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Abstract. Recently, developments have been made towards modelling
patient-specific deformable mitral valves from transesophageal echocar-
diography (TEE). Thus far, a major limitation in the workflow has been
the manual process of segmentation and model profile definition. Com-
pleting a manual segmentation from 3D TEE can take upwards of two
hours, and existing automated segmentation approaches have limitations
in both computation time and accuracy. Streamlining the process of
segmenting the valve and generating a surface mold is important for
the scalability and accuracy of patient-specific mitral valve modelling.
We present DeepMitral, a fully automatic, deep learning based mitral
valve segmentation approach that can quickly and accurately extract the
geometry of the mitral valve directly from TEE volumes. We developed
and tested our model on a data set comprising 48 diagnostic TEE vol-
umes with corresponding segmentations from mitral valve intervention
patients. Our proposed pipeline is based on the Residual UNet architec-
ture with five layers. Evaluation of our proposed pipeline was assessed
using manual segmentations performed by two clinicians as a gold-
standard. The comparisons are made using the mean absolute surface
distance (MASD) between the boundaries of the complete segmentations,
as well as the 95% Hausdorff distances. DeepMitral achieves a MASD of
0.59 ± 0.23mm and average 95% Hausdorff distance of 1.99 ± 1.14mm.
Additionally, we report a Dice score of 0.81. The resulting segmenta-
tions from our approach successfully replicate gold-standard segmenta-
tions with improved performance over existing state-of-the-art methods.
DeepMitral improves the workflow of the mitral valve modelling process
by reducing the time required for completing an accurate mitral valve
segmentation, and providing more consistent results by removing user
variability from the segmentation process.
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1 Introduction

Mitral valve (MV) disease is a common pathologic problem occurring in approx-
imately 2% of the general population but climbing to 10% in those over the age
of 75 [3]. Of this group, approximately 20% have a sufficiently severe form of the
disease that may require surgical intervention to restore normal valve function
and prevent early mortality [21]. The preferred intervention for mitral regur-
gitation is valve repair, due to superior patient outcomes compared to those
following valve replacement [1,17]. However, the repair must be tailored to the
patient-specific anatomy and pathology, which requires expert training and expe-
rience. Consequently, there is a need for patient-specific models that can per-
mit the training and procedure-planning of patient-specific repairs to minimize
its learning curve and preventable errors [7,9]. Heart simulator technology has
been adopted widely by both industry for evaluation of technologies for imaging
heart valves [14], and academia for the assessment of modelled heart valves [16].
Recently, developments have been made on a workflow to create 3D, patient-
specific valve models directly from trans-esophageal echocardiography (TEE)
images. When viewed dynamically using TEE within a pulse duplicator simu-
lator, it has been demonstrated that these models result in pathology-specific
TEE images similar to those acquired from the patient’s valves in-vivo [8].

A key step in patient-specific modelling workflows is delineating the mitral
valve leaflets in patient ultrasound image data, a necessary operation to extract
the patient-specific leaflet geometry, which will be used to form the basis of
the model. Performing manual segmentations is very time consuming, taking
upwards of 2 hours, which is a serious bottleneck in modelling workflows. Sev-
eral mitral leaflet segmentation methods have been proposed, targeting a number
of different applications. These methods focus on varying goals between deriving
quantitative valve measurements and extracting annular and leaflet geometry
from 3D TEE images. These methods can be divided into two categories: semi-
automatic and fully automatic approaches. The semi-automatic approaches all
require some level of user intervention during the segmentation process, while
fully automatic methods do not. Scheinder et.al. proposed a semi-automatic
method for segmenting the mitral leaflets in 3D TEE over all phases of the car-
diac cycle [23]. This method utilizes geometric priors and assumptions about
the mechanical properties of the valve to model the leaflets through coaptation
with a reported surface error of 0.84mm. However, their method only represents
the mitral leaflets as a single medial surface, rather than structures with thick-
ness. Burlina et.al. [4] proposed a semi-automatic segmentation method based
on active contours and thin tissue detection for the purpose of computational
modelling, reporting errors in the range of 4.00 mm to 5.00 mm . An additional
semi-automatic approach designed for patient specific valve modelling reported
a surface error of 1.4mm overall, and an surface error of 1.01mm for the atrial
surface critical in mitral valve model creation [5]. Several fully automatic meth-
ods have been proposed that are based on population average atlases. Ionasec
et.al. [10] describe a technique which uses a large database of manually labelled
images and machine learning algorithms to locate and track valve landmarks,
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reporting a surface error of 1.54mm. While this method is fully automatic, the
use of sparse landmarks potentially limits the amount of patient-specific detail
that can be extracted. Pouch et.al. [20] also describe a fully automatic method
that employs a set of atlases to generate a deformable template, which is then
guided to the leaflet geometry using joint label fusion. The surface error of this
method is reported as 0.7mm, however this is only achieved on healthy valves
and performance is reduced when segmenting diseased valves. Atlas based meth-
ods relying on sparse deformation could be biased towards the atlas geometry,
limiting the potential for capturing patient specific detail, which is not ideal for
valve modelling applications.

Automatic 3D segmentation methods offer significant implications for the fea-
sibility of patient-specific modelling in clinical use. While existing methods have
demonstrated the ability to accurately segment the mitral valve structure,they
remain highly time-intensive. Furthermore, some of these published methods
show decreased performance when applied to highly diseased valves, demonstrat-
ing limitations in patient-specificity. Convolutional neural networks (CNNs) have
been widely demonstrated to be effective for segmentation tasks. However, to our
knowledge no CNN segmentation approaches have been reported for mitral valve
segmentation in 3D TEE imaging, although 3D Unet based approaches have
been used in other cardiac ultrasound applications such as automatic annulus
detection [2]. Working in 2D, UNet has been used for mitral leaflet segmenta-
tion [6]. In this paper, we present DeepMitral, a 3D segmentation pipeline for
mitral valve segmentation based on the 3D Residual UNet architecture [12]. We
demonstrate the feasibility of CNN based segmentation for 3D TEE images, and
establish a baseline of performance for future methods. DeepMitral will have
applications in patient specific valve modelling, enabling improvements in the
workflow. DeepMitral has been made open source including our trained model
and is freely available on GitHub1.

2 Methods

2.1 Data Acquisition

Patients with mitral valve regurgitation undergoing clinical interventions were
imaged preoperatively as per clinical protocol with appropriate ethics approval
using a Philips Epiq system with an X8-2T transducer,. The 3D TEE images
were exported into Cartesian format, and the SlicerHeart module was used to
import the Cartesian DICOM files into 3D Slicer2 [22]. Images at end-diastole
were selected for image analysis. The exported Cartesian format images have
an axial resolution of approximately 0.5mm. We collected a total of 48 volumes,
which were divided into training, validation and testing partitions with 36, 4,
and 8 volumes respectively. Annotations for the training and validation sets
were performed in 3D Slicer by multiple different trained users. These segmen-
tations were performed via manual refinement of the output of a semi-automatic

1 https://github.com/pcarnah/DeepMitral.
2 https://slicer.org.

https://github.com/pcarnah/DeepMitral
https://slicer.org
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segmentation tool [5], and were then reviewed and modified as necessary by a
single experienced user to ensure consistency. The test set was annotated entirely
manually by two cardiac imaging clinicians using 3D Slicer.

2.2 Model Selection

Our training and validation sets were used to perform model selection and hyper-
parameter tuning on a variety of network architectures including Residual UNet,
VNet, AHNet and SegResNetVAE [12,15,18,19]. We trained each network with a
selection of hyper-parameters and computed mean Dice coefficient scores, mean
surface error scores, and mean 95% Hausdorff distance on the validation set.
The best performing version of each network architecture is shown in Table 1.
Of the models, the Residual UNet architecture achieved the best performance
with respect to all validation scores, so it was chosen as our final network for use
in the DeepMitral pipeline.

Table 1. Validation metrics for the tested network architectures.

Network MASD (mm) 95% Hausdorff (mm) Dice Coefficient

Residual UNet 0.50 3.41 0.83

VNet 0.52 4.13 0.80

AHNet 0.66 5.15 0.76

SegResNetVAE 0.74 4.17 0.79

2.3 DeepMitral Pipeline

Our 3D TEE volume segmentation platform was built using the MONAI3 frame-
work, that provides domain-optimized foundational capabilities for developing
healthcare imaging training workflows. This platform includes the implementa-
tion of many common network architectures for both 2D and 3D data, as well
as a number of medical imaging focused pre-processing methods.

Our workflow begins with a sequence of pre-processing operations from the
MONAI framework. First, we load the images, and add a channel along the first
dimension to transform them into channel-first representation. Next, we isotrop-
ically re-sample the volumes to 0.3mm spacing, using bilinear re-sampling for
the image data and nearest neighbour re-sampling for the label. Following re-
sampling, we re-scale the image intensities to the range of 0.00 to 1.00, then
crop the images to the foreground using the smallest possible bounding box that
includes all non-zero voxels. Finally, random sampling is performed on the vol-
umes, taking 4 samples of size 96 × 96 × 96, centered on voxels labelled as leaflet.
The final random sampling step is recomputed at every epoch during network
3 https://monai.io/.

https://monai.io/
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training. No data-augmentation was performed as adding rigid or deformable
spatial transformations resulted in no improvements in validation metrics, and
a reduction of training speed.

Our network uses a Residual UNet architecture [12], implemented by the
MONAI framework, with 5 layers of 16, 32, 64, 128 and 256 channels respectively.
Each of these layers is created using a residual unit with 2 convolutions and a
residual connection. Convolutions are performed with stride 2 at every residual
unit for up-sampling and down-sampling.

We trained our model using batch sizes of 32, composed of 8 different volumes,
with 4 random samples being taken from each volume. Training was performed
for 2000 epochs using an Nvidia GTX 1080 graphics card with 8GB of ram, and
took roughly 5 hours. We employed the Adam optimizer, with an initial learning
rate of 1.00×10−3, which is reduced to 1.00×10−3 after 1000 epochs [13]. Batch
normalization is used to help prevent over-fitting of the model.

2.4 Evaluation

Final evaluation of our pipeline is performed using a separate test set consisting
of eight volumes with ground truth annotations that were performed manually
by two cardiac clinicians. Prior to evaluating our model, we retrained the network
using combined training and validation sets. The primary comparison metrics
are the mean absolute surface distance (MASD) between the boundaries of the
complete segmentations, as well as the 95% Hausdorff distances. We also report
the Dice coefficient scores.

3 Results

DeepMitral achieves a MASD of 0.59 ± 0.23mm, average 95% Hausdorff distance
of 1.99 ± 1.14mm, and a Dice score of 0.81. In all 8 volumes used for testing the
mitral leaflets were successfully segmented, with no cases of complete failure to
identify the leaflets. Overall, the scores are consistent among 6 of the 8 exam-
ples, with 2 examples exhibiting lower performance. In one instance, case P3,
the leaflets are under-segmented near the leaflet tips, and in another instance,
P8, the chordae tendineae are mis-labelled as leaflet, as seen in Fig. 1. We see
the corresponding metrics for these cases in Fig. 2, which show higher surface
distance errors and worse dice scores than the other cases.

3.1 Inference Runtime Performance

Deep learning segmentation methods enable predictions to be performed for low
computational cost. We evaluated DeepMitral’s inference speed on our test set
using both CPU only (Intel i7-6700K) and GPU acceleration (Nvidia GeForce
GTX 1080). The size of the volumes range from approximately voxels. Using only
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the CPU for inference, DeepMitral takes on average 9.5 ± 2.26s to perform the
inference itself, and 11.40 ± 2.28s for overall runtime including startup overhead.
When using GPU acceleration, these times are reduced on average to 3.5 ± 0.53s
for inference and 5.69 ± 0.66s for overall runtime. DeepMitral achieves fast infer-
ence times on both CPU and GPU, with GPU acceleration reducing runtime by
a factor of two on average. Additionally, startup overhead is consistently around
2s for both CPU and GPU. This overhead would only occur once in the case of
performing inference on multiple volumes in a single run.

Table 2. MASD, 95% hausdorff distance and dice coefficient scores for each of the
eight volumes in the test set

Test ID MASD (mm) 95% Hausdorff (mm) Dice coefficient

P1 0.43 1.18 0.84

P2 0.37 1.10 0.87

P3 1.04 3.53 0.65

P4 0.53 1.49 0.83

P5 0.49 1.25 0.83

P6 0.42 1.37 0.85

P7 0.71 1.97 0.76

P8 0.76 4.02 0.82

Average 0.59 ± 0.23 1.99 ± 1.14 0.81 ± 0.07

4 Discussion

These results demonstrate the feasibility of CNN based techniques for mitral
valves segmentations in 3D TEE volumes. Trained with a relatively small
dataset, DeepMitral achieves an improvement in accuracy over the existing state
of the art approaches. Average surface error is reduced to 0.6mm on average,
where the best performing existing methods report an error of 0.7mm. Addition-
ally, our reported error is almost equal to typical inter-user variability, which was
previously reported as 0.6 ± 0.17mm [11]. Our reported MASD is approaching
the axial resolution of the ultrasound volumes, which is approximately 0.5mm on
average. These results indicate that while DeepMitral is accurately labelling the
valve leaflets overall, we note the 95% Hausdorff distances are typically larger, in
the range of 1.00mm to 4.00mm. We can see in Fig. 2 that there are small regions
of the leaflets where accuracy is worse, contributing to these larger 95% Haus-
dorff errors, while the majority of the leaflet surface maintains sub-millimetre
error. For P8, we see that the leaflets themselves are well identified, however the
large protrusion where the chordae were mis-identified contributes to the poor
error metrics in the case.



DeepMitral: Fully Automatic 3D Echocardiography Segmentation 465

Fig. 1. Cross sectional views of 3D TEE images and segmentations for each volume
in our test set. Ground-truth label is shown in green, and predicted label is shown in
blue. (Color figure online)

Our results suggest deep learning based approaches perform better than atlas
based approaches for capturing unique valve features. Although both methods
use a collection of prior data to inform the segmentation process, CNNs are
much more flexible at applying this prior knowledge to new problems. Atlas
based methods, however, can transfer particular geometric patterns to a new
segmentation, and thus tend to perform best only on healthy valves [20]. We
tested DeepMitral on exclusively diseased valves, but as demonstrated by our
test data, there is a range of distinct valve geometries, all of which are accurately
identified by our model. The areas of poor performance are not due to systematic
geometrical bias, but are instead caused by poor image data and mis-identified
structures.

CNN based approaches are particularly beneficial for use in valve modelling
applications since they eliminate the computational time that prior methods
have reported, ranging from 15 minutes to 3 hours for a single segmentation.
Deep learning methods instead can perform a segmentation in seconds, which
removes a large bottleneck in valve modelling workflows. Additionally, since these
methods are fully automatic, the resulting segmentations will be more consis-
tent than semi-automatic or manual approaches, where individual users can vary
greatly on how much of the atrial wall they label as leaflet. DeepMitral produces
accurate segmentations in most cases, however in instances where the segmenta-
tion is sub-optimal manual editing of the result is still possible. DeepMitral can
be easily integrated into 3D Slicer, which would allow for an initial segmentation
to be created very quickly, and then be verified and edited if necessary before
being used in any downstream applications.
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Fig. 2. Distance comparison heatmaps for P4 (top) and P8 (bottom), showing the
distribution of error across the leaflet segmentation.

4.1 Limitations and Future Work

DeepMitral fails to differentiate between chordae and leaflet in some images
where the chordae are very clear, as seen in case P8 and to a lesser extent
case P6 in Fig. 1. Currently we have a lack of training data where chordae are
strongly delineated in the image, as this rarely occurs in TEE imaging. As a
result, our model tends to classify the chordae as leaflet, as it presents as a
similar image feature when visible. This will be addressed in future work by
including an additional label for the chordae in our training set. This will allow
our model to learn how to differentiate between leaflet and chordae. Additionally,
sub-optimal image quality can cause the segmentation to perform poorly. This is
a fundamental limitation when working with cardiac ultrasound, as it is possible
for acquisitions to be very noisy, or lack detail of the mitral leaflets due to
signal dropout. Expanding our data-set to include wider variations in image
quality will allow us to better evaluate the conditions in which this approach
can be successful. We plan on expanding our results beyond single frames to a
4D segmentation problem, that will allow us to incorporate the cyclical nature
of cardiac motion into a segmentation workflow. Since different structures are
better imaged at different phases of the cardiac cycle, this technique has the
potential to further improve our results and overcome limitations due to image
quality. Our methods could also be extended to adult tricuspid valves through
transfer learning, enabling improved results as data availability for the tricuspid
valve is more limited and image quality is generally poor.
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5 Conclusions

The results from DeepMitral successfully replicate the gold standard segmen-
tations with improved performance over existing state-of-the-art methods. Sub-
millimetre average surface error in the segmentation stage are sufficient for use
in patient specific valve modelling without manual intervention. We demonstrate
the effectiveness of CNN based segmentation approaches for mitral valves from
3D TEE volumes. Improved mitral valve segmentation methods have wide appli-
cations including basic valve research and improved patient diagnostics. Deep-
Mitral improves the workflow of the mitral valve modelling process by reducing
the time required for completing an accurate mitral valve segmentation and pro-
viding more consistent and accurate results. Improvements in the mitral valve
modelling workflow will lead to easier clinical translation, and will have impli-
cations in both surgical planning and training.
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