =
∫

�

f · v for all v ∈ V 0,

∫

�

q div u = 0 for all q ∈ Q,

(1)

where u, p denote the unknown velocity and pressure field, respectively, ∇ denotes
the gradient operator, ∇S the symmetric gradient operator, div the divergence oper-
ator. Here above, following standard notation in Sobolev spaces, the velocity and

pressure spaces are V g =
{
v ∈ [H 1(�)]2 : v|∂� = g

}
and Q = L2

0(�). Note that

we assumeDirichlet boundary conditions only for simplicity of exposition, the exten-
sion to different conditions such as Neumann being trivial.

The basic advantage of the method in [3, 4] is, in addition to the capability of
handling general polytopal meshes, the property of delivering a truly divergence-free
velocity solution (and not only in a relaxed sense as in standard mixed schemes). In
addition, it exists a reduced version of themethodwith a smaller pressure and velocity
space, but still holding the same accuracy. In this short contribution we briefly review
the above mentioned VEM method and introduce a further reduction of the velocity
space, leading to a scheme with velocity degrees of freedom only on the element
boundaries (regardless of the “polynomial” order k). All our construction is described
in two dimensions, but the extension of the reduction to the three dimensional case
[5] can be easily accomplished along the same lines.

2 Discrete Velocity Spaces

We assume a simple polygonal partition (mesh) of the domain�, whichwe denote by
�h . The symbol E will denote a generic element of�h . As in standard finite elements,
we build the discrete space for velocities element by element (by introducing the local
spaces V h|E ), and then glue everything continuously.



Divergence Free VEM for the Stokes Problem … 53

As is typical in Virtual Elements, the local spaces are defined in an implicit way,
through the introduction of an equation (that we do not need to solve!). Let k ∈ N,
k ≥ 2, denote the “polynomial” degree of the scheme. For any E ∈ �h , we define

V h|E :=
{

v ∈ [H 1(E) ∩ C0(E)]2 s.t. v|e ∈ [Pk(e)]2 ∀e ∈ ∂E,

div v ∈ Pk−1(E),

�Sv − ∇s ∈ x⊥
Pk−3(E), s ∈ L2

0(E)

}

(2)
where Pk denotes the polynomials of degree k (with P−1 = {0}), the operator
�S := div∇S and x⊥ = [−y, x]with (x, y) local coordinates centered on the element
barycenter. The discrete velocity functions solve a local Stokes-like problem, where
the field s takes the role of an auxiliary pressure variable. Note that [Pk(E)]2 ⊂ V h|E ,
which is important in relation to the interpolation properties of the space. It can be
checked that the dimension of the velocity space V h|E in (2) corresponds to the sum
of the dimensions of the data space (boundary and volume) minus 1, such correction
following from the Stokes theorem that enforces a data compatibility condition.

Remark 1 It can also be shown that, by applying the rot operator (−∂y, ∂x), the
first equation in (2) is equivalent to rot�Sv ∈ Pk−3(E).

We now proceed by reducing the dimension of the space (2). While the first
reduction step below was proposed in [3], the second one is novel. The first natural
step is to exploit that the exact velocity satisfies divu = 0. Therefore, we would like
to directly enforce such condition also in the local discrete space, thus ensuring a
reduction of the DoFs without depleting the approximation properties of the scheme.
Unfortunately, the condition divv = 0 cannot be enforced locally, since due to the
Stokes theorem it would yield a constraint on the boundary values, that is

∫

∂E v · n =
0. Butwe can still reduce a lot the local discrete space by requiring that the divergence
is constant. We thus obtain the reduced space

V red
h|E :=

{
v ∈[H 1(E) ∩ C0(E)]2 : v|e ∈ [Pk(e)]2 ∀e ∈ ∂E,

rot�Sv ∈ Pk−3(E) and div v ∈ P0(E)
}

,
(3)

where we also made use of Remark 1. It clearly holds V red
h|E ⊂ V h|E . Note that V red

h|E
contains all polynomials [Pk(E)]2 with constant divergence.

A further space reduction step can be applied, under the following assumption

(A) the loading f in (1) is a gradient.

Note that the above condition includes many cases of interest, as often the volume
loading term is either negligible (thus f = 0) or representing the gravity force (and
thus a gradient). Under condition (A), we immediately have for the exact solution
rot�Su = 0 and therefore we can include such condition in the definition of our
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local space without depleting the approximation properties of the scheme. By doing
so we have a reduction also in the first equation of (3), leading to an even smaller
space

V RED
h|E :=

{
v ∈[H 1(E) ∩ C0(E)]2 : v|e ∈ [Pk(e)]2 ∀e ∈ ∂E,

rot�Sv = 0 and div v ∈ P0(E)
}

.
(4)

Given the boundary data, the integral of the divergence is assigned through the
Stokes theorem (

∫

E divv = ∫

∂E v · n). Therefore the functions in the space V RED
h|E are

uniquely defined by its boundary values, which in turn will allow to have no “internal
to element” degrees of freedom.

We therefore take the following set of degrees of freedom for the space V RED
h|E :

• two point-wise evaluations (one for each component) at each element vertex;
• two point-wise evaluations (one for each component) at k − 2 distinct points for
each edge of ∂E .

The above operators clearly constitute a set of interpolating DoFs for the continu-
ous and piecewise [Pk]2 polynomial boundary space, c.f. (4). Therefore, due to the
observation above, they also constitute a set of DoFs for the space V RED

h|E . Note that
the original space V h|E would require, in addition to the DoFs above on ∂E , also
k(k − 1) Dofs inside the element. A similar amount is needed in the corresponding
standard finite elements, such as in the Crouzeix-Raviart velocity space.

3 A Projection Operator and the Discrete Problem

Projector operators take a key role in the construction of Virtual Element schemes.
We start by introducing a projection � : V RED

h|E → Pk(E), where

Pk =
{
q ∈ [Pk]2 | : divq ∈ P0, rot�Sq = 0

}
⊂ V RED

h|E . (5)

The projector � is defined as the orthogonal projection onto Pk(E) with respect to
the L2-type scalar product (∇S·,∇S·). More precisely, for any v ∈ V RED

h|E , we define
�(v) ∈ Pk(E) by

⎧
⎪⎪⎨

⎪⎪⎩

∫

E
∇S(v − �v) : ∇S p = 0 ∀ p ∈ Pk(E) ,

∫

∂E
(v − �v) · ψ = 0 ∀ψ ∈ span{(1, 0), (0, 1), (−y, x)}.

(6)

The second equation above is needed only to fix the kernel of the ∇S operator,
otherwise the operator � would not be well defined.
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We now show that the operator � is computable only in terms of the DoF values
of v, in other words without the need to actually calculate the function v inside the
element. The second equation in (6) involves an integration of polynomial functions
on the boundary, and is therefore computable by standard 1D integration rules. In
the first equation, the only non-polynomial term is the product

∫

E ∇Sv : ∇S p, with
v ∈ V RED

h|E and p ∈ Pk(E). We thus need to show that such term is computable,
in the sense above. It is trivial to check that the second condition in (5) implies
�S p = ∇qk−1 for some q ∈ Pk−1(E) with

∫

E qk−1 = 0. Thus we get

∫

E
∇Sv : ∇S p = −

∫

E
v · �S p +

∫

∂E

([∇S p]n) · v

= −
∫

E
v · ∇qk−1 +

∫

∂E

([∇S p]n) · v

=
∫

E
(divv) qk−1 −

∫

∂E
(v · n)qk−1 +

∫

∂E

([∇S p]n) · v

=
∫

∂E

([∇S p − qk−1 I ]n
) · v

(7)

where n denotes the outward unit normal to E and I denotes the identity matrix, and
the bulk integral in the third row of (7) vanishes being divv constant and

∫

E qk−1 = 0.
The remaining term is computable (by using a Gauss integration rule edge by edge)
since they involve only v on the boundary, that is a piecewise polynomial. As an
interesting byproduct, the computation of the above projection never involves an
integration (not even of polynomials) on the polygon E , but only cheap integrations
on its boundary ∂E .

Once the above projection is available, the rest of the construction follows standard
steps in the Virtual Element framework [1] and is here reported briefly. We start
by introducing a discrete bilinear form aE

h (·, ·) that approximates the local form
ν

∫

E ∇Sv : ∇S∇w. We define

aEh (v,w) = ν
( ∫

E
∇S�v : ∇S�w + sEh ((I − �))v, (I − �))w)

)
∀v,w ∈ V RED

h|E ,

where the stabilizing form sEh (·, ·) is simply given by the scalar product of the
DoF evaluation vectors of its two entries. Such choice guarantees, under suitable
mesh assumptions, that the energy aE

h (v, v) ∼ ∫

E ||∇ Sv||2, c.f. [4]. The bilinear form
aE
h (·, ·) is exact (i.e. it exactly corresponds to the form ν

∫

E ∇Sv : ∇Sw) whenever
one of the two entries is in Pk , which is a kind of consistency property. The global
bilinear form is assembled element by element as usual

ah(v,w) =
∑

E∈�h

aE
h (v,w) ∀v,w ∈ V RED

h
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where clearly

V RED
h = {

v ∈ [H 1(�)]2 : v|E ∈ V RED
h|E ∀E ∈ �h

}
.

Regarding the loading term, following assumption (A1) we have f = ∇φ and thus
we can compute such term with an integration by parts (see below). Finally, in order
to approximate our Stokes problem, we need a pressure space. We simply take

Qh =
{
q ∈ L2

0(�) : q|E ∈ P0(E) ∀E ∈ �h

}
. (8)

We obtain the following discrete scheme.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find(uh, ph) ∈ V RED,g
h × Qh, such that

ah(uh, vh) +
∫

�

ph divvh = −
∫

�

φ divvh ∀vh ∈ V RED,0
h ,

∫

�

qh div uh = 0 ∀qh ∈ Qh,

(9)

where
V RED,g

h = {
v ∈ V RED

h : v|∂� = g I

}

with g I a piecewise polynomial interpolation of g preserving the compatibility con-
dition

∫

∂�
g I · n = 0.

Remark 2 It is trivial to check that divV RED
h ⊂ Qh and as a consequence the dis-

crete solution satisfies divuh = 0 in a point-wise sense and not only in a relaxed
sense as in standard mixed Finite Elements. This leads to a set of advantages, see for
instance [4].

We close this section with some theoretical results. The stability and convergence
results for the original scheme associated to the space V h|E (and the reduced version
V RED

h|E ) where proved in [3]. Such results can be extended also to the novel reduction
here proposed (making use of the local spaces V RED

h|E ). The key observation is that
the constraints appearing in the definition of V RED

h|E and Pk(E) are also satisfied by
the exact solution u, and thus do not lead to a loss in the approximation properties of
the scheme. The following result holds under standard (in the polygonal community)
mesh regularity assumptions.

Theorem 1 There exists a unique solution (uh, ph) of the discrete problem (9). Let
(u, p) ∈ [Hs(�)]2 × Hs−1(�), 1 < s ≤ k + 1 be the solution of (1). Then, under
the same mesh assumptions of [3], it holds

‖u − uh‖H 1(�) ≤ Chs−1|u|Hs (�) ,

‖p − ph‖L2(�) ≤ Chs−1
(
|u|Hs (�) + |p|Hs−1(�)

)
,
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where p denotes the piecewise constant function that on each element E takes the
average value of p over the element.

Note that, as a consequence of the div-free condition in Remark 2, the error on the
velocity solution is not polluted by the pressure interpolation error, as it happens in
more standard methods. Since the discrete pressure is piecewise constant, see (8), a
higher order convergence rate, as the one in Theorem 1, can be obtained for (p − ph)
but not for the true error (p − ph). Nevertheless, one can apply the same element-
wise procedure of [3] and obtain a post-processed pressure p�

h that is a piecewise
polynomial of degree (k − 1) satisfying an O(hk) convergence rate.

4 Numerical Tests

In this section we numerically verify the theoretical convergence rate in Theorem
1. In order to compute the VEM error between the exact solution uex and the VEM
solution uh , we consider the computable H 1-like error quantity

err(uh)
2 :=

∑

E∈�h

‖uex − �
0,E
k−1∇uh‖2L2(E) .

We consider the Stokes equation on the unit square� = [0, 1]2, the load term and the
Dirichlet boundary conditions are chosen in accordance with the analytical solution

uex(x, y) = ex
(

sin y + y cos y − x sin y
−x cos y − y sin y − cos y

)

pex(x, y) = sin(πx) cos(4πy)

The domain � is partitioned with the following sequences of polygonal meshes:
QUADRILATERAL distorted meshes, TRIANGULAR meshes, CVT (Centroidal
Voronoi Tessellations) meshes, RANDOM meshes (see Fig. 1). For each family of
meshes we take the sequence with diameter h = 2−2, 2−3, 2−4, 2−5, 2−6. The poly-
nomial degree of accuracy for the numerical test is k = 3.

Fig. 1 Example of the adopted polygonal meshes
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Fig. 2 Convergence lines for the “FULL” scheme and the “RED” scheme

In Fig. 2 we display the errors err(uh) for the the sequences of meshes afore-
mentioned. In order to assess the performance of the proposed reduced space (4)
(labeled as “RED”) we plot also the results obtained with the complete scheme (2)
(labeled as “FULL”). We draw some observations:

• Both methods exhibit the expected rate of convergence.
• The“FULL” scheme and the“RED” schemeproduce almost identical results,
analogous results where obtained for the pressure error after post-processing (not
reported).

• The method is robust with respect to the mesh distortion.

Finally we stress that the “RED” scheme (9) has 11NP less unknownswith respect
to its “FULL” counterpart, where NP is the number of the mesh polygons.
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1 Introduction

The authors follow the objective of preventing geometrical locking for thin-walled
structures a priori on the theory level, i.e. prior to and independent of the chosen
discretization. Equal order interpolations for all involved fields are assumed. We
successfully derived primal displacement-based formulations for transverse shear
deformable beams, plates and shells from the virtual work principle, which are a
priori free from transverse shear locking and curvature thickness locking [1, 2]. The
main idea follows a reparametrization of primal kinematic parameters in the sense
of a hierarchic formulation, introducing either hierarchic rotations or displacements.
Let us illustrate this concept of reparametrization using the plane Timoshenko beam
as model problem:

standard disp. formulation reparametrized formulations

γ = w′ + ϕ

κ = ϕ′
γ = γ

κ = −w′′ + γ ′ &
γ = w′

s
κ = −w′′

b

(1)

It is apparent that the function spaces for the degrees of freedom w and ϕ are unbal-
anced for equal order interpolation eventually causing transverse shear locking. If the
hierarchic (incremental) rotation γ is used instead the unbalance is shifted from the
transverse shear γ to κ allowing a pure bending state with γ = 0 without parasitic
shear strains. In other words the formulation is a priori free from shear locking. If
in turn the transverse displacement w is decomposed into bending and shear part,
w = wb + ws it is clearly shown that the function spaces in both equations are fully
balanced avoiding again shear locking. A similar strategy, though limited to beams,
was presented in [3], where the authors developed a locking-free single-variable
formulation. In [4] we extended the approach of reparametrization also into the
geometrically nonlinear regime for thin-walled structures with arbitrarily large rota-
tions. In these studies membrane locking has been prevented by applying either the
Hellinger-Reissner variational principle or the Discrete Strain Gap (DSG) scheme
[5].

Following the above mentioned main objective, the present study focuses on also
preventing membrane locking a priori on the theory level. For membrane locking see
Sect. 3.

We proposed a first concept preventing all kinds of geometrical locking a priori
including membrane locking utilizing a novel variational method [6]. Starting from a
modified Hellinger-Reissner principle which uses displacements and strains as vari-
ables the newmethod replaces the strains by independent displacement-like variables.
Consequently, the approach is denoted as Mixed Displacement (MD) method where
these additional degrees of freedom (auxiliary displacements) follow a dual concept.
They counterbalance (weaken) the too stiff solution of standard primal formulations.
The idea was inspired by the DSG method; in fact, the extra variables are directly
related to the strain gaps. The equal order interpolation for all involved fields adjusts
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the function spaces such that all geometrical locking phenomena, including mem-
brane locking, are automatically avoided, in fact for all discretization methods. The
approach is briefly elaborated for the Bernoulli beam in Sect. 2.2.

2 Curved Bernoulli Beam

In the present study, we limit ourselves to a plane curved beam formulation as a
model problem for the subsequently derived locking-free formulations.

2.1 Standard Displacement Formulation (u,w)

Let us consider the in-plane deformation of a geometrically linear planar curved
Bernoulli beam equipped with a curvilinear coordinate s ∈ [0, L], a length L and
constant Young’s modulus E , thickness t and radius of curvature R(s), which is
defined to be positive in the specific geometric configuration shown in Fig. 1.

On the beam’s center line we define the displacements (u,w), where u(s) is the
tangential displacement and w(s) the inward radial displacement, see e.g. [7, 8]. The
axial strain ε and the bending-curvature κ are given as

ε = u′ − w

R

κ = ϕ′ = −w′′ −
( u

R

)′ (2)

with rotation ϕ = −w′ − u
R . The prime (•)′ indicates a derivative with respect to

s. The constitutive equations define the axial (membrane) force N and the bending
moment M

N = E Aε, M = E Iκ, (3)

with cross section area A and second moment of inertia I . The governing differential
equations are

N ′ − M ′

R
= 0,

N

R
+ M ′′ = 0,

(4)

expressing the equilibrium in tangential and radial direction; for simplicity no dis-
tributed loads are considered. The boundary value problem is completed with the
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Fig. 1 Schematic
description of the model
problem

essential and natural boundary conditions at the two ends of the beam (see Fig. 1).
The corresponding weak form is obtained via the principle of virtual work

L∫

0

(δεE Aε + δκE Iκ) ds −
(
δuN̂ + δwQ̂ + δϕM̂

) ∣∣∣
s=L

= 0, (5)

with virtual displacements δu and δw.

Remark 1 For the special case of a straight center line (which implies R = ∞)
the terms which contain 1/R in Eq. (2) vanish and two decoupled formulations are
recovered: a truss with axial degree of freedom u and a straight beam with transverse
displacement w.

2.2 Mixed Displacement Formulation (u,w, uε)

As explained above for the MD formulation the set of primary variables (u,w)

is enhanced by an extra independent displacement uε leading to a third kinematic
equation ε = u′

ε additional to εu := ε(u,w) and κ defined in Eq. (2) (here index “u”
is introduced to distinguish the two axial strains). The constraint equation ε − εu = 0
is satisfied in a weak sense based on the variational expression

δ�int
MD(u,w, uε) = δ�b +

L∫

0

E A
{
δu′

ε(u
′
ε − εu) − δεuu

′
ε

}
ds. (6)

Here the bending part δ�b remains unaffected and corresponds to the one of Eq. (5).
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3 Membrane Locking

Phenomenologically, locking can be defined by the following symptoms:

1. Displacements are severely underestimated for coarse meshes. In the
pre-asymptotic range the order of convergence is below the optimal one.

2. For a given mesh the error depends on a certain model parameter and also the
size of the pre-asymptotic range with sub-optimal convergence depends on this
parameter. In the case of thin-walled structures, this parameter is the slenderness.

3. Non-physical stresses occur, mostly in an oscillating manner.

Membrane locking results from the inability of a finite element formulation to rep-
resent pure bending deformations (inextensional deformations) if the elements are
curved , see [9]. The origin of the problem can be explained in an illustrative manner
for the simple example of a clamped circular ring (R = const., cf. Fig. 4, below). A
pure bending deformation requires the membrane strain to vanish, ε = 0, such that
with Eq. (2)

u′ = w

R
⇒ κ = −w′′ − w

R2
. (7)

If polynomials or splines are used as shape functions, a constant curvature κ =
κ0 together with (7)2 implies the condition that w is constant. Due to the applied
boundary condition, this constant must be zero and consequently w = 0 in the entire
beam. From Eq. (7)2 it then follows that also κ0 = 0. Therefore, the condition of
vanishing membrane strains ε = 0 implies zero curvature and thus zero bending
moments. In other words, if curvature and bending moments are supposed to be non-
zero, this implies ε �= 0, thus effectively excluding inextensional deformations. It is
also obvious from this explanation that for straight beams with R = ∞ the problem
does not exist.

In practical computations, the curvature for a given load will be underestimated
and oscillating membrane strains occur. Possible remedies in the context of curved
beams are selective reduced integration and a so called field consistent approxi-
mation, i.e. using different polynomial degrees for the approximation of different
degrees of freedom, see [7]. However, a successful application is restricted to beams
with constant radius of curvature and critically depends on the discretization scheme.

To demonstrate the effects of membrane locking we consider a thin elliptical
cantilever with thickness t = 0.25 subject to tip force, see Fig. 2a. The distributions
of the axial force N obtainedwith a standard displacement formulation (u,w) and the
MD formulation (u,w, uε) are shown in Fig. 2b.While the axial force obtained by the
MD formulation captures the analytical solution correctly, the standard displacement
solution for N shows severe oscillations, although 3rd order shape functions are used.
This is a clear indication for membrane locking.
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Fig. 2 (a)Clamped elliptical beamwith slenderness R/t ∈ [20, 160]. (b)Axial forceswithNURBS
of p = 3 and number of control points n = 10 and n = 20

4 Reparametrizations to Avoid Membrane Locking

The main purpose of this paper is to provide a proof of concept for the feasibility of
formulations based on suitable reparametrizations, i.e. replacing primary variables by
alternative substitutes, to prevent membrane locking independent of discretization.
In all the three versions shown below, a primal finite element formulation based
on the virtual work principle with equal order interpolation of all independent vari-
ables of the respective reparametrization is applied.Non-UniformRational B-Splines
(NURBS) Ni,p of polynomial degree p and C p−1-continuity are used as shape func-
tions. For further reading on isogeometric analysis in the context of modeling plane
curved beams we refer to [8].

For simplicity of presentation, we restrict the following theoretical analysis to
circular beams with constant radius of curvature R.

4.1 First Reparametrization (u, uε)

Similar to theMD formulation, a new variable uε is introduced, replacingw in the set
of primary variables by directly satisfying the constraint ε − εu = 0. The modified
kinematic equations for (u, uε) are
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ε = u′
ε

κ = −R
(
u′ − u′

ε

)′′ − u′

R

(8)

where the radial displacement is recovered as w = R(u′ − u′
ε). A generalization to

a varying R is straightforward. Nevertheless, the formulation needs C2−continuity.
Most importantly, it allowsnon-trivial (κ �= 0) inextensional (pure bending) deforma-
tions with ε = 0. Corresponding finite element formulations are automatically free
of membrane locking. However, the limiting case of a straight beam with R = ∞ is
not included and needs special attention.

4.2 Second Reparametrization (uε,w)

This formulation is based on extracting u from the integrated constraint equation
ε = 0

u = uε +
∫
s w(s) ds

R
. (9)

Thus, u is eliminated instead of w from the kinematic equations, leaving (uε,w) as
primary variables. In this version the kinematic relations are

ε = u′
ε

κ = −w′′ − u′
ε

R
− w

R2

(10)

Again, the axial strain ε remains fully decoupled from w, which results in an
a priori locking-free formulation. Only C1-continuity is required. However, the
reparametrized variable u in (9) involves an integral operator which complicates
practical implementation of this formulation. Furthermore, a similar reparametriza-
tion that is also valid for a varying radius of curvature R(s) is rather complex.

4.3 Third Reparametrization (uε, Aw)

In order to bypass the integral operator of reparametrization (9) we redefine:

w := A′
w, with Aw(s) =

∫

s
w(s) ds. (11)

Aw represents the integrated transverse displacement w. It is only defined up to an
additive constant, which has to be eliminated by feasible constraints. Together with
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uε it replaces both original variables u and w

u = uε + Aw

R
,

w = A′
w.

(12)

By substituting (12) into the standard kinematic Eq. (2) we obtain the reparametrized
kinematic relation (for the special case R =const.) as

ε = u′
ε

κ = −A′′′
w − u′

ε

R
− A′

w

R2

(13)

which is similar to (8) and (10) in terms of the favorable property of a decoupled
axial strain relation. This again allows inextensional deformations without parasitic
strains. No integral expression appears in u anymore. However, a disadvantage is the
third derivative in (13). Thus, a finite element approximation of Aw within a standard
Galerkin approach requires at least C2-continuity. Again, the formulation becomes
complex for a varying radius of curvature R(s).

4.4 Mechanical Interpretation of uε

All of the three different versions of reparametrization sketched in the previous
section involve a degree of freedom uε. In this section, its geometric significance
is explained and illustrated by studying a simple deformation of a quarter circular
arch, as shown in Fig. 3. The idea is to apply a pure inextensional deformation with
a constant change of radius ŵ. The inextensional constraint w = u′R (cf. Eq. (7)1)
along with a prescribed constant curvature κ = κ0 yields

−u′′′R − u′

R
= κ0, with boundary conditions

u = 0
w = −ŵ
ϕ = 0

⎫⎬
⎭ at s = 0. (14)

To provide the desired insight into the role of uε, we divide the deformation process
into two consecutive deformation steps:

1. A change of radius w = −ŵ that produces a purely extensional deformation
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Fig. 3 Two consecutive deformation steps

⎛
⎜⎜⎜⎜⎜⎝

u = 0

w = −ŵ

uε = ŵ

R
s

Aw = −ŵs

⎞
⎟⎟⎟⎟⎟⎠

→ ε = ŵ

R
=: ε0

κ = 0

By definition uε is the integral of the membrane strain along the arc length s. It
is equal to an axial displacement u(s) that would lead to the same axial strain ε

for the case w = 0.
2. A subsequent axial deformation u(s) that eliminates the non-zero ε from the first

step and thus yields a purely inextensional deformation.

⎛
⎜⎜⎜⎜⎜⎝

u = − ŵ

R
s

w = −ŵ

uε = 0

Aw = −ŵs

⎞
⎟⎟⎟⎟⎟⎠

→
ε = 0

κ = ŵ

R2
=: κ0

Obviously, this axial displacement is exactly equal to the negative uε from the first
step. Thus, uε can be interpreted as the variable that effectively cancels parasitic
membrane strains and thus removes membrane locking.

5 Numerical Example

A clamped quarter circular ring subject to a tip load, shown in Fig. 4a, serves as
a benchmark to test the performance of the proposed formulations with respect to
membrane locking.With θ = s/R the analytical solution for the radial and tangential
displacement is



70 S. Bieber et al.

Fig. 4 (a) Clamped circular beam. (b) Radial tip-displacement w̄ versus slenderness for various
formulations; NURBS, n = 10, p = 2 and p = 3

uref(s) = − F

2

(
s cos θ − R sin θ

E I
− s cos θ + R sin θ

E A

)
, (15)

wref(s) = F

2

(
sR2 sin θ

E I
+ s sin θ

E A

)
, (16)

with the tip displacements

uref(s = L) ≈ 0.6 − 0.005t2, wref(s = L) ≈ 0.942478 + 0.000785t2. (17)

The axial forces and bending moments are

Nref(s) = −F cos (θ), Mref(s) = −FR cos (θ). (18)

All simulations are performed with NURBS shape functions, as described in Sect. 4.
Here, n denotes the number of control points. Boundary conditions are enforced via
Lagrange multiplier. The element formulations considered are:

• stand.: primal (u,w)-formulation from Sect. 2.1
• MD: dual (mixed) (u,w, uε)-formulation from Sect. 2.2
• R1: primal (uε, u)-formulation from Sect. 4.1
• R2: primal (uε,w)-formulation from Sect. 4.2
• R3: primal (uε, Aw)-formulation from Sect. 4.3

Fig. 4b shows a typical locking diagram for a discretization with n = 10 control
points. The normalized tip displacement w̄ is plotted versus the slenderness R/t in
order to visualize whether or not the quality of the results deteriorates with increasing
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slenderness. The critical parameter R/t does not influence the numerical solution
of the MD formulation and all newly proposed reparametrized primal formulations,
confirming that these are free of membrane locking. Here, MD and R2 (p = 2), as
well as R1 and R3 (p = 3), yield numerically identical results. The results from the
standard displacement formulation deteriorate with increasing R/t , which indicates
locking. Performance can be improved by increasing the polynomial degree, but the
principal problem of locking is not solved.

Fig. 5 Axial force versus arc length s for a thick (a) and a thin (b) beam; NURBS, n = 10, p = 3

Fig. 6 Relative L2-norm error of M (a) and N (b) for a thin beam of slenderness R/t = 1000
versus n; NURBS, p = 3
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Figure5 shows the axial force diagram for a thick (a) and a moderately thin (b)
beam. The standard displacement formulation shows severe oscillations, which are
particularly pronounced for higher slenderness. All other formulations are able to
capture the reference solution and the quality does not change with slenderness. For
R1 and R3 mild oscillations are observed at the boundaries. These, however, vanish
with p-or h-refinement (not shown).

These results are confirmed by the relative L2 error norms for M and N . Figure6
shows the corresponding convergence diagrams for a thin beam. In contrast to the
standard formulation, uniform convergence rates are observed for all locking-free
elements. As expected, the higher derivatives in the kinematic equations (8) and (13)
result in reduced convergence rates for formulations R1 and R3.

6 Conclusions

It could be shown conceptually that a reparametrization of primary variables on
the theory level allows preventing intrinsically membrane locking. However, all
three versions described still lead to obstacles for their practical implementation
and general applications. For example, an increase of the variational index requires
an increase in the order of shape functions. Further studies are necessary avoiding the
mentioned drawbacks, discussing the role of boundary conditions, and investigating
their extension to shell structures, also in the nonlinear range.
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Model-Free Fracture Mechanics and
Fatigue
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Abstract We summarize our recent work on data-driven fracture mechanics. The
governing equations stemming from variational principles are completed with a set
of discrete data points encoding the information about the material behavior, thus
the fracture-related modeling assumptions are completely removed. The solution
at a given load step is identified as the point within the data set that best satisfies
equilibrium and compatibility conditions stemming from global or local minimality
of a free energy function. The data-driven approach is successfully tested for rate-
independent and rate-dependent fracture including fatigue.

1 Introduction

Recently, the paradigm of model-free data-driven computational mechanics was
advocated and first applied to elastic [1] and then to inelastic materials [2]. The
basic idea is that, since boundary value problems in mechanics are defined using an
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epistemic set of conservation laws and an empirical set of constitutive equations, the
uncertainty stemming from the latter can be avoided by replacing the constitutive
relationships with a data set of discrete observations termed material points. The
data-driven solution strategy relies on the definition of a discrete quantity, generally
termed distance, which attains its minimum in correspondence of the material point
that best represents the solution for the imposed load [1].

In this paper, we summarize the main results of our recent work [3, 4] where
we investigate model-free data-driven fracture mechanics. The following topics are
addressed: i. rate -independent and -dependent fracture; ii. the type of distance
adopted within the solution procedure; iii. the type of data sets available; iv. the
effect of the scattering within the material data set; v. convergence of the data-driven
results to classical solutions obtained adopting analytical constitutive laws.

2 Classical Formulation

We consider first a pre-cracked linear elastic solid where crack propagation happens
under mode-I, planar, rate-independent conditions. Hence, the crack size can be
characterized by a scalar parametera and the linear elastic constitutive behavior of the
bulk material by a compliance function C(a) that is exactly known. The deformation
is represented by an effective opening displacement � and the conjugate stress by
an effective force P .

Assuming a displacement-driven process and given an initial crack length a0,
in the rate-independent case we aim at finding the crack length a∗ and the load P
corresponding to the imposed displacement �, where a∗ ≥ a0 due to irreversibility.
The free energy reads

F(�, a) = E(�, a) + FR(a) , (1)

where E(�, a) and FR(a) are the elastic and dissipative energy terms.
The governing equations are obtained through the minimization of (1) following

two alternative procedures. The first entails a global minimization, namely

F
(
�, a∗) ≤ F (�, a) ∀a ≥ a0 or a∗ (�, a0) = argmin {F (�, a) : a ≥ a0} .

(2)
Another possibility is to look for a metastable state or local minimum of the free
energy, i. e. we look for a∗ such that the following condition holds

∃h ≥ 0 : a∗ (�, a0) = argmin
{
F (�, a) : a ≥ a0 ,

∣∣a − a∗∣∣ ≤ h
}
. (3)

Expanding (3) in Taylor series up to first order we obtain the Kuhn-Tucker (KT)
conditions

a∗−a0 ≥ 0 , G
(
�, a∗) − GQS

R

(
a∗) ≤ 0 and

[
G

(
�, a∗) − GQS

R

(
a∗)

] (
a∗ − a0

) = 0
(4)
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where G(�, a) = −∂E/∂a and GQS
R (a) = dFR/da are the energy release rate and

its quasi-static critical value, respectively.
Global and local minimization are equivalent only if the free energy is a convex

function, otherwise results might differ. In particular, the local approach forbids tran-
sitions between states separated by energetic barriers. These transitions are allowed
for a globally stable process leading to smaller allowed states domain and violat-
ing the causality principle [5]. This results in anticipated crack jumps and in the
possibility to nucleate cracks in absence of defects in contrast with Griffith theory.

The free energy (1) does not account for the crack-tip kinetics that can be intro-
duced defining the crack tip velocity vt = dat/dt = ȧt , where (•)t = (•)(t), t is the
time and vt ≥ 0 to impose crack irreversibility. The analysis is restricted to velocities
small enough to neglect the inertial effects. The dissipated energy becomes history
dependent and is defined by means of a history independent dissipation potential
D(a, v) as

FR(t, a, [0, t]) =
∫ t

0
D(a(s), v(s)) ds and GR(a, v) = dFR

da
= D

v
(a, v) . (5)

where da = v dt is used and GR(a, v) is the critical energy release rate.
The rate-dependent problem thus aims at finding the crack tip velocity v∗ that

minimizes the free energy function (1) where the dissipation assumes the form (5a).
Also, we have that GR(a, v → 0) = GQS

R (a) and, in real cases, GR(a, v) is contin-
uous and non-decreasing in v, making the rate-dependent problem convex [4, 6].
Hence, local or global minimality principles are equivalent and can be expressed as

v∗
t ≥ 0 , G(�t , at ) − GR(at , v

∗
t ) ≤ 0 and

[
G(�t , at ) − GR(at , v

∗
t )

]
v∗
t = 0

(6)

Under some regularity conditions (6) can be also written as [6]

v∗
t = da∗

t

dt
= G̃−1

R (G(�t , at )) , (7)

where G̃−1
R (G(�t , at )) = G−1

R (G(�t , at )) if G(�t , at ) > GQS
R (at ) and 0 other-

wise. The structure of (7) is very similar to the one describing the crack growth
rate curve in case of fatigue. In the latter case, the role of time is played by the num-
ber of cycles N . Thus, the crack tip velocity is v = da/dN , which, once substituted
in (7), delivers a Paris-like fatigue law in terms of energy release rate.

3 Data-Driven Approach

The classical solution of the fracture propagation problem requires the knowledge of
the critical energy (or energy release rate) as a function of the crack length (or, in rate-
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dependent cases, of the crack length and velocity). This function, postulated to be
endowed with some properties [3, 5], is usually a-priori assumed and best fitted to a
set of experimental observation ξ̂ i , i = 1, ..., n. This process introduces a subjective
bias and manipulates part of the information carried by the material data set.

Data-driven fracture mechanics aims at characterizing fracture propagation with-
out resorting to analytical material modeling. Instead, we directly make use of the

discrete data setDR =
{
ξ̂ i , i = 1, ..., n

}
. The global and local problems (2) and (3)

entail now a discrete minimization over DR . This approach considers the inherent
presence of scattering—namely, the noise affecting DR—as an inherent property
and thus automatically accounts for it.

The numerical examples illustrated in this section are related to a double cantilever
beam that is loaded imposing a displacement �T to a connected linear elastic device
[7]. As follows, we summarize the most important results. For all details, see [3, 4].

3.1 Rate-Independent Fracture

Although alternatives are possible, in [3] the following distances are proposed

• Global minimization problem (2): ξ̂ i = (âi , F̂R, i )

1. Free energy (1): di = E(�, âi ) + F̂R, i , âi ≥ a0

• Local minimization problem (3): ξ̂ i = (âi , Ĝ R, i )

1. KT condition (4) : di =
∣
∣∣
[
G

(
�, âi

) − ĜQS
R, i (a0)

] (
a0 − âi

)∣∣∣ ,

âi ≥ a0, G
(
�, âi

) ≤ ĜQS
R, i

2. Closest-point projection: di = min
a≥a0

{∣
∣∣
∣
∣∣
(
a − âi , G(�, a) − Ĝ R, i

)∣
∣∣
∣
∣∣
}

,

âi ≥ a0, G
(
�, âi

) ≤ Ĝ R, i0 , i0 : âi0 = a0

Global vs. local minimization. In [3] the aforementioned approaches are com-
pared under rate-independent conditions using in-silico data sets to mimic dif-
ferent analytical resistance models affected or not by noise (Fig. 1). Figure1a, b
compare the data-driven results with those obtained adopting a classical solution
scheme and an analytical fracture constitutive law, while Fig. 1c, d show how data-
driven search procedures select the solution for an illustrative load step. The results
show that

– Local and global data-driven approaches reproduce their analytical counterparts
and are able to predict crack jumps without any ad-hoc criterion (Fig. 1a, b).
In particular, global data-driven solutions suffer of the same drawbacks of their
analytical counterparts mentioned in Sect. 2.

– The global minimization approach is very sensitive to the presence of noise result-
ing in a systematic overestimation of the crack size (Fig. 1a).
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Fig. 1 Data-driven results for Griffith fracture with a noisy material data set: comparison between
reference and data-driven results using the global minimization (a) and the closest-point projection
distance (b) (distance based on the KT condition gives similar results). Data-driven solution at load
step 100 for global (c) and local (d) minimization

– In presence of multiple possible meta-stable states, the local minimization
approaches are biased toward the one corresponding to the maximum dissipation
in spite of the causality principle.

– Local minimization based on the KT condition usually selects crack sizes larger
than that expected at equilibrium while closest-point projection is robust with
respect to presence of noise and number of data (Fig. 1b).

Convergence. The convergence of the proposed approaches to the reference clas-
sical results is also evaluated in [3] and the main findings can be summarized as
follows

Convergence with respect to the number of points in DR

– In absence of noise, all the methods converge linearly to the reference results.
– The error with respect to the reference results for the closest-point projection
strategy is always lower than for the alternatives (e. g., noiseless limit in Fig. 2).

Convergence with respect to the noise amplitude

– The approaches based on local minimization converge faster than that based on
global minimization (Fig. 2).

– Overestimation of the crack size negatively affects the convergence of the global
approach and of the local approach with the KT condition (Fig. 2).



80 P. Carrara et al.

Fig. 2 Convergencewith respect to the noise amplitude to the classical solution including frequency
histograms and averageμ of the error for 100 randomly assigned data set composed of 5000 points.
The pop-up graphs indicate the range of the data-driven solutions for 20% and 5% noise amplitude

3.2 Rate-Dependent Fracture and Fatigue

For the rate-dependent case [4] we leverage the results of Sect. 3.1 and rely only
on the closest-point projection distance. Upon a time discretization, we define an
incremental solution strategy based on a Crank-Nicholson time integration scheme.
Depending on the type of database available two different solution strategies can be
devised as follows

1. Complete data set: if ξ̂ i = (âi , v̂i , Ĝ R, i ), then the closest-point projection dis-
tance is computed assuming an energy release rate function of the specimen
parametrized in the plane �a(v) − G, where �a(v) is the crack size increment
that stems from the selected integration scheme.

2. ImplicitGriffith-likedata set: if ξ̂ i = (v̂i , Ĝ R, i ), then the data set is independent
on the crack size leading to an implicit Griffith-like rate-independent limit for
v → 0. In this case, the closest-point projection distance at the generic step k + 1
is computed rescaling the crack tip velocity axes following the time integration
scheme (Fig. 3a).
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Fig. 3 Schematic example of a closest-point projection data-driven search procedure for rate-
dependent fracture and comparison with the classical solution (a). Comparison between reference
and data-driven results varying the loading rate: for an implicit Griffith-like data set (b) and using
a complete data set reproducing a Griffith-like quasi-static limit (c). Modified Wöhler curve for
fatigue tests (d)

Complete versus implicit Griffith-like data set. The performance of the proposed
approaches is assessed in [4] using data sets artificially generated to reproduce dif-
ferent analytical models and a loading ramp �T, t = √

ε t where ε is the loading rate
parameter. The following observation are drawn

– Similarly to the rate-independent case, the rate-dependent data-driven approaches
are able to reproduce the crack evolution predicted solving (6) with an analytical
critical energy release rate curve (Fig. 3b, c).

– If a complete data set contains observations from rate-independent tests, the
quasi-static solutions in the spirit of [3] are automatically selected when relevant
(Fig. 3b, c).

– For low loading rates, the rate-independent results are closely approached by the
rate-dependent ones (Fig. 3c).

– The closest-point projection approach is reliable and robust with respect to noise
for both types of data sets (Fig. 3b, c).

Rate-independent versus—dependent fracture. The rate-dependent approach reg-
ularizes some pathological behaviors observed in the rate-independent case in
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presence of non-convex free energies that include multiple snap-back branches and
competing meta-stable states [3] (see Sect. 3.1).

Fatigue. The rate-dependent approach can be adapted to reproduce the fatigue behav-
ior. In this case, themeasurements used to calibrate the Paris-like laws relate the crack
size increment to the nominal range of energy release rate applied at the crack tip,
i. e. neglecting the crack evolution during the cycle [4]. Also, in this case the closest-
point projection distance reduces to di = Ĝr, i − G(�, a). The comparison with the
reference results obtained adopting the NASGRO law shows that

– The data-driven approach correctly reproduces the curve relating crack size and
number of cycles for different loads and the modified Wöhler curve (Fig. 3d).

– The presence of a load threshold value below which the fatigue life is infinite is
automatically encoded in the data set (Fig. 3d).

– A simple cycle-jump approach can be used to limit the computational burden
retaining a good accuracy of the results also in case of noisy data sets.

4 Summary and Outlook

In this paper,we outlined our recentwork onmodel-free data-driven fracturemechan-
ics. Rate-independent and -dependent fracture as well as fatigue are accounted for
and the obtained results highlight that data-driven results correctly reproduce crack
propagation as predicted by standard methods. Also, the approach based on the mini-
mization of a closest-point projection distance from the data set is reliable and robust
with respect to the presence of noise.
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Abstract In the numerical simulation of forming processes, the material configu-
ration describes the semi-finished part, whereas the spatial configuration represents
the finished part. In order to keep the subsequent finishing steps of the manufac-
tured component to a minimum, the aim is to produce the finished part within small
geometric tolerances. Thereby, a predefined target configuration defines the optimal
shape of the part. Here, non-invasive form finding is designed to minimize the differ-
ence between the spatial configuration and the target configuration during an iterative
procedure. The material configuration, ergo the shape of the semi-finished part, is
successively optimized. Starting point of the optimization is the computation of the
difference between the computed spatial and the target configuration. The present
paper deals with the computation of this difference. Special attention is paid to the
variable number of design parameters. The varying number of design parameters is
due to the use of re-meshing within the FE-simulation.

M. Caspari (B) · M. S. Schwarz · P. Steinmann
Institute of Applied Mechanics, Friedrich-Alexander University, Erlangen, Germany
e-mail: michael.caspari@fau.de

M. S. Schwarz
e-mail: michael.stefan.schwarz@fau.de

P. Steinmann
e-mail: paul.steinmann@fau.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_9

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_9&domain=pdf
mailto:michael.caspari@fau.de
mailto:michael.stefan.schwarz@fau.de
mailto:paul.steinmann@fau.de
https://doi.org/10.1007/978-3-030-87312-7_9


84 M. Caspari et al.

1 Introduction

Non-invasive form finding addresses the increasing demands in industry regarding
the interrelation between ecology and economy. According to this, it is beneficial for
both aspects to reduce the components production times and to operate in a material-
saving manner. In this context, the collaborative research center TCRC 73 on sheet
bulk metal forming (SBMF) [1] investigates, among other things, possibilities to
reduce the production steps of a forming process. The output of the forming process
is controlled by use of adapted semi-finished parts. This avoids the necessity of
subsequent machining of the finished part and also enables the properties of the part
to be controlled.

Herein, non-invasive form finding serves as an optimization strategy which deter-
mines the optimal shape of tailored blanks by using an iterative approach. The opti-
mized shape of semi-finished part is defined by the reduced geometric deviation
between the shape of the finished part and the target shape.

2 A Brief Outline of Non-invasive Form Finding

Within the numerical simulation of the forming process, the decisive shape of the
semi-finished part is described by the position of the design nodes

XD =
[
X1T, ..., XndsgnT

]T
of the discrete material configuration Bh

0. Likewise, the

shape of the finished part is represented by the design nodes xD =
[
x1T, ..., xndsgnT

]T

of the corresponding computed spatial configurationBh
t . Since the algorithm is node-

based, the target shape is also described as a discretized configuration with the nodal
positions xD

tg with D = 1, ...ndsgn,tg, representing the design surface.

The nodal difference vector dD is computed between the design nodes of the
computed spatial and the target configuration. The computation is performed by
projecting the computed spatial design nodes onto the target surface [3]. The nodal
difference enters into the objective function as the local least squares error. The
resulting scheme is presented in Fig. 1. The nodal positions of the material configu-
ration are iteratively updated with respect to the nodal difference. The optimization
problem is summarized in Table1.

2.1 The Quasi-Newton Update Iteration Step

For the update of the material design coordinates XD a Quasi-Newton iteration step
is realized. Starting point is the minimization of the global objective function with
respect to the material coordinates.
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Fig. 1 The non-invasive optimization updates the material configuration by measuring the differ-
ence between the computed spatial and target configuration [2]

Table 1 The optimization problem of non-invasive form finding

Objective funct δ
(
xD, xDtg

) = ∑ndsgn
D=1

1
2‖dD‖22 with nodal differences dD for

D = 1, . . . , ndsgn
Design variables Nodal positions of material design nodes XD for D = 1, . . . , ndsgn
State equation Motion ϕ : XD ∈ Bh

0 → xD ∈ Bh
t

∂δ(xD, xDtg)

∂XD

∣∣∣∣
XD

opt

!= 0 . (1)

The global objective function is the sum of the local objective functions which are
evaluated at the spatial design nodes. This, in turn, is the least squares error of the
difference vector:

δ(xD, xDtg) =
ndsgn∑
D=1

δD
(
ϕ(XD), xD

tg

)
= 1

2

ndsgn∑
D=1

∥∥dD
∥∥2

2 . (2)

After some further manipulation, which can be found in [4], eventually, a local
Quasi-Newton iteration step follows as:

XD ← XD − α
∂2δD(ϕ(XD), xD

tg)
−1

∂XD∂XD · ∂δD(ϕ(XD), xD
tg)

∂XD . (3)

Therein, the line search parameter α is already included. The line search parameter
is redefined in every iteration, within its limits α ∈]0; 1]. It controls the update
intensity and ensures a regular mesh. Within Eq.3 the first and second deriva-
tive of the objective function with respect to the material coordinates can be

identified. Those are known as the Jacobian JD =: −FDT · dD and the Hessian

HD =: −GDT · dD + FDT · FD . For the approximation of the second deforma-

tion gradient GDT = ∂

∂XD

[
FDT

]
different methods have been compared in [4].
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Eventually, a Gauss-Newton method has proven to be the most appropriate method.
Finally, the deformation gradient as evaluated at the Gaussian points is L2-smoothed
onto the nodes. The final update step for a local design node of the k−th iteration
follows as:

XD
k+1 = XD

k + α F̃
D−1

k · dD
k . (4)

2.2 Non-invasive Optimization

A special feature of the optimization routine is characterized by the non-invasive
approach. This states that the optimization does not interfere with the mechanical
formulation of the numerical simulation. Therefore it is possible to use conven-
tional and application-oriented nonlinear FE-solvers. The non-invasive approach is
schematically presented in Fig. 2.

Within an iteration loop (Fig. 2-red) a fictitious elastic problem is highlighted,
which has not been mentioned before. The updated positions of the material design
nodes are computed according to Eq.4. However, there are twomore classes of nodes
within the entire configurations Bh

0,Bh
t . The fixed nodes correspond to a Dirichlet

boundary condition of the forming simulation. Therefore they stay unchanged during
the update procedure. Furthermore, controlled nodes do not contribute to the design
surface of the component, they are located for example in the interior of the body.
Those kind of nodes are controlled via a fictitious elastic update procedure. The
update of the position of the material coordinates renders as Dirichlet boundary
condition of the fictitious elastic problem in order to obtain the updated nodal position
of the controlled nodes.

The non-invasive approach of coupling the optimization and FE-Solver (indicated
with red arrows) is realized by transferring nodal positions between both tools via
subroutines and file exchange. Due to this, application-specific solvers may be used.
Merely appropriate subroutines for data exchange have to be adapted.

Fig. 2 Workflow of the non-invasive optimization [5]
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3 Mesh Transformation for Dealing with Remeshing

A very useful feature of application-oriented commercial solvers is the use of mesh
adaptive strategies. Thereby, the mesh is adapted to the forming state. Besides mesh
adaption by means of h-/r-/p adaptive strategies, some solvers use remeshing. Error
estimators are used to determine the numerical error of the mesh. If a threshold is
passed, remeshing takes place. Furthermore, it is also possible to determine user-
defined and problem-specific time increments for remeshing. The choice is up to
the user. If the mesh is adapted to the current deformation state, high degrees of
deformation are possible whilemaintaining a regular and numerically accuratemesh.
Elements are thus prevented from degenerating.

If remeshing takes place during the simulation, the number of nodes changes. This
is schematically pictured in Fig. 3. In the upper row, the number of nodes changes
during every remeshing step. This useful feature for performing the FE-simulation of
a forming process poses a challenge to the node based optimization algorithm. The
final update step in Eq.4 requires an equal number of design nodes for the material
Bh

0 and spatial Bh
t configuration.

In [6] a strategy is presented to use the information of remeshing in order to trans-
form the original material configuration into the shape of the spatial configuration
without changing the number of nodes. Using the inverted spatial configuration, the
difference vector is computed similar as before. The inversion of the remeshing is
done by comparing the spatial and remeshed configuration at the increment when
remeshing takes place. To determine the mutual position of new and old nodes in the

Fig. 3 Schematic representation of the transformation of the material nodes into the computed
spatial configuration Bh

t,comp to obtain the transformed spatial configuration Bh
t,trans [6]
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increment of remeshing, Parametric Inversion [7] is used. By inverting the remeshing
process and transforming the material configuration, the transformed spatial config-
uration Bh

t,trans is obtained.

4 Academic Example

In the following, an academic example of a cuboid with hole is used to demonstrate
the performance of the approach. Special attention is paid to the computation of
the difference vector, which is evaluated at the spatial nodes determined by forward
transformation. The example is already depicted in Fig. 1.However, due to the limited
feasibility of remeshing within a 3D FE-simulation, the example is reduced to two
dimensions.

A quarter of the cuboid is shown in Fig. 4a. Obviously, boundary conditions are
used to take advantage of symmetry. The material parameters are taken from [8]
for the common steel DC04 including isotropic hardening. In Fig. 4a the original
material configuration is highlighted. In Fig. 4b the computed spatial configuration
is compared to the target configuration which is indicated by a green dashed line.
During the optimization, the deviation between computed spatial configuration and
target configuration will be iteratively reduced. Initially, no remeshing was used in
this FE-simulation since it is not necessary in order to obtain useful numerical results.
However, it is used in the subsequent simulations for comparison purposes.

By using remeshing within the numerical simulation, the optimization deals with
two spatial configurations. The computedBh

t,comp and the transformed spatial configu-
rationBh

t,trans. The transformed configuration is used to compute the spatial difference
vector, entering the objective function. However, the difference vector based on the
computed spatial configuration represents the true difference. Both configurations
and corresponding difference vectors are showcased in Fig. 5.

The convergence plot in Fig. 6 conveys how the objective function is successively
minimized. Here, the performance of the objective function based on the least squares
error of the true difference δ(xDcomp, xtg) and transformed difference δ(xDtrans, xtg) are
compared. It becomes clear that the performance of the true difference is less good

Fig. 4 Spatial and material configuration of the Cuboid with a hole FE-Simulation
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Fig. 5 Computation of the difference vector, based on the transformed Bh
t,trans (a) and computed

Bh
t,comp (b) spatial configuration

Fig. 6 Convergence plots of the optimization of the example in Fig. 7

than the transformed difference underlying the optimization. This result must be
taken into account when using remeshing within the optimization. Especially it gets
clear, that a convergence plot based on the true difference already converges at a lower
number of iterations. Both convergence plots are compared to the optimization of the
example without remeshing. Due to the significantly higher convergence, this curve
serves as a benchmark.

The deviation between spatial and target configuration is crucial for the applica-
bility of the optimization algorithm. However, if sufficient convergence is ensured,
the resulting shape is of major importance. For this purpose Fig. 7 compares the
optimized configurations. The example without remeshing is compared to the result
with remeshing. It becomes clear that the spatial configurations of both optimizations
show no visible deviations to the target configurations in the eye-ball norm. This was
to be expected due to the 10−10 digit convergence gap between both convergence
plots. However, more important is the optimized material configuration. This rep-
resents the semi-finished part shape to be produced. Here again, it is clear that the
same configuration is obtained regardless of the chosen method.
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Fig. 7 Optimized material Bh
0 and spatial configurations Bh

t,comp without (a, b) and with (c, d)
remeshing within the FE-simulation

5 Summary

By considering the objective function based on the true difference, the influence of
transforming the remeshing on the convergence behavior becomes clear for the first
time. A comparison with the benchmark, however, clearly shows that this resulting
deviation has no discernible influence on the optimized shape.
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Abstract A micropolar-based asymptotic homogenization approach for the anal-
ysis of composite materials with periodic microstructure is proposed. The macro
descriptors are directly linked to both suitable perturbation functions, obtained via
asymptotic homogenization scheme, and micropolar two-dimensional deformation
modes. A properly conceived energy equivalence between the macroscopic point
and a microscopic representative portion of the periodic composite material is intro-
duced to derive the overall micropolar constitutive tensors. The resulting constitutive
tensors are not affected by the choice of the periodic cell.

1 Introduction

Periodic manufactured composites are widely adopted in many engineering fields. In
this context, it is crucial to accurately reproduce the material response in a synthetic,
but accurate way. To this aim the study of multi-scale homogenization techniques is
a very interesting and debated topic in literature [1, 2]. Homogenization approaches,
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based on Cauchy continua at both the microscopic and macroscopic scales, may
reveal ineffective since are not able to describe size effects as well as the dispersion
properties of periodic heterogeneous materials. To overcome these drawbacks, non-
local homogenization schemes can be effectively exploited.

In this framework, a micropolar macroscopic modelling of periodic Cauchymate-
rials based on asymptotic homogenization approach is here proposed. In Sect. 2
the governing equations at both microscopic and macroscopic scales are recalled.
Section3 is devoted to define the micro-macro kinematic relations and the asymp-
totic expansion of themicroscopic governing equations. The upscaling relations and a
properly defined kinematic map are, then, fully developed in Sect. 4. The generalized
macro-homogeneity condition is, then, derived in Sect. 5. An illustrative application
is proposed in Sect. 6. Finally conclusions are drawn in Sect. 7.

2 Microscopic and Macroscopic Governing Equations

Focus is on a 2D periodic heterogeneous composite material, as in Fig. 1a, in
the framework of linearised kinematics. A Cauchy continuum, subject to stresses
induced by periodic body forces, is adopted. The periodic cell A = [−ε/2, ε/2] ×
[−ε/2, ε/2], whose characteristic size is ε, is shown in Fig. 1b together with the
corresponding unit cell Q in Fig. 1c characterized by periodicity vectors v1, v2.

The governing equations at the microscopic scale read

∇ ·
(
C

m
(x

ε

)
∇u(x)

)
+ b(x) = 0, (1)

where Cm is the Q-periodic elasticity tensor, b are the zero-mean-value L-periodic
body force, with L = [−L/2; L/2] × [−L/2;−L/2], for L >> ε. It follows that
the microscopic displacement field u explicitly depends on both x and ξ = x/ε.

At themacroscopic scale amicropolar continuum [3] is consideredwith governing
equations

∇ · [
G

M (∇U(x) + ε3hk (eh ⊗ ek)� (x))
] + ∇ · (

YM∇�(x)
) + b(x) = 0,

∇ ·
[
YMT

(∇U(x) + ε3hk(eh ⊗ ek)�(x))
]

+ ∇ · (
SM∇�(x)

)+
− ε3i j (ei ⊗ e j ) : [

G
M (∇U(x) + ε3hk(eh ⊗ ek)�(x)) + YM∇�(x)

] + c3(x) = 0,
(2)

where GM , YM and SM are the constitutive tensors, b, c3 are the generalized body
forces, U(x) and �(x), are the macro-displacement and micropolar rotation field,
respectively.

In what follows a procedure aimed at identifying the macroscopic constitutive
tensors, characterizing the equivalent micropolar continuum, are derived from the
mechanical properties available at the microscopic scale.
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Fig. 1 Heterogeneous material at the microscopic level. a Cluster of periodic cells with structural
dimensions L; b Periodic CellA with characteristic size ε; c unit cell Q

3 Micro-Macro Kinematic Relations and Asymptotic
Expansion of the Microscopic Governing Equations

In line with the asymptotic homogenization scheme (see i.e. [4]), the following
asymptotic expansion of the microscopic displacement field is taken

ui
(
x, ξ = x

ε

)
=

⎛
⎝Ui (x) +

+∞∑
l=1

εl
∑
|q|=l

N (l)
i jq (ξ)

∂ |q|

∂xq
U j (x)

⎞
⎠

∣∣∣∣∣∣
ξ= x

ε

, (3)

whereUi aremacro-displacement components, N (l)
kpq1

are zero-mean-valueQ-periodic
perturbation functions and q amulti-index of length l. The Eq. (3) can be plug into the
microscopic governing Eq. (1). After suitable manipulations, by collecting the terms
with equal power ε, and imposing the so-called solvability condition in the class of
Q-periodic functions, a hierarchical sequence of partial differential problems, known
as cell problems, is obtained as in [5]. The perturbation functions at order ε0, ε1

and ε2, i.e. N (1)
hpq1

, N (2)
hpq1q2

and N (3)
hpq1q2q3

are determined, together with the overall first
order constitutive tensor components
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Ciq2 pq1 =
∫

Q

Cm
r jkl

(
N (1)
riq2, j

+ δirδ jq2

) (
N (1)
kpq1,l

+ δpkδlq1

)
dξ , (4)

that are key elements intervening in themicropolar homogenization scheme, detailed
in the following sections.

4 Upscaling Relations and Third Order Polynomial
Kinematic Map

Accordingly with the procedure detailed in [6], the upscaling relations, linking the
generalized macro-displacement field, depending on both U(x) and �(x), to the
displacement field at the microscopic level u(x), are here discussed. In particular for
Wi j = −ε3i j� a minimization procedure over the unit cell Q is proposed as follows

U1 (x) =
∫

Q
u1 (x, ξ)dξ , U2 (x) =

∫

Q
u2 (x, ξ)dξ ,

min
Wi j

F [
ω∗
i j (Wi j )

] = min
Wi j

∫

Q

(||ωi j (x, ξ) − ω∗
i j (x, ξ)||2

)2
dξ , (5)

where ωi j are the components of the micro infinitesimal rotation tensor and ω∗
i j are

the components of a properly defined skew-symmetric tensor expressed in the form

ω∗
i j =Wi j +

+∞∑
l=1

∑
|q|=l
|r |=l

1

2

(
N (l)
i jq,r − N (l)

j iq,r

)
W̃qr . (6)

By plugging (6) truncated at the first order into (5) c, after solving the minimization
problem, the components of the micropolar rotation tensor are obtained as

Wi j (x) =

∫
Q
Mi jpq1(ξ) ωpq1 (x, ξ)dξ

∫
Q

δprδq1s1Mhkpq1(ξ)Mhkrs1(ξ)dξ
, (7)

with Mi jpq1 = δi pδ jq1 + 1
2

(
N (1)
i j p,q1

− N (1)
j i p,q1

)
.

The upscaling relations are now particularized by truncating the microscopic dis-
placement field at the third order, i.e.
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uI I I
i (x, ξ) = Ui (x) + εN (1)

i jq1 (ξ) Hjq1 (x) +
+ ε2N (2)

i jq1q2 (ξ) κ jq1q2 (x) + ε3N (3)
i jq1q2q3 (ξ) κ jq1q2q3 (x) ,

(8)

where Ui (x) is the macroscopic displacement field and Hjq1 (x), κ jq1q2 (x) and
κ jq1q2q3 (x) its gradient and higher order gradients.
Concerning the macro-displacement, a third-order Taylor polynomial expansion is
chosen

Ui (x) = Ūi + H̄i p1xp1 + 1

2
κ̄i p1 p2xp1xp2 + 1

6
κ̄i p1 p2 p3xp1xp2xp3 , (9)

where the coefficients Ūi , H̄i p1 , κ̄i p1 p2 and κ̄i p1 p2 p3 are the macroscopic fields evalu-
ated at point x = 0, respectively. In order to identifying a micropolar continuum, the
20 independent coefficients must be properly reduced to 6 as detailed in [6].

At this point, by replacing the Eq. (9), suitablymanipulated, in (8), the polynomial
approximation of the microscopic displacement field is

u1 (x, ξ) =B1
1 (x, ξ) Ē11 + B2

1 (x, ξ) Ē22 + B3
1 (x, ξ) Ē12+

+ B4
1 (x, ξ) κ̄122 + B5

1 (x, ξ) κ̄211 + B6
1 (x, ξ) κ̄1222,

u2 (x, ξ) =B1
2 (x, ξ) Ē11 + B2

2 (x, ξ) Ē22 + B3
2 (x, ξ) Ē12+

+ B4
2 (x, ξ) κ̄122 + B5

2 (x, ξ) κ̄211 + B6
2 (x, ξ) κ̄1222,

(10)

where Ēip1 = (H̄ip1 + H̄p1i )/2 and the localization functionsB j
i (x, ξ) depend on the

overall first order elastic tensor components and on the perturbation functions. By
plugging equations (10) in Eqs. (7), the micropolar rotation field �(x) and, in turn,
the macroscopic curvature tensor components K1 = ∂�/∂x1 and K2 = ∂�/∂x2 are
obtained.

5 Generalized Macro-Homogeneity Condition

The overall micropolar elastic properties are derived by exploiting a generalized
macro-homogeneity condition, establishing an energy equivalence between the
macroscopic and the microscopic scales. Accordingly with [4, 7], the microscopic
mean strain energy is defined as

Ēm=̇1

2

∫

A

∫

Q
ε (x, ξ)T Cm (ξ) ε (x, ξ) dξdx, (11)

whereCm is the elasticitymatrix and ε is themicroscopic strain vector in the standard

matrix notation. Under the assumption of scale separation, the Ēm related to the strain



98 M. L. De Bellis et al.

field ε0 = ε(x = 0, ξ) can be introduced as

Ē0
m=̇1

2

∫

A

∫

Q
ε (x = 0, ξ)T Cm (ξ) ε (x = 0, ξ) dξdx = |A|

2

∫

Q
εT
0C

mε0dξ , (12)

being |A| the area of the periodic cell. More specifically, this strain vector is deter-
mined from the microscopic displacement components in Eq. (10), taking the form

ε0 = B
� + Bϒϒ, (13)

being� = {
Ē11 Ē22 Ē12 κ̄1222

}T
, ϒ = {

κ̄122 κ̄211
}T

andB
,Bϒ properly defined
strain localization matrices. The relatedmicroscopic mean strain energy densi ty
is consequently derived

φ̄0
m = Ē0

m

|A| = 1

2

⎛
⎝�T

∫

Q
B
T

CmB�dξ � + ϒT
∫

Q
Bϒ T

CmBϒdξ ϒ +

+�T
∫

Q
B
T

CmBϒdξ ϒ + ϒT
∫

Q
Bϒ T

CmB
dξ �

⎞
⎠ .

(14)

Furthermore, the macroscopic strain energy density evaluated in x = 0 is introduced

φ0
M = 1

2

(
�0

TGM�0 + K0
TSMK0 + �0

TYMK0 + K0
TYMT

�0

)
, (15)

where the asymmetric micropolar strain vector and the curvature vector, evaluated
in x = 0 are defined as

�0 = A

� + Aϒ

 ϒ, K0 = A

K� + Aϒ

Kϒ, (16)

being A

 , A



K , A

ϒ
 , A

ϒ
K transformation matrices. By exploiting the generalized

macro-homogeneity condition, establishing the equivalence between themicroscopic
and macroscopic strain energy density φ̄0

m=̇φ0
M (x = 0), after some manipulations,

the overall elastic micropolar matrices are determined. In the case the periodic cell
is characterized by centrosymmetric topology, it results

GM =
∫

Q
A




−T
B
T

CmB
A



−1
dξ ,

SM =
∫

Q
Aϒ

K
−T

Bϒ T
CmBϒAϒ

K
−1
dξ , (17)

and the coupling matrix is YM = 0.
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Microscopic scale Macroscopic scale

Fig. 2 Strip undergoing discontinuous periodic forces: schematic of the heterogeneous medium
versus the homogenized one

6 Benchmark Test

As an example, a strip of two-phase periodic medium, realized by assembling,
along horizontal and vertical directions, periodic cells with a stiff matrix (phase
1) embedding soft square inclusions (phase 2), see Fig. 2, is considered. The size of
the inclusion is ε/2 and the material is characterized by ηE = E2/E1 = 3/50 and
ην = ν1/ν2 = 1 (with E1 = 500 GPa, ν1 = 0.1). The specimen undergoes a system
of discontinuous periodic forces, with period L1 = (4α + β)ε, located on both top
and bottom sides of the strip characterized by width equal to βε, with α = 4, β = 10,
and ε being the size of the periodic cell. Plane strain conditions are assumed. The
numerical results of the micro-mechanical model, in terms of displacement com-
ponents, along a horizontal line located at a distance 9/2ε from the top side of the
strip, are compared with the respective ones obtained considering the micropolar
homogenized model. In Fig. 3a the dimensionless micro-mechanical displacement
component u1/L1 (blue dotted line), and the respectivemacro-mechanical oneU1/L1

(red solid line) are plotted versus the dimensionless coordinate x1/L1. Analogously,
in Fig. 3b the dimensionless components u2/L1 and U2/L1 are reported with the
same line styles. For both microscopic and macroscopic displacement components
a very good agreement is shown.
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Fig. 3 Comparison between dimensionless micro-mechanical displacement components, in blue
dotted lines, and the respectivemacro-mechanical ones versus x1/L1. aComponents u1/L1,U1/L1;
b components u2/L1, U2/L1

7 Conclusions

Amicropolar modelling of periodic Cauchy materials based on asymptotic homoge-
nization approach is proposed. Consistent upscaling relations, able to define the gen-
eralizedmacro-displacement components of themicropolar continuum in termsof the
micro-displacement components and the perturbation functions, are proposed. Over-
all micropolar elastic properties are derived via a generalized macro-homogeneity
condition. It results that overall elastic tensors do not depend on the choice of the
periodic cell and in the limit case of locally homogeneous material the characteristic
lengths tend to zero.
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Experimental and Numerical
Investigation of Granules
as Crash-Absorber in Ship Building

Alexander Düster and Christian Woitzik

This contribution is dedicated to the occasion of Professor
Wriggers’ 70th birthday. We summarize part of the results of a
joint project with him that we completed recently. Our regular
meetings during this cooperation were scientifically very
inspiring. We had the chance to learn from his very impressive
knowledge and expertise in the broad field of mechanics. In
addition, it is always a great pleasure to spend time with him
because of his very pleasant personality. We wish Professor
Wriggers all the best for the future.

Abstract We summarize results related to the experimental and numerical inves-
tigation of granular materials used as crash-absorber in ships with a double hull
construction. The granular material is filled into the cavity between the two hull
layers in order to increase the safety in the event of a collision of the ship with
another vessel. The benefit of the filling material is twofold. First of all it helps to
carry the load from the outer hull to the inner hull such that both hulls can absorb
kinetic energy. Furthermore, the crushing of the granules contributes to the dissipa-
tion of kinetic energy. In order to quantify the crash-absorbing effect of the granular
material, experimental as well as numerical investigations of a simplified double hull
construction are carried out.

1 Introduction

The increasing usage of the North Sea and the Baltic Sea for wind energy and the
growing traffic raises the risk of collisions between ships as well as between ships
and offshore structures. To improve the safety of ships, the International Maritime
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bulbous bow 0 granules modelled with DEM

granules modelled
with FEM

coupling

outer hull

inner hull

Fig. 1 Collision of a bulbous bow with a double hull filled with particles. The sketch illustrates the
idea of a two-scale modelling approach in which the DEM and FEM are coupled

Organization (IMO) [3] requires that oil tankers must have double hulls. To further
increase the collision safety of ships, [12, 13] proposed to fill the cavity between
the double hulls with a lightweight granular material. Figure1 sketches a situation in
which the bulbous bow of a vessel collides with a double hull ship. The motivation
to use filling material is based on two main effects. First of all, the granules help
to transfer the load from the outer to the inner hull. In this way, the inner hull is
deformed as well—and the role of the filling material can be thought of as similar to
the core of a sandwich plate. The second effect is related to the dissipation of kinetic
energy as the granules start to crush. The decision to use granules to achieve these
effects is based on practical considerations. This kind of filling material can be easily
pumped into the cavities and also removed for inspection purposes as required by
classification societies.

In a joint project with Professor Wriggers, a two-scale simulation method was
developed and validated by experimental investigations in order to investigate these
effects in more detail. To this end, the granules were modelled with two different
approaches. In the near field of the collision, the Discrete Element Method (DEM)
was used to account for the large and inelastic deformations of the granular material,
also including the crushing of particles. Since the computational effort of the DEM
would be too high to treat thewhole domainwith this approach, the far fieldwasmod-
elled as a continuum using the Finite Element Method (FEM) for its discretization.
The coupling of the DEM and FEM approach is described in [8, 9]. The mechan-
ical investigation and modelling of the particles can be found in [14]. Crushing of
particles in the context of the DEM is addressed in [10]. In this contribution, we
want to address the experimental investigation of particles used as crash-absorber in
a simplified double hull. Furthermore, we will present a FEM approach to simulate
the experiment. To this end, we will summarize the results reported in [15].

2 Experimental Testing

In this section, we describe the experimental testing of particles as crash-absorber in
double hull ships. Figure2 shows the three different types of granules considered in
our studies.Basedon investigations presented in [14],wedecided to usePoraver [2] as
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Fig. 2 Three different types of granules: Poraver 2–4 [2], Omega-CXL [4], and Leca 2–4 [5]

Fig. 3 Simplified double hull structure (left) and experimental setup (right) for the indenta-
tion/penetration test (gray/black: test specimen; gold: rigid frame; blue indenter)

crash-absorbing material. The multicellular expanded glass granules have a diameter
of 2–4 mm and a bulk density of 190 kg/m3. A detailed study of the material—
determining further properties such as Young’s modulus and crushing strength—is
presented in [14]. The granular material is filled into a simplified double hull, as
depicted in Fig. 3 (left). The double hull structure is fixed in the test rig shown in
Fig. 3 (right). Similar tests were carried out in [6, 7, 11]. In a quasi-static experiment,
the indenter is driven (with 0.2mm/s) into the double hull, which is welded to a rigid
frame, see Fig. 4. The experiment is carried out both with an empty double hull
and with one that is filled with Poraver. The force-displacement curves for both the
empty and the filled double hull structure are presented in Fig. 5. The unloading at a
displacement of approximately 350mm is due to the limited stroke length. In order
to continue the indentation process, an extension of the indenter was installed. The
peaks in the curves represent the rupture of the outer and inner hulls. It is interesting
to note that the filled double hull structure yields a higher load level, especially
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Fig. 4 Double hull subjected to an indenter representing a bulbous bow. The indenter is a half-
sphere with a diameter of 270mm

Fig. 5 Force-displacement
curve for empty and filled
double hull

also for the part of the penetration where the outer hull is ruptured. During the
penetration of the outer hull, the presence of the granules increases the stiffness of
the whole structure, comparable to a sandwich core structure. The energy absorption
is displayed in Fig. 6. The gain in energy due to the usage of granules is measured
with respect to the rupture of the inner hull, as indicated with the vertical lines at
a displacement of about 410 and 460mm, respectively. In this setting, it amounts
to approximately 146%. From this, it is obvious that filling the double hull with
particles can increase the energy absorption quite significantly. It is interesting to
note that the filled structure ruptures later, which could be due to the granules acting
as a layer between the steel parts, hindering abrasive contact.
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Fig. 6 Comparison of energy absorption for the empty and the filled double hull

3 Numerical Simulation

As mentioned in the introduction, numerical methods were developed and used to
simulate the collision process. Here, we will briefly describe the FEM approach
applied to simulate the process of the experiment discussed in the previous section.
The structure is discretized taking advantage of the commercial finite element soft-
ware package Abaqus [1]. The spatial discretization of the granules utilizes eight-
noded hexahedral elements with reduced integration. The steel structure is meshed
into Reissner-Mindlin shell elements using five quadrature points over the thickness.
The constitutive behavior of the granules is based on the Mohr-Coulomb model,
whereas the steel is described with an elastoplastic material model including dam-
age. The temporal discretization features an explicit time-stepping scheme.

A comparison of the computed and measured von Mises strains on the surface
of the inner hull is depicted in Fig. 7. The strains were measured using an optical
digital image correlation (DIC) system. From the figure, a good agreement between
simulation and experiment is evident.

Figures8 and 9 show a comparison between the experiment and the simulation of
the empty and, respectively, the filled double hull structure. Both figures demonstrate
a good agreement between simulation and experiment. For the simulation with gran-
ules, the proposed method is not able to capture the entire indentation process, due
to large element distortions. Additionally, the continuummodel lacks effects such as
grain crushing.

A comparison between the measured and the computed absorbed energy is
depicted in Fig. 10. Again, a good agreement between the simulation and the exper-
iment can be observed.
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Fig. 7 The results of the FEM computation of the strains (left) are compared to the experimental
results (right) obtained applying a DIC-system at the onset of rupture

Fig. 8 Force-displacement
curve for the empty double
hull. Comparison between
simulation and experiment

Fig. 9 Force-displacement
curve for the filled double
hull. Comparison between
simulation and experiment
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Fig. 10 Energy absorption
for the filled double hull.
Comparison of simulation
and experiment

4 Conclusions

Wehavepresented an experimental andnumerical investigation of a simplifieddouble
hull structure filled with granular materials. The usage of granular material helps to
increase the crashworthiness of ships—as was demonstrated by the experiments.
Furthermore, it was shown that a finite element approach allows to simulate the
collisionprocess quite accurately.However, it should bementioned that themodelling
of the granular material undergoing finite deformations is problematic when using
the classical Mohr-Coulombmodel. This can be overcome by applying the two-scale
approach mentioned in the introduction, which is based on coupling the DEM with
the FEM. A detailed description of the method can be found in the literature we
referred to.
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Abstract Hydraulic fracturing or in short fracking is a technique, where a frack-
ing fluid is pressed in the underground with the goal to open fractures for the
exploitation of oil and natural gas, for geothermal purposes and further applications.
Although fracking techniques are widely used in practice, they are scientifically not
well established. This is due to the fact that the underground is a complicated mat-
ter made of rock or soil filled with fluids, such as water and air. In a continuum-
and computational-mechanical environment, fluid- and gas-filled porous media are
treated on the basis of the Theory of Porous Media, thus building the foundation of
a successful description of both saturated and partially saturated porous media. In
the present article, this is enhanced by the phase-field strategy applied to fracturing
processes.

W. Ehlers (B) · A. Sonntag · A. Wagner
Institute of Applied Mechanics, University of Stuttgart, Stuttgart, Germany
e-mail: Wolfgang.Ehlers@mechbau.uni-stuttgart.de

A. Sonntag
e-mail: Alixa.Sonntag@mechbau.uni-stuttgart.de

A. Wagner
e-mail: Arndt.Wagner@mechbau.uni-stuttgart.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_12

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_12&domain=pdf
mailto:Wolfgang.Ehlers@mechbau.uni-stuttgart.de
mailto:Alixa.Sonntag@mechbau.uni-stuttgart.de
mailto:Arndt.Wagner@mechbau.uni-stuttgart.de
https://doi.org/10.1007/978-3-030-87312-7_12


112 W. Ehlers et al.

1 Introduction

The description of porous media with pore content is easily achieved on the basis
of the Theory of Porous Media (TPM), compare Ehlers [1] for a general overview.
Treating saturated and unsaturated media means that a coupled system of balance
equations for two or three components, solid, liquid and gas, has to be considered.
This system leads to strongly coupled formulations that have to be solved by the
finite-element analysis (FEA), for details, see Wriggers [2]. When hydraulic fractur-
ing comes into play, the phase-field approach to fracture is a convenient tool, as it
regularises a sharp crack-surface topology in the porous solid by diffuse crack zones
governed by a single scalar auxiliary variable, the phase field. Here, the reader is
referred, for example, to Miehe et al. [3] or to Kuhn and Müller [4]. Applying the
phase-field approach to fracturing processes in porous media leads to an additional
equation that has to be coupled to the governing system of equations, compare Ehlers
and Luo [5] for dynamic hydraulic fracturing of fully saturated material or Heider
and Markert [6] for the quasi-static case.

In hydraulic fracturing, a fluid is pressed in the undergroundwith the goal to either
yield a sharp fracture or a diffuse fracture domain that basically can be compared
to a damaged zone. To set an example for this behaviour, consider a sandstone as
porous medium, where the sand grains with usual grain sizes between 0.063 and
0.2mm have been glued together in a long-lasting period by cap-rock pressure and
cementation processes. After the fracking process, the bonds between the grains
are broken, while the fractures can either be open or closed depending of the local
deformation governed by the fluid pressure, compare Ehlers and Luo [7]. Following
Ehlers and Luo [5, 7], where only fully saturated material of solid and liquid has
been considered, the present article also includes partially saturated material of solid,
liquid and gas.

2 Governing Equations

Based on isothermal conditions, the components ϕα of the overall model ϕ, where
α = {S, L , G} stands for solid, liquid and gas, are governed by their mass and
momentum balances yielding

(ρα)′α + ρα div
′
xα = 0 ,

ρα ′′
xα = divTα + ρα g + p̂α .

(1)

Therein, ρα = nαραR is the partial density of ϕα built from the product of the vol-
ume fraction nα and the intrinsic (effective or real) density ραR . In case of material
incompressible components, such as the solid ϕS and the pore liquid ϕL , the intrinsic
density remains constant, while the partial density can vary through variations of
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the volume fractions. Furthermore
′
xα and

′′
xα are the velocity and acceleration of

ϕα at the current position x, while ( · )′α defines the material time derivative of ( · )
following the motion of ϕα . In addition, div ( · ) is the divergence operator corre-
sponding to grad ( · ) = ∂( · )/∂x. Finally, Tα and p̂α are the Cauchy stress and the
direct momentum production of ϕα , and g is the gravitation vector. Note in passing
that p̂α is the local volumetric mean of the contact forces acting upon ϕα through the
other components of the overall model.

The above set of equations has to be closed by convenient constitutive relations
for all components.

2.1 Fracturing of Brittle Porous Solids

Considering brittle porous solids, TS depends on the pore pressure pFR and the
effective stress TS

eff via

TS = −nS pFR I + TS
eff with TS

eff = ρS ∂ψ S

∂FS
FT
S , (2)

where ψ S is the Helmholtz free energy per unit solid mass and FS the solid defor-
mation gradient. Based on earlier work on non-porous solids [3, 4] and on fully
liquid-saturated porous media [5, 7], the Helmholtz free energy has been shown to
depend on three terms, a tensile, a compressive and a fracture energy. For details,
compare Ehlers and Luo [5]. Thus, in the framework of small deformations, the
effective stress yields

TS
eff = [

(1 − φS)2 + ηS
r

] [
2μS ε+

S + λS

(
tr εS + |tr εS|

2

)
I
]

+

+ 2μS ε−
S + λS

(
tr εS − |tr εS|

2

)
I .

(3)

Therein, ε+
S and ε−

S contain the positive and negative eigenvalues of the linearised
Lagrangean strain εS , while μS and λS are the Lamé constants. Note that the first
summand of (3) is multiplied by a function depending on the phase-field variable
φS varying between zero for fully intact material and one for fully broken material,
while the viscous stress resistance ηS

r guarantees a minimum of tensile forces even
in the fully broken case.

From thermodynamical considerations, one furthermore concludes to the evolu-
tion equation for the phase-field variable reading

(φS)′S = 1

M

[
2(1 − φS) ρS

0 ψ S+ − Gc

(
φS

ε
− ε div gradφS

)]
(4)
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with themobility parameterM and the tensile energyρS
0 ψ S+ depending on the partial

solid density ρS
0 at the solid reference configuration at time t = t0, cf. [5].

2.2 Fluid Components

From thermodynamical considerations, one recovers Dalton’s law [8, 9]

pFR = sL pLR + (1 − sL)pGR (5)

stating that the pore pressure pFR is composed of the effective liquid and gas pres-
sures pLR and pGR by the liquid saturation sL = nL/nP with nP = nL + nG as the
porosity. While nS = nS

0 (detFS)
−1 and nP = 1 − nS can be found from the solid

deformation and the initial solidity nS
0 , the liquid saturation sL has to be found by

a constitutive assumption as a function of the capillary pressure pC = pGR − pLR ,
where ϕG is the non-wetting and ϕL the wetting phase. As the liquid is materially
incompressible, there is no constitutive equation for pLR . However, as the effective
gas pressure pGR can be found from the ideal gas law, pLR can be computed from
pC . In contrast to the standard pC -over-sL functions of van-Genuchten or Brooks-
and-Corey type valid for spontaneous imbibition and drainage problems, fracking
processes proceed from forcing the fluid into the porous medium, such that forced
curves are needed, compare Blunt [10].

When the fluid pressures are known, the fluid stresses and the direct momentum
productions can be found as

TL = −nL pLR I + TL
fric ,

TG = −nG pGR I ,

p̂L = pFRgrad nL − sL pCgrad nG + p̂L
fric ,

p̂G = pGRgrad nG + p̂G
fric ,

(6)

where frictional stresses of the pore gas have been dropped as they are negligi-
ble compared to the frictional liquid stresses, compare Ehlers [11, 12]. Based on
thermodynamical considerations [7], the frictional liquid stresses and momentum
productions read

TL
fric = 2I (φS)2nLμLRDL ,

p̂β

fric = −[1 − I + I(1 − φS)2](nβ)2
γ βR

kβ
r

wβ

(7)

with β = {L , G}. In these equations, I is the crack-opening indicator (COI), com-
pare Ehlers and Luo [7], μLR is the intrinsic or effective shear viscosity of the pore
liquid, andDL is the symmetric part of the liquid velocity gradientLL = grad vL with
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vL = ′
xL . Furthermore, γ βR = ρβR|g| is the specific weight of ϕβ , while kβ

r = κ
β
r kβ

is the relative hydraulic conductivity with κ
β
r as the relative permeability factor that

transforms the hydraulic conductivity kβ valid for a single pore fluid ϕβ towards kβ
r

valid for multiple pore fluids, such as ϕL and ϕG . Finally, wβ = ′
xβ − ′

xS defines the
seepage velocity. For further details, compare Ehlers [11, 12].

Equation (7) need some additional explanations. For example, (7)2 reduces to the
usual extra part of the direct momentum production, when the term in bracket equals
one. This is the case, when the COI is zero, while φS can be arbitrary between zero
and one, or when the COI is one and φS vanishes. Note that the COI acts as a switch
governing two possibilities. On the one hand, φS = 0 characterises the fact that there
is no fracture, such that only the drag force governed by (7)2 exists. On the other
hand, φS = 1 either indicates a closed fracture, where, as before, only the drag force
exists, or it indicates an open fracture, such that the drag force shrinks with growing
values of φS , while the Navier-Stokes term governed by (7)1 increases.

2.3 Equations Governing the Numerical Computations

Proceeding from the basic balance equations (1) and the constitutive setting given
through (2)–(7), the strong form of equations governing the dynamic computational
process of triphasic media of solid, pore liquid and pore gas are found as

0 = (nL)′S + nLdiv
′
xS + div (nLwL) ,

0 = (nGρGR)′S + nGρGRdiv
′
xS + div (nGρGRwG) ,

nSρSR ′′
xS + ∑

β n
βρβR (vβ)′β = −grad pFR + div (TS

eff + TL
fric) + ρ g ,

nLρLR(vL)′L = −nLgrad pLR + divTL
fric + nLρLRg + p̂L

fric+
+ pC [ (1 − sL) grad nL − sL grad nG ] ,

nGρGR(vG)′G = −nGgrad pGR + nGρGRg + p̂G
fric ,

(φS)′S = 1

M

[
2(1 − φS)H − Gc(

φS

ε
− ε divgradφS)

]

(8)
with ρ = ∑

α n
αραR as the density of the overall medium andH as history variable

based on ρS
0 ψ S+, cf. [3, 5]. These equations together with the initial and bound-

ary conditions of the problems at hand yield a strongly coupled system of partial
differential equations that can be solved numerically by the tool PANDAS.1 In the
framework of the Bubnov-Galerkin method, the volume and mass balances (8)1, 2
are tested by δpLR and δpGR , the overall momentum balance (8)3 by δuS , the liquid
and gas momentum balances (8)4, 5 by δvL and δvG , and the phase-field evolution
equation (8)6 by δφS . Depending on the boundary conditions, δpLR can alternatively
be substituted by δsL .

1 Porous Media adaptive nonlinear finite-element solver based on differential algebraic systems,
cf. http://www.get-pandas.com.

http://www.get-pandas.com
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While the above set of equations describes partially saturated porous media as
a triphasic model, this set can easily be reduced towards biphasic media that are
sufficient for the solution of fully saturated problems.

3 Numerical Example

The following example, compare Fig. 1, has been designed to illustrate the differ-
ent fracturing behaviour of fully saturated and partially saturated material. Based
on PANDAS, the problem has been computed by use of Taylor-Hood elements with
quadratic approximation functions for uS , vL and vG , and linear approximation func-
tions for the remainder of primary variables, sL , pGR and φS . As can be seen from
Fig. 1, a notched block of brittle porous material is investigated under symmetry con-
ditions, such that only the upper half has to be taken into consideration. To guarantee
symmetry, the problem is computed without gravitational forces but under consider-
ation of inertia terms. The notch represents an initial crack, where a fluid is pressed
into the material with a horizontal velocity of v̄L = 5 · 10−3 t m3/(m2s) increasing
with time t . Before the fracking starts, the initial conditions represent the case, where
everything is at rest under atmospheric pressure. The mesh is symmetric with 23,432
elements including a refinement at the initial crack and and along the symmetry line.

Figures2 and 3 show the results, especially at five different time steps. Figure2
displays the fracking process by the phase-field variable φS . As can be seen from
this figure, the fracture evolution is fast in fully saturated material compared to the
partially saturated case. This is due to the fact, that the pore gas is compressible,
such that it takes a longer time until the pore pressure pFR reaches a value that is

Fig. 1 Sketch of the initial-boundary-value problem of the hydraulic fracturing problem
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Fig. 2 Evolution of the phase-field variable φS during the fracturing problem for partially and fully
saturated porous material

Fig. 3 Depiction of the temporal development of the effective pore pressure pFR at the initial crack
tip (point B) for the partially and fully saturated model

Fig. 4 Effective pore pressure field over the length A – C of the specimen for the partially and fully
saturated model at the particular onset time of the crack propagation



118 W. Ehlers et al.

sufficient for the initiation and the continuity of the fracture, compare Fig. 3. Finally,
Fig. 4 exhibits the pore pressure evolution along the symmetry line at the particular
onset moment of the fracturing process. As before, it is seen that the initial pressure
is larger in the unsaturated case than in the fully saturated one. This is again a result
of the compressibility of the pore gas that has to be pushed away until the pressure
reaches a value necessary for the fracturing process.

4 Conclusion

In the present article, fully and partially saturated brittle material have been discussed
and compared to each other with respect to fracking processes. As was expected, the
existence of a pore gas hinders the evolution of fractures, such that higher pressures
and a larger amount of fracking fluid is necessary.

Acknowledgements We thank the German Research Foundation (DFG, Deutsche Forschungsge-
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Media Using Numerical Model Reduction
with Fully Computable Error Bounds
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This contribution is dedicated to Professor Peter Wriggers.
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willing to generously share his deep knowledge.

Abstract The microscale problem arizing from computational homogenization of
porousmedia problems is solved by adopting the concept ofNumericalModelReduc-
tion. Thereby, the displacement and pore pressure are the unknown fields. A suit-
able reduced basis is constructed for the pore pressure approximation using Proper
Orthogonal Decomposition (POD), whereby it is possible to compute the appropri-
ate basis for the displacement field in the spirit of Nonlinear Transformation Field
Analysis (NTFA). Inexpensive fully computable error bounds are obtainable, and the
performance of the error estimates is illustrated in this paper.

1 Introduction

This paper is devoted to the computationally efficientmulti-scale simulation of hydro-
mechanical coupling and Darcy-type fluid transport in heterogeneous pororelastic
materials such as, for example, clayey soil, rock or concrete. In such materials,
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heterogeneity might become manifest in domains with different saturating fluids
(compressibility contrast) or in domains with fluctuating mechanical properties of
the solid skeleton (stiffness and permeability contrast). Moreover, heterogeneity may
occur on multiple length scales, ranging from the pore scale to much larger length
scales (e.g. in layered soil or rock formations).

Hence, it is a challenge to model hydro-mechanical coupling and fluid trans-
port in a computationally efficient way, and it is therefore imperative to develop
and implement suitable simulation strategies. This paper aims at providing a review
of our recent and ongoing research in this field: In Sect. 2, we demonstrate how to
treat multi-scale fluid transport associated with hydro-mechanical coupling in poroe-
lastic media by means of Variationally Consistent Computational Homogenization
(VCH). To ensure computationally efficiency, we enrichVCHwithNumericalModel
Reduction (NMR). In Sect. 3, we present a strategy to estimate the approximation
error associated with NMR in an inexpensive way.

2 Computational Homogenization with Model Reduction

In this section, we present the VCH concept for multi-scale poroelastic media com-
bined with NMR. For a more detailed introduction to the overall concept of VCH,
we refer to Larsson et al. [1]. For the related field of thermo-elasticity, Temizer
and Wriggers [2] might be a useful reference. The NMR concept for poroelastic
media has recently been discussed in detail in Jänicke et al. [3]. The two-scale space-
variational formulation of linear poroelasticity can be expressed as the problem of
finding the displacement u(•, t) and the fluid pressure p(•, t) in the appropriately
defined two-scale trial set that solve

∫
�

[
a(u)

� (u; δu) − b�(p; δu)
]
d� =

∫
�

(u)
N

tp · δu d�, (1a)

∫
�

[
b�(δp; u̇) + m�( ṗ; δp) + a(p)

� (p; δp)
]
d� =

∫
�

(p)
N

wp δp d�, (1b)

for suitable (dual-scale) test functions δu and δp. The pertinent space-variational
forms in (1) are defined as

a(u)

� (u; v) := 〈ε[u] : E : ε[v]〉�, a(p)
� (p; q) := 〈ζ [p] · K · ζ [q]〉�, (2a)

b�(p; v) := 〈α p I : ε[v]〉� = 〈α p (v · ∇)〉�, m�(p; q) := 〈β p q〉�. (2b)

Here, we use the linear symmetric strain ε and the pressure gradient ζ with the
material properties E (fourth order elasticity modulus expressed via shear modulus
G and bulk modulus K ), K (second order permeability tensor), α (Biot coefficient)
and β (intrinsic compression compliance of the pore fluid). Moreover, angle brackets
represent volume averaging over the square/cubic RVE domain �� located at each
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macro-scale spatial point x̄ ∈ �. Following the standard approach of so-called first-
order homogenization, we decompose the sub-scale fields u and p into macro-scale
parts, uM and pM, and micro-scale or fluctuating parts, uμ and pμ, within each RVE
such that

u = uM[ū] + uμ, with uM[ū](x, t) := ū + h̄(t) · [x − x̄], h̄ := ū ⊗ ∇,

(3a)

p = pM[ p̄] + pμ, with pM[ p̄](x, t) := p̄ + ζ̄ (t) · [x − x̄], ζ̄ := ∇ p̄. (3b)

Choosing purely macroscopic test functions δu = uM[δū] and δp = pM[ p̄] leads to
the homogenized macro-scale problem

∫
�

σ̄ : [δū ⊗ ∇]d� =
∫

�
(u)
N

t̄p · δū d�, (4a)

∫
�

˙̄�δ p̄ d� +
∫

�

[ ˙̄Q − q̄
]

· ∇δ p̄ d� =
∫

�
(u)
N

w̄pδ p̄ d�, (4b)

with the macro-scale fields

σ̄ = 〈σ 〉� = 〈E : ε[u] − α p I〉�, (5a)

q̄ = 〈w〉� = −〈K · ζ [p]〉�, (5b)

�̄ = 〈�〉� = 〈φ + α I : ε[u] + β p〉�, (5c)

Q̄ = 〈� [x − x̄]〉� = 〈[φ + α I : ε[u] + β p] [x − x̄]〉�. (5d)

In addition, t̄p and w̄p are defined as the suitably homogenized quantities on the
Neumann boundary parts. Choosing purely micro-scale test functions instead leads
to

a(u)

� (u; δu) − b�(p; δu) − d(u)

� (λ; δu) = 0, (6a)

b�(δp; u̇) + m�( ṗ; δp) + a(p)
� (p; δp) + d(p)

� (μ; δp) + μ̄ 〈〈δp〉〉� = 0, (6b)

−d(u)

� (δλ; u) = −d(u)

� (δλ; uM[ū, h̄]), (6c)

d(p)
� (δμ; p) = d(p)

� (δμ; pM[ p̄, ζ̄ ]), (6d)

δμ̄ 〈〈p〉〉� = δμ̄ p̄. (6e)

Here, the weak constraints (6c, 6d) ensure micro-periodicity of the fluctuation fields
uμ and pμ. Hence, we define the variational operators

d(u)

� (λ, u) := 1

|��|
∫

�+
�

λ · �u�� d�, d(p)
� (μ, p) := 1

|��|
∫

�+
�

μ �p�� d�, (7)
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where we introduced the “difference operator” �•��(x) := •(x) − •(x−(x)); x ∈
�+

� is an “image point” whereas x−(x) ∈ �− = �� \ �+
� is the corresponding “mir-

ror point”. Moreover, (6e) imposes, in a weak fashion, that the macroscopic pressure
p̄ can be computed as the surface average 〈〈p〉〉� of the pore pressure of the RVE
boundary. Finally, due to rigid body invariance, we set ū = 0.

It is important to remark that the macro-scale formulation (4) together with the
RVE formulation (6) and the averaging rules (5) enable us to execute two-scale
simulations in FE2 fashion. However, we aim at making use of the transient but
linear properties of the equation system. Therefore, we introduce an alternative
decomposition of the solution fields into stationary and transient parts according
to u = ustat{ε̄, p̄, ζ̄ } + ũμ and p = pstat{ε̄, p̄, ζ̄ } + p̃μ. The variables λ, μ and μ̄

can be decomposed accordingly. The stationary fields can be computed from the
stationary problem

a(u)

� (ustat; δu) − b�(pstat; δu) − d(u)

� (λstat; δu) = 0, (8a)

a(p)
� (pstat; δp) + d(p)

� (μstat; δp) + μ̄stat〈〈δp〉〉� = 0, (8b)

−d(u)

� (δλ; ustat) = −d(u)

� (δλ; uM[ū, ε̄]), (8c)

d(p)
� (δμ; pstat) = d(p)

� (δμ; pM[ p̄, ζ̄ ]), (8d)

δμ̄ 〈〈pstat〉〉� = δμ̄ p̄. (8e)

Since the problem in (8) is linear and local in time, we may compute the solution in
terms of “sensitivities” for the macroscopic loading cases ε̄, p̄ and ζ̄ such that

ustat(x, t) =
∑
i, j

û(ε̄)
i j (x)(ε̄(t))i j + û( p̄)

(x) p̄(t) +
∑
i

û(ζ̄ )

i (x)(ζ̄ (t))i , (9a)

pstat(x, t) =
∑
i, j

p̂(ε̄)
i j (x)(ε̄(t))i j + p̂( p̄)(x) p̄(t) +

∑
i

p̂(ζ̄ )

i (x)(ζ̄ (t))i . (9b)

The truly transient RVE problem can now be defined as

a(u)

� (ũμ; δu) − b�( p̃μ; δu) − d(u)

� (λ̃
μ; δu) = 0, (10a)

b�(δp; ˙̃uμ) + m�( ˙̃pμ; δp) + a(p)
� ( p̃μ; δp)

+d(p)
� (μ̃μ; δp) + ˜̄μμ 〈〈δp〉〉� = −b�(δp; u̇stat) − m�( ṗstat; δp), (10b)

−d(u)

� (δλ; ũμ
) = 0, (10c)

d(p)
� (δμ; p̃μ) = 0, (10d)

δμ̄ 〈〈 p̃μ〉〉� = 0. (10e)

We establish NMR in the spatial domain by introducing a set of linearly inde-
pendent global basis functions { p̂a(x)}MR

a=1 called “pressure modes”. The pressure
modes are identified in a training phase by solving (10) with different loadings u̇stat
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and ṗstat with a POD of extracted snapshots of p̃μ. The “exact” solution p̃μ is then
approximated by p̃μ

R as

p̃μ(x, t) ≈ p̃μ
R(x, t) :=

MR∑
a=1

p̂a(x)ξa(t), (11)

where {ξa(t)}MR
a=1 are “mode activity” parameters. Furthermore, since (10a) is local

in time, we can compute the pertinent displacement basis fields ûa such that ũR =∑MR
a=1 ûa(x)ξ a(t). Inserting these approximations into (10b) allows to extract an

evolution equation for the mode activity parameters

[
Ŝ + M̂

]
ξ̇ + K̂ ξ = f̂

[ ˙̄ε, ˙̄p, ˙̄ζ
]
, (12)

where the matrix entries are defined as

Ŝab := a(u)

� (ûa; ûb) = 〈ε[ûa] : E : ε[ûb]〉�, (13a)

M̂ab := m�( p̂a; p̂b) = 〈β p̂a p̂b〉�, (13b)

K̂ab := a(p)
� ( p̂a; p̂b) = 〈ζ [ p̂a] · K · ζ [ p̂b]〉�. (13c)

Finally, the RHS of (12) is defined as

f̂a
[ ˙̄ε, ˙̄p, ˙̄ζ

]
= −

∑
i, j

[
b̂(ε̄)
i j,a + m̂(ε̄)

i j,a

]
( ˙̄ε)i j −

[
b̂( p̄)
a + m̂( p̄)

a

] ˙̄p −
∑
i

[
b̂(ζ̄ )
i,a + m̂(ζ̄ )

i,a

]
( ˙̄ζ )i , (14)

where b̂(•̄)•,a := b�( p̂a; û(•̄)
• ) and m̂(•̄)•,a := m�( p̂a; p̂(•̄)• ).

Altogether, the FE2 problem of solving the macro-scale problem (4) and the RVE
problem (6) in a nested fashion is reduced to solving the macro-scale problem (4)
together with the evolution equation (12) “online” whilst the linear transient RVE
problem (10) can be pre-computed in an “offline” phase.

We conclude this section with a numerical simulation of a 3D consolidation test.
We assume a microstructure consisting of spherical inclusions embedded in a matrix
material. Both, matrix and inclusions, are chosen poroelastic. An example RVE
realization is displayed in Fig. 1. The poroelastic material parameters of the two
phases (matrix/inclusions) are chosen as: G = 3.1/6.1GPa, K = 3.7/7.4GPa, α =
0.9075/0.8150, β = 0.06185/4.563GPa−1, k = 10/100mD(Pas)−1, where
1mD≈1e-12m2. After having pre-computed the linear transient RVE problem
“offline” and, thereby, after having identified the relevant systemmatrices (13),we are
able to solve the (reduced) FE2 problem of a macro-scale consolidation experiment
where the macro-scale computation domain is defined as a vertical column (length
L̄ = 20m) under a vertical load. Solving (4) together with (12) “online” results in
the transient settlement of the surface shown in Fig. 2. The computation times on a
standard desktop computer are 1000 s for the RVE pre-computations (“offline”) and
400 s for solving the reduced FE2 macro-scale problem (“online”) with 16 pressure
modes.
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Fig. 1 Poroelastic RVE
containing 8 spherical
inclusions. L� = 0.2m,
r = 4.15e-2m, n = 0.3

Fig. 2 Settlement (surface
displacement) of a
macro-scale consolidation
test of a column with length
L̄ = 20m

3 Estimation of the NMR Error for the RVE Problem

It is clear that the reduced solution is an approximation of the finite element solution,
and the reduced basis is yet another source or error in addition to e.g. space- and time-
discretization errors and modeling errors from the computational homogenization
framework. In a two-scale setting this error will propagate between the scales and
also affect the macroscopic solution. In order to control the accuracy of the solution it
is of interest to estimate the error. A numerically efficient a posteriori error estimator
for the pertinent RVE problem was presented in Ekre et al. [4], as a step towards a
full two-scale error estimation algorithm. For simplicity the estimator was developed
for the case of selective homogenization1 and with homogeneous Dirichlet boundary
conditions for the fluctuation fields. In addition, the estimator considers only the error
stemming from NMR by assuming that the discrete, fully resolved, finite element
solution is exact, i.e. p̃μ = p̃μ

h where p̃μ
h is the finite element solution. Inwhat follows

we summarize the core concepts of the estimator and refer to [4] for a thorough
description.

1 The pressure field lives solely on the microscopic scale, whereas the displacement field has both
a macroscopic and a microscopic part, as usual.
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The error equation for the error in pressure, g(x, t) := p̃μ(x, t) − p̃μ
R(x, t), is

defined as
A�(g, q) = L(q) − A�( p̃μ

R, q) =: R�(q), (15)

where A�(•, �) = L�(�) is (10b) integrated in time. Hence, the residual R�(•) is
explicit in terms of the reduced approximation and the macroscale data. Ignoring
space and time errors results in the Galerkin-type property R�(Rq) = 0, where
R is the projection onto the reduced space.

In order to estimate the error in terms of predefinedQuantities of Interest (QoI) we
define a linear output functional. As example, consider time-averaged homogenized
stress as the QoI:

Q�(q) = 1

|I | |��|
∫
I

∫
��

[e1 ⊗ e1 : E : ε[u{q}] − αq] d� dt. (16)

The output functional is used to define the dual problem, i.e.

A�
�( p̃μ�, q) = Q�(q), (17)

where A�
�(•, •) is the dual of A�(•, •) and p̃μ� is the dual solution. We can now

introduce a reduced approximation and define an error equationwith a corresponding
residual, in a similar fashion as for the primal problem. Once again the residual is
explicit in terms of macroscale data and the reduced solution.

To proceed with the estimate we define an auxiliary bilinear form, Â�(•, •),
with the key feature that it is symmetric and coercive, and it satisfies the condition
Â�(q, q) ≤ A�(q, q), for any field q. We may now introduce the auxiliary error
equations,

Â�(ĝ, q) = R�(q), Â�(ĝ�, q) = R�
�(q), (18)

where a key feature is that ĝ and ĝ� can be solved for locally in time.

We note that Â�(•, •) naturally defines a norm ‖•‖ =
√
Â�(•, •), and we can

show that ‖g‖ ≤ ∥∥ĝ∥∥ and ‖g�‖ ≤ ∥∥ĝ�
∥∥. Furthermore, the quantities

∥∥ĝ∥∥ and
∥∥ĝ�

∥∥
can be bounded explicitly by the discrete residuals.

Finally, the explicit fully computable bound on the Quantity of Interest is obtained
by combining the error representations ĝ and ĝ� using the bounding properties of
the auxiliary form to obtain upper and lower estimates for the error in the Quantity
of Interest, i.e. E−

Q,est ≤ Q�(g) ≤ E+
Q,est, where

E±
Q,est = ±1

4

[∫
I

‖A(t)‖2m
λ

dt + 2 ‖B0‖2m + 2 ‖CT‖2m
]

, (19)

where ‖•‖m := √
m�(•, •), cf. (2b), and where A(t), B0, andCT are explicit expres-

sions in terms of macroscale data and the reduced solutions. λ is a computable eigen-
value from the spatially discretized problem.
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Fig. 3 Exact and estimated
relative error in time
averaged homogenized stress
for the RVE problem using
the first 30 POD modes

Fig. 4 Effectivity index for
the estimator relating the
estimated error to the exact
error

To demonstrate the estimator, consider the RVE from Sect. 2. The macroscopic
data is prescribed in terms of predefinedmacroscopic strain histories for ε11, ε22, and
ε33, defined as in Fig. 10 in [4]. Time-averaged homogenized stress, σ 11, is chosen for
the Quantity of Interest, as exemplified in (16). In Fig. 3 the estimated relative error,
EQ,est, and exact relative error, EQ, in time-averaged homogenized stress is plotted for
solutions with NR = 1, 2, . . . , 30 PODmodes. In Fig. 4 the corresponding effectivity
index η = EQ,est/

∣∣EQ

∣∣ is plotted. We note that, while the estimate bounds the exact
error from above, it overestimates the true error by orders of magnitude. However,
what is of importance for a real application is the actual error which is indeed quite
small even for moderate number of modes.

4 Conclusions

We have presented a method for reducing the RVE problem arising from computa-
tional homogenization of heterogeneous poro-elastic materials. The reduced basis,
constructed using POD modes, transforms the RVE problem(s) to a system of lin-
ear evolution equations. Using a reduced basis introduces an extra source of errors
to the model. As an initial step to a full two-scale error estimator we presented an
estimator for the RVE problem with guaranteed bounds on the NMR error. Potential
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future developments include application to non-linear problems, and, for the estima-
tor, a scheme for adaptively selecting the appropriate (number of) modes for each
individual RVE problem.
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Abstract This chapter provides an overview and perspectives of the master-master
contact formulation, as a strategy to model pointwise contact between bodies. The
formulationmay be applied togetherwith the Finite ElementMethod (FEM), theDis-
crete Element Method (DEM) and Multibody Dynamics (MBD). The Local Contact
Problem (LCP) is presented and discussed, as well as its degeneration concept. An
example of application is provided, such as current challenges and possible directions
of research on the subject.

1 Introduction

Mathematical models involving contact between rigid or flexible bodies are of great
interest in mechanical sciences and engineering. In literature, it is possible to iden-
tify distinct techniques to address such kind of problem, particularly by engineers,
mathematicians and physicians. However, all share a common aspect that has to be
included in the model, which is the main mechanical characteristic of the contact
phenomenon: a constraint that does not permit penetration between the involved
bodies.
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Let two bodies BA and BB be candidate to contact. In a given configuration, their
external surfaces are �A and �B . In a scenario of contact occurrence, one may name
�c as the contact region (or contact patch), shared by subsets of material points from
�A and �B . In �c, one may find pairs of material points in �A and �B that define
local contact interactions. The overall contact action is distributed on �c, being an
integral quantity.

1.1 Master-Slave Scheme

Asusually�c is unknownapriori, in order to handle contact occurrence in a numerical
model one needs first to establish which are the pairs of material points on both
surfaces�A and�B , which are candidate to contact. This can be done by the classical
procedure called “master-slave”, in which slave points xAs are elected in �A. Their
counterparts candidates in the so-called “master” surface�B are here denoted by xB .
One has to find, for each slave point, which is its counterpart in �B . This is done
by the solution of a Local Contact Problem (LCP), interpreted in this context as an
orthogonal projection: a geometrical problem. The solution of the LCP for a given
slave point is x̄B . Let nB be the external normal direction of the master surface,
evaluated at x̄B . With that, a gap quantity may be defined as:

gn = (xAs − x̄B) · nB . (1)

The sign of gn holds an important information: penetration occurrence (or not) of a
given slave point onto the master surface. To detect the contact occurrence, one has
to solve, for each configuration of interest, the LCP for a collection of slave points
and, after, for each one, verify the condition given by gn ≥ 0. When contact takes
place, one can represent the contact normal pressure on the interface by pn . Finally,
it is possible to write the Karush-Kuhn Tucker (KKT) conditions to characterize the
frictionless contact mechanical constraint:

gn ≥ 0, pn ≤ 0, gn pn = 0. (2)

Equation (2) may be interpreted as a condition of non-penetration. When the bodies
are not in contact, KKT conditions are fulfilled because gn > 0 and pn = 0. When
contact takes place, a contact traction pn �= 0 appears, but in this case gn = 0. Thus,
contact pressure may be interpreted as a contribution for each body’s Neumann
boundary condition, thus introducing a distributed load on �c in order to fulfill the
required mechanical constraint of non-penetrability.
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1.2 Contact Contributions in a Numerical Model

In a numerical model, to address contact one has to (i) identify if contact occurs and
(ii) include proper mechanical constraints in the model, in case of contact detection.
For sake of simplicity we here discuss only the contact normal contributions. The
following contact potential Wc may be defined:

Wc =
∫

�c

λngnd�c, (3)

where λn is a Lagrange multiplier function defined on �c. The first variation of Wc

gives

δWc =
∫

�c

(δλngn + λnδgn) d�c, (4)

which can be interpreted as a contact contribution, to be included together with other
terms on the weak-form of a set of differential equations of motion of a multibody
system. The assumptions regarding the flexibility of the bodiesmay introduce distinct
strategies to obtain the equations of motion. One may find in [1, 2] a view from the
FEM perspectives to model flexible bodies, while in [3, 4] the focus is given to rigid
bodies.

In the context, pn = λn gives a natural interpretation of the Lagrange multiplier,
from the physical point of view. A key point to describe the contact non-penetration
constraint and its forthcoming contributions to the model lies on the definition of the
gap quantity gn , which is a result of a geometrical description, such as the master-
slave scheme, and the solution of the corresponding LCP.

To obtain the integral terms in Eq. (4) onemay find distinct techniques. A possibil-
ity is to sample slave points on�A and attribute to each one an area of influence. Then,
the integral term is approximated as a collection of pointwise contacts, whereas each
one has a single LCP problem. This is referred in literature as the “node-to-segment”
approach, since it is a natural way to handle the problem when modeling the bodies
using the FEM. Each node or integration point, therefore, is a natural candidate to
be a slave point. As examples of references, the reader may find in [5] some initial
discussions on this strategy, while in [6] there are some discussions on the patch-test.

Another alternative is to keep the integral aspect onEq. (4) and compute it choosing
integration points as slave points. Then, the so-called surface-to-surface approaches
are developed, and theMortarMethod schemes are of great interest (see e.g.: [7–10]).

Here we will not enter in the discussion of the methods that may be employed
to fulfill contact constraints. The presentation is made with the Lagrange multiplier
method, only. The reader finds alternatives, such as the penalty method, the aug-
mented Lagrange method, among others, which are well described in [11].
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2 Pointwise Contact

There are scenarios in which the surface patch �c is small, when compared to geo-
metric scales of interest in the model. Then, one may simplify Eq. (4) as follows:

δWc = δλngn A + λnδgn A, (5)

where A is the area of the contact patch. This represents an homogenization of the
contact traction, interpreted as a pointwise action. In our overview here presented
we are restricted to the normal direction. The normal force magnitude is given by
|λn An|. One may enhance Eq. (5) to include tangential (friction) terms by a similar
procedure (see [11]).

2.1 Master-Master Scheme

In particular scenarios of pointwise contact, the mechanical representation of contact
can be done by a single pair of action-reaction forces. Based on that, in these cases
the idea of not choosing a priori a set of slave points on a surface and performing
the master-slave procedure may be sought. Indeed, one may include on the LCP
additional information, thus encompassing both surfaces nature as “masters” and
seek for a pair of material points candidate to contact. With that, we abandon the
intrinsic biasing of surfaces present on the master-slave scheme. The location of a
pointwise mechanical action-reaction would be found in both �A and �B . This idea
is the basis of the so-called master-master contact scheme.

This kind of strategy may be employed in a natural way when addressing the con-
tact between beams in a FEMcontext, as proposed in [12, 13] and further enhanced by
[14]. The topic is also addressed in [15, 16], among other contributions in literature.
Beam self-contact with this kind of technique is done in [17].

The main drawback is the possibility of non-uniqueness of the LCP when one
has parallel beams (or more generally, conformal contact conditions). When this is
the case, the pointwise mechanical representation of contact loads would be better
suited as a distributed load, as long as the action is broadly distributed. This may
represent scenarios of a distributed contact action along a line (or a curve in space)
or along an area (flat or curved).

When this is the case, alternative approaches based on the master-slave schemes
appear as a way to replace the master-master approach. A prior choice of slave points
would change the LCP and eliminate its non-uniqueness. The difficulty on that, how-
ever, lies on the fact that a given problem of interest may present a transition from
pointwise to non-pointwise contact actions (or the opposite) along the model evolu-
tion. For such cases [18] introduced a model to provide a smooth change between
both approaches and [19] created a scheme to add more points to a master-master-
based contact description, when almost parallel beams appear. We may note that all
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Fig. 1 Surfaces and the
vector gap quantity
definition. Adapted from
[22]

the complexity of this kind of model lies on the LCP and in a proper definition for
a gap quantity. Therefore, it is related to geometry. The concept of master-master
contact degeneration is a way to circumvent this geometric problem (see Sect. 2.1.2).

2.1.1 Surface-Surface Approach

Based on seminal ideas of beam-to-beam contact, [20, 21] have proposed a surface-
surface approach to handle the contact between beams, formulating the LCP as a
4-variable problem. Figure1 shows two parameterized surfaces in a given configu-
ration. One may define convective coordinates for both, organized as cA = [

ζA θA
]

and cB = [
ζB θB

]
. It is interesting to consider that surfaces may deform. For that,

one may introduce two vectors of general degrees of freedom (DOF) d A and dB ,
which rule surfaces �A and �B , respectively. Next, one may define the vector gap
quantity g:

g = �A (cA, d A) − �B (cB, dB) (6)

It is convenient to introduce the vectors c = [
ζA θA ζB θB

]T
and d = [

dT
A dT

B

]T
.

With that, the LCP in this context is defined as: given a fixed d, find the particular
set of convective coordinates c̄ = [

ζ̄A θ̄A ζ̄B θ̄B
]T

such that the following relations
hold: ⎡

⎢⎢⎣
�A,ζA ·g
�A,θA ·g

−�B,ζB ·g
−�B,θB ·g

⎤
⎥⎥⎦ = o. (7)

One may interpret Eq. (7) as a set of orthogonality relations. When all are fulfilled,
one may illustrate the gap vector as in Fig. 1.
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The proposed LCP can be viewed as an optimization problem. If one defines an
objective function f1 (c) = 1

2 g · g (see e.g.: [22]), the condition ∇ f1 = o leads to
Eq. (7). Therefore, the seek for this solution may be seen as a search for a stationary
point of f1. Unfortunately, not always the solution of interest is a minimum. When
handling contact in practical problems, we have to identify overlapping surfaces
and, in these cases, seek for a maximum penetration solution. This creates certain
complexity when addressing this kind of problem numerically (see [23] for details).

2.1.2 Degeneration of the Surface-Surface Approach

The convexity of the optimization problem given by the LCP depends on �A and
�B . Conformal surfaces approaching contact interaction represent an example that
leads to non-uniqueness of the solution c̄. In these cases, one finds null eigenvalue(s)
on the Hessian ∇2 f1. This leads to a limitation in master-master surface-surface
scheme. However, the possibility of degeneration of the LCP presented in [22, 24]
is a possibility to remedy this drawback.

The idea of degeneration of the LCP is quite simple: instead of keeping the LCP as
a 4-variable optimization problem, in certain cases of interest onemay choose a priori
fixed value(s) for selected convective coordinate(s), thus reducing the dimension of
the LCP. As a simple case, the reader may think of a particular case, in which a prior
choice is made fixing values to known ζ̄A and θ̄A. With that, the LCP is re-defined,
now keeping as variables only ζB and θB . Note that, geometrically, this proposed case
recovers the master-slave procedure described in Sect. 1.1. However, this is only one
of the main possibilities of degeneration. In [22], a degenerative operator P s was
proposed as follows:

cs = PT
s c, (8)

where cs is the vector with degenerated convective coordinates, with dimension
s ∈ N|1 ≤ s ≤ 4. The operator P s not only includes a projection onto a possibly
smaller space of convective coordinates, but a basis change. With a proper choice
of degenerative operator, one may recover the curve-curve master-master scheme,
here discussed in the context of beam-to-beam contact (Sect. 2.1). One obtains, in
this case, a 2-variable LCP, in which a single convective coordinate is kept free
for each contacting surface. It is also possible to create distinct contact geometrical
descriptions, such as curve-surface interaction, leading to a 3-variable LCP, or point-
curve interaction, which leads to a single-variable LCP.

We see LCP degeneration applicability mainly for two scenarios: (i) when non-
uniqueness is expected and (ii) when a known singularity exists in a contact surface.
The first represents a way to avoid facing the null eigenvalues of the LCP Hes-
sian. When conformal contact is expected, a collection of material points may be
chosen a priori as contact-candidate in a conformal contact locus. This naturally cre-
ates a distributed action composed of multiple pointwise loads, leading to a collec-
tion of master-slave schemes, recovering ideas of the node-to-segment approach for
FEM. The second application permits usage of master-master surface-surface-based
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approaches in non-smooth surfaces. When a sharp edge or a non-smooth transition
of normal direction occurs in a surface, one may abandon certain orthogonality rela-
tions in Eq.7 by using the degenerative operator. With that, it is possible to handle
cases of contact involving tips of surfaces with singularities, for example.

As an example to illustrate how LCP degeneration may be useful, we here show
a simple scenario of contact involving domino blocks. Let two domino blocks be
resting in the ground, as shown in Fig. 2a. Each block is represented by a single
beam finite element, which external surface is plot in Fig. 2. Each lateral surface of a
beam is parameterized as in [20]: an extruded super-elliptical cross-section surface,
which is the region assumed as candidate to contact with the ground or with the other
domino block. The ground is considered as flat and rigid.

The initial scenario is already problematic: the bottom surfaces of domino blocks
are not included in the contact model and they touch the ground. The tip of each
beam lateral surface, however, also touches the ground. To include this effect in the
model and use only the lateral surfaces of the beams to define contacts, one can
introduce the degeneration concept. The lateral surfaces of the beams are obviously
non-orthogonal to the ground. Then, one may establish the contact between the
ground and each beam lateral surface with degenerations on each surface by a pre-
choice of material points exactly on each domino block bottom location, along the
perimeter of that cross-section. This leads to a collection of master-slave LCP’s,
straightforwardly solved and leading to the set of pointwise contact actions as shown
in Fig. 2a. Figure2e shows a representation of friction in this scenario, which has
actually null forces.

In a second moment, an external force pulls the right block towards the left one.
The right block pivotes in the ground with a normal and friction re-distribution, as
shown in Fig. 2b and f, respectively. In the sequence, a lateral impact occurs between
the upper cross-section of the right block and the lateral of the left one. Figure2c
depicts the normal forces representation in a given time-frame during this interac-
tion, and Fig. 2g shows the corresponding friction forces, much more pronounced.
For this interaction we employed a degeneration on the right block beam lateral sur-
face, thus fixing a single convective coordinate, associated with the top of the block.

a b c d

e f g h

Fig. 2 Sequence of frames for the contact interaction between two domino blocks. Figure a, b,
c and d shows arrows representing normal forces. Figure e, f, g and h shows arrows representing
friction forces, where the size of each arrow is proportional to the force magnitude
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However, the position along the perimeter of the cross section of an expected point-
wise interaction was set free, which is naturally chosen along the model evolution by
a sequence of 3-variable LCP’s, solved as long as the time-integration and contact
detection evolve.

Finally, at the end, the bottom of the left block touches the lateral surface of the
right one, leading to final configuration (static), whose normal forces are represented
in Fig. 2d and friction in Fig. 2h. The degeneration treatment for this new contact
leads to a similar 3-variable LCP, as previously commented.

This simple example is full of singularities and non-uniqueness scenarios, and
shows ideas on how the LCP degeneration in the context of surface-surface master-
master formulation may be useful. All the contacts herein described were addressed
by a single numerical implementation, only employing distinct degenerative opera-
tors, in each case. This is quite convenient and avoids separate treatments for distinct
geometrical scenarios: many cases are embedded in the same contact formulation.

3 Challenges for Future Research

We see many interesting perspectives for future research on the master-master con-
tact formulation. As we already discussed in this chapter, the main applications are
found in cases where a contact pointwise description is natural. This includes many
scenarios of beam-to-beam contact. However, there are practical cases of confor-
mal contact, which may be addressed by the degeneration of the LCP. Here the
main challenge is to automatically identify these situations and degenerate the LCP,
accordingly. This would lead to a general beam-to-beam formulation based on a
surface-surface approach, which also may be used in the context of rigid-bodies.

In [25] some applications of themaster-master techniques were done inmultibody
rigid-flexible dynamics context. Particularly, recent applications involvingwheel-rail
contact may be found in [26]. The well-known algorithms in multibody-dynamics
field for representing rolling with creepage scenarios may be tested together with
the master-master approach (see e.g.: [3] for a broad view of these creep constitutive
laws in a computational framework). Other local constitutive tangential or normal
interface lawsmay enhance the pointwise description of contact by themaster-master
method, introducing local bodies’ flexibility, for example. These are also topics for
further investigations.

We also see in the DEM a huge possibility of usage of the master-master contact
formulation. This may be done for complex shapes of discrete elements, described
by NURBS parameterizations or complex polyhedra. In the last, the degeneration
concept has to be largely used, since singularities are prone to be present in every
contact interaction. This leads to interesting applications for engineering problems,
such as granular materials with complex grain shapes, such as sand or railway ballast,
to give some examples. The detailed shape description for granular particles is a need
when aiming at reproducing realisticmacroscale properties of somematerials, such as
sand. In this context, the surface-surface approach of the master-master formulation
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together with its degenerations may be extremely helpful as proposed in the work
[27].

Furthermore, the solution and characterization of the LCP and its degenerations
still claim an in-depthmathematical discussion. Therefore, we see here also space for
developments in the basis of themathematical formulation,which can give interesting
insights also for further novel applications.
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Remarks on the History of Glacier
Research and the Flow Law of Ice

Dietmar Gross

I’ve known Peter Wriggers personally since the late 1980s. Our
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to the TU Darmstadt in 1990. At the Institute of Mechanics,
Wriggers and I formed a joint working group, in which there
was a climate, both scientifically and personally, that can hardly
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friends survived his move to Hannover in 1998 uninfluenced and
they will undoubtedly continue in the future. The special
relationship with the Mechanics in Darmstadt is underlined by
the honorary doctorate that my university awarded him in 2015.

Abstract The paper provides a short review on the behavior of glacier ice from the
beginnings in the 17th century via the formulation of a flow law in the fifties of the
forgoing century up to the present. It is based in part on the recent extended review
by Hutter and Gross [1], but has been supplemented by additional aspects. It focuses
on the macroscopic constitutive description in the framework of classical continuum
mechanics while micromechanical aspects are only touched in passing.

1 Beginnings of Glacier Ice Research

The science of the physics of ice crystals started almost 500 years ago with Cardano,
followed by Kepler, Hooke, Dalton, the two Braggs and Pauling. Here, we are con-
cerned with naturally formed ice of glaciers, ice sheets and ice shelves which cover
more than 10% of earth’s land mass. Glaciers as natural phenomena at high altitudes
of mountainous regions were attractive, if simply for their mystic appearance. Prior
to the 17th century, not even the deformability of glacier ice was recognized, cer-
tainly not admitted. For example, Johann Moraltus (1645–1733) postulated in 1669
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Glaciers to be rigid objects. Only valley inhabitants close to them knew it better and
accepted some deformability.

With this background in the year 1705, Johann Jakob Scheuchzer (1672–1733)
visited Swiss Glaciers and proposed a theory on their motion. He knew from physics
that water is expanding in the freezing process to ice, and that the force of expansion
is so large that cartridge rounds which are filled with water that freezes, are blasted
into pieces. Scheuchzer assumed that the water in glacier fissures and crevasses that
freezes would extend with such excessive power that its force will unquestionably
push the glacier downward. This concept, often called Dilatation Theory, was later
adopted by Jean de Charpentier, Louis Agassiz and others. Basic thought of this
concept was the belief that glaciers are permanent storehouses of coldness, capable
to freeze all water that percolates through them.

About in the year 1760, Altmann and Grüner brought forward their opinion that
glaciers would move by means of sliding along their beds. Almost 40 years later,
Horace Bénédict de Saussure (1740–1799) revived this concept, which became the
so-called de Saussure Theory.

The 18th century also brought the first ideas about the deformability of ice. Simply
the concept of sliding should have brought the science mountaineers to the postula-
tion of the deformability of glacier ice. Yet, none of the above mentioned scientists
attributes the terms viscosity and kneadability to characterize the deformability of
the ice, even though the appearances of many glaciers suggest these terminologies,
if it were not so contradictory to any daily experience with brittle ice. In 1773 André
Bordier fromGeneva compared glacier ice with mollified wax and mentioned for the
first time its flexibility and extensibility. However, Bordiers concepts were unheard
in the natural scientific community in the1770s. They were reborn more than 60
years later by Louis Rendu, the later bishop of Annecy (Fig. 1). In 1840 he submitted
his Théorie des Glaciers de la Savoie to the Royal Academy of Savoy where he states
among others, [2]:
– Between Mer de Glace and a river, there exists such a perfect similarity that it is
impossible to find a circumstance in a glacier which would not equally occur in a

Fig. 1 a Louis Rendu, b James David Forbes, c John Tyndall
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river.
– There exists a large set of facts, which seem to force us to believe that glacier ice
possesses some sort of extensibility, which allows it to adjust to the local circum-
stances, to thin, to swell and to contract as if it were a soft dough.

Of course, at this time, a characterization of viscous or plastic behavior of glacier
ice could not yet be phrased in terms of a constitutive relation.

2 First Measurements and Link with Young
Thermodynamics

First rough measurements of the flow velocity of a glacier were done by Franz Josef
Hugi (1791–1855) who spent in 1830–32 a lot of time on the Unteraar-Glacier.
The measurements were continued by Louis Agassiz (1807–1873) who periodically
undertook expeditions to this glacier since 1838. Here he set flowmarkers and drilled
holes to get some information about the velocity and the temperature distribution. In
1841, as a visitor ofAgassiz, the physicist JamesForbes (1809–1868) fromEdinburgh
observed thesemeasurements and heard the first time about Rendu’s theory. One year
later, in 1842, Forbes started his own, precise measurements with theodolites at the
Mer de Glace near Chamonix. Already in the same year, on basis of his observations
and data, he set the cornerstones of his viscous or plastic theory of glaciers which he
complemented by additional measurements in the following years until 1845 [3]. In
his theory he stated that a glacier essentially is a viscous (plastic) ‘semirigid’ flowing
mass containing a crack and vein-structure whose fluidity depends on parameters like
temperature, water contents and so on, [4]. In his numerous publications on glaciers
since 1843 he gave credit also to Louis Rendu who, on request, had sent him his
treatise.

Approximately at the same time the basic laws of thermodynamics have been
found. Though Carnot’s principle of 1824 initially was ignored, its importance was
recognized by William Thomson (the later Lord Kelvin) in conjunction with James
Prescott Joule’s work on the mechanical equivalent of heat of 1850. In 1851W.
Thomson reconciled both principles, postulating the 1st and 2nd law of thermody-
namics. It this context, a number of other scientists have to be mentioned, among
them Robert Mayer, Rudolf Clausius and Hermann von Helmholtz. The behaviour
of ice was an essential issue in this context. In fact, Thomson’s seminal paper starts
with the phenomenon that two ice blocks consolidate into one after inducing sur-
face melting by rubbing them together. From then on, melting or freezing of ice and
the young thermodynamics were closely linked. Melting of ice under pressure and
refreezing when pressure is reduced was later named by John Tyndall (1820–1893)
as regelation; it was unknown to James Forbes until mid-1850.

In 1855, John Tyndall started working on ice and glaciers. In the laboratory he
observed the deformability of ice under pressure, crack formation, fracture and rege-
lation. In addition, during a short visit to the Alps in 1856, which in subsequent
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years was followed by longer stays, he made his own impression of glaciers. This
was enough for him to attack Forbes in early 1857 and to completely put in question
his viscous glacier theory [5]. A main issue of the attack was the term ‘viscous’
which never was clearly defined by Forbes. For Tyndall this term described the prop-
erty of a fluid that could permanently be stretched under tension without fracture
what was obviously not the case for glacier ice. Contrary, he explained the ‘appar-
ent quasi-viscous’ behavior through continuous cleavage and refreezing, i.e. through
regelation.

From today’s perspective, both properties, viscous flow, micro and macro-
cracking combined with regelation contribute to the movement of a glacier, where
viscous flow is clearly the dominating mechanism. At that time, however, the harsh
attack did not lead to an objective scientific debate, but to the so-called ‘Great Glacier
Controversy’ between two parties which lasted until 1875. It was partly led by inex-
pert means and aroused public interest due to its heat.

3 Creep Law for Ice

At the mid 19-hundreds further progress in developing a physically based theory
for the motion of large ice masses was hampered by the nonexistence of a material
theory, coupled with the basic physical laws, and by the primitive state of experi-
mental techniques for the determination of the constitutive relations. Nevertheless,
the behavior of ice has been further investigated primarily on the laboratory scale.
Towards the end of the century, it waswell known that ice is a polycrystallinematerial
and that the single crystal has a hexagonal structure. McConnel and Kidd showed
around 1890 that ice under tension or bending can be severely plastically deformed
if this is done sufficiently slowly, see e.g. [6]. They also showed that a single crys-
tal deforms by slip on the basal planes. Further works in the first half of the 20th
century, such as Höppler [7] or Perutz and Seligman [8] dealt in particular with the
viscosity (plasticity) of ice and its dependence on temperature, crystal orientation,
etc. However, the final step to a macroscopic flow law did not take place; probably
because, unlike as in engineering for metallic materials. no need was seen for it yet.

The situation changed in the mid-50s of the previous century. In 1947 the all-
rounder Max Perutz, 1962 Nobel Prize Winner in Chemistry, wrote a report on the
state of research on the flow of glaciers, in which he called for the experimental deter-
mination of the creep rate of ice near 0 ◦C as a function of shear stress, crystal size,
crystal orientation and hydrostatic pressure [9]. Perutz was also the driving scientist
who, in 1949, brought together the Cambridge glaciologists, rheologists and metal-
lurgists, including Egon Orowan as prominent scientist, for a joint meeting on The
Flow of Ice and of other Solids; it can be regarded as the starting point of intensified
glacier ice research. Independently of the requested laboratory experiments, Perutz,
J. Gerrard and A. Roch, using a 130m long vertical steel tube, carried out since
1948 for over 3 years direct measurements of the velocity profile of the glacier at the
Jungfraujoch, see e.g. [10]. Their results in 1950 suggested a nonlinear relationship
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between shear strain rate γ̇ and shear stress τ in the form

γ̇ = k τ 2.3 (1)

where the stress exponent in the final publication of 1952 was corrected to n ≈
1.5 . . . 4. To the author’s best knowledge, this was the first time that a power law
was proposed to describe the macroscopic behavior of ice. Furthermore, the results
of these measurements did not support the ‘extrusion theory’ according to Streiff-
Becker, which assumed faster moving domains in the interior of the glacier. Also the
results of rigid-plastic ice models, which were still favored by Orowan and Nye at
that time, became questionable. In this context it should be mentioned that Norton’s
power law of 1929 for creep of metals in the higher temperature regime was well
known in the metal community but, though Orowan certainly knew this law, it had
not yet found its application to ice.

Laboratory creep tests on isotropic polycrystalline ice were done first under super-
vision of Perutz and Orowan in Cambridge by John Glen for uniaxial compression
(1952, 1953, 1955, 1974) and fully independently in Switzerland by Samuel Steine-
mann for uniaxial compression/tension and torsional shear (1954, 1956, 1958), see
e.g. [11, 12]. As a result of their tests both scientists proposed for the strain rate ε̇ in
a certain stress range the (uniaxial) power law

ε̇ = sign(σ ) f (T ) |σ |n with n = 2 . . . 4 . (2)

Here the function f (T ) describes the significant dependence on the temperature
T , which for temperatures distant from the melting point was approximated by the
Arrhenius-type relation f (T ) = K exp(−Q/RT ). For a fixed Temperature T and
a restricted stress or deformation range the exponent n is regarded as constant, but
in general it depends on these quantities: n = n(T, σ ). Note that for the strain rate
(velocity gradient) the notation ε̇ is used, which should not be confused with the time
derivative of the infinitesimal strain ε.

To make the power law (2) applicable to more general two- or three-dimensional
stress states in ice, John Nye [13] generalized it, by assuming that the material
behavior is isotropic, incompressible, independent of the 3rd invariant of the stress
deviator and that the stresses and strain rates are co-axial:

ε̇i j = ėi j = 3

2

ε̇ e
σ e

si j = 3

2
f (T ) σ n−1

e si j . (3)

In (3) the stresses σi j and strain rates ε̇i j are linked with the respective deviatoric
quantities si j and ėi j by si j = σi j − (σkk/3) δi j and ei j = εi j − (εkk/3) δi j while the
equivalent stress σ e and strain rate ε̇ e are defined as σ 2

e = 3
2 si j si j = 3 IIs and

ε̇2e = 2
3 ėi j ėi j = 4

3 IIė with IIs and IIė being the 2nd invariants of the stress and
strain rate deviators. For the sake of completeness, we give the 3rd invariant of the
stress deviator as well as the ‘effective’ and ‘octahedral’ quantities, which frequently
are used as alternatives: IIIs = det(s), τ 2

e f f = IIs = 3
2 τ 2

oct , ε̇
2
e f f = IIė = 3

2 (γ̇oct/2)2.
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Glen’s and Steinemann’s investigations were supplemented in the following
decades by various other tests under different loading conditions, most of which,
however, adhered to the structure of the material law (3), for references see e.g. [1].
For example, to improve the constitutive law, the power-function was replaced by
a sinh-function or by polynomials better matching the experiments. Furthermore,
to avoid the singularity for the viscosity, associated with the power law, a constant
residual stress has been incorporated.

One important issue was recognized early. While Glen’s experiments essentially
covered only the strain range ε < 10%, where secondary creep with minimum strain
rates prevails, Steinemann investigated also the strain range ε > 10%, i.e. tertiary
creep with accelerated strain rates, and he emphasized its relevance. The increased
strain rates can be explained by recrystallisation and texture formation or, in other
words, by deformation induced anisotropy. The flow data for secondary creep are
relatively easy to determine. To apply these data also for tertiary creep, the experimen-
talists, ignoring the anisotropy, simply introduced in the late 1970th a multiplicative
strain rate ‘enhancement factor’ E into the power law (3), see e.g. [14]. It is defined
as E = ε̇ter/ε̇min where the strain rates are measured at constant temperature and
stress at an initially isotropic ice, i.e. in general E depends (indirectly) on T and
σ . In the context of this rough simplification it is worth to be mentioned that large
polar ice masses are in the state of tertiary creep. Introducing E , the power law (3)
nowadays is often written in the form

ε̇i j = E A II (n−1)/2
s si j with A = A0 exp(−Q/RT ′) , (4)

where A0, R and T ′ are a constant, the universal gas constant and the temperature dif-
ference to the pressure melting point, respectively. The activation energy Q depends
on the temperature (cold and warm ice) and also n depends on the temperature and
the stress state but is usually set to n = 3 by default.

Due to the dependence of the numerous parameters on temperature, stress or
deformation state and rates, it is hardly surprising that the flow data used by different
groups vary widely and thus lead to uncertainties, especially in long-term forecasts,
see [1, 15].

4 Beyond the Power Law

In the research of large polar ice sheets or glaciers Glen’s (or Norton’s) flow law
(4) is extensively used, sometimes in slightly modified form, and it is implemented
in nearly all numerical simulation tools. Reasons for this are its simplicity and the
assumption or belief that this law captures the essential macroscopic properties of
the material. Nevertheless, there is evidence that this constitutive law has obvious
weaknesses and should be improved.

One weak point concerns the representation of the non-linear flow behavior. It
is well known from the material theory of incompressible, isotropic creeping fluids
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that the general form of the temperature dependent constitutive law can alternatively
be written as

ė = ψ1 s + ψ2 [s2 − 2
3 IIs 1] or ṡ = φ1 e + φ2 [e2 − 2

3 IIe 1]
with ψ1,2 = ψ1,2(IIs, IIIs, T ) , φ1,2 = φ1,2(IIe, IIIe, T ) ,

(5)

where ė and s are the strain rate and stress deviators and IIs,e and IIIs,e the 2nd and
3rd invariants of the stress and strain rate deviators; 1 is the unit tensor. Such a fluid
is called a Reiner-Riwlin1 fluid. It can be shown, that (51) consistently reduces to

ė = ψ s with ψ = ψ(IIs, T ) (6)

if independence of the 3rd invariant IIIs is postulated.
If ψ in (6) is chosen as ψ = E A[k + II (n−1)/2

s ] = E A[k + τ
(n−1)
e f f ], we obtain

as a special case Glen’s law (4), supplemented by a constant k to assure a finite
viscosity at zero stress. Smith and Morland (1981) have proposed the choice ψ =
E A[k + ∑ j

0 ci τ 2i
e f f ] (with j = 2 or j = 3) which enables better adaption to the

experimental data.
Independent of the choice of ψ in (6) remains the question whether the assumed

independence from IIIs and the co-axiality of deviatoric stresses and strain rates,
indicated by (6), are justified. These questions were asked very early on, as e.g. by
Glen (1958); Hutter. Morland or Baker, but they have not been sufficiently investi-
gated andmostly pushed aside by applied glaciologists, see e.g. [1, 16]. For example,
an assumed validity of (6) or (4) implies that, independent of the specific loading,
all results (datapoints) of γ̇oct versus τoct tests at same temperature should lie in a
log-log plot on one and the same straight line, whose slope is given by the exponent
n. That Steinemann’s test results for combined pressure-shear test do not meet this
condition was already shown by Glen 1958. But this discrepancy can also be found
in most recent works as e.g. in Treverrov et al. [14] where for isotropic ice at −2 ◦C
the exponents for uniaxial compression and for simple shear were determined as
nc = 3.3 ± 0.3 and ns = 2.9 ± 0.3, respectively. Note that for uniaxial compression
we have IIIs = −2p3/27 = 2√

27
(IIs)

3/2 while for simple shear IIIs = 0 holds. In
any case, a review of the available experimental results shows that the co-axiality
and/or IIIs-independence assumption does not hold in general [1].

The experimental determination of the two material functions ψ1,2 or φ1,2 in
(5) is not possible from single tests as uniaxial compression or simple shear, since
in these cases IIIs is not independent of IIs or IIIs is zero. However, in princi-
ple it is possible to determine e.g. φ1,2 from combined pressure-shear tests with
an independently prescribed pressure σ33 = −σ and a shear stress σ13 = τ . For
given test conditions (‘Melbourne experiments’) ε̇11 = 0 (confined deformation) and
σ22 = 0 (unconfined deformation), the rates ε̇33 = −ε̇ and ε̇13 = γ̇ = κ̇/2λ3 should
be measured; additionally, if desired, also σ11 can be measured. Here κ is the tangent
of the shear angle and λ3 the stretch in 3-direction.Without going in the details of the

1Regarding Riwlin see remark in [1].
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calculation, the material functions under these circumstances follow from, [1, 17]

φ1 = ˙̄γ τ − ˙̄ε σ

˙̄γ 2 − 2 ˙̄ε2
, φ2 = 2 ˙̄ε τ − ˙̄γ σ

˙̄γ ( ˙̄γ 2 − 2 ˙̄ε2)
. (7)

In addition, the universal relationship ˙̄γ (σ11 − σ) = ˙̄ε τ must apply, which can serve
as a check. The bars over the symbols indicate melt point normalised quantities.
Unfortunately, there are currently no corresponding test results available which allow
a complete determination of the two material functions. Existing test results allow
also no clear statement with respect to the dependence on IIIs but they indicate a
non-coaxiality of deviatoric stresses and strain rates [17].

The statements made here are limited to isotropic ice, i.e. to secondary creep. A
corresponding restricted extension to tertiary creep with anisotropy evolution has
recently been proposed by Morland and Staroszczyk (2020) [18] but will not dis-
cussed here. It should only be emphasized again that the characterization of ter-
tiary creep using a physically unclear enhancement factor is unsatisfactory from the
continuum-mechanical perspective.

In this brief overview, only themacroscopic flowof glacier ice has been addressed.
Short-time processes like calving or the formation and propagation of cracks or rifts
are also important on this scale. For this purpose visco-elastic constitutive laws are
needed that combine the brittle-elastic with the viscous behavior of ice. Finally,
it should be mentioned that ice is currently mostly only modeled on one scale,
either the macro or the microscale. However, a scale transition and/or a two-scale
modeling would be advantageous for processes in which significant changes in the
microstructure take place.
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Abstract The estimation of rupture in fibrous soft biological tissues has emerged
as a central task in medical monitoring and risk assessment of diseases such as aortic
dissection and aneurysms. In an attempt to address the rupture phenomenon in fibrous
soft tissues, a computational framework featuring an anisotropic crack phase-field
approach is reviewed which involves a structure tensor aligning the crack along the
collagen fibers, and the crack driving source term informed by several anisotropic
failure criteria proposed so far. Subsequently, we focus on failure surfaces determined
by the failure criteria. Finally, we provide a brief summary and discussion in the
numerical rupture modeling of fibrous soft tissues.

1 Introduction

Prediction of rupture in fibrous soft tissues remains an elusive topic as it involves
tangled series of coupled biomechanical processes which can hardly be identified
during mechanical experiments and imaging. In this respect, computational models
can help physicians to better assess the risk of rupture involved in diseases such as
atherosclerosis, aneurysms and aortic dissection, see, e.g., Humphrey and Holzapfel
[1] and Gültekin et al. [2].

Fibrous soft tissues demonstrate anisotropic mechanical responses which orig-
inate from the collagenous texture blended in the isotropic matrix material. In an
attempt to address this characteristics of fibrous soft tissues and to describe a physi-
cally relevant failure, the following sections review a brief mathematical framework
within the context of anisotropic crack phase-field, bringing the local features of the
strength of materials approach and the non–local features of fracture mechanics on
the same platform. On the geometrical side, anisotropic rupture is characterized by
a structure tensor describing the evolution of the phase-field in the direction of the
fibers, whereas, on the material side, anisotropic failure criteria, as introduced in [3–
6], account for the anisotropic constitutive and failure behavior that originate from
the tissue structure by means of the crack driving source term. Finally, an analysis
on their numerical performance, i.e. their capability to describe an admissible failure
surface, is presented by means of homogeneous numerical tests capturing uniaxial
and biaxial extensions.

However, most of the research papers on phase-field modeling deal with brit-
tle materials, whereby Wriggers and co-workers contributed substantially to the
advanced modeling and simulations of brittle fracture. In this regard, it is worth
to mention the very recent study [7] on an adaptive global-local approach applied
to anisotropic phase-filed brittle fracture, which also contains a substantial list of
references.
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2 Anisotropic Crack Phase-Field Modeling

This section deals with phase-field modeling of anisotropic fracture in soft biological
tissues with relevant anisotropic failure criteria describing the onset of macroscopic
cracking in the tissue.

2.1 Geometrical Aspects of Anisotropic Phase-Field
Modeling

The coupled problem of fracture is described by the deformation map ϕ and the
auxiliary crack phase-field d, i.e.

ϕt (X) :
{
B × T → S,

(X, t) �→ x = ϕ(X, t),
d :

{
B × T → [0, 1],
(X, t) �→ d(X, t),

(1)

where ϕ maps a material point X ∈ B ⊂ R
3 at time t0 ∈ T ⊂ R

+ in the reference
configuration onto x ∈ S ⊂ R

3 at current time t ∈ T ⊂ R
+ located in the spatial

configuration, while the crack phase-field d interpolates between the intact (d = 0)
and the ruptured (d = 1) state of the material. A key aspect is to achieve a diffusive
crack topology that smears out over a solid domain unlike sharp crack topology.

According to Miehe et al. [8, 9] a length-scale parameter l is introduced. The
sharp crack surface topology at time t can be denoted by �(t) ⊂ R

2 in the solid B,
with the definition �(t) = ∫

�
dA. In contrast, a diffusive crack simply approximates

the sharp crack surface by a volume integral in the form of the regularized crack
surface functional

�l(d) =
∫
B

γ (d,∇d;L)dV, γ (d,∇d;L) = 1

2l
(d2 + ∇d · L∇d), (2)

where γ refers to a generally anisotropic volume-specific crack surface.
Now, restricting the modeling framework to arterial walls, with two families of

collagen fibers characterized by the unit vectorsM andM′, anisotropy is accounted
by a second-order structure tensor L, i.e.

L = l2(I + ωMM ⊗ M + ωM′M′ ⊗ M′), (3)

where I denotes the second-order identity tensor. The structure tensor (3) aligns
the evolution of the crack in the direction of the collagen fibers through the two
parameters ωM and ωM′ that regulate the transition from weak to strong anisotropy.
For isotropic solids, the parametersωM = ω′

M ≡ 0. Generally, these parameters must
lie in an open domain, i.e. −1 < ωi < ∞ where i ∈ {M,M′} in order to satisfy the
ellipticity condition for the regularized crack surface �l(d).
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Fig. 1 a Sharp crack � ∈ B at point X�(ζ ) together with the global and local coordinates systems
(x, y) and (ζ, ν). Polar plots of the effective length scale parameter le(φ, α) shown for an orthotropic
case (M ⊥ M′) where α = 0◦ in (5), with b ωM = −0.5; c ωM = 0.0; d ωM = 0.5. The values of
ωM′ are shown in different color, see the legend (adopted from [12])

The second-order structure tensor L, as defined in (3), motivates the concept of
effective length scale parameter, which can be represented through polar plots. To
this end, suppose that the sharp crack topology � ∈ B as a parametric curve X�(ζ )

is traced out by ζ , i.e. ζ → X�(ζ ), so that the position ∀X ∈ B can be uniquely
determined, i.e.

X(ζ, ν) = X�(ζ ) + νeν . (4)

The base vectors eζ and eν stand for the respective unit tangent and the normal at
pointX�(ζ ), and furnish the local coordinate system (ζ, ν) along the global Cartesian
system (x, y), see Fig. 1a.

Now, let the angle between the x-axis and the tangent of the crack at the position
X�(ζ ) be φ = ∠(ex , eζ ), while the angle between the fiber orientation M and the
x-axis is represented by α = ∠(ex ,M). By assuming that the effective length scale
parameter le is sufficiently small compared with the length of the sharp crack |�|,
we get

le(φ, α) = l2[1 + ωMcos(φ − α) + ωM′sin(φ − α)], (5)

for a generally orthotropic case, where the second family of fibers M′ is aligned
perpendicular to the first fiber familyM, see Fig. 1a.

Figure1b–d depict the polar plots of le(φ, α), as given in (5), for specific choices
of ωM and ωM′ . Specifically, the plot denoted by (∗), see Fig. 1c, recovers the trans-
versely isotropic distribution of the effective length scale parameter for ωM′ = 0.5
and vanishing ωM. Moreover, the plot (∗∗), see Fig. 1d, retrieves isotropy with a
wider range (le = 1.5l) for ωM = ωM′ ≡ 0.5. This feature is the natural consequence
of the second-order phase-field models providing a two-fold symmetry unlike the
fourth-order phase-field models conferring a four-fold symmetry resembling a tre-
foil, a case seen for materials having cubic symmetry, see, e.g., Li et al. [10] and
Teichtmeister et al. [11] for more details.
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2.2 Balance Equations of Phase-Field Modeling of Rupture

The balance equations, namely the Euler-Lagrange equations, describing the multi-
field problem of fracture result from the minimization principle of the global power
balance under the quasi-static process of loading. The power balance comprises the
rate of the elastic energy storage and the external power functional as well as the
rate-dependent dissipation functional due to cracking of the solid. For an elaborate
formulation of the balance equationswe refer toGültekin et al. [3, 12]. Consequently,
the balance of linear momentum and the non-local evolution of the crack phase-field
are the following two resultant local equations, i.e.

1: Jdiv(J−1τ ) + ρ0γ̃ = 0,
2: ηḋ + d − ∇ · (L∇d) = 2(1 − d)H,

(6)

where J , ρ0 and γ̃ denote the determinant of the deformation gradient (J = det F),
the material density and the prescribed body force, respectively. In (6)2, η and H
indicate the viscosity determining the viscous over-force, and the dimensionless
crack driving source term, respectively. Particularly, the source term is characterized
by a ramp-type function as

H(t) = max
s∈[0,t]

[〈H(s) − 1〉] . (7)

TheMacaulay brackets filter out the positive values forH(s) − 1 and keeps the solid
intact until a threshold value is reached, i.e. the failure criterion. Therefore, the crack
phase-field does not evolve forH(s) < 1. It should also be highlighted that (7) takes
always into account the maximum value of H(s) − 1 in the deformation history
ensuring the irreversibility of cracking (ḋ ≥ 0). The dimensionless characteristics of
H allows for different choices in regard to failure criteria which will be covered in
the proceeding subsection.

2.3 Constitutive Aspects of Anisotropic Phase-Field Modeling

Fibrous soft tissues exhibit an anisotropic morphology, thereby an anisotropic
mechanical response is expectedwhich needs to inform the source term in (7). Subse-
quently, we provide a short description of anisotropic failure criteria. For simplicity,
the ensuing formulations are established according to the assumption that the prin-
cipal axes of anisotropy lie on the axes of reference. Nonetheless, transformation of
stress components can be achieved without much effort [12].
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2.3.1 Energy-Based Anisotropic Failure Criterion

Two distinct failure processes are assumed to govern rupture of the isotropic matrix
material and the anisotropic collagen fibers, as suggested by Gültekin et al. [3]. This
leads to two different evolution equations for the phase-field, i.e. (6)2, as to isotropic
and anisotropic material responses. Accordingly, one can describe distinct isotropic
and anisotropic forms of the structure tensor L in (3) as

Liso = l2I, Lani = l2(ωMM ⊗ M + ωM′M′ ⊗ M′), (8)

in conjunction with the dimensionless crack driving functions given as

Hiso = �̂ iso
0

giso
c / l

, Hani = �̂ani
0

gani
c / l

. (9)

Therein, giso
c / l and gani

c / l are the distinct critical Griffith-type fracture energies over
the length scale for the matrix material and for the fibers, respectively, while �̂ iso

0 and
�̂ani

0 refer to the effective isotropic and anisotropic free-energy functions related to the
intact (undamaged) response, see, e.g., Holzapfel et al. [13]. Upon the superposition
of the isotropic and anisotropic evolution equations, one can obtain a modified form
of the crack evolution (6)2, i.e. [12]

ηḋ + d − 1

2
∇ · (L∇d) = (1 − d)H, (10)

for whichH = Hiso + Hani
enters in (7), whereHiso

andHani
define the dimension-

less crack driving forces for the isotropic and the anisotropic part, respectively.

2.3.2 Stress-Based Anisotropic Tsai-Wu Failure Criterion

The Tsai-Wu criterion is based on the strength of the material at which the stress
space intercepts the assumed failure surface, see Tsai and Wu [6]. Accordingly, the
dimensionless crack driving function with respect to the effective Cauchy stress
tensor σ 0 assumes a composition of two scalar functions, i.e.

H = T : σ 0 + σ 0 : T : σ 0, (11)

where T and T denote the second and fourth-order strength tensors, respectively.
Through assumptions and simplifications introduced by symmetry relations we end
up with Tii = 1/(σ u

i )2 for the diagonal terms of the fourth-order strength tensor,
which relate to the ultimate normal and shear stresses σ u

i , with i ∈ {1, . . . , 6}.
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2.3.3 Stress-Based Anisotropic Hill Failure Criterion

Considered as the anisotropic extension of the von Mises–Huber criterion, the Hill
criterion uses a quadratic form of H such that [4]

H = σ vm
0 : T : σ vm

0 , (12)

where σ vm
0 represents the effective von Mises stress tensor. The components of

σ vm
0 can be defined in terms of the general stress components, i.e. σ vm

01 = σ01 − σ02 ,
σ vm
02 = σ02 − σ03 , σ vm

03 = σ03 − σ01 , σ vm
04 = σ04 , σ vm

05 = σ05 , σ vm
06 = σ06 . The fourth-

order strength tensor T pertains to the effective normal and shear stresses, see [12]
for more details.

2.3.4 Principal Stress Criterion

Developed on the basis of principal stresses the criterion by Raina and Miehe [5]
reports on the spectral decomposition of the effective Cauchy stress tensor and takes
the positive principal stresses into account, i.e.

σ+
0 =

3∑
i=1

〈σ0i 〉ni ⊗ ni , (13)

where σ0i denote the effective principal stresses, and ni are the corresponding eigen-
vectors for i ∈ {1, 2, 3}. Accordingly, H may be rewritten as

H = σ+
0 : T : σ+

0 , (14)

where the fourth-order strength tensor T reads in the index notation (T)i jkl =
(Aik A jl + Ail A jk)/4σ 2

crit , where σcrit denotes the reference critical stress associated
with uniaxial loading in a certain axis that can be conceptually replaced by an ulti-
mate stress. Therein, A is expressed in index notation with i, j, k, l ∈ {1, 2, 3}, see
[5] for more details.

2.3.5 Homogeneous Tests on the Respective Failure Surfaces

This example demonstrates the 3D failure surfaces associated with the criteria pro-
vided in the Sects. 2.3.1–2.3.4, thereby pinpointing to the onset of macro-cracking
in the solid. The problem setup involves a homogeneous case with a unit cube dis-
cretized by a single hexahedral element resolving the analytical solution for the
deformation and stress. The sample, regarded as transversely isotropic, undergoes a
series of uniaxial and biaxial deformations [12].
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Fig. 2 Failure surfaces in regard to the Cauchy stresses σxx , σyy and σzz (in kPa) at which the failure
conditions are satisfied, leading to d > 0 for a the energy-based; b the Tsai-Wu; c the maximum
principal stress; d the Hill failure criterion (adopted from [12])

Figure2a–c illustrate the resulting failure surfaces at the instance when d �= 0
for the energy-based, the Tsai-Wu and the principal stress criterion, respectively.
Ellipsoidal failure surfaces are evident. TheHill criterion in Fig. 2d, however, induces
a surface that diverges from being elliptic. In particular, the isotropic failure envelope
on the yz-plane eventually becomes discernible, which recovers the von Mises–
Huber criterion, as expected.

3 Discussion

For several materials such as fibrous soft tissues, anisotropic rupture is not only a
geometrical phenomenon but also inherent in the micro-structure due to the collagen
fibers embedded in an isotropic matrix material, which undoubtedly entails the use
of an anisotropic crack driving source term. Although the majority of the failure
criteria treated here are capable to provide admissible anisotropic failure surfaces, see
Fig. 2a–c, for homogeneous cases, the modeling of crack propagation demands non-
homogeneous numerical tests whereby the numerical stability plays a crucial role,
see [12] for a comparative study. Meso–scale and micro–scale structural information
along with statistical aspects in hyperelastic and rupture responses of fibrous soft
tissues (through, e.g., data-drivenmodeling ormachine learning) has to communicate
with the extant macro–scale approaches discussed here if clinical support is to be a
desired goal of such models in the future.
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Abstract The error free generation of elements for complex field equations is gen-
erally challenging. The process however can be helped via the judicious use of
automated systems that allow for the specification of weak forms and interpolation
choices and subsequently produce source code that can be compiled into general pur-
pose finite element programs. In this contribution, we illustrate the use of one such
system, AceGen, coupled to FEAP and applied to transient linear poroelasticity.

1 Introduction to Poroelasticity

Poroelastic problems arise in many interesting areas of engineering and science,
ranging from classical civil engineering tomodern biological sciences. The dominant
presentation of poroelasticity is generally attributed to the efforts of Biot [1, 2] and
countless subsequent studies. As a computational problem poroelasticity, even in
the linear setting, presents interesting challenges due to the unique nature of the
coupling between the variation in fluid content and the deformation of the media.
In particular, it is well-known that in a finite element setting the governing field
equations are most effectively interpolated with continuous but unequal orders for
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the pore pressure and the displacements. The first apparent recognition of this point
appears in Sandhu andWilson [3], where a T6/T3 element was proposed (continuous
quadratic displacements with continuous linear pressures) for seepage problems.
Later Hood and Taylor [4] introduced a Q8/Q4 varient within the context of solving
the Navier-Stokes equations; see also Huyakorn et al. [5] where the Q9/Q4 extension
of this element appears. The challenge of the numerical problem to this date still
attracts continued attention [6].

The programming of such elements while straightforward can be tricky and
tedious to get correct and error free. One option for assisting in this effort is to
use automated systems that take as input variational statements and directly produce
elements, including features to perform automated differentiation. The DOLFIN [7]
library presents one popular choice with C++ and Python interfaces. An alternate
system that is additionally capable of generating elements for several major general
purpose finite element codes is AceGen [8]. In this work we illustrate its use on the
problem of linear poroelasticity in conjunction with FEAP [9].

2 Linear Poroelasticity

2.1 Theory

The constitutive equations for the stress, σ , and variation in fluid content, ζ , in a
linear isotropic poroelastic material are given by [10]

σ = 2G ε + (K (d) − 2
3G)(trε)1 − α p 1

ζ = α (trε) + ϒ p ,
(1)

where ε is the linear strain and p is the pore pressure. The volumetric fluid flux, q,
is given by

q = −k ∇p . (2)

The required material parameters to define the model are given by the elastic shear
moduli G and drained bulk modulus K (d), the Biot modulus M = 1/ϒ , the Biot
coefficient α and the permeability k. The relationship between the undrained and
drained bulk modulus is given by

K (u) − K (d) = α2M . (3)

We also note that the Skempton compressibility index is defined for isotropic mate-
rials by

B = 1

α

(
1 − K (d)

K (u)

)
. (4)
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The governing differential equations are given by linear momentum balance

divσ + b = ρ ü (5)

and, using the second of (1), fluid balance

ζ̇ = ϒ ṗ + α divu̇ = −divq . (6)

2.2 Variational Equations

The governing equations may be expressed in terms of the pair of weak forms

Gu(u, p; δu) =
∫
V

[
δuT (ρ ü − b) + δεTσ

]
dV −

∫
∂Vt

δuT t̄ dS = 0

Gp(u, p; δp) =
∫
V

[
δp (ϒ ṗ + α divu̇) − (∇δp)Tq

]
dV +

∫
∂Vp

δp q̄ dS = 0 ,

(7)
where t = nTσ is the boundary traction and q = nTq is the normal boundary flux;
an over-bar denotes a specified value.

2.3 Finite Element Solution

A finite element approximation for the theory presented above may be given as

x = Na(ξ) x̃a ; u = Na(ξ) ũa and p = N p
a (ξ) p̃a , (8)

where Na and N p
a are shape functions expressed in terms of parent coordinates ξ

and ũa , x̃a and p̃a are nodal values of the displacements, coordinates and pressure,
respectively. The possibility of using different interpolations for the dependent vari-
ables is motivated by a need to reduce the possibility of spurious oscillations in
solutions [11]. The strains and gradient of the pressure may be expressed, assuming
summation convention, by

ε = Ba ũa and ∇p = ba p̃a , (9)

where for the two-dimensional plane case considered here, the Ba and ba matrices
are defined by
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Ba =

⎡
⎢⎢⎣
Na,x 0
0 Na,y

0 0
Na,y Na,x

⎤
⎥⎥⎦ and ba =

[
N p
a,x

N p
a,y

]
. (10)

Inserting the approximations into the weak forms (7) yields the semi-discrete form

Gu = δũT
a

[
Mab

¨̃ub + Pa − fa
]

= 0

Gp = δ p̃a
[
Cab

˙̃pb + Gab
˙̃ub − Ja

]
= 0 ,

(11)

where Mab, Pa , fa , Cab, Gab and Ja are defined by

Mab = ∫
V Na ρ Nb dV I; Pa = ∫

V BT
a σ dV

Cab = ∫
V Naϒ Nb dV ; Gab = ∫

V N p
a α bT

b dV
fa = ∫

V Nab dV + ∫
∂Vt

Na t̄ dS; Ja = ∫
V bT

a q dV − ∫
∂Vp

N p
a q̄ dS .

(12)

A Newton solution then may be given as

[
Mab 0
0 0

] {
d ¨̃ub
d ¨̃pb

}
+

[
0 0

Gab Cab

] {
d ˙̃ub
d ˙̃pb

}
+

[
Kab −Qab

0 −Hab

] {
dũb
d p̃b

}
=

{
Ra

ra

}
, (13)

where, in addition to quantities defined above,

Kab = ∫
V BT

a DBb dV ; Hab = ∫
V k bT

a bb dV

Qab = ∫
V ba α N p

b dV = GT
ba ; ra = Ja − Cab

˙̃pb − Gab
˙̃ub

Ra = fa − Pa − Mab
¨̃ub .

(14)

If a time discretization is introduce such that [9, 12]

d ˙̃ub = c2 dũb ; d ¨̃ub = c3 dũb and d ˙̃pb = c2 d p̃b , (15)

then (14) becomes an algebraic equation given by

[
Kab + c3 Mab −GT

ba
c2Gab Hab + c2 Cab

] {
dũb
d p̃b

}
=

{
Ra

ra

}
, (16)

with updates given by

ũi+1
a = ũia + dũa and p̃i+1

a = p̃ia + d p̃a (17)

in which i denotes the iteration number. For linear systems proper discretization
should lead to convergence in one iteration.



A Poroelastic Element for FEAP Using AceGen 165

3 Automated Computational Modeling Using AceGen

The above theory is implemented for use in the finite element program FEAP [13]
using an element module developed using the automated computational program
AceGen [8]. The element module developed utilizes a Q9/Q4 Taylor-Hood type
interpolation for the u/p dependent variables, respectively. In addition, the tangent
matrix is separated into three parts for the terms in (13) related to the different
time derivative orders and combined as described in Taylor and Govindjee [9]. This
permits the use of the standard FEAP time integration routines directly. In the interest
of brevity, we do not detail these steps here. However, the AceGen modules used in
this work, along with documentation can be accessed at https://github.com/bhajay/
Coupled-Problems; see also [22].

4 Results and Discussion

In this section, the element is validated using two test problems.

4.1 Mandel Problem

In the theory proposed by Biot [1], Mandel showed that when a soil is loaded by
a constant load, the pore-pressure can initially increase before decreasing to a final
value of zero. This effect, later came to be known as the Mandel-Cryer effect and
was also confirmed experimentally [14, 15]. Mandel [16] and others [17, 18] have
presented a set of three problem to discuss this non-monotonic variation of pore-
pressure in porous media, one of these problems is considered here.

As shown in the Fig. 1, an infinitely long (out of the plane) rectangular plate
of width 2a is sandwiched between two rigid and frictionless plates. Additionally,
drainage is allowed on the two lateral sides, which are stress free. A generalized
plane strain condition is considered by preventing any deformation or flux in the
direction perpendicular to the plane. At time t = 0, a vertical force F is applied and
remains constant. At the instant of loading, the pore pressure is homogeneous while
instantaneously it drops to zero at the two sides, i.e. at |x | = a. Since the pressure is
constant in the vertical direction, a single row of 25 Q9/Q4 elements is used for the
analysis (employing symmetry).

The material properties are: Shear modulus: (G = 1); drained Poisson ratio:
(ν(d) = 0.2); permeability: (k = 1); density: (ρ = 0); and Skempton coefficient:
(B = 1). Two cases are considered: Compressible (with ν(u) = 0.4) and incompress-
ible (with ν(u) = 0.5).

https://github.com/bhajay/Coupled-Problems
https://github.com/bhajay/Coupled-Problems
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Fig. 1 Geometry for the Mandel problem

(a) Incompressible (b) Compressible

Fig. 2 Comparison of analytical solution (solid lines) with FEA solution from FEAP using the
Q9/Q4 element generated by AceGen (circles). Time labels t ′ correspond to non-dimensional time

t ′ = t kG
a2

[
2
3
B
α

1+ν(u)

1−ν(u)
1−ν(d)

1−2ν(d)

]

In Fig. 2, the non-dimensional pressure is compared to the analytical solution
given by Cheng and Detournay [19, 20] as a function of the distance from the center
of the plate for the two cases.

4.2 Consolidation Problem

As a second verification example we look at the time dependent consolidation prob-
lem proposed by Booker and Small [21] for modeling surface footings on horizon-
tally layered soils on a rigid base. The example considered here is an infinite finite
depth strip subjected to periodic uniform loading as shown in Fig. 3a. Due to sym-
metry the region modeled is shown in Fig. 3b. The imposed boundary conditions
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b

2B

h

y

x

(a) Actual geometry (b) Geometry with boundary
                conditions

Fig. 3 Geometry and boundary conditions considered for the Booker problem

(a) Non-dimensional displacement (b) Pressure variation

Fig. 4 Consolidation problem. Left: Dimensionless settlement versus time. Red markers FEAP
result with AceGen Q9/Q4 element. Solid lines from Booker and Small [21]. Right: Comparison
of pore pressure at the center line for a Q4 element with equal order interpolation versus Q9/Q4
Taylor-Hood interpolation

are: ux (0, y) = ux (B, y) = 0 and τxy(0, y) = τxy(B, y) = 0. At the bottom a rough
condition is assumed with ux (x, 0) = uy(x, 0) = 0. The top surface is considered to
be permeable with p(x,h) = 0.

Thematerial parameters considered for the analysis areG = 1, ν(d) = 0.3, k = 1,
α = B = 1 and ρ = 0. The geometry is meshed using 40 × 40 Q9/Q4 elements. The
geometric ratio for B:b is considered for two values: 1:1 and 2:1. The applied load
is qo = 1. The resulting dimensionless time settlement behavior at (x, y) = (0,h) is
shown in Fig. 4a.

Figure4a shows that the time settlement behavior changes dramatically with the
B:b ratio. Figure4b shows the excess pore pressure at the center line of the domain and
its variation with depth. The Q4 element shows significant oscillations and instability
as compared to the solutions from the Q9/Q4 element.
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5 Closure

This brief note has highlighted the utility anduse of automated computational systems
for generating (Fortran) source code for general purpose finite element programs. In
the particular case shown, the modestly complex transient Taylor-Hood element was
generated using AceGen for the finite element program FEAP, and subsequently ver-
ified against solutions available in the literature; for further examples using AceGen
to generate FEAP elements, see [22].
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Abstract A first investigation on higher-order contact boundary conditions is pre-
sented. A short summary on second gradient materials is followed by a general
higher-order domain decomposition formulation for optimal boundary conditions.
Afterwards, the application on contact problems is discussed.

1 Introduction

General higher gradient theories have been investigated in the pioneering and most
fundamental work of Mindlin [1], see also the work of Toupin [2] and Eringen [3]. A
series of publications establish a link between themicrostructure and themacroscopic
formulation as generalized continua, see [4, 5] among others, see also [6, 7] for more
details on the mathematical structure. Specific mechanical problems like elastic nets
have been addressed by Steigmann et al. [8, 9], for application on panthographic
structures see dell’Isola et al. [10].
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In this contribution, we investigate possible contact formulations for second gra-
dient models. Therefore, we make use of previous developments for higher-order
domain decomposition problems as presented in Schuß et. al. [11] and Dittmann et
al. [12, 13], and extend them towards contact mechanics as presented in Dittmann et
al. [14], where we investigated porous-ductile fracture in non-linear thermo-elasto-
plastic solids.

2 Finite Strain Second Gradient Material

We start with a short summary of non-linear elasticity. Therefore, we consider a
continuum body with reference configuration �0 ⊂ R

3 undergoing a deformation
characterised by its deformation map ϕ : �̄0 → R

3, such that the current configura-
tion is given by � = ϕ(�0). As usual, material points are labelled with uppercase
letters, X ∈ �0, whereas spatial points are denoted by lowercase letters, x ∈ �. The
deformation gradient F : �0 → R

3×3 and the second gradient of the deformation
map G : �0 → R

3×3×3 are defined by F = ∇ϕ and G = ∇F, respectively. Here,
∇(•) is the gradient with respect to the material coordinates, such that a vector field
a and a second-order tensor field A give rise to

[∇a]i J = ∂[a]i
∂[X]J and [∇A]i J K = ∂[A]i J

∂[X]K . (1)

We assume that the material behaviour is governed by a sufficiently smooth free
energy function� : �0 → R,� = �(F,G). This allows to write the internal stored
energy of the continuum body as

�int =
∫

�0

�(F,G) dV . (2)

To establish the principle of virtual work, we introduce the spaces of admissible
solutions

Vϕ := {
ϕ ∈ H2(�0)

3 | det(F) = J > 0 in �0, ϕ = ϕ̄ on �ϕ
}

(3)

and virtual (or test) functions

Vδϕ := {
δϕ ∈ H2(�0)

3 | δϕ = 0 on �ϕ
}
, (4)

whereH2(�0) denotes the Sobolev space of square integrable functions with square
integrable weak derivatives up to the order 2 and ϕ̄ is a prescribed deformation. The
boundary � := ∂�0 of the reference domain is assumed to be divided into two open
subsets �ϕ, �σ ⊂ �, the Dirichlet and Neumann boundaries, which satisfy
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�̄ϕ ∪ �̄σ = � and �ϕ ∩ �σ = ∅, (5)

inducing a decomposition of the boundary γ := ∂� of the actual configuration such
that

γ̄ ϕ ∪ γ̄ σ = γ and γ ϕ ∩ γ σ = ∅, (6)

where γ ϕ = ϕ(�ϕ) and γ σ = ϕ(�σ ). Thus, we obtain for the virtual work of the
internal stored energy

δ�int =
∫

�

J−1 ∂�

∂F
FT

︸ ︷︷ ︸
=σ

: ∇xδϕ + J−1 ∂�

∂G
: (
FT ⊗ FT

)
︸ ︷︷ ︸

=p

... ∇2
xδϕ dv, (7)

where σ is the Cauchy stress tensors and p the corresponding third order stress tensor.
To identify and collect the corresponding boundary conditions for later use in contact
formulations, we apply twice integration by parts

δ�int =
∫

�

(∇x · (∇x · p − σ ) · δϕ +

∇x · [(σ − ∇x · p)T δϕ] + ∇x · (p : ∇xδϕ)
)
dv.

(8)

Here, ∇x · (•) represents the divergence operator w.r.t. the spatial coordinates, such
that [∇x · σ ]i = [σ ]i j, j and [∇x · p]i j = [p]i jk,k .Moreover,p : ∇xδϕ=[p]i jk[∇xδϕ]i j ,
where we have made use of the Einstein summation convention. Application of the
divergence theorem on the second and third term yields

δ�int =
∫

�

∇x · (∇x · p − σ ) · δϕdv +
∫

γ

(
δϕ · [(σ − ∇x · p)n] + ∇δϕ : (p n)

)
da, (9)

where n denotes the outer normal vector field on γ . Note that the last term can
be decomposed using an orthogonal decomposition ∇⊥ · (•) = ∇x(•) : (n ⊗ n) and
∇‖ · (•) = ∇x(•) : (I − n ⊗ n), such that we can apply a surface divergence theorem
to obtain additional information on γ .

Next, following Mindlin and Tiersten [15], we postulate that the conservation of
momentum, moment of momentum and the mechanical energy holds in the current
configuration (again assuming the absence of inertia terms)

0 =
∫

γ σ

tn da +
∫

�

f dv, (10)

0 =
∫

γ σ

r × tn + mn da +
∫

�

r × f + c dv, (11)



174 C. Hesch and S. Schuß

∫

�

�̇dv =
∫

γ σ

tn · v + mn · l da +
∫

�

f · v + c · l dv. (12)

Here, tn is the force-stress vector, f a body force, mn the couple-stress vector, c the
distributed body couple, v the material velocity, r the spatial position vector and
l = 1

2∇x × v denotes the spin vector using the spatial gradient ∇x(•), such that

∇x(v) = ∇sym
x (v)︸ ︷︷ ︸
=:d

+∇skw
x (v)︸ ︷︷ ︸
=:ω

, axl(ω) = l, (13)

where axl(ω) is the axial vector, i.e. [axl(ω)]i = − 1
2εi jk[ω] jk using the Levi-

Civita permutation tensor εi jk . Moreover, we define [[l]×]i j = −εi jk[l]k , such that
axl([l]×) = l. Noting that tn = σn, we get from (10), after application of the diver-
gence theorem, the usual force-stress equation ∇x · σ + f = 0. Furthermore, for the
first term in (11), we can write

∫

γ σ

r × tn da = −
∫

γ σ

n · (σ × r) da = −
∫

�

∇x · (σ × r) dv, (14)

using again the divergence theorem. Hence, we obtain

−
∫

�

∇x · (σ × r) dv =
∫

�

r × (∇x · σ ) + σ ×· I dv, (15)

where [σ ×· I]l = εl jk[σ i j ]δik , which is equal to −2 axl(τ). Eventually, introducing

the usual couple-stress dyadic μ as mn = μn and application of the divergence
theorem on the second term in (11) gives rise to

∫

γ σ

mnda =
∫

�

∇x · μdv. (16)

Assuming that the force-stress equation is valid, we obtain the couple-stress equation
∇x · μ + c − 2 axl(σ ) = 0. Noting that σ skw = [axl(σ )]×, we further get

σ skw = 1

2
[∇x · μ]× + 1

2
[c]×, (17)

such that the force-stress equation becomes

∇x · σ sym + 1

2
∇x · [∇x · μ]× + f + 1

2
∇x · [c]× = 0. (18)
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Note that the divergence ∂
∂x j

[A]i j = [A]i j, j can be used to write 1
2∇x · [∇x · μ]× =

∇x × ∇x · μ. Moreover, since 1
2∇x · [∇x · (μ : I)]× = 0, only the deviator μdev =

μ − 1
3 tr(μ)I is required, i.e. one constitutive equation less has to be considered.

In this final step, we use the energy balance equation in (12) to establish the link
between the virtual work in (7), the structure of the boundaries as derived in (9)
and the force-stress and couple-stress equations in (18). For the force-stress vector
follows ∫

γ σ

tn · v da =
∫

�

σ : ∇x(v) + (∇x · σ ) · vdv, (19)

and for the couple-stress vector we get

∫

γ σ

mn · l da =
∫

�

μ : ∇x(l) + (∇x · μ) · ldv. (20)

Assuming that the force-stress and couple-stress equations are valid, we obtain

∫

�

�̇dv =
∫

�

σ sym : ∇x(v)︸ ︷︷ ︸
=σ :d

+μ : ∇x(axl(ω))dv. (21)

Note that tr(∇x(axl(ω))) = 0, such that the trace-term does not contribute to the
internal energy and we can use again the deviator μdev instead of μ.

With regard to (7), we can now state that

(
σ − J−1 ∂�

∂F
FT

)
: d − J−1 ∂�

∂F
FT : ω + μ : ∇x(axl(ω)) − p

... ∇2
x (v) = 0. (22)

In consequence, we can write for the last term

(
−1

2
[μ]mjε j in − [p]inm

)
[∇2

x (v)]inm = 0. (23)

Following Spencer and Soldatos [16] with respect to the work of Toupin [2], we
demand that the symmetric part with respect to the n andm components of the terms
in the brackets of (23) have to be zero, as the anti-symmetric parts are always zero
due to the second term. Thus, we obtain

− 1

2

([μ]mjε j in + [μ]njε j im
) =

[
∂�

∂G

]
i J K

([F]mJ [F]nK + [F]nJ [F]mK
)
, (24)

and pre-multiplication with εrin yields eventually
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3[μ]mr − [μ]nnδrm = −2εrin

[
∂�

∂G

]
i J K

([F]mJ [F]nK + [F]nJ [F]mK
)
, (25)

which is the constitutive law for the deviatoric part of the couple-stress μ. Noting
that we can rewrite the couple-stress vector in (20) as mn · l = 2[m]× : ∇x(v) and
replacing the velocity by the virtual displacements, we obtain

∫

�

σ : ∇sym
x (δϕ)+μdev : ∇x(axl(∇skw

x (δϕ)))dv =
∫

γ σ

tn · δϕ + 2[m]× : ∇x(δϕ)da +
∫

�

f · δϕ + 1

2
c∇x × δϕdv,

(26)
and if � is constructed such that [p]inm = − 1

2 [μ]mjε j in (see Toupin [2] for possible
formulations), we end with

∫

�

σ : ∇sym
x (δϕ)+p

... ∇2
x (v)dv =

∫

γ σ

tn · δϕ + 2[m]× : ∇x(δϕ)da +
∫

�

f · δϕ + 1

2
c∇x × δϕdv.

(27)

3 Contact Constraints

We start here with a short summary in higher-order domain decomposition problems,
before we consider contact and impact formulations. Therefore let �(1), �(2) be two
domains with an open common boundary γ c = γ c

(1) = γ c
(2), such that

γ(i) = γ̄
ϕ

(i) ∪ γ̄ σ
(i) ∪ γ̄ c

(i) (28)

and
γ

ϕ

(i) ∩ γ σ
(i) = ∅, γ

ϕ

(i) ∩ γ c
(i) = ∅, γ σ

(i) ∩ γ c
(i) = ∅, i = 1, 2. (29)

To preserve in general Cn-continuity across the interface in a weak sense, the corre-
sponding deformation mappings ϕ(i) have to fulfil the optimality condition

∑
|j|≤n

h2|j|‖∂ jϕ(1) − ∂ jϕ(2)‖2L2(γ c)3 = inf
w∈Vϕ

(1)

∑
|j|≤n

h2|j|‖∂ jw − ∂ jϕ(2)‖2L2(γ c)3 , (30)

cf. Dittmann et al. [12], where j ∈ N
3
0 is a multi-index denoting the respective deriva-

tive and h is a length scale dependent parameter ensuring physically correct dimen-
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sions. In Dittmann et al. [13], the typical length of an element is used, other choices
are possible. Introducing a suitable space of Lagrange multiplierM, we obtain from
(30) the constraints

� =
∑
|j|≤n

h2|j|
∫

γ c

∂ jδλ · (∂ jϕ(1) − ∂ jϕ(2))a. = 0, ∀δλ ∈ M, (31)

which reads for first gradient materials (weak C0-coupling)

� =
∫

γ c

δλ · (
ϕ(1) − ϕ(2)

)
a. = 0, ∀δλ ∈ M (32)

and for second gradient materials (weak C1-coupling)

� =
∫

γ c

δλ · (
ϕ(1) − ϕ(2)

) + h2∇x(δλ) : (∇x(ϕ
(1)) − ∇x(ϕ

(2))
)
a. = 0, (33)

for all δλ ∈ M.
Concerning contact in a first gradient material, we have to decompose the con-

straints in normal and tangential directions, since we have to obey different physical
constitutive laws. In normal direction, the non-penetration condition have to be valid,
in tangential direction, possible friction laws are required. Introducing the projector
I = (I − n ⊗ n) + n ⊗ n, where n denotes the outer normal vector field on γ

(c)
(1) , we

obtain

� =
∫

γ c

δλn n · (
ϕ(1) − ϕ(2))

︸ ︷︷ ︸
=:gn

+ δλt · (
ϕ(1) − ϕ(2)) a., (34)

where δλn = δλ · n and δλt = δλ (I − n ⊗ n). The constitutive relations require that

λn ≥ 0, gn ≤ 0 and λngn = 0, (35)

representing the classical Karush–Kuhn Tucker conditions. For the tangential part
λt , classical formulations like Coulomb’s friction law can be taken into account. For
the gradient constraints follows, that they have to obey the constitutive relations as
well: If λn is equal zero due to the positive gap, the constraints in all directions are
released, including the gradient constraints. If the gap is closed, λt is restricted due
to the used constitutive relation for the friction. Consequently, the constraints for
second gradient material read
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� =
∫

γ c

δλnn · (
ϕ(1) − ϕ(2)

) + δλt · (
ϕ(1) − ϕ(2)

)
a.+

∫

γ c

h2∇x(δλnn) : (∇x(ϕ
(1)) − ∇x(ϕ

(2))
)
a.+

∫

γ c

h2∇x(δλt ) : (∇x(ϕ
(1)) − ∇x(ϕ

(2))
)
a.

(36)

This has to be discretised using suitable Mortar methods. We refer again to Dittmann
et al. [12] for a detailed discussion on Mortar constraints and their application on
higher-order domain decomposition methods.

4 Conclusions

In this paper, we presented a second gradient formulation for non-linear materials in
a nutshell. Afterwards, suitable domain decomposition methods are used to derive
a possible contact formulation for a second gradient material. Several unresolved
issues have to be addressed in future work: First, is a moment transfer in the contact
area physically reasonable? Second, if so, the normal constraints can be implemented
with regard to the Karush–Kuhn Tucker conditions. However, the application of the
tangential constraints in terms of, e.g., Coulombs friction law remains a challenge,
since the action of the gradient of the constitutively restricted Lagrange multipliers
is unclear. Especially the interpretation as couple-stress vector remains a challenge.
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1 Introduction

The finite element method (FEM) (see e.g. Wriggers [19]) is one of the most sig-
nificant methods to numerically solve partial differential equations (PDE) in solid
continuum mechanics. Its key idea is to subdivide a body in the name giving finite
elements (FE) and to approximate the deformation of this body using the weak form
of a PDE.

One of the major phenomenons that limits the applicability of low-order displace-
ment elements is locking, which denotes numerical stiffening of the body. It causes
too small deformations and slow convergence with mesh refinement. A distinction is
made between shear and volumetric locking occurring in bending dominated prob-
lems and in the incompressible limit, respectively. In 1985 Simo et al. [14] presented
a mixed element formulation based on a Hu-Washizu [17] three field functional
introducing extra variables for dilatation and pressure such that the deviatoric and
volumetric part of the strain tensor can be treated separately. This alleviates the effects
of volumetric locking for nearly incompressible materials.

In 1990 and 1992 Simo and Rifai [13] and Simo and Armero [11] presented
another widely used mixed finite element method called enhanced assumed strain
method (EAS) for linear and nonlinear deformations, respectively. Thismethod intro-
duced enhanced strains in addition to the compatible strains with ansatz functions
based on the previously introduced popular incompatible displacement modes (see
Wilson [18]). While EAS elements work extremely well for small deformation prob-
lems, they unfortunately suffer from spurious hourglassing instabilities under large
deformation compression as first pointed out by Wriggers and Reese [20]. A first
remedy to this problem was proposed by Korelc and Wriggers [6], who introduced
the method of transposed Wilson modes in 1996 solving this problem for polycon-
vex elastic materials. However, the method proposed in Korelc and Wriggers [6] is
not frame-invariant if it is subject to large rotations, which was corrected by Glaser
and Armero [3]. For more details on the long history of EAS elements, including
various ansatz functions and transformations, see e.g. Pfefferkorn and Betsch [7].
Even though the transposed Wilson-modes eliminated hourglassing in hyperelastic
problems, the element still suffers from hourglassing in elasto-plastic simulations.
To the best knowledge of the authors, there exists no EAS element that overcomes
this problem without introducing unphysical expressions with parameters to be set
by the user.

In this paper we discuss an element formulation presented by Armero [1] in 2000,
that combines the mixed pressure formulation of Simo et al. [14] with the EAS
method of Glaser and Armero [3]. The key idea is to enhance only the non-diagonal
elements of the deformation gradient yielding a specific enhancement of the devia-
toric part of the strain tensor, since the locking of the volumetric part is taken care
of by the mixed pressure ansatz. This yields a five field variational functional which
is the basis for a stable and hourglassing-free finite element method for nonlinear
elastic material behavior with great results in computing deformations of hyperelas-
tic as well as elasto-plastic problems. Most remarkably, the element presented by
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Armero [1] shows no hourglassing in 2D elasto-plastic simulations. Hence Armero
[1] remedies the shear locking of the mixed pressure element of Simo et al. [14]
whilst circumventing the spurious hourglassing effects of the EAS formulation by
Simo and Armero [11] in 2D. The 3D case, however, has not been covered so far. In
this paper we present a 3D version of this element formulation and provide numer-
ical tests for 3D elastic and plastic material behavior. We show most importantly
that, unfortunately, the 3D formulation of this element is not hourglassing-free in
elasto-plastic simulations.

Thepaper is structured into four chapters. Section2 covers themixedfinite element
method of Armero [1]. Section3 contains numerical tests assessing the performance
and stability of the mixed element presented in Sect. 2 by comparing it to mixed EAS
and mixed pressure element formulations. It is shown that the mixed pressure EAS
element has extremely high robustness (concerning number of load steps and number
of Newton-Raphson (NR) iterations) and is not susceptible to locking. However, in
3D it is not hourglassing-free in standard tests. Finally, Sect. 4 concludes the paper
and its results with a short summary.

2 The Five-Field Finite Element Formulation

In this section we give an overview of the five-field finite element formulation, which
was first presented by Armero [1] for 2D problems. In the present work we focus on
the 3D formulation.

2.1 Deformation Gradient

We first introduce the deformation gradient F since its structure is the key to both
mixed methods on which the present element relies. It combines the volumetric and
deviatoric split used for the mixed pressure element in Simo et al. [14] with an
additive enhancement. The purely displacement based deformation gradient

Fϕ(ϕ) = Grad (ϕ) = ∂ϕ(X)

∂X
(1)

is modified in the form
F(ϕ, θ,�) = θ1/3

̂J−1/3
̂F. (2)

Therein, θ is the (independent) dilatation and ̂J = det(̂F). Moreover, the enhance-
ment is denoted by (̂•) and the enhanced deformation gradient̂F is given by

̂F(ϕ,�) = Fϕ(ϕ) +˜F(ϕ,�), (3)
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where
˜F(ϕ,�) = Fϕ,0(ϕ)F�(�) (4)

is the enhanced part of the deformation gradient, which depends apart from the
enhanced degrees of freedom� on the deformationsϕ viaFϕ,0. The latter denotes the
compatible deformation gradient (1) evaluated at the element centroid and ensures
frame invariance (see Simo et al. [12] and Glaser and Armero [3]). Finally, F�

includes the enhanced degrees of freedom �i arranged in vector � and is specified
in Sect. 2.3.

2.2 Variational Framework

The classic variational potential for the pure displacement element formulation is
extended by two constraints. The first condition on kinematic level, J = θ with
J = det(Fϕ), is enforced by the Lagrange multiplier p in analogy to Simo et al. [14].
The second constraint ensures that the enhanced part of the deformation gradient˜F
vanishes on the continuum level and is enforced by the second Lagrange multiplier
P. This yields the five-field functional

�(ϕ, θ, p,�,P) =
∫

B0

[

W (C) + p (J − θ) − P : ˜F]

dV + �ext(ϕ) , (5)

whereW is an arbitrary hyperelastic strain-energy function characterizing the behav-
ior of bodyB, which is mapped from its reference configurationB0 to its current con-
figuration by deformation map ϕ. Furthermore,�ext denotes the potential of external
forces not further specified here and C = FTF is the modified Cauchy–Green tensor
computed using F(ϕ,�).

The five independent fields in (5) require the five stationary conditions

δϕ� =
∫

B0

dev(τ ) : ̂∇s(δϕ) + pJ I : ∇s(δϕ) − δϕ
˜F : P dV + δϕ�ext = 0, (6a)

δθ� =
∫

B0

(

1

3
tr(τ )θ−1 − p

)

δθdV = 0, (6b)

δp� =
∫

B0

δp (J − θ) dV = 0, (6c)

δ�� =
∫

B0

dev(τ ) : sym(

Fϕ,0δ�F�
̂F−1) − δ�

˜F : P dV = 0, (6d)

δP� = −
∫

B0

δP : ˜F dV = 0, (6e)

where τ is the constitutive Kirchhoff stress tensor and assumes the usual form
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τ = FSFT with S = 2
∂W (C)

∂C
(7)

for a hyperelastic material model.1 Furthermore, ̂∇s(•) is a modified symmetric
gradient in the spatial configuration that arises from the derivative of the Cauchy–
Green tensor C with respect to ϕ. The modified gradient ̂∇(•) is given by

̂∇(•) := ̂∇x(•) = [∇X(•) + FT
�∇0(•)

]

̂F−1, (8)

where ∇0(•) = ∇X(•)
∣

∣

ξ=0 and ∇X(•) = Grad(•).

2.3 Discretization

For all simulations we consider the common isoparametric concept and the Bubnov–
Galerkin method. Thus, the discretized (•)h and elementwise (•)e position Xh,e and
displacement ϕh,e as well as its variation δϕh,e are given by

Xh,e =
∑

I∈I
Ne

IX
e
I , ϕh,e =

∑

I∈I
Ne

I ϕ
e
I and δϕh,e =

∑

I∈I
Ne

I δϕ
e
I (9)

for all elements e ∈ {1, 2, . . . , ne} in the subdivision Bh
0 = ⋃ne

e=1	
e of body B0.

Furthermore,I is the set of nodes in the reference element	�. The standard trilinear
Lagrangian shape functions for the eight noded cube are employed.

Constant ansatz functions are used for the dilatation θ and Lagrange multiplier p
since they match well with linear shape functions on the deformation ϕ if θ and p
are restricted to each element 	e as discussed e.g. in Hughes [4]. This yields

θh,e = const and ph,e = const (10)

in every element.
This element does not fulfill the LBB-condition (cf. Boffi et al. [2]). This means,

that for some boundary conditions checkerboard solutions for the approximated
pressure arises. Fortunately, this can easily be fixed by various workarounds e.g.
L2-smoothing (cf. Wriggers [19]).

Finally, we discuss the approximation of F�(�) introduced in (4). Armero [1]
uses transposed Wilson modes which are first described in the work of Korelc and
Wriggers [6]. The basic idea of the element proposed by Armero [1] is to only use
the non-diagonal modes.2 We extend this formulation to the three-dimensional space
which yields an enhancement field of the form

1 Note that all terms in (6) refer to the spatial configuration except for terms containing P or δP
since these terms vanish on discrete level due to the orthogonality condition given below.
2 We also tested the same element with all nine transposed Wilson Modes for the enhanced field.
That element is even softer than the element of Armero, which is too soft in pure bending problems
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F�(�e) = jh,e0

jh,e(ξ)

(

Jh,e0

)−T

⎛

⎝

⎡

⎣

0 �e
1ξ �e

2ξ

�e
3η 0 �e

4η

�e
5ζ �e

6ζ 0

⎤

⎦

⎞

⎠

(

Jh,e0

)−1
, (11)

where Jh,e0 = Jh,e
∣

∣

ξ=0 and J
h,e is the Jacobian matrix of the isoparametric map. Anal-

ogously, their determinants are given by jh,e = det(Jh,e) and jh,e0 = det(Jh,e)
∣

∣

ξ=0,
respectively.

In analogy to standard EAS elements the present five-field element formulation
fulfills the patch test provided that

∫

	�
F� d	� = 0 is fulfilled (see Armero [1]).

The usualL2-orthogonality condition assumed between discrete stress and strain
field yields

∫

	e

˜Fh,e : δPh,e dV =
∫

	e

δ˜Fh,e : Ph,e dV = 0 (12)

on element level. This allows to eliminate P in the discrete case such that only four
fields remain in the discretized version of functional (5).

3 Numerical Investigations

This chapter covers benchmarks testing the performance of the finite element for-
mulation presented in Sect. 2. The element is compared to the standard isoparamet-
ric displacement element and popular (well-working) mixed elements. Armero [1]
already described and evaluated the mixed pressure EAS element using various 2D
tests. Thus, focus of this work lies on the 3D formulation.

The element proposed by Armero is denoted Q1/P0ET2. Its 3D extension covered
in this work is named H1/P0ET6. The 3D elements used for comparison in the
following numerical examples are:

• H1, the standard isoparametric 8-node displacement element,
• H1/E9, the classic EAS element formulation (see Simo and Armero [11]) and
H1/ET9, the EAS formulation with transposed Wilson modes (see Glaser and
Armero [3]),

• HA1/ET12, an extension of H1/ET9 with additional volumetric modes using a
9-point integration (see Pfefferkorn and Betsch [7]),

• H1/E9-MIP and HA1/E12-MIP the EAS elements with improved robustness by
use of the mixed integration point (MIP) method (see Pfefferkorn et al. [9]),

• H1/P0, the three field mixed pressure element (see Simo et al. [14]),
• H1/S18, the well known assumed stress element by Pian and Sumihara [10], which
has 18 stress modes in 3D.

with undistorted meshes. Thus, the element with all 9 enhanced modes is not taken into account in
subsequent investigations.
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Fig. 1 Cook’s membrane: system (left) and displacement u of the hindmost node in the right upper
corner (right)

We consider two material models for all simulations. First, the nonlinear neo-
Hookean material model with strain-energy function

W = μ

2
(tr(C) − 3) + λ

2
(ln J )2 − μ ln J (13)

for elastic behavior.3,4 Second, the multiplicative J2-plasticity model with nonlinear
isotropic hardening and the Hencky elastic law as proposed by e.g. Simo [15]. The
material parameters of that model are set to their usual values (see e.g. [1], [3] or
[8]).

3.1 Cook’s Membrane

The first test described in the present work is the Cook’s membrane test. Figure1
shows the system, which is clamped on the left. We employ the elastic model given
in (13) with material parameters μ = 756.00 and λ = 8.2669 · 104.

The focus of this test is on shear and volumetric locking. To determine the elements
performance, we evaluate the displacement u in y-direction of the top right corner
caused by equally distributed shear stress τ = 100. The right image in Fig. 1 shows
this deformation in dependence of the number of elements per side for the various
mixed elements (there are always 2 elements in direction of the thickness).

The worst element is H1/P0 which suffers from shear locking since only the vol-
umetric parts are modified in this formulation. On the other end, H1/P0ET6 exhibits
the best results with fastest convergence with mesh refinement.

Another interesting result of this investigation is the number of load steps required
to achieve convergence of Newton’s method. Regardless of the mesh size, H1/P0,

3 Note that no volumetric deviatoric split in W (13) is considered in the present work in contrast to
many works on mixed elements with approximation of the pressure (see e.g. Simo et al. [14]).
4 An inverse stress strain relation of (13) for H1/S18 is given in [9].
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H1/S18 and H1/P0ET6 only need one load step for convergence while EAS elements
need at least six load steps.5 This suggests that H1/P0ET6 inherits the robustness,
meaning size of applicable load steps and number of necessary Newton iterations,
from H1/P0. Consequently, it is numerically more efficient. This result is confirmed
in Sect. 3.5. Note that the efficiency strongly depends on the aspect ratio of the
elements in case of H1/P0ET6.

3.2 Stability Test

This section describes the modal analysis presented in Armero [1], where the eigen-
values of the stiffness matrix are evaluated to examine possible instabilities from
so called hourglass modes. Armero [1] covers the 2D version of this test while this
paper focuses on 3D testing as mentioned above.

Every eigenpair linked to an eigenvalue ωi of the element stiffness matrix denotes
a specific mode that describes one kind of motion or deformation that the element
can perform. Besides the six rigid body and the six constant strain modes, there are
twelve hourglass modes in 3D with corresponding eigenvalue ωhour

i . These eigenval-
ues can cause locking and numerical instabilities and sometimes yield non-physical
deformations in numerical computations. Negative hourglass eigenvalues can cause
typical hourglass patterns, thus, the construction of element formulations that exhibit
only positive eigenvalues should be the goal.

For the 3D version of this test we consider a single finite element 	e = [−1, 1]3.
It is deformed in a state of uniaxial stress which allows to analytically compute the
principal stretch λ2 = λ3 for any given λ1 using conditions τ2 = τ3 = 0.6 Armero [1]
showed that for the plane strain case of the problem depicted in Fig. 2 the hourglass-
eigenvectors are always constant and thus let us readily compute the corresponding
eigenvalues. In the uniaxial 3D case the hourglass-eigenvectors depend on the stiff-
nessmatrix and thus on thematerial properties and the element formulation.However,
they can still be computed analytically as shown in Pfefferkorn and Betsch [8].

Since the eigenmodes are well known, a matrix of eigenvectors can be described
and a product of the stiffness matrix and the hourglass matrix yields the eigenvalues.
For the elastic case we use the Lamé parameters λ = 105 and μ = 20.

Before we list the 3D results, we give a brief summary of previous results for 2D
elements. The first thorough work on the instabilities under compression of Q1/E4 is
Wriggers and Reese [20]. Viehbahn et al. [16] showed for Q1/S5 and Wriggers and
Reese [20] for Q1/E4 that these two elements show instabilities in uniaxial pressure

5 Elements with MIP method need even slightly more iterations in this example, which shows that
there are cases where this method is not advantageous. Nevertheless, it improves convergence in
many cases (see Pfefferkorn et al. [9]).
6 Due to the non-linearity of this expression a solver e.g. Newton’s method might be required to
solve for λ2. However, for the considered material models, an analytic solution is possible.
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Fig. 2 Setup for stability test 2D (left) and hourglass modes 2D (right)

(ωhour
2 < 0 for λ1 < 1).7 All other elements tested exhibit no negative hourglass

eigenvalues as shown by Armero [1]. In the case of the elasto-plastic material model
only Q1/E4 shows instabilities in uniaxial compression while all other EAS elements
suffer from instabilities under tension (see also Sect. 3.3).

There are twelve hourglass eigenvalues in the three-dimensional case. Due to
symmetry of the uniaxial stress problem, some of these twelve modes are identical
except for a rotation around the x-axis (see Pfefferkorn andBetsch [8]). Thus, only the
unique eigenvalues are shown in Fig. 3 for the neo-Hookean and for the elasto-plastic
material model, respectively.

For the elastic material behavior mode 6 of Q1/P0ET6 is slightly negative under
compression although this seems not to influence its stability in practical simulations.

For the plasticmaterial behaviorQ1/P0 shows the best results since all eigenvalues
are strictly positive. H1/E9, HA1/ET12 and H1/P0ET6 all have instabilities in the
plastic case since various eigenvalues are below zero. In particular, modes 7 and 8
have different shapes and much lower values for H1/P0ET6 than for standard EAS
elements. This ultimately leads to the hourglassing patterns observed in Sect. 3.4.
The EAS elements exhibit negative modes as well. In particular, ωhour

6 is negative.
However, thismode is not activated in distortedmeshes as shown in Sect. 3.4,whereas
it leads to hourglassing situations in plane strain necking problems (see Sect. 3.3).

3.3 Necking Plane Strain

In this and the following example we consider a necking simulation using the elasto-
plastic material and focus on hourglassing patterns. A rectangular bar with a length
of 2L = 53.334 and a width of 2R = 12.826 is subject to prescribed displacements
v̄. Necking is initiated by a geometric imperfection in form of a linear reduction of
R to R̄ by �R. In order to capture the hourglassing patterns, a total of 200 load steps
is considered to reach v̄ = 7. Note that only one fourth of the specimen needs to be

7 Q1/S5 has a different behavior in tension than all other elements which might emerge from
problems with the Legendre transformation.
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Fig. 3 Hourglass eigenvalues of 3D elements for the neo-Hookean (top) and elasto-plastic (bottom)
material model

Fig. 4 Thin bar: setup (left) and deformed mesh for v̄ = 5.6 of Q1/ET4 (middle) and Q1/P0ET2
(right)

simulated due to symmetry. For more details see e.g. Armero [1] or Pfefferkorn and
Betsch [8].

As shown in Fig. 4, exemplary for Q1/ET4, all EAS based element formulations
suffer from hourglassing patterns while Q1/P0 and Q1/P0ET2 are hourglassing-free.
Here, the negative eigenvalues of Mode 6 (or rather its 2D equivalent) observed in
Sect. 3.2 cause the hourglassing patterns.
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Fig. 5 Circular bar: setup (left) and from left to right the deformed meshes of H1/ET9, H1/P0 and
H1/P0ET6

Fig. 6 Spherical shell with
opening: setup (left),
deformed mesh (right)

3.4 Necking Circular Bar

In analogy to Sect. 3.3, the 3D version of the necking problem is conducted on one
eighth of a circular bar of length 2L = 53.334 and Radius R = 6.413. After a total
of 50 load steps opposite results to Sect. 3.3 are obtained as shown in Fig. 5. All
EAS based elements are hourglassing-free, but the element of Armero, H1/P0ET6,
shows hourglassing patterns. In dissent to the results of Simo and Armero [11] H1/P0
is hourglassing-free. Thus, for the current problem with its distorted elements, the
negative Mode 6 does not seem to induce hourglassing while the negative modes 7
and 8 observed for H1/P0ET6 induce hourglassing.

3.5 Spherical Shell with Opening

The final test presented in the present paper is the spherical shell with opening
problem modeled using the neo-Hookean nonlinear elastic material model with λ =
1.2115 · 105 and μ = 8.0769 · 104. The left image in Fig. 6 shows the setup with
middle radius r = 10, thickness 0.5 and opening angle β = 18◦ while the right
image shows the deformed mesh computed with element formulation H1/E9. The
shell is deformed by prescribed displacements applied at the inner edge of the top
opening. For more details on setup and procedure see e.g. Korelc et al. [5].
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Table 1 Results of the spherical shell test

element type req. nsteps total nNR Rz

H1/ET9 9 77 5487.5

H1/ET9-MIP 8 58 5487.5

HA1/ET12 9 77 5489.8

HA1/ET12-MIP 8 58 5489.8

H1/P0 3 27 5773.5

H1/P0ET6 3 29 4920.6

H1/S18 3 27 5454.1

Table1 presents the required number of load steps nsteps and total number of
Newton-Raphson (NR) iterations nNR plus the resulting reaction force in z-direction
Rz .8 Since the aspect ratio of the used mesh is around 1, H1/P0ET6 exhibits pro-
nounced robustness similar to H1/P0 (and H1/S18). The low reaction force Rz is
explained by the too soft behavior of H1/P0ET6 for nearly undistorted meshes. All
EAS elements require a much higher number of load steps as well as more than
double the amount of NR iterations. We emphasize that this behavior can not be
observed for H1/P0ET6 if poor aspect ratios occur. In that case H1/P0ET6 performs
extremely poor and even worse than EAS elements.9

4 Conclusion

The present paper covers the mixed pressure EAS element formulation of Armero
[1] with an extension to 3D as well as thorough evaluation of the performance of the
element regarding numerical instabilities such as spurious hourglassing patterns as
well as locking and robustness in NR-iterations.

Although the element formulation of Armero [1] is stable and hourglassing-free
for regular meshes with nonlinear elastic material behavior, some problems occur in
case of distorted meshes and for elasto-plastic material behavior.

In particular, while Q1/P0ET2 solves the hourglass problems, that EAS element
formulations such as Q1/ET4 suffer from in case of 2D elasto-plastic simulations
(seeArmero [1]), converse results are observed in 3D computations. Here, H1/P0ET6
shows hourglassing and EAS elements show no spurious results.

In conclusion, there is yet an EAS based element formulation to be found that is
free of spurious hourglassing effects with nonlinear elastic and elasto-plasticmaterial
behavior in 2D and 3D and that provides the required robustness for different problem

8 We use the Newton tolerance ||R|| < 1 · 10−8 as well as a maximum of 20 numerical iterations
per load step.
9 The convergence test of a circular ring (see e.g. Pfefferkorn et al. [9]) provides a good example
of the poor behavior of H1/P0ET6 in shell-like problems.
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formulations. Finding such an element remains the task for element development.
Nevertheless, the element formulation of Armero [1] provides an interesting mixed
element with many desirable properties and works especially well in 2D.
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Abstract In this contribution, the phase-field (PF) approach to brittle fracture is
extended to adaptively refined meshes at finite strains. Such mesh refinement pro-
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model performance is demonstrated by two representative numerical examples.
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1 Introduction

With the ongoing development of modern element technologies, promising numer-
ical simulation tools were created for failure analysis of solids. In this regard, dis-
cretization schemes like the Finite Difference Method, the Finite Element Method
and the Boundary Element Method are well established numerical tools for solving
various science and engineering problems. Additionally new approaches like Mesh-
less methods for arbitrary deformations, IsoGeometric Analysis and the eXtended
Finite Element Method for fracture mechanics problems are continuously evolved
and can be efficiently used within a specific problem range. Hence, the art of mod-
eling means here to pick the right numerical solution method that provides accurate
results in the most time efficient way. Each of the methods described above has its
own specifications and thus needs experts for a correct and efficient application.

In this work a relatively new discretization technique the Virtual Element Method
(VEM) will be presented that introduces some new features to the numerical solu-
tion of problems in solid mechanics [1, 2]. VEM has proven to be a competitive
discretization scheme for meshes with highly irregular shaped elements that can
even be non convex. Moreover, VEM allows the usage of an arbitrary polygonal
(2D) and polyhedral (3D) element shapes with arbitrary number of nodes. So far
applications of virtual elements have been devoted to linear elastic deformations in
[3], contact problems in [4, 5], second order approximation (serendipity elements)
in [6, 7], elasto-plastic deformations in [8] and fracture mechanics in [9–11].

This work extends the virtual element method further towards adaptive fracture
mechanics at large deformations. The modeling of crack formation is achieved in a
convenient way by continuum phase-field approaches to fracture, which are based on
the regularization of sharp crack discontinuities [12]. Phase-field modeling of frac-
ture has been attracting considerable attention in recent years due to its capability
of capturing complex crack patterns in various problems in solid mechanics. In the
current contribution, a robust and efficient adaptive virtual element method is pro-
posed within the phase-field fracture. This reduce the computation cost remarkable
and allows for complex democratization scheme.

2 Phase-Field Modeling of Brittle Fracture

In this section, we outline a variational approach to brittle fracture in elastic solids
at finite strains.
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2.1 Basic Kinematics

Let � ∈ Rδ with δ = 2, 3 be a solid body. The response of fracturing solid at mate-
rial points x ∈ � and time t is described by the displacement field u(x, t) and the
crack phase-field d(x, t) with ḋ ≥ 0. Here, d(x, t) = 0 and d(x, t) = 1 represent
the unbroken and fully broken state of the material, respectively. The deformation
gradient F can be defined from displacement gradient as

F = ∂x
∂X

= ∂(X + u)

∂X
= I + ∇u . (1)

For the phase-field problem, a sharp-crack surface topology � → �l is regularized
by the crack surface functional

�l(d) =
∫

�

γl(d,∇d) dV with γl(d,∇d) = d2

2l f
+ l f

2
|∇d|2 (2)

based on the crack surface density function γl per unit volume of the solid and
the fracture length scale parameter l f that governs the regularization. Hence, the
combination of elasticity with the first-order gradient damage modeling focuses on
the set

Constitutive State Variables: C := {F, d,∇d} . (3)

2.2 Constitutive Work Density Function

The constitutive work density function W is assumed to depend on the constitutive
state variables C introduced in Eq. (3). It consists of the sum

W (C) = Wbulk(F, d) + Wfrac(d,∇d) (4)

of a degrading elastic bulk energyWbulk and a contribution due to fractureWfrac,which
contains the accumulated dissipative energy. The hyper-elastic bulk contribution in
Eq. (4) is assumed to be a non-linear function as

Wbulk(F, d) = g(d) (ψiso(F) + ψvol(JF+)) + ψvol(JF−) with (5)

ψiso(F) = μ

2

(
J

− 2
3

F tr(FFT) − 3
)

isohoric part and (6)

ψvol(JF ) = κ

4
(JF − 1 − 2 log(JF )) volumetric part and (7)

JF ± = 〈JF 〉± = (JF ± |JF |)/2, 〈�〉± is the Macaulay bracket
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where, κ and μ are the material bulk and shear moduli and JF = det(F) is the
determinant of deformation gradient F. The function g(d) = (1 − d)2 models the
degradation of the stored elastic energy of the solid due to fracture and it degrades
the positive volumetric part and full shear part. The fracture contribution in Eq. (4)
is defined as

Wfrac(d,∇d) = Gc γl(d,∇d) (8)

where, Gc > 0 is the Griffith’s critical energy release rate.

2.3 Governing Equations

2.3.1 Balance of Linear Momentum

The first equation is the stress equilibrium or the quasi-static form of the balance of
linear momentum defined as

Div (P) + f = 0, with P = ∂FW , (9)

where f are volume forces and the first Piola–Kirchhoff stress tensor, which can be
obtained from hyper elastic strain energy W in (4).

2.3.2 The Fracture Phase-Field Equation

Evolution of the regularized crack surface functional (2) can be driven by the constitu-
tive functions as outlined in [9], postulating a global evolution equation of regularized
crack surface as

d

dt
�l(d) = 1

l f

∫
�

[ (1 − d)H − ηḋ] ḋ dV ≥ 0 , (10)

where η ≥ 0 is a material parameter that characterizes the artificial/numerical vis-
cosity of the crack propagation. Various criteria can be chosen here (see [12]), in this
case the crack driving force was chosen to be only the volumetric part:

H = max
s∈[0,t] D(x, s) ≥ 0 with D := ψvol(JF+) + ψiso(F) (11)

is introduced as a local history variable that accounts for the irreversibility of the
phase-field evolution by filtering out a maximum value of what is known as the
crack driving state function D. Then the evolution statement (10) provides the local
equation for the evolution of the crack phase-field in the domain � along with its
homogeneous Neumann boundary condition as
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(d − l2f 
d) + ηḋ + (d − 1)H = 0 (12)

with ∇d · n = 0 on ∂�. Here, n represents the outward normal on ∂�. The fracture
pseudo potential can then be defined as:

W̃frac(d,∇d) = dḋη − g(d)H + Gcγl(d,∇d) (13)

The specific potential can then be defined as:

W (C) = Wbulk(F, d) + W̃frac(d,∇d) (14)

3 The VEM

In this chapter a standard VEM is introduced. The basics of VEM is explained in
[2]. The first step is to rewrite element unknowns ph = (uh vh dh) [13, 14], known
only at element nodes and edges as:

ph = p� + (ph − p�) . (15)

Here � is a projection operator �(p) = p�, that projects quantity p on first order
polynomial space.

3.1 The VEM Projection

The projected variables are defined as:

p� =
⎛
⎝ uπ

vπ

dπ

⎞
⎠ = aN� =

⎡
⎣ a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

⎤
⎦

⎛
⎝ 1

X
Y

⎞
⎠ (16)

for every 2D element with the set of unknown parameters a, 3 per nodal degree of
freedom (DOF), in this case total 9 parameters. The goal now is to compute a as a
map of the nodal degrees of freedom of a virtual element pe.

The computation of this polynomial function is based on the requirement that the
remainder (ph − p�) and its gradient are orthogonal to any first order polynomial pp

and its gradient. This yields

∫
�

[
pp · (ph − p�)

]
� = 0 and

∫
�

[ ∇pp · (∇ph − ∇p�)
]
d� = 0 . (17)
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Since both ∇pp and ∇p� are constant at element level, (17) reduces to the condition
that the gradients computed from the projected and real displacements must be equal.
Considering latter, the gradient of projection can be directly defined from (17) as:

∇p�|�| =
∫

�

∇phd� =
∫

∂�

ph ⊗ N ds. (18)

Because ph and its gradient are unknown on element � the integral on the right-
hand-side was also transformed to the boundary integral by using the divergence
theorem. The N = (NX NY ) is the outward unit normal to the element surface. For
the two-dimensional case this results in

∇p� =
⎡
⎣∇p� 1

∇p� 2

∇p� 3

⎤
⎦ =

⎡
⎣ a1 2 a1 3

a2 2 a2 3

a3 2 a3 3

⎤
⎦ = 1

|�|
nv∑
E=1

∫
E

⎡
⎣ u(s)NX (s) u(s)NY (s)

v(s)NX (s) v(s)NY (s)
d(s)NX (s) d(s)NY (s)

⎤
⎦ ds ,

(19)

right hand side represents the edge by edge integration of ph⊗N . The s ∈ [0, LE]
represents a curvilinear coordinate along the edge E of length LE, defining edge

coordinate X(s) =
(
(1 − s

LE
)XE + s

LE
XE+1

)
. Similarly the components of ph =(

(1 − s
LE

)ph E + s
LE
ph E+1

)
, normal N(s) = (

Y (s),s − Y (s),s
)
/LE and length LE =

|X ,s | are defined in terms of s at the boundary of the virtual element.

For completeness of the polynomial in (16) the rest of parameters (a1 1, a2 1 and
a3 1) have to be determined. They follow from the condition (17), this simplifies for
linear VEM (see [2]) to the contrition that the average vertex value of nodal degrees
of freedom ph(X i ) equals to the average of their projections p�(X i ) the projection
p�

1

nv

nv∑
i=1

p�(X i ) = 1

nv

nv∑
i=1

ph(X i ) → aI 1 = 1

nv

(
nv∑
i

ph I (X i ) + ∇p� I ·
nv∑
i

X i

)
(20)

ph I ⊂ ph(X i ) = (uh(X i ) vh(X i ) dh(X i )) = (pe)i∈(3 i−2, 3 i−1, 3 i) (21)

Now all kinematic quantities inC can be expressed in terms of the projection function
(16) as:

u� = (p� 1 p� 2) , ∇u� = (∇p� 1 ∇p� 2)
T , d� = p� 3 and ∇d� = ∇p� 3 . (22)
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3.2 Construction of the Virtual Element

Knowing the potential (14) and the kinematical quantities (22) a virtual element
formulation can be derived as described in [14]. With the split in (15) the energy can
be also split in a part compatibility by the deformation gradient of the projection and
a stabilization part i.e. U = Uc + Ustab. Here the same potential has been chosen for
both parts (i.e. Ustab := β
Uc), interpolating between with factor β [9].

U (p) =A
ne

e=1
Ue(pe), whereUe(pe) = [(1 − β)Uc(C�|e) + βUc(Ch T |e)] (23)

where A is the assembly operator. The energy contribution of each virtual element
resulting from the displacement is defined as:

Uc(p�) =
∫

�

[W (C�) − f̄ · u�] d� −
∫

∂�

t̄ · u� ds . (24)

The projection parameters from (16) and consequently p� depend on the nodal
degrees of freedom pe through Eqs. (19) and (20) and therefore also energy function
of projection (14). The residual vectorRe and the stiffnessmatrixKe can be computed
at element level from Ue. This yields

Re = ∂Ue(pe)

∂pe
and Ke = ∂Re(pe)

∂pe
(25)

that are explicitly computable through pe. The matrices (25) are evaluated directly
from potential by using AceGen software tool, which has automatic differentiation
capabilities [15].

4 Mesh Refinement

Asimple refining algorithmwas implemented. The algorithm is based on a refinement
function f (e) which loops over each element e. If f (e) yields true, refinement
is triggered on element e. In that case, a new node is inserted on a position of
element centroid XC |e = 1/|�e|

∫
�e

Xd� and additional new nodes are inserted at
each element edge E XC |E = (X|E + X|E+1)/2 if needed (the algorithm checks
if the edge has already been previously refined from neighbouring element, thus
avoiding the new insertion). After, the nE = nv new elements are created, connecting
points XC |E , X|E , XC |E+∞ and XC |e into a new element for each edge E. Figure1
demonstrates the mesh refinement algorithm. Starting with 2× 2 mesh in Fig. 1a and
refining around a line plotted in Fig. 1a for refinement depths in Fig. 1b–e.
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Fig. 1 The mesh Refinement algorithm, step-by-step. a Starting mesh with line to refine around
b–c refinement steps

Table 1 Material parameters

Id Description Symbol Value Unit

1 Elastic modulus E 2.1 × 104 kN
m2

2 Poisson ratio ν 0.2

3 fracture length
scale

l f 0.015 mm

4 Griffith’s critical
energy release
rate

Gc 10 kN
mm

5 Viscosity of crack η 0.01 kNs
mm2

5 Numerical Examples

Theperformanceof the shown refinement andphase-fieldmodelwill be demonstrated
in this chapter. On the computational side, a robust and efficient staggered scheme
is employed using the software tool AceFEM in the numerical implementation to
compute the unknowns (displacement u and crack phase-field d). Within each load
step a quadratic convergence is achieved, due to the fact that all formulations are
linearized in a consistent manner using AceGen. The benchmark tests considers a
square block (L = H = 1 mm) with a horizontal notch placed at the middle height.
With material parameters summarized in (Table1).

5.1 Single-Edge Notched Tension Test

The standard tension example has displacements at top and bottom fully clamped and
the top is vertically displaced at rate ūX = 1mm/s until final failure at time t = 0.1s,
as outlined in Fig. 2. The results showgoodmatch between fine and adaptively refined
mesh in Fig. 3b–c and a good match between VEM and FEM. In fact FEM exhibits
some locking behaviour, but the major point of the contribution was to show that the
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Fig. 2 Single-edge notched tension test. VEM-Adaptive crack phase-field evolution for different
deformation stages until final failure

Fig. 3 The FEM (a) and VEM (b) on fine mesh with 27 × 27 and VEM final refined state (c)

Fig. 4 The load displacement curve of FEM, VEM on Q1 fine mesh and VEM with adaptive
re-meshing for the tensile example

adaptive and fine meshes produce comparable results, and as outlined in Fig. 4 are
in good agreement.
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Fig. 5 Single-edge notched shear test. VEM-Adaptive crack phase-field evolution for different
deformation stages until final failure

5.2 Single-Edge Notched Shear Test

The shear example has displacements at top and bottom fully clamped and the top
is vertically displaced at rate ūX = 1 mm/s until final failure at time t = 0.2 s, as
outlined in Fig. 5.

Unlike Tension, shear example is much more unpredictable, the path will depend
on the chosen split and fracture criteria (see [16]). The results show good match
between fine and adaptively refined mesh illustrated in Fig. 6b and c and a good
match between VEM and FEM. Similar to the first example FEM exhibits some
locking behaviour, however such outcome is not the goal of this contribution. The
key point here is to illustrate the efficient adaptive scheme in comparison with the
standard fine meshes. This results with remarkable reduction of the computation
time, while producing similar results, as shown in the load-displacement curves in
Fig. 7.

Furthermore, we investigated two different fracture deriving forces H , namely
only with positive volumetric part (Fig. 7a) or with the full deviatoric part (Fig. 7b).
In both cases, the developed mesh adaptive scheme illustrates good results in com-
parison with the classical fine meshes of VEM/FEM.
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Fig. 6 The FEM (a) and VEM (b) on fine mesh with 27 × 27 and VEM final refined state (c)

Fig. 7 The load displacement curve of FEM, VEM on Q1 fine mesh and VEM with adaptive
re-meshing for Shear example

6 Conclusion

In this contribution a robust algorithm was shown that allows adaptive refinement of
meshes based on the gradient and value of phase-field variable on large deformations.
The algorithm requires introduction of hanging nodes, thus the use of Virtual Ele-
ment Method is beneficial here. The results show good agreement between fine and
adaptively refined results. Due to the fact the standard mesh was relatively coarse,
the response is slightly stiffer. However a remarkable computational time reduction,
yet good results close to the standard formulation was achieved.
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geometric shell analysis, independent of the polynomial degree of the elements. For
polynomial degrees 5 and 6, the approach delivers high accuracy, low computational
cost, and alleviates membrane and transverse shear locking.

1 Introduction

In this paper we address the problem of creating shell finite elements within the
Isogeometric Analysis (IGA) paradigm, which, in structural mechanics, amounts to
employing the same kinematic description (i.e., specification of the displacement
field) as that being utilized in the definition of geometry emanating from a Computer
AidedDesign (CAD) representation [1].We focus onB-splines andNURBS, as these
CAD technologies dominate industrial usage. IGA offers a fundamental advantage
in shell modeling, namely, precise, or even exact, geometric representation, and this
is no doubt important as it is well known that even small geometric imperfections can
significantly affect results in thin shell buckling, indicating numerical approximations
of geometry may also be a primary source of error. Nevertheless, there are still major
barriers to creating effective IGA shell elements, and these are shared by traditional
finite element methods.

A primary concern are “locking phenomena”, specifically, transverse shear lock-
ing and membrane-bending locking. Transverse shear locking is not a consequence
of curved shell geometry; it is present as well for flat plate and straight beammodels.
In the development of shell finite elements, the main challenge to overcome, and a
remaining open problem, is membrane-bending locking. It is apparent that curved,
higher-order, traditional shell elements have not distinguished themselves heretofore
because curvature is the root cause of membrane-bending coupling, hence locking.
It is no wonder that in industrial software there is a heavy reliance on the lowest-
order, four-node, quadrilateral shell elements, despite their inherently low accuracy,
because they are typically flat, or almost flat, and minimize membrane-bending cou-
pling within elements thereby. What we would like to have are simple, straightfor-
ward, IGA shell elements that would be candidates for inclusion in industrial scale,
commercial general-purpose computer programs.

We have pursued a study that starts with the most direct “primal” formulations of
shell finite elements, and adheres to the finite element analysis orthodoxy of using
high-enough accurate Gauss quadrature rules to ensure stability of the stiffness and
mass matrices. Just as in the case of traditional finite elements, there are no exact
quadrature rules for non-affine element geometries. So, sufficiently accurate Gauss
rules are generally accepted as about the best one can do. We have investigated
Reissner–Mindlin (RM) shell theory [2, 3] andKirchhoff–Love (KL) shell theory [4],
which precludes transverse shear deformation and is “rotation free,” only requiring
displacement degrees of freedom, unlike RM elements, which additionally require
rotation or director fields. Our study focused on maximally smooth B-splines and
NURBS elements of polynomial order p = 2, 3, 4, 5, and 6 for RM theory, and p =
3, 4, 5, and 6 for KL theory. The in-plane Gauss point patterns used involve (p + 1)2
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points per Bézier element. Based on previous studies, we anticipated severe locking
to occur for lower orders of p and mitigation of locking for higher orders of p, and
indeed this was the case [5]. For orders p = 5 and 6, we found promising results
for all tests considered. It seems higher-order elements cure a multitude of ills, but,
of course, the obvious drawback is the computational cost associated with the very
large number of Gauss quadrature points per element. These orders of p may seem
high, but that is probably due to lingering perceptions emanating from experience
with classical finite element analysis. With one control point per element, the order
of smooth spline elements is asymptotically the same as p = 1 in traditional finite
element analysis. Given these observations, it seems that the cases p = 5 and 6might
provide robust capabilities of the type desired if, and only if, the cost of quadrature
could be reduced to an acceptable level, independent of p.

We endeavored to reduce the number of quadrature points to be substantially
less than full Gauss quadrature. Greville abscissae, which are in one-to-one corre-
spondence with the control points (i.e., nodes), represent a “one-point” quadrature
rule in the sense that there is only one quadrature point per control point. This was
our first attempt, but in Galerkin formulations of shell theories it was not effective.
However, we found that Greville abscissae were effective, if we redefined the space
that determined the Greville abscissae to include, in addition to the basis functions,
all the derivatives appearing in the weak form of the problem. To be specific, in the
case of maximally smooth RM elements, to determine the Greville abscissae, we
used the larger space of pth-order splines that are C p−2 continuous. Note that this
is one order less continuity than for maximally smooth pth-order splines, which are
C p−1 continuous. For maximally smooth KL elements, we used the still larger space
of pth-order splines that are C p−3 continuous. In both cases, we then solve linear,
moment fitting equations in each parametric direction to obtain the weights, and then
the two-dimensional quadrature points and weights are generated by a simple tensor
product of the one-dimensional quantities. This results in, asymptotically, four in-
plane quadrature points per RM shell element and nine in-plane quadrature points
per KL shell element, which are fewer than those required by full Gauss quadrature
for all the cases considered, and substantially fewer in the higher-order cases, with
concomitant reductions in computational cost. The accuracy of the Greville rules is
found to be commensurate with full Gauss quadrature.

2 Greville Quadrature

2.1 Definition of Greville Quadrature

Numerical integration of a univariate function, f (x), can be written as
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Fig. 1 Greville quadrature points and weights for a quadratic B-spline basis with knot vector � =
{0, 0, 0, 1, 2, 3, 4, 4, 4}. Red dots denote the locations of the quadrature points and (·, ·) indicates
(xi ,wi ), i = 1, 2, · · · , 6

∫
Î
f d Î ≈

n∑
I=1

f (xI )wI , (1)

where f is the integrand, Î is the integral domain, {xI }nI=1 are the n quadrature
points, and {wI }nI=1 are the corresponding weights. Given a univariate p-degree (p ≥
2) B-spline basis {NI }nI=1 with an open knot vector � = {

ξ1, ξ2, . . . , ξn+p+1
}
, we

propose away to determine the quadrature points andweights as follows: theGreville
abscissae {xI }nI=1, where xI = 1

p (ξI+1 + ξI+2 + · · · + ξI+p), are chosen to be the
quadrature points, and the weights {wI }nI=1 are determined so that the quadrature
rule can exactly integrate all linear combinations of the univariate B-spline basis
{NI }nI=1. This can be accomplished by solving the following moment fitting system
of equations

⎡
⎢⎢⎢⎣

∫
Î N1(ξ)dξ∫
Î N2(ξ)dξ

...∫
Î Nn(ξ)dξ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

N1 (x1) N1 (x2) · · · N1 (xn)

N2 (x1)
. . . · · · N2(xn)

...
...

...

Nn (x1) · · · · · · Nn (xn)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦ , (2)

where the left-hand side contains the moments, which are computed exactly using
full Gauss quadrature. As the Greville abscissae are taken as quadrature points, we
refer to this quadrature rule as the Greville quadrature. Figure1 shows the Greville
quadrature points and weights for a univariate quadratic B-spline basis associated
with the knot vector � = {0, 0, 0, 1, 2, 3, 4, 4, 4}. Note that the Greville quadrature
points and weights are calculated with respect to the global parametric domain of
the patch. To utilize the method in existing FEA routines we can easily map these
quadrature points into a parent element coordinate system through an affinemapping.

For a bivariate B-spline or NURBS basis, the quadrature points and weights are
efficiently obtained through a simple tensor product of the corresponding univariate
quantities.
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2.2 Greville Quadrature for Shells

The Greville quadrature proposed in Sect. 2.1 lays down a general framework for
determining quadrature points and weights, i.e., preselecting the Greville points as
thequadrature points and thengenerating thequadratureweights by solving amoment
fitting equation system. However, for a specific isogeometric Galerkin formulation,
a proper integration accuracy is necessary to ensure that the resulting linear equation
system is stable and accurate. By construction, the Greville quadrature rule can
exactly integrate all B-spline basis functions {NI }nI=1 adopted in (2). Therefore, one
can easily control the quadrature accuracy by using specific B-spline bases to build
the quadrature rule. In this section, we propose different B-spline bases to build
quadrature rules for KL and RM shells.

Assuming the highest order of derivatives in the Galerkin formulation is k and the
univariateB-spline basis alongoneof the parametric directions in theGalerkin formu-
lation is

{
N p

I

}n
I=1 with knot vector� = {

ξ1, ξ2, . . . , ξn+p+1
}
, theGreville quadrature

rules for analysis should be constructed in away such that all basis functions
{
N p

I

}n
I=1

and their derivatives of order less than or equal to k are integrated exactly. In other
words, (2) should be satisfied for all functions in

{
N p

I,m | 1 ≤ I ≤ n, 0 ≤ m ≤ k
}
.

Notice that these functions are included in a set of new B-spline basis functions{
Ñ p

I

}ñ

I=1
, with knot vector �̃ obtained by increasing the multiplicity of each interior

knot of� by k. It is preferable to use
{
Ñ p

I

}ñ

I=1
to build the Greville quadrature rules,

because, in this way, we can avoid calculating the derivatives of the B-spline basis
functions

{
N p

I

}n
I=1 and the quadrature points are naturally the Greville quadrature

points calculated from the knot vector �̃. In what follows, we will use the notations

Sp
0 = {

N p
I

}n
I=1 and Sp

k =
{
Ñ p

I

}ñ

I=1
, k ∈ {1, 2}, (3)

to indicate different B-spline bases.
According to the rules given above, for KL shells, the quadrature rule along one

direction will be constructed with Sp
2 , and for RM shells, it will be constructed

with Sp
1 . A two-dimensional quadrature rule is simply the tensor product of two

one-dimensional quadrature rules as mentioned in Sect. 2.1. To distinguish these two
quadrature rules for KL and RM shells, we will refer to them as GREVI-K and
GREVI-R, respectively, hereafter. For a cubic B-spline basis with knot vector � =
{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, the one-dimensional quadrature points and weights for
GREVI-K and GREVI-R are illustrated in Fig. 2. It is clear that the GREVI-R and
GREVI-K rules, asymptotically, only involve two and three quadrature points in
each parametric direction per element, respectively, regardless of the basis degrees.
Consequently, only four and nine in-plane quadrature points are required for RM and
KL shell elements.
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Fig. 2 Quadrature points and weights of GREVI-K and GREVI-R for a cubic B-spline basis
with knot vector � = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. Red dots denote the locations of the quadrature
points, and (·, ·) indicates the global quadrature point and weight pair (xi ,wi )

Remark 1. The Greville quadrature weights are not always positive for an arbitrary
knot vector. For example, if a knot interval of � is extremely small compared to
adjacent intervals, it is possible for the GREVI-K and GREVI-R quadrature rules
to exhibit negative weights locally. Quadrature rules with negative weights are
prone to instability and not preferred in engineering analysis. In this work we
confine ourselves to uniform knot vectors. With uniform knot vectors we only see
negative weights for the GREVI-K rule with p = 4. How to effectively remove
the negative weights for arbitrary knot vectors is non-trivial and will be addressed
in future work.

2. For p = 2, themultiplicities of the interior knots of the resulting knot vector �̃will
be three for GREVI-K. Therefore, each element is an independent Bézier patch
and the quadrature rule needs to be determined on the element level through (2).
The resulting quadrature points will be distributed by the Simpson’s rule, and
unfortunately the two coincident quadrature points at the element interface can not
be combined into one point due to the discontinuous second order derivatives [6].
As a result, the number of quadrature points will be the same as for full Gauss
quadrature and thus we will not explore the case of p = 2 for GREVI-K further.

�

2.3 Scordelis–Lo Roof

The Scordelis–Lo roof problem is part of the so-called shell obstacle course [7]
and tests a shell element’s ability to handle both membrane and bending modes. An
80◦ arc of a cylinder with radius R = 25, length L = 50, and thickness t = 0.25
or 0.025 is supported on each end by a rigid diaphragm. It is loaded with its own
weight qz = 90. The material has Young’s Modulus, E = 4.32 × 108, and Poisson’s
ratio ν = 0. Figure3 shows the problem setup. The initial mesh of the whole model
consists of 4 × 4 maximally smooth elements.
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Fig. 3 Schematic for the Scordelis–Lo roof problem

The maximum displacement occurs on the free edge at L
2 . For t = 0.25, the usual

FEA solution converges to 0.3006 for KL shells [4] and 0.3024 for RM shells [2,
7]. For t = 0.025, the reference solution given in [8] is 32.0 for KL shells and we
also take it as the reference solution for RM shells in this work. The maximum
displacement on the free edge at L

2 is monitored and results for the KL shell are
shown in Fig. 4. For p = 3 and 4, t = 0.25, as shown in Fig. 4a, the GREVI-K rule
obtains slightly worse results than the GAUSS rule with the initial mesh, but with
one refinement they almost achieve identical results that are close to the reference
solution.As the degrees increase to p = 5 and6,GREVI-KandGAUSSobtain nearly
coincident results and, since locking is alleviated largely by higher-order bases, good
results are achieved with even the initial mesh. As the shell thins, i.e., t = 0.025,
membrane locking becomes more severe and the results converge more slowly for
both quadrature rules as shown in Fig. 4b. In this case, the GREVI-K rule achieves
superior results for p = 4 while, for p = 5 and 6, the results obtained by GREVI-K
and GAUSS hardly differ from each other.

Since this problem is membrane dominated, transverse shear locking is not sig-
nificant. Figure5 demonstrates that for p = 3 to 6 the RM shell with GAUSS and
GREVI-R converges in a similar way as the KL shell with GAUSS and GREVI-K
shown in Fig. 4. For p = 2, the GREVI-R rule underperforms the GAUSS rule but
otherwise both rules perform about the same.
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Fig. 4 Scordelis–Lo roof modeled as a KL shell: Convergence of the maximum displacement uz
with GAUSS and GREVI-K, degrees p = 3 to 6, and maximally smooth elements. The whole roof
is modeled with an initial 4 × 4 mesh

Fig. 5 Scordelis–Lo roof modeled as an RM shell: Convergence of the maximum displacement uz
with GAUSS and GREVI-R, degrees p = 2 to 6, and maximally smooth elements. The whole roof
is modeled with an initial 4 × 4 mesh

3 Conclusions

We proposed Greville quadrature schemes for isogeometric shell analysis. The
quadrature points are chosen to be Greville abscissae for B-splines and NURBS,
but the spaces from which the rules emanate are unusual. The proposed method
for Reissner–Mindlin (RM) shells, referred to as GREVI-R, is a Greville quadra-
ture scheme based on pth-order basis functions, but with one-order lower continuity
across element interfaces than the pth-order, maximally smooth, basis functions used
for analysis. The proposed scheme for Kirchhoff–Love (KL) shells, referred to as
GREVI-K, constructs the Greville quadrature points based on pth-order basis func-
tions, but with continuity two orders lower than the maximally smooth basis used for
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analysis. The quadrature weights are determined by solving linear moment fitting
equations. These methods are free of rank deficiency and spurious modes. At the
same time, they achieve similar accuracy as full Gauss quadrature. The proposed
methods for RM and KL shell elements only involve four and nine in-plane quadra-
ture points, respectively, per Bézier element, compared to the usual (p + 1)2 in-plane
quadrature points for elements with standard “full” Gauss integration. As increasing
the basis order does not asymptotically increase degrees-of-freedom or the number
of quadrature points for higher-order basis functions, the proposed methods are effi-
cient, robust, accurate and alleviate locking. For further details of the methodology
and a comprehensive evaluation, please see our paper [9].
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Thermodynamic Topology Optimization
of Layered Anisotropic Materials

Dustin R. Jantos and Philipp Junker
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Mechanics, your manifold support, and our trustful cooperation.
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—P. Junker

Abstract Anisotropic materials are often used for high-performance components
and thus the optimization of structures produced with those materials is of major
interest. To optimize such structures, the topology as well as the material orientation
should be considered as design variables for maximum performance. Most common
production processes of anisotropic materials consider additive manufacturing either
by layering laminates of fiber reinforced composites or 3D-printing. To this end, we
present a variational and thermodynamic optimization model for the topology based
on a density approach in combinationwith a local continuous fiber angle optimization
in the three-dimensional space. To tackle the mentioned production restrictions, the
fibers are restricted to be parallel to a globally defined layer plane, which accounts
for the layered production process. The layer plane is either optimized as well or can
be prescribed by the user. In addition, a filtering technique for the fibers is presented
to constrain the maximum fiber curvature within the layers.

1 Introduction

Over the last decades topology optimization (TO) became amore andmore important
tool to save resources. Overviews and reviews over different topology optimization
methods can be found in the literature [1, 2]. Anisotropic materials are often used for
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high-performance components and thus not only the optimization of the topology but
also the optimization of the material orientation is important. However, production
of anisotropic materials is often constrained to layer-wise additive manufacturing
(AM), as for example for laminates of layered fiber reinforced composites [3, 4]
or 3D-printing techniques [5–8], e.g. components produced with Selective Laser
Melting (SLM) or Fused Deposition Modeling (FDM) (also called Fused Filament
Fabrication) posses inherent anisotropic mechanical properties, especially for the
latter, if reinforced with carbon or metal fibers [9]. Components produced with AM
may have nearly arbitrary geometries but the fibers are aligned layer-wise and all
fibers are parallel to a given plane due to the nature of the manufacturing process.

Besides generalworks ofTOwith anisotropicmaterials including the optimization
of the local fiber orientation [10–13], research on direct combinations of AM and
TO can be found in literature: in [14], a Discrete Material Optimization (DMO)1

model was applied to optimize the material orientation within each layer of beams
with given cross section profile.

The authors in [15, 16] investigated components optimizedwith Continuous Fiber
Angle Optimization (CFAO)2 and produced by FDM/FFF but—as most studies—
only for the two-dimensional case. In [17, 18], the authors used a CFAO combined
with topology optimization for 2.5-dimensional boundary value problems, i.e. three-
dimensional problems with prescribed (curved) fiber planes, and produced the opti-
mization results with voxel-based multimaterial jetting.

Special constraints have been incorporated to TO approaches, e.g. overhang con-
straint introducing an allowable self-supporting angle as additional constraint for
the TO to reduce the requirement of support structures within 3D-printing processes
[19]. An overview over the challenges and requirements on TO models regarding
AM can be found in [16, 20, 21] for 3D-Printing and in [22] for laminates.

Most works in literature assume the layer plane to be given, i.e. the problem
becomes a stacking of two-dimensional problem solutions. In contrast, within this
publication, we derive a thermodynamic optimization model for layered anisotropic
materials based on a fully three-dimensional setting, i.e. the design space and bound-
ary value problem are defined in a three-dimensional setting without further restric-
tions on the geometry of the component. We combine a density based topology opti-
mization with a three-dimensional CFAO approach which yields locally optimized
fiber directions which are all restricted to be parallel to a single layer plane. This layer
plane is also determined by a continuous angle optimization, or can be prescribed
by the user. For the optimization of the material orientation, i.e. fiber direction, we
present a novel approach based on Euler angles as design variables for the rotation
parametrization based on [23]: two globally defined Euler angles parametrize the

1 DMO for material orientation optimization is used by applying the same anisotropic material, but
with different orientation as set of discrete number of varying materials. Thus, the local material ori-
entation is not optimized freely, but determined by the material choice and the possible orientations
are limited to the chosen set of materials.
2 In CFAO, the local material orientation is parametrized by continuous rotation parameters. Thus,
it is possible to optimize the material orientation freely.
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orientation of the layer plane in three-dimensional space for the whole design. A
third Euler angle is defined locally which yields fiber directions parallel to the layer
plane for each point in the design space. In addition, we present a filtering technique
to constrain the maximum curvature of the fibers within the layer plane based on the
filtering technique presented in [23].

The remainder of the article is structured as follows: the equations for the thermo-
dynamic optimization are derived in Sect. 2 and their numerical solution including
thematerial orientation filter for the fiber curvature constraint are explained in Sect. 3.
Numerical results for two different materials, varying maximum fiber curvature and
prescribed layer planes are presented in Sect. 4. Finally, the article is concluded in
Sect. 5.

2 Thermodynamic Optimization

2.1 Design Variables

The design variables d = {χ,α} for the topology optimization of anisotropic mate-
rials for the three-dimensional case are given by

d =
{

χ : density → topology

α = {φ, ν, ω} : Euler angles → orientation .
(1)

The continuous density variable χ ∈ [0, 1] describes the presence (χ = 1) and
absence (χ = 0) of material.

Thematerial orientation is described by the set of continuous rotation parametersα
describing the rotation of an anisotropic basematerial (c.f. Sect. 2.2), i.e. a continuous
fiber angle optimization (CFAO). To this end, we define the set of Euler angles
α = {φ, ν, ω} to describe the rotationmatrix Q for the rotationdefinedby a sequential
z-x ′-z′′ rotation (see Fig. 1), i.e. a rotation around the z-axis followed by the rotation
around the rotated x-axis (indicated by x ′) followed by the rotation around the rotated
z-axis (indicated by z′′). Thus, the first two rotations define the final orientation of
the z-axis given by z′′, i.e. the x ′′-y′′-plane. Then, the third rotation describes an
additional rotation of around the z′′-axis and thus the final orientation within the x ′′-
y′′-plane. Therefore, if the first two rotations are defined as global, i.e. are identical
for all discretized points x ∈ �, the z′′-axis describes the normal of the layers of a
layered (anisotropic) material, i.e. for example the plane normal of laminates or the
print plane of a 3D-printer. The third and final rotation describes the fiber direction
within the layers, i.e. within the x ′′-y′′-plane.

The rotation is parametrized by the three Euler angles as follows
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Fig. 1 Illustration of a z-x ′-z′′ rotation with the Euler angles ω and ν defining the x ′′-y′′-plane
within the first two rotations and φi defining the final orientations of the x ′′

i - and y′′
i -axes within the

x ′′-y′′-plane

α =
⎛
⎝φ(x)

ν

ω

⎞
⎠ →

→
→

rotation around z′′-axis
rotation around x ′-axis
rotation around z-axis

, (2)

where φ = φ(x) is a local design variable and ν �= ν(x) and ω �= ω(x) are global
design variables. With the abbreviation sk = sin(αk) and ck = cos(αk) the rotation
matrix is defined by

Q(α) =
⎛
⎝c1c3 − s1c2s3 −s1c2c3 − c1s3 s1s2

s1c3 + c1c2s3 c1c2c3 − s1s3 −c1s2
s2s3 s2c3 c2

⎞
⎠ (3)

2.2 Material Definition

For the remainder of the publication, we assume all higher order tensors to be given
in their respective Mehrabadi–Cowin notation [24]. Thus, the stresses σ and strains
ε are given as the corresponding six-dimensional first order tensors and the material
stiffness tensors and the Rotation-matrix Q are given as the corresponding six-
dimensional second order tensors.

Within the respective Mehrabadi–Cowin notation the rotation of a elasticity stiff-
ness tensor E0 can be written as [24]

E(d) = E(χ,α) = ρ(χ)
[
Q(α)

]T · E0 · Q(α) (4)

with the Power-Law material interpolation

ρ(χ) = (1 − κ) χ3 + κ with ρ(χ) ∈ [κ, 1] (5)

known from SIMP approaches [25] which penalizes intermediate densities
0 < χ < 1. Herein, κ = 10−9 is a small but non-zero numerical value to prevent
singularities within the finite element method.
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With the given rotation defined in Sect. 2.1, the z′′-axis corresponds to the layer
normal of the plane to which all fibers are oriented in parallel. Thus, the third spacial
direction of the base materials E0 must correspond to the inter-plane stiffness, i.e.
between layers. Consequently, the first spacial direction of the base materials corre-
spond to the stiffness in fiber direction and the second spacial direction correspond
to the stiffness between two parallel fibers within the z′′-axis-plane.

2.3 Optimization Model

The thermodynamic optimization is based on the stationary condition of theHamilton
functional [26]

H[u, d, p] := G[u, d, p] + D p[ p] − R[d] + C[d] → stat
u,d, p

, (6)

which postulates that theGibbs energyG, the dissipativeworkD p, and the rearrange-
ment functionalR become stationary under given constraintsC. The unknowns of the
problems are the displacements u, the design variables d, and the internal variables
p describing the (physical) microstructure.

The dissipative work due to physical changes of the microstructure described by
the internal variables p is given byD p. Typical examples for such internal variables
might be damage, plastic strain, and volume fractions of material phases. However,
in the presented model, only linear elastic material behavior is applied so that no
internal variables p are included andD p can be omitted. The energetic contribution
due to design changes, i.e. rearrangement of the microstructure in terms of the design
variables d is given by

R(d) = Dd(d) + F (d) , (7)

where Dd describes the energy due to local rearrangement and F the energy due
to convective rearrangement. The rearrangement functional R describes the energy
consumed to enforce design changes, or in other words: external work is required
to change the design since it is not an intrinsic or natural material behavior, which
motivates the negative sign of R in the energy functional.

The individual functionals are specified as follows: the Gibbs energy for a linear
elastic material is given by

G =
∫

�


 dV −
∫

�

b · u dV −
∫

∂�

t · u dA (8)

for a given design space � with the Helmholtz free energy


(u, d) = 1

2
ε(u) · E(d) · ε(u) . (9)
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The body forces b and traction forces t are given as constant, i.e. they are neither a
function of the displacements u nor the design d.

Additional constraints are required for the density variableχ to prevent unphysical
designs or trivial solutions. The total volume of the component is constrained by

c(d) =
∫

�

χ dV − �� � = 0 (10)

with the prescribed (relative) total volume ��. Accounting for the interval constraint
χ ∈ [0, 1], the functional C reads

C = λ c(d) +
∫

�

γχ χ dV (11)

with the Lagrange multiplier λ and the Karush–Kuhn–Tucker parameter γχ which
are determined by a bisection algorithm within each iteration step [27].

The functional for convective rearrangement

F = 1

2

∫
�

r2χ wχ‖∇χ‖2 (12)

is used to enforce a gradient enhanced regularizationwhich suppresses checkerboard-
ing, grants mesh independent results, and allows to control the minimum member
size given by rχ . Herein, wχ is added as weight factor, so that the numerical value of
rχ corresponds to a physical length, i.e. the prescribed minimum width of geometric
features within the topology optimization. No gradient enhanced regularization or
constraints are applied for the material orientation parameters α. However, a modi-
fied version of the material orientation filter from [23] is presented in Sect. 3.3 which
provides control over the maximum fiber curvature and within layers.

The functional for local arrangement is given by [26]

Dd =
∫

�

∂�

∂ ḋ
· d dV (13)

with a function � similar to dissipation functions, see [26],

� = 1

2
ηχwχ χ̇2 + 1

2
ηαψ

∥∥ Q̇ · Q−1
∥∥2

, (14)

where the application of the tensor of angular velocity Q̇ · Q−1 grants frame indif-
ference. The so-called viscosities ηχ and ηα as well as the weightswχ andψ := σ · ε

contribute to numerical damping to provide a stable convergence of the solution.
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2.4 Stationarity Conditions and Evolution Equations

The stationary condition (omitting internal variables p) of Eq. (6) yields

δG[u, d](δu) = 0 ∀ δu (15)

δG[u, d](δd) − δDd[d](δd) − δF [d](δd) + δC[d](δd) = 0 ∀ δd . (16)

The evaluation of the stationary condition given in Eq. (16) allows for the derivation
of the evolution equations which are differential equations whose (iterative) solution
yields the optimal design. The variation with respect to the density variable χ in its
strong form yields the evolution equation

χ̇ = 1

ηχwχ

(
− τχ + r2χ wχ ∇ · ∇χ − λ − γχ

)
∀ x ∈ � (17)

including the Neumann boundary condition

∇χ · n = 0 ∀ x ∈ ∂� . (18)

The evaluation of the stationary condition in Eq. (16) with respect to the Euler angles
α yields ∫

�

(
∂


∂α
− ∂�

∂α̇

)
· δα dV = 0 ∀ δα . (19)

Replacing the Helmholtz energy
 with the definition of the driving forces according
to Eq. (26), and the dissipation function � from Eq. (14) with the relation

∥∥ Q̇ · Q−1
∥∥2 = φ̇2 + ν̇2 + ω̇2 + 2 φ̇ ω̇ cos(ν) (20)

yields

φ̇ = − 1

2ηα

(
τφ

ψ
− μ cos(ν)

)
∀ x ∈ �, ν �= nπ, n ∈ Z (21)

ν̇ = − 1

2ηα

〈τν〉
〈ψ〉 (22)

ω̇ = − 1

2ηα

μ ν �= nπ, n ∈ Z (23)

with the abbreviations

μ = 〈τω〉 − cos(ν) 〈τφ〉(
1 − cos2(ν)

) 〈ψ〉 and 〈. . . 〉 =
∫

�

. . . dV . (24)
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The evolution Eq. (21) of the first Euler angle φ, which is supposed to define the
local fiber orientation within the material layers, contains a local part with τφ

ψ
and

a global part with μ cos(ν), whereas the two remaining evolution equations contain
only global quantities. A special case, the so-called gimbal lock is given when the
second Euler angle ν is a natural multiplier of π . In this case, the first and third
Euler angle, φ and ω, respectively, describe a rotation around the same axis and
singularities in φ̇ and ω̇ appear due to cos(ν)2 = 1. To circumvent the singularity we
set μ = 0, such that

ω̇ = 0 and φ̇ = − 1

2ηα

τφ

ψ
for ν = nπ, n ∈ Z . (25)

This is reasonable since φ̇ and ω̇ describe the same rotation and are redundant in this
special case.

The driving forces τd serve as sensitivities and emerge naturally by evaluating the
stationary condition of the Hamilton principle. The driving force of a (scalar) design
variable d is defined by

τd := −∂


∂d
= −1

2
ε · ∂E

∂d
· ε . (26)

Here, the driving forces for the design variables d = {χ,α} are computed to be

τχ = −ρ ′

2
ε · [

Q
]T · E0 · Q · ε (27)

ταi = −ρ

2
ε ·

([
∂ Q
∂αi

]T

· E0 · Q + QT · E0 · ∂ Q
∂αi

)
· ε (28)

with ρ ′ = 3 (1 − κ) χ2 (see Eq. (5)) and αi ∈ {φ, ν, ω}.

3 Numerical Solution

3.1 Program Structure

The optimal design is determined by an iterative process over the iteration steps i con-
sisting of an alternating finite element analysis to solve the mechanical equilibrium
(15) for the displacements ui with a given design d i and a design update by solving
the evolution equations. The design variables d are discretized element-wise. Thus,
the driving forces τd and energy ψ for the evolution equations must be evaluated
within the elements center of mass [28, 29].

d i+1 = d i + �td ḋ(ui , d i ) . (29)
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Thus, after discretization, only element-wise algebraic equations but no equation
systems need to be solved for the design update (except for the calculation of the
displacements field u via FEM). The optimization is considered to be converged
if the relative change of the structural compliance energy becomes less than a the
tolerance

〈
 i+1〉 − 〈
 i 〉
〈
 i 〉 < 10−6 . (30)

The weight function for the regularization is given by

wχ =
[∫

�

χ (1 − χ) dV

]−1 ∫
�

χ (1 − χ) |τχ | dV (31)

The Laplace-operator ∇ · ∇χ in the evolution equation for the density variable χ

including the Neumann boundary conditions (18) are calculated for element-wise
discretized design variables via the neighbored element method introduced in [27].
Herein, an algorithm with internal loop and appropriate choice of the time increment
�tχ w.r.t. the mesh width h are provided to grant numerical stability of the condi-
tionally stable explicit time discretization. For more details and explanations of the
implementation on the method, we refer to the original publication. The evaluation
of the evolution equation for the material orientation does not require any internal
loops and can be evaluated once parallel to the update-loop of the topology.We chose
�t = t i+1 − t i = 1, so that the time steps i are equivalent to the iteration steps of
the optimization, i.e. number of required FEM solutions (Fig. 2).

3.2 Initial Conditions

It is well-known that the numerical solutions of the non-convex compliance mini-
mization problem depend on the initial conditions for the design variables [30, 31].
Thus, the initial values for the design variables should be chosen carefully to cir-
cumvent undesired local minima. Therefore, we apply objective and homogenous
initial conditions, i.e. without user specific “guesses”, which are unbiased and do
not require any additional input besides the obligatory boundary value problem and
material parameters.

For the initial density variable, we apply a homogenous distribution that satisfies
the volume constraint (10) which yields χ0 = �� �= χ0(x). For the initial material
orientation α0 �= α0(x), we introduce a weighted homogenization based on the prin-
cipal stress directions, which are the optimal solution for shear-weak anisotropic
materials [10, 32] and are therefore a reasonable consideration:
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Fig. 2 Flowchart of the numerical solution of the proposed model

1. The boundary value problem is evaluated once via a single FEM step with an
isotropic material with E iso = 1, the Poisson’s ratio ν iso = 0.25, and the homoge-
nous density distribution χ0 and the stresses σ iso(x) are calculated.3

2. With the relations from [24, 33], we determine a material distribution E
aniso(x),

whose principal directions coincide with the directions of the principal stresses
σ iso(x).

3. We homogenize Eaniso(x), so that we find an initial material configuration E
0 �=

E
0(x) in which all fibers are aligned in one direction and are therefore parallel

3 A more appropriate isotropic material would be the Haar measure of the applied anisotropic
materialE(χ0,α) [23, 33]. However, due to the linear theory, themagnitude of theYoung’smodulus
does not influence the result and the influence of the Possion’s ratio to the optimization is also
negligible.
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to an (initial) layer plane. The homogenization is weighted by the norm of the
stresses

E
0 =

[∫
�

‖σ iso‖ dV

]−1 ∫
�

‖σ iso‖ E
aniso dV (32)

4. Finally, the algorithm given in [23] is used to determine the initial values for
the Euler angles α0 which correspond to the orientation of the initial material
configuration E

0.

3.3 Material Orientation Filter

We present now a filtering technique that constrains the maximum fiber curvature
within a given layer with normal n, i.e. preserves the layer-wise orientation of the
fibers. The layer normal n results either from the global Euler angles νi and ωi

of the current iteration step or is prescribed by the user. The filter is based on the
technique presented in [23] which applies a distance-weighted homogenization on
the material stiffness tensor to circumvent errors due to the symmetry and periodicity
of rotations. For explanations on the individual algorithm steps, we refer to [23] and
for detailed explanations on material symmetries, material principal directions, and
the correspondence to eigensystems, we refer to [34].

The following steps are executed after each update step i of the Euler angles (i.e.
evaluation of the evolution equations) for each finite element e ∈ Ne:

1. Calculate the material stiffness tensor of the unfiltered design Ee = E(χ i
e,α

i
e)

2. Apply the convolution operator

E
s
e =

⎡
⎣ Ne∑

f

� f wα(�xef )

⎤
⎦

−1
Ne∑
f

� f wα(�xef ) E f (33)

with the points f surrounding e to find thematerial stiffness tensorEs
e correspond-

ing to a smoothed design. The respective volume of the elements is indicated by
� f . The distance weight is given by

wα(�xef ) = max
(
0, 1 − r−1‖xe − x f ‖

)
(34)

with the midpoint coordinates of the elements xe and x f . The filter radius r

r = rα +
(

h

2
− rα

)
n · xe − x f

‖xe − x f ‖ (35)

constrains the fiber curvature to the maximum value of r−1
α /

√
2 within the layer

plane given by its normal n. The parameter h describes the average distance
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between two finite elements. Thus, the effective filter radius becomes the user
prescribed value rα for all surrounding points f within the layer plane around the
point e and is gradually reduced to h

2 for elements which are not part of the layer
plane.

3. Calculate the three principal directions es
k of the smoothed design E

s
e and assign

them to the fiber direction es
f , layer normal es

n, and their orthogonal direction es
o

ofEs
e, i.e. its basis.

4 An efficient eigenvalue analysis for elasticity tensors of order
four is presented in [34].

4. To ensure that the fibers are not aligned out of the layer plane by the filtering, the
filtered material directions e∗

k are defined as follows:

4.1 The layer normal does not change, so that e∗
n = n.

4.2 The fiber direction is the projection of es
f to the layer plane e

∗
f = (n × es

f ) × n.
4.3 The remaining direction is given by e∗

o = n × e∗
f to ensure an orthogonal

basis.

5. With the algorithm described in [23], a set of Euler angles α∗
e can be extracted

from the basis described by {e∗
f , e

∗
o, n}.

6. The original values of the Euler angles αi
e are replaced by the filtered angles α∗

e

4 Numerical Results

4.1 Material Parameters and Boundary Conditions

For the simulations, we apply the orthotropic material (in Voigt notation)

E
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
E1

− ν12
E1

− ν13
E1

0 0 0

1
E2

− ν23
E2

0 0 0

1
E3

0 0 0

1
2G23

0 0

sym 1
2G13

0

1
2G12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(36)

with the numerical values for an ABS material processed with FDM/FFF according
to [5] given in Table1.

The parameter E1 corresponds to the first principal material direction with highest
stiffness, i.e. the printing direction (fiber direction). The parameter E3 corresponds

4 For example, if the base material E0 possesses the highest stiffness in fiber direction, then the
smoothed fiber direction es

f is equal to the eigenvector e
s
k corresponding to the largest eigenvalue.
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Table 1 Material parameters for a component made of ABS and fabricated by FDM/FFF according
to [5] with E1 > E2 > E3

E1 = 1653.0 G23 = 540.5 ν23 = 0.2707

E2 = 1391.7 G13 = 369.6 ν13 = 0.3209

E3 = 1072.9 G12 = 554.0 ν12 = 0.4391

Fig. 3 Boundary conditions
for the bending problem. The
displacements are fixed in all
direction in the four supports.
The force is applied at the
top edge and is pointing in
(negative) y-direction. The
design space is discretized
by 35 × 35 × 35 elements
with h = 1

35 . Minimum
member size for the topology
is rχ = 1.5h ≈ 0.043

to the third principal material direction with lowest stiffness, i.e. the printing plane
normal (layer normal). The parameters for numerical damping within the evolution
equation, i.e. the viscosity, for this material are given by �t

ηα
= 10.0. The viscosity

for the density variable is chosen independently of the material with ηχ = 15. The
values for the viscosities are independent of any boundary value problem.

The boundary conditions for the numerical examples presented in the following
sections are given in Figs. 3 and 4. The according minimum member sizes for the
topology rχ are given in the respective captions.

4.2 Results Without Material Orientation Filter

Figures5 and 7 show the evolutionwithin the optimization of the layer normal and the
structure stiffness (〈
 i 〉)−1 for the bending and torsion problem given in Figs. 3 and
4, respectively. The angle between the initial layer normal n0 and the layer normal
within the respective iteration step ni is plotted in degree. The orientation of the layer
normal in each iteration step is marked on a sphere with the initial layer plotted as
dashed line and the final normal as solid line. Figures6 and 8 present the final results
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Fig. 4 Boundary conditions for the torsion problem. The displacements are fixed in all direction
in the support on the top in the middle of the edge and only in z-direction in the supports at the
bottom corners at the back. The force is applied in the middle of the front face and is pointing
in (negative) y-direction. The design space is discretized by 60 × 20 × 20 elements with h = 1

20 .
Minimum member size for the topology is rχ = 1.5h = 0.075

with the fiber paths denoted by black dashes5 from different perspectives and slices
through the layer plane for different positions.6

For both examples, the method yields smooth convergence of the stiffness. For
the torsion problem (Fig. 7), the layer normal converges rather quickly. However, for
the bending problem (Fig. 5), the layer normal rotates around the x-axis in positive
direction and changes its rotation direction at around iteration step 40 due to changes

5 The element-wise discretized values of the density are interpolated and the iso-surface with thresh-
old value χ = 0.5 is visualized.
6 Some fibers in the three-dimensional pictures seem to be outside of the structure but they are
actually floating in front of the sliced surface: the fibers are plotted within the element mid-points
and are not projected onto the surface to avoid interpolation and possible smoothing effects.
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Fig. 5 Evolution of the layer normal (angle to initial vector and orientation) and stiffness over
iterations steps for the bending problem

in the topology, which does not change after iteration 60 (only the shape changes
negligibly). The influence of the changed layer on the stiffness seems negligible, at
least for the material with rather weak anisotropy.

Usually, the optimal fiber direction would coincide with the truss direction, i.e.
direction with largest normal stresses. Due to the globally restricted layer normal,
the optimal layer should allow the majority of fibers to align to the trusses. For the
bending problem in Fig. 6, the longest truss, whose longitudinal section is shown in
the first slice, dictates the layer normal. Fibers in differently oriented trusses cannot
follow its direction and follow instead the stress trajectories projected to the layer
plane.

4.3 Material Orientation Filter

Wewill now examine the functionality of thematerial orientation filter exemplary for
the bending problem. The evolutions of the layer normal for two different filter radii
rα = {2h, 4h} are given in Fig. 9. An overview over the values of the final structure
stiffness and layer normal are given in Table2 and the final topologies and fiber
orientations from different perspectives and slices are given in Fig. 10.

The layer normal converges to its final value after small oscillationswithin the first
20 iteration steps. The structure stiffness converges without oscillation in a smooth
manner and the filter has only negligible influence on the final structure stiffness,
i.e. the difference to the results without material orientation filter is about 2%. The
final layer normal is nearly identical for both values of the filter radius. However,
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Fig. 6 Final result for the bending problem in Fig. 3 with fiber path at the surface from differ-
ent perspectives (top) and different slices according to the layer normal including the perspective
directly onto the layer (bottom). The large arrow denotes the optimized layer normal computed to
be n =(0.343 0.125 0.931)T

Table 2 Final values of structure stiffness and layer normal for the bending problem for varying
material orientation filter radii rα

Final result: Stiffness Layer normal n

rα = 0 7.943 (102.07%) (0.343 0.125 0.931)T

rα = 2h 7.806 (100.31%) (−0.162 −0.059 0.985)T

rα = 4h 7.782 (100.0%) (−0.159 −0.057 0.985)T
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Fig. 7 Evolution of the layer normal (angle between initial and current orientation) and stiffness
over iterations steps for the torsion problem

Fig. 8 Final result for the torsion problem in Fig. 4 with fiber path at the surface from different
perspectives (top) and different slices according to the layer normal (bottom). The large arrow
denotes the optimized layer normal computed to be n = (0.000 0.787 0.617)T
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Fig. 9 Evolution of the layer normal for the bending problem with material orientation filter and
filter radius rα = 2h (left) and rα = 4h (right)

those normals differs by about 31◦ from normal without material orientation filter
(Table2).

Nevertheless, the effect of the material orientation filter on the fiber orientation is
rather significant: the overall fiber path ways are much smoother depending on the
chosen filter radius rα and the maximum fiber curvature is constrained to the value
r−1
α /

√
2 within each layer plane.

4.4 Prescribing the Layer Normal

Due to fabrication constraints or reduction of overhangs, it may be reasonable to
prescribe the layer normal. This can be achieved with the presented model by simply
prescribing the second and third angle as constant. However, prescribing the layer
normal can decrease the structure stiffness significantly. Table3 shows an overview
over the final structure stiffness for the varying layer normals and filter radii for
the torsion problem: the design with optimized layer normal is always superior to
the designs with prescribed layer normal by approximately 5 and 10%. The structure
stiffness is decreasedwith larger filter radii rα which is reasonable since the constraint
on the fiber curvature decreases the possible design space. In other words: if a smooth
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Fig. 10 Final result for the bending problem in Fig. 3 with material orientation filter with filter
radius rα = 2h ≈ 0.057. The large arrow denotes the layer normal n = (−0.162 −0.059 0.985)T

fiber path would yield a better design, then (a correct) optimization should also yield
such a smooth result without the constraint.

5 Conclusions and Outlook

We presented a thermodynamic topology optimization model for three-dimensional
layered anisotropicmaterials as special case for a continuousfiber angle optimization:
the globally defined normal of the layers as well as the local fiber orientation within
each layer are optimized by a set of three continuous Euler angles. Herein, two of
the three Euler angles are defined globally and define the layer normal for additive
manufacturing to which all fibers must be parallel. The third Euler angle defines the
local fiber orientation within the layer plane.
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Fig. 11 Final result for the bending problem in Fig. 3 with material orientation filter with filter
radius rα = 4h ≈ 0.114. The large arrow denotes the layer normal n = (−0.159 −0.057 0.985)T.
The quarter circle shows the maximum fiber curvature which is constrained by the filter radius rα

[23]

Table 3 Final values of structure stiffness for the torsion problem with optimized and prescribed
layer normals with relative stiffness decrease corresponding to the variation of the filter radius

Layer normal: Optimized y-direction z-direction

rα = 0 10.327 (100.0%) 9.981 (100.0%) 9.519 (100.0%)

rα = 2h 9.742 (94.33%) 9.606 (96.24%) 9.139 (96.01%)

rα = 4h 9.701 (93.94%) 9.079 (90.96%) 9.006 (94.61%)

The topology and layer plane are optimized freely, i.e. no geometry features or
orientations are required as input by the user, although the layer plane(s) can be
prescribed by the user. However, the stiffness of the final structure is always higher
with the optimized layer normal.
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An optional material orientation filter is presented to constrain the maximum fiber
curvature within the layer plane. The filter results in much smoother fiber pathways
but reduces the stiffness of the structure due to restrictions on the possible design.
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A Review of Nonlocality in
Computational Contact Mechanics

David Kamensky, Mert D. Alaydin, and Yuri Bazilevs

This article summarizes early and recent work on nonlocal
approaches in computational contact mechanics and is
dedicated to Prof. Peter Wriggers on the occasion of his 70th
birthday. Peter’s impactful research has shaped the field of
computational contact mechanics and has enabled us to tackle
many computational challenges with confidence. The senior
author would also like to thank Peter for his continued
mentorship and support.

Abstract This chapter reviews a class ofmethods for computational contactmechan-
ics, where the contact problem is regularized using nonlocal interaction, to simplify
discretization. This discussion is guided by an analogy to computational fracture
mechanics, where nonlocal regularizations are widely employed to obtain robust
computational models. Particular emphasis is given to a class of regularizations
based on nonlocal integral operators. Such regularizations are analogous to the peri-
dynamic models gaining popularity in the fracture mechanics community. The use of
ideas from peridynamics to include physically-consistent friction in such regulariza-
tions illustrates the potential value of exploring nonlocal contact modeling through
the contact–fracture analogy.

1 Introduction

Computational contact mechanics [1] is notoriously difficult. The primary practical
challenge is identification anddiscretizationof the solution-dependent contact region,
on which an inequality constraint must be imposed. As such, numerous research
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efforts have sought to regularize theproblem in such awayas to simplify thenecessary
computational geometry tasks. The present chapter reviews a class of regularizations
that reformulate the problem in terms of nonlocal interaction between the contacting
bodies. While we shall identify many instances of such contact methods, going back
several decades in the literature, they have not been grouped according to this shared
characteristic until quite recently. Our hope is that the present review will inspire
productive cross-pollination between these related ideas.

To that end, we make an analogy to the field of computational fracture mechanics,
where the role of nonlocality in a variety of practical methods has led to increasing
exchange of ideas, exemplified by a recent series of workshops organized by Oak
Ridge National Laboratory [2–4]. The computational fracture mechanics community
now recognizes that the emerging methods of phase-field fracture [5] and peridy-
namics [6] both rely crucially on spreading interaction over a volume encompassing
both sides of a crack, which makes the problem much easier to discretize. From that
perspective, it is not surprising that a similar spreading of contact interactions might
likewise simplify discretization—the key challenge in simulating both fracture and
contact mechanics without any regularization is to parameterize and couple fields
across a solution-dependent interface between solid bodies.

We begin, in Sect. 2, with the nonlocal contact methods that came first histor-
ically: those added directly to (or implicit in) discrete models. We then consider
two classes of regularized continuous problems. Section3 reviews methods based
on introducing an auxiliary problem governed by a local partial differential equa-
tion (PDE) which mediates interaction between physically-separated objects, while
Sect. 4 discusses nonlocal contact regularizations based on integral operators. We
give particular emphasis to the way in which some methods from Sect. 2 emerge
naturally as discretizations of nonlocal integral operators. Section5 then goes into
greater depth on how the fracture–contact analogy can inspire novel ideas, by summa-
rizing the frictional extension of methods from Sect. 4. Section6 draws conclusions
and discusses future directions for the topic.

2 Nonlocal Interactions in Discretized Models

Historically, the use of action at a distance to model contact began with methods
formulated directly in the discrete setting, rather than as discretizations of a con-
tinuous, regularized problem. The spontaneous emergence of such discrete methods
speaks for their practical advantages in complex problems. However, much like the
ad hoc use of element sizes as length scales to limit damage localization, these ad
hoc contact schemes may not converge to any mesh-independent solution.

In the setting of Lagrangian finite element analysis, the so-called “pinballmethod”
developed by Belytschko and collaborators in the early 1990s [7–9] associates a
sphere (or “pinball”) with each element of a mesh and applies concentrated contact
forces at the centers of colliding spheres. The radii of these spheres—tied to the size
of mesh elements—introduce a length scale for nonlocal interaction. The resulting
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geometric approximation introduces a texture to surfaces, which may interfere with
sliding contact, even under refinement. However, the simplicity and robustness of
the approach have given it an enduring appeal for researchers approaching complex
contact and impact problems [10].

Contact between spherical elements is especially appealing in meshfree methods
[11], where solid bodies are represented as point clouds, without any explicit surface
parameterizations. An example of such ameshfree contact treatment would be kernel
contact used in conjunction with the reproducing kernel particle method (RKPM)
[12, Sect. 4]. Similarly, some meshfree peridynamic simulations [13] include small
spherical elements around quadrature points. Collisions between these spheres are
then penalized by “short-range forces” [14, Sect. 3.9] to deter interpenetration of
solid bodies.

Contact-like interactions between separated material points may also be implicit
in certain discretizations. An example of such implicit contact would be the basic
material point method (MPM) [15], which allows Lagrangian quadrature points to
move through a background mesh used to construct a function space for material
velocity. Thus points from nominally-distinct bodies may influence each other when
passing within a length scale proportional to the background mesh element size.

3 Nonlocal Interaction Through a Fictitious Medium

An approach loosely analogous to phase field fracture is to introduce nonlocal inter-
actions through an auxiliary problem, which is itself a local PDE problem. In phase
field fracture, this auxiliary problem is the PDE governing the phase field. In contact
mechanics, it is equilibrium of an artificial material filling the void region between
contacting bodies. This artificial material is given material properties which are care-
fully designed to emulate the effects of contact.

This idea was developed in the setting of Lagrangian finite elements by Wriggers
et al. [16]. The method [16] uses a conforming mesh of the void region to discretize
the fictitious material. A similar approach was applied in the finite cell method [17]
shortly thereafter [18]. In the finite cell method, solid bodies are immersed in a
mesh of their union with the void region. Normally, the void region is assigned
vanishing stiffness, and the displacement solution extending into it has no physical
interpretation. However, [18] introduces a fictitious contact material governing the
extension of the displacement field.

By posing a PDE problem over an unfitted subset of a larger background mesh,
the finite cell method is loosely similar to the MPM. Contact through a fictitious
medium has been considered for MPM discretizations by the computer graphics
community [19]. In particular, the fictitious material is given a modified plastic
constitutive model, to simulate friction. This idea had been developed earlier to
simulate frictional contact in RKPM discretizations [20, Sect. 3.1].
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4 Nonlcal Interaction Through Integral Operators

An approach sharing close formal ties to peridynamics is to formulate contact
mechanics in terms of integral operators inducing finite-range repulsive interactions
between solid bodies. A particularly simple discretization of such contact forces is
obtained by analogy to meshfree quadrature of peridynamics.

Work by Sauer motivated nonlocal repulsive forces between continuum bodies as
a coarse-graining of molecular dynamics [21]. The idea of modeling contact through
such force fields was further explored by Sauer and de Lorenzis, with an emphasis
on nonlocal interactions between surfaces [22]. The idea of repulsive forces between
volumes was later revisited by Kamensky et al. [23], with the interpretation of an
artificial regularization of contact mechanics. Reference [23] models frictionless
contact by introducing a potential energy Ec of the form

Ec = 1

2

∫
�0\BRself (X1)

∫
�0

φ (|x2 − x1|) dX1dX2 , (1)

where�0 is the initial reference configuration of a solid body,X1 andX2 are material
points in �0 with deformed positions x1 and x2, and φ : R≥0 → R≥0 is a kernel
function representing the energy contribution of a pair of points as a function of their
distance from each other. The radius Rself > 0 is the minimum distance between
points in the reference configuration which may interact via nonlocal contact forces.
This naturally incorporates self contact, but without material points repelling their
immediate neighbors, under the obvious assumption that φ(x) = 0 for x ≥ Rself. As
for the functional form of φ, [21] considers physically-motivated choices (e.g., a
Lennard-Jones potential), while [23] derives conditions on φ that are sufficient to
prevent interpenetration under some geometrical simplifications.

If both integrals are discretized using a single numerical quadrature rule, one
obtains

Ec ≈ 1

2

N∑
i=1

⎛
⎝ N∑

j=1

{
wiw jφ

(|x j − xi |
) |X j − Xi | > Rself

0 otherwise

}⎞
⎠ , (2)

where {Xi }N
i=1, are quadrature points in �0, {xi } are their deformed positions, and

{wi } are quadrature weights. Notably, this is almost formally identical to both the
pinball method and short-range forces used in meshfree peridynamics (cf. Sect. 2). It
is essentially an N -body problem with finite range of interactions. All nonzero terms
in the double sum (2) can be efficiently identified using a standard k–d tree or the
simpler data structure proposed in [23, Section3.1]. This method has already been
applied in a variety of challenging contact problems, including atrioventricular heart
valve contact [23], knot tightening [23, 24] (Fig. 1), stent–leaflet and stent–artery
interactions in transcatheter aortic valve replacements [25], leaflet–leaflet interac-
tion in aortic heart valves [26], and plastic post-buckling with self-contact of shell
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Fig. 1 Examples of complex (self-)contact from [23]. Left: Tying a reef knot. Middle, right: Sim-
ulation of a right atrioventricular (tricuspid) heart valve closure, including normal and prolapsed
conditions

Fig. 2 Example of complex (self-)contact from [27]. Crushing of an aluminum soda can using
compression and twisting. Contours of the effective plastic strain with blue color indicating low
values and red color indicating high values

structures [27] (Fig. 2). The method’s ease of implementation has also facilitated
its integration with open-source codes, e.g., [24, 26]. Unlike the pinball method or
short range interactions, though, the model (1) defines a mesh-independent solution,
which one can hope discretizations like (2) converge toward. However, neither the
convergence of (2) to (1) nor the convergence of (1) to some local contact problem
have been investigated with any rigor beyond qualitative convergence of quantities
of interest.

5 Borrowing from Peridynamics: Frictional Nonlocal
Contact

We now illustrate the potential productivity of collaboration between fracture
mechanics and contact mechanics communities, by looking at how ideas from peri-
dynamics were used to extend the nonlocal contact formulation of [23] to frictional
contact [28]. Friction in nonlocal contact presents a fundamental challenge. If contact
forces are applied at points that are some distance from the contact interface, balanced
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force couples acting tangential to that interface will generate nonzero moments, fail-
ing to conserve angular momentum. Further, identifying relative motion of these
points tangential to the interface as “sliding” is not invariant under rigid rotation.
Reference [28] addresses this difficulty by borrowing from peridynamic constitutive
modeling.

In particular, [28] adapts the idea of nonlocal differential operators [29], as used
to define a nonlocal deformation gradient in peridynamic correspondence models
[30, (2.6)]. Reference [28] defines the operator

∇xf(X1) = Kf(X1) · (Kx(X1))
−1 (3)

of some vector field f : �0 → R
n , with

Kf(X1) =
∫

Bδ(X1)∩�0

ω (|X2 − X1|) (f(X2) − f(X1)) ⊗ (X2 − X1) dX2 , (4)

where δ > 0 is a nonlocality length scale and ω : [0, δ) → R≥0 is an influence func-
tion. As suggested by notation, this operator is used like a gradient with respect to
deformed position x, in a first-order Taylor extrapolation of quantities from interact-
ing points to each other:

E1→2f = f(X1) + (∇xf(X1)) · (x2 − x1) , (5)

represents the extrapolation of some field f from x1 to x2. If such an extrapolation
is applied to both kinematic variables and their corresponding test functions, it leads
to objective and angular momentum-conserving force couples acting tangential to
contact interfaces, despite nonzero separation. This is analogous to non-ordinary
state-based constitutive models in peridynamics, following the terminology of [31].
Reference [28] applied this new frictional formulation in benchmark problems using
finite element discretizations of local PDE-based models of solid mechanics and
complex impact problems using peridynamics with damage.

6 Conclusions and Future Directions

This chapter has reviewed the use of nonlocal regularizations of contact mechanics
to simplify its discretization. We guided the presentation of work on this topic by
analogy to the role of nonlocality in computational fracture mechanics. In Sect. 4, the
extension of contact regularizations based on nonlocal integral operators to frictional
contact illustrates the potential for productive exchange of ideas between contact and
fracture mechanics communities.

A relatively unexplored topic is the potential connection between contact based
on nonlocal integral operators and contact based on local formulations of fictitious
media. In the analogy to fracture mechanics, this would be similar to the question
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of correspondence between phase field and peridynamic fracture formulations. It is
possible that quick progress in this direction could be made in the meshfree setting,
where recent work has already elucidated the close ties between RKPM discretiza-
tions of local problems and numerical quadrature of nonlocal integral operators [32,
33]. In the continuous setting, one might explore the limit of interaction range going
to zero, as has recently been done for peridynamic modeling of fracture [34]. If
nonlocal integral regularizations of contact do indeed converge to classical con-
tact conditions in some rigorous way, there is also the open question of whether
asymptotically-compatible [35] discretizations are possible, such as those developed
for peridynamics [36].
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Optimal Control for Phase-Field
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Abstract In this work, we present an algorithmic realization for computing opti-
mal control problems with quasi-static phase-field fracture as a PDE constraint. The
phase-field fracture problem is formulated in a quasi-monolithic approach resulting
in a nonlinear forward problem. The optimization problem is formulated within a
reduced approach, where the state variable is eliminated. To this end, a globalized
reduced Newton algorithm is employed. Our algorithmic developments are substan-
tiated with a numerical example.

1 Introduction

This work is devoted to algorithmic concepts of phase-field fracture based optimiza-
tion. Overviews of current trends in phase-field fracture are provided in [3, 12] and
the monograph [11]. The basic mathematical model of phase-field fracture opti-
mization was developed and analyzed in [9, 10]. Based on known algorithms for
PDE-constrained optimization (e.g., [2, 5, 7]), numerical computations were carried
out in [6] using the open-source package DOpElib [4]. In this contribution, we sum-
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marize algorithmic concepts and substantiate our developments with a numerical
example.

2 Problem Statements

In this section, we first state the forward problem and then the optimization problem.
The former is given by a regularized discrete time fracture problem which uses a
penalty ansatz for the growth irreversibility constraint.

2.1 Phase-Field Fracture Forward Problem

To formulate the problem, we need to introduce some notation. We consider a
bounded domain � ⊂ R

2. Its boundary is partitioned as ∂� = �N

.∪ �D where
�D and �N have nonzero Hausdorff measure. Next we define two function spaces,
V := H 1

D(�;R2) × H 1(�) and Q := L2(�N ), where V denotes the space for the
displacement-field and the phase-field and Q is the control space. In the next step
we introduce a function Eγ

ε (q; u, ϕ) from which we derive our forward problem.
Eγ

ε (q; u, ϕ) is defined as the sum of the regularized total energy of a crack plus a
penalty term for our time dependent irreversibility constraint. The regularized total
energy of a crack is given by

Eε(q; u, ϕ) := 1

2
(g(ϕ)Ce(u), e(u)) − (q, u)�N + Gc�ε(ϕ), (1)

where q denotes a force that is applied in orthogonal direction to �N ⊂ ∂�,
u is the vector-valued displacement field, ϕ is the phase-field, C is the elastic-
ity tensor and e(u) the symmetric gradient. The so-called degradation function
g(ϕ) := (1 − κ)ϕ2 + κ helps to extend the displacements to the entire domain �.
The term Gc�ε(ϕ) := 1

2ε ‖1 − ϕ‖ + ε
2 ‖∇ϕ‖2 is a regularized form of the Hausdorff

measure [1].
So far the problem consists in finding a function u := (u, ϕ) that minimizes the

regularized total energy (1) subject to the irreversibility constraint ϕ(t2) ≤ ϕ(t1) for
t1 ≤ t2. In the sequel, the constraint is being replaced by a penalty term in the cost
functional. To ensure differentiability up to second order [8] we define the penalty
function as R(ϕi−1;ϕi ) := 1

4

∥
∥(ϕi − ϕi−1)+

∥
∥
4
L4 . Finally the regularized discrete for-

ward problem consists in finding a vector

u := (ui )Mi=1 = (u, ϕ) = (ui , ϕi )Mi=1 = (u(ti ), ϕ(ti ))
M
i=1 ∈ V M

that solves the following optimization problem for given initial data (u0, ϕ0) ∈ V
and given control q := (qi )Mi=1 ∈ QM :
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min
u

Eγ
ε (qi , ϕi−1; ui , ϕi ) := Eε(q

i ; ui , ϕi ) + γ R(ϕi−1;ϕi ), (Cγ )

for i = 1, . . . , M and γ > 0.

2.2 Optimization Problem

We formulate the following regularized NLP. For given (u0, ϕ0) ∈ V we seek a
solution (q,u) ∈ (Q, V )M to (NLPγ ):

min
q,u

J (q,u) = 1

2

M
∑

i=1

∥
∥ϕi − ϕi

d

∥
∥
2 + α

2

M
∑

i=1

∥
∥qi

∥
∥
2

�N
(NLPγ )

s.t. (qi ,ui ) solves (ELγ ) for each i = 1, . . . , M,

where ϕd is some desired phase-field function. The existence of a global solution
of (NLPγ ) has been shown in [9, Theorem 4.3] for functions that are non-negative
and weakly semi-continuous. Here, ui = (ui , ϕi ) ∈ V M of (Cγ ) solves the Euler-
Lagrange equations for describing the phase-field fracture propagation, see e.g., [9],

(

g(ϕi )Ce(ui ), e(v)
) − (

qi , v
)

�N
= 0,

Gcε
(∇ϕi ,∇ψ

) − Gc

ε

(

1 − ϕi , ψ
) + (1 − κ)

(

ϕi
Ce(ui ) : e(ui ), ψ)

+ γ
(

((ϕi − ϕi−1)+)3, ψ
) = 0,

(ELγ )

for every pair of test functions (v, ψ) ∈ V and i = 1, . . . , M .

3 Reduced Optimization Problem

To formulate a reduced optimization problem, we assume the existence of a solution
operator S : QM → V M via equation (ELγ ). With this solution operator we can
reduce the cost functional J (q,u) to j : QM → R, j (q) := J (q, S(q)). This yields
the unconstrained reduced optimization problem

min
q

j (q), q ∈ QM . (NLPγ

red)

In the next stepwe formulate the Lagrangian function for (NLPγ ) bymeans of a func-
tional a : (Q × V )M → R that combines the constraints (ELγ ). Given a Lagrange
multiplier z = (zi )Mi=1 = (z, ϕz) = (zi , ϕi

z)
M
i=1 ∈ V M , that functional reads
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a(q,u)(z) :=
M

∑

i=1

[(

g(ϕi )Ce(ui )), e(zi )
) − (qi , zi )|�N + Gcε

(∇ϕi ,∇ϕi
z

)

− Gc

ε

(

1 − ϕi , ϕi
z

)+(1 − κ)
(

ϕi
Ce(ui ) : e(ui ), ϕi

z

)+γ
(

((ϕi − ϕi−1)+)3, ϕi
z

)]

.

(2)
The Lagrangian L : (Q × V × V )M → R for (NLPγ ) is then defined as

L(q,u, z) := J (q,u) − a(q,u)(z). (3)

Wewill use this Lagrangian to obtain computable representations of the first and sec-
ond order derivatives of j . To find a respresentation for the first derivative j ′(q)(τq)

in the direction τq, we have to solve two equations. First we need to find a solu-
tion u = S(q) ∈ V of the state equationL′

z(q,u, z)(φ) = 0 ⇔ a(q,u)(φ) = 0∀φ ∈
V M .Thenwehave to solve the adjoint equationL′

u(q,u, z)(φ) = 0 for z ∈ V . Finally
we obtain the representation

j ′(q)(τq) = L′
q(q,u, z)(τq). (4)

For an analogous representation of j ′′(q)(δq, τq)wefirst need to find a solution δu ∈
V of the tangent equation L′′

qz(q,u, z)(δq,φ) + L′′
uz(q,u, z)(δu,φ) = 0. After that

we solve the adjoint Hessian equation L′′
qu(q,u, z)(δq,φ) + L′′

uu(q,u, z)(δu,φ) +
L′′

zu(q,u, z)(δz,φ) = 0 for δz ∈ V . This results in the representation

j ′′(q)(δq, τq) = L′′
qq(q,u, z)(δq, τq) + L′′

uq(q,u, z)(δu, τq)

+ L′′
zq(q,u, z)(δz, τq). (5)

Additional theory for these representations can be found in [2, Theorem 2.1].
For the spatial discretization, we employ a classical Galerkin finite element

method on a quadrilateral mesh. To this end, we use conforming finite element
spaces Vh1 ⊂ H 1

D(�;R2), Vh2 ⊂ H 1(�), and Qh for the control.
Now we are ready to formulate our discrete problem, where we seek a solution

(qh, uh) := (qh(ti ), uh(ti ))
M
i=1 with ϕh(0) = ϕ0

h of the following NLP:

min
qh ,uh

J (qh,uh)

s.t.
(

g(ϕi
h)Ce(u

i
h), e(vh)

) − (

qi
h, vh

)

�N
= 0 ∀(vh, ψh) ∈ Vh1 × Vh2 , i = 1, . . . , M,

Gcε
(∇ϕi

h,∇ψh
) − Gc

ε

(

1 − ϕi
h, ψh

) + (1 − κ)
(

ϕi
hCe(u

i
h) : e(uih), ψh

)

+ γ
(

((ϕi
h − ϕi−1

h )+)3, ψh
) = 0 ∀(vh, ψh) ∈ Vh1 × Vh2 , i = 1, . . . , M.

The discrete reduced cost functional jh : QM
h → R is defined in terms of the discrete

solution operator Sh as jh(qh) := J (qh, Sh(qh)). This yields the (unconstrained) dis-
crete reduced NLP
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min
qh

jh(qh), qh ∈ QM
h . (6)

Next, we define a basis {τq j | j = 1, . . . , nq} of our nq -dimensional control space
QM

h in order to solve (6) with Newton’s method. In the unconstrained problems
(NLPγ

red) and (6) we seek an optimal control q ∈ QM
h that satisfies the first order

necessary optimality condition j ′h(q)(τq) = 0 ∀τq ∈ QM
h . The Newton increment

δq of this condition is determined from the linear system

j ′′h (q)(δq, τq) = − j ′h(q)(τq) ∀τq ∈ QM
h . (7)

Provided that j ′′h (q) is positive definite, (7) is also a necessary and sufficient condition
for the strongly convex quadratic problem

min
δq

m(q, δq) := jh(q) + j ′h(q)(δq) + 1

2
j ′′h (q)(δq, δq) ∀δq ∈ QM

h . (8)

Thus, any solution δq of (8) solves (7) and vice versa. Before we proceedwith system
(7), we define vectors and matrices that represent the derivatives of the discrete
reduced cost functional jh :

(∇ jh(q), τq)QM := j ′h(q)(τq) ∀τq ∈ QM
h ,

(∇2 jh(q)δq, τq
)

QM := j ′′h (q)(δq, τq) ∀δq, τq ∈ QM
h .

With this notation (7) becomes:

(∇2 jh(q)δq, τq j
)

QM = −(∇ jh(q), τq j
)

QM , j = 1, . . . , nq . (9)

We can reformulate (9) in vector notation by replacing ∇ jh(q) ∈ QM
h with the cor-

responding coefficient vector f ∈ R
nq :

(∇ jh(q), τq j
)

QM =
nq

∑

i=1

(

f iτqi , τq j
)

QM =
nq

∑

i=1

f i (τqi , τq j )QM .

Since that equation has to hold for every element τq j , f can be computed as a
solution of the linear system

G f = (

(∇ jh(q), τq j )QM

)nq
j=1, (10)

where G j i := (

τqi , τq j
)

QM denotes the Gramian matrix of the basis of QM
h . Having

constructed the right hand side of (9), we do the same for the left hand side and
replace δq by its coefficient vector d:

(∇2 jh(q)δq, τq j
)

QM =
nq

∑

i=1

d i
(∇2 jh(q)τqi , τq j

)

QM .
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Thus we compute d as solution of the linear system

Kd =
((∇2 jh(q)δq, τq j

)

Q

)nq

j=1
, (11)

where K j i := (∇2 jh(q)τqi , τq j )QM . Using (10) and (11), we finally replace (9)
by the equivalent linear system Hd = − f with coefficient matrix H := G−1K .
If the dimension nq is large, constructing the entire matrix H becomes expensive.
Instead we can just compute a coefficient vector for the product ∇2 jh(q)δq ∈ QM

h
by solving

(∇2 jh(q)δq, τq j
)

QM = ∑nq
i=1 hi

(

τqi , τq j
)

QM . To conclude this section,

we introduce the notation 〈a, b〉 := aTGb and |a| := 〈a, a〉 1
2 . Now (Rnq , | · |) is

isometrically isomorphic to (QM
h , ‖·‖QM ), and the functional m from (8) can be

written as:

m(q, d) = jh(q) + 〈 f, d〉 + 1

2
〈Hd, d〉. (12)

The conjugate gradient (CG) method can be used for minimizing m in step 4 of
Algorithm 4.1 below.

4 Algorithmic Realization

Algorithm 4.1 For a given control q0 = (q0(ti ))Mi=1 ∈ QM
h , iterate over k = 0, 1, . . .

1. Calculate uk = (uk(ti ))Mi=1 ∈ (Vh1 × Vh2)
M from the discrete state equation:

L′
z(q

k,uk, zk)(φ) = 0 ⇔ a(qk,uk)(φ) = 0, for all φ ∈ (Vh1 × Vh2)
M .

2. Calculate zk = (zk(ti ))Mi=1 ∈ (Vh1 × Vh2)
M from the discrete adjoint equation:

L′
u(q

k,uk, zk)(φ) = 0 for all φ ∈ (Vh1 × Vh2)
M .

3. Build the coefficient vector f of ∇ jh(qk) by applying the representation (4) to
τq = τq j for j = 1, . . . , nq : (∇ jh(qk)) j = L̂′

q(q
k,uk, zk)(τq j ). Then solve the

following system:

G f = (

j ′h(q
k)(τq j )

)nq
j=1 where Gi j = (τq j , τqi )QM .

4. Calculate a solution δq of j ′′h (qk)(δq, τq j ) = − j ′h(qk)(τq j ) with τq j ∈ QM
h via

min
d∈Rnq

m(qk, d), (13)

using an iterative algorithm that only needs matrix-vector products with the Hes-
sian. These products will be calculated in Algorithm 4.2.

5. Choose a step length νk by an Armijo backtracking method.
6. Set qk+1 = qk + νkδq.
7. Increase k = k + 1.

Repeat until | f | = ∥
∥∇ jh(qk)

∥
∥
QM < TOL. �



Optimal Control for Phase-Field Fracture: Algorithmic Concepts and Computations 253

Algorithm 4.2 (2) Let uk and zk be given with respect to the current control qk .

1. Calculate δuk by solving the tangent equation.
2. Calculate δzk by solving the adjoint Hessian equation.
3. Construct the coefficient vector for ∇2 jh(q)δq by using representation (5) with

τq = τq j for j = 1, . . . , nq . Then solve the linear system

Gh = (

j ′′h (qk)(δq, τq j )
)nq
j=1. �

Remark 1 A documentation and implementation of Newton’s method for solving
the inner nonlinear phase-field fracture problem can be found in [4].

5 Numerical Example

We wish to find an optimal control that produces some given phase-field ϕd . Here
we apply our force q in orthogonal direction to the top side �N ⊂ ∂� of the domain
� := (−1, 1)2. Furthermore we split ∂� in three subsets, ∂� = �N ∪ �D ∪ �free,
where�N := [−1, 1] × {1},�D := [−1, 1] × {−1},�free := {±1} × [−1, 1]. On�N

we apply our force q and on �D we enforce Dirichlet boundary conditions u = 0.
In this example the control space Qh is one-dimensional. The applied force q

is constant in time, qi = q, and the initial data is given by u0 = (u(t0), ϕ(t0)) :=
(0;ϕ0), where the initial phase-field ϕ0 is defined as follows:

ϕ0(x, y) :=
{

0, x ∈ (−0.1 − h, 0.1 + h) and y ∈ (−h, h),

1, else.
(14)

This initial condition describes a horizontal crack between the points (−0.1 − h, 0)
and (0.1 + h, 0)with a thickness of 2h. Beforewe can solve (NLPγ )we have to define
some constants. The regularization parameter for the phase-field is ε := 2h = 0.088,
where h denotes the diameter of themesh elements. The parameter κ in the coefficient
function g(ϕ) is κ := 10−10. The main regularization parameter α is 10−6, and the
penalty parameter γ is 108. The given phase-field ϕd continues the initial phase-field
ϕ to the left side of the domain,

ϕd(x, y) :=
{

0, x ∈ (−1, 0.1 + h) and y ∈ (−h, h),

1, else.
(15)

Our results are presented in Table1. Every row consists of 8 entries. The first value
(Iter.) is the current Newton iteration, the second value (CG) is the number of CG
iterations thatwere necessary forminimizingm. The remaining values are the relative
and absoluteNewton residuals (Rel. residual,Abs. residual), the cost functional J and
its tracking part 1

2

∑5
i=1 ‖ϕ(ti ) − ϕd(ti )‖22 (Cost, Tracking), the maximal force |qmax|

on �N (Force), and the norm-square of the gradient of the reduced cost functional,
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Table 1 Results of the numerical example
Iter. CG Rel. residual Abs. residual Cost Tracking Force Gradient

0 — 1.0 0.005 66 4.68 0.251 1000 1.00 × 10−6

1 2 0.00673 3.82 × 10−5 0.165 0.165 26.2 4.15 × 10−11

2 3 1.05 × 10−5 5.93 × 10−8 0.165 0.165 0.882 3.52 × 10−15

3 18 7.36 × 10−9 4.17 × 10−11 0.165 0.165 0.000215 1.74 × 10−21

4 9 3.76 × 10−11 2.13 × 10−13 0.165 0.165 1.36 × 10−6 4.52 × 10−26
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Fig. 1 Left: phase-field, right: adjoint phase-field

‖∇ j (q)‖22 (Gradient). All values are rounded to three significant digits. Finally,
solution plots are provided in Fig. 1.
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Abstract This article provides the brief review of the recently developed strong
form meshfree collocation method. The method directly discretizes a strong form
with approximated derivatives from the moving least-squares approximation using
the Taylor polynomial of the unknown variable. The approximations of derivatives of
any order can be generated in the process of computing the shape function without
further cost. The method does not require mesh structure and numerical integra-
tion, and adaptivity can be easily achieved by locally refining collocation points.
The discretization of the strong form using the derivative approximation is briefly
described based on a frictional contact problem. Moreover, recent applications and
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1 A Strong Form Meshfree Collocation Method

The strong formmeshfree collocationmethod is based on the idea ofKimandKim [1]
and Yoon and Song [2–4]. The method discretizes directly a strong form with the
derivative approximation generated from the moving least-squares approximation
using a Taylor expansion of the unknown variable. This section provides the brief
procedure of constructing such derivative approximation. Further details can be found
in [1–4].

1.1 Approximation of Derivative Operators

Let x = (x1, . . . , xn) be an n-dimensional real vector and α = (α1, . . . , αn) be an n-
tuple of non-negative integers. The αth-power of x is defined by xα = xα1

1 xα2
2 · · · xαn

n .
The αth-order derivative of a smooth function f (x) with respect to x is defined by

Dα
x f (x) = ∂ |α| f (x)

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(1)

where |α| = ∑n
i=1 αi .

The mth-order Taylor polynomial for approximating a function u(x) at the local
center x̄ can be expressed as

u(x; x̄) =
∑

|α|≤m

(x − x̄)α

α! Dα
x u(x̄) = pTm(x; x̄)M(x̄) (2)

where α! is the factorial of α and the polynomial vector pTm(x; x̄) and the derivative
coefficient vector M(x̄) are defined by

pTm(x; x̄) =
[
(x − x̄)α1

α1! , . . . ,
(x − x̄)αL

αL !
]

, MT(x̄) = [
Dα1

x u(x̄), . . . , DαL
x u(x̄)

]
,

(3)
in which αi ’s are an n-tuple of non-negative integers and L = (n + m)!/n!m! is the
number of the components of pTm .

Bearing in mind of the idea of the moving least-squares approximation, minimiz-
ing the discrete form of the weighted, discrete L2-norm

J(a) =
N∑

I=1

w

(
xI − x̄

ρ

)

[pT(xI )M(x̄) − uI ]2 (4)

with respect toM(x̄) yields

M(x̄) = M−1(x̄)B(x̄)uT. (5)



A Strong Form Meshfree Collocation Method: Engineering … 259

The matrices M and B can be defined by

M(x̄) =
N∑

I=1

w

(
xI − x̄

ρ

)

pm(xI ; x̄)pTm(xI ; x̄), (6)

B(x̄) =
[
w

(
x1−x̄

ρ

)
pm(x1; x̄), · · · , w

(
xN−x̄

ρx̄

)
pm(xN ; x̄)

]
(7)

where w
(
xI−x̄

ρ

)
is the weight function with a compact support (or domain of influ-

ence) in which its size is determined by the dilation parameter ρ, N is the number
of nodes included in the support of the weight function, and uI is the nodal solution
for neighbor node I .

Substituting x for x̄ and replacing M(x) with Dα
xu(x) in (5) give rise to the αth

derivative approximation of u(x)

Dα
xu(x) =

N∑

I=1

Φα
I (x)uI (8)

where α = (α1, α2) be a 2-tuple of non-negative integers andΦα
I (x) is the αth-order

derivative of the shape function at node I defined as

Φα
I (x) = eTαM

−1(x)p(xI ; x)w
(
xI − x

ρ

)

(9)

where eTα = [e0, . . . , em] with its component defined as ek = 1 if k = α and ek = 0
otherwise for k = 0, . . . ,m.

It is worthwhile tomention that (8) does not require actual differentiation as shown
in (9). As a consequence, this method doesn’t require the regularity of the weight
function to ensure the regularity of the shape functions.

1.2 Discretization of a Strong Form for Frictional Contact

The derivate approximation (8) allows for straightforward computation of derivative
operators that can directly discretize a strong form of any order as well as their
boundary conditions. We briefly provide the application of (8) to frictional contact
problems by directly imposing contact constraints as part of Neumann boundary
conditions on the elastostatic equation∇ · σ + b = 0 with σ being the Cauchy stress
and b the body force. Details are referred to as Almansi et al. [5].

Upon substituting the constitutive relation of σ for linear elastic isotropicmaterial,
the elastostatic equation can be written in terms of the displacement u as

μ�u + (λ + μ)∇(∇ · u) + b = 0 in � (10)
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where λ and μ are Lamé constants. Similarly, Dirichlet and Neumann boundary
conditions and contact constraints can be written as

u = ū on �u,

2μn · ε + λn · 1(∇ · u) = t̄ on �t ,

2μn · ε + λn · 1(∇ · u) = tc on �c

(11)

where ε = (∇u + (∇u)T) is the strain tensor, n is the unit outward normal vector to
domain �, ū is the prescribed displacement on �u , t̄ is the prescribed traction on �t ,
and tc is the unknown contact traction on �c.

By substituting (8) into (10), the discrete form of (10) can be obtained as

N∑

I=1

{[(λ + 2μ)Φ(2,0)
I J + μΦ(0,2)

I J ]u1I + (λ + μ)Φ(1,1)
I J u2I } + b1J = 0,

N∑

I=1

{(λ + μ)Φ(1,1)
I J u1I + [μΦ(2,0)

I J + (λ + 2μ)Φ(0,2)
I J ]u2I } + b2J = 0

(12)

where xJ indicates interior nodes within � and (·)J indicates the value at xJ , e.g.,
Φ(2,0)

I J = Φ(2,0)
I (xJ ). Similarly, the discrete forms of Dirichlet and Neumann bound-

ary conditions at boundary nodes can be obtained by substituting (8) into (11)1
and (11)2 as shown in (4.23) and (4.26) in [5].

The contact traction can be decomposed into the normal and tangential compo-
nents, i.e., tc = tN − tT = tNnu − tT τ where tN and tT are subject to the classical
Kuhn-Tucker constraints governing contact interaction as in (3.4) and (3.7) of [5]
and ν and τ are the unit normal and tangential vectors on �c. For the normal contact
constraint, the penalty regularization is achieved by tN = εN < g > where < g >

is the Macaulay bracket of a gap function g and εN is the normal penalty parameter.
With the tangential penalty parameter εT , the penalty regularization for frictional
contact constraint can be constructed by (3.7) and (3.8) in [5] along with a trial
state/return mapping algorithm to determine the Columb frictional traction as in
(3.9) and (3.10) of [5]. Substituting (8) into (11)3 results in the discrete forms of the
contact constraints for both stick and slip as follows. For the stick case,

N∑

I=1

{[(λ + 2μ)Φ(1,0)
I J n1 + μΦ(0,1)

I J n2]u1I + [λΦ(0,1)
I J n1 + μΦ(1,0)

I J n2]u2I }

−εN < g(xJ ) > ν1 + εT H(g(xJ ))(u · τ )τ1 = 0,
N∑

I=1

{[μΦ(0,1)
I J n1 + λΦ(1,0)

I J n2]u1I + [(λ + 2μ)Φ(0,1)
I J n2 + μΦ(1,0)

I J n1]u2I }

−εN < g(xJ ) > ν2 + εT H(g(xJ ))(u · τ )τ2 = 0,

(13)
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and for the slip case,

N∑

I=1

{[(λ + 2μ)Φ(1,0)
I J n1 + μΦ(0,1)

I J n2]u1I + [λΦ(0,1)
I J n1 + μΦ(1,0)

I J n2]u2I }

−εN < g(xJ ) > ν1 + μεN < g(xJ ) > sign(u · τ )τ1 = 0,
N∑

I=1

{[μΦ(0,1)
I J n1 + λΦ(1,0)

I J n2]u1I + [(λ + 2μ)Φ(0,1)
I J n2 + μΦ(1,0)

I J n1]u2I }

−εN < g(xJ ) > ν2 + μεN < g(xJ ) > sign(u · τ )τ2 = 0,

(14)

where xJ belongs to contact nodes on �c and H(g) is the Heaviside function. Notice
that the system of the equation is nonlinear due to the presence of contact constraints
in (13) and (14). To use a full Newton-Raphson iteration scheme as a nonlinear
solver, the residual of the system can be obtained by assembling the discrete forms
of Dirichlet and Neumann boundary conditions, (12), and (13) for stick and (14)
for slip. The tangent stiffness matrix can be computed by linearizing (13) for stick
and (14) for slip. Notice that (13) and (14) can be used for both one- and two-body
frictional contact with the proper definition of the gap function g(x). The detailed
procedure for the nonlinear solver can be found in Sect. 4 of [5].

2 Applications Including Frictional Contact

Themethod described in the previous section has several advantages due to the nature
of the meshfree collocation method. The distinct feature of the method is an easy
treatment of adaptive refinement because it does not require grid or mesh structure
and numerical integration along with mesh connectivity. As a result, the method can
simplify modeling of engineering problems requiring high accuracy locally. Another
advantage of the method is the computation of higher-order derivative approxima-
tions without further cost. Using such derivative approximations, the method can
easily evaluate a strong form of any order at spatially distributed collocation points.
Uponmaking use of such advantages of themethod, it has been further developed and
applied to various engineering problems. The brief overview of the recent progress
is provided in this section.

We first begin by reviewing the accuracy and efficiency of the method which has
been performed by few researchers. Kim andKim [1] provided L2-convergence stud-
ies for Poisson and Stokes problems on both uniformly and non-uniformly distributed
collocation points. The accuracy was tested for three values of the Taylor polynomial
order, i.e.,m = 2, 3, 4, with varying the domain of influence ρ. For the Poisson prob-
lem, while no significant difference with m = 2 and m = 3 was observed, relatively
higher accuracy was obtained form = 4. For the Stokes problem, the same accuracy
was observed in both velocity and pressure with m = 4 as shown in Fig. 1a. Another
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Fig. 1 Convergence studies: a Stokes flow [1] and b Large-scale wind driven ocean circulation [6]

convergence study was performed by Beel et al. [6] for the large-scale wind driven
ocean circulation problems in both the discrete L2- and L∞-norm. They observed
that the order of the convergence rate is approximately close to the order of the
Taylor expansion without the boundary layer for both uniform and non-uniformly
distributed collocation points as shown in Fig. 1b. On the other hand, with the pres-
ence of the boundary layer, low convergence rates and largely unpredictable error
behavior were observed for randomly distributed collocation points (see Figs. 12 and
13 in [6]).

The computational efficiency of the meshfree collocation method was studied by
Song et al. [7]. They used PETSc for parallel computing and performed numerical
study of the polycrystalline solidification process. The computational time of the
method was compared with that of the finite-difference method. They observed that
the meshfree collocation method is more computationally demanding at each time
step when compared with the finite-difference method. This is because the method
requires sufficient amount of nodes within the compact support to ensure the invert-
ibility of the moment matrix M. However, relatively larger time step size with the
method than the finite-differencemethod can be chosen, indicating that the difference
between two methods becomes not significant.

An easy adaptive refinement of the method has been employed to various engi-
neering problems to improve the accuracy of the solution. Almansi et al. [5] took
advantage of the adaptivity to model frictional contact problems. The accuracy of
the contact algorithm was examined for the frictional Hertzian contact by modeling
a half cylinder compressed by both horizontal and vertical uniform displacement as
shown in Fig. 15 of [5]. Collocation points were non-uniformly refined in the vicinity
of the contact area where the stress is highly concentrated as shown in Fig. 2. The
accuracy of the method was verified by comparing the normal and tangential trac-
tions on the contact surface with the results from the finite-element method using
ABAQUS (see Fig. 17 in [5]). Both tractions from the proposed collocation method
are quantitatively close to those of the finite-element method.

Beel et al. [6] applied the advantage of the adaptive refinement to the large-
scale wind driven ocean circulation problem. Both uniformly and non-uniformly
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Fig. 2 Adaptive refinement for frictional contact [5]: a Contour plot of the von misses stress and
b Non-uniformly refined collocation points near contact area

collocation points were refined near the strong western boundary layer as shown in
Fig. 14 of [6].As summarized inTable6 of [6], higher accuracywith uniformandnon-
uniform local refinements of collocation pointswas obtained than uniformly and non-
uniformly distributed collocation points without local refinement. In addition, the
strong form used in this study was the fourth-order partial differential equation with
the strongwestern boundary layer. They showed that a sixth-order Taylor polynomial
instead of fourth- and fifth-order polynomials is necessary to obtain reliable solutions
due to the presence of the western boundary layer.

Another application of the adaptive refinement was done by Lee et al. [8]. They
used the uniformly refined collocation points near the crack tip for dynamic crack
propagation as shown in Figs. 8 and 13 of [8]. Moreover, the topology change due to
crack extension was modeled by simple addition and deletion of collocation points.
Good agreement with the analytical solution in terms of dynamic energy release rate
and the direction of crack growth was observed with a relatively small number of
collocation points.

The meshfree collocation method has been also applied to a phase-field model. Fu
et al. [7] employed the method to the three-dimensional time dependent phase-field
model formodeling the solidification process of a polycrystallinematerial alongwith
the temperature change due to the latent heat. The solidification of polycrystalline
nickel (Ni) from undercooled melt was selected to demonstrate the robustness and
flexibility of the method. In Fig. 3, we display the polycrystalline structure of Ni
obtained using non-uniformly distributed collocation points in three-dimension.

Fig. 3 Polycrystalline solidification in three-dimension using a phase-field model [7]: a Non-
uniformly distributed collocation points b Solidification of polycrystalline Ni
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Furthermore, Almansi et al. [9] performed mechanical analysis of the polycrys-
talline materials using the polycrystalline structures obtained from the solidification
simulation.

Further development and application of the method was done by Yoon and his
colleagues. Yoon and Song [2–4] generalized the method to capture weak and strong
discontinuities. This generalization was achieved by deriving the derivative approxi-
mation including enrichment terms to capture weak and strong discontinuities along
the interface or moving boundary. The original derivative approximation (8) can
be recovered without enrichment terms. Moreover, Yoon et al. [10] modeled sim-
ple material nonlinear problems by directly discretizing the force balance equation
using the double derivative approximation without using the second-order derivative
approximation. Yoon et al. [11] also applied the method for the simulation of a pro-
portionally damped system subjected to dynamic load and the fracture simulation of
cracked concrete beam.
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Abstract AmixedXFEM formulation including inertia terms for the efficient, lock-
ing free simulation of cracks and heterogeneities in nearly incompressible materials
under dynamic loads is presented. It is shown, that this formulation can accurately
predict wave speeds and reflection patterns at heterogeneities in nearly incompress-
ible materials for coarser meshes, than the standard XFEM element with first order
shape functions.

1 Introduction

Using lower order finite element formulations to simulate nearly incompressible
materials leads to severe locking behaviour. For dynamic problems this results in an
overestimation of the wave propagation speed and in incorrect reflection patterns at
discontinuities. This can be observed especially for quasi-longitudinal waves, where
themain displacement of amaterial point is parallel to thewavepropagationdirection,
but the material is also able to expand transversally.

V. Klempt (B) · S. Löhnert
Technische Universität Dresden, Institute of Mechanics and Shell Structures, Dresden, Germany
e-mail: verena.klempt@tu-dresden.de

S. Löhnert
e-mail: stefan.loehnert@tu-dresden.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_26

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_26&domain=pdf
mailto:verena.klempt@tu-dresden.de
mailto:stefan.loehnert@tu-dresden.de
https://doi.org/10.1007/978-3-030-87312-7_26


268 V. Klempt and S. Löhnert

One remedy is the utilisation of mixed methods, based on the Hellinger-Reissner
principle, like the so-called Q1P0 element [1]. Despite being a first order element, it
shows excellent behaviour due to a mixed approach including an additional element-
wise constant volumetric stress approximation.

The eXtended Finite Element Method (XFEM) is well established to simulate
heterogeneities and cracks. By means of so called enrichment functions the extended
approximation space is equipped to handle discontinuities in the solution field that
do not align with the mesh. An overview is given e.g. in [2].

To accurately and efficiently simulate arbitrary discontinuities in nearly incom-
pressible materials, a mixed enriched approach is useful. Such a formulation has
been proposed in [3] for two dimensional applications using triangular elements and
in [4] for two and three dimensional applications using quadrilateral and hexahedral
elements, respectively. As these element formulations employ an enriched ansatz for
the displacement field based on bilinear or trilinear shape functions and an enriched
ansatz for the volumetric stress field based on piecewise constant shape functions,
it is called XQ1XP0 element following the naming of the Q1P0 element. Here, the
degrees of freedom for the volumetric stress can be reduced via static condensation
just like for the original Q1P0 element. This also includes the degrees of freedom of
the volumetric stress enrichment.

In this contributionwepresent the extension of theXQ1XP0 formulation by inertia
terms in order to apply it to dynamic problems. We show that it is better suited to
accurately calculate the wave propagation speed and reflection patterns in nearly
incompressible materials with heterogeneities than a standard XFEM element based
on first order shape functions.

2 The XQ1XP0 Formulation for Small Deformations and
Dynamic Problems

Consider a domain � ⊂ IR3 and its external boundary ∂�. The boundary is sub-
divided into the Neumann boundary ∂�t and the Dirichlet boundary ∂�u where
surface tractions t̄ and prescribed displacements ū are imposed, respectively. There-
fore ∂� = ∂�t ∪ ∂�u applies. The initial boundary value problem that needs to be
solved fot the time dependent displacement field u = u(x, t) is given by

div[σ ] + f = ρ ü in � (1)

σ · n = t̄ on ∂�t (2)

u = ū on∂�u (3)

u = u0 in � at t = t0 (4)

u̇ = u̇0 in � at t = t0. (5)



A Mixed XFEM Formulation to Simulate Dynamic Wave Propagation … 269

Here σ describes the Cauchy stress tensor field, f is the body force density vector, ρ
is the mass density of the body, u̇ = du

dt and ü = d2u
dt2 are the vectors of velocity and

acceleration, respectively, and n is the unit outward normal on the boundary ∂�t .
Assuming small deformations the strain tensor is given by

ε = ε(u) = gradsym[u] (6)

along with the constitutive equation

σ = K tr[ε]1 + 2μεD in � (7)

for linear isotropic elasticity, where K und μ are the bulk modulus and the shear
modulus, respectively, and 1 is the second order unit tensor. The deviator of the
strain tensor εD is defined as

εD = ε − 1

3
tr[ε]1 . (8)

Introducing a second variable p, namely the volumetic stress,

p = K tr[ε] (9)

the total potential can be expressed as a twofieldHellinger-Reissner type formulation.
Through variation with respect to the two independent variables u and p, we obtain
the equations

∫
�

(
εD(δu) : σ D(u) + p div[δu] + δu · ρ ü

)
d� =

∫
�

δu · f d� +
∫
∂�t

δu· t̄ d∂�t (10)

and ∫
�

δp
(
K−1 p − tr[ε(u)]) d� = 0 . (11)

The deviatoric stresses are calculated with σ D = 2μεD . To account for disconti-
nuities in the displacement field the XFEM is used for discretisation. Due to geo-
metrically dependent enrichment functions, the extended ansatz is able to reproduce
discontinuities virtually independently of the mesh. It reads

uh =
∑
i∈I

Ni (ξ) ui +
∑
j∈J

N j (ξ)

( nux∑
k=1

fk(ξ) a jk

)
(12)

where Ni are the shape functions, ξ are the reference coordinates, I is the set of all
nodes in the domain, J is the set of enriched nodes, nux is the number of displace-
ment enrichments used, fk are the enrichment functions, chosen for the particular
discontinuity and ui and a jk are the standard and the enriched degrees of freedom
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corresponding to the respective enrichment function. The virtual displacement δuh

and the acceleration üh are discretised accordingly.
In general, not only the displacement field may have mesh independent strong

or weak discontinuities. The volumetric stress may also be discontinuous within an
element. Therefore, the volumetric stress is enriched as well:

ph = pe +
np
x∑

m=1

gm(ξ) qe
m . (13)

Here, pe is the same element-wise constant volumetric stress as used for the Q1P0
element. Additionally, the enrichment functions gm together with their correspond-
ing degrees of freedom qe

m account for the discontinuity. np
x is the number of used

enrichment functions for the volumetric stress ansatz. Again, the virtual volumetric
stress δph is discretised accordingly.

Defining the vectors

ûi =

⎛
⎜⎜⎜⎜⎜⎝

ui

a j1

a j2
...

a jnux

⎞
⎟⎟⎟⎟⎟⎠

, ¨̂ui =

⎛
⎜⎜⎜⎜⎜⎝

üi

ä j1

ä j2
...

ä jnux

⎞
⎟⎟⎟⎟⎟⎠

, δûi =

⎛
⎜⎜⎜⎜⎜⎝

δui

δa j1

δa j2
...

δa jnux

⎞
⎟⎟⎟⎟⎟⎠

, N̂ i =

⎛
⎜⎜⎜⎜⎜⎝

Ni

Ni f1
Ni f2

...

Ni fnux

⎞
⎟⎟⎟⎟⎟⎠

(14)

and

p̂e =

⎛
⎜⎜⎜⎜⎜⎝

pe

qe
1

qe
2
...

qe
np
x

⎞
⎟⎟⎟⎟⎟⎠

, δ p̂e =

⎛
⎜⎜⎜⎜⎜⎝

δpe

δqe
1

δqe
2

...

δqe
np
x

⎞
⎟⎟⎟⎟⎟⎠

, ĝ =

⎛
⎜⎜⎜⎜⎜⎝

1
g1
g2
...

gnp
x

⎞
⎟⎟⎟⎟⎟⎠

(15)

facilitates writing the ansatz functions in shorter notation

uh =
∑
i∈I

N̂ i · ûi , üh =
∑
i∈I

N̂ i · ¨̂ui and δuh =
∑
i∈I

N̂ i · δûi (16)

as well as
ph = ĝi · p̂e and δ ph = ĝi · δ p̂e . (17)

The strains can be computed by εh = ∑
i∈I B̂i · ûi with the definition of the matrix

B̂i = gradsym[N̂ i].
Let nn be the number of nodes per element. The discretised form of Eq. (11) for

one element with its volume �e is then
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δ p̂e ·
∫

�e

(
K−1 ĝ ⊗ ĝ · p̂e − ĝ tr

[ nn∑
i=1

B̂i · ûi

])
d�e = 0 (18)

and can therefore be rewritten as

p̂e = M−1 ·
∫

�e

ĝ tr
[ nn∑

i=1

B̂i · ûi

]
d�e (19)

using the coefficient matrix

M =
∫

�e

K−1 ĝ ⊗ ĝ d�e . (20)

Equation (19) shows that it is possible to solve for the variables p̂e on element
level. This static condensation procedure is similar to the one used within the Q1P0
element formulation and has the advantage that no additional degrees of freedom
for the volumetric stress need to be introduced in the global equation system. As a
consequence the discretised weak form can be written independent of the variables
defining the volumetric stress:

nn∑
i, j=1

δûi ·
∫

�e

B̂i : μ
(
I − 1

3
1 ⊗ 1

)
: B̂ j d�

e · û j

+
∫

�e

ĝ tr
[ nn∑

i=1

B̂i · δûi

]
d�e · M−1 ·

∫
�e

ĝ tr
[ nn∑

j=1

B̂ j · û j

]
d�e

+
nn∑

i, j=1

δûi ·
∫

�e

N̂ i ⊗ N̂ j d�
e · ¨̂u j

=
nn∑
i=1

δûi ·
∫

�e

N̂ i · f d�e +
nn∑
i=1

δûi ·
∫

∂�e
t

N̂ i · t̄ d∂�e
t .

(21)

Here, I is the symmetric fourth order unit tensor.

3 Quasi-longitudinal Wave Reflection Pattern of a
Cylindrical Heterogeneity

In [4] the XQ1XP0 element has been tested with various quasi-static examples. It
has been shown to exhibit superior convergence properties compared to the stan-
dard XFEM formulation. In the following chapter, however, we will show, that the
XQ1XP0 element is also capable of reproducing accurate wave propagation and
accurate wave reflection patterns at a discontinuity in nearly incompressible materi-
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¯

Fig. 1 Problem setup for the example with a cylindrical heterogeneity in a nearly incompressible
matrix material

als for dynamic problems. If the displacement of a material point is parallel to the
propagation direction of the wave, the wave is called a longitudinal wave. In nearly
incompressible materials they propagate with extreme speed due to the limitation
of volumetric change. However, if the body is able to expand transversally and the
wavelenght is chosen big enough compared to the transverse body dimension, the
wave slows down considerably. It is now called a quasi-longitudinal wave.

Abodywith the dimensions 100mm × 6.25mm × 50mm and a cylindrical inclu-
sion having a diameter of d = 25mm is considered, see Fig. 1 also for the boundary
conditions. To avoid multiple reflection patterns which distract from the reflections
due to the heterogeneity, the z-displacement at the upper and lower boundary is
impeded. Due to the small dimension in y-direction, the body is able to easily expand
transversally. The matrix material is chosen to be nearly incompressible rubber and
the inclusion is steel. The material properties can be found in Table1.

To reproduce theweakdiscontinuity in the displacementfield and in thevolumetric
stress field at the interface between matrix and inclusion, the modified absolute value
enrichment is used, see [5] and [4] for further information.

The displacements ūx = 1mm are linearly imposed in ten time steps on the right
boundary and then reduced to zero in the next ten time steps. After that, the applied
displacements on the boundary are kept zero. This ensures that the wave lenght is
larger than the dimension in y-direction. The time step size is chosen to be �t =
1.9765 · 10−5 s. For the time integration the Newmark scheme is employed with the
parameters β = 0.25 and γ = 0.5.

Table 1 Material parameters for the nearly incompressible rubber matrix and the steel inclusion

Parameter Unit Rubber (blue) Steel (red)

μ kN
mm2 0.0003 79.3

K kN
mm2 0.1499 171.817

ρ
kg

mm3 0.9 · 10−6 7.85 · 10−6

c mm
s 31 619 5 124 936
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Fig. 2 Displacement in x-direction after 80 time steps (left: XQ1XP0, right: XQ1) with a 8 192
elements b 65 536 elements c 524 288 elements

Table 2 Approximate wave propagation speed for the XQ1XP0 element and the XQ1 element for
three different discretisations

Element (a) (b) (c)

XQ1XP0 31 622mm
s 31 620mm

s 31 620mm
s

XQ1 55 654mm
s 43 005mm

s 34 784mm
s

In Fig. 2 the displacement in x-direction after 80 timesteps is shown for the
XQ1XP0 formulation and the standard XFEM formulation (XQ1) for different mesh
resolutions. One can see that the XQ1 element leads to a too fast wave propaga-
tion for coarse meshes. The wave has already reached the left boundary and has
reflected back. However, with the finest discretisation it has just reached the inclu-
sion. In Table2 the measured wave propagation speed is shown for the two different
XFEM formulations and three different mesh resolutions. One can see that the mixed
XQ1XP0 formulation leads to a much faster convergence than the XQ1 formulation.

In Fig. 3 the results for theXQ1 element for the different discretisations at different
points in time are shown, such that the wave has approximately travelled equally
far in each simulation. Still, the reflexion patterns due to the heterogeneity change
significantly with increasing refinement and converge to the results of the XQ1XP0
element, for which the reflexion patterns are relatively similar for every refinement
step, cf. Fig. 2 on the left.
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Fig. 3 Displacement in x-direction for the XQ1 element a after 61 timesteps and with 8 192
elements b after 68 timesteps and with 65 536 elements c after 80 timesteps and with 524 288
elements

4 Conclusions

In this contribution the XQ1XP0 element was extended for dynamic problems. Fur-
thermore, its handling of wave propagation speed and reflection patterns of quasi-
longitudinal waves at heterogeneities was investigated. While almost no additional
numerical effort is required in comparison to the standard XFEM element, this for-
mulation shows superior results. Where the standard formulation overestimates the
wave propagation speed even using far more elements, the XQ1XP0 element does
not and is therefore also capable of accurately depicting reflection patterns even for
coarse meshes. In the present contribution only results for the simulation of het-
erogeneities are shown. However, similarly good behaviour can be observed for the
application of the mixed XFEM formulation to dynamic wave propagation in nearly
incompressible fractured media.
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What Machine Learning Can Do for
Computational Solid Mechanics

Siddhant Kumar and Dennis M. Kochmann

“Most people say that it is the intellect which makes a great
scientist. They are wrong: it is character.” (A. Einstein) Here’s
to a notable scientist and great character on the occasion of his
70th birthday – happy birthday, Peter! (D. M. Kochmann).

Abstract Machine learning has found its way into almost every area of science and
engineering, and we are only at the beginning of its exploration across fields. Being a
popular, versatile and powerful framework, machine learning has proven most useful
where classical techniques are computationally inefficient, which applies particularly
to computational solid mechanics. Here, we dare to give a non-exhaustive overview
of potential avenues for machine learning in the numerical modeling of solids and
structures and offer our (subjective) perspective on what is yet to come.

1 Introduction

We are at the beginning of an exciting era in which the numerical solution of complex
problems as well as the design and discovery of (meta-)materials and the solution of
inverse problems are accelerated by big data and advances in machine learning (ML)
strategies. Contrary to traditional approaches based on intricate theoretical insight,
exhaustive simulations and/or experiments, data-driven learning methods exploit
large data sets to identify otherwise unknown relations, thus creating efficient and
invertiblemaps between input and output parameters – such as simulation parameters
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and resulting outcomes, or (meta-)material structure and resulting properties. The
latter particularly offers a quick identification and reduction of the design space,
eventually leading to a faster turnaround of material design by demand.

2 Material Modeling

The computational modeling of materials and structures has relied on solving
century-old partial differential equations (PDEs) with ever improved numerical tech-
niques. Especially when it comes to multiscale problems, the computational expense
of simulations – involving coupled problems on various length and/or time scales –
has remained a prohibitive challenge. ML strategies are promising for significantly
accelerating not only multiscale simulations but also for identifying new constitutive
models as well as for solving systems of PDEs (see Fig. 1).

(a) (b)

(c)

Fig. 1 Representative examples of ML applications in material modeling. a ML-based surrogate
models for bypassing microscale simulations in multiscale systems. b PINNs [1, 2] for solving
PDEs (e.g., two-dimensional heat equation shown here). c Unsupervised discovery of interpretable
and parsimonious constitutive laws using only displacement data and physical knowledge [3]
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2.1 Accelerating Multiscale Simulations

Data-driven andML-basedmethods have beenmost effective in overcoming the com-
putational limitations of multiscale simulations by bypassing expensive lower-scale
calculations and thereby accelerating macroscale simulations (Fig. 1a). Assuming a
separation of scales between the microstructure and the macroscale boundary value
problem (BVP), the effective constitutive response from the microscale is approxi-
mated by a pre-trained ML model to replace costly representative volume element
(RVE) simulations. In computational mechanics, the focus has mostly been on sur-
rogate models for the homogenized microscale stress-strain response in FE2-type
settings. Commonly, this has relied on supervised ML models which approximate
the constitutive manifold based on training examples of stress-strain pairs. Recent
work [4–6] has developed surrogate constitutive models that capture strong nonlin-
earity as well as path dependence (e.g., learning plastic yield surfaces for complex
composites and polycrystalline metals). They were also shown to generalize well to
arbitrary strain paths and are easily integrated into finite-element (FE) frameworks.
Towards accelerated macroscale simulations, Capuano and Rimoli [7] developed a
general ML-driven smart finite element method, which bypasses the need for explic-
itly solving internal displacement fields within an element while enforcing physical
constraints. All such approaches rely on learning a model a-priori (offline) from
homogenized RVE data and, consequently, require a large number of computation-
ally expensive RVE-level simulations to obtain sufficient data for training the model.
Alternatively, surrogate modeling methods can also leverage the spatial structure of
the RVEs to reduce the training data requirements. Recent techniques such as graph
neural networks and nonlocal pooling may take advantage of the spatial proximity of
grains in polycrystalline systems to learn their constitutive response [8] and texture
evolution [9] in a data-efficient manner.

2.2 Data-Driven Constitutive Models: Beyond
Simulation-Based Training

While the above approaches rely heavily on RVE simulation data to learn the con-
stitutive response, recent work on model-free data-driven approaches [10, 11] take
a different path by using experimental data directly instead of building surrogate
models. Aiming at avoiding physical-modeling biases, this results in a purely data-
driven framework that searches for the closest stress-strain pair (within the dataset)
which satisfies the conservation laws and compatibility conditions. These approaches
have even been extended to the modeling of inelasticity [12] and fracture [13]. Since
interpolation-based modeling is generally avoided, current challenges include gener-
alization and extrapolation capabilities to data not available in the (training) dataset,
especially when dealing with high-dimensional and noisy data. In contrast to the
purelymodel-free philosophy is the approach of physics-informed discovery of inter-



278 S. Kumar and D. M. Kochmann

pretable constitutive models. The strategy is to use experience in physical modeling
to reduce the dependence on data and improve generalizability. The most popular
approach has relied on sparse regression to discover a mathematically and physically
interpretable form of the underlying constitutive equation [3, 14] (in contrast to, e.g.,
black-box neural networks). The method involves creating an exhaustive library of
mathematical functions and then sparsely selecting the combination of those which
best explains the data. The motivation behind sparsity originates from the principle
of Occam’s razor: most physical models in nature are parsimonious in description.
One of the biggest challenges in realizing data-driven constitutive models for practi-
cal application lies in material characterization; e.g., using digital image correlation
(DIC) full-field strain maps become available but stress data is hard to obtain. To
this end, recent work [3] (Fig. 1c) discovered interpretable constitutive models in
an unsupervised manner – i.e., without stress data – which presents a promising
departure from curve-fitting and supervised learning based on stress data.

2.3 Learning to Solve PDEs

ML has also been successfully deployed to bypass the expensive numerical solution
of highly nonlinear and high-dimensional BVPs. The goal is to achieve real-time
solutions for a given family of BVPs with applications ranging from surgical robots
to time-critical control systems. Initial attempts in this direction relied on supervised
training based on thousands of BVP solutions with different boundary conditions
and/or material inhomogeneity. Those ML approaches treat the inputs (boundary
conditions and material distribution) and outputs (solution fields) as images and
reduce the problem to image-to-image regression, using, e.g., convolutional neural
networks [15]. However, such methods are data-intensive and showed limited gen-
eralization to unseen data. Additionally, the learnt model only applies to the mesh
resolution of the training data. To address those limitations, a new class of MLmeth-
ods, physics-informed neural networks (PINNs) [1, 2] (Fig. 1b), has been proposed
to solved BVPs in an unsupervisedmanner, i.e., using data without labels. Analogous
to, e.g., the conventional Rayleigh-Ritz method, a neural network as a function of
time and position is chosen as the ansatz for the solution field. Its trainable param-
eters are tuned to minimize the loss in the strong or weak form of the PDE and
satisfaction of the boundary conditions. The major advantage of this approach is that
it is unsupervised, i.e., it does not require any training dataset generated by expensive
simulations. Instead, physical constrains (via the PDE-based loss) are exploited to
replace the training data. Leveraging the differentiability of neural networks, this
approach can also been used to calibrate parametric models of PDEs based on the
observed solutions [16]. Though PINNs are successful in learning to solve BVPs,
they suffer from mesh dependence of the discretization used to evaluate the PDE
loss during training [17]. To this end, new methods [17, 18] are being developed
for operator learning, which aims to learn the mapping in the functional space and
avoid mesh dependence. In computational solid mechanics, currently both PINNs
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and operator learning methods have been applied only to simple PDEs in regular
domains but are promising for future application to complex material systems such
as those with sharp discontinuities and localization, multiscale metallic systems, or
loss of uniqueness in the solutions (e.g., see [19–21]).

3 Design of (meta-)materials

Tailoring a material’s microstructure to achieve targeted properties is a major chal-
lenge in natural material systems due to physical limitations. Mechanical metama-
terials [22] based on random or periodic truss, plate or shell architectures overcome
those limitations by letting an engineered microscale produce novel and exciting
effective macroscale material properties. The natural challenge that follows is the
inverse design: how can one efficiently reverse-engineer a metamaterial’s design to
achieve a certain properties? Traditionally, material design has heavily relied on trial
and error and intuition, which is expensive and explores only a small subset of the
design space. This calls for new ML-assisted computational design approaches.

3.1 Accelerating Topology Optimization

Topology optimization [23] (e.g., based on the Solid Isotropic Material with Penal-
ization method, SIMP) has become a standard for designing structures that opti-
mize design objectives such as minimum compliance or tailored anisotropy. This is
achieved by optimizing the material distribution (solid or void) across all voxels in
a discretized domain. Analogously, spatially-variant metamaterials can be designed
by optimizing the design parameter(s) for each voxel. Since most metamaterials
do not admit (semi-)analytical expressions of their homogenized responses, the lat-
ter requires expensive nested simulations based on lower-scale RVE calculations.
The computational expenses are further compounded by sensitivity calculations,
which rely on computing numerical derivatives (i.e., perturbing the design param-
eters and re-running costly RVE simulations). Similar to accelerating multiscale
simulations, ML-based models for structure-property relations have proven benefi-
cial for the topology optimization of metamaterials [24, 25]. Deep neural networks
are particularly advantageous in learning high-dimensional and highly nonlinear
structure-property maps. They also naturally provide the exact sensitivities using
automatic differentiation (which forms the backbone of neural network training by
back-propagation) and avoid the computational costs and precision issues associated
with numerical differentiation. Sobolev training [26], wherein sensitivity information
is used for learning, can improve the accuracy, as shown, e.g., for the elastic stiff-
ness of trusses [24]. A key open challenge arises from the topology optimization of
spatially-variant structures, where prior approaches have optimized microstructural
design parameters but within a limited design space since small-scale unit cells must



280 S. Kumar and D. M. Kochmann

Fig. 2 Spindoid
metamaterials, based on an
approximation of structures
observed during anisotropic
spinodal decomposition,
offer seamlessly tunable
elastic anisotropy (including,
e.g., cubic-, columnar-,
isotropic-, and lamellar-type
topologies) and functional
grading [27]

Fig. 3 Topology
optimization of spinodoid
metamaterials for minimum
compliance [28]: a deep
neural network provides the
map from the topology to
anisotropic stiffness and
sensitivity

be compatible for practical purposes to form a macroscale structure (e.g., knowing
the optimal truss unit cell at each point within a macroscale body does not ensure that
a smooth grating between the distinct unit cells exists). As a remedy, we recently
introduced spinodoid metamaterials [27] (Fig. 2), which are composed of smooth
bi-continuous topologies inspired by those observed in the naturally-occurring pro-
cess of spinodal decomposition. Spinodoids possess a tremendous design space of
anisotropic topological and mechanical properties. Their non-periodicity is a depar-
ture from periodic unit cells and avoids tessellation-related issues while admitting
seamless transitions in between different anisotropic designs. This allows for com-
bined topology optimization [28] (Fig. 3) of local microstructural design parameters
(and in turn, the local anisotropy), material distribution (solid vs. void), and material
orientation, yielding better designs than SIMP. This is made possible by an efficient
deep neural network-based surrogate model for the anisotropic design-stiffness map,
which is particularly advantageous in strongly nonlinear and multiply-connected
design space of spinodoids.
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3.2 Efficiently Exploring Design Spaces

Exploring or searching a design space to identify optimal designs is a topical chal-
lenge both at the material level (optimizing, e.g., molecular structures for target
properties) and at the structural level of metamaterials (optimizing, e.g., stiffness
and strength by unit cell design). Searching a design space faces two challenges.
First, owing to its high dimensionality, the size of a design space increases exponen-
tially with the number of design parameters, which presents computational limita-
tions on the amount of data that can be generated for learning surrogate models of
the structure-property relations. Feature selection techniques (e.g., principal compo-
nent analysis and autoencoders [29]) can be used to identify the important features
and reduce the dimensionality. Alternatively, the regions of the design space rele-
vant to the design objective can be adaptively identified using, e.g., Bayesian and
active learning techniques [30, 31]. Second, most design spaces do not admit an
explicit design parameterization. E.g., a composite can be represented as a binary
image, whose the pixels describe the spatial arrangement of two materials. To this
end, generative ML methods such as variational autoencoders (VAE) and generative
adversarial networks (GANs) have been used to learn an abstract parameterization
of the design space [32, 33]. These are unsupervised ML methods, i.e., they do not
require labeled training data and usually involve jointly training a pair of neural
networks against each other. E.g., an encoder in a VAE abstracts features from the
designs and maps them to a lower-dimensional latent space where similar designs
are located close to each other. The features must be sufficiently informative to allow
reconstructing the design from the latent space parameterization using another neural
network called the decoder. The latent space, now representing an abstract design
parameterization, can be further used as input to a regressor for surrogating structure-
property relations. Alternatively, genetic algorithms and gradient-based optimization
methods can be used to explore the latent space and search for the optimal design.
Generative modeling is a promising direction for designing complex material sys-
tems. However, training of such models is usually unstable and remains as an active
ML research area. From the perspective of application to (meta-)materials, recent
works (e.g. [32, 33]) rely on datasets with millions of samples and are limited to
two-dimensional designs. Therefore, future improvements in the scalability of these
methods are needed for application to a data-efficient design of material systems
with higher-dimensional and more complex topologies.

3.3 Inverting Structure-Property Maps

The process of developing (meta-)materials with tailored properties has traditionally
followed a forward design paradigm: computationally homogenizing (or experimen-
tally testing) a wide range of possible structures results in an effective structure-to-
property map. Capitalizing on this strategy, methods such as topology optimization
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Fig. 4 Schematic of the inverse design framework [27], which has been applied to the design of
spinodoid metamaterials with targeted anisotropic elastic stiffness. The stiffness is visualized via
the elasticity surface, wherein each point on the surface denotes Young’s modulus in that direction

and genetic algorithms are unfortunately computationally expensive and sensitive
to the initial design guess. While ML-based generative methods such as GANs and
VAEs (Sect. 3.2) reduce computational costs, they still require solving an optimiza-
tion problem based on the surrogate model to achieve a targeted property, and they
may converge to local optima in the design space. A beneficial alternative is the
on-demand inverse design of optimal architectures, wherein an appropriate design is
identified directly which achieves a targeted effective property. Unfortunately, iden-
tifying or learning an inverse design map is inherently ill-posed, because multiple
topologies may have similar effective properties (e.g., the same elastic stiffness can
be achieved by different spinodoid designs [27]). ConventionalML strategies require
training with a distance metric in the output (structural design) space – defining how
“close” the structures are to each other. Yet, the one-to-many nature of property-to-
structure maps is prohibitive in defining such a metric and, in turn, precludes the
applicability of related ML strategies.

To render the inverse design problem well-posed, we introduced an ML approach
based on the integration of two neural networks for both the forward and inverse
problems [27], which is illustrated in Fig. 4 for the example of spinodoid metamate-
rialswith inverse-designed anisotropic elastic stiffness. The inverse network takes the
target stiffness as an input and predicts a design topology. Of course, this predicted
topology can be different from the one that was used to generate the training example.
Therefore, we do not compare topologies but their effective properties. Since the for-
ward problem is well-posed (each design has unique properties), we use a forward
network to serve as a surrogate to RVE-based homogenization (pre-trained using
simulation data) and reconstructs the stiffness of any predicted design. The inverse
network is then trained to minimize the reconstruction error of the target stiffness,
and together with the forward network provides a two-way structure-property map.

This on-demand inverse design paradigm is sufficiently general for application to a
wide range of (meta-)materials and effective properties. It can, e.g., benefit the design
of patient-specific bone-mimetic scaffolds and implants [27] – bone being highly
anisotropic and heterogeneous in its topological and mechanical properties, so that
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inverse designing bone implants which locallymatch the native bone properties holds
promise for improving the long-term compatibility of bone implants and avoiding
atrophy due to property mismatch.

4 Conclusions and Outlook

In this brief contribution, we could only provide a glimpse of the powerful opportuni-
ties provided by introducing ML into computational mechanics – from accelerating
multiscale modeling and topology optimization to bypassing constitutive modeling
or solving complex systems of PDEs all theway to identifying and inverting structure-
property maps. To add a personal perspective, ML in the mechanics community is
both underrated and overrated at the same time. ML-based models are best viewed
as powerful and scalable approximators. However, using ML for just about every-
thing is certainly not advised. We are already seeing the limitations of black-boxML
methods when applied to physical problems, particularly related to extrapolation,
generalization, computational expense, and amount of training data. The future lies
in the integration of classical physics-based methods with ML methods to address
these challenges. By endowing interpretability and insights to data-driven models,
we can begin to uncover and understand previously unknown physical phenomena,
which have been our pursuits for over a century in mechanics.
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1 Introduction

Data-driven structure calculation has recently become one of the issues impacted
by the area of research linked to big data. The pioneering works were due to
Ortiz and Chinesta and their teams [1–3]. In these works, Material Science was
either annihilated or minimized. Numerous developments followed with a more
or less strong presence of physics [4–12]. These works provided original and
very effective responses in some situations but are limited to really specific mate-
rial behaviours or specific problems such as 1D. It follows that the treatment of
complex material behaviours, such as viscoplasticity with several internal vari-
ables in 2D or 3D, remains a real challenge for which an answer has been given
in [8].

This paper aims at showing the recent developments of the data-driven com-
putation approach that we have proposed and which works for history-dependent
materials. [8, 13–15]. (Visco)-plastic materials under small perturbation hypothe-
sis are taken as a paradigm for the most complex materials. Our goal is to propose
solutions for the description of the material behavior.

The proposed data-driven computation approach is based, first of all, as almost
all the data-driven computation approaches, on the separation of the governing equa-
tions of the mechanical problem, defined over the space-time domain: equilibrium
and compatibility equations in one hand and constitutive equations in the other hand.
This separation is the basis of the LATIN solver, which will be the well-suited cal-
culation method [16–18]. Moreover, this separation is also the basis of the Constitu-
tive Relation Error method, developed for both Validation and Verification [19–21].
The first group of equations can be qualified as “exact”, in contrast to the consti-
tutive equations that strongly depends on experimental data. These experimental
points define what we call the “Experimental Constitutive Manifold” (ECM) whose
construction is not a triviality when one considers nonlinear and time-dependent
behaviours.

The proposed data-driven computation approach is based on the classical inter-
nal variable approach that is used today to describe the material state. However,
here the internal hidden variables are not a priori known. There are, however,
two particular cases which do not pose any difficulties for us. The first case is
that of (visco)plastic materials with isotropic hardening which does not require
any hidden internal variable; it is also the case of (visco)plastic materials with
kinematic hardening for which the inelastic strain is the hidden internal variable.
The hidden internal variables are calculated only from the raw experimental data
thanks to the so-called “Central Problem” , which is at the core of this data-
driven approach. No other information is used except for the constraints related
to the verification of the two principles of Thermodynamics of Irreversible Pro-
cesses.

Finally, one of the potential applications is illustrated; it is a newway ofmathemat-
ically describing material from raw experimental data, where a priori assumptions
about modelling used in Materials Science are completely absent.
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2 Basic Ideas

2.1 The Computation Problem

Let us consider the quasi-static evolution of a structure � whose state is defined at
any time t ∈ [0, T ] by its displacement field u, strain field ε and stress field σ .
This structure is subjected at any time t ∈ [0, T ] to prescribed body forces f

d
,

traction force Fd over a part ∂2� of the boundary and displacements Ud over the
complementary part ∂1�. The class of materials considered is made up of stable
materials for which several families can be distinguished:

• elasto-(visco)plasticity where the hidden variables evolve at the same time as the
inelastic strain,

• viscoelasticity characterized by viscous phenomena a priori reversible,
• damage related to the evolution of stiffness.

Of course, all these phenomena can be present together. However, as a paradigm,
we will take elasto-(visco)plastic materials. The problem to solve can be written:
Find the pair|, s = (ε̇ p, σ ) ∈ S(0,T ) which satisfies:

(Ad) :
{
compatibility equation: ε p = ε(u) − K−1σ , u ∈ U (0,T )

d ,

equilibrium equation: σ ∈ S (0,T )
d , where K is the elasticity tensor,

(�) : {
constitutive relation: ε̇ p|t = A (σ τ , τ ≤ t).

2.2 Principle P1: Separation of Equations

Here again, as we did in most of our previous work, we separate the equations that
can be seen as “exact” (Ad) from the equations that depend very strongly on the
experimental data i.e. the constitutive relation (�). This formulation is schematized
in Fig. 1. It follows:

Find s ∈ (Ad) such that: sexact = argmin d(s, (�)) (1)

s ∈ (Ad)

where d(•, (�)) is a distance to the manifold (�).

2.3 Principle P2: The Experimental Constitutive Manifold

Classically today, Material Science is exploited to construct the (�) manifold which
is built from an analytical mathematical model. Here we consider a new approach
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σ ∈ S(0,T)

·εp ∈ E(0,T)

(Γ)

(Ad)
s

̂s

sexact

Fig. 1 The data-driven computation approach

in which the manifold (�) is constructed solely from data while respecting the two
“exact” principles of the Thermodynamics of Irreversible Processes.

In this paper, we develop the approach completely driven by data. Let us consider
that data are a set of histories H (0,T ) of the pair (ε̇ p, σ ) defined over [0, T f ] with
T f ≤ T . The elastic properties are supposed known. Instead of the time, we use the
material time p ∈ [0, P] where p is the cumulated inelastic strain, leading to the
set of historiesH (0,P). For damage or viscoelastic materials, we propose to use the
cumulated strain.

In practice, the interval [0, P] is discretized and consequently, data are the set of
points (ε p,p, σ , ṗ)n with n ∈ N p, which defines the raw Experimental Constitutive
Manifold (ECM). To go further, we suppose that it exists a hidden internal variable
X with X ∈ Rq such that all the histories belonging toH (0,P) are described with a
good approximation by the system of differential equations:

ε p,p = g(σ , X, p) ṗ > 0 ,

X ,p = h(σ , X, p) ṗ > 0, with X = 0 at p = 0 , (2)

ṗ = f (σ , X, p) ṗ ≥ 0 .

For the plasticity model, the third relation can be replaced by:

1 = f (σ , σ ,p, X, p) ṗ > 0. (3)

To satisfy the two principles of Thermodynamics of Irreversible Processes, addi-
tional constraints should be introduced depending if one knows or not the dissipa-
tion [14, 15]. In the case where the dissipation is not known, we have proven the
additional constraint:

Tr[σε p,p] − X · X ,p ≥ 0 for ṗ > 0 and p ∈ [0, P], (4)

and it follows that the free Helmotz energy is unique.
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To compute X ∈ Rq and its dimension q is what we call the “Central Problem”,
which is at the core of the proposed data-driven computation approach [8]. Its numer-
ical treatment is given in [13].U being the functional to minimize, one has formerly:

{
X(p)|p ∈ [0, P] X ∈ Rq

} = argmin U
(
q, X ′(p) ; p ∈ [0, P] X ′ ∈ Rq

)
(5)

q, X ′

and a satisfactory solution is obtained when

U
(
q, X(p) ; p ∈ [0, P] X ∈ Rq

)
ε

= O(1) , where ε is a given threshold.

Finally, the Experimental Constitutive Manifold is defined by the set of points
sn = (

ε p,p, X ,p, ṗ, σ , X
)
n
(p) n ∈ N p which for the calculation should be extended

in the best cases by an interpolation process, but in general by an extrapolation
procedure. In any case, the domain

�(p) = { N p∑
i=1

λi (σ , X)i , i ∈ N p ; λi ≥ 0
N p∑
i=1

λi = 1
}

must cover the field of use of the material even roughly. Here we use KPCA which
computes the k-coordinates of sn , n ∈ N p defining the discrete ECM

V k
n , 1 ≤ k ≤ k : sn(p) , p ∈ [0, P] , n ∈ N p

where V k , k ≤ k are the first eigenvectors of

K V k = λk V k , with λk+1 ≤ ελ1 (ε � 1),

K i j = K (si , s j ) (kernel)

The extended ECM (ExtECM) is defined for p ∈ [0, P] by

s(V ) with V ∈ D(p) ⊂ Rk

which means that all points of the ExtECM are defined by the same k-coordinate
system. To get s(V ) from V is a classical problem for which several solutions have
been already given [22, 23].

2.4 Structure Computation

Using the LATIN method which is very natural here, one has to solve the consti-
tutive relation knowing for example σ (t) , t ∈ [0, T ]. One proposes the following
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incremental scheme which uses the univocity property of g, h and f .

— initialisation at t = 0 σ (0) = 0 , X = 0 , p = 0

— t → t + �t at t, known
(
σ (t), X(p), ε p(t), p(t)

)
The ECM (or ExtECM) gives:

(
ṗ, ε̇ p, Ẋ

)
t

and consequently: σ (t + �t) = σ (t) + �σ(
p, ε p, X

)
t+�t = (

p, ε p, X
)
t + (

ṗ, ε̇ p, Ẋ
)
�t

3 The Experimental Constitutive Manifold—Illustration

This application is about the construction of the ECMwhich results here from a given
set of experimental historiesH [0,T ] through a process of interpolation or extrapola-
tion. This differs from thematerial identification procedure used inMaterials Science,
which is based on an analytical mathematical model. All the “experimental” histo-
ries will be performed here by classical tests that are being replaced today by much
more complex tests where displacements or stress fields are measured [24, 25]. For
the sake of simplicity, the experimental points are generated under the hypothesis of
plane stress using classical plasticity models.

Data generated by a plasticity model with isotropic hardening—The set of exper-
imental histories H [0,T ]

PM is defined thanks to a series of proportional monotonous
biaxial tests for which the maximal cumulated strain is P:

— direction m(α) with α ∈
{
m

1

4m
|m ∈ (−m, ...0, 1, ...,m)

}

— ratio between the two stresses n(α) : n × 1

n
with n ∈

{
∈ (−n, ...0, 1, ..., n)

}

Regularly, cycling loadings are performed without increasing the plastic strain. The
ECM does not need any hidden variable: its potential U satisfies to:

U(0) = 10−12 � O(1), (6)

The elasticity domain �(p) is correctly defined and consequently, the use of the
ECM (or ExtECM) is equivalent to the use of a plasticity model with isotropic hard-
ening. Moreover, if one assumes that the elastic domain is convex, then it is defined
by its border, and therefore is already known from the monotonous loadings. Con-
sequently, the additional cycling loadings are not necessary.

Data generated by a plasticitymodel with kinematic hardening—Tocover the elastic-
ity domain which depends on ε p, it should be added to the setH

[0,T ]
P of proportional

monotonous and cyclic loadings, a set of non-proportional loadingsH [0,T ]
N P . We have
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Fig. 2 KPCA images of the ECM for p = 0.0062, data generated with a plastic model (only two
coordinates are needed): a Kinematic hardening; b Chaboche-Marquis

performed two-steps tests, starting with a biaxial proportional test (α̃, ñ) until p = P
4

and followed by a new similar test but for (α̃′, ñ′) until p = P .
The ECM potential are:

U(0) = 124 	 O(1), (7)

U(ε p) = 0.2 ∼ O(1), (8)

This set of experimental information allows the construction of the ECM for more
complex behaviors including the Bauschinger effect, the distortion of the elasticity
domain or the plastic anisotropy, behaviors that are difficult to apprehend from the
analytical models of Materials Science. Of course, the ECM brings into play hidden
internal variables that are determined by the Central Problem. Figure2 shows the
KPCA image of the ECM generated by two plastic models.

4 Conclusion

The applications of the data-based approach that we propose are envisaged in synergy
with Materials Science:

• In situations in which the classical models of Materials Science do not work well
or fail to describe the behavior of the material; complex materials (anisotropy,
distorsion, …), correction or extension of a first material model,

• To transform the FE2 multiscale calculation method into a simple FE method
thanks to the calculation of an ECM describing the homogenized macro behavior.
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Abstract This work deals with numerical investigations of nonlinear wave propa-
gation in cross-ply laminates of carbon fiber reinforced plastics. For this purpose, a
nonlinear hyperelastic model for transversely isotropic materials is presented which
considers the compressibility of the material. Then, the case is investigated where
the wave propagation is in the fiber direction or transversely to it, so that no cou-
pling between the symmetric and asymmetric modes and the horizontal shear waves
occurs. Subsequently, the wave propagation at 45◦ is considered at which coupling
takes place. It is shown that the nonlinearity leads to second harmonic modes in both
cases. Furthermore a power flux from the primary mode to the second harmonic
mode can be achieved in case of excitation at an appropriate frequency resulting in
increasing or oscillating amplitudes of the higher harmonic waves. Since the occur-
rence of higher harmonics can also be seen as an indicator of micro-damage and
material deterioration, nonlinear material models may be used to describe composite
materials with micro-damage.
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1 Introduction

In carbon fiber reinforced polymers (CFRP) fatigue damage starts at an early stage of
lifetime [1]. Microstructural damage like microscopic cracks in the matrix material
and fiber/matrix interface debonding is observed, which increases during operation
and can eventually lead to a catastrophic structural failure [2]. Therefore, the moni-
toring of composite material structures is essential even at an early stage.

Techniques based on guided waves are very well suited for monitoring tasks.
However, it has been shown that linear techniques are not suitable for detecting
microstructural damage. Therefore, methods based on nonlinear elastic waves come
into play. These methods take advantage of the fact that a damaged structure behaves
non-linearly, so that a mono-frequency structural excitation causes not only waves
at the excitation frequency, but also higher harmonic wave modes at a multiple of
the excitation frequency.

The detection of microstructural damage was first experimentally investigated for
isotropic material in [3–5] and was extended to the class of composite structures
later, see [6, 7, 9, 10]. To get a better insight into the physics behind this monitoring
method and to analyze the further potential numerical simulations are essential beside
experimental investigations. In [11] it was shown that numerical investigations on
the propagation of elastic waves in structures with microstructural damage can in
principle be performed in two different ways. On the one hand, the microstructural
damage can be modeled geometrically by cracks whose surfaces come into contact
when awave passes through them. On the other hand, the nonlinear material behavior
can be modeled by a nonlinear hyperelastic material model. Both types of modeling
lead to comparable results, see [11].

If one wants to take advantage of nonlinear phenomena in the propagation of
elastic waves, however, one must keep in mind that the amplitudes of the higher
harmonic wave modes are very small. Therefore, it is appropriate to use the so-
called cumulative effect, which increases the amplitudes of the higher harmonicwave
modes with increasing propagation distance and thus allows an improved amplitude
determination, see [8].

This work deals with the simulation of nonlinear wave propagation in CFRP
plates. It is based on [12] and extends previous investigations, see e.g. [11], to sym-
metric cross ply laminates. After the presentation of a nonlinear hyperelastic material
model, wave propagation in CFRP is under consideration. The special feature of lay-
ered fiber reinforced composites is that symmetric and antisymmetric Lamb-waves
as well as horizontal shear waves are only decoupled when they propagate in 0◦
or 90◦ directions und thus in fiber direction or perpendicular to it. When propa-
gating in any other direction they are coupled. This fact is considered in the mod-
elling approach by choosing a plane strain state and thus a 2D modelling on the
one hand and a 2.5D modelling on the other hand, which allows displacements per-
pendicular to the plane under consideration. It will be shown, that previous findings
can be transferred to stacking sequences in which coupling of various modes take
place.
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2 Nonlinear Plate Structure

In the case of uncoupled Lamb- and shear horizontal waves, a 2D model of a plate
is used, of which a section is investigated in a plane strain state, see Fig. 1. The
plate consists of four layers of equal thickness at h= 0.25 mm. At the top side there
is a reflection-free area of a length �e= 0,7 m with virtual sensor points. The total
length � of the plate and the total simulation time te are determined depending on
the excitation frequency. The spatial discretization of this 2D model is achieved by
means of 9-node plane elements. In order to simulate the wave propagation with
sufficient accuracy, at least 8 elements are selected per smallest wavelength and 20
time steps for the shortest time period.

In the case of coupled Lamb- and shear horizontal waves, displacements in X2-
direction arise. Brick elements with 27 nodes are chosen and symmetrical periodic
boundary conditions are defined to ensure a plane wavefront perpendicular to the
X2-axis.

The transversely isotropic material is described by a strain energy function ψ ,
which is additively split into a linear incompressible part ψ lin and a non-linear
compressible part ψnl

ψ = ψ lin + ψnl (1)

The linear part ψ lin can be formulated by using the three invariants I1, I2, I3 and
the two pseudo-invariants I4, I5 of the right Cauchy- Green tensor C, see [13].
In [14] the following expression for ψ lin based on experimental investigations was
presented

ψ lin = c1(I1 − 3)2 − c2(I2 − 3 − 2(I1 − 3)) + c3(I4 − 1)2

+ c4(I5 − 1 − 2(I4 − 1)) + c5(I4 − 1)(I1 − 3)
(2)

The ci parameters are used to describe the transversely isotropic material. In accor-
dance to [15] the non-linear part is defined in the following way

ψnl = K

(
J 2 + 1

J 2
− 2

)3/2

, K > 1 (3)

Here, J is the Jacobian and K describes the volumetric nonlinearity.

Fig. 1 2D model of the symmetric cross-ply, boundary conditions, and displacement controlled
dynamic loading in X1- and X3-directions
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At the left end of the plate, displacement boundary conditions are applied accord-
ing to u1(t) = u01(X3)F1(t) and u3(t) = u03(X3)F2(t) where u01(X3) and u03(X3)

correspond to the displacement field of the selected primary wave mode, see Fig. 1.
Additionally, u2(t) = u02(X3)F1(t) is used with the 2.5D model.

3 Cumulative Higher Harmonic Wave Modes

In a nonlinear medium a mono-frequent excitation causes a structural response not
only at the excitation frequency but also at higher harmonic frequencies. The higher
harmonic wave modes usually have very small amplitudes. So, they subside very
quickly due to damping and are difficult to detect in experiments. To overcome
this problem, a cumulative effect is used, see [8], for which the following condi-
tions have to be satisfied: (i) a non-zero power flux from the primary to the sec-
ond harmonic wave mode has to exist and, (ii) the phase velocity of the primary
and second harmonic wave modes have to be equal. In this case, the modes are
called internally resonant and the amplitude of the higher harmonic wave grows
linearly with the propagation distance. If the phase velocities are different it shows
an oscillating behavior with a wavelength depending on the difference of phase
velocities.

A third condition, the matching of the group velocities, was controversially dis-
cussed in the past. This condition is not necessary for the cumulative effect. However,
if the group velocities match, both wave modes do not separate and thus, the higher
harmonic wave does not extend over the covered propagation distance. So, in order
to detect the amplitudes of the fundamentally excited and the higher harmonic Lamb
wave mode simultaneously this condition is taken into account as a third one for the
selection of suitable mode pairs and the determination of the excitation frequency in
this study.

This procedure is shown exemplarily with the help of the dispersion diagram for
the phase velocity in Fig. 2. The following material parameters were used: E1=121.9
GPa, E2=8.0 GPa, G12=4.0 GPa, G23=3.75 GPa, ν12=0.33. It becomes visible that
the S0-mode and the S1-mode have the same phase velocities (and group veloc-
ities, see [12]) if the primary S0-mode is excited at f h=0.585 MHz mm so that
second harmonic S1-mode is generated at 2 f h=1.171 MHz mm, see related marks.
Figure2 further shows that the phase velocity does not change significantly in the
low frequency range. For this reason several mode pairs S0-S0 can be selected in this
frequency range for quasi-cumulative higher harmonic generation, e.g. at f h=0.2
MHz mm.

Figure3 shows the dispersion diagram for the same geometric andmaterial param-
eters but in the case of a propagating wave in 45◦-direction. Symmetric and antisym-
metric Lamb-waves as well as horizontal shear waves are coupled now and denoted
by LSHn. The phase velocity of the LSH0- and LSH2- modes do not change signif-
icantly in the low frequency range so that corresponding mode pairs can be selected
here for quasi-cumulative higher harmonic generation.
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Fig. 2 Phase velocity dispersion diagram for a symmetric cross-ply laminate: S: symmetric, A:
antisymmetric Lamb-waves, SH0, 2, …: symmetric, SH1, 3, …: antisymmetric shear horizontal
waves

Fig. 3 Phase velocity dispersion diagram for a symmetric cross-ply laminate [45◦,−45◦,−45◦,
45◦]: LSH0, 2, …: symmetric, LSH1, 3, …: antisymmetric coupled Lamb- and SH-waves

4 Analysis and Results

In the case of the non-coupled waves Fig. 4 shows some results obtained after dis-
placement controlled excitation (see Fig. 1) of the structure at 0.3 MHz by a win-
dowed sine burst signal of 20 cycles with an amplitude of 0.01µm. The parameter
K in Eq. (2) was set to 10 GPa. Generally, the fundamental modes S0 and A0 are
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Fig. 4 Decoupled Lamb- and SH-waves. Displacements u1 and u3 as well as frequency response
at X1=0.3 m after excitation at f = 0.3 MHz. S0-S0-mode pair

generated at this frequency, as it can be seen from Fig. 2. Here, however, a special
type of excitation was chosen, see Fig. 1, which is mode selective and therefore only
generates an S0-mode. So, only this mode is visible in Fig. 4, left, where the displace-
ments u1 and u3 at the location X1=0.3 m are shown with respect to time. At the
selected excitation frequency, the conditions for cumulative higher harmonic wave
modes are met and, therefore, a secondary wave field is generated. This is confirmed
by a FFT analysis of the time signals. The results are shown in Fig. 4, right, from
which it becomes obvious that the excitation frequency at 0.3 MHz as well as twice
the frequency at 0.6 MHz are included. The cumulative effect is shown in Fig. 5.
Here, the ampitude ratio A2/A2

1 of the inplane displacement u1 is shown over the
covered distance of the propagating wave. It becomes visible, that the amplitude of
the second harmonic S0-mode oscillates with increasing propagation distance which
is in accordance with theoretical considerations.

In the case of coupled waves corresponding results are presented in Figs. 6 and 7.
Again, the excitation frequency is 0.3 MHz. Figure3 shows that the guided waves,
which are excited at an angle of 45◦ with respect to the fiber orientation, are LSH0,
LSH1, and LSH2. However, theoretical considerations show, that only the modes
LSH0 and LSH2 are internally resonant. In the following, mode pairs LSH2-LSH2

Fig. 5 Decoupled Lamb- and SH-waves. Behavior of the u1-ampitude of second harmonic S0-
mode after excitation at f = 0.3 MHz
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Fig. 6 Coupled Lamb- and SH-waves. Displacements u1, u2, and u3 as well as frequency response
at X1=0.6 m after excitation at f = 0.3 MHz. LSH2-LSH2-mode pair

Fig. 7 Coupled Lamb- and SH-waves. Amplitude behavior of second harmonic LSH2-mode after
excitation at f = 0.3 MHz

are under consideration. Figure6, left, shows the three displacement components
u1, u2, and u3 at the location X1=0.6 m as functions of time. Due to the considera-
tion of nonlinearities and the power flux from the primary to the second harmonic
mode, twice the excitation frequency is clearly visible in the frequency response.
The cumulative effect becomes visible in Fig. 7. Here, the displacement amplitudes
of the second harmonic LSH2-mode show an oscillating behavior. Moreover, Fig. 7,
right, shows that the period strongly depends on the excitation frequency: the higher
the frequency, the lower the period.

5 Concluding Remarks

This study shows that a nonlinear hyperelastic material model allows to simulate the
cumulative effect of higher harmonic guided waves in cross-ply laminates made of
CFRP. This effect has been shown for wave propagation in 45◦ and 0◦ directions
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and, hence, for situations at which the symmetric and antisymmetric modes as well
as the shear horizontal modes are coupled or not, respectively. Regarding the wave
propagation, the nonlinear material model thus leads to comparable effects than
micro-structural cracks as it was shown in previous work. It may be concluded,
that micro-mechanically damaged material can be modelled by a nonlinear material
model with appropriately adapted material parameters in case of wave propagation
analysis. Furthermore, these material parameters may give information about the
degree of material deterioration.
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Abstract From the perspective of coronary heart disease, the development of stents
has comesignificantly far in reducing the associatedmortality rate, drug-eluting stents
being the epitome of innovative and effective solutions.Within thiswork, the intricate
process of in-stent restenosis is modelled considering one of the significant growth
factors and its effect on constituents of the arterial wall. A multiphysical modelling
approach is adopted in this regard. Experimental investigations from the literature
have been used to hypothesize the governing equations and the corresponding param-
eters. A staggered solution strategy is utilised to capture the transport phenomena as
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well as the growth and remodeling that follows stent implantation. The model herein
developed serves as a tool to predict in-stent restenosis depending on the endothelial
injury sustained and the protuberance of stents into the lumen of the arteries.

1 Introduction

Coronary heart disease (CHD) is one of the most prominent causes of mortality and
affected 126.5 million lives worldwide as of 2017. CHD is characterised by constric-
tion of the coronary artery arising due to the build-up of plaque which consists of
lipids, calcifications, andmacrophages. This condition, termed atherosclerosis, leads
to the narrowing of pathways for blood flow aswell as the loss of elasticity of the arte-
rialwall. Percutaneous coronary intervention (PCI) is theprocessofplacing reinforce-
ment structures called stents within these constricted blood vessels to normalize the
blood flow. Unfortunately, this interventional procedure is associated with the risk of
in-stent restenosis and stent thrombosis. Drug-eluting-stents have emerged in recent
years as the most viable option for revascularisation, significantly reducing the risks
associated with PCI. But the mechanisms involved in the restenotic process remain
incompletely understood. Quantifying the probability and level of restenosis via sim-
ulation of the underlyingmechanismswill help in addressing the risksmore precisely.

Several computational approaches have been developed in this regard. A multi-
scale framework involving finite element models and agent-based models has been
conceptualised in [17], where the restenotic process was unidirectionally coupled to
stresses on the arterial walls. Amore recent development on similar grounds has been
made in [12], incorporating bidirectional coupling between finite element and agent-
basedmodels. A general continuum-basedmodel describing growth and remodelling
of soft tissues [7], considering the evolution of constituents in the arterial wall using
the constrained-mixture theory, also serves as a computational tool for restenosis pre-
diction.With temporal averaging, ahomogenisedconstrained-mixturemodelhasbeen
developed in [2] as an extension to the constrained-mixture theory. Alternatively,
highly resolved transport phenomena occurring in the arterial wall have also been
utilised tomodel the pathophysiology of vascular diseases. Venous neointimal hyper-
plasia has been quantified considering the inherent pathogenicmechanisms involving
growth factors in [1]. A coupled multi-physical approach for quantifying atheroscle-
rosis has been described in [16], wherein the mechanics of bloodflow, mass transport
and arterial wall mechanics have been unified under a single framework. An in-stent
restenosis predictive model developed on a similar foundation incorporating damage
on the arterial wall can be found in [3]. An analogous attempt is made hereof for the
prediction and quantification of the after-effects of stent implantation.
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1.1 Structure of the ArterialWall

Thearterialwall is composedof three layers: intima,media, andadventitia.The region
where the blood flow occurs is called the lumen. Intima is the innermost layer of the
arterial wall, immediately adjacent to the lumen. It is consisted of a monolayer of
endothelial cells accompanied by a few layers of smooth muscle cells and extends
up to the internal elastic lamina. The media occupies the space between the internal
and external laminae and is mainly composed of collagen, elastin and smooth muscle
cells. Adventitia, the outermost layer, contains loose connective tissue composed of
elastin, collagen and fibroblasts.

1.2 In-Stent Restenosis and Platelet-DerivedGrowthFactor

In-stent restenosis refers to the accumulation of new tissue within the intima leading
to a diminished cross-section of the lumen post stent implantation. The underlying
mechanism is called neointimal hyperplasia. It is a collaborative effect of migration
and proliferation of smoothmuscle cells (SMC) in the arterial wall, regulated by intri-
cate signallingpathways that are triggeredbycertain stimuli, either internalor external
to the arterial wall.

The platelet-derived growth factor (PDGF) is a dimer of two peptides linked by a
disulfide bond. It has been implicated in vascular remodelling processes, including
neointimalhyperplasia, that followan injury toarterialwall [10].Thiscanbeattributed
to itsmitogenic and chemoattractant properties. PDGF is secreted by an array of cellu-
lar species namely the endothelial cells, SMC, fibroblasts,macrophages and platelets.

The stent implantation procedure damages the endothelial monolayer. Also,
depending on the arterial overstretch achieved during the implantation, stent struts
partially obstruct the blood flow creating vortices in their wake regions. This causes
oscillatory wall shear stresses and hence further damages to the endothelium [9].
PDGF, which is stored in the alpha-granules of the aggregated platelets at endothe-
lial injury sites, is released into the arterial wall. The presence of PDGF upregulates
matrixmetalloproteinases (MMP)production in the arterialwall. Extracellularmatrix
(ECM) is a network of collagen and glycoproteins surrounding the SMC and are
degraded in the presence of MMP. SMC, which are usually held stationary by the
ECM, are rendered free for migration under the action of MMP. Also, a degraded
ECM encourages the proliferation of SMC under the presence of growth factors. The
focal adhesion sites created due to cleaved proteins in the ECM assist in the migra-
tion of SMC. The direction ofmigration is influenced by the number of adjacent focal
adhesion sites available and the local concentrationgradient inPDGF.This directional
movement of SMC is termed chemotaxis, and results in the accumulation of the pro-
liferated andmigrated SMC in the intima of the arterialwall. A positive feedback loop
might occur wherein the migrated SMC create a further obstruction in the blood flow
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and subsequent upregulationofPDGF.Theuncontrolledgrowthofvascular tissue that
follows will eventually lead to a complete blockage of the lumen.

2 MathematicalModelling

In-stent restenosis is understood to be a convoluted phenomenon involving multiple
constituents. Only the behaviours of key constituents identified from the perspective
of the processes described in Sect. 1.2 are modelled. Blood flow in the lumen is not
included in themodel and the arterial wall is considered to bemade of only the intima
and media layers.

2.1 Transport Phenomena

The transport of constituentswithin the arterial wall is governed by a set of advection-
reaction-diffusion equations, the general structure of which for a scalar field φ is

∂φ

∂t
= −∇ · (φ v)

︸ ︷︷ ︸

advection

+∇ · (k ∇φ)
︸ ︷︷ ︸

diffusion

+ Ts
︸︷︷︸

source

− Tr
︸︷︷︸

reaction

, (1)

where v denotes the velocity of the medium of transport and k, the diffusivity of φ in
themedium. Tomathematically model in-stent restenosis, PDGF, ECM and SMC are
considered to be the key ingredients. Hence the general structure above is adapted to
reflect their respectivebehaviours.Thearterialwall is considered tobequasi-static and
hence advective terms arising from themovement of thewall are ignored (v ≈ 0). The
symbols and units associatedwith the transport quantities are declared here for clarity
(Table1).

Platelet-derived growth factor

PDGF is assumed to diffuse throughout the arterial wall. Also, it is internalised by the
SMCs during their migration and proliferation. The evolution of the concentration of
PDGF is thus modelled by the following equation:

Table 1 Transport variables

Variable Symbol Units

PDGF concentration cP mol/mm3

ECM density ρE mol/mm3

SMC density ρS cells/mm3
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∂cP

∂t
= ∇ · (

DP ∇cP

)

︸ ︷︷ ︸

diffusion

− α ρS cP
︸ ︷︷ ︸

consumption by SMC

, (2)

whereα refers to an internalisationcoefficient andρS , thedensityofSMCs. In compar-
ison to Eq. (1), we see that only the terms associated with the diffusive and the reac-
tive phenomena appear here. Although PDGF is produced by other cellular species,
the net effect observed is degradation. The diffusion coefficient DP can theoretically
vary between positions in the arterial wall but is considered to be constant here.

Extracellular matrix

The major constituent of ECM is collagen, which is considered to be non-diffusive.
SMCs recognize a degradedECMand synthesize collagen.A source term, in the form
of a logistic function, is introduced in this regardandanasymptotic threshold for colla-
gen density ρE,th prescribed. Collagen is degraded byMMP,which in turn is regulated
by PDGF.A reactive term is introduced to take care of this degradation. The evolution
of ECM density hence reads as follows:

∂ρE

∂t
= β ρS

(

1 − ρE

ρE,th

)

︸ ︷︷ ︸

synthesis by SMC

− γ cP ρE
︸ ︷︷ ︸

degradation due to MMP

. (3)

Here, β and γ refer to synthesis and degradation rate coefficients respectively.

Smooth muscle cells

The migration of SMC under the influence of PDGF is modelled using a chemotaxis
term [8], which can be interpreted as a pseudo-advective termwherein the velocity of
the medium is replaced by the gradient in the ECM density. This corresponds to the
fact that higher degradation in the ECM results in higher focal adhesion sites for SMC
migration.Additionally, a source term is introduced tomodel theproliferationofSMC
under the presence of PDGF. Hence the evolution of the SMC density is prescribed
using the equation:

∂ρS

∂t
= ∇ ·

(

χ cP

(

1 − ρE

ρE,th

)

ρS ∇ρE

)

︸ ︷︷ ︸

chemotaxis due to ECM degradation

+ κ cP

(

1 − ρE

ρE,th

)

ρS

︸ ︷︷ ︸

proliferation due to PDGF

. (4)

The chemotactic sensitivity χ and the proliferation constant κ are scaled by the con-
centration of PDGF as well as the logistic coefficient dependent on the ECM density.
This takes care of the fact that the migration and proliferation effects increase with an
increase in ECM degradation, in the presence of PDGF.
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2.2 ArterialWallMechanics

The continuummechanical description of in-stent restenosis requires first the defini-
tion of the kinematics of growth and remodelling of the arterial wall, incorporating
relevant quantities from the transport phenomena previously described. Constitutive
equations hence based on the kinematics, in combination with the balance of linear
momentum, will complete the mathematical model description.

2.3 Kinematics

A deformation map ϕ of a particle at position X in the reference configuration 
0 at
time t0 to its position x in the current configuration
 at time t is providedby the defor-
mation gradient F = ∇Xϕ(X, t). The right Cauchy-Green tensor is further defined as
C = FT F.

For a descriptionof growth, amultiplicativedecompositionof thedeformationgra-
dient is adopted. Assumption of an intermediate incompatible configuration which
achieves a locally stress-free state forms the basis of this split [5, 14]. An additional
elastic deformation is needed to ensure the compatibility of the total deformation.
Hence the total deformation gradientwill be F = Fe Fg and the elastic rightCauchy-
Green tensor reads Ce = FT

e Fe.
The growth deformation gradient is specified as Fg = ϑ I , under the assumption

of isotropic growth. Hence the compatible elastic deformation gradient will be Fe =
ϑ−1 F.

To calculate the growth stretch ϑ , it is hypothesised that an increase in volume at
a point due to growth at any time t is proportional to the additional SMC transported
to that point. A similar idea is postulated for aggregation of foam cells in [16]. If vs
is the volume occupied by a single SMC and Ns the number of additional SMC at a
point, then�Vg = vs Ns . vs can be prescribed via the definition of the SMCdensity of
ahealthyarteryρS,h , usingvs = (ρS,h )

−1. IfVg is thevolume in the intermediategrowth
configuration
g at time t andV0 is that in the reference configuration
0, thenwe can
arrive at an expression for ϑ through the following exercise.

�Vg = Vg − V0 = (ρS,h )
−1 Ns (5)

∫


g

1 dvg −
∫


0

1 dV = (ρS,h )
−1

∫




(ρS − ρS,h ) dv (6)

Pulling back the quantities to the initial configuration,

∫


0

Jg dV −
∫


0

1 dV = (ρS,h )
−1

∫


0

J (ρS − ρS,h ) dV (7)
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Since Eq. (7) has to hold true locally,

Jg − 1 = (ρS,h )
−1 J (ρS − ρS,h ) (8)

=⇒ Jg = 1 + J

(

ρS

ρS,h

− 1

)

. (9)

If d is the dimensionality of the problem, then Jg = det(Fg) = ϑd . Therefore,

ϑ =
(

1 + J

(

ρS

ρS,h

− 1

))1/d

. (10)

2.4 Hyperelastic ConstitutiveModel

The constitutive model is derived from the hyperelastic models presented in [4, 6,
13], wherein the arterial wall is assumed to be composed of two helices of collagen
fibres, with respective helix angles θa

i , embedded in an isotropic ground substance.
The associated Helmholtz free energy per unit volume is hence split into an isotropic
andananisotropicpart, bothofwhich aredependent on the elastic rightCauchy-Green
tensor.

ψ(Ce, H1, H2) = ψiso(Ce) + ψani (Ce, H1, H2) (11)

ψiso(Ce) = μa

2
(trCe − 3) − μa ln Je + �a

4

(

J 2
e − 1 − 2 ln Je

)

(12)

ψani (Ce, H1, H2) = k1
2k2

∑

i=1,2

(

exp
[

k2〈Ei 〉2
] − 1

)

(13)

This stems from the hypothesis that in the stress-free incompatible growth configura-
tion, even the collagen fibres grow due to the synthesis by SMC and hence no residual
stresses arise in the incompatible state. The dependence ofψ onCe embeds its depen-
dence on Fg via

Ce = F−T
g C F−1

g = ϑ−2C. (14)

The generalised structure tensors H i are constructed based on the local collagen
orientations in the reference configuration a0i using

H i = κa I + (

1 − 3 κa
)

a0i ⊗ a0i , (15)

where κa is a dispersion parameter. The Green-Lagrange strain like parameter Ei is
calculated utilising the relationship Ei = H i : Ce − 1,where the definition of scalar
product of second order tensors A : B = Ai Bi (Einstein summation convention) is
applied.
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The first Piola-Kirchhoff stress tensor is deduced from the Helmholtz free energy
function using

P = ∂ψ

∂F
= ∂ψ

∂Ce
: ∂Ce

∂F
. (16)

Using Eq. (14), it can be deduced that

∂Ce

∂F
= 1

ϑ2

∂C
∂F

. (17)

Finally, the balance of linear momentum governs the quasi-static equilibrium of the
arterial wall structure.

∇ · P + b = 0 (18)

3 NumericalMethods

The Galerkin weak forms of the governing differential equations are arrived at.

∫




∂cP

∂t
δcP dv =

∫

�

(JP · n) δcP da −
∫




(∇δcP · DP∇cP ) dv

−
∫




α ρS cP δcP dv (19)
∫




∂ρE

∂t
δρE dv =

∫




β ρS

(

1 − ρE

ρE,th

)

δρE dv −
∫




γ cPρE δρE dv (20)

∫




∂ρS

∂t
δρS dv =

∫

�

(JS · n) δρS da −
∫




(

∇ δρS · χ cP

(

1 − ρE

ρE,th

)

ρS ∇ρE

)

dv

+
∫




κ cP ρS

(

1 − ρE

ρE,th

)

δρS dv (21)

∫


0

P : δF dV =
∫

�0

(T · δu) d A (22)

Here, JP and JS denote thePDGFandSMCfluxesacross theboundary,n thenormalon
the boundary and T the traction on the boundary. Body forces are considered absent.

The transport equations are temporally discretised using the semi-implicit
Backward-Euler method. Semi-implicitness is attributed to the fact that in each of the
weak forms, variables other than the ones discretised in time are carried over from the
previous time step. Spatial discretisation is performed using linear finite elements. A
decoupled set of linear equations for the time-step updation of transport variables are
hence obtained.



Finite Element Modelling of In-Stent Restenosis 313

[M + �t L + �t P] cn+1
P

= Mcn
P

(23)

[M + �t T ] ρn+1
E

= Mρn
E

+ R (24)
[

M + �t K − �t Q
]

ρn+1
S

= Mρn
S

(25)

Definitions of matrices in the equations above can be found in the appendix. The dif-
fusion and advection operatorswithin thefinite element setting,whendiscretisedwith
linear finite elements, display instabilities across steep gradients in the transport quan-
tities. This leads to unphysical negative concentrations and densities at the diffusion
and advection fronts. To treat this, artificial discrete diffusive fluxes are introduced,
which result in over smoothened solution profiles. Hence antidiffusive fluxes, limited
using the Zalesak limiter, are utilised to preserve local extrema [11, 15].

The weak form of the balance of linear momentum in Eq. (22) is spatially dis-
cretised using the same linear finite elements as defined for the transport problems,
and is solved iteratively using the Newton-Raphson method. The residual and its lin-
earization, prior to discretisation, required for the iterative updates are determined as
follows.

gu =
∫


0

P : δF dV −
∫

�0

(T · δu) d A (26)

�gu =
∫


0

δF : (A : �F) dV (27)

The fourth order tensorA is computed using

A = ∂ P
∂F

+ ∂ P
∂ϑ

⊗ ∂ϑ

∂F
. (28)

Coupling

The transport problems are solved in the current configuration
while the balance of
linear momentum is solved in the reference configuration 
0. A staggered solution
strategy is carried out to achieve coupling. The transport problem provides the SMC
density to the structural problemwhile the structural problemupdates the current con-
figuration
 based on the SMC density. An incremental form of Eq. (10) is applied in
this regard as follows:

ϑ = ϑ−
(

1 + J

J−

(

ρS

ρS,h

− 1

))1/d

, (29)

wherein the quantities ( )− refer to those from the previous time step. At the end of
solution of the structural problem, the transport quantities φ are updated at the Gauss-
points using φ∗ = ( J−/J ) φ and extrapolated to the nodes. The staggered solution
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strategy provides flexibility in case different spatial discretisations are absolutely nec-
essary for the systems being coupled.

4 Numerical Investigation

A longitudinal axisymmetric section of an artery is considered fixed on either ends. A
Gaussian distribution of PDGF concentration consisting of three distinct peaks is pre-
scribed in the domain tomimic aPCI injury in the arterialwall (Fig. 1). ECMandSMC
densities (ρE,0 and ρS,0 ) are uniformly prescribed to be those of a healthy artery. Zero
flux boundary conditions are prescribed for all the transport quantities on all bound-
aries. Some of the parameters are deduced from literature and the others tuned to pre-
dict the physics qualitatively (Table2).

Transport simulation is run for a time period of 1day to perform themesh and time
step convergence analyses since this dictates the spatial and temporal discretisations.
The SMC density plots along section A-A are used for the analyses (Figs. 2, 3).

Using the converged discretisations, the coupled simulation is run for a period of
1day and the results examined. It is expected that the growth ceases when the ECM is
healed and PDGF is completely internalized. The evolutions of quantities at a Gauss-
point of interest reflect this as shown inFig. 4.Contraction is observed in some regions
of the arterial wall which can be attributed to the migration of SMC away from these
regions.

Table 2 Parameter set

Parameter Value [units]

DP 0.01 [mm2/day]

α 1.0 × 10−13 [mm3/cell/day]

β 5.0 × 10−8 [mol/cell/day]

γ 5.0 × 1017 [mm3/mol/day]

χ 1.0 × 1019 [mm5/cell/day]

κ 1.0 × 10−2 [mm3/mol/cell/day]

ρE,0 7.0 × 10−9 [mol/mm3]

ρE,th 1.1 × ρE,0

ρS,0 3.16 × 106 [cells/mm3]

μa 0.02 [MPa]

λa 10 [MPa]

k1 0.112 [MPa]

k2 20.61 [–]

κa 0.1 [–]

θai 41 [◦]
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Fig. 1 Problem setup

Fig. 2 Mesh convergence
(A-A)

Fig. 3 Time-step
convergence (A-A)
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Fig. 4 Deformed arterial wall and evolution of quantities of interest

5 Conclusion andOutlook

The developed model is able to successfully capture the growth induced in the arte-
rial wall due to mechanisms brought about by PDGF. It is to be noted that the model
does not take into account the loss and healing processes of the endothelium. In real-
ity, the restenotic process does not cease until the endothelium is completely healed
and there is no further influxofPDGF.Wall shear stress dependent influxofPDGFcan
beprescribed as a boundary condition to achieve the aforementioned effect. The trans-
forminggrowth factor (TGF)-β is another significant constituent responsible formod-
ulation of growth in vasculatures. It considerably affects the proliferative response of
SMCsandhence needs to be considered in the frameworkdeveloped in thiswork. Fur-
thermore, it remains to be seen how sensitive the model is to the set of model param-
eters and which of those can be determined experimentally.

Futurework shall therefore entail consideration of additionalwall constituents that
influence the restenotic process, physiological experimentation, parameter sensistiv-
ity evaluation, and finally arriving at a high-fidelity in-silico model which aides in
examining the efficacy of drugs intended to be used on drug-eluting stents.
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Appendix

Element matrices in the linearised decoupled system of transport equations are listed
here. N refers to the shape function vector associated with linear finite elements.

Me =
∫


e

N NT dv

Le =
∫


e

DP∇N ∇NT dv

Pe =
∫


e

αρn
S
N NT dv

T e =
∫


e

(

β
ρn

S

ρE,th

+ γ cn
P

)

N NT dv

K e =
∫


e

[

χ cn
P

(

1 − ρn
E

ρE,th

)

∇N ∇ρn
1
NT

]

dv

Qe =
∫


e

κ cn
P

(

1 − ρn
E

ρE,th

)

N NT dv

Re =
∫


e

β ρn
S
N dv
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1 Introduction

The robustness and accuracy of numerical simulations can be severely hampered by
internal constraints in material response, e.g., when materials are characterized by
small volumetric deformations (nearly-incompressible) orwhenmaterialmicrostruc-
ture is made up by highly-stiff fibers (nearly-inextensible). Traditional finite ele-
ment formulations exhibit poor convergence rates in the basic variables and element
responses result overstiff. This phenomenon is generally referred to as locking [1, 2].
Different strategies were pursued in computational mechanics over the last decades
in order to circumvent locking. Few examples are in [1, 2] for incompressibility and
in [3–5] for inextensibility. Among available approaches, this work addresses mixed
finite element formulations [6].

Constraints inmaterial response introduce restrictions for the admissible kinemat-
ics in equilibrium problems. Ideal constraints impose that some components of the
deformation field take a given value, while non-ideal behaviours are generally intro-
duced by relaxing the constrained deformation metric introduced in the ideal case.
Equilibrium and kinematic constraints can be enforced through a variational princi-
ple, read from stationary conditions of a mixed functional. The latter depends on dis-
placements and additional variableswhich represent a reactive stress (associatedwith
the internal constraint), and in the non-ideal case, its thermodynamically-conjugate
(kinematic) variable. In the ideal case, the reactive stress depends only on the con-
strained kinematics and it can be defined ab initio, independently from the actual
constitutive response. Hence, it is required to be workless in all deformations satis-
fying the constraint, that is energetic orthogonal to the non-constrained kinematics.
For instance, in the presence of incompressibility, the classical volumetric-deviatoric
split on the deformation is generally introduced and a hydrostatic reactive stress is
postulated since orthogonal in energy to the deviatoric deformation. On the other
hand, in the non-ideal case, the reactive component transforms into a stress term
which cannot be postulated but depends on material constitutive response. Hence, if
the reactive stress is energy orthogonal to the non-constrained kinematics depends
on the material symmetries at hand. For instance, the classical volumetric-deviatoric
split for nearly-incompressible materials is orthogonal in energy if and only if the
material is isotropic. In the presence of anisotropies, the stress associated with a
volumetric deformation does not indeed correspond to a hydrostatic pressure and
energy orthogonality would be not respected by the classical volumetric-deviatoric
split. Addressing near-inextensible fibers, the standard choice of removingfiber strain
from the total one also does not lead to an energetic orthogonal formulation.

To overcome these issues, Marino and Wriggers have proposed in [7] a novel
energetically-decoupled kinematic description of transversely isotropic linear elas-
tic materials, which allows to consistently isolate the effects of near-inextensibility
and/or near-incompressibility. A novel Hu-Washizu-like variational formulation
based on this theory and its implementation in mixed finite element models have
been also proposed. The present paper addresses novel numerical examples to test
the convergence properties of the proposed formulation in problems of engineering
interest, also referring to three-dimensional (3D) problems.
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2 Theory

The main theoretical arguments introduced in [7] are here presented for the sake of
completeness. The theory is developed in the framework of linear elasticity, with
ε and σ being the small-strain and the Cauchy stress second-order tensors. For the
sake of notation, let second-order tensors be denoted by bold capital letters (e.g.,A),
while fourth-order tensors by capital double-struck letters (e.g., A). Hence, let A :B
be the inner product between A and B, and A :B the right mapping of A with B.

2.1 Nearly-Inextensible Transversely Isotropic Materials

The stiffness tensor CTI of a transversely isotropic material can be represented on
the basis of the Walpole’s formalism1 as [8]:

CTI = c1B1 + 2κ23B2 + √
2c2(B3 + B4) + 2G23B5 + 2G12B6, (1)

where c1 and c2 represent axial (i.e., along the material preferred direction a) and
in-plane (i.e., in the isotropy plane P(a)) stiffnesses, κ23 the in-plane (plane-strain)
bulk modulus, G23 and G12 the in-plane and out-of-plane shear moduli.

This section addresses materials characterized by near-inextensibility along the
preferred direction a, that is c1 → +∞. Near-inextensibility is formulated by enforc-
ing that the normal component εa of ε along a respects:

φine(ε) = ε :A = εa → 0 for c1 → +∞. (2)

Near-inextensibility is treated by introducing the transversely isotropic projection
operatorPTI, the projected component of the strain tensor ε p

TI, and the complementary
one εc

TI as:

ε
p
TI = PTI : ε , εc

TI = (I − PTI) : ε with PTI = B1 + B2. (3)

It is immediate to verify (see [7]) that it results ε
p
TI + εc

TI = ε and the split (3) is:

1. kinematically consistent with near-inextensibility, that is both ε
p
TI and ε allow to

enforce (2) since leading to the same value of εa, i.e.

ε
p
TI :A = (PTI : ε) : A = εa ⇒ φine(ε) → 0 ⇐⇒ φine(ε

p
TI) → 0; (4)

1 Introducing A = a ⊗ a, B = I − A, and tensor products as in [7], the Walpole’s basis reads:

B1 = A ⊗ A , B2 = 1

2
B ⊗ B , B3 =

√
2

2
A ⊗ B , B4 =

√
2

2
B ⊗ A,

B5 = 1

2

(
B⊗B + B⊗B − B ⊗ B

)
, B6 = 1

2

(
A⊗B + A⊗B + B⊗A + B⊗A

)
.

.
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2. energetically consistent for transversely isotropic materials, that is ε
p
TI is orthog-

onal to the stress associated with the complementary deformation mode σ c
TI =

CTI : εc
TI (and viceversa), i.e.

σ c
TI : ε p

TI = [CTI : (I − PTI) : ε] : (PTI : ε) = C
c
TI : ε : (PTI : ε) = 0, (5a)

σ
p
TI : εc

TI = [CTI : PTI : ε] : (I − PTI) : ε = C
p
TI : ε : (I − PTI) : ε = 0, (5b)

with:

C
p
TI = CTI : PTI = c1 B1 + 2κ23 B2 + √

2c2(B3 + B4), (6a)

C
c
TI = CTI : (I − PTI) = 2G23 B5 + 2G12 B6. (6b)

The energy orthogonality condition in Eqs. (5), together with Eqs. (6), yields a
fully decoupled split of the strain-energy of transversely isotropic materials into a
projected �

p
TI(ε

p
TI) and complementary part �c

TI(ε
c
TI):

�TI(ε) = 1

2
ε : CTI : ε =

�
p
TI(ε

p
TI)︷ ︸︸ ︷

1

2
ε
p
TI : C

p
TI : ε

p
TI +

�c
TI(ε

c
TI)︷ ︸︸ ︷

1

2
εc
TI : C

c
TI : εc

TI . (7)

2.2 Variational Formulation for Nearly-Inextensible
Materials

Near-inextensibility is introduced by means of a perturbed Lagrangian formulation
based on the Hu-Washizu principle. From Eq. (7), the following mixed variational
functional �TI is introduced:

�TI(ε,�TI,�TI) = �
p
TI(�TI) + �c

TI(ε
c
TI) + �TI : (ε

p
TI − �TI), (8)

where �TI is the stress variable thermodynamic-conjugate to ε
p
TI, and �TI the kine-

matic variable controlling ε
p
TI. Stationary conditions of �TI yield:

Balance of linear momentum: δε�TI = δε : (�TI : PTI + C
c
TI : εc

TI

) = 0 , (9a)

Compatibility: δ�TI�TI = δ�TI :
(
ε
p
TI − �TI

) = 0, (9b)

Constitutive behaviour: δ�TI�TI = δ�TI :
(
C

p
TI : �TI − �TI

) = 0. (9c)

Accounting for Eqs. (6a) and (9c), it would result ‖�TI‖ → +∞ for c1 → +∞
when φ(�TI) = θa � 0. An infinite stress would violate the equilibrium condition
in Eq. (9a). Hence, it shall result φ(�TI) = θa → 0, such that�TI takes finite values.
Since ε

p
TI ≈ �TI (in a weak sense) from Eq. (9b), it also results φ(ε

p
TI) = εa → 0.

These relationships introduce the penalized-kinematics in the proposed functional.
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Remark 1 Kinematic and constitutive considerations lead to:�TI = θaA + θbB and
�TI = σaA + σbB. Hence, only 4 additional scalar variables (θa, θb, σa and σb) are
introduced with respect to a pure-displacement formulation.

Remark 2 The mixed functional �TI is energetically decoupled in the sense that
the complementary material strain energy term�c

TI does not depend on the penalized
deformation mode ε

p
TI, i.e. �c = �c(ε

c
TI). This condition follows the properties of

the kinematic split based on the transversely isotropic operator PTI in Eq. (3).

Since the mixed functional in Eq. (8) is energetically decoupled, the overstiff
material constant c1 do not explicitly enter in the balance of linear momentum
(see Eq. (9a)). This occurrence avoids locking phenomena in numerical simu-
lations based on finite element models derived with Eq. (8). As amatter of fact,
if constant c1 → +∞ explicitly enters in Eq. (9a), locking might occur since
equilibrium can be satisfied with (practically) null deformation. This would
lead to an overstiff/locked element response [1, 7].

2.3 On Nearly-Incompressible Transversely Isotropic
Materials

This section addresses nearly-incompressible transversely isotropic materials, for
which the material constraint acts on the volumetric deformation εvol , that is:

φinc(ε) = Tr(ε) = εvol → 0 for κ → +∞. (10)

Here, κ represents the bulk modulus of the material, which can be written as function
of material constants in Eq. (1) as [7]:

κ = c1κ23 − c22
c1 − 2c2 + κ23

. (11)

The split of the strain tensor in Eq. (3) is kinematically consistent with the near-
incompressibility constraint since, as proven in [7], it results:

Tr(ε p
TI) = εvol ⇒ φinc(ε) → 0 ⇐⇒ φinc(ε

p
TI) → 0. (12)

Since the split (3) remains energetically-consistent as shown in Eqs. (5), themixed
functional (8) is energetically decoupled also for nearly-incompressible transversely
isotropic materials. The same considerations made in Sect. 2.2 about locking hold
true also in this case (see [7]). In fact, the overstiff material constant (κ for near-
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incompressibility) does not explicitly enter into the balance of linear momentum,
since C

c
TI does not depend on constants involved in Eq. (11).

Clearly, these advantages are maintained also when near-incompressibility and
near-inextensibility occur at the same time.

3 Mixed Finite Element Models and Numerical Results

Two numerical applications are introduced. Both applications consider a nearly-
inextensible material, the second one considering also the coupling with near-
incompressibility.2 All quantities (e.g., lengths, forces and stiffnesses) are expressed
in coherent SI-units.

3.1 Near-Inextensibility: A Bias-Extension Test

A bias-extension test of a rectangular L × H plate made up by ± 45 cross-plied
unidirectional composite layers is firstly considered. The plate is clamped at y = 0
and an along-y displacement v̄ is applied at y = H . Plane-stress is thus attained.

The bias-extension test has been originally designed for analysing the behavior of
woven fabrics [9], which deform as pin-jointed-nets (PJNs). As shown in Fig. 1, the
idealised PJN post-test geometry is characterized by 3 zones with different constant
in-plane inter-fibers shear strains. The central region (A) is characterized by the
maximum shear γs , approximated as:

γs ≈ γpjn = arcsin

(
v̄√

2(H − L)
+

√
2

2

)

− π

2
. (13)

Moreover, side regions (B) are characterized by intermediate shear γs/2,while under-
formed regions (C) are obtained at the boundary. This pattern determines a character-
istic final shape of the specimenwith sharp boundaries [9]. Although differences arise
in local deformation mechanisms, experimental data show that the PJN model satis-
factorily predicts the deformation response of±45 cross-plied composites under bias
extension up to shear angles of 20◦ − 30◦ [10]. Thus, it is chosen L = 50, H = 100
and v̄ = 7.923, such that γpjn = 20◦.

2 Material constants in Eq. (1) for CTI are obtained by employing a micromechanical approach
which considers two isotropic constituents, i.e. fibers and matrix (see [7]). Fibers are significantly
stiffer than the surrounding matrix (i.e., Young’s moduli E f = 106Em with Em = 0.01), leading
to near-inextensibility. Fiber volume fraction is chosen equal to V f = 10%, fiber Poisson’s ratio
ν f = 0.3, while matrix Poisson’s ratio νm is defined differently in the two addressed applications.
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Fig. 1 Numerical applications: the bias-extension test (left) and the punch test (right). The orthog-
onal basis (i, j,k) is introduced and parametrized in x , y and z

The internal strain energy density �c(ε) of the cross-plied composite with unidi-
rectional fiber-reinforced layers is modelled as the superposition of two transversely
isotropic materials �

(α)
TI with fibers inclined by α = ±45◦, namely

�c(ε) = 1

2
�

(+45)
TI (ε) + 1

2
�

(−45)
TI (ε). (14)

Here, �
(α)
TI is given by Eq. (7) where CTI is obtained from Eq. (1) with material

preferred direction inclined byα. For this application,matrix Poisson’s ratio is chosen
νm = 0.3. Therefore, only near-inextensibility is considered for this example.

The domain is discretized with quadrilateral (square) elements, with mesh den-
sity defined by the number of elements nel along x . Three element formulations are
considered: Q1c and Q2c, where the strain-energy (14) is implemented in a pure-
displacement formulation with bi-linear and bi-quadratic Lagrangian shape func-
tions; Q1A0c, where each term �

(α)
TI in (14) is expressed as in Eq. (8) in a mixed

formulation. For the latter, a bi-linear Lagrangian interpolation of the displacement
field is considered, together with two sets of element-wise constant mixed variables
�α

TI and �α
TI.

Figure2 shows the distribution (obtained from finite element simulations) of the
inter-fibers shear strains γs . Pure-displacement formulations Q1c and Q2c fail to
recover the characteristic constant shear zones associated with a PJN mechanism.
On the other hand, this is well-captured by the proposed mixed element Q1A0c,
for which γs ≈ γPJN = 20◦ in zone A, γs ≈ γPJN/2 = 10◦ in zones B and γs ≈ 0 in
zones C.

The accurateness of the solution obtained with the mixed formulation is also
proven by the convergence plot in Fig. 3a. The computed reaction force is fairly
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Fig. 2 Bias-extension test: distribution of the shear strain γs = 2‖a(−45) · ε a(+45)‖, with a(±45) =
(1/

√
2,±1/

√
2), for the pure-displacement elements Q1c and Q2c, and the mixed element Q1A0c

Fig. 3 Convergence analysis: a total reaction force R obtained in the bias-extension test for nel ∈
(5, 30) with Q1c, Q2c and Q1A0c elements; b displacement wQ along k at the probe point Q =
(0, H/2, V ) obtained in the punch test for nel ∈ (4, 20) with H1, H1 and H̄1A0 elements

independent from the mesh size and equal to the converged value for Q1A0c, while
highly sensitive to element size for Q1c, but also for Q2c.

3.2 Near-Inextensibility and Near-Incompressibility:
A Punch Test

The second application addresses a punch test of a composite material made up by
a soft nearly-incompressible matrix (with νm = 0.4995) reinforced by stiff fibers.
Simulations are conducted on a 3D domain L × H × V , with dimensions L = 2,
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H = 1 and V = 1. As shown in Fig. 1, fibers lie in the (i, j)-plane and are inclined
by α = 20◦ with respect to i. The punch test is simulated by considering a constant
load q, acting along k, on half of the top surface at z = V for x ≤ L/2.

The domain is discretized with hexahedral (cubic) elements, with mesh density
defined by the number of elements nel along z. Three element types are employed:
H1 andH2, based on pure-displacement formulations with tri-linear and tri-quadratic
Lagrangian shape functions; H1A0, based on the mixed formulation in Eq. (8) with
tri-linear Lagrangian shape functions for displacement and element-wise constant
fields for stress and strain variables. Static condensation is performed for H1A0.

Figure3b clearly proves the outperformance of themixed formulationwith respect
to pure-displacement ones in avoiding locking. The converged value of displacement
wQ is never reached with H1 for the range of investigated mesh densities, while H2
requires almost onemillion of nodal degrees of freedom (i.e., mesh density nel = 16).
On the other hand, H1A0 is equally accurate with less than one thousand of nodal
degrees of freedom (i.e., mesh density nel = 4).

4 Conclusions

An energetically-decoupled mixed functional for dealing with near-inextensibility
and/or near-incompressibility in linear elastic transversely isotropic materials has
been recently presented by Marino and Wriggers in [7]. In the present work, the
convergence properties of low-order finite element implementations based on the
proposed formulation have been shown on two applications of engineering interest:
a bias-extension test of composite laminates and a punch test of a fiber-reinforced
rubber specimen. For the addressed applications, the proposed mixed formulation
outperforms linear and quadratic pure-displacement formulations, being character-
ized by the absence of locking phenomena and optimal convergence properties.

It is worth highlighting that structures subjected to the bias-extension or punch
tests are in many situations undergoing finite strains. The aim was not to reach
conclusive results for applications but to discuss the significance of the proposed
formulation in engineering-relevant problems. Although not final in terms of appli-
cations, simulations performed under linear elastic assumptions anyway give relevant
indications. In fact, non-linear formulations would anyway be solved by means of a
series of linear elastic steps via iterative algorithms like Newton-Raphson. The out-
performance of the proposed formulation is thereby meaningful also with regards to
possible extensions in large deformations, which is object of on-going work.

References

1. Zienkiewicz, O.C., Taylor, R.L., & Zhu, J.Z. (2013). The finite element method: Its basis and
fundamentals. 7th ed. Butterworth-Heinemann, Oxford.

2. Wriggers, P. (2008). Nonlinear finite element methods. Berlin, Heidelberg: Springer.



328 M. Marino

3. Wriggers, P., Schröder, J., & Auricchio, F. (2016). Finite element formulations for large strain
anisotropic material with inextensible fibers. Advanced Modeling and Simulation in Engineer-
ing Sciences, 3(1), 25.

4. Rasolofoson, F., Grieshaber, B. J., & Reddy, B. D. (2019). Finite element approximations for
near-incompressible and near-inextensible transversely isotropic bodies. International Journal
for Numerical Methods in Engineering, 117(6), 693–712.

5. Zdunek, A. (2020). On purely mechanical simple kinematic internal constraints. Journal of
Elasticity, 139(1), 123–152.

6. Auricchio, F., Beirão da Veiga, L., Brezzi, F., & Lovadina, C. (2017) Mixed finite element
methods. In Encyclopedia of computational mechanics (2nd ed., pp. 1–53). Wiley.

7. Marino, M., &Wriggers, P. (2020). Nearly-constrained transversely isotropic linear elasticity:
Energetically consistent anisotropic deformation modes for mixed finite element formulations.
International Journal of Solids and Structures, 202, 166–183.

8. Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations.
Advances in Applied Mechanics, 21, 169–242.

9. Hamila, N., & Boisse, P. (2013). Locking in simulation of composite reinforcement deforma-
tions. Analysis and treatment. Composites Part A: Applied Science and Manufacturing, 53,
109–117.

10. Potter, K. (2002). Bias extension measurements on cross-plied unidirectional prepreg. Com-
posites Part A: Applied Science and Manufacturing, 33(1), 63–73.



A Comparison of Matrix-Free
Isogeometric Galerkin and Collocation
Methods for Karhunen–Loève Expansion

Michal L. Mika, René R. Hiemstra, Dominik Schillinger,
and Thomas J. R. Hughes

Michal, René and I are part of the younger generation of
researchers in Hannover. As a junior faculty member, my vision
for the future is borne by the legacy of excellent research,
teaching and mentorship that Peter Wriggers and the many
colleagues he attracted to Hannover have maintained over the
past 25years. Michal is one of the many outstanding graduates
of the educational programs in computational methods initiated
by Peter. It was also Peter who established the contact between
us at UT Austin, where the foundations for this work were laid.
(Dominik Schillinger).
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for rough covariance kernels.
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1 Introduction

The Karhunen–Loève (K–L) expansion decomposes a random field into an infi-
nite linear combination of L2 orthogonal functions with decreasing energy content.
Truncated representations have applications in stochastic finite element analysis
(SFEM) [3–6], proper orthogonal decomposition (POD) [7, 8] and in image pro-
cessing where the technique is known as principal component analysis (PCA) [9].
All these techniques are closely related and widely used in practice [10].

Numerical approximation of the K–L expansion by means of the Galerkin or
collocationmethod leads to a generalized eigenvalue problem:Find (vh

k , λh
k ) ∈ R

N ×
R

+ such that
Avh = λh

kZv
h for k = 1, 2, . . . , M. (1)

This matrix eigenvalue problem is computationally challenging for the following
reasons: (1) the matrix A is dense and thus memory intensive to store explicitly;
(2) every iteration of an iterative eigenvalue solver requires a backsolve of a factor-
ization of Z; and (3) the assembly of A is computationally expensive.1

In this work, we investigate and compare two state-of-the-art methods that were
recently proposed to efficiently solve for the K–L expansion. The first method is
the matrix-free isogeometric Galerkin method proposed by us in [1], which uses
an advanced quadrature technique to gain high performance that is scalable with
polynomial order. The second method is our new matrix-free implementation of the
isogeometric collocation method proposed in [2]. As a collocation method it requires
far fewer quadrature points than a standard Galerkin method such that the assembly
of the collocation equations is simple and efficient.

This paper is structured as follows. In Sect. 2, we briefly review the basic aspects
of the K–L expansion in the context of random field representations. In Sect. 3, we
concisely present the two matrix-free solution methods and assess their algorithmic
complexity. Three-dimensional numerical benchmark problems with comparisons
in terms of accuracy and solution time are provided in Sect. 4. We summarize our
conclusions in Sect. 5 and discuss future work.

2 Karhunen–Loève Expansion of Random Fields

Consider a complete probability space (�,�,P) where � denotes a sample set of
random events and P is a probability measure P : � → [0, 1]. Let α(·, θ) : � �→
L2(D) denote a random field on a bounded domain D ∈ R

d with mean μ(x) ∈
L2(D) and covariance function �(x, x ′) ∈ L2(D × D). Without loss of generality
we assume zero-mean random fields. The K–L expansion of the random field α(·, θ)

requires the solution of an integral eigenvalue problem. Consider the self-adjoint

1 Formation and assembly costs for a standard Galerkin method scale O(N 2
e (p + 1)3d )), where Ne

is the number of finite elements, p is the polynomial degree and d is the spatial dimension.
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positive semi-definite linear operator T : L2(D) �→ L2(D),

(T φ) (x) :=
∫
D

�(x, x ′)φ(x ′) dx ′. (2)

The eigenfunctions {φi }i∈N of T are defined by the homogeneous Fredholm integral
eigenvalue problem of the second kind,

T φi = λiφi , φi ∈ L2(D) for i ∈ N. (3)

The eigenfunctions φi are orthonormal in L2(D) and the corresponding eigenvalues
form a non-increasing sequence λ1 ≥ λ2 ≥ · · · ≥ 0. The K–L expansion of the zero-
mean random field α(·, θ) is given as

α(x, θ) =
∞∑

i=1

√
λiφi (x)ξi (θ), ξi (θ) := 1√

λi

∫
D

α(x, θ)φi (x) dx . (4)

Truncating the series in (4) after M terms leads to an approximation of α denoted
by αM . For practical computations in the context of stochastic finite element meth-
ods [3–6], the truncation order M is typically chosen between 20 and 30 terms [5,
11]. Each term in the expansion introduces one stochastic dimension, which is an
example for the curse of dimensionality.

3 Numerical Methods

In this section we briefly review the matrix-free Galerkin method proposed in [1]
and introduce our matrix-free implementation of the isogeometric collocation me-
thod proposed in [2].

In both approaches the generalized algebraic eigenvalue problem is first reformu-
lated as a standard algebraic eigenvalue in terms of an invertible mapping C, which
is a standard linear algebra technique [12]: Find (vh

k , λh
k ) ∈ R

N × R
+ s.t.

{
A′v′

k = λh
kv

′
k

vh
k = Cv′

k

for k = 1, 2, . . . , M. (5)

Matrix-free isogeometric Galerkin method

A variational treatment of (3) reads: Find (φ, λ) ∈ L2(D) × R
+ s.t. ∀ψ ∈ L2(D)

∫
D

(∫
D

�(x, x ′)φ(x ′) dx ′ − λφ(x)

)
ψ(x) dx = 0. (6)



332 M. L. Mika et al.

From (6), the Galerkin method is obtained by replacing φ,ψ ∈ L2(D) by finite
dimensional representations φh, ψh ∈ Sh ⊂ L2(D). Being posed in the variational
setting, Galerkin methods inherit several advantageous properties such as exact L2

orthogonality of the numerical eigenvectors and monotonic convergence of the
numerical eigenvalues [3, 13]. Furthermore, powerful tools exist in the variational
setting to study the stability and convergence of the method.2

With a trial space Sh := span {Ni (x)}i=1,...,N the Galerkin method leads to the
eigenvalue problem defined in (1) with the system matrices

Ai j :=
∫
D

Ni (x)

(∫
D

�(x, x ′)N j (x ′) dx ′
)
dx (7a)

Zi j :=
∫
D

Ni (x)N j (x) dx . (7b)

Alternatively, the eigenvalue problem can be solved in the standard form intro-
duced in (5) where A′ := L−1AL−� and C := L−�. The matrix L is defined by the
lower triangular matrix in the Cholesky decomposition of Z = LL�.

Typically, the space Sh is spanned by piecewise C0-continuous polynomial func-
tions on quadrilateral, hexagonal or simplicial elements [3]. Recently, non-uniform
rational B-splines (NURBS) have been applied in the context of an isogeomet-
ric Galerkin method [14]. These methods commonly evaluate the integrals in (7)
using standard numerical quadrature rules. A Gauss–Legendre numerical quadrature
rule leads, however, to an algorithmic complexity of O(N 2

e · (p + 1)3d) [1], which
becomes excessively expensive with the number of elements Ne, polynomial degree
p and spatial dimension d. Furthermore, as mentioned in the introduction, the matrix
A is dense and requires O(8 · N 2) bytes of storage in double precision arithmetic,
where N is the number of degrees of freedom in the trial space.

To overcome these limitations, the matrix-free Galerkin method proposed in [1]
avoids storing the main system matrix A and achieves computational efficiency by
utilizing a non-standard trial space in combination with a specialized quadrature
technique, called interpolation based quadrature. This approach requires aminimum
number of quadrature points and enables application of global sum factorization
techniques [15]. In the following we sketch the main ideas of the method and refer
to [1] for further details.

Let {Bi (x̂)}i=1,...,N and {B̃ j (x̂)} j=1,...,Ñ denote two sets of tensor product B-splines
of, for simplicity, uniform polynomial degree p. The first set is used in the definition
of the trial space, whereas the second set is used in a projection of the kernel �(x, x ′)
and is a part of the interpolation based quadrature. Let F : D̂ → D be the geometric
mapping from the reference domain to the physical domain. The trial space is defined
as

Sh := span
{

Bi (x̂)/
√
det DF(x̂)

}
i=1,...,N .

(8)

2 In general the stability and convergence analysis are challenging in the context of collocation
methods.
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The advantage of this particular choice of the trial space is that the mass matrix
in (7b) has a Kronecker structure and can be factored as Z = Zd ⊗ · · · ⊗ Z2 ⊗ Z1,
where {Zk}k=1,2,...,d are univariate mass matrices. By leveraging this factorization
the matrix-vector products of Kronecker matrices can be evaluated in nearly linear
time complexity. This also holds for the matrix L in the Cholesky factorization of
Z, which is factored as L = Ld ⊗ · · · ⊗ L2 ⊗ L1 from which the respective inverse
follows as L−1 = L−1

d ⊗ · · · ⊗ L−1
2 ⊗ L−1

1 .
The interpolation based quadrature in combination with the choice of the trial

space in (8) leads to a factorization of the matrix A as A = M�B̃−1JGJB̃−�M. Here
G := �(xi , x j ) ∈ R

Ñ×Ñ is the covariance kernel evaluated at the Greville abscissae,

J ∈ R
Ñ×Ñ is the square root of a diagonal matrix of determinants of the Jacobian of

the mapping at these points and the matrices B̃ = B̃d ⊗ · · · ⊗ B̃2 ⊗ B̃1 ∈ R
Ñ×Ñ and

M = Md ⊗ · · ·M2 ⊗ M1 ∈ R
Ñ×N areKronecker productmatrices. In fact B̃k andMk ,

k = 1, 2, . . . , d, are univariate collocation andmassmatrices, respectively, which are
introduced by the interpolation based quadrature. The computation of the eigenval-
ues and eigenvectors requires evaluation of matrix-vector products v′ �→ A′v′. This
leads to a nine step algorithm presented in [1]. The matrix-vector products with
the Kronecker structured matrices L−�, M, B−� and the diagonal matrix J as well
as all the respective transpose operations are performed in linear or nearly linear
time complexity. The matrix-vector products with the matrix G are performed in
quadratic time complexity. Hence, our matrix-free algorithm scales quadratically
with the dimension of the interpolation space Ñ . We note that in this algorithm,
the matrix rows of G are computed on the fly, which saves memory by not explic-
itly storing the dense matrix G. Memory requirements for the remaining matrices
are negligible, since they are either diagonal or Kronecker product matrices. For
additional details about the matrix-free method, interpolation based quadrature and
Kronecker products, we refer to [1].

Matrix-free isogeometric collocation method

In contrast to a Galerkin method, a collocation method does not treat the integral
equation (3) in a variational manner. Instead, we require the discretized residual

rh(x) :=
∫
D

�(x, x ′)φh(x ′) dx ′ − λhφh(x) (9)

to vanish at distinct points x ∈ D. In [2], the geometry and trial spaces are dis-
cretized in terms of NURBS basis functionsSh := {Ri (x)}i=1,...,N in the sense of the
isoparametric approach of isogeometric analysis.

In this study, we choose to collocate (9) at the Greville abscissae {xi }i=1,...,N . The
method is expressed concisely in matrix form (1) where the corresponding system
matrices are given by
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Ai j :=
∫
D

�(xi , x ′)R j (x ′) dx ′ and Zi j := R j (xi ). (10)

In primal form (5), this means that A′ = Z−1A and C is the identity matrix. The
matrices A and Z are square and, in general, not symmetric. In contrast to variational
methods, where the system matrices are symmetric and positive (semi-)definite by
construction, collocation methods do not ensure a real-valued eigensolution for any
element size h > 0. For an in-depth exposition of the collocation method, we refer
the reader to [13], and to [16, 17] for details on the isogeometric formulation.

The matrix-free version of the collocation method is derived analogously to the
matrix-free Galerkin method described above. Due to the properties of the system
matrix Z, instead of the Cholesky decomposition employed in the Galerkin method,
we use the pivoted LU decomposition, PZQ = LU, to arrive at the standard matrix
form. We observed that without pivoting the matrix-free collocation method suffers
from numerical instabilities at polynomial orders p > 3. We use the pivoted LU
decomposition of Z to apply the inverse of Z to the matrix A and thus obtain A′. The
standard algebraic eigenvalue problem is then given by

A′v′ = λv′ where A′ := QU−1L−1PA (11)

Following [1], we choose a row-wise evaluation of the coefficient vector in the
standard matrix-vector product v′ �→ A′v′. The optimal evaluation order and further
details for each step are given in Algorithm 1.

Algorithm 1Matrix-free evaluation of the matrix-vector product v′ �→ A′v′ emerg-
ing from collocation

Input: v j ∈ R
N , R jk ∈ R

N×(Ne ·Nq ), Pi j , Qi j , Ui j , Li j ∈ R
N×N , Jk ∈ R

Ne ·Nq , Wk ∈ R
Ne ·Nq

Output: v′
i ∈ R

N

1: yk ← R jkv j � Interpolation at quadrature points
2: y′

k ← yk � Jk � Wk � Scaling at quadrature points
3: zl ← Glk y′

k � Kernel evaluation one row at a time
4: v′

i ← Qit U
−1
tr L−1

rs Psl zl � Backsolve using LU of Z

3.1 Algorithmic Complexity

Matrix-free Galerkin method

Under the assumption of Ñ ∝ N , the formation and assembly costs are negligible
compared to the matrix-vector products that scale independently of p as O(Ñ 2) [1].
The total cost of the method scales as O(Niter · Ñ 2), where Niter is the number of
iterations of the eigenvalue solver.
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Matrix-free collocation method

First, we are interested in the algorithmic complexity of an element-wise assembly
procedure for the systemmatrices that arise from the collocation method.We assume
that (1) D̂ has Ne elements; (2) the products on every d-dimensional element �d

in D̂ are integrated with a quadrature rule Q( f ) := ∑Nq

k=1 wk f (xk) with 1 ≤ Nq ≤
(p + 1)d quadrature points; and (3) the number of collocation points Nc is equal to
the number of degrees of freedom N . The leading term in the total cost of formation
and assembly arises from the cost of forming the element matrices A�,

A�
i j =

∫
�d

�(x̂i , x̂ ′)R j (x̂ ′) dx̂ ′ ≈
Nq∑

k=1

wk�(x̂i , x̂ ′
k)B j (x̂ ′

k) = Cik Dk j

withCik = wk�(x̂i , x̂ ′
k) and Dk j = R j (x̂ ′

k), i = 1, . . . , N , j = 1, . . . , (p + 1)d . The
formation cost of C and D is negligible. The matrix-matrix product cost is of
O(Nc Nq(p + 1)d) and the cost for summation over all Ne is ofO(Ne Nc Nq(p + 1)d).
Now, assuming a Gauss–Legendre quadrature rule with Nq := (p + 1)d quadra-
ture points and the proportionality relationship Ne ∝ N , a collocation method with
Nc = N has a leading cost of O(N 2(p + 1)2d).

The algorithmic complexity in the matrix-free formulation is driven by the most
expensive steps in Algorithm 1. In a single iteration of the eigenvalue solver, steps
1 and 3 have a complexity O(N · Ne · Nq). The element-wise multiplication in step
2 scales linearly with the number of quadrature points, O(Ne · Nq). The last step
scales as O(N 2). Evidently, steps 1 and 3 depend on the number of quadrature
points. Since Ne · Nq ≥ N , they determine the overall cost of the method. Assuming
a Gauss-Legendre quadrature rule with Nq := (p + 1)d quadrature points in each
element and Ne ∝ N , the leading cost of a single iteration of the eigenvalue solver
is O(N 2(p + 1)d). Hence, the total cost of the matrix-free isogeometric collocation
method scales as O(Niter · N 2(p + 1)d), where Niter is the number of iterations of
the eigenvalue solver.

Comparison

Compared to the matrix-free Galerkin method with interpolation based quadrature,
the collocation method scales unfavourably with the polynomial degree. Further-
more, due to the lack of Kronecker structure, it is necessary to compute the pivoted
LU decomposition of the full matrix Z. The computational cost of this factoriza-
tion increases with N as well as p, which is due to an increasing bandwidth of the
matrix B.
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4 Numerical Examples

In this section, we compare the accuracy and efficiency of the matrix-free isogeo-
metric Galerkin and collocation methods. In [1], it was shown that the proposed
Galerkin method performed especially well in the case of a smooth covariance ker-
nel. For rough kernels, such as the C0 exponential kernel, the interpolation based
quadrature performed suboptimally. In our study, we benchmark both methods for
two kernels of different smoothness and appropriate refinement strategies of the
spaces involved: (1) the exponential kernel together with h-refinement and (2) the
Gaussian kernel and k-refinement. In both variants, the solution space is equal for
the Galerkin and collocation methods. The interpolation space used in the Galerkin
method is defined on the samemesh as the solution space, but, as discussed inRemark
4.1 in [1], its continuity is one class lower than that of the solution space. All compu-
tations are performed sequentially on a laptop machine with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz as well as 2× 16 GB of DDR4 2666MHz RAM. Our
reference solution is the standard isogeometric Galerkin solution computed on the
finest possible mesh with a runtime of roughly 17h, tabulated in [1].

Example 1 – Exponential covariance kernel

In Example 1, we compare the performancewith respect to h-refinement assuming an
exponential kernel on the half-cylindrical domain shown in Fig. 1. The polynomial
order in each parametric direction is p = 2. We choose a tensor product Gauss–
Legendre quadrature rule with (p + 1)3 points per element of the domain in the
collocation method. In accordance with Remark 4.1 made in [1] the continuity of
the interpolation space of the Galerkin method at the element interfaces is reduced
toC0. Furthermore, at element interfaces where the geometry isC0, the interpolation
space of the Galerkinmethod is set toC−1. Our comparative investigation is based on
five different resolution cases with respect to the characteristic size h of the solution

Fig. 1 Benchmark geometry of a half-cylinder. The correlation length bR = 1
2 R is used throughout

all cases. The provided color-coding is used to differentiate between five different cases and two
different methods
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Table 1 Mesh, solution space and interpolation space details in Example 1 and Example 2

Example 1—Exponential kernel Example 2—Gaussian kernel

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

h 2.857 1.719 1.556 1.423 1.142 2.857 2.857 2.857 2.857 2.857

p 2 2 2 2 2 2 3 4 5 6

N 1050 2108 2800 3772 5625 1050 1628 2340 3198 4214

Ñ 1980 8990 12210 16770 28294 1080 1672 2400 3276 4312

h mesh size in the solution and interpolation mesh
p polynomial order of the solution and interpolation mesh
N number of degrees of freedom (dof) in the solution space
Ñ number of dof in the interpolation space (IBQ-Galerkin only)

Fig. 2 Mean relative eigenvalue error computed with the first 20 eigenvalues versus the eigensolver
time and the error of the first 5 eigenvalues plotted for Cases 1–3 (Example 1, exponential kernel)

and interpolation mesh. Our specific choices of mesh size and number of degrees of
freedom in the interpolation and solution spaces are summarized in Table1.

For Case 1, we visualize the first, second and fourth eigenfunctions computed by
both methods, plotted in Fig. 3 on the half-cylinder domain. Already for the coarsest
resolution, both methods produce results that are practically indistinguishable from
each other when plotted along an arbitrary cut line.

For a quantitative comparison, let us introduce a relative eigenvalue error εi and
a mean-relative error ε with respect to the reference solution as

εi := ε(λref
i , λh

i ) := |λref
i − λh

i |
λref

i

and ε := 1

M

M∑
i=1

εi . (12)

To enable a concise illustration with respect to the five cases defined in Table1,
we define the color coding shown in Fig. 1. Blue indicates results obtained with the
Galerkin method, red indicates results obtained with the collocation method. The
change in shading from light to full color indicates the increasing mesh resolution
from Case 1 to Case 5.
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1st mode 2nd mode

Galerkin Collocation Galerkin Collocation

4th mode

Galerkin Collocation

Fig. 3 First, second and fourth eigenfunctions (Example 1, Case 1).

Figure2 depicts mean relative accuracy versus computational time of the iterative
eigensolver for the first twenty eigenvalues measured against the reference solution
as well as the detailed relative error for the first five eigenvalues. We observe that the
collocation method performs roughly twice as fast at the same level of accuracy.

Example 2 – Gaussian covariance kernel

In Example 2, we compare both methods for a smooth Gaussian covariance kernel.
Since the integrand is smooth,we expect that optimally smooth approximation spaces
work best. Therefore, we fix the polynomial order p and refine the approximation
spaces with C p−1 continuity between elements until a target mesh size of 2.857 is
reached (k-refinement). The resulting five different cases are summarized in Table1.

Comparing Case 1 in Example 1 with Case 1 in Example 2, we find that the
number of degrees of freedom in the interpolation space is smaller. This is due to the
increased continuity at element interfaces of the interpolation space of the Galerkin
method. This trend is also characteristic for k-refinement and is observable in the
remaining Cases 2–5.

We resort again to the color coding of Fig. 1 to concisely differentiate between
the five different resolutions and the two methods.

Figure4 plots the mean relative accuracy of the first twenty eigenvalues versus
the eigensolver timings. It is evident that for the smoothGaussian kernel, theGalerkin
method outperforms the collocation method by more than one order of magnitude
at the same level of accuracy. Furthermore, in line with the complexity analysis
presented in Sect. 3.1, we observe that the performance gap increases with increasing
polynomial order. Following the schemeof Fig. 2,we provide amore detailed account
of the approximation accuracy of the first five eigenvalues in Fig. 4.
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Fig. 4 Mean relative eigenvalue error computed with the first 20 eigenvalues versus the eigensolver
time and the error of the first 5 eigenvalues plotted for Cases 1–3 (Example 2, smooth Gaussian
kernel)

5 Conclusions

In this paper, we compared accuracy versus the computational time of two state-of-
the-art isogeometric discretization methods for the numerical approximation of the
truncatedKarhunen–Loève expansion. The firstmethod is thematrix-free isogeomet-
ric Galerkin method proposed by us in [1]. It achieves its computational efficiency
by combining a non-standard trial space with a specialized quadrature technique
called interpolation based quadrature. This method requires a minimum of quadra-
ture points and relies heavily on global sum factorization. The second method is
our new matrix-free version of the isogeometric collocation method proposed in [2].
This method achieves its computational performance by virtue of a low number of
point evaluations.

On the one hand, our comparative study showed that for a C0-continuous expo-
nential kernel, the matrix-free collocation method was about twice as fast at the same
level of accuracy as the Galerkin method. On the other hand, our comparative study
showed that for a smooth Gaussian kernel, the matrix-free Galerkin method was
roughly one order of magnitude faster than the collocation method at the same level
of accuracy. Furthermore, the computational advantage of the Galerkin method over
the collocation method increases with increasing polynomial degree. These results
are not surprising, since it was already shown in [1] that interpolation based quadra-
ture scales virtually independently of the polynomial degree. In our study, we also
illustrated via complexity analysis that the matrix-free collocation method scales
unfavorably with polynomial order. The suboptimal accuracy of the interpolation
based quadrature for rough kernels is also known and was already discussed in [1].
Besides the aspect of computational performance, we also showed that both methods
are highly memory efficient by virtue of their matrix-free formulation.
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As for future work, the advantageous properties inherited by the Galerkinmethod,
such as symmetric, positive (semi-)definite systemmatrices, monotonic convergence
of the solution and availability of an establishedmathematical framework for stability
and convergence, deserve a more detailed theoretical discussion with regard to the
interpolation based quadrature method. A more detailed accuracy and performance
study as well as generalization of similar techniques to complex geometric models
based on T-splines are desirable as well.
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Abstract We investigate crack forerunning and bridging with numerical models on
three different structures. Bridging is observed in a heterogeneous saturated lattice
model in quasi-static conditions under fluid injection.A single episode of forerunning
in a dry double beam in dynamics confirms that forerunning increases the overall
crack tip advancement speed with respect to a steady-state behaviour and finally we
show on a two-dimensional specimen that in presence of a fluid forerunning increases
the overall advancement speed even more.

1 Introduction

There are several instabilities observed in fracture propagation [1]. Those, related to
our interest, are branching, bridging and forerunning. The first two monotonically
change the geometry while the latter is a repetition of a fully continuous open crack
and a topologically different situation with major and minor crack/s in front merging
in time together. For forerunning to happen it is generally assumed that dynamics
is necessarily involved, because dynamics itself may lead to a non-monotonic field
distribution in space (and time) and thus, even in homogeneous brittle materials, may
promote the mini-crack nucleation ahead of the front. However, forerunning can also
appear in quasi-static situations, as for instance in fatigue, where weakening of the
material in front of the crack may produce a mini-crack that on the next cycle will
link with the major crack. The usual justification in quasi-statics for the existence
of the mini-crack is damage. This is so because, in any quasi-static problems, stress
strain fields rather monotonically decrease whenmoving away from the crack tip.We
now discuss some results from the literature, disregarding the molecular dynamics
approach to fracture where mostly branching was observed.

Hints of forerunning fracture behaviour have been documented in dynamic crack
failure experiments on dried Darley Dale Sandstone specimens under triaxial com-
pression with a range of confining pressures up to 200 MPa [2]. Measurements of
acoustic wave velocities and acoustic statistics have permitted to identify a region
prior to failure involving closure of pre-existing cracks, followed by nucleation and
growth of newmicro cracks predominantly parallel to the principal compression axis,
their interaction and coalescence to produce macroscopic failure. P wave velocities
up to 4300m/s have been measured.

2 Forerunning in Dry Solids

Tvergaard andNeedleman [3] numerically performed a fully transient dynamic crack
growth analysis in a plane strain edge cracked specimen, subject to impulsive loading
at one end, and observe that “sometimes a secondary crack develops ahead of the
main crack and subsequently links upwith it. This leads to a situationwhere the crack
appears to be stationary for a relatively long time and then grows rather abruptly”.
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These authors also observed branching and no specific ad hoc criterion was used in
their analysis. A crack advancement speed up to 1833m/s has been found.

In the papers [4–9], fracture growth is treated as a transition bymeans of analytical
and numerical approaches. Note that analytical solutions usually can only answer the
question onwhether instabilities (not steady-statemovement)mayoccur andwhat are
the conditions that promote such scenarios, and give an idea ofwhat type of instability
may occur. Clearly, complex problems with changing geometrical topology in time
are extremely challenging for any analytical analysis and often numerical approaches
can be used.

In [4–8], related to lattice fracture dynamics with lattices created from springs
and beams, it was shown that for non-oscillating or oscillating loads the speed of the
transition point increases approaching its critical value, associated with the incident
wave group velocity, as the action of the force increases, or the speed of the transition
point coincides with the phase speed of the incident wave up to some limiting ampli-
tude of the sinusoidal loading. In this case, as long as an energy release is required
for the transition, the incident wave group speed must exceed the phase speed since
the energy flux velocity is equal to the group velocity. This is not always the case
because in a discrete waveguide, as shown in [4], there is an infinite set of phase
speeds corresponding to a given frequency, and a sufficiently low phase speed can
always be found. In the steady-state transition, the lattice bonds on the crack path
break one after another at regular time intervals.

However, under a sufficiently large wave amplitude, the transition wave mode is
not steady-state anymore and a new regular movement of the transition point after a
small increase of the amplitude appears. Namely, a two-bond clustering occurs with
two alternating values of the local crack speed. Increasing the amplitude further,
three, four or more cluster regimes may occur. In any of those clusters, the transition
point still moves monotonically but not with the same speed inside the cluster. In
case of the spring lattice, only one pure steady-state regime is possible while the
clusters increase in size with amplitude growth [4, 5]. Finally, after reaching some
critical speed, the monotonic movement of the transition point cannot be any longer
supported and forerunning occurs. This is when one or a few points lying ahead of
the tip on some distance from that point is/are destroyed and, only after this, other
points in the interval between the previous transition point and the newly destroyed
one will be crushed. Moreover, such movement repeats in time.

In case of the beam lattices [6–8], the movement of the transition point becomes
more complex. Now, there are a few steady-state regimes, where between them,
several cluster regimes are possible and there exists no rule that for larger amplitudes
the size of the cluster should be larger, as it was for the springs. Nieves et al. [6]
predicted analytically forerunning fracture modes, defining also the critical load,
and observed them in simulations of the failure of discrete beam structures subjected
to sinusoidal loads. The results were used to verify simplified analytical models of
collapsing civil engineering structures exposed to vibration [7]. An analytical and
numerical analysis of a wider class of failure regimes for similar flexural periodic
systems has been presented in [8] where forerunning modes were also observed.
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Finally, Slepyan et al. [9] investigated a continuous model, namely: the separation
of a beam froman elastic foundation under a sinusoidal incidentwave. In fact, it is also
shown that any loadwould lead to the same result if applied on a proper distance from
the transition point making the specification of the kind of the load less important. If
the transition can occur instantaneously, again two ordered regimes of the transition
wave are found: a steady-state one with the transition wave speed independent of the
incident wave amplitude, and the forerunning. The steady-state regime exists only
in a bounded parametrical domain of the incident wave parameters while outside
this domain the steady-state mode is replaced by a set of local separation segments
periodically emerging at a distance ahead of the main transition point. As above, the
group speed is greater than the phase speed allowing the incident wave to deliver
the energy required for the separation. In the example, it appears that the main crack
continues to grow as does the separation segment, but the left part of this latter is
fixed, so that the main crack catches up with the separation segment. These authors
investigate also the case of supersonic incident wave, where it is found that no steady-
state solution exists in such a case at all.

Interestingly, in both cases (lattice and continuous), while various propagation
regimes occurs and the instantaneous (local) speeds are different, and thus are not a
continuous function of the load parameter/s, the average speed is always a continuous
function with jumps of the average acceleration at a set of discrete points.

Forerunning can also be obtained in quasi-static situations when a disordered
material is assumed. In fact, Araujo et al. [11] investigate fatigue crack growth for
the aim to determine the Paris exponent governing subcritical crack-growth at the
macroscopic scale. Damage accumulation is assumed to follow a power law of the
local stress amplitude. A single thin elliptic crack is initially produced in an infi-
nite two-dimensional sample of a linear elastic material. The sample is subject to
cyclic loading, with an external stress transverse to the major axis of the crack.
It is assumed that the crack grows only along its major axis, hence crack propa-
gation becomes essentially a one-dimensional problem. The relaxation time of the
material is much shorter than the period of the loading cycle, so that crack propaga-
tion can be investigated within a quasi-static approximation, according to which the
system always reaches its equilibrium state between two successive crack-growth
events. When all fatigue thresholds are equal, i.e. in the uniform limit, the monotonic
behaviour of the stress amplitude function ensures the existence of a single crack
along the whole rupture process: the elements break sequentially, starting from the
initial crack tips, and the crack advances symmetrically. When introducing disorder
in the fatigue thresholds it is assumed that the element at position x along the crack
line has a fatigue threshold chosen randomly from a uniform probability distribution
with uncorrelated fatigue thresholds at different elements. In the presence of disor-
der, elements far from the crack tips may reach their fatigue thresholds, giving rise to
secondary cracks as mentioned above. The authors focus on the growth of the initial
crack or main crack which may involve secondary cracks when these coalesce with
the main crack while the process developing.
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Interestingly, in case of heterogenous lattice, it was shown that a bridge crack can
be developed, and it may propagate with a speed faster than the wave speed in the
lattice [4, 10].

None of the above cases consider the presence of a fluid. This will be addressed
in two of the following examples.

3 Forerunning in Solids with Fluid Presence

3.1 2D Lattice Model Under Fluid Injection

We first consider crack bridging in a fully saturated lattice model in quasi-static
conditions. Such a case appeared when investigating avalanching in a 2D central
force lattice model for saturated disordered media at mesoscopic level carried out in
[12]. For the solid phase, the stress thresholds of each element are picked randomly
from a uniform distribution in the interval (0, 1)MPa. The elements break only under
traction.When the stress in a truss of the lattice exceeds the local threshold, the elastic
modulus of the truss is reduced adopting a continuous damage law. At each step, the
thresholds of the damaged elements are updated using a uniform distribution in the
same interval as above. The system is then solved again with unchanged assigned
loads and these steps are repeated for asmany times as needed to reach an equilibrium
state in which no stress threshold is exceeded in any bond. Only then, the load is
increased and the steps necessary to check if any and how many trusses are damaged
at this stage are repeated. The process continues until the final failure of the lattice
is reached when a full crack has developed.

The fluid phase is introduced in the model by coupling the equilibrium equation
for the lattice with the mass balance equations for the solid and fluid phases, follow-
ing Biot’s theory [13] which introduces its own timescale. The presence of the fluid
affects then the mechanics of the lattice. With respect to the dry scenario described
above, there is now a nested time stepping scheme where at any time step two sce-
narios can take place: when at a time station the external load (injection in our case)
is increased, Biot’s coupled problem is solved and (i) equilibrium is reached without
any rearrangement (avalanches); or (ii) the equilibrium is not reached without rear-
rangements andmore sub-steps with rearrangements are needed to reach equilibrium
where Biot’s coupled problem is solved in every substep. Only then the external load
is increased. In such a way, the timescale of the external loading is always larger
than the timescale within the fracturing process and the longer the rearrangements,
the larger the difference between the two timescales.

In this way, the fracture may propagate and the fluid has time to rearrange itself
inside the sample before the lattice is loaded again. For the purpose of investigating
the avalanche behaviour of the specimen i.e. the number of failing elements per step,
being the material inherently heterogeneous, many simulations are run with the same
boundary conditions but randomly varying the stress thresholds. With this model,
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Fig. 1 Snapshots of crack bridging in a 2D lattice model under fluid injection at the centre. Yellow
bars are undamaged, red ones damagedwhich are eliminated once a threshold for damage is reached

we have investigated the cases of assigned biaxial boundary tractions, pressures and
fluid injection [12]. In case of fluid injection at the centre of the model, among the
roughly 70 runs needed for the statistical analysis of about 55000 avalanches we
have encountered at least one case where crack bridging takes place. This case is
shown in Fig. 1 where the yellow bars indicate undamaged bars, while the red ones
have some degree of damage. It can be clearly seen that secondary cracks develop
at the lower and the upper part which coalesce with the main crack from the central
part.

3.2 Forerunning in a Dry Double Beam

A single episode of forerunning on a double beam of finite size and in dynamics is
chosen to confirm that forerunning increases the speed of the crack tip advancement
in dry solids.

This problem has been investigated in [14]. Two beams are pulled apart from each
other by a distributed load acting on their entire length. The load is asymptotically
growing with time (t) with an arctan(t) - like behaviour. The link between the two
beams is provided by a linearly weakening cohesive zone, characterized by a stiff-
ness k and a maximum displacement Vmax upon which, the connection between the
two beams is lost. A linear penalty method with stiffness β is adopted to limit the
overlapping of the two beams in the case of fracture closure. The following set of
parameters led to a single episode of forerunning: L = 10 (beam length), Lo = 0.8
(length of the initial notch), E J = 0.15 (stiffness), ρ A = 500 (mass per length unit),
Vmax = 0.008, k = 18 and β = 12000. The corresponding crack length evolution is
shown by the blue curve in Fig. 2. If we consider a slightly smaller stiffness, such
that E J = 0.14, no forerunning is observed. The fracture advancement in this case
is shown by the purple curve in the same figure. At t = 35s, in both systems, a
weakened patch of the cohesive zone is located ahead of the main crack tip. In the
case of E J = 0.15 (blue curve), this patch nucleates a new traction-free crack that
coalesces with the main one. In the case of E J = 0.14 no nucleation is observed.
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Fig. 2 Crack length versus time with and without forerunning. In the insert Vmax indicates on the
deformed beams the opening of the fracture beyond which cohesive forces are no longer active

3.3 Forerunning in a Dry and a Saturated Porous Medium
Under Mechanical Load and Under Fluid Injection

Forerunning in a two-dimensional domain is investigated under mechanical loading
and fluid injection, using a hybrid Finite Element/Peridynamic formulation [15]. The
Peridynamic approach is used for the solid phase while the flow field is simulated
with a FEMmodel. A staggered procedure is employed for the solution of the hybrid
system. The geometry and constraints of the rectangular structure are shown in
Fig. 3. The mechanical and fluid parameters used in the calculation are, Young’s
modulus: E = 10G Pa, Poisson’s ratio: ν = 0.2, critical energy release rate: Gc =
1J/m2, porosity: nr = 0.002, mass density: ρr = ρ f = 1000kg/m3, Biot constant:
α = 1, bulk modulus and viscosity coefficient of the fluid: Kw = 2.2G Pa andμw =
10−3Pa · s, permeability coefficient of the reservoir domain: kr = 10−12m2.

Fig. 3 Geometry and boundary conditions of the rectangular structure with a central initial crack
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Fig. 4 Forerunning fracture in the front of the crack tip in the dry structure under mechanical
loading

Fig. 5 Forerunning fracture in the front of the crack tip in the saturated structure under mechanical
loading

Fig. 6 Pore pressure waves in the saturated cross section under mechanical loading

In the first case (case 1), a dry porousmaterial undermechanical loading condition
is analysed. As shown in Fig. 3b, a constant pressure σ = 15M Pa is applied on the
surface of the initial crack near the central position to force crack opening. Under
the action of this force, the crack propagates from the initial crack tip. Forerunning
events are observed during the simulation with two of them shown in Fig. 4a and b.

The second case (case 2) deals with a saturated porous material with the same
mechanical loading condition as above. Under the action of applied external force,
the pore pressure in the whole domain changes and the crack propagation occurs
under the combined action of external force and pore pressure. Again forerunning
events occur in this case and two of them are shown in Fig. 5a and b. Note that the
time instants differ from above because of the interaction with the fluid phase. The
distributions of pore pressure at 2.65× 10−4s and 2.85× 10−4s are drawn in Fig. 6a
and b. Wave propagation can be noticed.

The last case (case 3) is carried out with fluid injection at the centre of the initial
crack with a constant volume rate of Q = 1m3/s. Figure7a and b depict the crack
patterns at two different time instants where small cracks can also be seen in front of
the main crack. The distributions of pore pressure at 2.3× 10−4s and 2.55× 10−4s
are plotted in Fig. 8a and b. Compared to the mechanical loading case the wave
structure is much simpler.

The variation of crack length with time in the three cases is shown in Fig. 9 with
tip velocity values at selected points. The solid dots indicate time instants when
forerunning occurs, either before or after the coalescence of the main crack with the
small crack in front. It has been shown in [4, 5] and in the above example of the
double beam that forerunning increases the overall fracturing speed in dry bodies.
By comparing the diagrams for the dry structure under mechanical loading and the
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Fig. 7 Forerunning fracture in the front of the crack tip in the saturated structure under fluid
injection

Fig. 8 Pore pressure waves in the saturated cross section under fluid injection

Fig. 9 Variation of crack length with time; case 1 is a dry structure under mechanical loading,
case 2 a saturated structure under mechanical loading and case 3 a saturated structure with fluid
injection. Velocity values in m/s

saturated structure under the same mechanical loading of Fig. 9 it appears that the
presence of the fluid phase further increases the overall fracture speed. This can also
be seen by comparing the respective positions of the crack tip in Figs. 4 and 5. This
further increase is due to the interaction between waves in the solid and in the fluid
domain.
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4 Conclusions

Examples of a dry double beam, a saturated lattice and a saturated two-dimensional
continuous specimen confirm that:

• numerical models allow for solution of more demanding problems such as satu-
rated bodies, which at the moment are inaccessible to analytical analysis;

• in dry bodies, the forerunning increases the overall fracturing speed and is, in fact,
a mechanism for a crack to move faster when a steady-state propagation is no
longer supported by the body/structure due to a high level of external forces;

• in presence of the forerunning, interaction with the waves in the fluid phase
increases the average speed even further comparing to the movement in the same
dry bodies;

• the forerunning phenomenon deserves further scrutiny because of its importance
in geophysics as far as earthquake events are concerned;

• and last but not least, the forerunning is an undeniable source of stepwise crack
tip advancement of the main crack in continuum models.
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An Optimized Material Removal Process

Jean-François Molinari and Son Pham-Ba
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the interface between contact mechanics and computational
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compassionate, and cares as much about people than science.

Abstract Weconduct boundary element simulations of a contact problemconsisting
of an elastic medium subject to tangential load. Using a particle swarm optimization
algorithm, we find the optimal shape and location of the micro-contacts to maximize
for a given load the stored elastic energy contributing to the removal of a spherical
particle contained in between the micro-contacts. We propose an ice scream scoop
as an application of this optimization process.

1 Introduction

Wear, the process of material removal when two solids are in sliding contact, comes
in various forms, adhesive and abrasive wear being the most prominent [1]. The
formation of debris particles is often thought as a probabilistic event. It is known
that natural or man made surfaces are rough over a range of length scales [2–4].
It implies that the contact between nominally flat surfaces is in reality a contact
between two rough surfaces when viewed microscopically, such that the real contact
area is much smaller than the apparent contact area [5–8]. Protruding asperities from
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both rough surfaces make junctions and result in what are called micro-contacts. In
the probabilistic view of wear, only a fraction of those micro-contacts form debris
particles.

Recent advances have permitted a leap forward on establishing a deterministic
criterion for wear particle formation, at least in the context of adhesive wear. This
new understanding emerged thanks to recent numerical studies performed at the
small near-atomic scale [9–11]. The formation of wear particles at an unlubricated
tribological interface due to adhesive wear was first theorized to be driven by a
competition between deformation energy and fracture energy in 1958 by Rabinovicz
[12]. This Griffith (fracture mechanics) approach to wear particle formation was
recently extended to account for plastic flow, and validated with molecular dynamics
(MD) simulations [9]. The theory predicts the existence of a critical length scale d∗,
dictating a transition between a ductile and a brittle behavior for a given material at
a contact junction. Consequently, d∗ also corresponds to the minimal wear particle
size which can be formed under adhesive wear when two asperities located on two
opposed sliding surfaces collide into each other. d∗ was found to bemainly dependent
on the material properties, with second order effects related to the geometry of the
contacting asperities. While these works focused on adhesive wear, abrasive wear
mechanisms can also be understood through the lens of fracture mechanics [13].

Later, these numerical simulations were extended to account for interactions
between nearby micro-contacts, each micro-contact being susceptible to result in
the formation of a wear particle under the application of shear load [14] (see Fig. 1).
Micro-contact junctions that are far from each other result in the formation of sepa-
rated wear particles (Fig. 1a). However, the simulations revealed that micro-contacts

Fig. 1 2D MD simulations of asperity-level wear mechanisms. The insets show the initial setups
and positions of contact junctions. Atoms in red color end up in the formed fragments seen in the
main figures when the system is sheared. This figure is reproduced from Aghababaei et al. [14].
a Contact junctions are initially far apart and each form an individual wear particle. b Contact
junctions are close and, through elastic interactions, result in the formation of a single, much larger,
wear particle
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that are close to each other, i.e. separated by a distance of the order (or less) than the
junction size, result in the formation of a combined larger particle, due to crack shield-
ing mechanisms (Fig. 1b). This simple observation provides a mechanistic argument
for the transition from mild to severe wear observed at high loads, e.g. when the
contact surface is populated by larger and denser micro-contacts thereby promoting
elastic interactions between those. More recent theoretical considerations, supported
by discrete MD simulations and simulations conducted in a continuum setting using
the boundary element method, confirmed and extended these findings to multiple
interacting junctions in a 2D setting [15]. Also noteworthy is the confirmation of
the importance of crack shielding mechanisms for nearby contact junctions thanks
to 2D finite-element simulations in which a phase-field formulation of fracture per-
mitted a robust mesh-independent resolution of crack paths [16]. The extent of such
interactions remains to be thoroughly studied in 3D.

With the general understanding that elastic interactions between contact patches
can increase the possibility of forming wear particles of a larger volume, this paper
explores the uncharted territory of elastic interactions in a 3D setting. We aim to
exploit those interactions by searching for an adhesive contact shape that maximises
the volume of a detached chunk of material. This shape would comprise of multiple
adhesive regions, or in general, regions able to transmit a tangential load to the
material to be carved. These tangential loads can be transmitted by a hard rigid tool
indenting a soft elastic surface, thereby entering the realm of abrasive wear. Section2
describes the wear criterion, which compares the adhesive energy required to create
new surfaces to the stored elastic energy, evaluated using the boundary element
method. Section3 details the particle swarm optimization algorithm to probe contact
patches shapes. Finally results are shown in Sect. 4. We propose as an application a
novel ice cream scoop design.

2 Micro-Mechanics of Wear

2.1 Wear Criteria

We consider two surfaces that are sliding on each other, with the adhesive junctions
formed between them being loaded tangentially.1 The two bodies resist the sliding
force, deforming, and accumulating elastic energy Eel. Considering one of the sliding
bodies as a semi-infinite body, the elastic energy stored inside this body is

Eel = 1

2

∫
�

u · p d�, (1)

1 One can also consider a hard abrasive tool gripping an elastic body.
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where � is the nominally flat surface upon which load is applied, p is the traction
field applied on this surface and u is the displacement field caused by the traction
field.

At the scale of the contact junctions, wear is reduced to the formation of debris
particles under the junctions. The detachment of a wear particle from a body requires
the creation of new surfaces, thus requiring surface energy, or adhesive energy Ead,
which is proportional to the total surface area created times a surface energy γ .

When a wear particle is detached, the tangential load it was carrying can no
longer be transmitted between the two sliding surfaces, resulting in a drop �Eel

in the amount of stored elastic energy. Similarly to Griffith’s criterion for crack
propagation, a criterion can be established for the possibility to fully detach a wear
particle of a given shape: the drop in elastic energy obtained when detaching the
particle must be equal or greater than the amount of adhesive energy required:

�Eel � Ead. (2)

The other necessary condition for the detachment of a wear particle is to have a
location where crack nucleation can occur. We assume that a crack can be initiated
at a point if

σI � σm, (3)

where σI is the first principal stress, or the maximum tensile stress if positive, and
σm is the tensile strength of the material.

Consequently, we are left with two criteria for wear particle formation: a crack
initiation criterion (3), and an energetic feasibility criterion (2).

2.2 Elastic Energy Computation

Let us consider a semi-infinite body � whose free surface � is in the (x, y) plane at
z = 0. Some contact junctions are distributed on � and are described by a ‘contact’
field c(x, y) equal to 1 where a junction is present and 0 otherwise. When a sliding
force is applied on the body in the x direction, we assume that the adhesive junctions
will carry a uniform tangential stress q also in the x direction. No normal load is
applied. The x component of the surface traction field p on � is therefore

px (x, y) = c(x, y)q, (4)

with the other components in the y and z direction equal to 0. The setup is shown in
Fig. 2.

The surface displacements can be obtained from the surface tractions. A unit point
load applied at the origin of� in the x direction results in a displacement field whose
x component is [17]
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Fig. 2 Sheared adhesive
junctions on a semi-infinite
body. The function c(x, y)

describes the geometry of the
junctions on the surface �

uker
x→x = 1

4πG

[
2(1 − ν)

1

r
+ 2ν

x2

r3

]
, (5)

where G is the shear modulus of the material, ν the Poisson’s ratio, and r is the
distance from the origin: r2 = x2 + y2 + z2. There are also non-zero components of
the displacement field in the y and z direction, but they are not relevant in this case,
as shown below.

The surface displacements in the x direction due to the full traction field (4) is

ux (x, y) =
∫∫

uker
x→x (x − ξ, y − η)px (ξ, η) dξ dη (6)

= [uker
x→x ∗ px ](x, y), (7)

which is a convolution (denoted by the ∗ symbol). The expression for elastic energy
(1) becomes

Eel = 1

2

∫
�

ux px d�, (8)

where ux and px are obtained from (7) and (4). Since py = 0 and pz = 0, the com-
ponents of displacement in those directions do not intervene in (8).

When dealing with this setup computationally, � can be discretized into a finite
grid, and the integral of (8) can be turned into a finite sum. Care must be taken
when considering a system of finite size, since the displacement kernel (5) decreases
when moving away from the origin but does not vanish before reaching infinity.
Therefore, the contact region c must not have non-zero values near the boundaries
of the discretized finite � to lower the impact of the finite size domain on the elastic
energy computation. The discretization of the surface and the use of a kernel (5)
to compute the displacements from the surface tractions are part of the boundary
element method (BEM) [18].

The computation of the elastic energy allows to check if the energetic feasibility
criterion is satisfied, when the adhesive energy is already known (it is easily calcu-
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lated from the estimated shape of the wear particle to be potentially formed). One
particularity of choosing a traction distribution such as (4) is that discontinuities in
the function c between 0 and 1 values cause stress singularities (regions of infinite
stress). In reality, such stress singularities would be regularized, because materials
get damaged or flow plastically above a certain stress. Nevertheless, those regions
are likely to satisfy the crack initiation criterion, so we will assume that this criterion
is always satisfied at the boundaries of the junctions defined by the function c.

For contact junctions that are far apart, individual wear particles can form beneath
them, provided the energetic feasibility criterion is satisfied. When junctions are
brought closer together, the elastic energy stored in the system increases due to
elastic interactions [15, 16]. This elastic energy increase can result in the formation
of larger wear particles, encompassing multiple nearby junctions, as shown in Fig. 1
in the 2D case.

3 Material Removal

3.1 Problem Statement

We now wish to find the most efficient way to remove a piece of material from a
body with a flat surface. We assume that the piece of removed material must have a
roughly hemispherical shape of known diameter, so that Ead is also known and fixed.
To minimize the effort put into the detachment of material, one must maximize Eel

by changing the shape of the contact junctions c while trying to decrease the imposed
tangential load, where the total tangential load is

Fx =
∫

�

cq d�, (9)

which is deduced from (4).
The optimization problem is the following: find the function c, which maximizes

Eel for a given Fx (q is modified according to c to keep Fx constant).
To parameterize the function c, which is a binary representation of the shape of

the sheared junctions, we use nm metaballs [19], which are n-dimensional2 circular
objects usually used in computer graphics because of their organic appearance, as
they smoothly merge with nearby metaballs. They allow us to create a complex
shape c using simple circular objects with smooth connections between them. Each
metaball has a parameterized center (xi , yi ), with 1 � i � nm, and a fixed width w.
A metaball adds a w2/(4r2i ) term to c, where ri is the distance to its center: r2i =
(x − xi )

2 + (y − yi )
2. Thewhole function c is the sumof all metaballs contributions,

binarized to only keep regions where it is greater than 1. Mathematically:

2 In the present case, they are two-dimensional.
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Fig. 3 Creation of metaballs
from functions added
together and clamped. Each
metaball adds a contribution
to the plotted surface. The
contact function c is equal to
1 whenever the summed
surface is above z = 1. On
the left, an isolated metaball
makes a circular shape in c.
On the right, nearby
metaballs are smoothly
merged to construct the
contact function c

c(x, y) =

⎧⎪⎨
⎪⎩
1 if

n∑
i=1

w2

4((x − xi )2 + (y − yi )2)
� 1,

0 otherwise.

(10)

This expression can be verified to work properly when a single metaball is present: it
results in c being non-zero in the region where r1 � w/2, which is a circular region
of width w centered on (x1, y1) and is the intended behavior. Figure3 illustrates how
metaballs merge to create the function c.

Geometrical constrains have to be put on the function c. It must have some edges
coincident to the edge of the particle to be detached in order to satisfy the crack
initiation criterion. Also, its overall size can be constrained to fit design limitations
or to reduce the size of the search space, which has to be done carefully in order
to maintain the performance of optimal solutions. To fit the geometrical constraints
imposed on c, the metaballs are placed such that their centers are located in a ring
of inner diameter din and outer diameter dout. The inner diameter corresponds to
the size of the piece of material to detach, and the outer diameter limits the size of
the search space of the contact zone, without loss of generality. Indeed, choosing a
too large outer diameter would not yield a better optimized design because contact
junctions that are far from each other do not interact elastically with each other.
Another advantage of using a search space delimited by radii is that it brings natural
symmetries. An ns fold symmetry can be imposed on the positions of the metaballs,
and each sector can itself be symmetric. An orientation parameter ϕ can be added to
control the angular position of the axes of symmetry with respect to the direction of
shear. Those sector parameters are represented in Fig. 4.
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Fig. 4 Representation of the
sectors of the contact
function c. Each dark area is
made of several metaballs. In
this case, each of the three
sectors has an imposed
symmetry, which is not a
mandatory constraint. The
inner diameter din
corresponds to the overall
size of the piece of material
to detach

3.2 Optimization

The elastic energy has to be maximized by finding the optimal metaball parameters:
the position of their centers, xi and yi for 1 � i � nm, and the global orientation ϕ.
If all symmetry conditions are used (forcing ns identical and symmetric sectors), the
total number of parameters is3

nm/ns + 1. (11)

The number of metaballs nm has to be taken large enough to have a fine control
over the shape of c. To deal with the large number of parameters and the potential
non-convexity of the problem, the choice of an evolutionary algorithmwas opted for.
Here, the particle swarm optimization (PSO) [20, 21] is used.

In PSO, a swarm (a population) of particles is considered. Each particle is a
candidate solution (a shape of c) with a position and a velocity. The position4 is the
current set of parameters of the particle, and the velocity is the rate of change of each
parameter between two iterations of the PSO. The position is bounded by the limits
imposed on each parameter.

The swarm is initialized with np particles having random initial positions within
the bounds. Each solution is randomized such that the centers of its metaballs are
uniformly distributed in the (x, y) space (inside the ring of diametersdin anddout). The
positions were parameterized in polar coordinates (r, θ) to facilitate the enforcement
of bounds. The initial velocities are also randomized, but such that an iteration of the
PSO does not create an off-bound position (more details about the update process
below).

3 There are nm parameterized metaballs with two coordinates, so 2nm parameters. There are ns
identical sectors, so this number is divided by ns. Each sector is symmetric so this number is again
divided by 2. The overall orientation adds 1.
4 Not to be confused with the positions of the metaballs in c.
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At each iteration t , the particles compute their objective function (the value of
stored elastic energy) at their current position (in the space of all parameters) pt

j =
[ϕ, r1, θ1, r2, θ2, . . .] and update theirmemory of best visited position pb

j if necessary.
The particles have inertia, so their velocity vt

j is conserved up to a factor kv � 1. The
particles are also attracted toward their own best visited position pb

j and toward
the overall best position visited by the swarm pB, which have an influence on the
particles velocity thanks to the hyperparameters kb � 1 and kB � 1. To summarize,
the velocity of each particle is updated as follow:

vt
j = kvv

t−1
j + kb(pb

j − pt
j ) + kB(pB − pt

j ) (12)

and their position is updated as

pt
j = pt−1

j + vt
j �t (13)

with �t = 1. The positions pt
j are kept inside their bounds after each update by

clamping their metaballs polar coordinates ri inside a ring and θi inside a sector (see
Fig. 4). kv , kb and kB are hyperparameters of the optimization method and have to be
fixed by the user of the method.

4 Results

4.1 Optimal Shape

Since the problem is a matter of maximizing the elastic energy while keeping other
dimensions (such as tangential load and maximum overall size) constant, we can
work with adimensionalized unitless quantities.

We use a discretized space of size 1 × 1 and with a resolution of 256 × 256 for
the computation of Eel from c. The Young’s modulus of the material is set to E = 1
and its Poisson’s ratio to ν = 0.3. The tangential load is set to Fx = 0.3 (its choice
has no incidence on the results).

The whole function c is made of a total of nm = 60 metaballs of width w = 0.019
and has ns = 3 identical and symmetrical sectors. With those symmetry conditions
on the metaballs, there are 10 independent metaballs per half-sector and therefore
21 parameters per solution according to (11). The centers of the metaballs are con-
strained in a ring of diameters din = 0.3 and dout = 0.5. Figure5b to f shows examples
of initial positions (solutions).

For the PSO, np = 200 particles are used, with the hyperparameters kv = 0.97,
kb = 0.2 and kB = 0.2. The optimization is run for 50 iterations (see Fig.6) using
a custom code, resulting in the solution shown in Fig. 5g. The optimization routine
was performed five times with different randomized initial particles to ensure that it
was not stuck in local optima.
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Fig. 5 Various shapes. a Trivial reference shape. b–f Examples of random initial solutions with
nm = 60 metaballs of width w = 0.019 and ns = 3 identical and symmetrical sectors. g Optimized
shape

Fig. 6 Evaluations of the objective function for each particle during the optimization. The vertical
axis shows the objective function relative to the evaluation of the shape Fig. 5a. The thickest line
is the overall best at a given iteration, going from the random shape Fig. 5b to the optimized shape
Fig. 5g

In the following text, we express the objective function of a particle as its elastic
energy Eel divided by the elastic energy Eel,0 of a trivial shape fulfilling the crack
initiation criterion, i.e. a thin ring of diameter din (see Fig. 5a). In the considered
discretized space, we have Eel,0 = 12700.

On average, the objective function Eel/Eel,0 of random initial solutions evaluates
to 0.71. The optimized shape (Fig. 5g) has an objective function of 1.21, meaning it is
20% more efficient energetically than the thin ring. Therefore, we have an increased
performance compared to trivial shapes. The overall orientation ϕ has a negligible
influence on the results.

In order to check for convergence, a finer description of c is used, with nm = 120
and w = 0.013 to keep the overall surface area of c constant. The optimization
is run for 100 steps, and results in a best objective function at 1.24 and visually
indistinguishable shapes compared to nm = 60.
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Fig. 7 a Design of optimized ice scoop. b The cross section of the claws matches the optimized
sheared shape

4.2 Example of Application: Ice Cream Scoop

One practical way to use the newly found optimal contact shape is to design a tool
for ice cream scooping. The size of the ball to create is fixed, and the amount of
force needed to detach it can be minimized by utilizing the optimized shape. When
the tool is used, it must pull on the surface of the ice cream while having the same
contact shape as the one shown in Fig. 5g, instead of the usual one shown in Fig. 5a.
To this end, claws can be added on a basic hemispherical scoop design, that will
penetrate into the surface of the ice cream and create the desired pulling pattern.
Figure7a shows a simple design implementing this idea of penetrating claws, and
Fig. 7b shows a cross-sectional view of the pattern formed by the penetration of the
claws into the surface of the ice cream, matching the optimized shape found above.
This design and the optimization method are patented [22].

5 Conclusion

We have explored the design space of contact junctions location and shape to maxi-
mize the energetic efficiency of material removal, thanks to elastic interactions. This
study extends to a three-dimensional setting previous efforts that were limited to two
dimensions, thereby providing a much richer design space. The numerical approach
combines the efficient boundary element method to solve the contact problem to a
particle swarm optimization algorithm to search the optimal location and shape of
contact junctions. We have found a three claws design that increases the energetic
efficiency of 20%. We propose an ice scream scoop application for which we have
filed a patent.
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1 Introduction

Computational techniques based on (bio-chemo-) physical principles for medical
intervention are under investigation since a couple of decades. Specific disciplines
have been established documented by a series of scientific journals, international
conferences and related monographs. Models and computational methods have been
grown to maturity, thus nowadays very powerful techniques are available for the
prediction of patient individual behavior. With a particular focus on bio-mechanics
of bones, first simplistic computational modeling approaches came up in the late
20th century, e.g. [1–3]. With increasing computer power and more robust numerical
methods the modeling strategy has become mature during the last 20years. Nowa-
days, robust computational techniques and modeling strategies based on image data
are available, which enable for patient individual predictions, e.g. [4]. Main focus of
these computations has been on the implants long term stability, which is assessed in
terms of bone-remodeling. Inspired frommedical questions, these models have been
refined recently for the investigation of primary implant stability by simulating the
osseointegration of non-cemented stem-prosthesis, [5]. In parallel to these mainly
phenomenological modeling, by which simply the bone remodeling is described
as a function on the mechanical stress- or strain distribution, a research direction
on the enrichment of these models with more bio-chemo-physical knowledge has
been developed. Here, the cellular behavior and the inter-cellular communication is
considered [6, 7]. Additional computational complexity on incorporating these pro-
cesses has been discussed in literature, e.g. [8]. Recently, it has been realized, that
the computational complexity of these state of the art models diverges to the need
in clinical practice, [9, 10]. The computational complexity of existing modeling and
numerical methods, even for the simple phenomenological approaches, is much too
high for patient individual planning on the best treatment options as well as for fol-
low up monitoring. A promising pathway on that direction is paved by a new branch
in computational engineering, i.e. Model Order Reduction (MOR) techniques, also
phrased as surrogate modeling, e.g. [9].

A recent state of the art review on MOR techniques is provided in [11]. In prin-
ciple, one distinguishes between intrusive and non-intrusive methods. Because of
the complexity of the simulation chain, refer Sect. 2, here only non-intrusive meth-
ods will be considered which call the solver as a black-box system. A remaining
challenge is on efficient sampling techniques, especially in higher dimensional para-
metric spaces. In this workwe decided for an adaptive sparse grid collocationmethod
[12], refer to Sect. 3. The surrogatemodeling approach is applied to a six-dimensional
parametrization of hip-joint prosthesis implantation into the femoral bone, seeSect. 4.
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2 The High-Fidelity Modeling Approach

The HF-modeling approach consists of several sequential steps as shown in Fig. 1.
In a first step (1) the geometrical model of the bone has to be build. For patient
individual modeling one will go for image data obtained from high-resolution CT
or sophisticated X-ray technologies. The shape and the internal bone-mass density
(bmd) distribution will be extracted from these data. The geometry is modeled by
CAD surface reconstruction and after meshing, the distribution of bmd is mapped
to the elements. A next step (3) is on the computation of the boundary conditions
denoted as statically equivalent joint and muscle forces from an inverse optimization
procedure. This is performed for the untreated bone first, which is indicated by
the upper loop in Fig. 1. A next step (2) is on modeling the implant treated bone
via Boolean operations of the CAD models. The treated bone and the prosthesis
are meshed again and the obtained bmd-distribution is remapped to the new bone
elements. The statically equivalent loads obtained before are applied to the treated
bone model. The interface between the prosthesis and the bone is discretized with
bio-active interface elements in order to mimic the osseo-integration process. Next
the osseointegration of the non-cemented prosthesis is simulated (4) and eventually
the long-term bone-remodeling (5) is computed. Finally the computational results
are post-processed for visualization of the results with regard to the quantities of
medical interest (QoI’s), e.g. X-ray emulations.

Fig. 1 The work-flow of the
parametric high-fidelity
model. (1) and (3) describe
the untreated bone, while (2),
(4) and (5) tackle the
implanted bone
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Fig. 2 Parametrization of
the relative positioning of the
prosthesis in the femur. In
total the translation in three
orthogonal directions relative
to the bones mean axis and
three rotations around these
axis have been considered in
this work, spanning a
six-dimensional parameter
space

This work-flow has been described in detail in [4]. However, at that time many of
these steps have been performed manually. For an efficient computation of the sur-
rogate model a parametrized approach that runs fully automatic without any further
user input is needed, and the models should run robust for all points in the multi-
dimensional parametric space, which will be described in the next subsections.

2.1 Model Parametrization

In this first approach we restrict ourselves to a moderate parameter space, i.e. to the
relative placement of the prosthesis in the bone. Six parameters have been chosen
to define the position of the implant relative to the bones axis, i.e. three transla-
tions and three rotations as indicated in Fig. 2. Thus, a six-dimensional parametric
space is considered, described by θi ∈ [θi,min, θi,max], where the bounds have to be
geometrically admissible.

2.2 Implicit Implementation of Osseointegration and
Bone-Remodeling

In order to improve the robustness of the simulations the bone remodeling scheme
has been rewritten in the sense of a fully implicit constitutivemodel, i.e. the change of
bmd is treated as local internal variable at the integration points of the finite elements,
and the related ordinary differential equations are integrated via implicit Euler rules.

Furthermore, to improve the robustness of the approach and to avoid explicit
smoothing steps to prevent intensively discussed checker-board pattern, the stimulus-
equation for the evolution of local bmd has been modified after a suggestion of [13].
Starting from the constitutive relationship between Young’s-modulus E and bmd �,
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E = E0

(
�

�0

)n

, (1)

where E0 and �0 are reference values, e.g. for cortical bone. The exponent n has
been discussed controversially in literature, however, within the thermodynamically
consistent constitutive framework it should be n = 2 [14], and it has been shown
based on experimental investigations that with this value of the exponent the best fit
is obtained [10, 15].

Following [13], the stimulus function is slightly changed by a weighting factor

�̇ = k

((
�

�0

)−m

� − �ref

)
, (2)

where k is a so far undetermined time constant, � the mass-specific strain energy
function of the linear elastic and isothermal bone tissue, depending on the local bone
mass density after Eq. (1) and �ref describes a physiological target value.

It can be shown, that a value for m > n stabilizes the scheme with regard to
checker-boarding. However, without any additional smoothing step, i.e. using a
C0−smooth stimulus ψ , checker-boarding is still observable for linear tetrahedral
finite elements. Thus we decided for tetrahedral elements with quadratic shape func-
tions. This requires some additional effort for the post-processing, i.e. X-ray imaging
from the computed 3D results.

3 The Surrogate-Model

For the construction of the surrogate model an Adaptive Sparse-Grid Collocation
Method (ASGCM) has been chosen. Instead of using global Lagrangian polynomials
we decided for piecewise linear interpolation of the parametric space following [12].

The overall scheme for the construction of the surrogate is depicted in Fig. 3. In
the first step (1) the initial experimental design, denote by χinit is defined. For each
χi ∈ χinit a deterministic computation for the QoI is performed (2). By that, the initial
surrogate model is constructed by 2 to 3 hierarchical levels of the ASGCM, step (3).
By evaluation the hierarchical surpluses indicator cm

l > εref a local refinement is
evaluated and the experimental design is enriched in steps (5) and (6).

4 Numerical Example

As an example the surrogate model has been computed for the bone-remodeling of
a treated femur bone in the six-dimensional parametric space,

θM = [θ1, θ2, θ3, θ4, θ5, θ6] , (3)
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Fig. 3 Scheme of the
surrogate model. Based on an
initial design of experiments
a first sparse-grid surrogate
is constructed, (1) and (2). In
further steps a quality
criterion is evaluted and the
surrogate model is improved
by local refinement of the
adaptive sparse grid, steps
(3) to (6)

where

θ1, θ2, θ3 ∈ [−0.25mm, 0.25mm] (4)

and

θ4, θ5, θ6 ∈ [−1◦, 1◦] . (5)

The 64 extremal points of the hypercube have been spawn on level 7 of the six-
dimensional grid, summing up to 15.121 collocation points across 7 hierarchical
level of the sparse grid. The computation time took about 50h on the cluster system
of the Leibniz University IT Services (LUIS), where on average 600 worker had
been employed. For a better approximation quality of the surrogate model, one or
twomore refinement levelsmight be beneficial, resulting to a sparse gridwith 127.105
collocation point. For that, the computing time has been estimated to about 3weeks.
For more details on the applicability of sparse grids in higher dimensions, the reader
is referred to [16].

Exemplary, for two extreme parameter sets the results are depicted in Fig. 4.
Shown are X-ray emulations of the computed bmd in the long-term bio-mechanical
equilibrium state after the prosthesis treatment, where due to the small changes in
the parameters itself no mentionable differences are seen.
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Fig. 4 Computed bone mass density at the long term bio-mechanical equilibrium state at two
extreme points of the parametric space

5 Conclusion

Doubtless, model order reduction techniques pave the way for the next generation of
computational mechanics. In this project we tried to build a reduced order modeling
strategy for surgical treatment of hip-joint diseases via total hip-joint replacement.
Final goal is to provide assistance tools based on well established simulation meth-
ods in computational bio-mechanics for physicians. Due to the complexity of the
modeling chain we decided for a surrogate modeling technique based on sparse grid
collocation methods. We experienced that (a) traditional software concepts, despite
have been proven to work well for patient individual deterministic computations
have to be redefined and (b) further improvements in sophisticated techniques for
higher dimensional parametric spaces are needed. Nonetheless, a first step in that
direction has been done and carefully investigated. Open topics, e.g. with regard to
parametrized geometric modeling and more efficient strategies for surrogate model-
ing in higher dimensions have been addressed.
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Abstract This work summarizes the topology optimization technique (VARTOP)
developed by the authors in previous papers. The proposed topology optimization
techniques, using a non-smoothed characteristic function as design variable, is for-
mulated on the basis of an incremental pseudo-time-advancing scheme ruled by the
volume constraint, in addition of a consistent derivation of a cost function sensitivity.
The relaxed topological derivative (RTD), considering the ersatz material approach,
can be easily defined for any type of problem. In this setting, the optimization problem
is analytically solved in a variational framework, leading to nonlinear, closed-form
algebraic solutions for the design variable, which are then solved, at every time-step,
via a fixed-point method termed pseudo-energy cutting algorithm. At each of these
iterations, the volume constraint is exactly fulfilled via a bisection method, in the
so-called cutting and bisection method.
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1 Introduction

In the last three decades, topology optimization has become an active research field to
seek new, optimal unintuitive designs in a wide range of designs problems, which are
used more frequently by professionals for industrial applications. During this time
a number of topology optimization approaches have been proposed by researchers,
being two of the most important the SIMP and Level-set methods, among others.

Unlike these well-established methods, the Variational Topology Optimization
approach tackles the original topology optimization problem via the consideration
of the characteristic function χ , relaxed with the ersatz material approach, as the
design variable and the implicit representation of the domain through a 0-level-set
function, thus obtaining smooth white-and-black designs. In addition to this feature,
the sensitivity of the cost function is obtainedusing the relaxed topological derivative,
an efficient and simple approximation to the exact topological derivative. The RTD
can be applied independently of the optimization problem.

The last two main characteristics of this new technique are the application of a
Laplacian regularization to the sensitivity so that theminimummaterial filament size
can be determined and the definition of a fixed-point closed form algebraic system
to update the topology and fulfill a volume constraint, in contrast to other updating
schemes based onHamilton-Jacobi or Reaction-Diffusion equations. In the proposed
scheme, the volume constraint, used as a pseudo-time, is iteratively increased thus
obtaining intermediate converged optimal topologies (local minimums) in an incre-
mental time-advancing scheme.

2 Problem Formulation

The following section defines the mathematical formulation of the VARTOP
approach, focusing on the topology optimization problem and the derivation of the
cost function sensitivity using the so-called relaxed topological derivative (RTD).

2.1 VARTOP: Variational Topology Optimization

Let us consider a fixed design domain, � ⊂ R
n , with n = {2, 3}, composed by two

smooth subdomains �+ and �−, denoted as solid and void material domains. These
two domains are defined via the nonsmooth characteristic function, χ(x) : � →
{0, 1}, as {

�+ := {x ∈ � / χ(x) = 1}
�− := {x ∈ � / χ(x) = 0} . (1)



VARTOP: A New Variational Approach to Structural and Thermal … 377

The characteristic function, χ(x), can also be defined in terms of the smooth
discrimination function (i.e., ψ(x) : � → R, ψ ∈ H 1(�)) as χψ(x) = H(ψ(x)),
where H(·) stands for the Heaviside function evaluated at (·).1 Instead of using
the classical Heaviside function {1, 0}, the image of this function is now relaxed to
χψ(x) : � → {β, 1} employing the ersatz material approach, where the void mate-
rial is replaced with a soft material, which presents a relaxation factor β in the
material property relevant to the addressed problem, e.g., in Young modulus E or
thermal conductivity κ .

The topology optimization seeks to minimize a cost functionJ(pχ , χ) subjected
to the volume constraint C(χ) and governed by the corresponding state equation.
Based on this definition, the mathematical formulation of the problem is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈U ad

J(pχ , χ) ≡
∫

�

j(pχ , χ, x) d� (a)

subject to:

C(χ, t) ≡
∫

�

c(x, χ) d� = t − |�−|(χ)

|�| = 0 (b)

governed by:

State equation (c)

, (2)

whereUad stands for the set of admissible solutions for χ , and pχ and t are the state
variable field (i.e., uχ or θχ depending on the state equation) and the pseudo-time
parameter (used in the pseudo-time-advancing strategy), respectively.

According to Oliver et al. [1], the Relaxed Topological Derivative (RTD) used to
computed the sensitivity of a given functional is defined as

δJ(χ)

δχ
(x̂) =

[
∂ j(pχ , χ, x)

∂χ

]
x=x̂


χ(x̂), with 
χ(x̂) =
{ −(1 − β) < 0 for x̂ ∈ �+

(1 − β) > 0 for x̂ ∈ �− , (3)

which will depend on each specific cost function J(pχ , χ) and state equation. For
the volume constraint (2-b), the RTD of the functional becomes

δC(χ, t)

δχ
(x̂) =

[
∂c(x, χ)

∂χ

]
x=x̂


χ(x̂) = 1

|�| sgn(
χ(x̂)) , (4)

where sgn(·) denotes the sign function of (·).
Considering the Lagrangian function defined as L(pχ , χ) = J(pχ , χ) +

λC(χ, t), the optimality condition of the original topology optimization problem
reads

1 The subscript ψ in χψ remarks the fact that the characteristic function is defined in terms of ψ .
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Fig. 1 Implicit topology representation: a pseudo-energy distribution ξ and b–e discrimination
function,ψ , and the corresponding characteristic function,χ , for a set of Lagrangemultiplier values:
λ = {0.15, 0.25, 0.5, 0.7}, thus satisfying |�−(λ(b))| < |�−(λ(c))| < |�−(λ(d))| < |�−(λ(e))|

δL(χ, λ)

δχ
(x̂) =

(
∂ j (x̂, χ)

∂χ

χ(x̂) + λ sgn(
χ(x̂))

)
= (5)

= ψ(x̂, χ) = (ξ(x̂, χ) − λ) ∀x̂ ∈ �, (6)

where ψ(x̂, χ) corresponds to the discrimination function and ξ(x̂, χ) is termed the
pseudo-energy and must be computed for each optimization problem. In contrast
to other approaches, the pseudo-energy ξ is first shifted and normalized,2 before
updating the topology, and later regularized via a Laplacian regularization, thus
providing black-and-white optimal layouts with crisp, smooth edges. The smooth
pseudo-energy function, ξτ , corresponds to the regularized pseudo-energy, where τ

stands for the dimensionless regularization parameter.
As aforementioned, the topology layout, defined via χ(x), is updated via a fixed

point method termed Cutting&Bisection algorithm, where the Lagrange multiplier
λ fulfilling the volume constraint (2-b) is computed. The bisection algorithm is
represented in Fig. 1 where the pseudo-energy ξ is cut by 4 different values of λ,
this resulting in different volume constraint values. Then, the closed-form solution
of problem (2) is obtained as

⎧⎪⎨
⎪⎩

ψτ (x̂) := ξ̂τ (x̂, χ) − λ

χ(x̂) = H(ψτ (x̂))

C(χ(λ), t) = 0

in �, (7)

which provides the optimal topology for each time-step t (percentage of void mate-
rial), once the criteria in cost function and Lagrange multiplier have been met.3

2 The values 
shi f t and 
norm are defined at the first iterations and kept constant throughout the
optimization.
3 The reader is referred to [1, 2] for further details of the topology optimization approach.
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2.2 State Problem

The governing variational problem for linear elasticity and thermal problems,
neglecting volumetric terms, can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Find the state field pχ ∈ U(�) such that

a(w,pχ ) = l(w) ∀w ∈ V(�)

where

a(w,pχ ) =
∫

�

∇∇∇ Sw(x) : Dχ (x) : ∇∇∇ Spχ (x) d�,

l(w) =
∫

∂s�

w(x) · sss(x) d� ,

(8)

(9)

(10)

where, for the elastic problem, the variables Dχ , pχ and sss are replaced with Cχ , uχ

and σσσ , respectively. As for the thermal problem, these variables are κκκχ , θχ and −qqq
(see Sect. 3).

The relevant material property Dχ can be expressed in terms of the nominal
property D and the characteristic function χ as Dχ (x) = χm(x)D(x), where m > 1
stands for the exponential factor, and the characteristic function is relaxed with
β being α1/m . Bear in mind that the elastic material is governed by Hooke’s law,
i.e., σσσ(x, χ) = C(x, χ) : εεε(x) = C(x, χ) : ∇∇∇ Su(x), while the conductive material is
ruled by Fourier’s law, given by qqq(x, χ) = −κκκ(x, χ) · ∇∇∇θχ (x).

The classical finite element method is used to discretize the topology optimization
problem (2) as well the state equation (8). Specific details of the discretization can
be found in [1, 3] and [2] for the structural and thermal optimization problems.

3 Applications

In the following subsections three different applications of the proposed topology
optimization technique are presented, the first two applications ruled by the structural
problem and the last one by the thermal problem.

3.1 Minimum Mean Compliance

The main goal of the minimum mean compliance problem is to find the optimal
topology layout that maximizes the stiffness of the entire structure under specific
boundary conditions. Therefore, the cost function (2-a) is defined as the work of the
external forces, thus leading the pseudo-energy density to the actual strain energy
density. For further details on the derivation of the sensitivity please refer to [1].
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Fig. 2 Bridge design: a setup of the analysis domain, b cost function and topology evolution and
c Optimal design for t = 0.94

Let us now address the topology optimization of a bridge structure, depicted in
Fig. 2a, with a hole located above the road to allow the pass of vehicles. The domain
is discretized with a structured mesh of 240 × 204 × 40 eight-node hexahedral (Q1)
finite elements, considering aYoungmodulus E = 210G Pa, a Poisson ratio ν = 0.3
and a contrast factor α = 10−6 (m = 5) for the solid material. The regularization
parameter τ is set to 0.316 while the time interval of interest [0, 0.96] is discretized
in 22 steps following an exponential law. The topology evolution and the optimal
design for t = 0.96 are displayed in Fig. 2b, c, respectively. As it can be observed,
the cost function increases as the pseudo-time t increases, thus leading to designs
easily recognizable by bridge engineers.

3.2 Compliant Mechanism

The second numerical application corresponds to the design of compliant mecha-
nisms, in which the optimization objective is the maximization of the displacement
at the output port due to an action at the input port. The cost function (2-a) can
be defined in terms of the external work done by a constant dummy force applied
only on the output port, thus defining the mutual potential energy density as the
pseudo-energy sensitivity. The exact details on the derivations can be found in [1,
3].

Let us now use the topology optimization approach for the design of a 3D compli-
ant gripper, where the compressive displacement at the jaws (vertical displacement at
the top-right side) is maximized when an horizontal force is applied at the input-port
(top-left side) (seeFig. 3). The design domain, discretizedwith 160× 80 × 40 regular
hexahedra, is made of the samematerial as in Sect. 3.1, except that the contrast factor
is now equal to α = 10−2 (m = 3). The optimization is performed using a regular-
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Fig. 3 Gripper design: a setup of the analysis domain, (a-I) original state system, (a-II) auxiliary
state system with the constant dummy force applied on the output port and b–e Optimal design for
different time-steps. Localized hinges are highlighted with red circles

ization parameter τ = 0.5 and an exponential updating scheme. Some intermediate
optimal designs are illustrated in Fig. 3b–e, where localized hinges are highlighted.

3.3 Thermal Cloaking in Terms of Heat Flux

The last application addresses the topology optimization of a cloaking device capa-
ble of thermally cloak a surrounded object within an homogeneous material, with
different thermal properties, from being detected by an external thermal detecting
device, measuring alterations in the heat flux field from a known homogeneous one.
Therefore, the cost function is defined as the deviation between the known homoge-
neous field q and the actual heat flux field qχ via a L2 norm. For more details, the
reader is referred to [2].

For the numerical solution of the topology optimization problem, the square
prismatic domain � displayed in Fig. 4a, is discretized with a structured mesh of
100× 200×100 hexahedral elements. The temperature on the left and right surfaces
of the domain are prescribed to θh = 321.85K and θ c = 283.15K, respectively, thus
resulting in a constant heat flux q = [245.1, 0, 0]W/m2 while the other surfaces
are assumed adiabatic. The domain is partitioned in three distinct regions: the con-
ductivity of regions 1 (an ellipsoid colored in green) and 3 being κ = 0.57W/mK
(where the deviation is minimized), while κ = 403W/mK with a contrast factor
α = 5.46 · 10−4 (m = 5) for the cloaking device (an sphere colored in orange). Fig-
ures4f–i depict the evolution of the isotherms throughout the optimization at the
middle x-y plane. As the pseudo-time evolves, the isotherms resembles the constant
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Fig. 4 Heat flux cloaking device: a analysis domain with boundary conditions, b–e 3D view of
intermediate topologies (steps = {0, 1, 5, 8}) and f–i evolution of the isotherms and layout of the
cloaking device at the middle x-y plane for the same representative steps

heat flux field targeted in the optimization thus cloaking the object surrounded by
the device.

4 Conclusions

As demonstrated in previous work, the VARTOP approach exhibits great potential
in topology optimization of structural and thermal problems, as illustrated here with
several 3D numerical examples. As a result, complex smooth designs can be obtained
with low computational cost when compared to equivalent Level-set methods.

The benefits of the method are based on the usage of a nonsmooth characteristic
function as the design variable thus obtaining black-and-white designs, the derivation
of the sensitivity via the Relaxed Topological derivative (RTD) using the ersatz
material approach, and the definition of a closed-form optimality criteria for the
topology optimization problem using a robust cutting and bisection algorithm in a
pseudo-time advancing scheme. In addition, the manufacturability and smoothness
of the design is controlled via a Laplacian regularization.
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1 Introduction

Since his PhD dissertation in 1981 [1], Peter Wriggers made pioneering contribu-
tions on contact mechanics, choosing the finite element method (FEM) as the main
framework to cast his new theories and algorithms. Due to the versatility of FEM in
handling finite-size geometries, finite elasticity, and complex material constitutive
relations, he has pioneeringly foreseen the potential of FEM to advance over ana-
lytical methods for contact mechanics. He made significant progresses on contact
search algorithms [2, 3], mathematical methods to impose the satisfaction of unilat-
eral contact constraints [4, 5], thermoelastic contact problems [6, 7], discretization
methods [8–11], and rigorous implicit nonlinear solution schemes [12, 13], that are
all detailed in his highly cited publications and well summarized in his textbook [14].
He also devoted major efforts in developing numerical schemes for the simulation
of particle flow and contact in fluids based on the discrete element method [15].
Although applications were mostly concerned with particulate flow for civil engi-
neering problems or biomechanics, the methodology has an innovation potential also
in tribology.

Nowadays, computational contact mechanics is a mature research area and further
impact is expected as far as tribological applications are concerned. Tribology is the
science and engineering of interacting components in relative motion. Friction, wear,
lubrication, heat and electrical conduction are just some of the key problems rele-
vant for this field which is progressively expanding its scope, becoming increasingly
interdisciplinary [16]. Materials scientists, engineers and physicists actively coop-
erate towards the design and the realization of novel tribofilms, coatings, surface
textures, new lubricants. The applications are also rapidly expanding from the his-
torical mechanical engineering field to biomechanics and other high-tech domains.

In this context, trial-and-error experimental design can be extremely expensive
and time consuming. Therefore, computational methods, one of the leading enabling
technologies for Industry 4.0, may offer the advantage of reducing time from design
to production, exploring and scouting new solutions, providing the basis for virtual
testing of customized tribological components.

The solution of contact problems is complicated by the inherent nonlinearity
stemming from the fact that the extent of the contact area is a-priori unknown. It is
clear that practical applications can be efficiently solved provided that an accurate
description of the component geometry (the macro-scale) and loading conditions
are well modelled. Moreover, at the same time, a detailed resolution of any surface
feature relevant for the surface interactions is requested.

Therefore, computational contact mechanics is nowadays facing new challenges,
which are related to the need of solving a multi-scale problem in real structural
applications. The involved size-scales range from the component size down to the
smallest length scale representative of roughness [17].

In this article, three recent developments are outlined along this line of research.
The first one relates to a novel finite element discretization method for the inter-
face, which allows for an exact representation of any rough surface topology with a
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significant reduced complexity in contact detection and contact geometry modeling.
This method presents several advantages for the simulation of high-tech applica-
tions requiring a detailed description of tribological interactions and, at the same
time, modelling of bulk dissipative phenomena (viscoelasticity, plasticity, fracture,
etc.). The second exploits scale separation arguments to establish a computational
technique to address contact problems at the macroscale using FEM, but with a
detailed analysis of contact at the microscale using the boundary element method
(BEM). Finally, the third advancement regards the application of the smoothed par-
ticle hydrodynamics (SPH) meshless method to the simulation of hydrodynamic
lubrication regimes with complex rough boundaries.

2 High Precision Contact Solution Using Interface Finite
Elements with Embedded Roughness

The prediction of the contact response is often strongly affected by the interface
topology. Therefore, assuming the interface as a topologically flat domain and intro-
ducing average tribological parameters (heat resistance, friction coefficient, wear
coefficient, etc.) is often inadequate for the accurate simulation of the physical prob-
lem. However, the exact representation of surface textures and/or roughness is posing
several challenges for contact search algorithms when classical surface discretiza-
tion schemes are employed. Regularization of the surface geometry, for instance
with Bezier or NURBS interpolation, is not a viable strategy, since relevant fine
scale details might be erroneously filtered out. For this reason, the boundary element
method, although primarily applicable to simplified half-plane geometries and linear
elastic materials, has seen a discrete popularity for the solution of contact problems
with roughness, since it can accommodate any realistic rough topology in input [18,
19].

In order to overcome the major limitations of conventional FEM discretization
schemes, as well as the limited capabilities of BEM for the analysis of nonlinear
material constitutive laws and multi-field problems, a novel interface finite element
with eMbedded Profile for Joint Roughnes (MPJR interface finite element) has been
proposed in [20], see also [21] for a comparison with BEM. The MPJR interface
finite elements can be used to discretize the interface with a uniform spacing dic-
tated by the profilometer resolution, to achieve a one-to-one correspondence between
finite element nodes and profilometer sampling points. However, instead of follow-
ing the actual rough surface elevations, the interface is treated as nominally flat. The
deviation from planarity, on the other hand, is considered within the element as an
exact correction of the normal gap function. In case of an analytical expression of
surface texture, for instance modelled as a Weierstrass-Mandelbrot (WM) function,
the global coordinate of the interface finite element nodes is used to determine the
surface elevation through the WM function and, in its turn, the correction to impose
to the normal displacement computed from the standard kinematics of the interface
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finite element [22]. Alternatively, if the surface topology is provided as a data file
containing nodal-wise AFM or profilometric elevations, then a searching algorithm
is run once at the beginning of the simulation to assign the elevation to the interface
node based on its global coordinate. For the next steps, such elevation data are effi-
ciently stored in a history variable of the element, to avoid repeated reading from
external files.

The methodology has been proved to be efficient for solving frictionless contact
problemswith nominallyflat surfaceswithmicroscale roughness in [20]. The solution
of a frictionless normal contact problem for a rigid indenter with a profile modelled
according to the WM function with n = 1, 2 or 3 length scales of roughness is
shown in Fig. 1. The upper plot shows the microscopically rough profile elevations,
z/g0, where g0 is a scaling parameter. Periodic boundary conditions are applied at
x/λ = 0 and 1, which lead to symmetric profiles with respect to an axis passing
through x/λ = 0.5, where λ is the longest wavelength of the WM function. The
corresponding predicted normal contact tractions, p/E , are shown in the lower plot,
for the same imposed far-field displacement in the normal direction. The surface
refinement, by adding additional wavelength components to the WM function, leads

Fig. 1 Geometry of the embedded rough profiles (above) derived fromWMfunctionswith different
resolution n, and predicted normal contact tractions (below), for the same applied far-field normal
displacement
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to an increased intensity of contact tractions which do localize near the fine scale
asperities. Overall, the progressive rarefaction of the real contact area by increasing
the resolution parameter n is observed, as for fractal-like boundaries.

Moreover, due to the possibility of introducing any nonlinear interface constitutive
relation, contact mechanics simulations with roughness and also interface adhesion
were successfully performed in [20]. A further extension of the approach to deal with
frictional contact problems and in particular partial slip regimes under the action of
infinitesimal sliding displacements has been proposed in [31], where a regularized
Coulomb frictional law has been included to model the contact response in the
shearing direction. Finally, very recently, the methodology has been extended to deal
with finite relative sliding displacements, to simulate also full sliding regimes and
dissipation mechanisms in viscoelastic contacts [32].

3 Upscaling of Contact Problems with a Concurrent
BEM-FEM Coupling

In order to address tribological problems involving mechanical components of com-
plex shape, it can be extremely useful to exploit the capabilities of FEM indiscretizing
2D or 3D bodies. However, in performing this upscaling procedure, the physics of
contact is usually simplified by introducing mathematical models to describe contact
interactions that are no longer dictated from the emergent response of micromechan-
ical surface interactions. In this context, for instance, it has been proved in [6] that
the standard penalty approach with constant penalty parameter could be enhanced by
introducing a nonlinear interface constitutive relation provided by micromechanical
contact theories. As a further step forward, in order to overcome the assumptions of
micromechanical contact theories on the statistical distribution of asperities and on
their elastic interactions [28], Bonari et al. [29] proposed a concurrent integration of
BEM into FEM. The formulation, based on the interface finite element kinematics
proposed in [22] for fracturemechanics, implicitely assumes scale separations,where
FEM discretization is used to model the component geometry at the macroscale. In
each integration point of the interface finite element, the normal contact response
is no longer provided in closed form, but it is now the result of BEM contact pre-
dictions for a statistically representative contact surface, see Fig. 2. Such a contact
surface can now be given in input directly from confocal or AFM measurements.
The micro- andmacro-scales are linked by the common relative displacements, com-
puted at the FEM level and passed to the BEM routine. The BEM code, which in
the present implementation assumes elastic deformations, provides the exchanged
normal contact force and the numerically computed tangent stiffness matrix as a
feedback quantity to FEM.



390 M. Paggi et al.

Fig. 2 FEM-BEM concurrent coupling scheme

4 Hydrodynamic Lubrication with Complex Rough
Boundaries

The topic of hydrodynamic lubrication with complex rough boundaries is also a very
important research area for technological applications. In this field, most of the state-
of-the-art models are 2D codes based on Reynolds’ equation for fluid films [23, 24],
while there is the general need for a computational frameworkwhich can comprehen-
sively consider the full 3D form of the Navier–Stokes equations for incompressible
fluids with uniform viscosity, being able to be validated on both local and global
quantities (e.g. pressure and velocity profiles, load-bearing capacity), and could sim-
ulate any 3D topology.

To this aim, the computational fluid dynamics (CFD) code SPHERA v.9.0.0 based
on smoothed particle hydrodynamics (SPH), which was originally designed for the
simulation of water-related natural hazards [25] (floods and earth landslides, trans-
port of solid bodies in fluid flows), has been extended in [26] to deal with fluid-solid
body interactions under no-slip conditions and laminar regimes for the simulation
of hydrodynamic lubrication. The formulation has been validated in [26] for two
classical problems related to a uniform slider bearing (i.e., for a constant lubricant
film depth) and a linear slider bearing (i.e., for a film depth with a linear profile
variation along the main flow direction) by comparying CFD predictions with ana-
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Fig. 3 3D view of the scalar (absolute value) and vector fields of the non-dimensional velocity for
a linear slider bearing separated by a lubricant from a complex rough surface

lytical solutions. The methodology presents the advantage of simulating the inertia
and the 3D effects close to the slider edges, and it opens new research directions
overcoming the limitations of the codes based on the Reynolds’ equation for fluid
films. Moreover, through a pre-processor which allows considering realistic rough
surface geometries in input, it can effectively predict the effect of roughness on local
and global parameters relevant for hydrodinamic lubrication [27], see e.g. Fig. 3.

5 Conclusions

This review article has provided a synopsis of recent advancements in the field of
computational tribology, with special attention to the accurate modelling and rep-
resentation of complex rough interfaces and their efficient discretization schemes
to enhance contact mechanics simulations. Future developments are expected for
the simulation of coupled problems thanks to the finite element method. Reliability
of coatings will also require the implementation of wear models and, for the sim-
ulation of fretting fatigue, coupling the contact mechanics formulations with phase
field fracture models for the continuum. Finally, as far as hydrodynamic lubrication
is concerned, fluid-structure interaction with deformable boundaries and the effect
of particles embedded into the fluid flow, to model wear debris, represent natural
research directions for advanced predictive tribological simulations.
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Abstract The assessment of the nonlinear response of existing structures, or of
new structural designs, to extreme loading conditions is of significant importance
in achieving a safe and sustainable built environment. The accurate prediction of
structural response of steel and steel-fibre reinforced concrete structures, that are
expected to undergo ultimate limit state, monotonic and cyclic loading, is a chal-
lenging task, which is hindered by numerous modeling and numerical obstacles. As
a consequence to this, the assessment of retrofitted reinforced concrete structures,
is still conducted with the use of simplistic numerical models and semi-empirical
design formulae. Although, quite a few 3D detailed modeling approaches have been
proposed over the last two decades, they have a number of limitations that prevent
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them from their implementation, without simplifications, to the design of steel and
fiber/steel reinforced concrete structures. In this work, the capabilities as well as the
limitations of the recently published work on the subject will be critically presented,
while different open problems will be discussed and remedies will be proposed to
overcome these limitations. Furthermore, the development of a simulation tool with
the ability to accurately and efficiently predict the structural performance of new
designs and assess the bearing capacity of existing or retrofitted structures under
extreme loading conditions, will also be discussed.

1 Introduction

The revolutionary developments that have occurred in the field of modeling and
simulation-based engineering over the last decades have provided computational
tools with the ability to assess the design of new structures and the bearing capacity
of existing or retrofitted structures under extreme loading conditions. In particular,
for the case of steel reinforced concrete (SRC) and steel fibre reinforced concrete
(SFRC) structures, a number of modeling approaches has been proposed [1–13] in
an effort to develop reliable and robust numerical tools to perform these tasks.

An attempt to assess the range of applications of the proposed simulationmethods
was performed in [14, 15] for SRC structures and in [16] for SFRC structures. These
studies revealed that even for monotonic loading conditions the assessment of the
bearing capacity of this type of structures requires further investigation. For the case
of cyclic static or dynamic loading conditions, the ability of existing simulation
approaches in capturing the experimental results was found to be less reliable and
more case sensitive.

During the last three decades, 3D detailed finite element modeling approaches
have been proposed [1, 2, 5, 17] for the analysis of structures with any geometry
and type of loading. It is well known that beam-column and plane finite elements
have significant simulation limitations when used to discretize 3D structures, as
being unable to capture joint deformations and normal-shear stress coupling in three
dimensions during a nonlinear analysis. Therefore, these simplistic models usually
provide acceptable results when the overall structural behavior is bending dominated,
where shear, joint deformation and the development of torsion at an overall structural
level are assumed to be insignificant.

Before discussing the modeling limitations for SRC and SFRC structures, it is
worth mentioning that multiscale modeling of composite materials seems to be a
promising approach for modeling SRC and SFRC structures [18, 19]. Nevertheless,
the current literature shows that applying this method to full-scale structures even for
simple monotonic loading conditions is not practically possible due to the excessive
computational effort required even for today’s available computational resources. For
these reasons, this manuscript will concentrate on the open problems in predicting
the structural response of SRC and SRFC structures through nonlinear 3D detailed
finite element modeling combined with the smeared crack approach [1], where the
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concrete domain is discretizedwith hexahedral elements and the constitutivematerial
laws are described with 3D material models. This modeling approach also accounts
for microcracking and macrocracking in concrete, whereas the discretization of the
standard steel reinforcement is performed through the use of embedded rebar finite
elements (rods or beams) and appropriate cyclic stress-strain relationships to account
for the pinching effects.

2 Modeling Remarks of Steel Reinforced Concrete (SRC)
Structures

One of the challenges inmodeling SRC structures is the nonlinearities that are present
at an early stage due to pre-existing cracks and the microcracking that develops dur-
ing the loading procedure. Predicting the local and global structural response of SRC
structures becomes more cumbersome when macrocracks occur given that disconti-
nuities appear in the physical problem. When modeling SRC structures through the
use of solid finite element models [2, 5, 6, 14, 20–22] the simulation of the physical
gaps triggers additional numerical problems that lead to the need of simplification
assumptions or assumptions that are not in line with actual mechanical behavior of
SRC structures.

For instance, the material models proposed in [20, 21] accept a remaining tensile
and shear strength (softening branch) after a macrocrack has developed at a Gauss
point. This is not always true given that concrete cracks are not always found within a
confined region of the SRC structural member. Figure1 shows the case of a cantilever
RC beam that is loaded at the tip, while developing a crack at the area of support.
It is easy to observe that, the pure tensile crack that develops does not have any
remaining strength in tension nor in compression. Given that the methods proposed
in [20, 21] require finer meshes (10–50 mm) to achieve numerical convergence and
reliable results, this means that there is at least one layer of finite elements which
is used to discretize the concrete cover of any RC structural member. Therefore,
in real physical problems these elements would never develop softening branches
at the material level. Furthermore, the numerical response of these material models
creates numerical instabilities requiring a larger number of internal iterations during
the nonlinear solution. This is a simulation limitation that still needs to be addressed
when using this type of material models.

On the other hand, the use of material laws that assume a complete loss of strength
(brittle behavior) at the material level when a macrocrack occurs [14, 22] is also
inconsistent with the behavior of cracked concrete, when it is well confined due
to the presence of stirrups. The concrete material model presented in these studies
[15, 23] can represent the remaining strength at the crack plane due to friction and
gravel interlocking with the use of a remaining shear strength factor β. This factor
is assumed to be constant throughout the numerical simulation and is affecting the
performance of the model. However, the development of a formula to perform the
calculation of β within each finite element is still an open problem.
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Fig. 1 Cracked SRC
cantilever beam. Concrete
area without any remaining
strength

To illustrate the numerical performance of models using this type of material
laws, a comparison between the experimental and numerical results of an SRC
joint retrofitted with carbon fibre reinforced polymer (CFRP) sheets and designed
to develop extreme reinforcement slippage and cracking within the joint, is shown
in Fig. 2 [1]. The developed model was able to capture extreme nonlinearities and
extreme pinching, where the displacement control cyclic analysis was found to be
able to converge at each displacement increment with relatively low numbers of
linearized internal iterations. The same performance was observed in the case of
bare SRC joints, where it was concluded that the proposed damage factors for both
steel and concrete material models were able to capture these extreme nonlinearities.
These proposed damage factors are directly connected to the number of opening and
closing of cracks during the cyclic loading of the model [1].

Based on the obtained results shown in Fig. 2, as well as on a number of simulation
tests performed in [1], it is reasonable to conclude that the proposed 3D detailed
modeling, with material models that assume a brittle type of behavior, appears to be
more stable, accurate and robust than the models using softening branches for the
simulation of the cyclic post-crack response of concrete.

It has to be mentioned that this concrete material model does not satisfy the
2nd law of thermodynamics, since it was derived through regression on a large
dataset of experimental results. However, it was found to be able to provide with
acceptable numerical results when used to predict the structural response of RC
structures [2, 5, 17, 22] under monotonic and cyclic loading conditions. In this case,
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Fig. 2 Cracked SRC cantilever beam. Concrete area without any remaining strength

the physical laws were substituted by a large experimental dataset that incorporates
the actual physical laws, instead of rigorous concepts or artificial physical laws. This
approach has similarities with the implementation of artificial intelligence (AI) and
machine learning (ML) algorithms [22–24, 26], which pursue the correspondence
between large datasets of input and expected outcome. It is envisaged that the use
of ML-based algorithms will prevail in the near future in predicting the structural
response of SRC structures under extreme loading conditions [27].

Given that the overall objective is to derive a reliable and robust simulation
methodology for predicting the ultimate nonlinear static and dynamic response of
RC structures, the scientific community should be further involved in:

1. Developing reliable concrete material models able to capture phenomena such us
opening and closing of cracks, material deterioration and slippage.

2. Producing reliable experimental data representing the actual mechanical behavior
of thematerial, free from the influence of specimen-testing equipment interaction.

3. Obtaining robust experimental data to the extent that “identical” specimens attain
ultimate capacities that do not significantly differ (i.e. less than 15%).

In this context, a 3D model shown in Fig. 3, was investigated in the SMART 2013
project [15], where an asymmetric SRC structure was tested under pure torsion.
This specimen was found to have significant interactions with the relatively flexible
seismic table that was used to investigate the nonlinear dynamic structural behavior
of this scaled structure. For the purpose of this study the SRC model was discretized
with 20-noded hexahedral isoparametric finite elements andwas tested on a relatively
flexible seismic table that was also included in the augmented structural model, as
shown in Fig. 3. The modal analysis was performed with the Reconan FEA software
[28] and its correspondingmodal analysis algorithm [2], and the numerically obtained
results were compared to the respective experimental data.

Table 1 shows the comparison between the numerical and experimental frequen-
cies [15], where it can be observed that the numerical model manages to capture
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Fig. 3 Hexahedral finite
element mesh

Table 1 Comparison
between the numerically and
experimentally obtained
frequencies

Mode Numerical fz
(Hz)

Experimental
[15] fz (Hz)

(fexp - fnum ) /
fexp

1 6.35 6.28 −1.12%

2 7.66 7.86 2.50%

3 15.43 16.5 6.51%

Average 2.63%

Abs. Av. 3.38%

the experimental data within an acceptable accuracy. The overall computed average
error was 2.63%, where the respective absolute average error was 3.38%. A graph-
ical representation of the computed and experimentally obtained modes are shown
in Fig. 4.

This SRC structure with shear walls shown in Fig. 3 is depicted to underline the
ability of a detailed solid element model to discretize any type of SRC structure, as
opposed to discretization with a beam-column finite element mesh. Even in cases
where shell finite elements are used to model the behavior of SRC shear walls, the
limitations in capturing the 3D stress state that develops at the material level hinders
their implementation. Even though shell finite element simulation has the ability to
discretize 2D slender domains in a relatively accurate manner, it remains unable to
provide accurate simulation of joints and connections between different structural
members.

Conclusively, the use of 3D solid elements with appropriate material laws is cur-
rently oneof themost promisingmodeling approaches, achieving a reliable and robust
simulation of the structural response of real-scale SRC structures under extreme load-
ing conditions. Any limitation of its range of application due to excessive computa-
tions resulted frame, the refined modeling can be overcome with the implementation
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Fig. 4 Comparison between the experimentally (up) and numerically (down) obtained modal
shapes. From left to right: 1st, 2nd and 3rd modal shapes

of high-performance computing as long as the physical problem is accurately simu-
lated.

Methods such asX-FEMandmultiscalemodeling still require significant improve-
ment and further investigation until they reach to a point of analyzing specimens under
cyclic loading and then implemented for the numerical investigation of large-scale
SRC structures similar to those investigated in [29–31]. It is noteworthy to state that
the same modeling approach [1] was applied successfully for the simulation of the
overall dynamic response of SRC structures including the soil-structure interaction
effect [31].

3 Limitations in Modeling of Steel Fibre Reinforced
Concrete (SFRC) Structures

A recent blind prediction competition [16] was performed to provide an inside on
the modelling of fibre reinforced concrete structures and in particular on the ability
of current numerical models in predicting the structural response of SRFC T-beams
that are designed to fail in shear. Figure5 shows a SFRC T-beam specimen and
its respective reinforcement, as it was reported in [16], whereas Fig. 6 shows the
3D detailed finite element that the authors developed during this competition. This
finite element model adopts the smeared crack approach [22] for simulating macro-
cracks, where the reinforcement was modeled as embedded rebar finite elements.
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Fig. 5 SFRC T-beam specimen [16]. All dimensions in mm

Fig. 6 SFRC T-beam finite element mesh. 8-noded hexahedral elements and embedded rebars (Ø6
stirrups in green, Ø10 compressive bars in magenta, Ø25 tensile bars in blue)

Even though Reconan FEA was not yet integrated with a 3D SFRC material model,
it was decided to use the concrete material model implemented in [22] and submit a
prediction. A total of 36 teams participated in this competition from both academia
and industry.

In Fig. 7, the predictions of both force and strain vs deflection curves of the 36
teamswere plotted against the derived experimental data. It can be observed thatmost
of the teams failed to predict both the strength and the strain at maximum strength
of the beam. This is a clear indication of the need for improving current numerical
models in predicting the ultimate capacity of SFRC structures under monotonic and
cyclic loading conditions, albeit the latter is currently not receiving much attention.

It is also worth noting that, the prediction submitted by the authors received the
9th overall place out of the 36 teams, even though the material used to predict the
mechanical response of the SFRC domain was not developed for SFRC materials,
but for standard and high strength concrete. In the case of the maximum strength
prediction the authors received the 3rd overall place (with a 7.97% error; 309.23 kN,
which was in favor of safety), while in the case of the maximum computed strain at
the ultimate load was the best out of all the submitted predictions. Therefore, if the
objective was to compute the maximum expected force and the respective strain, the
authors’ prediction was the best, with an average error of around 10%.
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Fig. 7 Numerical verses experimental data. a Force verses deflection and b Strain verses deflection
[16]

The predicted loading submitted by the authors for the first crack opening was 48
kN, where the experimentally observed first cracks occurred for a total of 50 kN. It
has to be noted that, the use of 8-noded hexahedral finite elements combined with the
concrete material model implemented by the authors led to a stiffer overall response
underestimating the maximum deflection.

This blind competition [16] indicated that the 3D concretematerialmodel [22] had
to be integratedwith a relevant tensile behavior, able in capturing the SFRCmaterial’s
post-crack response and thereafter to be integrated within the 20-noded hexahedral
element. This implementation is a work that is currently under development and will
be discussed in a future communication.

4 Conclusions

From the brief discussion in this paper it may be concluded that, developing an
accurate, objective and robust numerical model for assessing the structural behavior
of SRC structures under extreme loading conditions is a challenging task that still has
many open problems to be addressed. It is evident that there is some debate in relation
to which simulation approach is the best in predicting the ultimate capacity of SRC
structural members, while the ability to capture the cyclic behavior of SRC structural
members is still a research topic that requires further investigation, especially when
extreme nonlinearities and pinching effects are present [1].

When dealing with SFRC structural members, it was demonstrated that not only
the 3D models need to be further improved, but most of the current material models
do not have the ability to capture the shear capacity of SFRC material. Therefore,
the development of a model able to predict the ultimate cyclic behavior of SFRC
structural members is still in need by the international scientific community.
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Abstract Phase field models for fracture prediction gained popularity as the for-
mulation does not require the specification of ad-hoc criteria and no discontinuities
are inserted in the body. This work focuses on dynamic crack evolution of brittle
shell structures considering large deformations. The energy contributions from in-
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plane and out-of-plane deformations are separately split into tensile and compressive
components and the resulting coupled system is discretized within the isogeometric
analysis framework. The resulting system is solved fully monolithically and adaptive
local refinement is used in space and time.

1 Introduction

Thin-walled structures are characterized by low weight and high strength, making
them interesting formany engineering designs. Especially for high slenderness ratios,
these shells can be modeled based on the assumptions of Kirchhoff-Love theory.
In these, no rotational degrees-of-freedom (dofs) are used, but only displacement
dofs are considered. The resulting equation of motion thus, includes fourth-order
derivatives. Isogeometric analysis [10] is used to obtain the required C1-continuity
in the corresponding weak form. In this work, the shell formulation of [7] is used.

The prediction of fracture and failure is of crucial importance for the design of
engineering structures. Phase field models for the prediction of fracture gained pop-
ularity as they do not require ad-hoc criteria and do not insert discontinuities in the
body, e.g. in the displacement field. Phase field models for brittle fracture are based
on the theory of Griffith [9] and its variational reformulation as an energy mini-
mization problem [8]. An additive energy split is required to model the anisotropic
behavior of crack evolution, i.e. such that there occurs no cracking in compression.
The membrane and bending energies are split separately and the split based on sur-
face stretches [1] is employed for the split of the membrane part. Based on the idea of
[12], the bending energy is decomposed based on thickness integration, but here, the
split is also based on surface stretches [14]. The resulting formulation allows for large
deformations and avoids the expensive computations of spectral decompositions. A
higher-order fracture energy [2] is employed. The small length scale parameter of
the phase field is resolved by using local spatial refinement based on LR NURBS [6,
17] and the mesh is adaptively refined during the computation [14]. The resulting
discretized coupled system is implicitly integrated in time using an adaptive time-
stepping scheme and a monolithic solution approach. Patch constraints are used to
allow for multi-patch discretizations [13].

2 Fracture of Deforming Surfaces

The mapping x = x(ξα, t) is used to describe a curved surface S. Here, ξα , α = 1, 2
are the convected coordinates and t denotes time. Based on this mapping, a co-
and contra-variant basis can be associated with each surface point, i.e.

{
aα, n

}
and{

aα, n
}
, with covariant tangent vectors aα = ∂x/∂ξα , surface normal n = (a1 ×

a2)/||a1 × a2||, and contra-variant tangent vectors aα = aαβaβ .
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The co- and contra-variant surfacemetrics are given by aαβ = aα · aβ and [aαβ] =
[aαβ]−1. Using the second parametric derivative aα,β = x,αβ = ∂aα/∂ξβ , the surface
curvature is described via bαβ = aα,β · n.

2.1 Thin Shell Theory

The equation of motion can be written as [7]

Tα
;α + f = ρv̇ on S × (0, T̄ ) , (1)

with traction vector Tα , surface force f and final time T̄ . The stresses and moments
follow from constitution. Here, hyperelastic material behavior is assumed and the
elastic energy density is given by

�el(aαβ, bαβ) = �mem(aαβ) + �bend(bαβ) , (2)

with the membrane energy density being composed of dilatational and deviatoric
contributions, i.e. �mem = �dil + �dev, where [16]

�dil = K

4

(
J 2 − 1 − 2 ln J

)
, and �dev = G

2

(
I1/J − 2

)
. (3)

Here, I1 := Aαβaαβ is the first invariant of the surface Cauchy-Green strain tensor
and J := √

det[Aαβ] det[aαβ] is the surface stretch.1 Using bαβ

0 = Aαγ bγ δAβδ , the
bending energy in (2) is given by [5]

�bend = c

2

(
bαβ − Bαβ

)(
bαβ

0 − Bαβ
)

. (4)

2.2 Brittle Fracture

The phase field φ = φ(ξα, t) ∈ [0, 1] ranges from the undamaged state (φ = 1) to
the fully fractured state (φ = 0). Phase evolution is described by a partial differential
equation, which stems from the minimization of the Helmholtz free energy

�int =
∫

S0

� dA =
∫

S0

[
g(φ)H + �−

el + �frac

]
dA . (5)

The higher-order fracture energy density in (5) is given by [2, 14]

1 Quantities on the reference surface are either indicated by the subscript ‘0’ or by a capital symbol.
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�frac = Gc

4�0

[
(φ − 1)2 + 2�20 ∇Sφ · ∇Sφ + �40 (Sφ)2

]
, (6)

with fracture toughness Gc and length scale �0 of the phase field model. The surface
gradient and Laplacian are indicated by ∇S and S, respectively. The degradation of
the bulk material is described by the cubic degradation function [3]

g(φ) = (3 − s)φ2 − (2 − s)φ3 , with s = 10−4 . (7)

Irreversibility of the fracture process is ensured by keeping track of the fracture
driving energy by means of the history field

H(x, t) := max
τ∈[0,t] �

+
el (x, τ ) . (8)

The ‘positive’ and ‘negative’ energies in (5) and (8) are based on the additive energy
split

�el = �+
el + �−

el , with �±
el = �±

mem + �±
bend , (9)

which splits the energy into a part that contributes to crack evolution (‘+’), and a
part that does not (‘−’). The contributions are given by [1, 14]

�+
mem =

{
�dev + �dil , J ≥ 1

�dev , J < 1
, �−

mem =
{
0 , J ≥ 1

�dil , J < 1
, (10)

and

�±
bend =

∫ T
2

− T
2

ξ 2 12

T 3

c

2
tr
(
K 2

)
χ±( J̃

(
ξ)

)
dξ , with χ+(

J̃ (ξ)
) =

{
1 , J̃ (ξ) ≥ 1 ,

0 , J̃ (ξ) < 1 ,

(11)
and χ−(

J̃ (ξ)
)
analogously. In (11), K = (bαβ − Bαβ) Aα ⊗ Aβ denotes the relative

curvature tensor, T is the shell thickness, and J̃ =
√
det[ Ãαβ] det[ãαβ] is the surface

stretch of a shell layer [7].Using theEuler-Lagrange equation and standard arguments
of variational calculus, the strong form of the fracture framework is found as

2�0/Gc g′(φ)H + φ − 1 − 2 �20 Sφ + �40 S
(
Sφ

) = 0 on S × (0, T̄ ) ,

Sφ = 0 on ∂S × (0, T̄ ) ,

∇S
(
�40 Sφ − 2 �20 φ

) · ν = 0 on ∂S × (0, T̄ ) ,

φ = φ0 on S × 0 .

(12)
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2.3 Computational Aspects

Isogeometric analysis [10] is used to obtain the required C1-continuity in the weak
formulations of (1) and (12), also see [14]. LR NURBS [6, 17] are used to allow for
local refinement, such that the small length scale of the model (�0) can be resolved
properly. The FEmesh is adaptively refined based on the phase field: If a control value
fulfills φ < 0.975, all elements that lie in the support domain of the corresponding
basis function will be flagged for refinement. The refinement is performed using the
structured mesh strategy [11, 14].

The generalized-α method [4] is used for temporal discretization and the dis-
cretized coupled system is solved within a monolithic Newton-Raphson scheme. In
experiments, it has been shown that the crack tip velocity stays below 60% of the
Rayleigh wave speed cR [15], such that a physical upper bound can be imposed
on the time step, i.e. t ≤ tmax < xmin/(0.6 cR), where xmin denotes the min-
imum element length. The time step is adjusted based on the number of required
Newton-Raphson iterations nNR during the previous time step, i.e.

tn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.5tn , nNR < 4 ,

1.1tn , nNR = 4 ,

0.5tn , nNR > 4 ,

0.2tn , local spatial refinement .

(13)

3 Numerical Examples

The material parameters K , G and c in (3)–(4) are set like in [14]. Crack patterns are
visualized by means of a red (φ = 0) to blue (φ = 1) colorscale. Further, the non-
dimensionaliztion scheme by [14] is adopted such that all quantities are normalized
by the reference time T0, length L0 and stiffness E0.

Reinforced areas

Fig. 1 Crack propagation around obstacles: Initial phase field and initial LRmesh. The dark colored
rectangles mark the regions of increased fracture toughness. The initial mesh consists of 32 × 32
elements and three local refinement levels are used
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Fig. 2 Crack propagation around obstacles: Crack pattern at different snapshots. Regions with
φ < 0.01 are not visualized
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Fig. 3 Crack propagation around obstacles: Adaptivity in time (left) and space (right, final LR
mesh)

3.1 Crack Propagation Around Obstacles

This example investigates dynamic crack branching, kinking and deflection in a
square two-dimensional domain. The initial state is shown in Fig. 1 and a displace-
ment is imposed on the top edge upwards, and on the bottom edge downwards.
Branching and kinking is achieved by locally increasing the fracture toughness by
a factor of 10 in the two shown regions. The parameters are �0 = 0.0025 L0, Gc =
0.001 E0 L0, E = 100 E0, ν = 0.3, and the displacement increment is ū = v̄t
with v̄ = 0.0025 L0 T

−1
0 . Crack evolution is illustrated in Fig. 2. The crack branches

at the first reinforced area and is deflected in vertical direction. The two branches
then kink toward the horizontal direction and start branching. The top crack is again
deflected at the reinforced area and stops propagating shortly after the bottom crack
reaches the right edge. The time step sizes according to (13) and the final adaptively
locally refined mesh are shown in Fig. 3. Large time steps are used when there is no
crack propagation and only the regions close to the cracks are refined.
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Fig. 4 Fracturing balloon: Initial state with patch interfaces (left) and energy-time-curves (right)

Fig. 5 Fracturing balloon: Crack pattern at different snapshots (visualized transparently). Regions
with φ < 0.005 are not visualized

3.2 Fracturing Balloon

This section investigates crack evolution on a spherical geometry that is imposed to
the internal pressure p(φ) = 0.1 E0 L

−1
0 φ. The geometry is composed of six patches,

as shown in Fig. 4 on the left (patch interfaces are indicated by the cyan-colored lines).
Quadratic NURBS are used within each patch, and C1-continuity across patch inter-
faces is restored by imposing patch constraints with the Lagrange multiplier (LMM)
(constant interpolation) or the penalty method (PM), which is further elaborated
in [13]. The radius is L0 and the parameters are �0 = 0.015 L0, Gc = 0.0005 E0 L0,
E = 10 E0, ν = 0.3, T = 10−4L0, and bending stiffness c = 10−5E0 L2

0. The elastic
and fracture energies (�el and �frac, respectively) over time for the two enforcement
techniques are shown in Fig. 4 on the right. Crack evolution is visualized in Fig. 5.
The cracks start branching and merge at the end. The first drop of the elastic energy
occurs after the onset of crack propagation, and the last occurs when the geometry
is fully fractured. Excellent agreement between the two enforcement techniques is
achieved.
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4 Conclusion

A dynamic phase field fracture framework for thin shells within a convective coor-
dinate system is presented. Isogeometric analysis is used to obtain the required C1-
continuity in the weak form and LR NURBS are used for the local refinement.
Adaptivity in space and time and the monolithic coupling of both PDEs ensures the
efficient computation of complicated crack patterns, including branching, merging,
kinking and deflection. This framework is further extended to consider geometries
that are composed of multiple patches.
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1 Introduction

This work presents simple finite elements for geometrically exact shear-rigid rod for-
mulation. It also presents polynomial refinement for the finite elements. So that the
transversal shear deformation is not accounted for, the class of admissible motions is
obtained by imposing that the cross sections of the rod, that are initially orthogonal
to the axis, remain rigid and orthogonal to it after deformation. This theory is geo-
metrically exact because no approximation is employed after the basic kinematical
assumption. Finite rotations is treated here by the Euler–Rodrigues formula in an
updated Lagrangian way.

As framework the theory presented in [1] is used. This approach defines energet-
ically conjugated generalized cross section stress and strains. The tangent bilinear
form is always symmetric for hyper-elastic materials and conservative loadings, even
far from an equilibrium state. New interpolation polynomials were developed with
the objective to connect these elements to TUBA elements from [2].

The models are implemented using the finite element method with different poly-
nomial interpolation schemes for the finite element approximation. Linear elastic
constitutive equations for small strains are considered in the numerical examples of
this paper.

Throughout the text, italic Greek or Latin lowercase letters (a, b, . . . , α, β, . . .)

denote scalars, bold italic Greek or Latin lowercase letters (a, b, . . . ,α,β, . . .)

denote vectors and bold italicGreek orLatin capital letters (A, B, . . .)denote second-
order tensors. Summation convention over repeated indices is adopted in the entire
text, whereby Greek indices range from 1 to 2, while Latin indices range from 1
to 3. ‖v‖ = √

v · v is the norm of vector v where · denotes the scalar product. The
operator⊗ denotes the dyadic or tensor product of two vectors. For instance, a ⊗ b is
a second-order tensor such that (a ⊗ b)c = (b · c)a. Note that (a ⊗ b)T = (b ⊗ a),
where (·)T denotes the transpose. The operator axial(·) is such that, if v = axial(V ),
with V skew-symmetric, then Vx = v × x, where × denotes the cross product of
two vectors. Skew(V ) = 1

2 (V + V T ) is the skew-symmetric part of V .

2 The Geometrically-Exact Shear Rigid Rod Theory

Figure1 shows the kinematics considered in this theory. {er1, er2, er3} is the orthogonal
basis at the reference configuration of the rod. The superscript (·)r indicates the
material or back-rotated counterpart of (·) and is not affected by superimposed rigid
body motions. Back-rotated means that the quantity is calculated according to (·) =
Q(·)r ⇔ (·)r = QT (·) where Q is the cross section rotation tensor.

Rodrigues parameters are employed for the description of finite rotations. Con-
sidering α as the vector of Rodrigues parameters associated to the rotation tensor,
and A = Skew(α), this is given by
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Fig. 1 Rod description and basic kinematical quantities

Q̂(α) = I + 4

4 + α2

(
A + 1

2
A2

)
, (1)

where α2 = α · α. The er3 vector is placed along the shear centers of the rod and is
orthogonal the cross-section plane. The vectors erα with α = 1, 2 describe the basis
on the cross-section plane. ζ = ζ er3 defines the position along the axis rod on the
reference configuration. rr = ξαerα is the director that describes the relative position
of the material points on the cross-section at the reference configuration.

Thus, the position of the rod material points in the reference configuration can be
described by

ξ = ζ + rr . (2)

The coordinates ζ = ζ · er3 and ξα = rr · erα are introduced, as such that ξ1, ξ2
and ζ build a Cartesian coordinate system. ζ ∈ Ω = (0, �), where � is the rod length
at reference configuration. The boundary of the domain Ω is denoted by Γ . So, Γ
contains the two ends of the rod, that is Γ = {0, �}.

In the current configuration, as it can be seen in Fig. 1, the position of the material
points is given by

x = z + r, (3)

where z = ẑ(ζ ) describes the position of the rod axis at the current configuration
and r is the current director given by

r = Qrr . (4)
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This is the typical Euler–Bernoulli kinematical assumption, i.e. the cross sections
undergo a rigid body motion, and no cross-section change is assumed.

The displacements of the points on the rod axis are defined by

u = z − ζ . (5)

Also note that
z′ = er3 + u′ and z′′ = u′′. (6)

whereby the following notation for derivative along the axis has been defined
(·)′ = d(·)/dζ . The basis {e1, e2, e3} is the local orthogonal system in the current
configuration, with

e2 = ∥∥z′∥∥−1
z′. (7)

The authors remark that e3 is orthogonal to the cross section and tangent to the
rod axis. To be able to define {e1, e2, e3}, one more parameter is needed, because the
cross section can rotate around the axis. Thus, the scalar ϕ = ϕ̂(ζ ) is defined, which
is called herein torsion parameter. Thus, the cross-sectional rotation tensor can be
expressed by

Q = Q̂(e3, ϕ) = Q̂(u′, ϕ). (8)

Note that ei = Qeri , where Q = ei ⊗ eri .
The use of Rodrigues parameters is restricted to −π < θ < π . To overcome this

drawback, the rotation is described by an incremental approach, as in [1]. The limi-
tation affects only a load increment in Statics or a time increment in Dynamics.

Let (·)i and (·)i+1 denote a quantity (·) at instants ti and ti+1, respectively. And let
(·)� be an incremental quantity. Thus, one gets for the rotation tensor the following
relations

Qi+1 = Q� Qi , (9)

where Qi+1 = Q̂ (αi+1), Q� = Q̂ (α�), and Qi = Q̂ (αi ). We recall the following
relevant result by Rodrigues

αi+1 = 4

4 − αi · α�

(
αi + α� − 1

2
αi × α�

)
. (10)

At instants ti and ti+1 the triad of vectors {e1, e2, e3} is denoted by {ei1, ei2, ei3}
and {ei+1

1 , ei+1
2 , ei+1

3 }, respectively. The incremental torsion parameter is denoted by
ϕ�. With ei+1

3 = Q�e
i
3, one arrives at the important result

ei+1
3 − ei3 = α� × em3 , where em3 = 1

2

(
ei+1
3 + ei3

)
. (11)
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It is remarked that em3 is not a unitary vector, but
∥∥em3 ∥∥−1

em3 is. From [1] we
recover the following definition

α� = ∥∥em3 ∥∥−2 (
ei3 × ei+1

3

) + ϕ�

∥∥em3 ∥∥−1
em3 . (12)

Note that ϕ� = ∥∥em3 ∥∥−1
α� · em3 .

The deformation gradient can then be expressed by

F = QFr , where Fr = I + γ r ⊗ er3 (13)

is the back-rotated deformation gradient, I is the identity tensor and

γ r = ηr + κr × rr , (14)

are back-rotated cross section strains of Biot type. In (14) the following generalized
back-rotated strain has been introduced

ηr = QT
(
z′ − e3

)
and κr = axial

(
QT Q′) . (15)

We remark that ηr · erα = 0 due to the Bernoulli–Euler assumption. Note that

ηr = εer3, where ε = ∥∥z′∥∥ − 1. (16)

Equation (14) and (15) are the back-rotated counterparts of the following cross-
sectional generalized strains,

γ = η + κ × r, η = z′ − e3 and κ = axial
(
Q′ QT

)
. (17)

κ is the curvature vector of the rod axis at the current configuration, which, with
α2

� = α� · α�, is given by

κ = 	�α′
�, where 	� = 4

4 + α2
�

(
I + 1

2
A�

)
. (18)

The back-rotated-curvature vector needs to be updated at instant ti+1 from the
curvature vector at instant κ i . This is done through the following expression

κr
i+1 = κr

i + QT
i 	T

�α′
�. (19)

Let the 1st Piola-Kirchhoff stress tensor be expressed by its columns as follows

P = τ i ⊗ eri = Q
(
τ r
i ⊗ eri

)
(20)

One can now introduce the back-rotated 1st Piola–Kirchhoff stress tensor by



422 P. M. Pimenta et al.

Pr = QT P = τ r
i ⊗ eri , where τ r

i = QT τ i , i = 1, 2, 3 (21)

are the back-rotated nominal stress vectors.
The following cross-sectional resultants are obtained by integration of the stresses

τ = τ 3 on the cross section

n =
∫
A
τd A and m =

∫
A
r × τd A. (22)

with, n the true forces andm the true moments that are acting on a cross-section. The
back-rotated counterparts of the cross-section forces and moments are, respectively

nr =
∫
A
τ r d A and mr =

∫
A
rr × τ r d A. (23)

The internal virtual work on a domain Ω ⊂ R is given by

δWΩ
int =

∫
Ω

σ r · δεr dΩ, (24)

where

σ r =
[
nr

mr

]
and δεr =

[
δηr

δκr

]
. (25)

The external virtual work on a domain is given by

δWΩ
ext =

∫
Ω

(
n̄Ω · δu + m̄Ω · 	�δα�

)
dΩ. (26)

The local equilibrium equations of the rod are obtained by applying the Virtual
Work Theorem valid for statics as follows

δWΩ
int − δWΩ

ext = δWΓ
ext, ∀δu, δα� in Ω. (27)

where δWΓ
ext is the external virtual work on the boundary.

3 Finite Element Implementation

The simulations presented in this paper were performed within the AceFEM finite
element software. Both AceGen and AceFEM programs are developed and main-
tained by Jože Korelc (University of Ljubljana) [3].

The rod elements proposed in the present work were designed to seamless couple
with both primary and reduced geometrically exact shell elements of the TUBA
family [2]. These are designated by BE Pn-Pm, meaning Bernoulli–Euler element
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Table 1 Family of rod finite elements and corresponding TUBA elements

order
Primary element Reduced element

BE TUBA Configuration BE TUBA Configuration

5th P5–P4 6 3 21 P5–P3 3 1 2

6th P6–P5 13 3 54 21 P6–P4 7 3 21

7th P7–P6 15 3 54 21 P7–P5 12 43 21

Legend:

with polynomial approximations of degree n and m for the displacement vector u
and incremental torsion angle ϕ�, respectively, see Table1.

For the connection between elements only the two end-nodes of the finite element
are considered. For this purpose 7 DOF’s at each end-node are elected, specifically u,
α� and ε, as in [1]. At nodes I = 1, 2, with the nodal values αi

I , α�I , εiI and εi+1
I , one

gets eii I , e
i+1
i I , em3I , ϕ�I , u′i

I and u′i+1
I . Displacements u and the torsion parameter ϕ�

are approximated by different polynomials shown in Table1. Hence, an element has
in total 2 + 3(n + 1) + (m + 1)DOF’s. Along the rod, one can compute ui+1, u′i+1,
u′′i+1, ui , u′i , u′′i , ϕ� and ϕ′

� with the aid of Table1 and their derivatives. Afterwards,
α� and α′

� are obtained. Finally, on the domain, with aid of (10) and (18), one can
compute εi+1, ηr

i+1 and κr
i+1. At each integration point, αi and κr

i must be stored.
In general, only u and α� must be connected by neighboring elements. ε can be
shared only in the case of smooth connection of 2 elements, with no change of cross-
sectional properties and no nodal external forces. In the example a 4 Gauss–Lobatto
integration point scheme was used, but other schemes can be used without altering
the results.

4 Numerical Example—Lateral Buckling Analysis

The cantilever problem in Fig. 2 is considered in the following. This is a classical
buckling problem. Determining the critical point appears to be a standard benchmark
problem in this context and is thus considered in many publications. The geometrical
and material parameters within this paper were adapted from [1]. To enter the post
buckling equilibrium path, a perturbation load is applied. In all the presented forms
of this problem, the perturbation load is active during the whole simulation but
with a rather small magnitude of 10−4 times the primal load. The lateral buckling
(displacement in z-direction) is shown in Fig. 3. The critical load can be determined
at approximately 2.2kN.Hence a good agreementwith the literature can be observed.
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Fig. 2 3D cantilever problem

Fig. 3 Lateral Buckling of a cantilever: results for 16 elements discretization

5 Conclusions

The geometrically exact rod formulation presented in [1] was extended to different
polynomial approximations that are similar to those used in TUBA elements of [2].
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1 Introduction

Computational contact mechanics is a particularly challenging research field in non-
linear solid and structural mechanics that has been shaped over the course of almost
four decades now by Professor Peter Wriggers and his many co-workers as well as
collaborators [1, 2]. The interest of most researchers has in large parts been directed
towards 3D solid-to-solid contact with the aim of accurately resolving large deforma-
tion contact problemsof elastic and inelastic engineering components,manufacturing
processes or biomechanical systems. Nevertheless, a smaller yet constant stream of
innovative contributions on 1D beam-to-beam contact can also be observed, which
focus more on the significance of contact interaction of slender rod-wise compo-
nents such as ropes, cables, fiber webbings or again biological structures on different
length scales.

Among themost important research topics for 3D solid-to-solid contact has always
been the choice of a robust contact discretization scheme suitable for large deforma-
tion kinematics, with some of the famous variants being node-to-segment, Gauss-
point-to-segment or segment-to-segment schemes to name only a few [3, 4]. Within
the last two decades, so-called mortar methods originally proposed in the context
of domain decomposition have emerged as widely accepted state-of-the-art con-
tact discretization approach [5–10]. Equally important is the question of contact
constraint enforcement within the underlying variational formulation, where some
common options are penalty methods, Lagrange multiplier methods, the Augmented
Lagrangian approach and, more recently, Nitsche’s method [11, 12]. In recent years,
NURBS-based isogeometric analysis has beome increasingly popular also in com-
putational contact mechanics due to its higher-order continuity, which can be advan-
tageous in the accurate resolution of curved contact boundaries [13–16]. Without
any claim of completeness, other relevant research directions in the field of 3D solid-
to-solid contact include mesh adaptivity [17], contact smoothing [18], third-medium
contact [19] and virtual element methods (VEM) [20].

When considering contact interaction of 1D slender rod-like structures, the associ-
ated challenges are quite different, both from amechanical and from a computational
perspective. In particular, the underlying 1D Cosserat continuum theory of beams
requires a thorough re-formulation of contact and friction kinematics,which becomes
rather complex in the fully nonlinear realm with finite deformations and finite cross-
section rotations. Early contributions can be found in [21–23]. In recent years, such
1D beam-to-beam contact formulation have again been investigated more closely,
partly due to progress in the development of geometrically exact beamfinite elements
and partly due to the high relevance of fiber-based structures and materials for many
modern engineering applications [24–26].

It is striking that the combined treatment of solid-based contact and beam-based
contact in the sense of a 1D-3D beam-to-solid contact formulation has received
much less attention over the years, which can of course be attributed to the fact
that it combines the complexities associated with both building blocks [27–30].
The authors of this contribution have recently started research efforts to develop
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a fully nonlinear 1D-3D beam-to-solid contact formulation including friction. In
the following, an overview of the first steps taken in this direction is given, i.e.
tied contact formulations for 1D fibers being embedded into 3D solid bodies [31].
Moreover, several numerical examples illustrate the interplay of the resulting 1D-3D
beam-to-solid volume coupling approach with well-established solid-based contact
and beam-based contact models, thus showing the path towards truly general 1D-3D
beam-to-solid contact interaction.

2 Governing Equations

We consider a quasi-static 3D finite deformation beam-to-solid volume coupling
problem, cf. Fig. 1. The weak form is derived by the principle of virtual work with
contributions from the solid, the beam, and the coupling terms.

The solid is modeled as a 3D continuum, represented by the open set �S
0 ⊂ R

3 in
the reference configuration. The volume of the embedded beam is not explicitly sub-
tracted from the solid volume, thus resulting in a modeling error due to overlapping
material points. However, the high ratio of beam stiffness to solid stiffness typically
alleviates the impact of this error for the envisaged applications. The deformed posi-
tion xS = X S + uS is related to the reference position X S through the displacement
field uS . Virtual work contributions ∂WS of the solid are given by

∂WS =
∫

�S
0

S : ∂EdV − ∂WS
ext, (1)

where δ denotes the variation of a quantity, S the secondPiola-Kirchhoff stress tensor,
E the energy-conjugate Green-Lagrange strain tensor and ∂WS

ext the virtual work of
the external forces. The Green-Lagrange strain tensor is given as E = 1

2 (F
TF −

I), with F = ∂xS/∂X S being the material deformation gradient and I ∈ R
3×3 the

identity tensor, respectively. For the compressible or nearly incompressible solid, we
assume a hyperelastic strain energy function �(E), which is related to the second
Piola-Kirchhoff stress tensor via S = ∂�(E)/∂E.

Fig. 1 Notation of the finite deformation beam-to-solid volume coupling problem
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The beams used in this work are based on the fully nonlinear, geometrically
exact beam theory, which in turn builds upon the kinematic assumption of plane,
rigid cross-sections. The complete beam kinematics can be defined by a centerline
curve r(s) ∈ R

3, connecting the cross-section centroids, and a field of right-handed
orthonormal triads �(s) ∈ SO3 defining the rotation of the cross-sections. Here,
s ∈ [0, L] =: �B

L ,0 ⊂ R is the arc-length along the undeformed beam centerline and
�(s) is a rotation tensor, which maps the global Cartesian basis vectors onto the
local cross-section basis vectors. The beam centerline displacement uB

r relates the
undeformed beam centerline position r0 to the deformed position r = r0 + uB

r . The
beam contribution to the global virtual work reads

δWB = δ�B
int − δWB

ext, (2)

where δ�B
int is the variation of the beam’s internal elastic energy and δWB

ext is the
virtual work of external forces and moments on the beam. The elastic beam energy
�B

int depends on the employed beam theory, namely either Simo-Reissner, Kirchoff-
Love or Euler-Bernoulli (torsion free) theories, cf. [32].

In the real physical problem, the beam surface (defined by the centerline fields r
and �) is tied to an underlying, internal solid surface. Modeling this type of surface-
to-surface interaction would result in a computationally expensive evaluation of the
coupling terms, thus cancelingout the advantages of employing a1Dbeam theory. For
the inherent assumption in the beam-to-solid volume coupling method, that the beam
cross-section dimensions are small compared to the other dimensions of the problem,
we approximate the coupling of the beam surface and the solid volume as a coupling
between the beam centerline and the solid volume. This is a significant change in
the mathematical description of the mechanical model, and for the implications of
this choice on the applicability and spatial convergence of the proposed method the
interested reader is referred to [31]. The kinematic coupling constraints formulated
along the beam centerline �B

L ,0 in the reference configuration read

uB
r − uS = 0 on �B

L ,0. (3)

The constraints are enforcedweakly via aLagrangemultiplier fieldλ(s) ∈ R
3 defined

on the beam centerline. We point out that from a physical point of view λ represents
a distributed line load along the beam centerline. Coupling contributions ∂WC to the
total virtual work read

∂WC =
∫

�S
L ,0

λ
(
δuB

r − δuS
)
ds +

∫
�S

L ,0

δλ
(
uB
r − uS

)
ds. (4)

This leads to thefinal saddle point-typeweak formulation of the 1D-3Dbeam-to-solid
volume coupling problem,

∂WS + δWB + ∂WC = 0. (5)
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3 Spatial Discretization

We build upon the finite element method here for spatial discretization. In the solid
field either standard C0-continuous finite elements or a C1-continuous isogeometric
approach based on second-order NURBS is used. The beam centerlines are dis-
cretized using C1-continuous finite elements based on third-order Hermite polyno-
mials. For details on the objective and path-independent interpolation of the rotational
field along the beam centerline, see [32]. Employing amortar-type coupling approach
[33], the Lagrange multipliers are also approximated with a finite element interpola-
tion. In this work, linear Lagrange polynomials are used to interpolate the Lagrange
multiplier field, cf. [34], thus yielding discrete mortar coupling matrices D and M
associated with the beam and solid side, respectively. In the spirit and nomenclature
of classical mortar methods, the beam is treated as the slave side and the solid as the
master side, respectively. The linearized system of equations to be solved in every
Newton iteration exhibits saddle-point structure and reads

⎡
⎣K SS 0 −MT

0 K BB DT

−M D 0

⎤
⎦

⎡
⎣�dS

�dB

λ

⎤
⎦ =

⎡
⎣ −r S

−r B

MdS − DdB

⎤
⎦ , (6)

where dS , dB ,�dS and�dB are the displacements and their increments of solid and
beam, r S and r B denote the discrete residual vectors, K SS = ∂ r S/∂dS and K BB =
∂ r B/∂dB are the tangent stiffnessmatrices, andλ are the discrete Lagrangemultiplier
values. The system (6) is solved by introducing a weighted penalty regularization.

4 Numerical Examples

The following numerical examples are set up using the beam finite element pre-
processor MeshPy [36] and are simulated with our in-house parallel multi-physics
research code BACI [35].
First, we investigate the twisting of a coated rope consisting of 7 × 7 individual
fibers. This is an extension of the rope example proposed in [26] and, unless stated
otherwise, all parameters are taken from said reference.

The initial configuration of the 49 straight fibers is shown in Fig. 2a. Each fiber
has the length L = 2.5m and is discretized using 10 torsion free beam elements.
The All-Angle Beam Contact (ABC) formulation [26] is used to model the beam-
to-beam contact which arises in this example. In the first stage of the simulation the
fibers are loaded in axial direction and each of the seven sub-bundles of fibers is
twisted around its center fiber by two full rotations. This twisting process is realized
in a Dirichlet controlled manner. The solution is obtained within 40 quasi-static load
steps and is displayed in Fig. 2b. In the next stage the sub-bundles themselves are
rotated around the rope axis by an additional full rotation, cf. Fig. 2c. Again this
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Fig. 2 Configuration of the coated rope example at different stages during the simulation

is realized with Dirichlet boundary conditions and the solution is obtained within
20 additional quasi-static load steps. Up to this point the model consists only of
beam elements. In the next and final stage the twisted wires are covered with a solid
coating (Esolid = Ebeam/200). The coating and the (deformed) beams are coupled to
each other via the beam-to-solid volume coupling method using first-order interpo-
lation of the Lagrange multipliers. The Dirichlet conditions at the end of the fibers
are replaced by Neumann boundaries matching the reaction forces at the Dirichlet
conditions in the last step of the twisting process. Therefore, the bundle of wires is
in equilibrium with itself and the external loads, i.e. there is no initial interaction
between the solid coating and the wires. The Neumann load at the end of the fibers
is now linearly reduced to zero within 20 quasi-static load steps. Now the solid coat-
ing interacts with the beam fibers in the sense of a pre-stressed composite material.
This results in a back-twisting of the rope and coating of about a quarter rotation
as displayed in Fig. 2d. The normalized (to a maximum value of 1) reaction torque
at the fixed end of the wire is plotted in Fig. 3. One can observe that even tough
the external loads are decreased linearly (in load steps 60–80) the resulting reac-
tion torque exhibits a nonlinear behavior, thus highlighting the complexity of this
problem. This example illustrates the combination of beam-to-beam contact with
beam-to-solid volume coupling and also shows the maturity of the beam-to-solid
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Fig. 3 Resulting (normalized) torque at the fixed end of the rope over the course of the simulation

Fig. 4 Configuration of the reinforced shell example during different stages of the simulation

volume coupling method for complex beam and solid geometries as well as real life
engineering problems. Therefore, it can be seen as an important step towards a truly
general 1D-3D beam-to-solid contact formulation.

In the second example, two shells with the shape of hollow half-cylinders are
pressed against each other. The two shells have the same spatial dimensions as well
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as material parameters, but one of them is reinforced with stiff (Efiber = 200Eshell)
fibers, which are oriented at 45◦ relative to the cylinder axis. The reference config-
uration is shown in Fig. 4a. The reinforced shell is fixed at one end and the other
shell is moved towards the fixed one with prescribed displacements in negative e3
direction. Solid-shell finite elements [37, 38] are used to discretize the shells, and
both shells employ the same hyperelastic Saint Venant–Kirchhoff material. The rein-
forcements are explicitly discretized with beam finite elements and coupled to the
shell elements via the beam-to-solid volume coupling method. The 3D solid-to-solid
(surface-to-surface) contact between the shells is modeled with a state-of-the-art
mortar approach using standard Lagrange multipliers [7, 9]. The problem is solved
using 200 quasi-static load steps and Fig. 4b-d show the configuration of the two
shells at different stages during the simulation. The reinforcement effects can clearly
be seen as the reinforced shell deforms less than the other one. Moreover, the effect
of the asymmetry introduced by the reinforcements can be observed, as the initial
geometric symmetry of the problem is broken and the top shell slides down one side
of the reinforced shell. This example showcases the applicability of the beam-to-
solid volume coupling method to model fiber-reinforced composites and also gives
a glimpse on the possible applications in combination with solid-to-solid contact.
Again, it can therefore be seen as an important step towards a truly general 1D-3D
beam-to-solid contact formulation.

5 Conclusion

Within this contribution we have presented state-of-the-art finite element formu-
lations for beam-to-solid interaction. Specifically, slender fibers are modeled using
efficient 1D beam theories and subsequently embedded inside 3D solid volumes with
amortar-type coupling approach. This allows to efficiently combine different (i.e. 1D
and 3D) modeling approaches into a mixed-dimensional finite element formulation,
which has been demonstrated with two illustrative examples. The presented frame-
work is by no means limited to embedded fibers, but is currently extended towards
beam-to-solid contact problems as part of our ongoing research.
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Abstract This work constitutes a further contribution to developing convergent,
locking-free virtual element formulations for problems of large-deformation non-
linear elasticity. Earlier work by the authors and others has introduced simple and
effective forms of stabilization. This work investigates the approximation proper-
ties of the virtual element method for problems with domains having a high aspect
ratio, and for alternative forms of stabilization: an existing approach, and two mod-
ifications. The results in all cases demonstrate the locking-free convergence of the
approach, with the newer modifications leading to improvements in accuracy.

1 Introduction

The virtual element method (VEM), a relatively recent extension of the finite element
method, has received considerable attention in recent years, with applications in solid
mechanics that range from contact [1] and fracture [2, 3] to those involving nonlinear
material behaviour with large deformations [4–7]. The attraction of the method lies
in its flexibility in being able to accommodate polygonal or polyhedral elements
that might deviate considerably from convex, as well as the ease in constructing the
matrices necessary for solution. Furthermore, the method exhibits robust behaviour
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and leads to convergent locking-free solutions in situations of near-incompressibility
[8] and near-inextensibility [9–11] for transversely isotropic materials.

The typical lowest-order VEM formulation comprises a consistency term that
depends on a projection of gradients of the unknownvariable on to constants, together
with a stabilization term that is required to address the rank-deficiency inherent in
the consistency term. There exist various standard approaches to the construction of
stabilizations for linear problems. In the case of nonlinear problems, recent works
have shown the effectiveness of some simple approaches to stabilization [8, 10,
12], based on the use of a modified strain energy function. This approach has been
extended in recent work [13], with a view to seeking greater robustness and improved
convergence properties for problems of near-incompressibility. In the present work
the approach adopted in [13] is used to studyVEM approximations of a problemwith
high aspect ratio. This represents a severe test of the robustness of theVEM, especially
for problems of near-incompressibility, and while the method yields results that are
acceptable, two modifications to the stabilization term are explored as alternatives
to arrive at results of greater accuracy. Results are presented with the use of the
standard stabilization as well as the two modifications. Error plots demonstrate the
locking-free behaviour as well as rates of convergence that are somewhat better than
linear.

2 The Governing Equations

We summarize in this section the equations that govern equilibrium of an isotropic
hyperelastic body [14], which occupies a polygonal domain � ⊂ R

2 in its unde-
formed configuration, with boundary �. The body undergoes the motion ϕ(x, t) =
X + u(X, t) where X and x are respectively the initial and current positions of a
material point, and u is the displacement. The deformation gradient F is defined by
F = Gradϕ = I + Grad u where I is the identity and Grad denotes the referential
gradient.

The body is subjected to a body force f (X, t) on its domain and boundary con-
ditions

u = ū on �u , Pn = t̄ on �t , (1)

where �u and �t are complementary subsets of the boundary � with unit outward
normal n; ū and t̄ are respectively a prescribed displacement and surface traction,
and P is the first Piola-Kirchhoff stress.

The material response is specified through a strain energy function � which
depends on the right Cauchy-Green tensor C := FT F through its invariants Ik (k =
1, 2, 3), where I1 = trC, I2 = 1

2 [(trC)2 − trC2] and I3 = detC = J 2 and J =
det F is the Jacobian of the deformation gradient.

An equilibrium solution u of the hyperelasticity problem is then found as a min-
imizer of the total potential energy
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U (v,Grad v) =
∫

�

[�(Ik(Grad v)) − f · v] dx −
∫

�t

t̄ · v ds . (2)

3 The Virtual Element Method

The domain � is partitioned into a mesh of non-overlapping polygons E with ∪E =
�. A generic element has a total of nv vertices, with edges ei connecting vertices Vi

and Vi+1 (i = 1, . . . , nv) (mod nv) (see Fig. 1a).
We construct a conforming approximation in a space V h ⊂ V , comprising func-

tions that are continuous on �, piecewise linear on edges e, and such that the Lapla-
cian �vh := DivGrad v vanishes on each element E :

V h = {vh ∈ V | vh ∈ [C(�)]2, �v = 0 on E, vh |e ∈ P1(e)} . (3)

Nodal values or degrees of freedom of the function v are defined at the element
vertices, and it is convenient to write vh |∂E = Ndwhere d is the vector of degrees of
freedomof element E andN is amatrix of local Lagrangian basis functions defined on
the element boundary ∂E . The basis functions on elements are not defined explicitly,
nor are they required in the computations.

We define the projection �∇uh of the displacement gradient by its restriction
�∇uh |E to element E , given by

�∇uh |E = 1

|E |
∫
E
Grad uh dx . (4)

This is clearly constant on elements.
The VEM approximation to the minimization problem (2) is then obtained by

introducing a suitably constructed energy �̂ [8] so that

�(Grad uh) � �VEM(Grad uh) := �(�∇uh) + �̂(Grad uh) − �̂(�∇uh) . (5)

Fig. 1 a Element geometry; b quantities used in definition of aspect ratio
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The first term on the right-hand side is a consistency term and the second and third
serve as a stabilization term. The modified problem is now one of minimizing the
functional

Û (uh,∇uh) =
∫

�

�VEM(Grad uh) dx −
∫

�

f · uh dx −
∫

�t

t̄ · uh ds . (6)

Integration of the term involving �̂ in (5) is carried out as proposed in [8], using
one-point quadrature on triangular subdomains.

The strain energy function �̂ has been further modified in [13]. Based on the
neo-Hookean strain energy function, it is defined by

�̂ = μ̂

2 (I1 − 3 − 2 ln J ) + λ̂
2 (J − 1)2 , (7)

where λ̂ and μ̂ are modified Lamé parameters, defined by

λ̂ = 


1 + 

T5(λ), μ̂ = 


1 + 

(1 + α)2μ , 
 = 2(1 + ν)

ρ2
(8)

where ρ = Ro/Ri is the element aspect ratio (see Fig. 1b), T5(λ) is the 5th-order
Taylor series expansion of λ as a function of ν, about ν0 = −0.25, and α = T5(λ)/E
is a factor that modifies the stabilization energy for the case of near-incompressibility
and for severe deformations. All quantities are evaluated and applied elementwise.

Two further modifications of the stabilization energy (7) will be considered in the
numerical investigation, to account in alternative ways for high values of element
aspect ratio. The first, denoted by �̂∗, is defined by

�̂∗ = �̂/ρ , (9)

while the second, denoted by �̂∗∗, is obtained by replacing 
 in (8)3 by


∗∗ = 2(1 + ν)

ρ3
. (10)

4 Numerical Results

In the work [13] the authors have undertaken a detailed numerical study based on
the stabilization (7)–(8). Here, the objective is to assess the robustness and accuracy
of the VEM for a problem with high aspect ratio, using the stabilizations introduced
earlier.

This problem, previously studied in [8], concerns the behaviour of a thin cantilever
of width 100 m and height 1 m that is subjected to a point load at one end and is fully
constrained at the other. A neo-Hookean relation is assumed, with Young’s modulus
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Fig. 2 Cantilever

Fig. 3 Meshes considered

E = 200 Pa, and for various choices of Poisson’s ratio. A point load P = 0.002 N
is applied at the free end. Meshes of 10 · 2N × 2N elements are used, where N is
the mesh refinement level. The nominal aspect ratio of the elements is thus ρ = 10.
The deformed cantilever is shown in Fig. 2 for ν = 0.3 with a mesh of four-noded
rectangular elements for N = 2.

Figure3 depicts the meshes employed: (a) structured four-noded rectangular vir-
tual and finite elements (SQ1-VE and SQ1-FE), (b) structured eight-noded rectan-
gular elements (SQ2S-VE), (c) a sun-and-star arrangement of elements (S&S-VE),
and (d) elements constructed by Voronoi tessellation (VRN-VE). Results are also
shown for the case of rectangular biquadratic finite elements (Q2-FE).

Figure4 shows the vertical displacement of the free end of the cantilever versus
mesh refinement using the standard stabilization approach �̂ and for the cases of (a)
compressibility, with ν = 0.3, and (b) near-incompressibility, with ν = 0.49995. In
both cases the SQ1-VEandSQ2S-VE formulations exhibit significantly greater accu-
racy than theQ1-FE formulation. The S&S-VE andVRN-VE formulations, however,
exhibit slower convergence and poorer accuracy than the other VEM formulations.
In the case of near-incompressibility the Q1-FE formulation exhibits well-known
volumetric locking while the VEM formulations are locking-free.

Figure5 shows the displacement versus mesh refinement for the nearly incom-
pressible case with modified approaches to stabilization for (a) �̂∗ and (b) �̂∗∗.
In both cases the VEM formulations exhibit greater accuracy than that observed in
Fig. 4b for every mesh refinement level. Most notably, the slow convergence of the
S&S-VE and VRN-VE formulations observed in Fig. 4 is improved significantly by
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Fig. 4 Displacement versus N for �̂ with a ν = 0.3 and b ν = 0.49995

Fig. 5 Displacement versus N with ν = 0.49995 for a �̂∗ and b �̂∗∗

the modifications to �̂ with the approach �̂∗∗ exhibiting a slightly greater improve-
ment than that of �̂∗.

Figure6 shows plots ofH1 error versus mean element diameter h̄ for the standard
stabilization approach �̂ and for (a) various mesh types with ν = 0.3 and (b) the
SQ1-VE formulation in the cases of compressibility and near-incompressibility. The
H1 error is computed as described in [13]. In Fig. 6a the SQ1-VE and SQ2S-VE
formulations exhibit superlinear convergence behaviour. The convergence rates of
the S&S-VE and VRN-VE formulations are initially slow but increase as element
size decreases. For finer meshes the VRN-VE formulation exhibits a convergence
rate of approximately one, while that of the S&S-VE formulation is superlinear. In
Fig. 6b superlinear convergence is again exhibited by the SQ1-VE formulation.

Figure7 shows plots of the H1 error vs mean element diameter h̄ for the nearly
incompressible case and for the two modified stabilization approaches. The con-
vergence behaviour exhibited for the two is very similar. Superlinear convergence
behaviour is again exhibited by the SQ1-VE formulation, while the convergence
rate of the SQ2S-VE formulation is initially superlinear but approaches approxi-
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Fig. 6 H1 error versus mean element diameter for a a variety of mesh types with ν = 0.3 and b a
variety of Poisson’s ratios for the SQ1-VE formulation

Fig. 7 H1 error versus mean element diameter with ν = 0.49995 for a �̂∗ and b �̂∗∗

mately one as element size decreases. The convergence behaviour of the S&S-VE
andVRN-VE formulations is qualitatively similar to that observed in Fig. 6; however,
the magnitude is significantly decreased.

5 Concluding Remarks

The results in this work demonstrate the ability of the VEM to approximate with
high accuracy problems involving large deformations and near-incompressibility,
with standard shapes such as rectangular elements showing greater accuracy than
more complex polygons. In addition to a stabilization approach that has previously
been introduced and used, two modifications are shown to lead to improvements in
accuracy of the approximate solution. Subsequent work [11] shows similar accuracy
and robustness in relation to near-incompressibility and near-inextensibility in the
case of problems involving transversely isotropic material behaviour.
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1 Introduction

Damage models usually aim at the description of strain softening effects due to
material failure such as e.g. micro-crack formation (see [1–3]). Since the partial dif-
ferential equations resulting from the balance of linear momentum and local damage
models suffer from a loss of ellipticity once a certain amount of damage has evolved,
corresponding finite element simulations may suffer from mesh dependency and a
lack of robustness with respect to convergence of the numerical solution procedure.
Various regularization approaches such as a relaxed variational approach (see e.g.
[4]) present a remedy through retaining convexity of the underlying incremental
stress potential. Another approach is gradient damage, in which, through gradient
enhancement of the strain energy density, well-posedness of the mathematical equa-
tions and thus increased numerical robustness and mesh-independent simulations
may be obtained. For a staggered gradient damage approach see [5–7], in which
the solution of the balance of linear momentum and the update of the internal dam-
age variable incorporating the gradient enhancement are performed in an alternating
manner. Another approach is to incorporate the gradient enhancement through intro-
ducing additionalmixed solution variables corresponding to the damage variable (see
e.g. [8] for small strains and [9] for large strains). In these approaches compatibility
between the gradient-extended mixed variable and the internally updated damage
variable is enforced by a penalty term which introduces the necessity of a numerical
parameter, the penalty parameter. Unfortunately, the alternative, to accommodate
compatibility via a Lagrange multiplier, requires additional variables resulting in an
increased number of degrees of freedom in associated finite element formulations.
To avoid these drawbacks, a mixed approach is proposed here, in which the elastic
potential is formulated exclusively in terms of the displacements and the gradient-
extended mixed damage variable, thereby avoiding the direct need for compatibility
of the mixed variable in the gradient-extended part and the damage variable obtained
from an approximation of the displacements. Thermodynamic consistency can be
ensured through incorporation of the condition α̇ ≥ 0, where α is the damage vari-
able.

2 Continuum Damage Mechanics

In this section, the continuum mechanical framework for the finite strain gradient
damage approach is given. Let ϕ = X + u(X, t) describe the finite strain defor-
mation map ϕ : B → S, where X describes the position of a material point of the
considered body in the reference configuration B. The body in deformed configura-
tion is denoted by S and the displacement is given by u. The deformation gradient is
given by F := ∇ϕ = 1 + ∇u. The gradient-damage-extended strain energy density
function following the approach of [9] based on [8] reads
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�(F, α) := (1 − D(α))�0(F) + cd
2

(∇α)2. (1)

Material softening due to microscopic damage is modelled through the damage
function D : R → [0, 1) with D(α) := 1 − f (α) and f (α) := exp(−α), wherein
α denotes the damage variable. �0 denotes the hyperelastic strain energy density
function corresponding to the fictively undamaged state. Furthermore, differentia-
tion with respect to the deformation gradient gives the first Piola Kirchhof stress
tensor P := ∂F� = f P0 with the fictively undamaged part P0 = ∂F�0. The bal-
ance of linear momentum and the stress flux on the Neumann boundary �N read

−Div P = f in B and P · N = t on �N , (2)

where f is the vector of body forces and t denotes the vector of surface tractions.
Discontinuous damage models (see e.g.[3, 10]) which only consider an evolution
of damage when reaching a damage surface incorporate the Karush-Kuhn-Tucker
conditions

α̇ ≥ 0 � ≤ 0 � α̇ = 0 (3)

with � := f �0 + cd�α − f α ≤ 0 (4)

and ∇α · N = 0 on ∂B (cf. [9,8]). (5)

Based on the damage surface �, the evolution of the damage variable is described,
such that� = 0 characterizes the casewhere damage evolution takes place. Note that
in the following mathematical derivations, we only consider this case for the sake of
simplicity. If no damage evolution occurs, then the whole formulation reduces to a
purely elastic problem with fixated values for α. Multiplying relations (2) with a test
function δu and integration over B, as well as multiplying (4) with δα, integrating
over B, and inserting (5) yields1:

ˆ
B
P · δFdV −

ˆ
B

δu · f dV −
ˆ

�N

δu · tdA = 0 (6)

ˆ
B

( − f �0 δα + cd∇α · ∇δα + f α δα
)
dV = 0. (7)

By making use of the relation ∂α f = − f (due to the specific choice of f (α)) we
can also obtain the weak forms (6) and (7) by variation of the potential 	 defined as

1 Analogously to deriving the weak form of the balance of linear momentum, the divergence
theorem applied to the integrals of (4) and (5) yields − ´B cd �α δαdV + ´

∂B ∇α · N δαdA =´
B ∇α · ∇δαdV .



446 J. Riesselmann and D. Balzani

	 := 	int[F, α,∇α] + 	diss[α] + 	ext[u] with (8)

	int :=
ˆ
B

�(F, α,∇α)dV, (9)

	diss :=
ˆ
B

− f (α + 1)dV and (10)

	ext := −
ˆ
B
u · f dV −

ˆ
�N

u · tdA. (11)

Here, 	diss can be constructed from the relation
´
t f α α̇ dt = − f (α + 1), where

the integrand is the last term of (7). The formulation of the potential (8)-(11) is the
starting point of the finite element formulation in the following subsection.

3 Finite Element Formulation

In this section a straightforward finite element discretization based on the previously
introduced relations is discussed and corresponding discrete matrix equations are
derived. For this, a partition of the body B into tetrahedra T = ⋃

e Te is considered.

Vh := {δuh ∈ H 1
�D

(B) ∩ P2(T ) : δuh |�D = 0}, (12)

Qh := {δαh ∈ H 1(B) ∩ P1(T ) ∩ R
+ : ffl δαhdX = 0}. (13)

Here, H 1
�D

(B) denotes the Sobolev space of functions, which are square-integrable
over B and whose gradients are also square-integrable over B. Moreover, Pk(T )

denotes the space of piecewise polynomial functions of degree≤ k. For the following
finite element formulation,whichwill be denoted byP2u-P1ᾱ we introduce thematrix
interpolation operators for the discrete solution variables uh ∈ Vh and ᾱh ∈ Qh :

uh = Nudu, δuh = Nuδdu, ∇uh = Budu, ∇δuh = Buδdu, (14)

ᾱh = N ᾱd ᾱ, δᾱh = N ᾱδd ᾱ, ∇ᾱh = Bᾱd ᾱ, ∇δᾱh = Bᾱδd ᾱ . (15)

Here, Nu, N ᾱ, Bu and Bᾱ denote interpolation matrices containing the correspond-
ing Lagrange shape functions and their derivatives respectively. Furthermore, du and
d ᾱ denote the corresponding nodal degrees of freedom.2 We formulate the poten-
tial (8) in terms of the discrete functions 	h := 	h [uh,∇uh, ᾱh,∇ᾱh] and after
variation, the following discrete terms are obtained

2 In order to simplify the notation with respect to the assembly of the global system the introduced
quantities are assumed to be in the dimension of the global system.
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δu	
h =

∑

T∈T
δdT

u

( ˆ
T
f (d ᾱ)

∂�0(du)

∂du

dX

︸ ︷︷ ︸
ru(du ,d ᾱ )

−
ˆ
T
NT

u f dX −
ˆ

δT
NT

u tdA
︸ ︷︷ ︸

rextu

)
, (16)

δᾱ	h =
∑

T∈T
δdT

ᾱ

( ˆ
T

( − f (d ᾱ)NT
ᾱ �0(du) + cd BT

ᾱ Bᾱd ᾱ + f (d ᾱ) NT
ᾱ

)
dX

︸ ︷︷ ︸
r ᾱ (du ,d ᾱ )

)
,

(17)

Since both, �0 and f , are nonlinear in the corresponding solution fields, the residual
terms ru and r ᾱ are both nonlinear in du and d ᾱ . Thus, (16) and (17) are linearized
in the context of a Newton-Raphson-iteration scheme yielding the equation

Lin[δu	h + δᾱ	h] =
∑

T∈T

[
δdu
δdᾱ

]T ([
ku kuᾱ

kᾱu kᾱ

] [
�du
�dᾱ

]
+

[
ru(d̄u , d̄ᾱ ) + rextu

r ᾱ (d̄u , d̄ᾱ )

])
= 0, (18)

which is solved in each iteration for arbitrary test variations of the solution field.
Herein, d̄u and d̄ ᾱ denote the nodal values from the previous Newton iteration. The
tangent submatrices are given through differentiation

ku = ∂ ru
∂ d̄u

=
ˆ
T
f (d̄ ᾱ)

∂2�0(d̄u)

∂ d̄
2
u

dX (19)

kᾱ = ∂ r ᾱ

∂ d̄ ᾱ

=
ˆ
T

(
cd BT

ᾱ Bᾱ − f (d̄ ᾱ) NT
ᾱ N ᾱ

)
dX (20)

kuᾱ = ∂ ru
∂ d̄ ᾱ

= −
ˆ
T
f (d̄ ᾱ)

∂�0(d̄u)

∂ d̄u

N ᾱdX = kTuᾱ (21)

Instead of additional internal update iterations as in [9] for thermodynamic consis-
tency, an algorithmic incorporation of the condition α̇ ≥ 0 is used. As a starting point
we consider the simple update procedure for each timestep t :

• Solve repeatedly (18) within the Newton-Raphson procedure.
• Check condition α̇ ≥ 0:
For each node j :

– If (d ᾱ)t+1
j < (d ᾱ)tj , set (d ᾱ)t+1

j = (d ᾱ)tj

Comparative formulation: As comparative model, the approach following [9]
and [8] is considered. Here, the mixed variable ᾱ is introduced in addition to the
internal variable α and compatibility between the variables is enforced with a penalty
term. Thus, the internal potential is modified to

	int[F, α, ᾱ,∇ᾱ] :=
ˆ
B
(1 − D(α))�0(F) + p

2
(ᾱ − α)2 + cd

2
(∇ᾱ)2dX, (22)
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where p denotes a penalty parameter. The penalty parameter can also be interpreted
as micromorphic coupling parameter as investigated by [11] (see also the recent
contribution [12]). The corresponding finite element discretization considers uh ∈
Vh, ᾱh ∈ Qh, αh ∈ R+ and will in the following be denoted by P2u-P1ᾱ-pen. The
corresponding linearized discrete system of equations is denoted by

Lin[δu	h,pen + δᾱ	h,pen] = 0. (23)

Furthermore, the condition� = f �0 + p(ᾱ − α) − f α ≤ 0 is considered in an
internal update process in order to remain thermodynamic consistency. The procedure
reads, for each timestep t :

• Solve (23) repeatedly within the Newton-Raphson procedure.
• Check condition � ≤ 0:
For each gauss point j :

– If (�)t+1
j > 0, solve (�(α))t+1

j = 0 with Newton-Raphson sub-iterations

4 Numerical Tests

In the following, the introduced finite element formulations are numerically tested.
For the implementation, the automatic-differentiation-based software package Ace-
Gen/AceFEM has been used (cf. [13]). The incremental solution procedure incor-
porates an adaptive load step scheme. As elastic constitutive model we use the Neo-
Hooke type hyperelastic energy function

�0 = μ

2
(I1 − 3) + g(J ) (24)

with g(J ) = λ/4(J 2 − 1) − λ/2 ln J − μ ln J (cf. [14]), C = FT F, I1 = tr C and
J = det F. An overview of the parameter values chosen for the numerical tests are
given in Fig. 1b. For the numerical tests the additional damage propagation parameter
η of [9] is included in the damage function D(α) = 1 − exp(−ηα) and corresponding
derivatives. The considered benchmark test is the boundary value problem of a plate
with a hole as shown in Fig. 1a. Due to its symmetry, a consideration of only the
upper right quarter is sufficient with symmetry boundary conditions uX = 0 at X = 0
and uY = 0 at Y = 0. Moreover, at the upper face the displacement is prescribed
with û = (0, û, 0)T and û = 25mm. The geometric dimensions are L = 100mm,
H = 10mm and R = 50mm (cf. Fig. 1a).

In Fig. 2a, force displacement curves of the P2u-P1ᾱ computation are displayed
for variousmesh refinement stages. In order to visualize the tendency to converge, the
plot on the right hand side shows an enlargement of the section marked with a dashed
box on the left. Contour plots of the distribution of the damage function D in Fig. 1c
correspond to the load stages marked with bullets in Fig. 2a. For the computation
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Fig. 1 a Platewith hole problemdescription.bParameters used for the computation. cContourplots
of the distribution of the damage field D corresponding to the load stages marked with bullets in
Fig. 2a

of the comparative P2u-P1ᾱ-pen element the force displacement curves are given
in Fig. 2b. From comparing the plots in Figs. 2a, b , a similar convergence behavior
with respect to the refinement step can be observed. In Fig. 2c, the convergence
of the reaction force corresponding to the final load step with respect to the total
computing time for each mesh refinement step is shown for the compared elements.
Here, a speed-up factor of ≈ 2 of the computing time of the P2u-P1ᾱ compared
to the P2u-P1ᾱ can be observed (a visualization is shown in the barplot of Fig. 2c.
Evaluated is the computing time of the last refinement step and it is marked with
colored bullets in the left plot of Fig. 2c. The increased efficiency of the P2u-P1ᾱ may
be due to the fact that while the size and condition number of the tangent matrices of
the compared elements should be similar, no subiterations are performed in the P2u-
P1ᾱ computation. However, the proposed formulation does not require the choice of
a numerical penalty parameter.

In order to investigate the ability of the P2u-P1ᾱ element to model damage evo-
lution in loading-unloading scenarios, in a second test, the prescribed displacement
û = (0, 5, 0)T mm is applied with an increasing sine function as load step multiplier
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Fig. 2 Force displacement curves a corresponding to the P2u-P1ᾱ and b to the P2u-P1ᾱ-pen
formulation. Images with enlarged resolution are shown on the right hand side. c Convergence of
the reaction force with respect to computing time
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Fig. 3 a Cyclic function of the loadstep multiplier λ(t) with û(t) = λ(t)ûmax. b Corresponding
stress-deformation curves evaluated at point B = (50, 5, 0)mm for varying number of loadsteps

λ(t)with û(t) = λ(t)ûmax shown in Fig. 3a. Figure3b shows the corresponding stress
deformation response of the 22-entries of (P)22 and (F)22 evaluated at the localiza-
tion point B = (50, 0, 5) mm (cf. Fig. 1a). Shown are the curves for a fixed mesh
(hel = 8.66mm) and varying number of steps of the time step solution procedure.
For the chosen number of solution steps, the curves are observed to coincide.

5 Conclusion

A new mixed finite element formulation has been presented, in which the governing
equations are formulated in terms of the displacements and amixed damage variable.
Thederivedfinite element systemof equations solves thebalanceof linearmomentum
and the damage evolution equation analogously and thus it avoids additional sub-
iterations and the penalty coupling present in the comparativemodel. Numerical tests
have unveiled the ability to produce mesh-independent simulations and further, an
increase in numerical efficiency compared to the competitive approach. The ability
tomodel discontinuous damage evolution in the case of unloading scenarios has been
shown. The investigation of more refined algorithmic treatments in order to further
increase robustness and efficiency for unloading scenarios is left for future research.
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Abstract In this contribution, novel modeling approaches for progressive dam-
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laminates (FML) under static and cyclic loading conditions are presented. The
finite element-based models are implemented as user-defined material subroutines
(UMAT) in the commercial software ABAQUS/Implicit. First, the respective func-
tionalities and the special features of the FRP andFMLdamagemodels are explained.
Subsequently, the model predictions are compared to first-hand experimental results,
demonstrating their predictive capabilities. In this context, special attention is paid
to bolted-joint applications, representing a challenging use-case due to complex 3D-
stress states. The comparisons of numerical and experimental results demonstrate the
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1 Introduction

Components made of FRP offer numerous advantages compared to conventional
materials like metals. Their lowweight and high strength are particularly relevant for
lightweight requirements in aerospace, automotive and wind energy applications. In
addition, the anisotropic character of FRP offers sophisticated possibilities to match
a structure’s design to the expected load requirements.

Despite these benefits related to FRP composites, their usage in combination
with bolted joints is comparatively challenging. By drilling the bolt holes, load-
carrying fibers are cut, which causes an initial pre-damage of the FRP composite.
To compensate this pre-damage and to account for the complex stress states near the
bolt, quasi-isotropic laminates are usually applied, which often results in additional
weight of the structure.Additionally, rather brittlematerials, like FRPcomposites, are
generally not capable towithstand stress concentrations near holes or cut-outswithout
damage, resulting in a low joint efficiency compared to more ductile materials [1]. In
this context, so-called fiber metal laminates (FML) represent a promising concept to
strengthen FRP composites for bolted joint applications. Here, thin metallic inlays
are used to substitute single plies of the FRP laminate in the bolt’s periphery. By
doing so, the laminate’s isotropy and plasticity is increased, resulting in a significant
increase of the joint’s load capacity [2].

In order to design FRP and FML components, reliable simulation tools are
required in addition to preliminary experimental investigations. Therefore, the aim of
this contribution is to present novel modeling approaches for the progressive damage
and failure analysis of FRP and FML components. In this context, Sect. 2 gives a
theoretical overview of the latest progressive damage models for FRP composites
[3–5] and FML [6]. Section3 demonstrates the predictive abilities of the modeling
approaches, comparing numerical and experimental results. Finally, Sect. 4 contains
some concluding remarks based on the work carried out.

2 Theoretical Aspects

2.1 A Progressive Damage Model for FRP Composites Under
Cyclic Loading

The fatigue damage model presented in this subsection is designed for FRP com-
posites (in the following denoted as FRP-FDM) and can be applied from coupon- to
component-level. Themodel includes a nonlinear damage accumulation law and ana-
lyzes the damage evolution in each layer of the laminate (layer-based approach). The
nonlinear damage accumulation law allows to account for load-sequence effects, typ-
ical for FRP composites, whereas the layer-based analysis allows to capture complex
load-redistribution effects. Additionally, in case of static failure during the fatigue
analysis, material properties are degraded according to the mode-discrete Puck frac-
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ture theory [7]. The FRP-FDM has been implemented as a user-defined material
subroutine (UMAT) in the commercial finite element software ABAQUS/Implicit.
The model is based on the assumption of a transversal-isotropic material behavior. In
relation to the local material orientations j and the applied loads k, strength and stiff-
ness degradation factors are introduced (ηRk

j
and ηEk

j
, respectively), which describe

the state of damage for each Gauss Point of the FE-model. The degraded stiffness
and strength parameters (Ek

j,da and Rk
j,da , respectively) can be expressed as follows:

Ek
j,da = ηEk

j
· Ek

j , and Rk
j,da = ηRk

j
· Rk

j , (1)

where ηRk
j ,Ek

j
= 0 represents complete damage and ηRk

j ,Ek
j
= 1 the pristine material

state.
The main feature of the FRP-FDM is the application of an energy-based damage

hypothesis [8], originally developed for the fatigue analysis of reinforced concrete.
This hypothesis implies that the state of damage under static loading (superscript st)
is comparablewith the state of fatigue damage under cyclic loading (superscript f at),

Fig. 1 Schematic illustration of the determinationof the stiffness (ηE ) and strength (ηR) degradation
factors. Steps 1 and 2: Characterization of the failure state by means of stress-strain curves; step
3: Strain/damage evolution depending on normalized load cylces; step 4: Determination of the
degradation factors ηE and ηR
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if the amount of energy gk
j dissipated by a material point for both loading scenarios

is equal. When adopting this hypothesis to fiber composites, the damage state of a
certain material orientation j depends only on the amount of energy dissipated in
this orientation. Consequently, the damage state in relation to stiffness and strength
properties (with identical material orientation j) is comparable (gst,k

j = g f at,k
j →

Est,k
j,da = E f at,k

j,da , and Rst,k
j,da = R f at,k

j,da ). The application of this energy hypothesis also
allows the fatigue analysis to be performed load-block-wise, thus bypassing a time-
consuming and computationally intensive cycle-by-cycle analysis. Figure1 explains
the main steps during the damage calculation procedure. In steps 1 an 2, the ultimate
failure state is characterized (for the quasi-static and cyclic load case) considering
the magnitude of stresses σmax of the current load block nb. Here, the basic idea of
the above energy hypothesis (gst

f = g f at
f ) is applied. In step 3, the fatigue damage

increase, representedby the fatigue strain evolution, is calculatedbasedon thenumber
of load cycles nb applied virtually for the current load block. Finally, in step 4,
the updated degradation factors ηE/R for strength and stiffness, respectively, are
determined iteratively by ensuring the balance of energies (gst = g f at ) for the set
parameters σmax and ε

f at
new. A detailed description of the FRP-FDM including all

assumptions and mathematical expressions can be found in [3–5, 8–11].

2.2 A Progressive Damage Model for Fiber Metal Laminates
in Static Bolted Joint Applications

The FML static damage model recently presented in [6] has been primarily designed
for the progressive failure analysis of FML bolted joints. The first step to develop the
damage model was to gain a detailed understanding of the complex transient damage
processes related with the different joint failure modes. As illustrated by Fig. 2, the
damage of an FML bolted joint in case of a typical bearing failure mode develops
differently, depending on whether the laminate is located in the area laterally con-
straint by the bolt’s head (so-called “underwasher domain”, UWD) or in the so-called
“free surface domain” (FSD). First, the damage initiates with a crushing of the FRP
composite matrix in front of the bolt in load direction. Beside that crushing, severe
damage of the laminate is prevented at this stage by the lateral constraint induced by
the bolt’s head. As damage evolves further, the state of final failure is reached when
damage spreads out of the UWD, entering the FSD. In absence of any lateral con-
straint, the laminate suffers more severe degradation than in the UWD, resulting in
buckling effects primarily in the zero-degree layers of the FRP. The primary buckling
of the FRP layers results in a secondary buckling of the metallic inlays, which feature
only a thickness of 0.25 mm. The FML damage model accounts for all these effects
by distinguishing between the UWD and the FSD, see Fig. 3. Note, that laminate
deformation due to loading is also taken into account while defining the two zones.
Within the two zones, different configurations of the damage models (for FRP plies
and the metallic inlays) are used to account for the above phenomena. To predict the
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Fig. 2 Side-view of an FMLbolted joint after bearing failure. The final damage of the joint is caused
by a buckling of the zero-degree FRP plies, followed by a secondary buckling of the metallic inlays.
The laterally constrained “UWD” features no severe damage beside crushing of the matrix material

Fig. 3 Illustration of the joint sections distinguished by the FML damage model for bolted joint
applications. Different damage algorithms are provided for the FML constituents (FRP and metallic
inlays) depending on the material point’s location with respect to the bolt’s head or washer. The
actual bolt is not illustrated for the sake of simplicity

state of damage for the FRP plies, a static damage model based on the failure theory
of Puck [7] is applied [5, 6]. For material points located in the laterally constraint
UWD, compressive FRP damage is limited, so the material point’s stiffness can not
drop below the stiffness of the pure matrix material [5]. By doing so, the previously
explained effect of crushing can be taken into account effectively in a continuum
mechanical manner. In case compressive fiber failure is detected by the FRP damage
model in the area not constrained by the bolt’s head or washer (FSD), the model
reduces the material stiffness not only for the corresponding FRP material point, but
also for neighboring metallic inlay material points. Here, the assumption is, that the
inlays can not carry any load without surrounding intact (zero degree) FRP plies,
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see Fig. 2. However, in addition to buckling, the metallic inlays can also be damaged
by excessive plastic deformation, typical for failure modes like shear-out or net-
tension failure. To account for rupture of the inlays in case of excessive straining, a
strain-based damage model according to [12] has been implemented. This inlay rup-
ture model is based on a so-called fracture locus, representing the plastic equivalent
strain at failure initiation as a function of the stress triaxility. Accordingly, an inlay
Gauss Point can be damaged either indirectly (buckling) and/or directly (rupture).

3 Application Examples and Discussion

3.1 Fatigue Prediction of FRP Composites Under Complex
Stress States

This subsection demonstrates the predictive capability of the FRP-FDM under cyclic
loading with complex stress states that generally prevail for many technical appli-
cations. A modified three-point bending test serves as an application example (see
Fig. 4a). Here, the special feature is that the specimen is firmly clamped on both
ends in order to generate an inhomogeneous stress distribution along the specimen
length ls . A force ratio of R = Fmin/Fmax = −1 (fully reversed cyclic loading, with
Fmax = 400N) and amaximumnumber of load cycles n = 105 under constant ampli-
tude loading were chosen as test parameters. Figure4b illustrates the inhomogeneous
distribution of the transverse stress component σ22 for the different 90◦ layers of the
[90/0/90/0/90] laminate during maximum loading (Fmax = 400 N). In Fig. 4c, the
percentage deflection increase during cyclic loading is used to compare the numer-
ical prediction with experimental measurements. The deflection increase is mainly
induced by inter-fiber cracking. As can be seen, the FRP-FDM predicts the damage
behavior throughout the entire test period in close accordance with experimental
measurements. More details on this example can be found in [4].

3.2 Progressive Fatigue Damage Analysis of a GFRP
T-Bolted Joint

In this example, a recently published version of the FRP fatigue damage model (see
[5] for further information) is validated for a bolted joint component made from
GFRP multi-axial laminate, see Fig. 6. This so-called T-bolt joint is typically used in
the wind energy industry for joining the hub and the rotor blades of the turbine.

A comparison between the experimentally measured global stiffness degradation
and the corresponding numerical prediction is displayed in Fig. 5. The comparison in
Fig. 5 shows, that the evolution of the global degradation D is predictedwith sufficient
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Fig. 4 a Schematic illustration of the bending test set-up; b Varying local stress component σ22
in different 90◦ plies, c Comparison of predicted and experimentally determined fatigue caused
deflection evolution of the bending specimen �d/d0 (with �d = dda − d0). For details see [4]

Fig. 5 Comparison between
experimental measurement
and numerical prediction of
the global stiffness
degradation D for two T-bolt
bearing setups tested under
tension-tension cyclic
loading conditions
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Fig. 6 Comparison of the fracture pattern observed after fatigue failure of the GFRP T-bolt setup
(right) and the numerically predicted distribution of the damage parameter Dfat

11 at failure (left). The

contour plot of the damage parameter D f at
11 matches well with the shear-out failure mode observed

for the experiment

accuracy by themodel. To further increase the depth of validation, the fracture pattern
observed for the experimental tests is compared to the distribution of the numerically
predicted decisive fatigue damage parameter, see Fig. 6. The comparison shows, that
the fatigue damage model accurately predicts the so-called shear-out failure mode
of the T-bolt joint setup under cyclic loading.

3.3 Progressive Static Damage Analysis of an FML Bolted
Joint

In this section, the FML static damagemodel for bolted joint applications, introduced
in Sect. 2.2, is validated using first-hand experimental results of static bolted joint
tests. The tests were conducted according to up-to-date standards (AITM 1-0009).
For quantitative validation, experimentallymeasured and numerically predicted bear-
ing stress-strain relations (σB-εB relations) are compared. Here, σB represents the
machine force divided by the laminate thickness and the hole diameter. εB defines the
percentage hole elongation. The FML specimens used for the experimental campaign
were manufactured from regular GFRP and stainless steel sheet inlays (grade: EN
1.4310). To show the validity of the model for different degrees of metal hybridiza-
tion, i.e. metal volume content (MVC), the MVC has been increased systematically
for two base-laminates (zero-degree unidirectional and a cross-ply laminate), cover-
ing a total range from 0% MVC (pure GFRP reference laminate) up to 18% MVC
(three inlays of 0.25 mm thickness each). As Fig. 7 illustrates, the model predic-
tions are in sufficiently close accordance with the experimental measurements for
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Fig. 7 Comparison of experimentally measured and numerically predicted bearing stress-strain
curves for two different base laminates (unidirectional - left, cross-ply - right) with different levels
of metal hybridization (0% ≤ MVC ≤ 18%). For further information refer to [6]

Fig. 8 Comparison of the
damage pattern obtained
from an FML bolt bearing
test after ultimate failure.
The failure mode “bearing
failure” is predicted correctly
by the model

both base laminates and the different levels of hybridization (MVC), respectively. To
demonstrate the capabilities of the novel FMLdamagemodel in terms of failuremode
prediction, the damage pattern, as photographed in one of the FML bearing tests, is
compared with the numerically predicted distribution of the maximum FRP damage
0 ≤ DS ≤ 1. As Fig. 8 shows, the predicted damage distribution matches quite well
with the experimental observation. Accordingly, the herein presented model [6] is
not only capable of predicting the progressive damage process until final failure of
the joint, but gives also further information which damage mode is to expect for a
specific joint design.
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4 Conclusion

In this contribution, two recently developed modeling approaches for progressive
damage analysis of fiber reinforced plastics and fiber-metal hybrid laminates were
presented. The models were validated by first-hand experimental tests. For the dif-
ferent use-cases considered, close agreements between numerical predictions and
experimental measurements were achieved for various static and cyclic loading sce-
narios. The rich information provided by the numerical predictions offer promis-
ing capabilities to adapt the herein presented models in virtual test rigs for future
computer-aided design of high-performance composites.
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Abstract This work deals with infinitesimal deformations of an isotropic elastic
shell in a differential geometry framework. It provides an introduction to differential
geometry of embedded surfaces in the Euclidean three-dimensional space and serves
as a tangible and practical “recipe” for those, particularly students, who are inter-
ested in invoking the old art of working with curvilinear coordinates. It seems that
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Gauss points using the framework of differential geometry and the results are vali-
dated against ones predicted by ANSYS as a commercial software.

One should notice that, nowadays, this approach is not implemented in commer-
cial software such as ANSYS due to its complications. Rather, such software prefers
to use the so-called solid degenerated shell elements. Using such approach, one can
circumvent dealing directly with objects such as Christoffel symbols which naturally
emerge as soon as the derivative are taken in a curvilinear coordinate system.

1 Surfaces in Euclidean Three-Dimensional Space

Working with curvilinear coordinates in a curved space and flat space differs sub-
stantially. Recall that the forth-order Riemann-Christoffel curvature tensor (or equiv-
alently the Gaussian curvature) acts as a decisive criterion for flatness of space. The
Euclidean space represents a flat space with this fourth-order tensor being vanished
all over the space. Indeed, the Euclidean space is one for which all well-known postu-
lates of Euclidean geometry - expressing relationships between primitive quantities
such as points and lines - perfectly applies. Straightness is its key characteristic and
it is usually coordinated with the very popular Cartesian coordinate system. For such
a coordinate system, the matrix form of metric coefficients becomes diagonal with
all diagonal elements being +1. Accordingly, all of its Christoffel elements vanish.
When the space is Euclidean and referred to a Cartesian coordinate frame, any gen-
eral basis that may be resulted from embedding a curvilinear coordinate system can
be expressed as a linear combination of the standard basis. Thus, the metric coeffi-
cients for such basis and subsequently the Christoffel elements can consistently be
computed. For more studies, the reader is referred to [3, 6, 7, 10].

Of interest in this work is to consider two-dimensional surfaces embedded in the
ambient three-dimensional space. Any surface is assumed to be a sufficiently smooth
two-dimensional subspace of the three-dimensional space. Moreover, it is assumed
that there exists tangent and normal spaces at each point of the surface. Finally,
suppose that the standard properties of the real vector spaces remain valid in this
context.

A two-dimensional surface in the ambient space is defined by the following vector
function [5]

x = x s
(
t1, t2

)
, (1)

where x denotes the position of an arbitrary point on the surface and the real numbers
tα, α = 1, 2, are referred to as surface (or Gaussian) coordinates. It should be noted
that all Greek indices in this work assume values 1 and 2. Moreover, the Einstein
summation convention is implied when these indices are repeated. Suppose that
the ambient space under consideration is coordinated by Cartesian coordinates. The
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sufficiently smooth vector function (1), which parametrically describes the surface,
then represents

x1 = x s
1

(
t1, t2

)
, x2 = x s

2

(
t1, t2

)
, x3 = x s

3

(
t1, t2

)
. (2)

1.1 Surface Basis Vectors and Metric Coefficients

The surface covariant basis vectors (or tangent vectors) at an arbitrary point on the
surface are defined by

aα = ∂x
∂tα

. (3)

These two linearly independent vectors are basically tangential to the coordinate
lines corresponding to the surface coordinates and, thus, define a plane known as
tangential plane. These vectors can be completed to represent a basis in the ambient
space by using the following surface normal vector

n̂ = ± a1 × a2
|a1 × a2| satisfying n̂ · aα = 0 and n̂ · n̂ = 1. (4)

The appropriate sign in (4)1 is chosen according to the well-known discussions
on orientation of surfaces, see Fig. 1. One can now express any arbitrary tensorial
variable in the ambient space relative to the covariant basis

{ai } := {a1, a2, a3} where a3 = n̂. (5)

Let {
ai

} := {
a1, a2, a3

}
, (6)

be the unique dual basis of {ai }. This set of vectors provides another basis for the
ambient space. And it is called contravariant basis. The covariant and contravariant
bases are related by

aα = aαβaβ and aα = aαβaβ, (7)

where aαβ and aαβ are called the surface covariant and contravariant metric coeffi-
cients, respectively. They are given by

aαβ = aα · aβ = aβα with the matrix form
[
aαβ

] =
[
a1 · a1 a1 · a2
a1 · a2 a2 · a2

]
, (8)

and

aαβ = aα · aβ = aβα with the matrix form
[
aαβ

] =
[
a1 · a1 a1 · a2
a1 · a2 a2 · a2

]
. (9)



466 S. Sahraee and M. Soleimani

The surface metric coefficients are related by

aαγ aγβ = δβ
α or

[
aαβ

] = [
aαβ

]−1
, (10)

where δβ
α presents the mixed two-dimensional Kronecker delta. It is then easy to see

that
aα · aβ = δα

β = δβ
α = aα · aβ. (11)

Moreover,

a3 = a3 = n̂ satisfying n̂ · aα = 0 and n̂ · aα = 0. (12)

The determinant of the surface covariant metric coefficients, a = det
[
aαβ

]
, may

be obtained by

√
a = |a1 × a2| and, therefore, a1 × a2 = √

a n̂. (13)

In a similar manner, the determinant of the surface contravariant metric coeffi-
cients, according to a−1 = det

[
aαβ

]
, can also be determined from

1√
a

= ∣∣a1 × a2
∣∣ and, therefore, a1 × a2 = 1√

a
n̂. (14)

Let w be a vector with the following representations

w = wαaα = wαaα. (15)

Such a vector which lies in tangent plane is referred to as the surface vector.
The contravariant component wα is usually referred to as vector in the context of
differential geometry and the covariant component wα is called covector. They are
related by

wα = aαβwβ or wα = aαβwβ. (16)

In a similar manner, a surface tensor A intrinsically admits the following decom-
positions

A = Aαβaα ⊗ aβ = Aα
. βaα ⊗ aβ = A. β

α aα ⊗ aβ = Aαβaα ⊗ aβ. (17)

Note that the ‘dot’ utilized in the mixed components Aα
. β or A. β

α presents a place-
holder (which means that the other index is the first index). By index juggling, one
then has

Aαβ = aαγ A.β
γ = Aα

.γ aγβ = aαγ Aγ δaδβ . (18)
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1.2 Surface Christoffel Symbols. Gauss and Weingarten
Formulas

Consider the following family of vectors

ΓΓΓ αβ := ∂aα

∂tβ
, (19)

possessing the symmetry in α and β owing to

ΓΓΓ αβ = ∂aα

∂tβ
= ∂2x

∂tβ∂tα
= ∂2x

∂tα∂tβ
= ∂aβ

∂tα
= ΓΓΓ βα. (20)

Then, the elements

Γ
γ

αβ = ∂aα

∂tβ
· aγ satisfying Γ

γ

αβ = Γ
γ

βα, (21)

are referred to as surface Christoffel symbols of the second kind (or simply surface
Christoffel symbols). They represent an array of 6 independent quantities for curved
surfaces.

The sensitivity of surface covariant basis vectors with respect to the Gaussian
coordinates is referred to as the Gauss formulas:

∂aα

∂tβ
= Γ

γ

αβaγ + bαβ n̂, (22)

where bαβ is known as the surface covariant curvature tensor; given by,

bαβ = ∂aα

∂tβ
· n̂ = ∂aβ

∂tα
· n̂ = bβα. (23)

The surface covariant curvature tensor admits the following forms

bαβ = ∂2x
∂tα∂tβ

· n̂ = − ∂x
∂tα

· ∂n̂
∂tβ

= − ∂x
∂tβ

· ∂n̂
∂tα

. (24)

The sensitivity of normal surface vector relative to the Gaussian coordinates is
referred to as the Weingarten formulas:

∂n̂
∂tα

= −b . β
α aβ = −bαβaβ where b . β

α = bαγ aγβ = aβγ bγα = bβ
. α, (25)

is termed the surface mixed curvature tensor. The principal invariants of the matrix[
b . β

α

]
play an important role in differential geometry of curved surfaces. The so-
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called mean curvature is defined to be the half of the trace of that matrix and what is
called the Gaussian curvature is basically its determinant. They are given by

H = 1

2
tr

[
b . β

α

] = 1

2

(
b . 1
1 + b . 2

2

)
, K = det

[
b . β

α

] = b . 1
1 b . 2

2 − b . 2
1 b . 1

2 . (26)

It can be shown that the Gaussian curvature, which is of fundamental importance
in differential geometry of surfaces, can only be captured by measuring distances on
the surfaces. In another words, this object has basically an intrinsic attribute.

The surface Christoffel symbols can also be written as

Γ α
βγ = −∂aα

∂tγ
· aβ satisfying Γ α

βγ = Γ α
γβ . (27)

The partial derivative of the surface metric coefficients are

∂aαβ

∂tγ
= Γ ρ

γα aρβ + Γ
ρ

γβ aρα ,
∂aαβ

∂tγ
= −Γ α

γρ a ρβ − Γ β
γρ a ρα. (28)

It is not then difficult to see that

∂aα

∂tβ
= −Γ α

βγ a
γ + bα

. β n̂ where bα
. β = aαθbθβ = b .α

β . (29)

1.3 Surface First Covariant Derivative

Let w = w
(
t1, t2

)
be a given surface vector field. Then, by using the expressions

(15), (22) and (29) along with the product rule, the rate of change in this vector field
can be represented with respect to the (ambient) bases {a1, a2, n̂} and {

a1, a2, n̂
}
as

∂w
∂tβ

= ∂ (wαaα)

∂tβ
= wα|β aα + wαbαβ n̂ = ∂ (wαaα)

∂tβ
= wα|β aα + wαbα

. β n̂ ,

(30)
where wα|β and wα|β present the surface first-order covariant derivative of wα and
wα , respectively. They are given by [4]

wα|β = ∂wα

∂tβ
+ Γ α

βγ wγ , wα|β = ∂wα

∂tβ
− Γ

γ

αβwγ . (31)

Note that the surface covariant derivative is the only rate of change that the two-
dimensional entities living on the surface can measure. And it should thus be viewed
as an intrinsic operation.
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2 Application of Differential Geometry in Shells

Differential geometry of two-dimensional smooth surfaces was briefly introduced in
the previous section. The goal here is to utilize the formulations developed so far
for the kinematics of a shell mathematical model. Shells are basically thin-walled
structures whose thickness is small in comparison with their other two dimensions.
This specific geometric feature of these three-dimensional creatures allows one to
separate the thickness variable from the in-plane ones. As a result, one can describe
the geometry as well as deformation of shells by using proper functions of two in-
plane variables corresponding to their midsurface. In another words, the problem is
simplified to finding some unknown two-variable functions. That is how differential
geometry of surfaces finds its way in mathematical description of shell structures,
see [8] and references therein.

The three-dimensional geometry of the shell model under consideration is
described by [2]

x∗ (
t1, t2, t3

) = x
(
t1, t2

) + t3a3
(
t1, t2

)
with t3 ∈

]
−h

2
,+h

2

[
, (32)

where x
(
t1, t2

)
presents the position vector of an arbitrary point on the midsurface,

a3 = a1 × a2/ |a1 × a2| denotes the midsurface normal vector wherein aα = ∂x/∂tα

and h is the shell thickness. See Fig. 1 for a geometrical interpretation. Using (3)
and (25), the sensitivity of x∗ with respect to t i , i = 1, 2, 3, will provide the new
covariant basis vectors

gα = ∂
(
x + t3a3

)

∂tα
= aα − t3b . β

α aβ and g3 = ∂
(
x + t3a3

)

∂t3
= a3. (33)

Fig. 1 Geometric description of the shell midsurface
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This helps one to construct [9]

gi j = gi · g j and, subsequently,
[
gi j

] = [
gi j

]−1
, (34)

to arrive at the dual vectors
gi = gi jg j . (35)

Consistent with (32), the displacement field of a typical particle in the shell con-
tinuum is represented by

u∗ (
t1, t2, t3

) = u
(
t1, t2

) + t3θθθ
(
t1, t2

)
, (36)

where u denotes the translational displacement of a material point on the midsur-
face and θθθ presents the infinitesimal rotation of a material line perpendicular to the
midsurface. With respect to the dual basis

{
ai

}
, the ambient vector u and the surface

vector θθθ are decomposed according to

u = uαaα + u3a3 , θθθ = θαaα + 0a3. (37)

Denoting by T the transpose operator and ⊗ the tensor product, the infinitesimal
strain tensor for a linear shell reads

εεε = 1

2

[(
∂u∗

∂x∗

)
+

(
∂u∗

∂x∗

)T
]

where
∂u∗

∂x∗ = ∂u∗

∂t k
⊗ gk . (38)

The covariant components of this symmetric second-order tensor, εi j , with respect
to the contravariant basis

{
gi

}
render

εi j = 1

2
gi ·

[
∂u∗

∂t k
⊗ gk + gk ⊗ ∂u∗

∂t k

]
g j = 1

2

[
gi · ∂u∗

∂t j
+ ∂u∗

∂t i
· g j

]
. (39)

Using (12)1, (25)1, (30)4, (33), (36) and (37), the covariant components (39) may
be represented by

εαβ = 1

2

(
uα|β + uβ

∣
∣
α

) − bαβu3

+ t3
[
1

2

(
θα|β + θβ

∣∣
α

− b.γ
α uγ

∣∣
β

− b.γ

β uγ

∣∣
α

)
+ b.γ

α bγβu3

]

− (
t3

)2
[
1

2

(
b.γ

α θγ

∣∣
β

+ b.γ

β θγ

∣∣
α

)]
, (40a)

εα3 = 1

2

(
θα + ∂u3

∂tα
+ b.γ

α uγ

)
, (40b)

ε33 = 0 . (40c)
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Accordingly, by using the plane stress assumption, the contravariant components
of the stress tensor for an isotropic linear elastic shell take the following form

σαβ = E

2 (1 + ν)

[
gαγ gβδ + gαδgβγ + 2ν

1 − ν
gαβgγ δ

]
εγ δ, (41a)

σα3 = E

1 + ν

[
gαβ

]
εβ3, (41b)

σ 33 = 0 , (41c)

where E denotes Young’s modulus and ν is Poisson’s ratio.

3 Results and Discussions

To investigate the performance of the formulation developed in the previous sections,
an isotropic linear elastic shell model is numerically implemented by means of finite
element method (FEM). It is important to point out that the developed formulation
doesn’t rely on standard isotropic concept of FEM. Indeed, the geometry of shell
is exactly described by parametrization of the shell midsurface. And this leaves the
displacement field as the only variable to be interpolated. In this work, it is interpo-
lated by using the bilinear ansatz functions of the popular quadrilateral element, see
[1, 11].

The only example here regards a hyperboloid shell of one sheet; defined by,

x1 = R1 cosh t1 cos t2 , x2 = R2 cosh t1 sin t2 , x3 = R3 sinh t1 , (42)

where R1, R2, R3 are nonzero real numbers, −∞ < t1 < ∞ and 0 ≤ t2 < 2π .
Figure2 displays the overall shape of the model under consideration as well as
the geometrically exact representation of a single element (in red) that is selected
for investigation. Moreover, the global deformation of the shell as well as the
stress magnitude in the chosen element are depicted therein. In this example,
E = 2.0 × 105Mpa and ν = 0.333. And the numerical value of the parameters are
reported in Table1. Note that the parametrization (42) serves as the keystone to
exactly represent the basis vectors, metric coefficients, curvature tensor and Christof-
fel symbols in a completely analytical manner. The procedure to calculate the strain
and stress tensors at every point within the specific finite element is then straightfor-
ward. This has been carried out in an in-house MATLAB code.

One can see that the difference in the maximum stress amounts to 10% for this
size of mesh. To understand the impact of element size on the error, one can take a
look at Fig. 3. It reveals that for ANSYS SHELL181 the results are improved if the
surface curvature and metrics are properly resolved upon refining the mesh, while
our geometrically exact shell is almost insensitive to the mesh size due to the usage
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Fig. 2 (Top) Geometrically exact shell parametrization and, (Bottom) ANSYS results for the shell
using standard element SHELL181

Table 1 The parameters for the geometrically exact shell element selected from the hyperboloid
shell body

Parameter Value Unit

t1start 0.544171 —

t1end 0.791615 —

t2start 0.000000 —

t1end 0.288944 —

R1 200 mm

R2 300 mm

R3 350 mm
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Fig. 3 Relative error (E) in maximum stress versus mesh refinement index

of natural curvilinear coordinate. The refinement index (horizontal axis) is the ratio
between the element size (h) and element thickness (t). The relative error for the
selected element is defined as E = (

σANSYS
max − σ ∗

max

)
/σ ∗

max.

4 Conclusions

In this work, a shell structure was treated as a two-dimensional manifold equipped
with a curvilinear coordinate system. The geometrically exact parametrization of the
shell was utilized instead of commonly used parent coordinate of the standard FEM
shape functions. Clearly speaking, the concept of isoparametric mapping was dis-
missed unlike the standard approach in FE analysis. The covariant derivative concept
was utilized to compute the strain and consequently the stress tensor fields. Covariant
derivative of vector fields on a surface (typically, the unknown displacement vector
field of the middle surface of a shell) was plugged into the constitutive equation of
the shell. The emergence of Christoffel symbols, first and second fundamental forms
is natural in this framework and hence they have to be evaluated numerically. As an
indicator, the maximum stress is compared with those of predicted by ANSYS using
4-noded shell element named SHELL181. This element is naturally flat with straight
wedges due to the total number of nodes. The extent of agreement between the two
was investigated in case of more refined mesh. The ANSYS solution shows a stress
and energy 10% smaller than our geometrically exact shell model, revealing that the
metrics of a curved surface are not captured properly using a coarse mesh. Once
the mesh is refined the error shrinks. One should keep in mind that the constitutive
behavior of the shell is assumed to be linear. A possible direction for the extension
of this work is to reformulate the geometrically exact shell mathematical model for
structures undergoing finite strains.
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Abstract In this contribution we introduce a phase field model for fatigue crack
growth. The model is based on a diffuse formulation of quasi static brittle fracture.
In order to account for the fatigue phenomenon an additional energy contribution
is incorporated. This additional component represents the amount of accumulated
energy associated to irreversibilities of cyclic loading and unloading. The evolution of
a fracture phase field is governed by an appropriate Ginzburg-Landau type equation.
To enable efficient computation the integration scheme is transferred into the cycle
domain. Finally, by showing results of different fatigue crack growth scenarios the
model behaviour in terms of crack growth rate, mean stress effect and also growth
direction is illustrated.
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1 Introduction

The fact that the phenomenon of cyclic mechanical fatigue is one of the most crucial
fields of structural design of technical components is uncontroversial. A majority of
structures undergo cyclic loads and react to this type of loading with fatigue failure.
This effect may not emerge in some cases where the state of fatigue stays noncritical
during the complete time of service. However, it must always be considered to avoid
devastating failures of machines or structures like airplanes, trains, bridges, turbines,
pressure vessels and others, which happened in the past. As it is outlined in a number
of textbooks as e.g. [13] the damage of a material increases during cyclic loading,
where the load maximum may be far below static design limits. Within practical
applications mainly empirical laws are considered as e.g. the Miner rule [10] for
fatigue damage accumulation or Paris’ law [12] for quantification of fatigue crack
growth rates. The issue in terms of numerical modeling is on one hand the lag of a
general mechanistic basis of the phenomenon and on the other hand the high number
of load cycles that must be considered. Also the basic approximation of cracks is
related to issues concerning element deletion or adaptive remeshing. In contrast to
conventional sharp interface approaches the phase field modeling paradigm provides
several benefits (see e.g. [1, 8]). A crack is modeled via an order parameter indi-
cating broken or intact material. This order parameter is coupled to the mechanical
boundary value problem. The method was frequently applied and extended within
the last decade. However the fatigue phenomenon is considered only recently in first
contributions [2, 4, 16]. The resistance against cracking is decreased within these
studies in order to enable crack growth under static uncritical loads. A different
approach was established in [14], where an additional fatigue related energy contri-
bution is considered as driving force of fatigue cracks. In what follows we introduce
our phase field model for fatigue fracture and provide several results from numerical
simulation, which will be assessed.

2 Model Formulation

The temporal evolution of the phase field variable s can be obtained by the time
dependent Ginzburg-Landau equation:

ṡ = −M
δF

δs
, (1)

where F [s,∇s] is a free energy potential. In this equation M is a viscous regular-
ization coefficient to control the relaxation towards stationary states. The potential
F is defined by an energy density ψ with.
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F [s,∇s] =
ˆ

�

ψ(s,∇s)dV . (2)

The functional derivative is defined similar to the Euler-Lagrange equations of cal-
culus of variations by

δF

δs
= ∂ψ

∂s
− ∇ ·

(
∂ψ

∂∇s

)
. (3)

Accordingly (1) yields

1

M
ṡ = ∇ ·

(
∂ψ

∂∇s

)
− ∂ψ

∂s
. (4)

The state δF/δs = 0 is a necessary condition for an extreme distribution of s. There-
fore, this characterizes stationary states and (4) can be viewed as relaxation to reach
stationary states, where the transition rate is governed by the viscosity parameter
M > 0.

The phase field model for brittle fracture from Kuhn and Müller [8] utilizes the
energy potential

F[ε, s,∇s] =
ˆ

�

[
(g(s) + η)

1

2
ε : [Cε]

︸ ︷︷ ︸
ψe

+Gc

(
(1 − s)2

4ε
+ ε|∇s|2

)

︸ ︷︷ ︸
ψc

]
dV . (5)

The phase field variable s interpolates between broken (s = 0) and intact (s = 1)
material. The energy functional (5) was proposed in [3] as a regularization of the vari-
ational formulation of brittle fracture (see [6]). In (5) ψc is the specific crack energy
and the specific elastic energy is modeled by ψe. In ψe the elastic energy density for
small deformationswith the linearized second order strain tensor ε = 1

2 (∇u + ∇Tu)

and the fourth order stiffness tensor C is used. In order to account for the degrada-
tion of the material’s stiffness in areas with s < 1 the strain energy is multiplied
with g(s) + η. The scalar function g(s) is referred to as a degradation function and
models the material response to a variation of the phase field s. The parameter η with
0 < η � 1 is introduced for numerical convenience and ensures a residual stiffness
ηC. The second term in (5) may be interpreted as regularization of Griffith’s crack
surface energy, and Gc can be considered as a crack resistance.

The potential (5) covers linear elastic fracture events rather well. The peculiarity
for fatigue fracture is that the static fracture limit can be significantly higher than the
threshold for the onset of fatigue crack growth. But certainly failure occurs under
cyclic loading. In other words, it will become necessary to decrease the phase field
s, than to allow for more strain energy. Due to the significantly lower maximum
load value in the cyclic situation, an evolution of the phase field solely by (5) is
not appropriate. However, a cyclic load with repetition of loading and unloading
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indeed consumes a significant amount of work by irreversible processes associated
with fatigue (see e.g. [11]). Obviously, the classical model [8] does not take into
account the presence of these irreversibilities. Hence, a consequent conclusion is to
include an additional contribution into the free energy. The new enhanced regularized
formulation of the energy is proposed as

F f = F(ε, s,∇s) + Fac(Df , s)

=
ˆ

�

[
(g(s) + η)W + Gc�

]
dV +

ˆ

�

h(s)P(Df)︸ ︷︷ ︸
ψf

dV (6)

in order to account for the discussed fatigue relatedwork contribution. This functional
of the total internal energy consists of the basic formulation of brittle fracture and
an additional energy contribution characterized by the specific energy term ψf . This
contribution is governed by the current state of fatigue damage Df and provides
the necessary sum of additional driving forces. The function h(s) is a degradation
function with an analog purpose as g(s). Assuming an increase of the energy density
P(Df) this degradation function enables a decline of the total energy by decreasing
the phase field s. This mechanism generally enables crack growth driven by fatigue.
A piece wise defined power function is proposed to govern the energy contribution
ψf by

P(Df) = q
〈
Df − Dfcrit

〉b
(7)

with theMacaulay brackets, which are defined as
〈 · 〉n = 0 for (·) ≤ 0 and

〈 · 〉n = (·)n
for (·) > 0. This function is designed such that the fatigue driving force increases
rapidly once the critical value for damage Dfcrit is exceeded.A rapid increase is crucial
as otherwise cracks are prone to grow in lateral direction, i.e. “fat”. To evaluate the
fatigue damage Df Miner’s rule is employed in a first approach. However, more
complex models can be incorporated if desired. The critical cycle number Ni for a
certain stress amplitude can be obtained from appropriate S-N curves. Accordingly,
the estimate for the fatigue damage Df in (7) becomes

dDf = D0 + (
nD

)−1
(

σ̃

AD

)k

dN . (8)

The actual driving force entering to evaluate the S − N curves in (8) is the stress
σ̃ , which is a scalar amplitude stress measure depending on the stress state. The
exact choice may depend on several properties like for instance the material or the
type of loading. Other important quantities are the fatigue limit AD , the knee point
cycle number nD and the slope of the S − N curve k. Within the cyclic resolved
simulation scheme, the previous state of fatigue damage D0 is treated as a history
variable updated for every simulation step. The energetically associated stresses
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provide a good insight into the physical interpretation of this enhanced phase field
formulation:

σ = ∂ (ψe + ψc + ψf)

∂ε
= (g(s) + η)Cε

︸ ︷︷ ︸
σ e

+ h(s)
∂P

∂Df

∂Df

∂σ̃

∂σ̃

∂ε︸ ︷︷ ︸
σ f

, (9)

with the fatigue contribution to the stresses:

σ f = h(s)qb
〈
Df − Dfcrit

〉b−1 kσ̃ k−1

nD AD

∂σ̃

∂ε
, (10)

where the derivative ∂σ̃
∂ε

depends on the choice for the respective driving stress. The
first term in Eq. (9) is the usual degraded tensor of the static stresses. The second
term can be interpreted as additional stress component accounting for accumulated
micro stresses as consequence of cyclic slip irreversibilities caused by repetition of
loading and unloading.

As fatigue damage is evaluated only with regard to the cycle number the evolution
Eq. (4) is transferred into the cycle domain

ds

dN
= −M̂

{
g(s)′

1

2
ε : [Cε] − Gc

(
2ε∇ · ∇s − s − 1

2ε

)
+ h(s)′P(Df)

}
, (11)

with a mobility constant M̂ related to the cycle number.

3 Numerical Examples

The phase field model was implemented as a quadrilateral element routine within
the finite element software FEAP. The examples explained in the following were set
up to illustrate some features of the proposed model.

3.1 R-ratio and Sequence Effects

To characterize andmeasure fracturemechanical properties the CT-specimen is often
used. The geometric setup as well as the loading and the discretization is sketched in
Fig. 1a. The loading introduces a pure mode I loading. Thus a straight crack occurs,
as is depicted in Fig. 1b by a contour plot of the fracture field s. The simulations
were conducted with a force control. As also indicated in Fig. 2a different load ratios
(R-ratios)
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Fig. 1 Set up and result of phase field fatigue crack growth simulation: a discretization b contour
plot of the phase field parameter

Fig. 2 Evaluation of crack propagation: a different R-ratios and b different load sequences

R = Fmin

Fmax
(12)

were simulated. Simulations with different parameter sets were run. Within these
simulations the normal stress in vertical direction was used as driving stress σ̃ . For
the different R-ratios the minimal force is increased, see Fig. 2a (top), resulting in
an increased crack propagation speed. This is reported in the da/dN curves. The
almost linear relation in the logarithmic plots indicates, that the fracture phase field
model predicts a Paris’ law of the type
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da

dN
= C(
K )n , (13)

where 
K is the difference in the stress intensity factor (K -factor) for the applied
forces Fmax and Fmin. The model thus captures an influence of the R-ratio on the
parameters of Paris’ law, which is a frequently observed phenomena (see e.g. [13]).
For a detailed analyse of this property of the phase field model see [15]. In Fig. 2b the
influence of load sequences is analysed. In a cyclic setup with R = 0 the maximal
load is distributed differently throughout the load cycles, see sketch in Fig. 2b (top).
It is interesting to note, that from Fig. 2b the sequence with high loads first and lower
loads later has the fastest crack propagation, as compared to a constant load or a
sequence of first low loads and then high loads. Thus the fracture phase field model
using Miner’s rule, which has no sequence sensibility, shows a sequence effect by
the solution of a complete time dependent boundary value problem.

3.2 Mode II Loading

In order to analyse not only the features for a straight crack propagation, which occurs
under mode I loading conditions, a mode II situation is analyzed. Therefore, in the
situation depicted in Fig. 3a the driving stress σ̃ was taken to be the first (largest)
principal stress. This is in agreement with the maximum tangential stress criterion
proposed in [5]. It can be seen from Fig. 3b and c that the crack now propagates under
an angle of around 70◦ from the horizontal direction. This feature is in agreement
with analytical findings from linear elastic fracture mechanics (see e.g. [7]) and
experimental observations [9]. Thus using the correct driving stress the phase field
model for fatigue fracture not only predicts the crack propagation in terms of growth
rate but also in terms of direction.

4 Conclusion

The proposed model is an extension of the fracture phase field model for quasi static
brittle fracture to fatigue scenarios. In contrast to other approaches [2, 4, 16] in
which the crack resistance Gc is reduced as function of the load history, we propose
a modification of the crack driving force. This assumption allows the parameter Gc

to be interpreted as the crack resistance related to the experimentally determined
fracture toughness. It is mentioned that the static fracture toughness is measured on
sharp cracks which are introduced by a cyclic loading phase.

To drive the crack propagation in the phase field setup Miner’s rule is used.
Although being rather simple this results in complex model response. The model
predicts different well known phenomena from fatigue fracture mechanics, among
them R-ratio dependent Paris’ law parameters, load sequence effects as well as
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Fig. 3 Numerical example of a mode II load case: a set up, b deformation of cracked specimen
after 620,000 cycles and c contour plot of phase field variable for different number of load cycles

prediction of the crack path. It is emphasized that in contrast to classical fatigue
fracture simulations Paris’ law is not needed to simulated crack propagation, but an
outcome of the model. Thus Paris’ law serves here more as a model validation due
to its wide range of acceptance in fatigue fracture mechanics.
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Abstract In this contribution we discuss the mixed least-squares finite element
method (LSFEM) for applications in solid mechanics. The LSFEM is characterized
by the minimization of the sum of the squaredL2(B) norms of the residuals of a first
order system of differential equations. For an analysis of the LSFEM, we discuss two
applications in solid mechanics, with a focus on the challenges of the method. Here,
we investigate the moderate performance for low order elements and the sensitive
point of choosing the weighting factors and their balancing. Furthermore, we discuss
the crucial point of the recalculation of support reactions. In this context we intro-
duce two formulations, one classical approach and one with the balance of angular
momentum as an additional constraint instead of simple introducing a condition for
the symmetry of the stress tensor in order to fulfill the balance of angular momen-
tum. It should be noted, that the symmetry of the stress tensor is not a priori fulfilled
due to the application of Raviart-Thomas functions. A further aspect is the consis-
tent approximation of stresses at material interfaces when utilizing Lagrange ansatz
functions within the LSFEM. Therefore, we present a hybrid mixed formulation on
the basis of a LS functional.
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1 Challenges in the LSFEM

The LSFEM has been considered in many applications over the last decades and
especially the advantages of the method have been exploited. These advantages are
well known and given by the provision of an a posteriori error estimator, the LSFEM
is unconstraint by the LBB condition and exhibits symmetric and positive (semi-)
definite matrices, cf. [1, 2]. Beside this, the challenges of the LSFEM method are,
among others, the poor performance for low order elements and especially the choice
of the weighting parameters of the single functionals and their balancing, see e.g. [3–
5]. For a stress-displacement least-squares formulation, conforming finite element
approximations are given by σ ∈ H(div,B) and u ∈ H1(B).

The application of higher-order Raviart-Thomas functions is not straight-forward,
especially in 3D applications, since they are constructed based on outer and inner
moments. As an alternative, a straight-forward utilization of Lagrange type approxi-
mations for the stresses can be applied, but this leads to unphysical stress distributions
at material interfaces. This observation is due to the properties of the function space
H1(B), which enforce continuity of the stresses in the normal and tangential direc-
tions. However, from a physical point of view, stresses are only normal continuous.
This can be overcome by a hybrid mixed formulation, in which all components of
the stress tensor are approximated with Lagrange type ansatz functions on element
level and the continuity conditions are enforced by Lagrange multipliers on the inter-
element boundaries in a weak sense. An overview onmixed and hybrid finite element
formulations is given e.g. in [6–9].

Here, two aspects within the LSFEM are discussed for linear elasticity. The first
one presents the comparison of a standard LS formulation and an extended LS for-
mulation. The extended formulation is constructed with explicit consideration of the
balance of angular momentum. For these two formulations, we analyze the recalcu-
lation of support reactions (forces and moments) for the LSFEM, as a crucial point in
engineering applications, and check the global equilibrium conditions for forces and
moments. Furthermore, a scale independent formulation is obtained by the chosen
weighting parameter setups. The complete discussion on this topic and the results
are closely related to the publication [5].

As a second point, a hybrid mixed formulation is constructed. This formulation
is based on an extended least-squares functional with discontinuous stress approxi-
mations and a variational formulation for the enforcement of the traction continuity
using Lagrange multipliers. This approach provides physically consistent approxi-
mations of stress values atmaterial interfaces using continuous piecewise polynomial
functions of Lagrange type. Furthermore, an application of higher order Lagrange
ansatz functions for the stress approximation can be preformed in a straight-forward
manner in contrast to the more sophisticated Raviart-Thomas functions.
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2 Approximation of Reaction Forces Within the LSFEM

The body of interest B, parameterized in x ∈ R
d , is introduced, with the

boundary ∂B subdivided into Neumann ∂BN and Dirichlet ∂BD boundaries with
∂B = ∂BD

⋃
∂BN and ∂BD

⋂
∂BN = ∅. A least-squares formulation is character-

ized by the minimization of the sum of the squared L2(B) norms of the residuals Ri

of a first order system of differential equations, see e.g. [1, 2].
For investigating the approximation quality and reliability of support reactions

two LS formulations are introduced. The first formulation F (σ , u) is defined in
terms of balance of momentum and the constitutive equation by

F (σ , u) = 1

2

(∥
∥
∥ω1(div σ + f )

∥
∥
∥
2

L2(B)
+

∥
∥
∥ω2(σ − C : ∇su)

∥
∥
∥
2

L2(B)

)
, (1)

with the fourth-order elasticity tensor C, the body force f , the symmetric displace-
ment gradient∇su and the weighting parametersωi , which are discussed later on, cf.
[5]. The stress symmetry condition σ = σ T is not fulfilled a priori due to the appli-
cation of RT m functions and only enforced in a weak sense, see e.g. [10, 11]. The
stress symmetry condition is in general controlled through the constitutive equation,
cf. [4].

For the second formulation F �(σ , u), the system of equations in F is enhanced
by the balance of angular momentum, which is only represented implicitly in (1).
An additional control of the balance of angular momentum, as shown e.g. in [12,
13], leads to an improved formulation, especially for low order elements. Therefore,
the balance of angular momentum is introduced as an additional residual equation,
which states that the material time derivative of the moment of momentum, w.r.t. a
fixed reference point x0, is equal to the resultant moment of all forces acting on B.
The balance of angular momentum reads

∫

B

(
(x − x0) × (div σ + f ) + axl[σ − σ T ]

)
dV = 0, axl[σ − σ T ] :=

⎛

⎝
σ32 − σ23
σ13 − σ31
σ21 − σ12

⎞

⎠ . (2)

From the continuum mechanical point of view the balance of angular momentum
is ensured by the symmetry of the Cauchy stresses, if in addition the balance of
momentum is exactly fulfilled, that is, div σ + f = 0. The second LS functional
reads

F �(σ , u) = 1

2

(∥
∥
∥ω�

1(div σ + f )
∥
∥
∥
2

L2(B)
+

∥
∥
∥ω�

2(σ − C : ∇su)

∥
∥
∥
2

L2(B)

+
∥
∥
∥ω�

3((x − x0) × (div σ + f ) + axl[σ − σ T ]
∥
∥
∥
2

L2(B)

)
.

(3)

The weighting parameters, ωi , ω�
i are chosen w.r.t. the Lamé constant μ and a

characteristic length l̃ to obtain a scale independent formulation, i.e. a dimensionless
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formulation, see [14]. Therefore,we considerωi = αi/μ,ω�
i = α�

i /μ for i = 2, 3 and
ω�
1 = l̃α�

1/μ. Therein, αi and α�
i denote the new dimensionless (i.e. unit 1) weighting

factors. For l̃ a reasonable choice is demanded, which is here set as the square root
of the area of the boundary value problem, cf. [5].

For the solution of the linear problem, the underlying functional isminimizedw.r.t.
appropriate finite-dimensional spaces, i.e. find (σ , u) ∈ Sm × Vk s.t.
δσ,uF = 0∀(δσ , δu) ∈ S × V with S := [H(div,B)]d×d andV := [H1(B)]d . For
a conforming discretization we choose the function spaces

Sm
h := {σ h ∈ [H(div,B)]d×d : σ h |K ∈ [RT m]d×d ∀K ∈ T },

Vk
h := {uh ∈ [H1(B)]d : uh |K ∈ [Pk]d ∀K ∈ T },

(4)

with the dimension d, T denotes the triangulation of B with finite elements and
K is a finite element. Here, conforming approximation functions for Sm

h and Vm
k

are functions whose normal components are continuous across element interfaces
of order m, given by vector-valued Raviart-Thomas functions (RT m), see e.g. [15]
and Vk

h is the space of continuous piecewise polynomial functions of order k ≥ 1,
chosen as Lagrange type functions (Pk).

Numerical Analysis of Reaction Forces Within the LSFEM
The recalculation of support reactions, as a critical value in engineering applications
e.g. in the design and the structural stability of components, is analyzed for a clamped
cantilever beam, see Fig. 1 with E = 70 kN/mm2, μ = 26.12 kN/mm2 and loaded
by a boundary traction σ · n = (0, 0.1)T kN/mm2, cf. [5].

Fig. 1 Clamped cantilever: setup and exemplary coarse mesh density

For the evaluation of support reactions {AH ,AV ,MA} both LS formulations (1)
and (3) are compared to a linear displacement element (P1). A simple calculation
yields the analytical solutions

AH = 0 kN, AV = 0.1 kN and MA = 0.5 kNmm. (5)

The determination for AH , AV and MA for the LSFEM is explained in [5].
The investigated weighting parameter setups for F in (1) and F � in (3) are given

for fixed α1 = 1 as well as α�
1,3 = 1 and a decreasing α2 and α�

2 from 1 to 0.01. An
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unsatisfying convergence of the support reactions and moments is obtained by the
LSFEM (1), with exception of the convergence of AH , which is exactly fulfilled.
However, the LS formulation (3) leads to an improved convergence of AV and MA

and further give a satisfying solution forAH withα�
2 ≤ 0.1. For the results in Fig. 2 no

improvement for α2 and α�
2 below 0.1 is observed, whereas for lower order elements

an improvement for α�
2 < 0.1 is shown, see Fig. 3. The influence of weights can be

reduced by use of higher order polynomial functions as visualized in Figs. 2 and 3
for the choice of RT mPk element types with m = 0, 1, 2 and k = 1, 2, 3. However,

Fig. 2 Clamped cantilever: results for the fulfillment of equilibrium of forces and moments for the
LS formulation F (left) and F � (right) utilizing a RT 1P2 element type, taken from [5]
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Fig. 3 Clamped cantilever: results for the fulfillment of equilibrium of forces and moments for the
LS formulation F � using RT 0P1 (left) and RT 2P3 (right) element types

even when choosing aRT 2P3 element, a sufficiently accurate solution is shown only
for weightings with α�

2 ≤ 0.1. The linear displacement element yields directly the
correct results, see Eq. (5) and Fig. 2.
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3 Hybrid Mixed FEM Based on a Least-Squares Approach

Analternative approach for a continuous stress approximation is given byσ ∈ H1(B)

using Lagrange type functions Pm , consisting of complete polynomials of degree
≤ m. The approach is straightforward applicable to a LS functional, e.g. (3), here
given by

Fc =
∑

K∈T

1

2

(∥
∥ div σ + f

∥
∥2
L2(K )

+ ∥
∥C−1 : σ − ε

∥
∥2
L2(K )

+ ∥
∥C−1 : (σ − σ T )

∥
∥2
L2(K )

)
, (6)

where T denote the triangulation of the body B with finite elements K . This con-
tinuous formulation Fc (6), is approximated using continuous piecewise polynomial
functions of Lagrange type for both fields, i.e.,

σ h ∈ [H1(T )]d×d and uh ∈ [H1(T )]d , (7)

with

σi j =
nelσ∑

I=1

N
I · β I

i j ∈ Pm, (8)

where nelσ denote the stress nodes per element, NI the shape functions and β I
i j the

nodal stress degrees of freedom. This element type is denoted byPmPk . Based on this
approximation, the stress continuity is given by [[σ ]] = 0, i.e. the jump of the stress
components at inter-element boundaries is zero, which is inconsistent, since only
traction continuity ([[σ · n]] = [[t]] = 0) have to be fulfilled by the approximation.

In order to achieve this, utilizing a stress approximation with Lagrange type func-
tions, a hybridmixedfinite element formulation is introduced based on a least-squares
formulation with discontinuous stress approximation σ ∈ L2(B). For conforming
discretization of σ and u different continuity conditions have to be fulfilled by the
solution spaces. These conditions can be enforced in a weak sense by application of
Lagrange multipliers. A discontinuous stress approximation can be used in combi-
nation with a Lagrange multiplier enforcing the normal continuity of the stress field.
For further steps, E denotes the set of all sides of the triangulation T . Furthermore,
∂T = ∂TN ∪ ∂TD is the triangulation of the outer boundary with the Neumann ∂TN

and Dirichlet ∂TD specifications and the interior boundary is ∂Ti = E\∂T , where
∂Ti ∩ ∂TN = ∅ as well as ∂Ti ∩ ∂TD = ∅ holds.

For the hybrid mixed formulation a LS formulation, e.g. (6) is extended by the
relaxed continuity conditionsmultipliedwith aLagrangemultiplier.Here, the balance
of momentum, constitutive equation and stress symmetry condition is solved on each
local element without enforcement of traction continuity. Since we relax the traction
continuity, the condition

[[t]] = (σ · n)+ + (σ · n)− = 0 on E (9)
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is not fulfilled a priori; the characters (+) and (–) denote the two sides of an arbitrary
inter-element boundary. We enforce this traction condition in a weak sense by the
Lagrange multiplier λ. This is applied to the jump of the traction vector [[σ · n]] on
the skeleton ∂Ti and for the boundary tractions on the outer Neumann boundary
∂TN :

λ · [[σ · n]] = 0 on ∂Ti and λ · (σ · n − t̄) = 0 on ∂TN . (10)

For a detailed discussion of the enforcement of these continuity conditions see e.g.
[16]. The resulting hybrid mixed formulation F h based on a mixed LS approach is
given by

F h(σ , u,λ) = Fc(σ , u) + Ft (σ ,λ), (11)

where the continuous LS functional is denoted by Fc (6) and Ft is the functional part
enforcing the traction continuity (9) on the inter-element boundaries as well as for
the boundary conditions on the outer boundary ∂TN . Here, Ft is given by

Ft =
∑

E∈∂Ti

∫

E
[[σ · n]] · λ dA +

∑

E∈∂TN

∫

E
(σ · n − t̄) · λ dA. (12)

Furthermore, the resulting finite element type is denoted by dPmPkPn with the stress
approximation

σi j =
nelσ∑

I=1

N
I · β I

i j ∈ dPm . (13)

Thus, the discontinuity is realized by not assembling the stress nodes for the
dPmPkPn element. The problem is solved, considering the first variation δF h , by
finding (σ , u,λ) ∈ S̄ × V̄ × X̄ s.t.

δσ,u,λF h = 0 ∀ (δσ , δu, δλ) ∈ S̄ × V̄ × X̄ (14)

with
S̄ := [L2(T )]d×d , V̄ := [H1(T )]d and X̄ := [H−1/2(E)]d (15)

For the solution spaces a conforming choice is considered demanding continuity of
u and λ and allowing jumps of σ at inter-element boundaries, specified by

S̄m
h := {σ h ∈ [L2(T )]3×3 : σ h |K ∈ [dPm]3×3 ∀ K ∈ T },

V̄k
h := {uh ∈ [H1(T )]3 : uh |K ∈ [Pk]3 ∀ K ∈ T },

X̄n
h := {λh ∈ [H−1/2(E)]3 : λh |E ∈ [Pn]3 ∀ E ∈ E}.

(16)
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For u and λ continuous Lagrange type functions are applied and the stresses are
approximated discontinuous. Here, m, k, n denote the polynomial order of the func-
tions spaces.

Numerical Analysis of Hybrid Mixed FEM Based on a LS Approach
The hybrid mixed finite element formulation F h is investigated for a square plate
(x1 ∈ [−1, 1], x2 ∈ [−1, 1]) under displacement controlledboundary conditionswith
four material setups (ν = 0.35, E1,2,3,4 = {100, 200, 300, 400}kN/mm2), see Fig. 4.
The plate is subjected to a uniform elongation, where the displacements in normal
direction of the outer edges are set to 0.1 mm and the shear stresses on the edges are
set to 0. Furthermore, λ in normal direction on the outer edges is 0. The influence
of the different materials can be clearly seen in the deformed configuration with a
scaling factor of 10 in Fig. 4, on a finite element mesh with 20 elements per side. The
hybrid mixed formulation is compared to the continuous LS formulation Fc in (6)
with an approximation of σ ∈ Pm and u ∈ Pk denoted as a PmPk element. Figure5
shows the stress distribution of σ22 on the undeformed configuration and the σ22

stresses over a section of the plate (at line A-B). The physically correct σ22 stresses
have to be continuous in x2-direction and discontinuous across the vertical material
interface, cf. [17]. For the PmPk element, the stress component σ22 at the material
interface is incorrect, since the continuity requirements in H1(B) yield not only
normal continuous solutions, see Fig. 5(a). However, the hybrid mixed formulation
dPkPmPn represents the jump of stresses over the plate at line A-B correctly, see
Fig. 5(b). As mentioned before, these results can be also achieved by an approxima-
tion of σ ∈ RT m , which directly yield normal continuous stresses.

The finite element implementations and computations have been done using the
AceGen and AceFEM packages (version 6.503), see [18–20] andMathematica (ver-
sion 10.1), see [21]. For the visualization Paraview (version 4.3.1), see [22], has been
used.

Fig. 4 BVP of the square plate, definition of intersection lineA-B (left) and deformed configuration
with a scaling factor of 10 (right)
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Fig. 5 σ22 stress distribution over the square plate (bottom) and along the intersection line A-B
(top) for the FE discretization (a) P2P3 and (b) dP2P3P1 with 20 elements per side

4 Conclusion

The presented investigations of a classical and an extended LS formulation, with an
explicit consideration of the balance of angular momentum, show that the recalcula-
tion of reaction forces and moments, as a crucial point in engineering applications,
requires special consideration. However, the considered scale independent approach
is sensitive to the choice of weighting factors, which is one of the challenges of the
LSFEM. Nevertheless, the scale independent extended formulation yields a satis-
fying fulfillment of all reaction forces and moments, which is shown for different
RT mPk element types.

A hybridmixed formulation based on a LS approachwith Lagrange type functions
for the discontinuous stress approximation and enforcing the traction continuity
condition via Lagrange multiplier λ is shown to give the physically correct stress
distribution for heterogeneous materials.
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On Two-Scale Modelling of Softening
Material Responses
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Peter is not only the best scientist, he is also the best of friends.
Wishing him good health and further success in the years ahead,
sincerely Jurica.

Abstract The paper deals with the two-scale approaches for modelling of quasi-
brittle and ductile softening responses of heterogeneous materials. The damage is
induced at the microstructural level and after the homogenization procedure it is
mapped via the constitutive stiffness at the macrolevel material point. In the case of
quasi-brittle softening the nonlocal continuum theory employed in theC1 continuous
finite element formulation is applied at both micro- and macrolevel, and a second-
order computational homogenization has been performed. The ductile damage is
modelled bymeans of the first- and the second-order computational homogenization.
At the first order homogenization the macrostructure is discretized by the regular
displacement finite element formulation, while the mixed finite elements employing
elastoplastic algorithmare used atmicrolevel,where the threemicrostructural volume
elements are considered. On the contrary, only one microstructural volume element
discretized by the mixed finite elements is used at the second-order homogenization,
while the discretization at macrolevel has been performed by theC1 continuous finite
element formulation. All approaches proposed are verified in the standard benchmark
examples.
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Ivana Lučića 5, 10000 Zagreb, Croatia
e-mail: jurica.soric@fsb.hr

T. Lesičar
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e-mail: zdenko.tonkovic@fsb.hr

F. Putar
AVL-AST d.o.o., Strojarska cesta 22, 10000 Zagreb, Croatia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_48

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_48&domain=pdf
mailto:jurica.soric@fsb.hr
mailto:tomislav.lesicar@fsb.hr
mailto:zdenko.tonkovic@fsb.hr
https://doi.org/10.1007/978-3-030-87312-7_48


498 J. Sorić et al.

Keywords Heterogeneous material · Two-scale approach · Computational
homogenization · Quasi-brittle damage · Ductile damage

1 Introduction

Softening phenomena characterized by decrease in material stiffness or so-called
damage are common in engineering materials and can decrease structural load-
carrying capacity, and lead to loss of mechanical integrity. A lot of engineering mate-
rials can be treated as heterogeneous, particularly if they are observed at microscale.
Therefore, in order to assess structural integrity and to predict structural lifetime, an
analysis evolving microstructure is necessary. Derivation of an efficient multiscale
approach is still an important challenge in the computational mechanics community.

A more accurate modelling of the macrostructural softening evolution could be
made if the assessment of damage is firstly done at the microstructural level, where
multiscale approaches enable consistent bridging of the material behaviour from
micro to macroscale. Therein, homogenization techniques are applied in which cer-
tain properties are averaged over a representative volume element (RVE), assumed to
be statistically representative for the macroscopic material point [1–3]. The compu-
tational homogenization scheme is shown to be most accurate and versatile. The two
boundary value problems (BVPs) have to be mostly solved simultaneously during
the calculation, one for the macroscale and another for the underlying microstruc-
ture, where the transfer of state variables represents a crucial and most challenging
part, particularly when softening responses are considered. The transition scheme
of a two-scale approach is displayed in Fig. 1. As shown, the strain measures com-
puted at the macrolevel material point are transformed to the boundary displacement
of microstructural volume element (MVE). After MVE homogenization procedure,
the constitutive relation and other homogenized microstructural state variables are
upscaled to the macrolevel.

Over the past decades, the studies on multiscale numerical methods for modelling
of quasi-brittle failure processes have been mostly performed. If the conventional

Fig. 1 Two-scale
computational scheme
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computational homogenization is used for the simulation of heterogeneous mate-
rial softening responses, some issues arise such as ill-posedness of boundary value
problems and lack of separation of scales. To alleviate these undesired phenomena,
some remedies are proposed in [4, 5]. Furthermore, the relatively efficient failure
zone averaging schemes can be found in [6, 7]. Considering constitutive behaviour,
brittle damage and linear elasticity simulations have been more fruitful compared to
the modelling of ductile damage employing elastoplastic material responses.

A multiscale method dealing with ductile damage responses of polycrystalline
materials has been proposed in [8], where the integral nonlocal terms are introduced
in order to preserve objectivity of the results. In [9], the ductile damage in hetero-
geneous materials is described by means of the mean field homogenization with an
addition of isotropization procedure, but this method is suited only for mild damage.
The “Failure Oriented Multiscale Formulation” for the consistent upscaling of duc-
tile softening behaviour has been presented in [10], with an emphasis on the RVE
boundary conditions during the localization. A multiscale approach which employs
strong coupling between scales has been presented in [11], based on the principle of
the operator split on a two-phase material.

An efficient multiscale method for modelling of damage responses at microlevel
still remains an open question. In the present contribution the damage responses of
both quasi-brittle and ductile materials are considered using two-scale computational
procedures. To model quasi-brittle damage, a second-order computational homoge-
nization approach [12] is applied. Therein, theC1 continuous triangular finite element
formulation based on the nonlocal continuum theory is used for the discretization at
both micro- and macroscales. The damage enhanced constitutive relations [13] are
employed at the microlevel, where an appropriate RVE, representing a sample of het-
erogeneous material, is considered. The ductile damage is modelled using both the
first- and the second-order computational homogenization schemes. The first-order
homogenization employs three MVEs with the failure averaging procedure and the
macrolevel discretization is performed by means of the regular displacement finite
element formulation. The MVE is discretized by the newly developed mixed finite
element,where the gradient-enhanced elastoplasticity is employed. The second-order
homogenization deals with the C1 finite element discretization at macrolevel and the
standard averaging procedure over the MVE. All developed algorithms are imple-
mented into the finite element software ABAQUS via user subroutines. All proposed
computational models are verified by means of several benchmark examples.

2 Modelling of Quasi-brittle Damage

As mentioned above, the C1 continuous plane strain triangular finite element is used
for the discretization at both the microlevel and the macrolevel. It consists of three
nodes, each having 12 degrees of freedom, which are two displacement components
and their first- and second-order derivatives. The element formulation is based on
the nonlocal continuum theory under assumption of small strain. The constitutive
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relations at the macrolevel and the finite element derivation are presented in [12].
The state variables computed at the macrostructural material point are the strain and
the strain gradient which are transformed to the MVE boundary displacement. The
constitutive relations at the microscale employ the damage variable as presented in
the following incremental expressions

�σ = (
1 − Di−1

)
C�ε − Cεi−1�D, (1)

�μx1 = l2
(
1 − Di−1

)
C�εx1 − l2Cεi−1

x1 �D, (2)

�μx2 = l2
(
1 − Di−1

)
C�εx2 − l2Cεi−1

x2 �D. (3)

Here, σ and ε are the Cauchy stress and the strain tensors, respectively. The values
εx1 and εx2 stand for the strain gradients with respect to the Cartesian coordinates x1
and x2, and μx1 and μx2 are their work conjugates. l represents the microstructural
parameter, and C is the elasticity matrix which describes the stiffness behaviour
of the MVE bulk material. D is the damage variable expressed by the exponential
softening law [13]. The exponent (i − 1) refers to the last converged equilibrium
state.

Implementation of the constitutive relations (1)–(3) into the incremental principle
of virtual work, as described in [14], leads to the finite element equation containing
the particular element stiffness matrices by means of which the homogenization
procedure has been performed, as displayed in [15]. The constitutive relations have
been computed in terms of the damage variable at microlevel, and then they are
mapped at the integration points of the macroscopic C1 finite element discretization.
More details on the scale transition can be found in [14]. Therein, an example of
heterogeneous plate subjected to tensile load is computed. In order to trigger the
localization, the Young’s modulus is slightly reduced in the middle of the plate.
The heterogeneity is described using an academic MVE. The damage distribution

Fig. 2 Distribution of
damage variable D over
several characteristic MVEs
[14]
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over several characteristic MVEs forming the macrostructural localization zone is
presented in Fig. 2. It can be observed that the most intense damage bands are formed
in the middle of the plate, where the strongest localization is exhibited, as expected.

3 Modelling of Ductile Damage

The modelling of ductile damage has been performed by using both the first- and
second-order homogenizations. Therein the discretizations at macrolevel employ the
different finite element formulations, and the same gradient elastoplastic formulation
has been applied for the modelling of microstructural softening responses.

3.1 Three MVE First-Order Homogenization

According to the first-order computational homogenization, the discretization at the
macrolevel is performed by using a standard 4-node quadrilateral finite element
formulation. Here the stiffness matrix K has the standard form K = ∫

V
BT CMBdV ,

where the constitutive matrix CM is expressed in terms of the damage variable D
computed at the microlevel, as

CM = (
1 − Di−1

)
CB −

(
dD

dε

)i−1

CBεi−1. (4)

Herein CB denotes the constitutive matrix of the bulk material of a heteroge-
neous structure. Both CB and D are computed at the microlevel using the first-order
computational homogenization which has been performed over the two microstruc-
tural samples representing the two BVPs, as presented in the scheme in Fig. 3. One
(the bulk microstructural volume element - BMVE) is without damage, where only
elastoplastic response has been computed, and another (the damaged microstructural
volume element - DMVE) employs the nonlocal ductile damage model to compute
softening evolution. In order to numerically compute the derivatives of damage vari-
able with respect to three macrostrain components quoted in (4), the additional third
MVE associated with three microstructural BVPs has to be solved. It means, the five
BVPs computations should be performed at every macrolevel material point. More
can be found in [16]. In Fig. 3., �u and �εM are the incremental displacement and
strain imposed at the MVE boundaries, respectively, σB denotes the stress tensor
obtained for the bulk material, while ξ is a scalar perturbation parameter needed for
the derivatives computation.

To compute the damage variable, themicrostructural homogenization based on the
failure averaging has been carried out, where the mixed finite element formulation
with nonlocal equivalent plastic strain interpolation has been employed. Therein,
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Fig. 3 Scheme of three
MVE homogenization

Fig. 4 Distribution of
damage over macromodel
and MVEs at points A, B
and C

besides the standard equilibrium equation, an additional partial differential equation
of the Helmholtz type is solved

ε̄p − l2∇2ε̄p = εp, (5)

where εp is the local equivalent plastic strain, ε̄p denotes the nonlocal equivalent
plastic strain measure which governs the damage response, and l2 represents the
regularizing microstructural parameter. The gradient elastoplastic formulation based
on the following von Mises yield function has been employed

F
(
σ , εp, D

) = σe (σ ) − (1 − D) σy
(
εp

)
, (6)

where σe represents the equivalent von Mises stress, and σy(εp) expressed the linear
isotropic hardening. Herein the standard elastoplastic algorithm as well as the stan-
dard homogenization procedure using Hill-Mandel energy equivalence have been
applied. An exponential damage low has been used [17].

The softening response has again been demonstrated in a simple example of
heterogeneous plate subjected to tensile load using the same MVE as in the case of
quasi-brittle damage presented above. The damage distribution over the macromodel
as well as over the MVEs positioned at some characteristic points of the macrostruc-
ture are shown in Fig. 4. It is shown that the softening evolution has been captured
correctly, and the physically realistic structural responses have been modelled.
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3.2 Second-Order Homogenization

Here a second-order homogenization procedure using the standard averaging
approach is employed for the computation of ductile damage in heterogeneous mate-
rials. Instead of the formulation presented in the previous section, the nonlocal the-
ory embedded into the triangular C1 finite element formulation, described in [12],
is used for discretization at the macrolevel. The constitutive matrices are upscaled
from the microlevel, where they are computed by the second-order homogenization,
which is in a general form presented also in [12]. Instead of three MVEs, here only
one MVE at the microscale is used. As in the previous section, the same implicit
gradient-enhanced elastoplasticity employing von Mises yield function is applied
for the consideration of softening behaviour. The constitutive matrix of the bulk
material of a heterogeneous microstructure is not computed and homogenized sep-
arately, and it is not needed the computation of derivatives of damage variable with
respect to the macrostrain components. The MVE discretization has been performed
by using the mixed quadrilateral formulation mentioned in the previous section, and
the macrostructural regularization has been achieved by using the nonlocal strain
gradient theory at macrolevel. In [14], it is shown that the mesh independent dam-
age evolution at the macrolevel may be obtained, when nonlocal continuum theory
is applied. It is to note that the second-order homogenization procedure is much
simpler because the averaging only over one MVE has to be performed. However,
the disadvantage of here proposed approach is the computation of the state vari-
ables at greater number of material points at macrolevel, as a consequence of using
high order triangular finite element satisfying C1 continuity. Instead of 4 integration
points associated to the classical quadrilateral finite elements, 13 integration points
are used in the C1 finite element formulation. The performance of the computational
procedure described is demonstrated in the computation of a plate subjected to com-
pression. The spreading of the softening at the microscale as well as the distribution
of the homogenized damage at the macrolevel are displayed in Fig. 5. As evident,

Fig. 5 Damage distribution
at micro- and macrolevel
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the weakness is initiated only in a small portion in the middle of the model, and
thereafter the localization propagates towards the opposite boundary, as expected.

Despite the fact that the above presented formulations deliver the results which are
physically correct and realistic, the computations are complex and time demanding.
Therefore, the computationally more efficient formulations are desirable.
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1 Introduction

In history of engineering, cracks in solids remain continuously a field of investigation
on the state and functionality of a material. Cracks occur in nowadays masonry and
concrete structures as well as in the Great Wall of China, Egyptian pyramids and
burial chambers thousands of years old. Starting with the construction phase, the
existence, nucleation and propagation of cracks needs to be considered in many
simple and complex structures, like air-planes, trains and bridges. Engineers have
developed fail save concepts, component monitoring strategies and even smart self-
healing composite solutions. Not only for the restoration of a 300 years old violin
or historical paintings, but also for the use of ceramic turbine blades at 1500 ◦C,
facade anchoring at a 800 m heigh skyscraper as well as for opening tabs in plastic
packagings, realistic crackmodels define our technical abilities and progress (Fig. 1).

The list of models, methods and approaches applied to cracks and material degra-
dation is long and growing. Famous and successful concepts from the early days of
computational mechanics are for example

• fracturemechanics based on the pioneeringworks of Griffith and Irwin on linear
elastic fracture mechanics,

• damage mechanics which origins go back to Kachanov and Krajcinovic, and
• cohesive zone models.

Limitations and challenges led to ongoing developments and newmethods for inves-
tigations of cracks andwith cracks. The progress in computational fracturemechanics

Fig. 1 Cracks in a historical pianoforte (above) [1] and in a painting of the 16th century (right) [2]
due to periodic swelling processes in the wood caused by cyclic moisture changes
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is the result of a persistent search for a generic description of cracks and fracture pro-
cesses. Researchers and engineers are interested in a generic, mathematical frame-
work which overcomes the artificial and empirical assumptions made in previous
approaches towards fracture, e.g. for nucleation, propagation and branching. Mate-
rial forces, eigen-erosion,ExtendedFiniteElementMethod,DiscreteParticleMethod
etc. attracted great interest in the global community of computational mechanics for
the numerical calculation of solids with cracks.

The publication at hand addresses the phasefield method for fracture. Based on
the variational description of fields with discontinuities in [3], and the regularised
formulations developed in [4, 5], Francfort andMarigo [6] have presented a vari-
ational model for brittle fracture. Many people identify large potential in phasefield-
fracture which results in a rapid development of the method. Recently, approaches
towards phasefield-fracture for ductile, viscous and fatigue material behaviour, for
finite deformations and for cohesive fracture have been developed. However, the
findings in [7, 8] have demonstrated that the prediction of those models for the
crack kinematics, i.e. for force transfer through the crack and for the re-contact of
crack surfaces, is not precise even for elastic materials and small deformations. The
novel frameworkofRepresentative Crack Elements (RCE) allows to derive phasefield
models for fracture with physically realistic predictions for the crack kinematics. The
introduction of representative crack elements in [9] is applied to linear, anisotropic
elasticity and thermo-elasticity. The concept is extended to linear visco-elasticity in
[10], where path-dependent deformations by means of internal variables are consid-
ered. A generalised, variational formulation for the RCE framework for non-linear
material behaviour and finite deformations is presented in [11]. Further developments
will follow in the near future.

2 Concept of Representative Crack Elements

The variational formulation for phasefield-fracture is based on the first law of ther-
modynamics and can be expressed in terms of the total virtual power δPtot. The
total virtual power balances internal and external virtual power. The virtual power
of external forces is equal to the dual product of the variation of the state variables
u and p with their thermodynamically conjugate forces fu and f p in the domain B

δPtot =
∫

B

[
δu̇ + fu + ∂ ṗ f p

]
dV . (1)

The phasefield variable p continuously represents the presence of a crack or not
at the material point. Conservative forces for the external virtual power are fully
defined by boundary conditions. The principle of local actions is used to formulate
the internal virtual power in terms of the displacement gradient H , the phasefield p
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and the phasefield gradient ∇ p and their thermodynamically conjugate stresses �H ,
� p and �∇ p

∂Pint =
∫

B

[
δ Ḣ : �H + ∂ ṗ � p + ∂∇ ṗ · �∇ p

]
dV . (2)

The unknown stresses are determined by a constitutive law in terms of the state
variables and additional internal variables α, which represent the deformation history
of the material. Frequently, a material is postulated by means of a Helmholtz free
energy potential ψ(u, p, α). Then, the laws of state yield the stresses �H , � p, �∇ p

and conjugate forces β to the internal variables

�H = ∂ψ(u, p, α)

∂H
, � p = ∂ψ(u, p, α)

∂p
,

�∇ p = ∂ψ(u, p, α)

∂∇ p
, β = ∂ψ(u, p, α)

∂α
. (3)

The constitutive structure of phasefield models for fracture reads

ψ(u, p, α) = ψc(u, α) + g(p)
[
ψ0(u, α) − ψc(u, α)

] + ψ�(p,∇ p). (4)

ψ� is the crack surface energy given as regularised formulation in terms of p and
∇ p. Themechanical degradation of thematerial is described as interpolation between
intact material, given by ψ0, and fully broken material, given by ψc, by means of a
degradation function g(p). Intact material can be provided by classical constitutive
descriptions. In the concept of representative crack elements, the fully degraded
material state is characterised by a crack model as ordinary boundary value problem,
compare [9] for a detailed description. The coupling of the representative crack
model and the constitutive formulation ψc is obtained by means of computational
homogenisation adopting the formulation in [12]. For the following examples, the
kinematic coupling yields the relations

H(x) = H − [[h]] ⊗ N1, �H = 1

V

∫

B

�dV (5)

for the displacement gradient in the RCE and the stress homogenisation, where [[h]]
is the normalised displacement discontinuity at the crack, N1 is the normal vector at
of crack surface and V is the volume of the representative crack model.
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3 Applications

Modelling the deformation kinematics at a crack by means of representative crack
elements gives further access to processes which take place inside the crack. In many
cases, friction between crack surfaces in contact is of particular interest, especially for
failure at compressive loads. The friction behaviour between surfaces at compression
is divided into sticking (static friction) and sliding (dynamic friction). Adopting the
friction concept of Coulomb, the friction force acts as tangential reaction force
which prevents the surfaces from a relative translation during static friction. The
maximal friction force is proportional to the normal force at the surface. When the
maximal friction force is exceeded, the surfaces can slide on each other while the
friction force remains constant.

The precise prediction of the transition from sticking to sliding is demonstrated in
[13, 14] using an elastic sliding block on a rigid foundation applied to compression
and tangential load, cf. Fig. 2a. In both publications, frictional contact formulations
are presented using discrete interfaces between block and foundation. Coulomb
friction is considered in the contact zone except close to the block corners, which are
considered friction free. Phasefield-fracture using Dirichlet boundary conditions
is applied to model the contact zone in Fig. 2b. The elastic material parameters are
E = 1 MPa and ν = 0.3. All three friction states,

• friction free ends (x ∈ [0, 200]mm, x ∈ [3800, 4000]mm),
• sliding zone (x ∈ [∼ 2800, 3800]mm) and
• frictional sticking,

can be identified in Fig. 2c, where the computed normal and shear stresses along the
contact area are compared. The results of the phasefield model based on the RCE
framework agree well with those of the discrete contact models.

The realistic prediction of the deformation kinematics is not only important for
the deformation at fully evolved cracks, but defines also the crack driving force in
the variational phasefield formulation. Next to unphysical crack deformations, also
incorrect predictions for crack nucleation and crack paths can be the result. In the

Fig. 2 a Sketch of the sliding block, b deformed block with phasefield distribution and c normal
and shear stresses by phasefield model [11] compared to those of discrete contact models from [13,
14]



512 J. Storm et al.

Fig. 3 Three-point bending test with notch, a experimental crack paths of [15] compared to those
of the phasefield simulations based on RCE and VD-split [10], b sketch of the boundary value
problem and c three-dimensional visualisation of the phasefield crack

following example, the novel phasefield formulation and a phasefield model based
on the volumetric-deviatoric strain split are applied to a three-point bending test
of asphalt concrete with a notch, cf. Fig. 3b. The visco-elastic material behaviour
is considered by means of the generalised Maxwell model. The numerical time
integration of the stress history yields the time discrete formulation

σ tn+1 =
[
1 +

m∑
I=1

χ I exp

(
− 
t

2 τ I

)]
σ

eq
tn+1

(
εtn+1

)
+ htn

(
σ

eq
tn , σ ne

tn

)
(6)

with stress of the elastic branchσ eq and the stresses of the viscous branchesσ ne,I . The
material parameters of the m Maxwell elements are τ I and χ I . The time increment
from time tn to tn+1 is 
t . The deformation history is represented by the internal
variable htn .

The visualisation of the experimental crack paths from [15] in Fig. 3a is supple-
mented by the two different phasefield results. While the crack path predicted by the
RCE framework agrees well with those of the experiment, the phasefield model with
the VD-split predicts crack nucleation below the applied load instead of the notch.
Note, that the computational effort and convergence behaviour of both phasefield
formulations are similar.

Failure processes in rubber material are challenging when it comes to very large
deformations. One reason is to develop a stable formulation for fracture mechanics at
finite deformations without artificial simplifications. Furthermore, large distortions
occur at the elements near the crack tip which can prevent successful convergence of
the simulation. In order to circumvent unacceptable element distortions, an adaptive
discretisation scheme can address this issue in future investigations. The variational
RCE framework for phasefield-fracture can be directly developed into a kinematics
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Fig. 4 Tensile test of a rubber block with two notches, a sketch of the boundary value problem, b
force-displacement characteristics from the experiments in [16] and from the phasefield simulation,
c visualisation of the deformation state before the test, at the beginning of crack propagation and
close to final rupture. The blanking technique where p ≥ 0.95 is applied to the deformation plots

for finite deformations. However, the computational effort for the material model
increases in a finite deformation framework due to the formulation of the RCEmodel
in the reference configuration and the necessary transformations towards the current
configuration.

Crack propagation at large tensile deformations is studied at the rubber block with
two notches in Fig. 4a. A nearly incompressible Neo-Hookean model

ψ = κ (J − ln (J ) − 1) + μ

2
(tr (C iso) − 3) . (7)

is considered for the bulk material, where J is the determinant of the deformation
gradient and C iso is the isochoric part of the right Cauchy-Green tensor. The elastic
parameters κ and μ are bulk and shear modulus. Deformations of the rubber block
are given at the beginning or the crack propagation and close to final rupture in
Fig. 4c. The force-displacement characteristics of the phasefield simulation with the
three notch lengths a0 = {12, 20, 28}mm agree well with the experimental findings
in [16].

4 Conclusions

The fast development, recent improvements and many successful applications of
the phasefield model for fracture have demonstrated large potential to obtain a very
generalised, powerful method for fracture mechanics. By means of Representative
Crack Elements, a variational framework is introduced which allows to formulate
phasefield models to realistically predict the deformation at the crack. The frame-
work gives further access to model processes which take place inside the crack. In
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comparison to previous phasefield models, to discrete crack models and to exper-
imental results, the advantages of the RCE approach is shown by applications on
crack surface friction, visco-elastic material behaviour and large deformations. The
formulation of multi-physical RCE models will allow to consider the influence of
further fields like moisture on the crack nucleation and propagation in future works,
for instance in historical objects made of wood.
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Abstract In computation of flow problems with moving boundaries and interfaces,
including fluid–structure interaction, moving the fluid mechanics mesh to follow the
fluid–solid interface enables mesh-resolution control near the interface. Therefore
moving-mesh methods, such as the Space–Time Variational Multiscale (ST-VMS)
method, enable high-resolution boundary-layer representation near fluid–solid inter-
faces and thus higher accuracy in such critical flow regions. In flow problems with
contact between solid surfaces, until recently, one had to either give up on repre-
senting the actual contact and leave a small gap or give up on using a moving-mesh
method and thus give up on having high-fidelity flow solution near the solid surfaces.
The ST Topology Change (ST-TC) method changed all that. Now we can both rep-
resent the actual contact and have high-fidelity flow solution near the solid surfaces.
With the ST-VMS, which serves as the core method, and the ST-TC and two other
special methods, the ST Slip Interface method and ST Isogeometric Analysis, we
have created a powerful computational framework. The new framework is enabling
high-fidelity computational flow analysis of some of the most complex problems,
such as the ventricle-valve-aorta sequence. This chapter is a description and demon-
stration of that framework.
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1 Introduction

In computation of flow problems with moving boundaries and interfaces (MBI), in-
cluding fluid–structure interaction (FSI), high-resolution boundary-layer represen-
tation near fluid–solid interfaces requires mesh-resolution control near the interface.
Moving-mesh methods, such as the Space–Time Variational Multiscale (ST-VMS)
method [1], meet that requirement. In an FSI or MBI problem with contact between
solid surfaces, until recently, one had to either give up on representing the actual
contact and leave a small gap or give up on using a moving-mesh method and thus
give up on having high-fidelity flow solution near the solid surfaces. The ST Topol-
ogy Change (ST-TC) method [2] changed all that. Now we can both represent the
actual contact and have high-fidelity flow solution near the solid surfaces.

With the ST-TC and two other special ST methods around the core method ST-
VMS, we have created a powerful computational framework, the “ST-SI-TC-IGA”
[3]. The two other methods are the ST Slip Interface (ST-SI) method [4] and the
ST Isogeometric Analysis (ST-IGA) [1, 5, 6]. The ST-SI-TC-IGA is enabling high-
fidelity flow analysis in some of the most complex problems. We briefly describe it
and demonstrate it in ventricle-valve-aorta flow analysis.We include the left ventricle
(LV) in the model to make the flow into the valve anatomically more realistic, which,
in turn, makes the flow into the aorta more realistic.

2 Methods

The ST-VMS is the VMS version of the Deforming-Spatial-Domain/Stabilized ST
(DSD/SST) method [7]. The DSD/SST is a moving-mesh method, introduced for
computation of flowswithMBI, including FSI. Because the stabilization components
of the original DSD/SST are the Streamline-Upwind/Petrov-Galerkin (SUPG) [8]
and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [7] methods, it is called “ST-
SUPS.” The VMS components of the ST-VMS are from the residual-based VMS
(RBVMS)method [9]. The ST-SUPS andST-VMShave been applied tomany classes
of FSI, MBI and fluid mechanics problems (see [10] and the chapter contributed by
the third author). For more on the ST-VMS and ST-SUPS, see [11].

The ST-SI was introduced to retain the desirable moving-mesh features of the
ST-VMS and ST-SUPS in computations involving spinning solid surfaces, such as
a turbine rotor. The mesh covering the spinning surface spins with it, retaining the
high-resolution representation of the boundary layers, while the mesh on the other
side of the SI remains unaffected. This is accomplished by adding to the ST-VMS
formulation interface terms similar to those in the version of the ALE-VMS [12] for
computations with sliding interfaces [13]. The interface terms accurately connect the
two sides of the solution. An ST-SI version where the SI is between fluid and solid
domains was also presented in [4]. The SI in that case is a “fluid–solid SI” rather than
a standard “fluid–fluid SI” and enables weak enforcement of the Dirichlet boundary
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conditions for the fluid. The ST-SI has been applied tomanyMBI and fluidmechanics
problems (see [10] and the chapter contributed by the third author). For more on the
ST-SI, see [4].

The ST-TC made moving-mesh computations possible even when there is an
actual contact between solid surfaces or other TC, not just a near contact. The ST-TC,
by collapsing elements as needed, without changing the connectivity of the “parent”
mesh, can handle an actual TC while maintaining high-resolution boundary layer
representation near solid surfaces. The ST-TC has been applied to several MBI and
fluid mechanics problems (see [10] and the chapter contributed by the third author).
For more on the ST-TC, see [2].

The ST-SI-TC [14] is the integration of the ST-SI and ST-TC. A fluid–fluid SI
requires elements on both sides of the SI. When part of an SI needs to coincide
with a solid surface, which happens for example when the solid surfaces on two
sides of an SI come into contact or when an SI reaches a solid surface, the elements
between the coinciding SI part and the solid surface need to collapse with the ST-TC
mechanism. The collapse switches the SI from fluid–fluid SI to fluid–solid SI. With
that, an SI can be a mixture of fluid–fluid and fluid–solid SIs. With the ST-SI-TC,
the elements collapse and are reborn independent of the nodes representing a solid
surface. The ST-SI-TC enables high-resolution flow representation even when parts
of the SI are coinciding with a solid surface. It also enables dealing with contact
location change and contact sliding. The ST-SI-TC has been applied to several MBI
and fluid mechanics problems (see [10] and the chapter contributed by the third
author). For more on the ST-SI-TC, see [14].

The ST-IGA is the integration of the ST framework and IGA discretization. It was
motivated by the successwith using IGAbasis functions in space [15]. In the ST-IGA,
the IGA basis functions are used also in temporal representation. Computations with
the ST-VMS and ST-IGA were first reported in [1] in a 2D context, with IGA basis
functions in space and time. The ST-IGA with IGA basis functions in time enables a
more accurate representation of the motion of the solid surfaces and a mesh motion
consistent with that. It also enables more efficient temporal representation of the
motion and deformation of the volume meshes, and more efficient remeshing. These
motivated the development of the ST/NURBS Mesh Update Method (STNMUM)
[5]. The STNMUM has a wide scope that includes spinning solid surfaces. With the
spinningmotion representedbyquadraticNURBS in time, andwith sufficient number
of temporal patches for a full rotation, the circular paths are represented exactly. A
“secondary mapping” [1] enables also specifying a constant angular velocity for
invariant speeds along the circular paths. The ST framework and NURBS in time
also enable, with the “ST-C”method, extracting a continuous representation from the
computed data and, in large-scale computations, efficient data compression [16, 17].
The ST-IGAwith IGA basis functions in space enables more accurate representation
of the geometry and increased accuracy in the flow solution. It accomplishes that
with fewer control points, and consequently with larger effective element sizes. That
in turn enables using larger time-step sizes while keeping the Courant number at a
desirable level for good accuracy. The ST-IGA has been applied to many MBI and
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fluid mechanics problems (see [10] and the chapter contributed by the third author).
For more on the ST-IGA, see [5, 6].

The ST-SI-IGA [6] is the integration of the ST-SI and ST-IGA. As a fluid–fluid
SI, it enables, in the context of IGA discretization, retaining the desirable moving-
mesh features of the ST-VMS and ST-SUPS in computations involving spinning solid
surfaces. As a fluid–solid SI, it enables, in the context of IGA discretization, weak
enforcement of the Dirichlet boundary conditions for the fluid. An SI provides mesh
generation flexibility in a general context by accurately connecting the two sides
of the solution computed over nonmatching meshes. This flexibility is especially
valuable in complex-geometry flow computations with IGA discretization, removing
thematching requirement between theNURBS patches without loss of accuracy. The
ST-SI-IGA has been applied to many MBI and fluid mechanics problems (see [10]
and the chapter contributed by the third author). For more on the ST-SI-IGA, see [6].

The ST-SI-TC-IGA [3] is the integration of the ST-SI, ST-TC and ST-IGA. It pro-
vides, in the context of IGA discretization, the desirable features of the ST-SI-TC.
The ST-SI-TC-IGA was applied to heart-valve flow analysis with a moving-mesh
method, IGA discretization and full valve closure [3], IGA-discretization moving-
mesh tire aerodynamic analysis with actual tire geometry, road contact, tire deforma-
tion, road roughness and fluid film [18, 19], and ventricle-valve-aorta flow analysis
with a moving-mesh method, IGA discretization and full valve closure [20]. We
describe the ventricle-valve-aorta flow analysis in the next section. For more on the
ST-SI-TC-IGA, see [3].

The ST-SI-TC-IGA is supplemented with two other special methods. (a) A struc-
tural mechanics computation method generates the LV motion from the CT scans
of the LV and anatomically realistic values for the LV volume ratio. The structural
mechanics computations, performed in different ways for the diastole and systole,
generate a “table” of LV volumes and shapes. From that and the volume ratio given,
the cardiac-cycle representation of theLVmotion is obtained byusing cubicB-splines
in time and the ST-C. (b) The Constrained-Flow-Profile (CFP) Traction provides
flow stability at the inflow boundary. This is done by placing adjacent to the inflow
boundary a special-purpose element with 27 basis functions. The ST-SI connects
the flow solutions over that element and the rest of the mesh. The special-purpose
element, with only one unspecified control-point velocity at the inflow, results in a
constrained flow profile, which is quadratic. The solution obtained for the unspeci-
fied velocity, together with the quadratic profile, represents the flow rate generated
by the traction conditions specified at the inflow and outflow boundaries.

3 Ventricle-Valve-Aorta Flow Analysis

This section is from [20]. The flow computation model consists of the LV, aortic
valve with sinuses, and the aorta. We do not include the mitral valve in the model.
The boundary between the LV and the left atrium becomes our inflow boundary. We
use the CFP Traction there when the mitral valve is open, and zero-velocity when it
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is closed. The aorta main outlet is a regular outflow boundary with traction condition,
and the three smaller outlets are prescribed-velocity outflow boundaries.

3.1 Geometry and Motion

The entire model is shown in Fig. 1. The quadratic NURBSmeshes for the three parts
are generated separately and the SIs connect the three solution parts. The LV shrinks
and expands with a cardiac cycle of T = 0.9 s, the valve opens and closes, and the
aorta remains stationary. The starting fluid mechanics volume mesh is generated
using the method in [21]. Then the mesh is moved, with the mesh-Jacobian-based
stiffening [22], to conform to the LV shapes obtained in the structural mechanics
computations. The valve-mesh motion is obtained by transformation from the mesh
motion used in the valve computation reported in [23]. We note that the mesh motion
in [23] is based on the ST-SI-TC-IGA, which deals with the TC created by the
contact between the leaflets while maintaining high-resolution representation near
them. The aorta geometry is based on a different set of CT scans than the LV scans
and is represented by cubic T-splines. From that, the fluid mechanics volume mesh
is generated using the method in [21]. The aorta part remains rigid.

Fig. 1 LV-valve-aorta model. LV (blue), leaflets (orange), and aorta (green). The left picture shows
the front view, and the right picture shows the view along the valve axis
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3.2 Mesh, Boundary Conditions, Blood Properties,
and Computational Conditions

To the mesh composed of the three parts, we add, for the CFP Traction, the SI
and the special-purpose element. We set ρ = 1,050kg/m3 and μ = 4.2×10−3 Pa · s.
Figures2 and 3 show the mesh at different instants in the cardiac cycle. We use the
ST-SUPS, with the stabilization parameters given by Eqs. (4)–(9) in [18]. The time-
step size is 2.81×10−3 s. The number of nonlinear iterations per time step is 3, and
the number of GMRES iterations per nonlinear iteration is 300.

Fig. 2 Mesh at different instants in the cardiac cycle. The frames (from left to right) are for
t/T = 0.003, 0.250, 0.625, 0.684, 0.894, 0.981. The lines are the element boundaries. The sinuses
are transparent to make the valve motion visible

Fig. 3 Mesh in the valve at
the cardiac-cycle instants in
Fig. 2. The checkerboard
pattern is for differentiating
between the NURBS
elements, and the colors are
for differentiating between
the NURBS patches
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Fig. 4 Isosurfaces
corresponding to a positive
value of the second invariant
of the velocity gradient
tensor, colored by the
velocity magnitude (m/s).
The frames are for the same
instants as in Fig. 2

3.3 Results and Concluding Remarks

Figure 4 shows the flow patterns. We capture the spiral flow in the valve and aorta
and have a reasonable flow field even when the leaflets come into contact.
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Abstract Higher-order finite element methods are applied to electronic structure
calculation in the context of the finite element method. For this purpose, the Kohn-
Sham formalism of density functional theory is cast in a setting that is amenable to
a finite element discretization. Both all-electron and pseudopotential formulations
are presented, the latter incorporating both local and nonlocal contributions. Some
of the outstanding challenges in applying this numerical framework to such ab initio
methods are discussed. Finally, the approach is demonstrated with higher-order finite
element basis sets that are associated with classical Lagrange discretizations as well
as more with more recent isogeometric ones based on NURBS and B-splines.

1 Introduction

Over the past decade, finite elementmethods have been applied successfully and com-
petitively in the context of electronic structure calculation [1]. In particular within
the context of the Kohn-Sham density functional theory, efficient ab initio methods
are desirable in order to access nonphenomenological predictions of material and
interface behavior at small length scales [2]. From an engineering perspective, one
aim is to subsequently upscale this information by connecting different length scales
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using numerical methods which operate efficiently at each scale in order to reach at
multiscale descriptions of deformation and failure for material and interface design.
The triggering role of ab initio methods in this hierarchy of transitions is pivotal
because it is able to initiate this process with a truly nonphenomenological seed.
Therefore, there is an ongoing need for numerical methods which can attain desired
levels of chemical accuracy faster and more efficiently, particularly in view of the
very high computational cost of the problems involved [3–5]. From this perspective,
the advantages of the finite element method are numerous [6]. First, in comparison to
plane-wave approaches, it is a real-spacemethod that does not require transforms that
typically scale up rapidly in cost with increasing numerical resolution. Moreover, its
structure naturally accommodates both periodic material systems such as crystals in
addition to nonperiodic ones such as isolated molecules, unlike plane waves which
assume periodicity from the outset. Second, in comparison to a real-space approach
such as the finite-difference method, it preserves the variational structure that under-
lies density functional theory, similar to plane-wave discretizations. When combined
with systematic improvability due to the completeness of the basis sets, this property
ensures monotonic convergence in total energy–a property that is critical when one
wishes to assess the solution quality. Such systematic improvability is missing in
widely employed real-space methods based on Gaussian basis sets which retain the
variational structure but cannot ensure that convergence achieved through the addi-
tion of multiple basis members is indeed due to having achieved the minimum total
energy and not an artifact of incompleteness.

Density functional theory is an approach to solving the Schrödinger equation
and the Kohn-Sham formalism is a theoretical framework that renders this approach
feasible in a numerical setting [7]. The finite element method has recently been
applied as a particular numerical setting in various contexts which range from time-
independent periodic cases to time-dependent nonperiodic ones [6, 8–14]. Overall,
the level of efficiency achieved is now competitive with, and in several cases already
beyond, time-honored practices based on plane-waves for periodic problems and
Gaussian basis sets for nonperiodic ones. The sparse structure of the matrices which
emanate from finite element basis sets as well as the suitability of the framework
to parallelization are contributing factors to this competitiveness. Moreover, higher-
order basis sets are crucial if such problems are to be solved in reasonable times due
to the insufficient convergence rate of linear ones, and the finite element method is
naturally amenable to the incorporation of such discretizations. In the majority of
these studies, and in all recent applications, basis sets are derived fromLagrange-type
elements. As an alternative discretization scheme, following various earlier studies
[15–17] but by building upon and benefiting from efficient eigensolvers to address
comparatively larger material systems [18], the use of NURBS and B-splines was
explored in [19], motivated by the isogeometric analysis approach [20]. The goal
of this contribution is to summarize the finite element formulation of this ab initio
problem and to present examples which indicate routes to even higher efficiency if
isogeometric basis sets are employed as higher-order finite elements.
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2 Density Functional Theory

The focus of the present study is on an isolated material system M consisting of N
electrons and M nuclei, each with charge Z A (A ∈ 1, . . . , M). In a pseudopotential
setting, the set of electrons is associatedwith the valence structure only and the nuclei
are replaced by ions that are assigned a net charge that is augmented by those of the
core electrons. The configuration of M is determined through the nucleus locations
RA that define rA = r − RA where the spatial position vector in unbounded space is
indicated as r and integration over this spacewill be denoted by 〈·〉. The external local
potential generated by the nuclei can then be expressed as νext = ∑

A νA(rA) where,
introducing rA = |rA|, νA = −Z Am A(rA) are spherically symmetric potentials. For
the all-electron setting m A(x) = 1/x delivers the classical Coulomb expression of
the potential whereas in the local pseudopotential setting m A(x) acts as an ion-
dependent mollifier which is chosen such that it delivers the regularized form of
1/x , i.e. m(0) is well-defined and m(x) matches or rapidly approaches 1/x beyond
a prescribed distance. In the case of nonlocal pseudopotentials, the electron-ion
interaction is nonlocal such that the external potential as well as the corresponding
energy contribution will entail additional terms that will be shortly commented upon.

Assuming a closed-shell structure without consideration for spin effects and
degeneracy, N/2 real orthonormal spatial orbitals ψi (r) are introduced which
describe a noninteracting reference system of N electrons in the Kohn-Sham for-
malism of density functional theory. The electron density can then be expressed as
ρ(r) = 2

∑
i ψ2

i and, in atomic units, the energy as a functional of the density takes
the form

E = Ts + EH + Een + Enn + Exc . (1)

Here, Ts is the exact kinetic energy of the reference system, EH is the Hartree energy
that corresponds to the classical electrostatic interactions among the electrons, Een

is associated with the electron-nucleus interactions while Enn is associated with
nucleus-nucleus ones and, finally, Exc is the exchange-correlation energy which
accounts for errors in the kinetic energy and electron-electron interaction expres-
sions:

Ts = 2
∑

i

〈 ψi (− 1
2∇2) ψi 〉 , EH = 1

2 〈ρ vH 〉 , Een = 〈ρ vext〉 , (2)

Enn = 1

2

∑

A

∑

B �=A

Z A Z B

|RA − RB | , Exc = 〈ρ εxc〉 . (3)

Within these expressions, εxc is the exchange-correlation energy per electron and vH

is the Hartree potential that is defined through the Poisson equation

− 1
4π ∇2vH = ρ . (4)
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Each contribution to the total energy E depends on the set of orbitals ψi , either
directly or indirectly through ρ. The ground state electronic structure is determined
through the minimization of E over ψi , leading to the Kohn-Sham equation

(− 1
2∇2 + veff) ψi = εi ψi (5)

where veff = vH + vext + vxc, εi are the orbital energies and the exchange-correlation
potential vxc is defined through the variation δExc = 〈vxc δρ〉. Although the definition
of vxc is general, the present studywill be restricted to the local density approximation
where εxc will be a function of ρ only and therefore vxc = εxc + ρ ∂εxc/∂ρ. Overall,
the summarized theory can also easily be extended to account for open-shell problems
and degeneracies through the incorporation of fractional occupancy, although this
will not be explicitly indicated in this presentation.

In comparison to the all-electron setting, the pseudopotential setting delivers a
significantly more efficient numerical approach because it eliminates the explicit
presence of the core electrons, thereby reducing the stringent requirements on the
discretization as well as the number of orbitals which need to be calculated [21].
Although local pseudopotentials may suffice for some material systems [22], most
cases require nonlocal pseudopotentials for accuracy and transferability [23]. For
this purpose, the total energy (1) is augmented by a contribution

EN L =
∑

i

〈ψi (r) vN L(r, r′) ψi (r′)〉 , vN L =
∑

A


A(rA, rA
′ ) (6)

where nonlocality explicitly manifests itself. Similarly, the effective potential veff in
the Kohn-Sham equation (5) is augmented by the nonlocal part vN L of the pseu-
dopotential that is composed of a sum of atom-dependent nucleus-centered nonlocal
contributions 
A. For an efficient numerical implementation, the preferred form of
these contributions is based on a separable form. Presently, this implementation will
not be explicitly discussed.

It is noted that it is possible to evaluate the exact Hartree potential vH corre-
sponding to a given electron density ρ, albeit at a high numerical cost. This cost is
circumvented by solving the Poisson equation (4) instead. Now, however, vH will
be obtained to within the numerical error that is associated with the chosen dis-
cretization. Consequently, the overall problem for rendering the energy stationary
towards the ground state electronic structure takes on a saddle-point form rather than
one of minimization [24]. The practical consequence of this is that nonvariational
results may be obtained if the finite element discretization is not chosen carefully,
thereby rendering difficulties in the assessment of the solution quality. The finite ele-
ment formulation to be discussed next assumes a single discretization that is chosen
judiciously for the solution of both the Poisson and Kohn-Sham equations.
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3 Finite Element Discretization

Because veff within (5) is nonlinear in the set of orbitalsψi , (4) and (5) must be solved
iteratively to self-consistency in order to determine the ground state electronic struc-
ture, typically together with amixing scheme in order to tune convergence. Presently,
this solution approach will be built on the finite element method. Introducing test
functions {η, ϕ} and carrying out standard manipulations, the weak forms of the
Poisson and Kohn-Sham equations may be expressed as

1
4π 〈∇η · ∇vH 〉 = 〈η ρ〉 , 1

2 〈∇ϕ · ∇ψi 〉 + 〈ϕ veff ψi 〉 = εi 〈ϕ ψi 〉 (7)

Invoking a single discretization for both problems that is described by a set of shape
functions NI , these expressions take the form

[P]{vH } = {d} , [H ]{ψi } = εi [M]{ψi } . (8)

Here, defining L I J = 〈∇NI · ∇NJ 〉,

PI J = 1
4π L I J , dI = 〈NI ρ〉 , HI J = 1

2 L I J + 〈NI veff NJ 〉 (9)

while, based on the discretizations vH = ∑
I vI

H NI and ψi = ∑
I ψ I

i NI , {vH } and
{ψi } collect the degrees of freedom vI

H and ψ I
i , respectively. Overall, in view of the

spherical symmetry of the potentials involved in all-electron and pseudopotential
settings for a single atom, virtually the same formulation applies to the radial case
as well, which is advantageous in comparing different finite element discretizations
as well as in generating discrete orbital solutions for possible use as enrichment
functions in the three-dimensional case [12, 13].

The solutionof the generalized eigenvalue problem (8)2 can scale in a prohibitively
unfavorable fashion depending on the solution algorithm. Presently, a subspace iter-
ation method will be employed based on the Chebyshev filtering of the spectrum
through a modification of the original algorithm that was proposed for a standard
eigenvalue problem [18]. Clearly, the ability to modify the finite element discretiza-
tion or to process the mass matrix in order to arrive at a standard version is desirable
to attain faster solutions. For isogeometric discretizations, such as those that are
based on NURBS or B-splines, row-sum lumping retains the positive-definiteness of
the mass matrix. However, without additional modification of the original solution
algorithm for a standard version, this leads to significantly reduced accuracies. On
the other hand, lumping is not suitable for classical higher-order Lagrange elements
but the combination of reduced-order Gauss-Lobatto quadrature schemes in com-
bination with spectral finite elements delivers a diagonal mass matrix which allows
invoking the original algorithm [6]. Because the aim is to carry out the electronic
structure calculation at a level that matches the desired chemical accuracy, these
aspects additionally influence how different discretizations compete in terms of effi-
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ciency, in particular in view of the fact that isogeometric discretizations typically
deliver significantly higher accuracy per degree of freedom. A detailed comparison
of various competing factors remains an open issue.

4 Numerical Investigations

As a radial case, the Magnesium atom will be considered. In the all-electron setting,
Slater exchange is employed together with Vosko-Wilk-Nusair parametrization of
correlation. The resolution is controlled through a parameter eo which would scale
with the number of elements in a linear discretization, not shown due to low accu-
racy. The error in the total energy E (in hartrees) is assessed with respect to the
reference result Eo = −199.139 406 315 that is converged to 10−9 accuracy. In the
pseudopotential setting, Perdew-Zunger parameterization of correlation is employed
together with the evanescent core local pseudopotential [22]. The reference result
that is converged to 10−11 accuracy is Eo = −0.847 598 456 26. The target chemical
accuracy is 10−3 in the all-electron setting and 2 × 10−4 in the pseudopotential one.

The results in Fig. 1 indicate the significantly less stringent discretization require-
ments in the pseudopotential case where the target accuracy is already achieved at
very coarse discretizations. Here, classical Lagrange discretizations are denoted by L
whereas N denotes an isogeometric discretization based onNURBS or B-splines, the
following number being associated with the order chosen in each case. The asymp-
totic convergence rates are measured from the last three points in the data set for a
given discretization and noted next to the corresponding line as half of the negative
slope. The optimal value of the convergence rate measured in this fashion is equal to
the discretization order and it is clear that this value has been achieved in all cases.
However, the factor in the finite element error estimate expression also significantly
contributes to the efficiency with which target accuracy is achieved. Indeed, it is
observed that in both cases N3 delivers a faster route to convergence than both L4
and L5 choices and this trend is preserved until significantly low errors are observed.
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Fig. 1 All-electron and local pseudopotential results for the Magnesium atom in the radial case
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Fig. 2 Isosurfaces for ρ (left) and vH (right) for the buckyball where red spheres indicate the ions

Because the number of elements does not decrease in an isogeometric discretization
as the order increases in a standard implementation that is based on the classical finite
element structure, it is advantageous to limit the order. In this respect, cubic NURBS
and B-splines appear to offer competitive accuracy in return for the computational
burden in the context of electronic structure calculation [19].

As a large-scale three-dimensional example with nonlocal pseudopotentials, the
buckyball (C60 molecule) is considered. The setup of this analysis follows the details
in [19] and requires the calculation of 120 orbitals. Therein, however, it was not
possible to approach the target accuracy. Presently, an error of 1.07 × 10−4 Ha per
atom has been achieved with an N3 discretization that contains 790,773 degrees of
freedom, which satisfies the stringent pseudopotential calculation accuracy require-
ment. The corresponding solution is visualized in Fig. 2. It is noted that the error for
an L5 discretization with 1,357,579 degrees of freedom on the same mesh structure
remained above 4 × 10−4 Ha per atom. Recalling that the Kohn-Sham formalism
leads to a generalized nonlinear eigenvalue problem, the efficient extraction of a
large number of eigenpairs towards the solution of such problems on discretizations
with O(106) degrees of freedom continues to pose a computational challenge.

5 Conclusion

Kohn-Sham density functional theory provides a rich foundation for constructing
nonphenomenological multiscale approaches through which the understanding of
material and interface behavior can be advanced. The finite element method offers
an effective numerical framework in addressing the corresponding computational
complexity, specifically in the context of higher-order discretizations. Numerous
challenges must still be addressed in order to further explore and harness its poten-
tial advantages in electronic structure calculation. Presently, the accuracy gains per
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degree of freedom have been limited due to nearly uniformmeshes employed. Adap-
tive mesh refinement in classical and isogeometric discretizations is an important
next step towards a more effective utilization of the computational resources. This
will enable addressing larger scale problems where geometry optimization may be
required towards the determination of equilibrium structures or ab initio molecular
dynamics may be pursued at the next scale towards the continuum.
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Abstract The space–time (ST) computational fluid–structure interaction (FSI)
and flow analysis started in 1990, with the inception of the Deforming-Spatial-
Domain/Stabilized ST (DSD/SST) method. In 1990–2003, the DSD/SST enabled
computational FSI and flow analysis inmany complex engineering problems, includ-
ing parachute FSI and fluid–particle interaction with 1000 spheres. In 2004, the
DSD/SST enabled some of the earliest cardiovascular FSI analyses, and, in combi-
nation with the “quasi-direct coupling,” enabled more robust FSI analysis for very
light structures, such as large parachutes. New core and special ST methods intro-
duced in 2006 and 2007 enabled computational FSI analysis of the Orion spacecraft
parachutes, with hundreds and gaps and slits that the flow goes through. In 2004, the
first author also met the second author, which eventually led to a unique research
collaboration and a new generation of ST methods. It also led to some of the most
complex computational FSI and flow analyses, ranging from clusters of spacecraft
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1 Introduction

The space–time (ST) computational fluid–structure interaction (FSI) and flow analy-
sis goes back to1990,when theDeforming-Spatial-Domain/StabilizedST (DSD/SST)
method [1] was introduced for computation of flows with moving boundaries and
interfaces (MBI), including FSI. The DSD/SST is a moving-mesh method. Mov-
ing the mesh to follow a fluid–solid interface enables mesh-resolution control near
the interface and high-resolution boundary-layer representation. The stabilization
components of this original DSD/SST are the Streamline-Upwind/Petrov-Galerkin
(SUPG) [2] and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [1] stabilizations,
hence it is now called “ST-SUPS.” The compressible-flow ST-SUPG method [3]
is essentially the same as the compressible-flow DSD/SST method. It is a straight-
forward mixture of the DSD/SST concept and the compressible-flow SUPG [4].

Good moving-mesh methods require good mesh moving methods. In the mesh
movingmethod introduced in 1992 [5], themotion of the internal nodes is determined
by solving the equations of linear elasticity. The stiffness is inversely proportional to
the Jacobian of the transformation from the element domain to the physical domain,
hence the name “Mesh-Jacobian-based stiffening (MJBS).”

In 1990–2003, the ST-SUPS and the compressible-flow ST-SUPG enabled com-
putational FSI and flow analysis in many complex problems. In fluid–particle inter-
action, the ST-SUPS was the first in 3D computations [6], first in reaching 100
spheres in 3D [7], first in reaching 1,000 spheres in 3D [8], and first in reaching
125 spheres in 3D spatially periodic domains [9]. The ST-SUPS was the first in 3D
parachute FSI [10] and first in 3D FSI of a parachute crossing an aircraft wake [11].
The compressible-flow ST-SUPG computation of two high-speed trains in a tunnel
[12] was the first 3D compressible-flow MBI computation with the SUPG.

2 2004

In 2004, the first author met Peter Wriggers. Other good things happened that year.
The ST-SUPS was among the first in patient-specific full FSI analysis of arteries
[13]. The “quasi-direct (QD) coupling” [14] was introduced in conjunction with the
ST-SUPS, replacing the “block-iterative (BI) coupling” in ST FSI computations.
The QD coupling is applicable to cases with nonmatching fluid and structure meshes
at the interface and becomes equivalent to monolithic methods when the interface
meshes are matching. When the fluid mass in the FSI dynamics is much larger than
the structure mass, such as in large parachutes, the QD coupling is more robust than
BI coupling, which was already far more robust than loose coupling.

The first author also meeting the second author in 2004 led to a unique research
collaboration starting in 2007, and a new generation of ST FSI and flow analysis
methods starting in 2008. It also led to some of the most complex computational FSI
and flow analyses, ranging from spacecraft parachute clusters to heart valves to flow
around tires with road contact and tire deformation.
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3 2005–2010

In 2005, the QD coupling enabled ST FSI analysis of a new, complex parachute
design [15]. New core and special ST methods introduced in 2006 and 2007 enabled
FSI analysis of computationally challenging problems like a cloth piece falling over
a rigid rod [16], flow through and around a flapping windsock [16], and sails [17].
Thanks to the homogenized modeling of geometric porosity (HMGP) [17], they also
enabled the FSI analysis of the Orion spacecraft parachutes [17], with hundreds and
gaps and slits that the flow goes through because of the ringsail construction. With
that, in 2007, the ST-SUPS was the first in spacecraft parachute FSI.

In 2010, the ST-SUPS was the first in spacecraft parachute cluster FSI [18], for
both the 2 and 3-parachute clusters, with contact between the parachutes, and the
first in supporting NASA design studies [19] with computational FSI methods. The
ST Variational Multiscale (ST-VMS) method [20], VMS version of the DSD/SST,
was also introduced in 2010. Its VMS components are from the residual-based VMS
(RBVMS) method [21]. Motivated by the success with using isogeometric analysis
(IGA) basis functions in space [22], the idea of using IGA basis functions also in time
in the ST frameworkwas introduced in 2010 [20]. This is part of the integration of the
ST framework and IGA discretization, broadly called “ST-IGA.” Computations with
the ST-VMS and ST-IGA were first reported in [20] in a 2D context, with IGA basis
functions in space and time. The ST-IGA with IGA basis functions in time enables a
more accurate representation of solid-surface motions and a mesh motion consistent
with that. It also enables more efficient temporal representation of the mesh motion.
The spinning motion of a solid surface is represented by quadratic NURBS in time,
and with sufficient number of enough temporal patches for a full rotation, the circular
paths are represented exactly. A “secondary mapping” [20] enables also specifying
a constant angular velocity for invariant speeds along the circular paths.

4 2011–2020

In 2011, the second author gave a presentation at Peter Wriggers’s 60th birthday
conference and met him for the first time. Other good things happened that year. The
ST/NURBS Mesh Update Method (STNMUM) [23] was introduced in 2011, where
the mesh motion is represented with NURBS basis functions in time. With that, the
ST-VMS was the first in flapping-wing aerodynamics with the wing motion coming
from an actual locust [23], recorded in a wind tunnel with two high-speed cameras.

In 2012, the ST-VMS was the first in flow analysis of stent treatment of cerebral
aneurysms [24] with resolved flow across the stent. The ST-SUPSwas the first in FSI
analysis of the Orion spacecraft 2-parachute cluster opening from Stage 2 to 3 and
“MP” parachutes with modified geometric porosity [25]. The ST-SUPS was the first
in FSI analysis of the Orion spacecraft drogue parachutes [26], with over 1,200 gaps



540 T. E. Tezduyar et al.

that the flow goes through because of the ribbon construction, with detailed analysis
for the 2 and 3-parachute clusters.

Several good things happened in 2013. The ST-VMSwith STNMUMwas applied
to wind-turbine rotor and tower aerodynamics [27], with exact temporal represen-
tation of the rotation. The ST-SUPS was the first in FSI analysis of the clusters of
the Orion spacecraft MP parachutes, for both the 2 and 3-parachute clusters [28].
The introduction of the ST Topology Change (ST-TC) method [29] enabled moving-
mesh computation of flow problems with TC, such as contact between moving solid
surfaces. The ST-TC made moving-mesh computations possible even when there is
an actual contact between solid surfaces or other TC, not just a near contact. That
was the first for a moving-mesh method, and that made it possible to have both an
actual TC and high-resolution boundary layer representation near solid surfaces.

In 2014, the ST-VMS with ST-TC was the first in heart-valve flow analysis [30]
with a moving-mesh method and full valve closure. The ST-SUPS was the first in
FSI analysis of the opening of the Orion spacecraft MP and drogue parachutes from
Stage 1 to 2 to 3 and opening of the 2-parachute MP cluster from Stage 2 to 3 [31].

Several good things happened also in 2015. The thermo-fluid ST-VMS [32] was
introduced for computational analysis with the coupled incompressible-flow and
thermal-transport equations. The ST-VMS was one of the first, perhaps the first,
thermo-fluid VMS method. The computational thermo-fluid analysis presented in
[32] for a ground vehicle and its tires was the first of its kind. The ST Slip Interface
(ST-SI) method [33] was introduced to retain the desirable moving-mesh features
of the ST-VMS in computations involving spinning solid surfaces. The ST-SI is
essentially the ST version of the ALE-VMS for sliding interfaces [34]. An ST-SI
version where the SI is between a thin porous structure and the fluid on its two
sides was also introduced in [33]. The thermo-fluid analysis presented in [35] for a
disk brake was also the first of its kind, thanks to the thermo-fluid ST-VMS and the
thermo-fluid ST-SI introduced in [35]. The ST-VMS, ST-SI and the ST-IGA with
IGA basis functions in space were integrated in [36], making the ST-SI-IGA the
first of its kind. That enabled the turbocharger turbine flow analysis [36] with the
ST-VMS and IGA discretization, the first of its kind.

In 2016, the ST-VMS, ST-SI and ST-TC were integrated in [37], making the
ST-SI-TC the first of its kind, and enabling, for the first time, moving-mesh tire
aerodynamic analysis with road contact and tire deformation [37]. The ST-SI-IGA
with the porosity-version ST-SI enabled ram-air parachute internal/external flow
analysis [38] with the ST-VMS and IGA discretization, the first of its kind. The
ST-VMS, ST-SI, ST-TC and the ST-IGA with IGA basis functions in space were
integrated in [39], making the ST-SI-TC-IGA the first of its kind. The ST-SI-TC-
IGA was the first in heart-valve flow analysis [39] with a moving-mesh method,
IGA discretization and full valve closure. In 2017, the compressible-flow ST-SUPG,
porosity-version ST-SI, and a new HMGP enabled computational analysis of the
drogue parachute at Mach 0.3 [40], the first compressible-flow computation for a
spacecraft parachute with ribbon construction.

Several good things happened in 2018. The integration of the ST-VMS, ST-SI,
STNMUM and ST-IGA enabled turbocharger turbine and exhaust manifold flow
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Fig. 1 Tire aerodynamics with actual tire geometry and road roughness [41]. Road surface with
dents and bumps (left). The gray plane represents the tire surface. Road surface with dents only
(center). In our mesh, the road representation is relatively coarse, not suitable for roughness mod-
eling. Therefore, we flip the situation and the tire surface represents the dents. Modified tire surface
representing the road dents (right)

Fig. 2 Tire aerodynamics with actual tire geometry and road roughness [41]. The road roughness
is added in a random fashion. Road surface (left) and road surface with dents only (right). The dents
are projected to the tire surface. For visualization purposes the roughness is amplified in the height
direction

analysis [42] with the ST-VMS and IGA discretization, the first of its kind. It also
enabled flow-driven string dynamics in a pump [43] with the ST-VMS and IGA
discretization, also the first of its kind. The integration of the compressible-flow
ST-SUPG, porosity-version ST-SI, ST-IGA, and the new HMGP enabled computa-
tional analysis of the drogue parachute at Mach 0.3 [44], the first IGA-discretization
compressible-flow computation for a ribbon-construction spacecraft parachute. The
ST-SI-TC-IGA enabled, for the first time, IGA-discretizationmoving-mesh tire aero-
dynamic analysis with actual tire geometry, road contact and tire deformation [45].
It was shown, for the first time, in [46] that the ST-SI-IGA has a built-in Reynolds-
equation limit. The method enables solution of lubrication fluid dynamics problems
with a computational cost comparable to that of the Reynolds-equation model, but
without the limitations of the Reynolds-equation model.

In 2019, the ST-SI-TC-IGA, with built-in Reynolds-equation limit, enabled, for
the first time, IGA-discretizationmoving-mesh tire aerodynamic analysis with actual
tire geometry, road contact, tire deformation, road roughness and fluid film [41]
(see Figs. 1, 2 and 3). The ST-SI-TC-IGA was the first in ventricle-valve-aorta flow
analysis [47] with a moving-mesh method, IGA discretization and full valve closure.

In 2020, a low-distortion mesh moving method based on fiber-reinforced hypere-
lasticity and optimized zero-stress state was introduced in [48].With the fibers placed
in multiple directions, the element is stiffened in those directions to reduce distortion
during the mesh deformation. The integration of the ST-VMS, ST-SI, STNMUM and
ST-IGA with IGA basis functions in space enabled computational flow analysis of a
tsunami-shelter vertical-axis wind turbine [49].
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0 150

Fig. 3 Tire aerodynamics with actual tire geometry and road roughness [41]. Isosurfaces corre-
sponding to a positive value of the second invariant of the velocity gradient tensor, colored by the
velocity magnitude (km/h), viewed from the bottom. The gray zones are the full-contact areas
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he demonstrated the potential of computational mechanics to
better understand the deformation behavior and degradation
processes of heterogeneous materials at the mesoscale, a topic,
which is also adopted in the present paper dedicated to Prof.
Peter Wriggers on the occasion of his 70th birthday.

Abstract Highcosts for repair of concrete and reinforced structures canbeprevented
if damage at an early stage of degradation is detected and precautionary measures are
applied. The multiple-scattered late arriving signals (so-called coda waves) contain
rich information that can be used to detect weak changes in complex heterogeneous
materials such as concrete.When subjected to external loads,microcracks in concrete
initiate around aggregates and evolve until crack-coalescence and complete failure.
In this contribution, a virtual testing environment using a synthesis of the mesoscale
simulation of damage in concrete, wave propagation and deep learning is presented.
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1 Introduction

If concrete damage at an early stage of degradation is detected and precautionary
maintenance measures are applied, costs for repair and maintenance can be con-
siderably reduced. Moreover, irreparable consequences, such as loss of life, due to
sudden catastrophic failure, can be prevented. Damage processes in concrete under
compression initiate asmicrocracking around aggregates. For an accurate description
of damage of concrete, a mesoscale model in which the aggregates and the cement
paste are spatially resolved is essential [4–6]. Damage in concrete subjected to exter-
nal loads initiates with the growth of microcracks that are much smaller than the
aggregate size, whose detection is not possible using conventional health monitoring
techniques. However, diffuse ultrasonic waves, i.e., multiple-scattered late arriving
signals (so-called coda waves [1]), are potentially able to detect weak changes due
to multiple sampling of the material. Coda Wave Interferometry (CWI) can been
used to study the influence of mechanical loadings on concrete structures in terms
of the stretch factor α (equal to relative velocity change) that is a sensitive indica-
tor of microstructural changes occurring at low loading levels, i.e., when damage
in the concrete is characterized by diffuse microcracking and/or the decorrelation
coefficient (DC) that is a strong indicator for macrocracking [2]. While there is con-
sensus that diffuse ultrasonic waves are very sensitive to changes in the material, it is,
however still a significant challenge to reliably correlate and classify the measured
coda signal with the corresponding level of damage (from diffuse microcracking to
localized macrocracks). Thus, the problem reduces to that of a multiclass classifica-
tion problem that can be solved by a variety of machine learning algorithms such as
Random Forests, Naive Bayes, Support Vector Machines, and Neural networks [3].
In this contribution, we use a combination of the Discrete Element Method, Finite
Difference wave propagation, and Convolutional Neural Network based supervised
learning to identify damage in concrete.

2 Simulation of Concrete Damage at the Mesoscale

2.1 The Concrete Mesostructure Generator

A concrete mesostructure generator (CMG) has been developed, using a Semi-
Random (spatial) Sequential Algorithm to generate synthetic realistic concrete spec-
imens in voxel format. The main algorithm involves two parts. Firstly, a concrete
aggregate-like inclusion is generated, followed by an assembly onto the main spec-
imen geometry. In order to create a realistic aggregate inclusion geometry, a cube
with the maximum required size of the aggregate is reduced to a polyhedron by
making cuts tangential to an inscribed imaginary ellipsoid (that approximates the
aggregate shape). In order to create concave surfaces on the inclusion, a Gaussian
surface equation as a function of depth and width of concavity is used. The inclusion
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Fig. 1 The concrete mesostructure generator. Left: The aggregate size distribution. Right: The
aggregate phase, the mortar matrix and the concrete mesostructure

is then assembled with a random orientation angle in a 3-D array, corresponding
to the geometry of the required concrete specimen, using a semi-random-sequential
absorption algorithm, where a new position for the aggregate is chosen randomly
only after scanning a complete surface. This process is repeated until the required
packing density is achieved. With this optimized semi-random-sequential algorithm,
one can achieve up to 60% packing density that is 8 times faster than the standard ran-
dom sequential absorption algorithm. Figure1 shows a synthetic concrete specimen
generated from a given size distribution.

2.2 DEM Simulation of Uniaxial Compression

The behavior of the concrete mesostructure subjected to uniaxial compression is
simulated using the Discrete ElementMethod (DEM). According to the DEM frame-
work, the mortar matrix phase and the aggregates are described as an assembly of
particles that can collide, interact and exert cohesive frictional forces on each other.
The dynamics of these particles, when subjected to external loadings, is governed
by Newton’s second law. The inter-particle forces are computed using the relative
displacements with respect to the reference configuration and the corresponding con-
tact physics. The resulting interaction forces are used in conjunction with the applied
external forces as input for the equations of motion in the Leapfrog time integration
step to solve for the new position of all particles. The DEMmodel used in this paper
is based on the model calibrated in [7]. Figure2 shows the results of the DEM sim-
ulation of the concrete mesostructure subjected to uniaxial compression showing
three distinctive regimes: (i) the elastic deformation regime, characterized by the
absence of damage; (ii) the microcracking regime before the peak nominal stress in
the specimen is reached, characterized by diffusely distributed precursor damage;
(iii) the crack localization regime beyond the peak nominal stress characterized by
the growth of multiple cracks.
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Fig. 2 DEM simulation of concrete subjected to uniaxial compression showing three distinctive
regimes: the elastic deformation regime, the pre-peakmicrocracking regime and the post-peak crack
localization regime. The stress and strain levels corresponding to the three regimes are shown as
colored points in the normalized stress-strain curve

3 Finite Difference Simulation of Wave Propagation

A rotated staggered-grid (RSG) finite-difference scheme [8] is used to propagate the
seismic wavefield in the forward simulations. The RSG uses rotated finite-difference
operators, leading to a distribution of modeling parameters in an elementary cell
where all components of one physical property are located only at one single position.
This can be advantageous for modeling wave propagation in anisotropic media or
complex media, including high-contrast discontinuities, because no averaging of
elastic moduli is needed [11]. Concrete is a strongly heterogeneous and densely
packed composite material. Due to the high density of scattering constituents and
inclusions, ultrasonicwave propagation in thismaterial consists of a complexmixture
ofmultiple scattering,mode conversion and diffusive energy transport.With previous
studies in 2D and 3D [9, 10] it was shown that the RSG-technique is well-suited
for such applications. A finite-difference operator of second order is used in time
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Fig. 3 Sensors: The blue
circles correspond to
receivers and the red and
green circles correspond to
the sender positions. The
dark grey region is the
location at which the
mesostructures obtained
from the DEM simulation
are placed

as well as in space. The surfaces of the concrete model are implemented as a free
surface using two layers of vacuum. These vacuum layersmimic the impedance of the
concrete specimen-atmosphere boundary. A typical simulation with a model size of
40× 10× 10 cm3 consists of 32 million grid points (spatial increment 5× 10−4 m)
and a simulation with 80,000 time steps takes about 12h on three nodes on a mid-
size cluster computer. For all simulations, a wavelet with a central frequency of fc =
60 kHz is used. Sources are implemented as body force sources. The time increment
is set to 5× 10−8 s to ensure stability. For the mortar matrix we use a P-wave velocity
of vp = 3950m/s, a S-wave velocity of 2250m/s and a density of 2050 kg/m3. For
the aggregates we use a P-wave velocity of vp = 6230m/s, a S-wave velocity of
3330m/s and a density of 2950 kg/m3. The sender-receiver configuration is shown
in Fig. 3. Two sets of sender-receiver configurations are used. The first set consists
of the senders shown in dark red. The corresponding receivers are shown in blue
with the dark red background. The second set of senders are shown in green with
the corresponding receivers shown in blue with a green background. The 9 different
concrete mesostructures obtained from the DEM simulation (see Fig. 2) are placed
in the dark region in Fig. 3. The receivers farthest from the dark grey region receive
signals from the green senders while the receivers closest to the dark grey region
receive signals from both the green and the red senders. Each receiver measures three
displacement components in discrete amplitudes of time step size 5× 10−8 s. Thus,
from the first set of sender-receiver pairs we obtain 3× 9× 9× 3 = 729 time series
data. From the second set of sender-receiver pairs we obtain 2× 9× 18× 3 = 972
time series data. In total, 1701 time series data is simulated. The time series is
standardized with respect to each sender-receiver and a time window of up to 2 ms
is used for the classification procedure. This time window includes the late-arriving
coda waves. Each standardized and time-windowed coda wave consists of 40,000
discrete amplitude values (time step size 5× 10−8 s).
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4 Damage Classification Using a Deep Convolutional
Neural Network

Each coda wave (data point) obtained from the wave propagation simulation is
assigned to one of the three classes (i) Elastic deformation, (ii) Pre-peak microc-
racking or (iii) Post-peak localization depending on the mesostructure used in the
corresponding wave simulation. Thus, we obtain in total 378 simulated coda waves
for the elastic deformation class, 567 simulated coda waves for the pre-peak micro-
cracking class and 768 simulated coda waves for the post-peak crack localization
class. As the number of coda waves (data points) is not even across the classes,
the data is first randomized and 189 coda waves from the pre-preak microcracking
class and 390 coda waves from the post-peak localization class are discarded. The
final size of the dataset is 1134 labeled coda waves. Using this dataset, the goal is
now to construct a classifier which, given a new (unseen) coda wave (data point),
should correctly predict the class (elastic deformation, pre-peak microcracking or
post-peak localization) to which the (new) unseen coda wave (data point) belongs.
To this end, we use a deep convolutional neural network to classify the material state.
First, the data is randomized and 75% of the data set is used for training and the rest
is used for validation. Each discrete coda wave data is reshaped into a 2D array of
dimension 200× 200. The 2Dwave image is fed to a stack of three 2D convolutional
layers with 8, 16 and 16 filters followed by three fully connected dense layers. Batch
normalization layers, a flatten layer and a dropout layer are used to regularize and
reduce overfit to the training data respectively. ReLU is used as the activation func-
tion across all the layers except the last layer where a softmax activation function
is used in order to normalize the output of the network to a probability distribution
over the predicted classes. Categorical cross-entropy is used as the loss function and
weight update is performed using stochastic gradient descent with a learning rate
of 0.001. Figure4 shows the network architecture. The accuracy, loss and confusion
matrix of the neural network classifier are shown in Fig. 5.

Fig. 4 The deep learning architecture used for damage identification: The input is a time-series
image and the output is the material state



Synthesis of Computational Mesoscale Modeling of Cementitious Materials … 551

Fig. 5 Left: Confusion matrix of the classifier. Right: Training and validation accuracy and loss of
the classifier up to 150 epochs

5 Conclusion

In this contribution, a computational methodology for the identification of dam-
age in concrete using coda waves is presented. First, realistic concrete specimens
are generated using a given aggregate size distribution. These synthetic specimens
are subjected to uniaxial compression for simulating damage ranging from pre-peak
microcracking to post-peak crack localization. Thedamagedmesostructures obtained
from different loading levels are subjected to wave propagation analysis mimicking
the signals emitted by the actuators of the Coda-monitoring system. Three distinct
states of themesostructure associatedwith elastic deformation, pre-peakmicrocrack-
ing and post-peak crack localization phenomena are identified for classification. The
coda signals corresponding to the three classes and the corresponding material state
is used to train a deep convolutional neural network classifier. The overall accuracy
of the classifier is 83%.

Acknowledgements This work has been supported by the German Research Foundation (DFG)
in the framework of Subproject RUB1 and BU of the Research Unit FOR 2825 (project number
398216472). This support is gratefully acknowledged. We also thank our student assistants Vijaya
Holla andDivya Shyam Singh for programming themesostructure generator and the neural network
in Python, respectively.

References

1. Herraiz, M., & Espinosa, A. F. (1987). Coda waves: A review. Pure and applied geophysics,
125(4), 499–577.

2. Zhang, Y., Planes, T., Larose, E., Obermann, A., Rospars, C., & Moreau, G. (2016). Diffuse
ultrasound monitoring of stress and damage development on a 15-ton concrete beam. The
Journal of the Acoustical Society of America, 139(4), 1691–1701.

3. Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.



552 J. J. Timothy et al.

4. Wriggers, P., & Moftah, S. O. (2006). Mesoscale models for concrete: Homogenisation and
damage behaviour. Finite Elements in Analysis and Design, 42(7), 623–636.

5. Wriggers, P., Löhnert, S. (2010). Characterization of concrete by a multiscale approach. In
International RILEMConference onMaterial Science (pp. 3–12). RILEM Publications SARL.

6. Nitka, M., & Tejchman, J. (2015). Modelling of concrete behaviour in uniaxial compression
and tension with DEM. Granular Matter, 17(1), 145–164.

7. Vu, G., Iskhakov, T., Timothy, J. J., Schulte-Schrepping, C., Breitenbücher, R., &Meschke, G.
(2020). Cementitious composites with high compaction potential: Modeling and calibration.
Materials, 13(21), 4989.

8. Saenger, E. H., Gold, N., & Shapiro, S. A. (2000). Modeling the propagation of elastic waves
using a modified finite-difference grid. Wave Motion, 31, 77–92.

9. Kocur,G.K., Saenger, E.H.,&Vogel, T. (2010). Elasticwave propagation in a segmentedX-ray
computed tomography model of a concrete specimen. Construction and Building Materials,
2393–2400.

10. Saenger, E. H. (2011). Time reverse charachterization of sources in heterogeneous media.NDT
& E International, 44, 751–759.

11. Saenger, E. H., & Bohlen, T. (2004). Finite-difference modeling of viscoelastic and anisotropic
wave propagation using the rotated staggered grid. Geophysics, 69, 583–591.



On a Nonlinear Elastic Composite Shell
Model with a Refined 3D Stress Analysis

Werner Wagner and Friedrich Gruttmann

We met Peter for the first time at the Institut für Baumechanik
und Numerische Mechanik, where we were colleagues in the
group of Professor Erwin Stein. This was the beginning of a long
interesting and fruitful time in Hannover. Although we worked
later in different places like Karlsruhe and Darmstadt this
collaboration lead to a close personal friendship besides our
discussions, joint papers and other activities on computational
mechanics over the years.

Abstract In this contribution layered shells subjected to static loading are consid-
ered. The theory is based on a variational formulation, where the associated Euler-
Lagrange equations include besides the usual shell equations formulated in stress
resultants, the equilibrium of higher order stress resultants, which follow from the
thickness integration of the local equilibrium equations. Within representative vol-
ume elements the displacement field is enriched with warping displacements and
relative thickness displacements which allow for thickness strains. Elimination of
a set of parameters by static condensation leads to a material matrix for the stress
resultants. It is used in displacement based elements or in mixed hybrid elements
with the usual 5 or 6 nodal degrees of freedom. The three-dimensional stress state is
obtained with a back substitution of the eliminated parameters.

W. Wagner (B)
Institut für Baustatik, Karlsruher Institut für Technologie, Kaiserstr. 12,
76131 Karlsruhe, Germany
e-mail: werner.wagner@kit.edu

F. Gruttmann
Fachgebiet Festkörpermechanik, Technische Universität Darmstadt, Franziska-Braun-Str. 7,
64287 Darmstadt, Germany
e-mail: gruttmann@mechanik.tu-darmstadt.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_54

553

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_54&domain=pdf
mailto:werner.wagner@kit.edu
mailto:gruttmann@mechanik.tu-darmstadt.de
https://doi.org/10.1007/978-3-030-87312-7_54


554 W. Wagner and F. Gruttmann

1 Introduction

Shell elements which account for the layer sequence of a laminated structure are able
to predict the deformation behaviour of the reference surface in an accurateway,when
accurate shear correction factors are used. Also the assumption of a linear shape of
the in–plane strains through the thickness is sufficient good enough, if the shell is
not too thick. In contrast to that only constant transverse shear strains through the
thickness are obtainedwithin theReissner-Mindlin theory.As a consequence only the
average of the transverse shear stresses is accurate. Within the Kirchhoff theory the
transverse shear strains are set to zero. By assumption the thickness normal stresses
are neglected in a standard shell theory. This is necessary to avoid unphysical stresses
due to inextensibility assumptions in thickness direction.

Several authors exploit the equilibrium equations within post–processing pro-
cedures to obtain the interlaminar stresses, e.g. [4, 18] for the transverse shear
stresses and e.g. [17] for the thickness normal stresses. The essential restriction
of the approach is the fact that these stresses are not embedded in the variational
formulation and an immediate extension to geometrical and physical nonlinearity is
not possible.

In [15] the displacement field through the thickness of layered plates is enhanced
by so-called zig-zag functions. Another approach for multilayer anisotropic plates is
based on the dimension reductionmethod in combinationwith theHellinger-Reissner
principle [1].

Higher order plate and shell formulations and layerwise approaches represent a
wide class of advanced models, e.g. [3, 14]. For geometrical nonlinear formulations
we refer to e.g. [7, 16]. As these theories are associated with global layerwise degrees
of freedom, the general handling is complicated e.g. for shell intersection problems.

The use of so-called solid shell elements represents a computationally expen-
sive approach, e.g. [11, 12]. For a sufficient accurate evaluation of the interlaminar
stresses each layer must be discretized with several elements (≈ 4 − 10) in thickness
direction. Especially for large scale industrial problems with a multiplicity of load
steps and several iterations in each load step this is not a feasible approach.

The purpose of this paper is to present a shell model which is able to deliver
the three–dimensional stress state of geometrical nonlinear elastic composite shells
which have an in-plane homogeneous structure. The overall goal of the associated
element formulation is the retention of the standard 5 or 6◦ of freedom at the nodes
of the finite element mesh. It is build on our previous publications [5, 6, 9, 10].

2 Governing Equations

The displacements of the Reissner-Mindlin kinematics are enriched by warping dis-
placements and thickness changes. This yields additional terms for the material
deformation gradient and the Green–Lagrange strain tensor. In so-called representa-
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tive volume elements (RVEs), which are located at the integration points of the shell
reference surface, the introduced quantities are approximated with appropriate shape
functions. Elimination of a set of parameters by static condensation leads to a mate-
rial matrix for the stress resultants. The stresses are obtained with back substitution
of the eliminated parameters.

2.1 Kinematics

LetB0 be the three–dimensional Euclidean space occupied by the shell with thickness
h in the undeformed configuration. The position vector X of any point P ∈ B0 is
parametrized with convected coordinates ξ i

X(ξ 1, ξ 2, ξ 3) = X0(ξ
1, ξ 2) + ξ 3 N(ξ 1, ξ 2) |N| = 1, (1)

whereX0 andN denote the position vector and normal vector of the reference surface
�, respectively. The thickness coordinate ξ 3 is defined in the range h− ≤ ξ 3 ≤ h+,
where h− and h+ denote the coordinates of the outer surfaces. The coordinate on
the boundary � = �u ∪ �σ is s. In the following the usual summation convention is
used, where Latin indices range from 1 to 3 and Greek indices range from 1 to 2.
Commas denote partial differentiation with respect to the coordinates ξ i .

For the position vector of the deformed shell the kinematic assumption

x(ξ 1, ξ 2, ξ 3) = x0(ξ 1, ξ 2) + ξ 3 d(ξ 1, ξ 2) + ũ(ξ 3) |d| = 1 (2)

is chosen. Here, x0 describes the position vector of the current reference surface
�t . The director vector d(ϕ) of the current configuration is not perpendicular to
the deformed reference surface, thus transverse shear deformations are accounted
for. We introduce the vector field v(ξ 1, ξ 2) = [u,ϕ]T , where u = x0 − X0 and ϕ

contains rotational parameters. In Eq. (2) the assumptions of the Reissner-Mindlin
theory are extended by the displacement fluctuation field

ũ(ξ 3) = �(ξ 3)α. (3)

In this context the shell is subdivided in thickness direction in N numerical layers.
For laminated shells N usually corresponds to the number of physical layers. The
vector α contains displacements at nodes in thickness direction and is area by area
constant. The matrix � contains layer–wise cubic hierarchic functions

�(ξ 3) = [
φ1 13 φ2 13 φ3 13 φ4 13

]
ai

φ1 = 1

2
(1 − ζ ) φ2 = 1 − ζ 2

φ3 = 8

3
ζ (1 − ζ 2) φ4 = 1

2
(1 + ζ ).

(4)
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Here, ai is an assembly matrix, which relates the 12 degrees of freedom of layer i to
the M components of α. For N layers this leads to M = 9 · N + 3. Furthermore, ζ is
a normalized coordinate of layer i defined in the range −1 ≤ ζ ≤ 1 and 1n denotes
a unit matrix of order n.

With the parametrization of the shell (1) and kinematic assumption (2) one can
express the material deformation gradient as

F = gi ⊗ Gi gi = x,i Gi = X,i Gi = Gi j G j (5)

with the contravariant metric coefficients Gi j and

X,α = X0,α +ξ 3 N,α x,α = x0,α + ξ 3 d,α
X,3 = N x,3 = d + ũ,3 .

(6)

The vector ũ,3 is obtained with ũ,3 = �,3 α. Inserting the deformation gradient into
the Green–Lagrange strain tensor E = 1

2 (FT F − 1) yields

E = Ei j Gi ⊗ G j Ei j = 1

2
(x,i ·x, j −X,i ·X, j ). (7)

With d · d = N · N = 1 and N,α ·N = d,α ·d = 0 as well as Eq. (6) the components
read

Eαβ = εαβ + ξ 3 καβ + (ξ 3)2 ραβ

2Eα3 = γα + gα · ũ,3
E33 = g̃3 · ũ,3

(8)

where g̃3 = d + 1
2 �,3 α. The membrane strains εαβ , curvatures καβ and transverse

shear strains γα correspond to the well-known strains of the Reissner-Mindlin shell
theory with inextensible director kinematic. The higher order curvatures ραβ are
neglected. This is admissible for sufficiently thin structures with L/h � 1, e.g.
[2]. Here, L is a characteristic length of a plate or lowest curvature radius of a
shell. Hence, the in–plane strains {E11, E22, 2E12} are linear functions of ξ 3. Our
numerical investigations show that for L/h ≥ 10 this is a good approximation. Using
Voigt notation the Green-Lagrange strains of a point in shell space with coordinate
ξ 3 are obtained with

E = A1 ε + Ã2 α (9)

where
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ε(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T

E =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

E11

E22

E33

2E12

2E13

2E23

⎤

⎥⎥
⎥⎥⎥⎥
⎦

A1 =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

1 0 0 ξ 3 0 0 0 0
0 1 0 0 ξ 3 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 ξ 3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

Ã2 =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0
0

g̃T
3
0

gT
1

gT
2

⎤

⎥⎥
⎥⎥⎥⎥
⎦

�,3 .
(10)

The variation of the Green–Lagrange strain tensor yields

δE = δEi j Gi ⊗ G j

δEi j = 1

2
(δx,i ·x, j +δx, j ·x,i )

δx,α = δx0,α +ξ 3 δd,α
δx,3 = δd + �,3 δα

(11)

and in Voigt notation

δE = A1 δε + A2 δα

δE =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

δE11

δE22

δE33

2δE12

2δE13

2δE23

⎤

⎥⎥⎥⎥⎥
⎥
⎦

A2 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

0
0

gT
3
0

gT
1

gT
2

⎤

⎥⎥⎥⎥⎥
⎥
⎦

�,3

δε = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2]T .

(12)

The associated finite element equations are solved applying a Newton-Raphson iter-
ation. For this purpose the second variation of the Green–Lagrange strain tensor has
to be derived. One obtains

�δE = �δE1 + �δE2

�δE1 = A1 �δε �δE2 = [0, 0,�δE33, 0, 0, 0]T
�δE33 = δαT (�T,3 �,3 )�α.

(13)

The components of the shell strains ε, virtual shell strains δε and associated lin-
earizations �δε are specified e.g. in Ref. [20].

2.2 Weak Form of the Boundary Value Problem

For the constitutive law in shell space we assume elastic orthotropic material
behaviour. The strain energy density may be a quadratic form in terms of E and
the elasticity matrix for orthotropy C = CT , thus �(E) = 1

2 ET C E. Hence, one
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obtains
∂E� := S = C E . (14)

The relation of the stress resultants to the Second Piola-Kirchhoff stressesS is defined
by thickness integration of the internal virtual work per unit reference area consid-
ering δE = A1 δε + A2 δα. This yields

h+∫

h−

δET S μ̄dξ 3 = δεT ∂εW + δαT ∂αW , (15)

where μ̄ denotes the determinant of the shifter tensor and

∂εW :=
h+∫

h−

AT
1 S μ̄dξ 3 ∂αW :=

h+∫

h−

AT
2 S μ̄dξ 3. (16)

The components of ∂εW = [n11, n22, n12,m11,m22,m12, q1, q2]T are membrane
forces, bending moments and shear forces, whereas ∂αW is a vector of higher order
stress resultants.

In the following the weak form of the boundary value problem and the associated
linearization are specified. For a compact representation we introduce the vector
θ = [v,ϑ]T and admissible variations δθ = [δv, δϑ]T along with

ϑ :=
⎡

⎣
ε

α

λ

⎤

⎦ δϑ :=
⎡

⎣
δε

δα

δλ

⎤

⎦

.

(17)

Furthermore,

ψ :=
⎡

⎣
∂εW

∂αW + D23 λ − q̄
D32 α

⎤

⎦ (18)

summarizes the vector of stress resultants with two further vectors. The latter, when
set to zero, describe the equilibrium of higher order stress resultants and a constraint
which enforces the correct shape of ũ through the thickness. The derivation of both
equations is performed in detail in Ref. [10]. In this context the components of the
vectors λ, q̄ and of the matrix D23 = DT

32 are specified.
The shell is loaded statically by surface loads p+ and p− acting at the outer

surfaces with coordinates ξ 3 = h+ and ξ 3 = h− as well as by boundary forces t̄
on the boundary �σ . Hence, the weak form of the boundary value problem can be
written as
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g(θ, δθ) =
∫

�

δϑTψdA + gext = 0

gext = −
∫

�

(p̄ · δu + m̄ · δd)dA −
∫

�σ

t̄ · δuds.
(19)

with p̄ = p+ + p− and couple loads m̄ = h+ p+ + h− p−.
With application of integration by parts to the integral of δεT ∂εW in Eq. (19)

and use of standard arguments of variational calculus one obtains as Euler–Lagrange
equations the equilibrium of stress resultants, the equilibrium of higher order stress
resultants and the constraint in � along with the static boundary conditions t = t̄ on
�σ .

The associated nonlinear finite element equations are iteratively solved using
Newton’s method. For this purpose variational equation (19) is linearized. Consid-
ering Eqs. (13), (16) and (18) we define

∂ψ

∂ϑ
:= D =

⎡

⎣
D11 D12 0
D21 D22 D23

0 D32 0

⎤

⎦

Dαβ =
h+∫

h−

AT
α C Aβ μ̄ dξ 3 αβ ∈ {11, 12, 21}

D22 =
h+∫

h−

(AT
2 C A2 + S33 �T,3 �,3 ) μ̄ dξ 3.

(20)

The integration of the submatrices Di j is performed by summation over N layers and
three point Gauss integration in each layer. With displacement independent loads p̄,
m̄, t̄ and consideration of (20) one obtains the linearization of (19)

L[g(θ, δθ),�θ ] =
∫

�

δϑT (D �ϑ + ψ)dA + �δW ∗ + gext

�δW ∗ =
∫

�

(m̄ · �δd + �δεT ∂εW )dA.
(21)

The second variation �δd of the current director vector has been derived in Ref.
[20]. To maintain quadratic convergence in the Newton-Raphson scheme the vectors
[d, g1, g2] of the last converged load increment are used in Ã2 and A2.
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2.3 Representative Volume Element

The evaluation ofψ and D is carried out in RVEs which are located at the integration
points of the shell reference surface�, see Fig. 1. An orthonormal coordinate system
is introduced in the center of the square �i with edge length �. Concerning the
predefinition � = 100 h we refer to the investigations in Ref. [10].

The approximation for ϑ = [ε,α,λ]T in �i is chosen as follows

ϑ = Nϑ ϑ̂ . (22)

The shape functionmatrixNϑ and the number of parameters in ϑ̂ is specified in detail
in [10].We insert the ansatz (22) as well as the corresponding equations δϑ = Nϑ δϑ̂

and�ϑ = Nϑ �ϑ̂ into the linearized variational equation (21), which now readswith
Ai = �2

L[g(θ, δθ),�θ ] =
∫

�

1

Ai

∫

�i

δϑT (D �ϑ + ψ)dAidA + �δW ∗ + gext

=
∫

�

δϑ̂
T
(H �ϑ̂ + FL)dA + �δW ∗ + gext = 0

(23)

where

H = 1

Ai

∫

�i

NT
ϑ D Nϑ dAi FL = 1

Ai

∫

�i

NT
ϑ ψ dAi . (24)

The integrals in (24) are computed numerically applying a 3 × 3 Gauss integration
scheme.

The parameter vector �ϑ̂ is subdivided in �ϑ̂ = [�ε̂,�β̂]T . The subvector �β̂

contains independent parameters in the RVEs of the reference surface. Furthermore,
�δW ∗ and gext do not depend on �β̂. For this reason elimination of �β̂ from the
following set of equations is possible.

Fig. 1 RVE at an integration
point of a shell and reference
surface of the RVE



On a Nonlinear Elastic Composite Shell Model with a Refined 3D Stress Analysis 561

[
H11 H12

H21 H22

] [
�ε̂

�β̂

]
+

[
F1

F2

]
=

[
0
0

]

.

(25)

Here, Hαβ and Fα are submatrices of H and FL , respectively. Static condensation
yields

�β̂ = −H−1
22 (F2 + H21 �ε̂)

σ̂ := F̃1 = F1 − H12 H−1
22 F2

D̃ := H̃11 = H11 − H12 H−1
22 H21.

(26)

The components of the vector �ε̂ ∈ R8 can be identified with the incremental
shell strains at the particular Gauss point. Thus it holds�ε̂ = �ε as well as δε̂ = δε

and Eq. (23) leads with static condensation (26) to

L[g(v, δv),�v] =
∫

�

δεT (D̃ �ε + σ̃ )dA + �δW ∗ + gext = 0. (27)

Equation (27) represents the linearized principle of virtual work as variational basis
for geometrical nonlinear shell elements based on the displacement method. The
computation of the stresses is performed with evaluation of the three–dimensional
material law (14). This requires a back substitution of �β̂ via (26)1. The update of ϑ̂
within theNewton-Raphson iteration and evaluation ofEq. (22) yieldsϑ = [ε,α,λ]T
and thus allows the computation of the layer strains E according to (9) using the
subvectors ε andα. In this context we refer to Ref. [10] where an effective decoupling
of the global and local model for the computation of the displacements and stresses
is described.

The basis for mixed hybrid shell elements is given with an extension of equation
(19) introducing θ := [v, σ ,ϑ]T and the modified vector

ψ :=
⎡

⎣
∂εW − σ

∂αW + D23 λ − q̄
D32 α

⎤

⎦

.

(28)

Here, σ denotes the vector of independent stress resultants. Furthermore, εg(v) and
ε are geometrical and physical shell strains, respectively. Hence, the extension of
variational equation (19) reads

g(θ, δθ) =
∫

�

δϑTψdA +
∫

�

[δσ T (εg − ε) + δεT
g σ ]dA + gext = 0. (29)

One obtains the geometric field equations and thematerial law for the stress resultants
as further Euler-Lagrange equations. The associated mixed hybrid element formula-
tion follows with elimination of σ and ϑ from the set of equations. The basic version
of the finite element formulation is specified in [20] and in an extended version for
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laminated shells in [8]. In both papers a remarkable robustness of the mixed hybrid
element in nonlinear applications is shown. In comparison with displacement based
elements and enhanced strain elementsmuch bigger load stepswith less iterations are
possible. Present element formulation has been implemented in an extended version
of the general finite element program FEAP [19].

3 Example

A cylindrical shell according to Fig. 2 is considered as an example. The figure shows
a cross–section of the shell and a finite element mesh of the structure. Radius and
length of the cylinder are R = 1000mm, L = 2000mm and the shell thickness is
h = 10mm. The shell is free at x2 = x3 = 0 and clamped at x2 = L . A concentrated
load F acts at (x1, x2, x3) = (0, 0, R). The skin of the structure consists of a [0◦/ +
45◦/ − 45◦/90◦]s lay-up, where 0◦ refers to the tangential direction and 90◦ to the
length direction of the cylinder. The stiffeners with measurements d = 50mm and
h = 10mm are arranged in radial direction and are homogeneous. Here, the fibre
direction coincides with the length direction. The stiffener in the ridge line has a
thickness 2 h. The material data for CFRP–layers are introduced as

E1 = 125000 N/mm2 G12 = 4800 N/mm2 ν12 = 0.34
E2 = 7400 N/mm2 G23 = 2700 N/mm2.

(30)

The mesh density is denoted by l × m × n, where l = 96 is the number of elements
in circumferential direction, m = 32 the number in length direction and n = 4 the
number of elements for a stiffener in radial direction. The laminate of the skin is
modeled with 8 layers, whereas 3 layers are used for the homogeneous stiffeners. In
Fig. 2 a mesh of l × m × n = 48 × 16 × 2 elements is depicted.

Comparative results are computed with a 3D discretization of the skin using solid
shell element [11]. In thickness direction of the skin each layer is discretized with

Fig. 2 Cylindrical shell and finite element mesh
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Fig. 3 Load deflection
curve of the cylindrical shell
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2 elements. For the discretization of the stiffeners present shell element is used.
To obtain sufficient accurate results for the thickness normal stresses an in-plane
refined mesh with l × m × n = 192 × 64 × 4 is used. Furthermore, we add results
computedwith shell element [13]. It is based on standardReissner-Mindlin kinematic
assumptions enhanced swith thickness strains which have a constant and linear shape
through the thickness. Thus, an interface for three-dimensional constitutive laws can
be used. The element is designed for homogeneous shell structures. With application
to layered shells it leads to restraints especially for the thickness normal stresses. The
geometrical nonlinear computations are performed with displacement control and a
step size�w = 20mm. In Fig. 3 load F is plotted versus the prescribed displacement
w. The step size �w can be enlarged for all models in the first increments. For two
deformed configurationw = 200mm andw = 400mm the stresses S11, S22, S12, S13
and S33 at a point P of the reference surfacewith coordinates ξ 1

p = (13/96 · π/2) · R,
ξ 2
p = x p

2 = 3/64 · L are displayed in Figs. 4, 5, 6, 7 and 8 with respect to z = ξ 3. 2D
denote results using present element, 3D is outcome from solid shell element [11]
and RM is introduced for the analysis using shell element [13]. On the left-hand side
results are depicted for w = 200 mm whereas results for w = 400 mm are presented
on the right-hand side of the Figs. In all diagrams there is good agreement with the
reference solution. Figure9 shows the final deformed configuration using present
element formulation.
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Fig. 4 Stress S11(ξ1p, ξ
2
p, z) in a cylindrical shell
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4 Conclusions

An advanced shell model for elastic layered shells with in-plane homogeneous struc-
ture is presented. The stresses are evaluated via the three–dimensional orthotropic
material law in RVEs, which are located at the integration points of the reference
surface. Good agreement of displacements and stresses in comparison with costly
3D reference solutions can be shown. The essential feature of present approach is
the fact that the usual 5 or 6 degrees of freedom are present at the nodes of the finite
element mesh. This allows the application of standard boundary conditions and the
possibility to discretize shells with intersections.
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Abstract The classic tasks of computational engineers are to investigate and opti-
mize structures in terms of their mechanical behavior. This iterative process usually
requires a large number of calculations of different macroscopic structures of the
same material. The computational time in this design-loop directly affects the time
to market. Depending on the model complexity, describing the interaction between
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recent trends in Scientific Machine Learning (SciML), which may advance com-
putational homogenization in the sense of the digital twin paradigm, are reviewed.
We believe that SciML techniques for computational homogenization will make
micro-macro simulations become applicable at low extra cost in engineering practice.
This work is partially funded by the DFG Priority Program SPP 2020 Experimental-
Virtual-Lab and the DFG Collaborative Research Center SFB 1153 Tailored Form-
ing.

1 Introduction

ScientificMachine Learning (SciML) aims to build physical models from data. Once
trained, a data-driven model can make predictions in near real-time. One possible
SciML approach is to directly incorporate physical laws in the training stage of a
data-driven model, that is for example a neural network. This approach is known
as Physics-Informed Neural Networks [1], which have been proven successful for
forward and inverse problems ranging from fluid [2] to solid mechanics [3]. Another
SciML approach is to build models from physical data obtained from measurements
or simulation. In this second class fall recent approaches for computational homog-
enization with Convolutional Neural Networks (CNN) [4–7].

CNNs are well-established in image and video recognition, analysis and clas-
sification, natural language processing and time series forecasting. The concept of
computational CNN homogenization can be summarized as follows: In an offline
stage, first a dataset has to be build. It consists of two or three-dimensional images of
the micro-structure (e.g. from high resolution X-ray tomography (μCT) scans) and a
macroscopic constitutive tensor. The latter is a result of computational homogeniza-

Fig. 1 Workflow for generating the required image-property dataset. TheμCT outputs a voxel grid
which is (i) meshed for FE simulation and (ii) filtered to yield a reduced raster as CNN input data.
The CNN target data is obtained via computational homogenization using FE simulations
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tion of the imaged micro-structure. The concept for creating the necessary image-
property dataset for CNN training is sketched in Fig. 1. After training, the CNN can
predict the constitutive tensor of a micro-structural image in near real time.

In [4] a CNN has been trained that predicts a single entry of the anisotropic elas-
ticity tensor for artificially generated, heterogeneous 3D micro-structures. The CNN
predictions were compared to sophisticated physics models and showed promising
results. Also in [5] a scalar property has been learned from artificially generated 2D
micro-structural images. Therein, the stress at a strain very close to the yield point
has been chosen as a target property. The necessary training data was generated using
crystal plasticity simulations. While the aforementioned CNNs only predict scalar
properties, it has also been demonstrated that an orthotropic constitutive tensor can
be learned [6]. Thanks to the fast evaluation after training, CNN homogenization has
been shown to be appealing for uncertainty quantification using Monte Carlo sam-
pling. In [7] a hybrid neural network architecture is presented which directly predicts
stress of oligocrystals instead of material constants. For this purpose, a Recurrent
Neural Network is designed to input a CNN encoded image along with the strain
history. The latter is needed to account for the plastic behavior (see also [8] for an
alternative approach to data-driven plasticity). However, in [7] only the loading path
has been considered while results for the unloading path were not presented.

From the aforementioned contributions it becomes apparent that the optimal CNN
architecture is problem dependent and topic of ongoing research. Especially the size
of the dataset required for training still presents a bottleneck. Nevertheless, CNN
homogenization seems to be a powerful tool to accelerate the structure-property
interaction. It can also be integrated into a digital twin framework. Digital twins aim
to collect data during the entire product life cycle of a physical asset. The data is
collected from various sources and interpreted, thereby facilitating communication.
An illustration of the concept can be found in Fig. 2.

Fig. 2 The digital twin is a digital representation of a physical asset in all its aspects. It builds on
data originating from experiment and numerical simulation throughout all stages of the product life
cycle, from conception to operation
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In the context of digital twins, CNN homogenization can be regarded as a data
preparation method, where data from the conception phase is prepared for further
use in operation, inspection and maintenance. As an illustrative example, consider a
wind plant whose foundation must be designed to withstand harsh wind and weather
conditions. In order to certify a novel concrete mixture, probes will be produced
whose micro-structure can be imaged. These scans can be analyzed in a virtual lab
using micro-mechanical simulations. The link of the micro-structural properties to
the macro-structural behavior is obtained through computational homogenization.
In the digital twin paradigm, training a CNN to map micro-structural images to
computed homogenized macro-structural properties is not only a method which can
accelerate macro-structural simulations in the design phase. It is also a way to save
the computed data for later use. If during inspection a micro-structural image can be
obtained from the actual foundation, this image could be directly fed into the CNN
in order to monitor actual properties under operating conditions.

The remainder of this contribution is organized as follows: Sect. 2 gives an
overview of the experimental, numerical and data-driven methods that will be
employed in this project. Section3 illustrates the workflow that we envision and
prospective benchmark problems. We conclude with a summary in Sect. 4.

2 Methods

The performance of macroscopic structures is often determined by its underlying
micro-structure, typically invisible to the human eye. Nowadays, modern imaging
techniques such as μCT scanners or scanning electron microscopes offer the possi-
bility to visualize complex micro-structures in 3D and high definition. This allows
to investigate the mechanical performance of micro-structures using well-known
numerical techniques like the Finite ElementMethod. To efficiently display the inter-
action of micro and macro scales, computational homogenization is indispensable.

A good example for the importance of multi-scale material modeling is concrete.
Concrete is one of the most cost-efficient and durable construction materials in the
world. Its range of applications has been enlarged widely in recent decades. Within a
multiscale point of view, concrete is considered as an over-complex system of solid
skeletons (e.g. cement paste and stones), fluid bulk phases (e.g. water) and pores
with a high degree of heterogeneity. At the macroscopic level (m) it consists of a
homogeneous material, whereas on the mesoscale (mm) various stone aggregates of
different sizes distributed in amatrix of cement paste and surrounded by an interfacial
transition zone (ITZ) are observed. On the microlevel (μm), this matrix is further
decomposed into hydrated cement paste, unhydrated clinker particles, fluid bulk
phases (water/air) and their interaction, as illustrated in Fig. 3.

The outline of this section is as follows: First, our experimental setup for μCT
imaging of concrete samples is presented. Next, our previous work on detailed
micro-mechanical modeling of experimentally obtained micro-structures is summa-
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Fig. 3 Concrete strcuture through the scales. Left: cylindrical test specimen at the macro-level;
Middle: representative volume element (RVE) at the meso-scale with stones in brown color and
matrix in gray; Right: RVE at the micro-scale as a result of the zooming in the hydrated/unreacted
cement paste (gray color) with pores in blue voxels. Figure taken from [9]

rized. We also briefly review the computational homogenization approach we seek
to employ. The section ends with a short introduction to artificial neural networks.

2.1 µCT Imaging

In the last decade, increasing spatial and temporal resolutions allowed more detailed
images of samples, as shown in the rising number of publications regarding CT-
measurements. These measurements allow analyzing the 3D-structure of different
samples in-situ and non-destructively. For concrete, CT-scans are used e.g. to seg-
ment different structures of concrete at micro-/mesoscale [10] and to evaluate the
damage evolution of loaded structures [11]. Based on the same principles as an axial
tomography, CT comprises an X-ray source, a sample holder and a detector. The
sample gets penetrated by a beam of X-rays, projecting a 2D image onto a detector.
After a predetermined rotation of the sample, a new image gets projected. For recon-
structing a final 3D image, a computer reconstructs the full dataset out of each image
for each rotation. Based on the iterative reconstruction algorithm, nowadays the
complexity of algorithms ranges from different hybrid to fully iterative algorithms,
offering improved reconstruction time and quality. Additionally, multiple steps to
reduce scanning artefacts due to beam hardening and high density differences enable
to display the micro-/mesostructure of samples in more detail and higher contrast,
see [12].

As shown in Fig. 4, CT-scans of concrete samples are used to segment the micro-
/mesostructure of concrete samples and to separate pores, matrix and agglomerates.
Furthermore, a mesh can be applied to. This allows an in-situ evaluation of changes
of the cement structure at a chosen scale.
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Fig. 4 Left: CT-scanned and reconstructed cement volume; middle: segmented and meshed con-
crete volume; right: 3D volume fractions of agglomerates, matrix and pores (pores not shown due
to small volume fraction)

2.2 Micro-Mechanical Modeling of Concrete

At themicro-scale, themechanical behavior of concrete is strongly affected bymicro-
cracking. A great number of macro-meso-micro-mechanically motivated approaches
exist in the literature to model concrete failure behavior, see for example [9, 13–20]
and the citations therein. The simulation of fracture processes at the micrometer
length-scale can be achieved by utilizing the continuum phase-field method (PFM),
which is based on the regularization of sharp crack discontinuities. This avoids the
use of complex discretization methods for crack discontinuities and can account for
multi-branched cracks within the solid skeleton [21–24].

Figure5 demonstrates a contour plot of the fracture phase-field d at the final
deformation state. The cracks start to initiate from the pores (c.f. Fig. 5) when a
threshold energy is reached. Thereafter, they propagate in random directions inside
the cement matrix and join other cracks till final rupture. Hereby a very fine mesh
was required for the phase-field simulation to produce a sharp crack surface. Hence,

Fig. 5 Three-dimensional microstructure of HPC. Left: finite element discretization (blue colour
depicts the capillary pores); Right: contour plot of the crack phase-field d at the final failure (blue
and red contour colours correspond to the unbroken state with d = 0 and fully broken state with
d = 1 of the material, respectively)
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a simulation comes along with huge computational costs. Therefore, in order to
investigate the micro-macro interaction in an engineering design loop, acceleration
strategies such as computational homogenization (Sect. 2.3) in combination with
artificial neural networks (Sect. 2.4) are required.

2.3 Computational Homogenization

Simulations, related to micromechanical modeling and being embedded within a
lower scale, i.e. μm, are unable to be performed for a full macroscopic structure,
e.g.m. Thus, the concept of the representative volume element (RVE) is widely used
as an assumption to exhibit all statistical relevant information of the microstructure
attached to a particularmaterial point of themacrostructure [25]. The concept of com-
putational homogenization demonstrates an appropriate tool to bridge the scales from
micro- to macroscopic environments and to relate the micromechanical response to
macroscopic loading conditions. Hereby, a macroscopic gradient of deformation
induces microscopic stress such that FM → Pm , where Pm denotes the micro-
scopic 1st Piola-Kirchhoff stress. The link between the macro- and micro- quan-
tities is accomplished by the volume average, denoted by ¯(·) = 〈·〉V = 1

V

∫
V (·)dV .

Two-scale schemes, reported in the literature, are then i.e. the FE2-scheme [26] or
the global-local approach [27, 28]. Recent developments also extend the concept of
computational homogenization towards a virtual element framework, e.g. [29].

The computational homogenization in this work is utilized to construct the target-
data for the learning process of the convolutional neural network, connecting each
RVE with its homogenized material matrix Ā (e.g. Fig. 1). The cubiod shape of
the RVE allows a straightforward application of periodic boundary-conditions [30],
based on a prescribed displacement of the corner nodes ubc = (FM − 1) XC , where
1 is the 2nd order unity tensor and XC being the coordinates of the corner-nodes with
respect to the initial configuration of the RVE. The computation of the homogenized
material matrix Ā is accomplished by the evaluation of the sensitivity [31]:

Ā = ∂ P̄M

∂FM
= 1

V

∫

V

∂ Pm

∂FM
dV . (1)

The numerical computation of this sensitivity is achieved by utilization of automatic
differentiation tools, using the software AceGen/AceFEM [32].

Recent approaches for computational homogenization with Convolutional Neural
Networks (CNN) have been discussed in the introduction of this work. The next
section briefly introduces the concept of artificial neural networks.
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2.4 Artificial Neural Networks

Besides well-known applications in classification (e.g. image recognition), Artificial
Neural Networks (ANNs) can be used for regression tasks: an ANN maps an input
quantity x to a continuous output y. Input and output are connected through so-
called neurons. Each neuron j is associated with a bias b j and each connection from
neuron i to neuron j with a weight wi j . While this corresponds to a linear ansatz,
non-linearity is introduced through an activation function σ . An ANN consisting
only of a single input and a single output neuron obeys the equation:

y = σ (w · x + b) (2)

In practice, multiple neurons are arranged layerwise between input and output. The
weights wi j and b j are the trainable parameters that must be optimized in order to
obtain a best fit w.r.t to a given dataset (xi , yi ). The best fit is defined by means of a
loss function L, e.g. the mean squared error norm:

L = 1

n

n∑

i

(
yANN

(
xi ,wi j , b j

) − ydata (xi )
)2

(3)

The loss function is minimized by adjusting the weights and the biases, usually using
backpropagation and its variants.

For a homogenization network which inputs an image, the number of input neu-
rons is equivalent to the number of the image’s pixels or voxels, respectively. In a
fully-connected network (each neuron of a layer is connected to each neuron in the
next layer), this would result in high number of trainable parameters. Beside the
prohibitive computational cost associated with high-resolution images, it has been
shown that such networks are prone to overfitting. Convolutional Neural Networks
(CNN) remedy these problems by introducing additional convolution and pooling
layers. The latter reduce the dimensionality of the input while making use of the
image’s spatial strcture. For further details on CNN and a graphical illustration, the
reader is referred to [4–7, 33].

3 Integrating CNN Homogenization into Virtual Design
Loops

A possible integration of CNN homogenization into an engineering design loop is
sketched in Fig. 6. First, simple probes of a novel concrete mixture are manufactured
under representative processing conditions. These probes are analyzed in a μCT
scanner (Sect. 2.1). As illustrated in Fig. 1, the micro-structural images are then used
to build our dataset forCNN training.After training, complex concrete components of
the same mixture will be produced. Micro-structural images will be taken at selected
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Fig. 6 Application of CNN homogenization in an engineering design loop. (1) A CNN is trained
based on experiments and simulations of simple concrete probes. (2) After training, the CNN can
be used to evaluate properties of any other macro-structural geometry, provided micro-structural
images are available

positions of the component. The CNN can be used to predict the local properties
on the fly. A suitable interpolation method must be defined in order to describe the
material behavior in the entire component.

Note that innovative 3D printing processes increase the flexibility in geometric
design tremendously compared to standard concrete formwork. This freedom in
design significantly enlarges the design space for optimal structures and therefore the
computational cost of micro-macro simulations. CNN homogenization contributes
to a computationally efficient and accurate micro-macro analysis for such highly
complex problems of practical interest.

4 Summary and Outlook

Computational homogenization with Convolutional Neural Networks (CNN) offers
the potential to acceleratemicro-macro simulations ofmaterials with complexmicro-
structures. Beyond that, if measurements become available during operation or ser-
vice and maintenance, a trained CNN can be used to predict properties in real time.
By linking information from different stages of the product life cycle, CNN homog-
enization thereby is at the core of the digital twin paradigm.

In this contribution, we focused on the experimental and virtual characterization
of concrete. A future field of application may be Additive Manufacturing (AM). In
metal AM, the process-structure-property (PSP) interaction plays a crucial role in
final part quality. Efficient computational methods like CNN homogenization may
enable us in the future to decode the PSP interaction and to exploit it for the realization
of AM fabricated functionally graded materials.
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Abstract Powder scale simulations are of utmost importance for scientists eager
to decode the process-structure-property interaction inherent to powder bed fusion
processes. In the literature, powder scale models are often reduced to a CFD problem
where only the melt pool dynamics are considered but the solid phase physics are
neglected.On the contrary, in this contribution a framework able to incorporate all rel-
evant fluid and solid mechanical aspects of melting and solidification is derived from
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1 Phase Change at Finite Deformations

Residual stress formation in thermo-mechanical problems is mainly affected by the
inhibited thermal expansion. Its amount is affected by the temperature dependency
of the heat expansion coefficient. Various thermo-mechanical material models for
phase change problems exist in the literature. These models were primarily designed
for welding [1, 2] or casting [3–5]. The deformations in both welding and casting
are usually small and therefore an additive split of strains was sufficient in the afore-
mentioned publications. However, the small strain assumption is not applicable in
the fluid phase on the powder scale of powder bed fusion (PBF). In order to ensure a
consistent description for the transition from fluid to solid, a finite deformation phase
change formulation for PBF powder scale simulations is developed in [6]. This paper
reviews the extension of the latter approach to an elasto-visco-plastic formulation
for the solid phase [7].

The governing equations are discretized using the stabilized Optimal Transporta-
tion Meshfree Method (OTM) [8]. For plasticity, in each global step a local Newton
Raphson algorithm is required in order to update the internal variables at the material
point level.

1.1 Kinematics of Finite Deformation Phase Change
Problems

The phase change approach presented in [6] is based on the following observations:
Melting of metal results in an untying of internal bonds. Consequently, internal
stresses are released. Once the metal becomes liquid, irreversible viscous defor-
mation occurs. The mechanical volumetric deformation in the liquid phase due to
external forces can be considered negligible compared to the thermal expansion.
During consolidation from liquid to solid, internal links allowing the material to
store isochoric elastic energy are created.

First, the kinematics of the solid phase are described. In the lower temperature
regime, the plastic deformations can be regarded as rate independent. At higher
temperatures, the yield limit gradually decreases and the plastic behavior becomes
more rate dependent.As suggested in [1], this behavior can be capturedwith an elasto-
plastic model up to a homologous temperature θ/Tmelt = 0.5 and from there on with
an elasto-visco-plastic model until the melting temperature is reached. Following the
concept of multiplicative decomposition, the deformation gradient F is split into a
reversible part Frev and an irreversible plastic part Fp. The reversible part consists
of an elastic and a thermal contribution as stated e.g. in [9]:

F = Frev Fp = Fe Fθ Fp (1)
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The thermal deformation is only related to thermal expansion and hence purely
volumetric. Assuming plastic incompressibility, the plastic deformation gradient is
only isochoric, i.e. Jp = 1. Hence, the Jacobi determinant J is split into a thermal
part Jθ and an elastic part Je:

J = Je Jθ Jθ = e3αθ (θ−θ0) (2)

The thermal part of the Jacobi determinant Jθ incorporates the thermal expansion
coefficient αθ , the temperature θ and the reference temperature θ0 [10]. In order to
account for phase change related straining, the thermal expansion coefficient αθ is
defined as a function of temperature [1]. Making use of (1) and (2), the split of the
deformation gradient into a volumetric component Fvol and an isochoric part Fiso is
defined for the solid phase by:

F = Fvol Fiso Fvol = (Jθ Je)
1
3 1 Fiso (φ = 1) = J

− 1
3

θ J
− 1

3
e Fe Fp (3)

Here, the phase indicator φ has been introduced and 1 denotes the unity tensor.
Powder and consolidatedmaterial are assignedφ = 1 and the liquid phaseφ = 0. The
mechanical volumetric deformation in the powder as well as in the liquid phase are
deemed negligible. In the powder phase, no external mechanical loads exist while the
fluid phase is modeled as mechanically weakly incompressible. Hence, volumetric
deformation is mainly caused by thermal expansion which must be preserved in
the presence of a phase change. Consequently, this yields to the assumption that
only isochoric deformation is phase dependent [6]. In the liquid phase, the isochoric
deformation is purely viscous and therefore irreversible:

Fiso (φ = 0) = Fv (4)

At this stage, the following phase change treatment is applied: once metal changes
phase, the isochoric deformation gradient is set equal to the unity tensor. This corre-
sponds to equating the deformation gradient with its volumetric part [6]:

Fiso = 1 F = Fvol = J
1
3 1 (5)

In other words, the isochoric deformation gradient has a fading memory due to the
phase change. A graphical illustration of the concept can be found in Fig. 1. Note
that with the suggested approach, isochoric free energy is destroyed during the phase
change from powder to liquid. However, the deformation in the powder phase is
mostly related to volumetric thermal expansion. Hence, in the presence of latent heat
the loss of isochoric free energy is deemed negligible. The latent heat characterizes
the energy required to dissolve the lattice structure [11].
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Fig. 1 When a phase change occurs, the isochoric deformation gradientFiso is set equal to one.Only
the volumetric part Fvol remains. Left: Metal powder. Centered: Molten metal. Right: Consolidated
metal

1.2 A Free Energy Functional for the Phase Change Problem

Following the concept of [10], the free energy potential ψ is decomposed into a
volumetric, an elastic isochoric, a plastic hardening and a thermal part ψvol , ψiso,
ψplas and T , respectively. The thermo-elastic material has been described in [12]
and an extension to associative plasticity can be found in [13]. The formulation of
an uncoupled free energy potential requires an uncoupling of the strain measures.
Reversible strains are described with the left Cauchy Green tensor brev defined in
the current configuration [13]:

brev = FrevFT
rev = FC−1

p FT Cp = FT
p Fp (6)

The isochoric reversible left Cauchy Green tensor b̄e is purely elastic and defined as:

b̄e = J− 2
3 brev (7)

The free energy potential ψ can now be expressed as a function of the uncoupled
strain measures Je and b̄e, the temperature θ and the plastic hardening variable α:

ρ0 ψ = ρ0 ψvol,e (Je) + ρ0 ψiso,e
(
b̄e

) + T (θ) + ρ0ψplas (α) (8)

Here, ρ0 is the initial or reference density and α the plastic hardening variable. In
the elastic region, the material is assumed to behave like a Neo-Hookean solid. The
thermal contribution T (θ) is identified from the heat capacity and includes the latent
heat in the presence of a phase change. The plastic part describes the influence of
linear isotropic hardening. With these assumptions, the free energy potential (8)
becomes:
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ρ0ψ (brev, θ, α) = 1

2
K (ln Je)

2

︸ ︷︷ ︸
ρ0ψvol,e

+ 1

2
φ μ

(
Ib̄e − 3

)

︸ ︷︷ ︸
ρ0ψiso,e

+ 1

2
Hαα2

︸ ︷︷ ︸
ρ0ψplas

− 1

2
(3α)2 K (θ − θ0)

2 − ρ0
(
c + cLθ

) (
θ ln

θ

θ0
− (θ − θ0)

)

︸ ︷︷ ︸
T

(9)
The isochoric viscous deformation in the liquid phase (φ = 0) dissipates energy and
therefore does not yield any contribution to the free energy potential.

In the above expression, the first invariant Ib̄e = tr b̄e of the isochoric elastic left
Cauchy Green tensor and the second Lamé constant μ (θ) have been introduced.
Using a temperature dependent compression modulus K (θ), the volumetric free
energy function is valid throughout all phases. For liquid metal, K is chosen as high
as necessary to ensure mechanical incompressibility in a weak sense. Note that the
temperature dependency of material parameters has been neglected in the derivation
of the above expression, but is included in the simulations.

The second law of thermodynamics requires the dissipation Dint ≥ 0. Using the
material time derivative of the free energy potential (9) and the property of the double
scalar product to filter antisymmetric terms leads to the Gibbs relation, see e.g. [13]:

Dint =
(

σ − 2ρ
∂ψ

∂brev
brev

)
: d − ρ

(
s + ∂ψ

∂θ

)
θ̇ − ρ

∂ψ

∂brev
: Lvbrev − ρ

∂ψ

∂α
α̇ ≥ 0 (10)

The constitutive equations for the stress and the entropy are identified by equating the
terms in the brackets to zero. In the presence of laser irradiation, plastic and viscous
heating only play a minor role in the overall energy balance and are hence neglected.

1.2.1 Elasto-Plasticity

When the corresponding stress value reaches the yield limit, permanent deformations
occur. Linear isotropic hardening causes the yield limit to increase proportionally
to the accumulated plastic strain. At higher temperatures, thermal softening can be
observed. A comprehensive overview of thermo-elasto-plasticity is given in [13] and
a condensed review on elasto-plasticity can be found in [14].

The evolution of plastic flow needs to be modeled with an additional constitutive
equation. Using standard von-Mises plasticity with isotropic strain hardening and
thermal softening, the yield function f (τ , θ, α) is expressed in terms of theKirchhoff
stress τ = Jσ , the temperature θ and an internal hardening variable α:

f (τ , θ, α) =
√
3

2
|| dev τ || − [

σY0 (θ) − q̂ (θ)
] ≤ 0 (11)
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Here,σY0 (θ) is the temperature dependent yield limit and q̂ (θ) denotes the hardening
stress. The latter is identified from the last term in (10) as the first derivative of the
free energy potential with respect to α. Since f is written in terms of Kirchhoff stress
τ , the last term in (10) is also multiplied with the Jacobian J :

q̂ = −Jρ
∂ψplas (α)

∂α
= −Hα (θ) α (12)

Both σY0 (θ) and q̂ (θ) are assumed to depend linearly on temperature. The slope
is prescribed by the thermal softening modulus Hθ = (Tm − θ0)

−1 which is chosen
such that the yield limit vanishes at the melting point:

σY0 (θ) = σY0 (θ0) [1 − Hθ (θ − θ0)]

q̂ (θ) = Hα (θ) α = Hα (θ0) [1 − Hθ (θ − θ0)]α
(13)

Evolution equations for dp and α̇ are derived from thematerial time derivative ofC−1
p

using the yield criterion (11). The problem is complemented by the Kuhn-Tucker
conditions. Details can be found in [7] or standard text books like [15].

1.2.2 Elasto-Visco-Plasticity

Beyond the temperature of 0.5Tmelt the melt shows a rate dependent plastic response
behavior. In this work, the Bingham approach is used to model the physical phenom-
ena in this temperature regime. The incremental plastic strain can then be directly
computed from the relation:

〈γ̇ 〉 = 1

ηp
f (τ , α, θ) (14)

The Macaulay bracket 〈γ̇ 〉 ensures that the expression on the right hand side only
holds if the yield function is greater or equal to zero. If f (τ , α, θ) < 0, the strain is
assumed to be purely elastic and no plastic flow occurs.

Note that the viscous flow rule may be further adapted within the temperature
range from θ ∈ [0.5, 0.8] Tmelt and θ ∈ [0.8, 1.0] Tmelt to model specific material
behavior [1].Anoverviewof visco-plastic flow rules can be found in [15]. To illustrate
the capability of the numerical framework to display the most important effects of
melting and consolidation, the Bingham model is deemed sufficient. The overall
approach is summarized in Fig. 2.
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Fig. 2 Constitutive equations varying with temperature. Heat capacity, elastic stress, entropy and
plastic hardening stress are derived from the free energy functional (9)

2 Consolidation Analysis

In order to investigate the formation of residual stresses, it is necessary to simulate
until the ambient temperature is reached in the entire domain. To ensure fast cooling,
Dirichlet boundary conditions are imposed on the temperatures at the bottom of
the solid substrate. The ambient temperature is set to 823.15K, which corresponds
also to the boundary temperature. This setting mimics a preheated build chamber,
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Fig. 3 Gap function, melt depth, cooling time, total accumulated plastic strain and maximum
temperature as functions of laser power

which reduces residual stress formation caused by sharp thermal gradients in PBF
processes. The solid substrate beneath the two metal powder particles (diameter
40µm) possesses a depth of 120µm. The spatial discretization consists of 2508
nodes and 9165 material points. The heat source is of Gusarov type. Details on the
parameters can be found in [7]. An alternative ray tracing scheme is described in
[16].

The simulations are conducted until all nodal temperatures have dropped below
10K over ambient temperature. Besides the cooling time, the total accumulated
plastic strain, the gap indicator, the maximum temperature and the melt depth are
evaluated.Details on the gap indicator can be found in [6]. Themelt depth ismeasured
from the top of the two particles, i.e. the solid substrate is molten for a melt depth
larger than 40µm.
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Fig. 4 Accumulated plastic strain and phase fractions of solid and resolidified regions at the cooled
stated for two different laser powers. Plastic deformation concentrates unbeneath the resolidified
zone

Figure4 illustrates that the accumulatedplastic strain concentrates in the proximity
of the re-solidified zone. This is in line with experimental observations, see e.g.
[17, 18]. The prevented expansion of the melt creates a compressive stress on the
surrounding solid material. The yield stress decreases with increasing temperatures
and plastic deformations occur more likely. During cooling, the prevented shrinkage
generates tensile stresses. Other peaks in accumulated plastic strain are observed
at the topmost corners of the solid bloc. These originate from the Dirichlet type
displacement boundaries on the faces. The boundaries inhibit thermal expansion,
which favors residual stress formation and plastic deformation.

The measures of interest are plotted as functions of laser power in Fig. 3. In the
power interval from 16 to 18W, the cooling time remains nearly constant. The reason
is a significant drop of the gap indicator from 0.35 to about 0.2 within this interval.
The improved fusion bond allows the heat to escape faster.

Above 16W, themelt depth increases linearlywith laser power. Interestingly, from
this point on the total accumulated plastic strain becomes independent of the melt
depth and remains constant. This may be explained from the maximum temperature,
which enters the absorption interval of latent heat at a laser power of 14W. From
there on, the maximum temperature increases only slightly. While the maximum
temperature occurs at the top of the domain, the temperature on the ground plate
is fixed to ambient conditions. When top and bottom temperatures are constant,
the thermal gradients which are responsible for the residual stress formation vary
only due to geometrical changes. A measure for the geometrical change is the gap
indicator, which is constant for laser powers greater than 16W. Since above 16W
both maximum temperature and gap indicator are constant, the same applies to the
total accumulated plastic strain.
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3 Summary

This study presents a consistent formulation for the complete thermodynamic transi-
tion fromparticle powder overmeltedmaterial to thefinal re-solidified state in powder
bed fusion processes. The material shows an elastic, plastic or visco-plastic behavior
depending on the temperature regime. The integration of these dependencies enables
the prediction of the residual stress formation during the printing process. Since large
deformations occur in the process, the stabilized Optimal Transportation Meshfree
method is used to discretize the resulting equations. The results of a representative
study in which two powder particles fuse with the substrate show that the predicted
residual stresses are in good qualitative agreement with experimental observations.
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Abstract Flexoelectricity is the polarization of dielectric materials under the gra-
dient of strain. It is electromechanical coupling effect that manifests at micro/nano-
scale. Flexoelectricity shares similarity to piezoelectricity, the linear polarization
due to strain, but is also essentially different due to two facts. First is the size effects
which is more prominent at nanoscale for flexoelectricity and the second the sym-
metries dislocation is different from piezoelectricity. Besides, under the dynamic
loading, flexoelectric materials generate polarization waves having the magnitude
proportional to the strain gradient, a phenomenon that is not observed in piezoelec-
tric materials. It has a significant influence on the band-gap and dispersive behavior
of meta-materials. Flexoelectricity has shown huge potentials in enabling technology
such as self-powered nano devices and writing. Thus in the past decade, it has been
intensively studied by various methodologies, theoretically and experimentally, from
micro- to macroscopic continuum scale. In this report, we review the modeling of
flexoelectricity at different length scales and current challenges remain to be solved.
The characterization of flexoelectric coefficients from molecular dynamic simula-
tion to continuum model remains the gap that needs to be bridged in a multiscale
framework between different length-scales in flexolectric-based device modeling.

X. Zhuang (B) · B. H. Nguyen · S. S. Nanthakumar · B. Javvaji · T. Q. Tran
Chair of Computational Science and Simulation Technology, Institute of Photonics, Faculty of
Maths and Physics, Leibniz University Hannover, Appelstrasse 11, 30167 Hannover, Germany
e-mail: zhuang@iop.uni-hannover.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Aldakheel et al. (eds.), Current Trends and Open Problems in Computational
Mechanics, https://doi.org/10.1007/978-3-030-87312-7_57

593

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87312-7_57&domain=pdf
mailto:zhuang@iop.uni-hannover.de
https://doi.org/10.1007/978-3-030-87312-7_57


594 X. Zhuang et al.

1 Introduction

Advances in nanotechnology in the past two decades have allowed piezoelectric
materials being produced at nanoscale. At the nanoscale, much higher strain gradi-
ents occur where the significance of flexoelectricity comes into play. Researchers
observed that the reduced size of materials can result in a few orders of magnitude
increase in voltage, which cannot be attributed to piezoelectricity alone. For exam-
ple, in [1] a decrease in the thickness of a flexoelectric film from 3m to 0.3m has
lead to an increase of two orders of magnitude in energy conversion efficiency. Such
an effect has later been recognized due to flexoelectricity.

In small-scale structures such as micro- or nanoelectromechanical system (M-
NEMS), the role of microstructure become dominant and lead to the size-effect,
namely same specimen experiences different response at different dimensions.
Computational homogenization technique can be employed such that macroscopic
response is informed with microstructural properties [2]. The size-effect can be cap-
tured by enriching the continuum model with internal length scale as intensively
studied by Cosserats theory [3], Mindlin’s microelasticity theory [4], Toupin’s cou-
ple stress theory [5], Eringen’s micromorphic theory [6] or review collection [7].
However, for good reasons, we would want to particularly draw the attention to the
deformation measure of strain gradient, which is a special case of micro-structure
theory [8], at small-scale that lead to two consequences: (i) inversely proportional
to the structural dimension and (ii) able to break centro-symmetry. Consequently, in
small-scale dielectric solid material, the relationship between electrical polarization
and strain gradient that characterize the so-called flexoelectric effect [9, 10], has
became tangible and universal. Without being constrained to non-centrosymmetry,
flexoelectricity offers a wider range of choice of electromechanical coupling mate-
rials that can open up unprecedented opportunities for flexible electronics [11],
micro/nano-electromechanical systems (M/NEMS) [12], nano energy harvester [1]
or in biological system [13]. Due to its promising potential, the characterization of
flexoelectricity has been investigated through a wide spectrum of length-scale theo-
retically and experimentally. From the theoretical aspect, flexoelectricity theory has
been developed from classical lattice mechanics [14, 15] and first ab inito principle
[16, 17] to phenomenological and continuum theories. The experimental studies of
flexoelectric effect, fueled by advanced nano-characterization technique, measured
flexoelectric coefficients in many ceramic ferroelectric materials [18–21]. In-depth
review of flexoelectricity progress can be found in variety of review articles [22–24].

In this report, we will give an overview on the the modeling of flexoelectricity
with focus on the continuum approach. In contrast to the well-known piezoelectric-
ity, whose theory has been well established, the continuum theory of flexoelectricity
is recently developed [25–27]. Inherited from strain gradient theory, flexoelectric-
ity results in fourth-order coupling partial differential equations that entails at least
C1-continuity for the approximation of displacement field. Several numerical reme-
dies have been utilized to overcome this challenge including the maximum-local
[28, 29], mixed finite element [30–32] and isogeometric analysis [33–36]. Another
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approach to capture the size effect is the micro-continuum field theory [37] based on
the Cosserat theory [3] where the object of the study is the material particle including
6-DOFs instead of thematerial pointwith 3-DOFs, the theory allows the possibility of
applying conventionalC0 finite element scheme taking into account the drill rotation
and has been applied for flexoelectricity [38]. The constrained theory of micro-polar
elasticity named couple stress theory [39–41] has been also employed to examine
flexoelectric-continuum [42–45]. Different formats of elasticity theories considering
the size effect come from different choices of the strain-gradient metric. However,
in general, the final form of governing equations of these formulations are identical
regardless of full strain-gradient tensor or rotational gradient tensor is employed.
Hence, in this report for simplicity, the strain gradient effect is expressed in term of
the second gradient of the deformation. In the following, we will present continuum
modeling of flexoelectricity in various applications including soft dielectric, semi-
conducting materials, optimization of nanogenerators in Sects. 2 and 3 followed by
a brief overview of flexoelectric coefficients characterized by molecular dynamics
in Sect. 5 and the discussion of bridging scales.

2 Continuum Model

Let us consider a dielectric solid occupying the volumeB0 bounded by the boundary
∂B0 in the reference configuration. The dielectric body can be described by the
displacement field u = x − X and electric potential (scalar) field ψ . vbx and X
respectively denote the position vector in current and reference configuration such
that they are related through the mapping X = ϕ(X). Subsequently, one can define
kinematic variables such as the deformation gradient F = ∇Xϕ, the gradient of the
deformation gradientG = ∇X (∇Xϕ) and the material electric field E = −∇Xψ . As
an extension from strain gradient elasticity, the continuum theory of flexoelectric
postulates the energy density function admits

W0 = W0 (F,G,E) , (1)

and the conjugated variables can be deduced, such as the first Piola-Kirchhoff stress
P = ∂W0

∂F , the first Piola-Kirchhoff couple-stress and the material electric displace-
ment D = − ∂W0

∂E . These fields obey the governing equations

∇X · (P − ∇X · Q) + b = 0 in B0, (2)

∇X · D = ρF , in B0 (3)

subjected to the boundary conditions
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ϕ = ϕ̄ on ∂Bϕ
0 , (4a)

ψ = ψ̄ on ∂Bψ

0 , (4b)

tP = t̄P on ∂BP
0 , (4c)

tQ = t̄Q on ∂BQ
0 , (4d)

∇N
X ϕ = ∇N

X ϕ̄ on ∂BF
0 , (4e)

ρ t = −ρ̄ t on ∂Bρt

0 , (4f)

in which ¯(◦) denotes prescribed values on the boundary, i.e. ϕ̄ and t̄P are the pre-
scribed mapping motion and traction on ∂Bϕ

0 and ∂BP
0 , respectively, ∇N

X ϕ̄ and
t̄Q are the prescribed normal displacement derivative and double-traction on ∂BF

0

and ∂BQ
0 , respectively, ψ̄ and ρ̄ t are the prescribed electric potential and surface

charge on ∂Bψ

0 and ∂Bρt

0 , respectively, such that ∂B0 ≡ ∂∂Bϕ
0 ∪ ∂BP

0 ≡ ∂BF
0 ∪

∂BQ
0 ≡ ∂Bψ

0 ∪ ∂Bρt

0 and ø ≡ ∂∂Bϕ
0 ∩ ∂BP

0 ≡ ∂BF
0 ∩ ∂BQ

0 ≡ ∂Bψ

0 ∩ ∂Bρt

0 . Here we
remark that, for the sake of simplicity, we consider the surface double traction tQ , the
normal derivative of displacement∇N

X ϕ and the surface charge ρ t to be homogeneous
on the respective boundaries.

UponmultiplyingEqs. (2) and (3)with test functions δϕ and δψ , respectively, then
taking the integral over the domain and employing integration by part, the weak-form
can be obtained

∫
B0

[
P : δF + Q

... δG − b · δϕ − D · δE + ρFδψ

]
dV

−
∫

∂B0

t̄P · δϕdA −
∫

∂B0

t̄Q · δ∇N
X ϕdA +

∫
∂B0

ρ tδψdA = 0. (5)

In the case of finite deformation, Eq. (5) is further linearized and the resulting equa-
tions are approximated with suitable basis functions to obtain the system of linear
equations in each Newton-Raphson iteration step. It should be remarked that the
existence of strain gradient term entails the basis functions of at least C1-continuity.
A review on the numerical methods can be referred to [46].

3 Flexoelectric Effects

3.1 Soft Dielectric Material

With the rising interest in developing stretchable/flexible devices, nanoscale struc-
tures can undergo large deformation and high flexoelectricity can be generated with
reduced size. Therefore, an important topic for numerical modeling is to support
future development and design of the flexoelectric structure with is the prediction
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capability of large deformation induced nonlinear flexoelectric behavior. The flexo-
electric effect has been studied in soft dielectricmaterial [34]. Specifically, the dielec-
tric material of circular shape with radius R = 0.2mm embedded in air medium and
subjected to electric field as schematically shown in figure. The material parameters
of the dielectric droplet consist of: Young’s modulus E = 0.01MPa, Poisson’s ratio
ν = 0.49 and relative permittivity εr = 10 (the relative permittivity of the surround-
ing air is assumed to be 1). The problem is modeled by C1-continuity quadratic
NURBS basis functions. The advantage of IGA in controlling the continuity over
different material surfaces is exploited in this work. Moreover, taking advantage of
the problem symmetry, only a quarter of the domain is discretized and symmetric
boundary conditions are applied on the bottom and left edges as shown in Fig. 1a.
Note that in this work, the internal energy density is postulated instead of the elec-
tric Gibbs or enthalpy free energy. The equivalence of these two energy forms is
compared in other work [46]. Now, due to the difference in dielectric permittivity

(a)

0.0 0.0646 0.1292 0.1938 0.2584 0.323

(b)

Fig. 1 Flexoelectric effect in soft dielectric material. a Schematic and NURBS discretization of a
circular soft dielectric material under electric field. b Displacement uy . Figures are adapted with
permission from [34] Copyright © 2019, Elsevier
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between the droplet and surrounding air, the surface of the droplet is induced by an
electrical force as a consequence of the Maxwell stress such that the circular droplet
deforms into a Taylor cone shape where higher-level of stress and electric potential
concentrated at the two poles as shown in Fig. 1b A staggered scheme of this formu-
lation can be found in [47] where an explicit-implicit isogeometric formulation was
proposed which is possible to capture electromechanical instabilities of dielectric
elastomers under extreme loading cases.

3.2 Semiconducting Material

Semiconducting materials are electronically similar to dielectric material, except
having smaller energy band gap, and are ubiquitously used in nano-mechanical sys-
tem. Unlike in dielectric material where the free charge carriers is negligible, semi-
conducting materials are even doped with purity to increase the feasibility of free
charge carriers excitation. As a result, the body charge density will not be ignored,
yet calculated based on the density of electron concentration and ionized donor con-
centration. These variables are in turn determined from the energy level which is
related to the deformation and electric potential of the structure. In short, we have
a non-linear source term in the Gauss’s law. The flexoelectric effect in an semicon-
ducting material was studied in [36] in which a nanowire with presumed square
cross-section of dimension 50 nm × 50 nm and length 100 nm under lateral bending
force in the y-direction on the top surface and constrained and electrically grounded
bottom. Unlike dielectric material or semiconducting material with very low free
charge carriers density, where the electric potential is distributed as in a capacitor
with symmetric profile across the nanowire cross section, in semiconductor the con-
duction electrons tend to accumulate on the tensile side and deplete away from the
compressive side. In addition, the flexoelectric effect also contributes to the potential
difference of the two mentioned sides. Figure2 shows the deformation and electric
potential profile.

It is worthy to mention that the free charge density can be modulated via the elec-
tromechanical coupling effect (both piezoelectricity and flexoelectricity). Such free
charge carriers migration is of importance especially in inhomegeneous dielectric
material, since they are responsible for the interfacial polarization effect and might
explain the colossal dielectric permittivity in dielectric mixture. By considering the
existence of free charge carriers in lossy dielectric mixture through complex conduc-
tivity, we [35] have studied the frequency-dependence of the effective flexoelectric
coefficient through numerical model. Note that in these models, only the bulk piezo-
electricity and flexoelectricity are considered. Although surface piezoelectric effect
has been investigated in numerical modeling work [48], its nature as well as relation
with surface flexoelectricity are remained unexplored [22].
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Fig. 2 Flexoelectric effect
in semiconducting nanowire.
a Displacement field. b
Electric potential
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3.3 Optimization of Energy Harvester

Flexoelectric materials are expected to replace piezoelectric materials in nano/micro
electromechanical devices not only in terms ofmaterial choice but also because of the
dominant role of flexoelectric effect at small scale. One typical example is the nano

(a)

(b)

(c)
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Fig. 3 Optimization of flexoelectric nano energy harvester. a Schematic of nano energy harvester.
bOptimum geometry design. c Electric potential distribution. d Comparison of variation in optimal
ECF with depth of nanobeam of optimal topology made of cubic BTO, for combination of flexo-
electric and surface piezoelectric effects. Figures are adapted with permission from [32] Copyright
© 2017, Elsevier
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energy harvester,where themechanical energy can be converted into electrical energy
and vice versa via the converse flexoelectric effect. Taking one step beyond the trivial
design of bending cantilever beam shown in Fig. 3, [32] has utilized optimization
algorithm based on level sets to find the optimal design of a flexoelectric energy
harvester. Cubic Barium Titanate (BTO) is the flexoelectric material considered, the
objective of the optimization is to enhance the energy conversion, by modifying
the topology of the beam cross-section. The optimized topology is shown in Fig. 3b
whose electric potential profile is presented in Fig. 3c. Subsequently, the influence
of flexoelectric and surface piezoelectric effects on ECF is also plotted in Fig. 3d.
The contribution to the output voltage by flexoelectricity is higher compared to
surface piezoelectricity. The surface piezoelectricity gains significance only as the
beam depth falls below 30nm. Depending on the sign of es31, it either enhances
or diminishes the flexoelectric effect. The significant finding of this work is that
the presence of non-smooth surfaces in the beam leads to enhancement in energy
conversion factor due to flexoelectricity.

4 Atomic-Scale Characterization of Flexoelectricity

To describe the relation between induced polarization and inhomogeneous deforma-
tion, the flexoelectric material parameters need to be extracted from atomic simu-
lation or experimental measurement. Atomistic scale modelling is a useful way to
characterize and quantify the physics of flexoelectricity since the boundary condi-
tions generating specific strain gradient can be specially devised so that each param-
eters of flexoelectricity can be possibly extracted and seperated. Despite the dis-
crepancy in order-of-magnitude between experimental and theoretical flexoelectric
coefficients[22], atomic model still plays an important role in characterizing flexo-
electricity.

A molecular dynamics based simulation scheme was developed in our team by
combining the charge-dipolemodel (CDM)potential and the strongmany-body inter-
atomic potentials (INP) [49–51]. The developed scheme calculates the flexoelec-
tric coefficients for various nano-material/structures including symmetry-breaking
defect graphene sheet or bending two-dimensional materials of graphene allotropes,
nitrides, graphene analogues of group-IV elements, transition metal dichalcogenides
(TMDCs) and Janus TMDCs. For these materials, the unknown CDM parameters
determined using the density functional calculations and validated through the piezo-
electric coefficients. Essentially, in corresponding to constraints and external work,
there is an atomic configuration and dipole moment distribution fromwhich inhomo-
geneous deformation (averaged strain gradient) and polarization can be determined.
In piezoelectric materials, the induced polarization consists of contributions from
both the piezoelectric and flexoelectric effects. We proposed a parabolic bending
scheme (shown in upper inset of Fig. 4a) that eliminates the piezoelectric contribu-
tion to the total polarization and enables directly measuring the flexoelectric coeffi-
cients. The linear variation of strain component εyz (see Fig. 4a) when applying the
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Fig. 4 a Binwise distribution of εyz along y−axis. Upper inset show the schematic for the bending
deformation and lower inset shows the atomic configuration colored with strain component εyz .
b Variation of polarization with strain gradient for graphene, boron nitride (BN), Silicene and
MoS2 TMDC monolayers. c The influence of various factors involved in rising the flexoelectric
coefficients μ. The values respective to each material are also noted

displacement field uz = 1
2Ky2 confirms that induced deformation is symmetric and

the resulting polarization due to εyz canceled. Figure4b shows the linear variation
between the flexoelectric polarization and the strain gradient (K ). The slope of this
variation is noted as the flexoelectric coefficient (μzyzy) in units of nC/m. The flex-
oelectric coefficients are increasing in the order of boron nitride (BN), graphene,
Silicene, MoS2 and MoSTe. The weaker π − σ electron interactions in BN tends to
lower polarization and low flexoelectric coefficients compared to graphene. The high
polarity of Silicon in Silicene over Carbon atoms in graphene induce more polariza-
tion in Silicene and hence the flexoelectric polarization is more. The small buckling



602 X. Zhuang et al.

between the successive atoms in Silicene improved the π − σ electron interactions
when compared to flat Silicene system, which rises the flexoelectric polarization.
In addition to the increased polar nature, the bending of the MoS2 system induces
a local asymmetry by compressing the bond above Mo atom and elongating the
bonds down to Mo atom. Such asymmetry creates differences in the local curvature
(strain gradient) and boost the flexoelectric polarization and coefficient. In MoSTe
Janus TMDCs, the initial bond length asymmetry due to the presence of different
chalcogen atoms on top and bottom sides creates a strong electric field compared
to MoS2. That strong fields enhance the π − σ electron interactions and also the
bonding electron interactions (σ − σ ) to induce very high polarization. Overall, the
flexoelectric coefficient dependent on factors like the atomic polarizability, buckling,
asymmetry in buckling and the asymmetry in bond lengths (summarized in Fig. 4c).
The developed scheme and the atomistic insights highly useful in understanding the
flexoelectric properties for the two-dimensional materials.

5 Discussions on Future Challenges and Directions

5.1 Machine Learning Based Potential and Multiscale Model

Though numerous contributions have been successfully made by the researchers in
finding the geometrical shape dependent (different nanostructures, kirigami struc-
tures, designed polycrystalline monolayers) flexoelectric behavior for these materi-
als. However, the continuous discovery of novel two-dimensionalmaterials challenge
the existing INPs for the study of flexoelectric properties. This can be overcome by
themachine learning basedmoment tensor potentials (MTPs), where the training sets
are prepared using the first-principle molecular dynamics simulations over hundreds
of supercells. Later on, by using the coupled MTPs with CDM and performing the
deformation simulations helps to predict the flexoelectric, piezoelectric properties as
well as structural and thermal properties for the novel materials.

Although this approach is versatile and can be adapted in various material, its
capability is typically limited to model up to fraction of micro-size structure, which
might be insufficient for some flexoelectric-based application such as sensors, actu-
ators or energy harvesters. Thus, this gap should be bridged by mean of combining
or hybridizing atomic and continuum modeling for flexoelectricity.

It is worthy to note that phase field method has been employed to investigate
meso-scale flexoelectric effect in ferroelectric materials, including the modifica-
tion of domain structure [52, 53] or mechanical-driven polarization switching [54].
Notably, by linking intrinsic and extrinsic material properties from DFT calculation,
the Helmholtz free energy coefficients of ferroelectric materials in phase-field model
can be adjusted [55]. Furthermore, although a multiscale modeling with concurrent
manner, in whichMD simulation is coupled with FEM or coarse-grainMD, has been
proposed for silicon micro-resonator [56], however until now there is no systematic
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multiscale framework for the modeling of flexoelectric coupling effect. Among sev-
eral potential approaches, quasicontinuum (QC) method appears to be promising
because of economical computational cost [57, 58]. However, in order to utilize QC
in modeling flexoelectricity, extra care has to be paid to the long-range Coulomb
interaction.

5.2 Nonlinear Dynamic Flexoelectric Effect

Some experimental and numerical efforts have been carried out to investigate the
hysteresis behavior of the piezoelectric materials at nanoscale [59–61]. Although it
was well-studied at the macro-scale, many different interpretations also were given
in the efforts of interpreting the hysteresis loop at the micro-scale but there is a
lack of theoretical approach to explain the mechanism of the phenomenon especially
to capture its abnormal behavior near the surface of thin-film structures [62]. The
dynamic flexoelectricity could be a possible solution for this issue. The influence of
flexoelectricity on the dynamic hysteresis loop ofmicro-and nano-electromechanical
coupling systems has been got very limited attention in the literature until now. Con-
sidering dynamic flexoelectric effect requires the information of the micro-inertial
effect [63], the dynamic of polarization and the flexoelectric dynamic effects [15,
64, 65] which can be determined from the analytical approach in some specific cases
but still require the validation and verification from experimental data. To explain
the aberrant hysteretic behavior, nonlinear behaviors such as large strain or large
displacement should also be considered especially for extreme loading cases. The
proposed approach can also be employed to studymicro-actuators andmicro-sensors
which have a wide range of applications in our modern technology.

In this report,wehave summarized the continuumandatomistic approach tomodel
flexoelectricity. The necessity of bridging this gap is of importance for flexoelectric-
based devices, yet a systematic multiscale framework for flexoelectricity is under
development. Such multiscale flexoelectricity modeling might not only resolve the
discrepancies in the theory but also provide a more reliable prediction for small-scale
device designs.
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