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Abstract. In the practical application of medical image analysis, due
to the different data distributions of source domain and target domain
and the lack of the labels of target domain, domain adaptation for unsu-
pervised cross-domain classification attracts widespread attention. How-
ever, current methods take knowledge transfer model and classification
model as two separate training stages, which inadequately considers and
utilizes the intrinsic information interaction between modules. In this
paper, we propose a coherent cooperative learning framework based on
transfer learning for unsupervised cross-domain classification. The pro-
posed framework is constructed by two classifiers trained by transfer
learning, which can respectively classify images of source domain and
target domain, and a Wasserstein CycleGAN for image translation and
data augmentation. In the coherent process, all modules are updated in
turn, and the data is transferred between different modules to realize
the knowledge transfer and collaborative training. The final prediction
is obtained by a voting result of two classifiers. Experimental results on
three pneumonia databases demonstrate the effectiveness of our frame-
work with diverse backbones.

Keywords: Unsupervised cross-domain classification · Transfer
learning · Collaborative training · Wasserstein CycleGAN

1 Introduction

Many of the basic assumptions in machine learning are based on the fact that
the data of source domain (training dataset) and the target domain (testing
dataset) is independent and identically distributed. When the data distribu-
tions of source domain and target domain are different, domain adaptation for
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cross-domain classification becomes an effective solution [9]. Generally, similar-
ity [19], data global structure [16,31] and feature alignment [18] are advisable
solutions to cross-domain classification. In addition, many measurement criteria
such as maximum mean discrepancy (MMD) [27] and multiple kernel MMD [15]
are generally applied in domain adaptation and have inspired many recognition
models [6,8,28,35]. Fine-tuning pre-trained models [20,23] and domain adver-
sarial neural network [5,32] are also two efficient techniques for cross-domain
classification. Thus, domain adaptation is critical to promote the generalization
ability of neural network [7].

When lacking the labels of target domain in cross-domain classification, unsu-
pervised domain adaptation has more profound significance [2]. For instance,
CycleGAN [33] and its variants [14,17,29] can translate images from target
to source [13,34] to make the distribution approximate for classification [24].
However, there are still some issues that need further consideration. (i) Class-
imbalanced datasets [11]: commonly exist in medical datasets, which may result
in over-fitting during model training process and degrade the performance. (ii)
Lack of labeled medical images [13]: leads to poor use of supervised learning.
Fortunately, transfer learning [7,15] and unsupervised learning [2,18,26] are
employed to deal with such challenges. (iii) Separate training of different mod-
ules: current methods separately train knowledge transfer model and classifica-
tion model from beginning to end [4]. That is, the training process is divided into
two separate stages, which ignores knowledge transfer and information interac-
tion between modules.

To address the above issues, we propose a coherent cooperative learning
(CCL) framework based on transfer learning for unsupervised cross-domain clas-
sification, which is constructed by a proposed Wasserstein CycleGAN (WCycle-
GAN) for image translation and two classifiers for prediction. First, by training
the WCycleGAN with the original images from the source domain and the target
domain, we obtain a class-balanced dataset used to fine-tune two classifiers that
are convolutional neural networks (CNNs) pre-trained on ImageNet. Specially,
the classifier of the target domain uses the proposed cooperative mechanism and
MMD criterion to achieve unsupervised cross-domain classification. Finally, we
input both the probe image and its translated image generated by WCycleGAN
into two classifiers, and get the final prediction by a voting strategy.

There are three contributions in the proposed method. (i) The proposed
WCycleGAN and two classifiers are iteratively updated in a united process.
(ii) The proposed collaborative training makes different modules complement
each other. (iii) Knowledge transfer is reflected from three aspects in CCL:
image translation by WCycleGAN, transfer learning by fine-tuning the CNN
pre-trained on ImageNet to identify pneumonia, and the parameter passing in
fine-tuning.

2 Method

The proposed CCL is constructed by a WCycleGAN G and two classifiers Ct,
Cs, as shown in Fig. 1. The details will be introduced in the following section.
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Fig. 1. The training (a) and testing (b) diagrams of the proposed method.

2.1 Wasserstein CycleGAN in the Proposed Method

WCycleGAN is designed for data augmentation and domain translation. We are
inspired by Wasserstein GAN [1], Wasserstein GAN with gradient penalty [10]
and CycleGAN [33] to develop the proposed WCycleGAN. The inputs of the
source domain and the target domain are respectively described as labeled X =
{xi}ni=1 and unlabeled Y = {yi}ni=1, where n is the number of images in a batch.

To solve the issue of class-imbalanced dataset, we construct an extreme class-
balanced dataset XB = {xi}mi=1 by G, where m is the total number of images
and the number of images per class is the same. As shown in Fig. 1 (a), in order
to construct XB , we first obtain a balanced dataset X by performing weighted
sampling on X . Then we supplement X with some intermediate images, which
are generated by G during the calculation of losses. In this way, some images
may be resampled for XB . Next, we will elaborate on the acquisition of the
intermediate images during training G.

We respectively denote PX and PY as the data distributions of the source
domain and the target domain. There are four components in WCycleGAN: the
two discriminators Ds and Dt can distinguish the domain of images; the two
generators are able to translate images, i.e. Gs2t: X → Y and Gt2s: Y → X .

The adversarial loss constrains the generators and discriminators:

Ladv = E
x∼PX

[−Ds(Gs2t(x))] + E
y∼PY

[−Dt(Gt2s(y))] (1)

In order to enforce Gs2t and Gt2s to be cycle-consistent with each other, we
calculate the cycle consistency loss:

Lcyc = E
x∼PX

[‖Gt2s(Gs2t(x)) − x‖1] + E
y∼PY

[‖Gt2s(Gs2t(y)) − y‖1] (2)

To further ensure the generation capacity of the generator, we also introduce the
identity mapping loss [26]:

Lidt = E
x∼PX

[‖Gt2s(x) − x‖1] + E
y∼PY

[‖Gs2t(y) − y‖1] (3)
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It is noted that Gt2s and Gs2t are generators shown in Fig. 1 (a), from which
we can get Gt2s(Gt2s(x)) of Eq. (2) and Gt2s(x) of Eq. (3) as the intermediate
images for data augmentation. The overall loss of generators is:

Lgen = Ladv + Lcyc + Lidt (4)

Then, we take Ds for example to illustrate the optimal objective of discrimina-
tors, and its critic loss is:

Lcrt(Ds, Gt2s,X ,Y) = E
y∼PY

[Ds(Gt2s(y))] − E
x∼PX

[Ds(x)] (5)

On this basis, the gradient penalty term is added to constrain the gradient norm
of the outputs of discriminator:

Lgp(Ds,X ) = E
x̂∼PX̂

[‖(∇x̂Ds(x̂)‖2 − 1)2] (6)

where x̂ = εx + (1 − ε)Gs2t(x) represents sampling from source data x and
generating data Gs2t(x), and ε ∈ U([0, 1]) is a random number. Therefore, the
overall loss of Ds is:

Ldis(Ds, Gt2s,X ,Y) = λ1Lcrt(Ds, Gt2s,X ,Y) + λ2Lgp(Ds,X ) (7)

where λ1 and λ2 are two hyper-parameters. Similarly, Ldis(Dt, Gs2t,Y,X ) is the
loss for Dt. Finally, the optimization task of WCycleGAN is formulated by:

Ltotal = Lgen + Ldis(Ds, Gt2s,X ,Y) + Ldis(Dt, Gs2t,Y,X ) (8)

The WCycleGAN G is an important part of CCL: XB is formed with the
help of G, and G is able to translate images to a given domain.

2.2 Cooperative Training of Classifiers Based on Transfer Learning

The classifiers Cs and Ct in a collaborative way are trained with a batch during
each iterative update, and they are respectively designed for the classification
tasks of the source domain and the target domain.

Supervised Classifier Cs is obtained by fine-tuning a CNN that pre-trained
on ImageNet. It can be used to classify images of the source domain and condi-
tionally assist the training of Ct.

In the current iteration, after constructing XB by G and feeding XB into Cs,
we can get the feature maps F = {fi}mi=1 ∈ R

m×(D×K) before the final softmax
layer, where D is the dimension of images and K is the number of classes. Each
xi ∈ XB in the source domain is labeled as Label(xi), so fi,Label(xi) is a D-
dimensional feature map of xi. The objective function of Cs is a combination
of the cross entropy loss LS and the center loss LC [30] balanced by a hyper-
parameter λ3:
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L1 = LS + λ3LC = −
m∑

i=1

log

(
efi,Label(xi)

∑K
k=1 efi,k

)
+

λ3

2

m∑

i=1

∥∥fi,Label(xi) − cli
∥∥2

2
(9)

where cli is the feature center of the li class, and li is the label of the i-th images.

Unsupervised Classifier Ct is also obtained by fine-tuning the CNN that pre-
trained on ImageNet, which is an unsupervised classifier and can classify images
of the target domain. During each iterative training of Ct, we exploit labeled X ,
XB and unlabeled Y.

The unsupervised classifier Ct needs to receive the parameters and images
from the labeled source domain, so as to realize unsupervised domain adaptation
well. During the iterative training process, as shown in Fig. 1 (a), we design a
cooperative mechanism to control Cs to pass parameters to Ct under two con-
ditions: (i) the training/verification accuracy of Cs does not reach the threshold
τ ; (ii) the predictions of Ct per batch all belong to a certain class (over-fitting).

When the above conditions are not satisfied in the current iteration, Ct will
train by itself to update, in which MMD [27] criterion is utilized to minimize the
distribution distance between X and Y. The squared MMD distance is:

d(X , Y)2 =

∥∥∥∥∥∥
1
n

⎛

⎝
∑

xi∈X
φ(xi) −

∑

yi∈Y
φ(yi)

⎞

⎠

∥∥∥∥∥∥

2

H

(10)

where φ(·) is the mapping function corresponding to the Gaussian kernel, and
the subscript H means the distance is measured by using φ(·) to map the data
into reproducing kernel Hilbert space.

By combining Eq. (10) with Eq. (9) using a hyper-parameter λ4, the opti-
mized object of Ct is:

L2 = L1 + λ4d(X , Y)2 (11)

2.3 Prediction

After the above iterative training, Cs and Ct are able to classify images of
the corresponding domain, and G can translate the original images to a given
domain. The output of each classifier is the predicted probability for each class.
For obtaining more reliable prediction, we utilize a voting strategy of Fig. 1 (b)
to fuse predictions.

For a probe y from the target domain, we can obtain y′ = Gt2s(y) translated
by G, whose distribution is as consistent as possible with X . Then we use both
y and y′ for prediction. The label of y is expressed as Label(y) = lk, where lk
represents the label of the k-th class. The indicator k is worked out by:

k =

⎧
⎪⎨

⎪⎩

mode(arg max
k

{
Ck

s (y′), Ck
t (y)

}
), if it is unique

arg max
k

(Ck
s (y′) + Ck

t (y)) else
(12)

where the ‘mode’ of Eq. (12) chooses a value that appears the most frequently.
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3 Experiments

3.1 Databases and Settings

Databases. We use three databases in the experiments, and their information is
shown in Table 1. The Chest X-Ray1 is divided into training dataset and testing
dataset [12]. Single lesion2 and Multiple lesions3 are the training datasets of two
open lesion recognition competitions. We name them according to the number
of lesions: each image consists of at most/least one lesion.

Table 1. The number of images and examples of (a) Chest X-Ray database; (b) Single
lesion database; (c) Multiple lesions database. Their data distributions vary due to
different imaging equipment/standards.

Name Normal Pneumonia Sum Class-imbalanced

Chest X-Ray (for training) 1349 3883 5232 �

Chest X-Ray (for testing) 234 390 624 �

Single lesion 20025 5659 25684 �

Multiple lesions 15504 4509 20013 �

Comparative Methods. Kermany et al. [12], Ayan et al. [3] and Gu et al. [7]
(a two-step progressive transfer learning technique) are all the transfer learning
methods for medical image classification. Additionally, we introduce the domain-
adversarial training of neural networks (DANN) [5] and [7]-GAN (an adversarial
learning technique with CycleGAN) for cross-domain classification.

Settings. All the experiments are carried out on Intel� Xeon� Gold 6230,
and CCL is implemented with Pytorch 1.6.0. We set λ1 = 0.5 [33] and λ2 =
10.0 [10] in Eq. (7), λ3 = 1.0 [30] in Eq. (9) and λ4 = 2.0 [27] in Eq. (11). During
training, the initial learning rate for SGD optimizer is 0.001, the weight decay is
0.0005 and the threshold τ of cooperative mechanism is 0.8 (see the Supplement
Sect. 1 for the related experiments). The number per batch n = 32, and one
batch constitutes n mini-batches including 1 images in training WCycleGAN.
We can load a simple pre-trained WCycleGAN to speed up the convergence, and
the training can be completed within 10 epochs with the optimal model stored

1 https://data.mendeley.com/datasets/rscbjbr9sj/2/files/.
2 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data.
3 https://god.yanxishe.com/18.

https://data.mendeley.com/datasets/rscbjbr9sj/2/files/
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://god.yanxishe.com/18
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after every 50 batches. The visualization of the training process for verifying the
performance of CCL can be seen from the Supplement Sect. 2.

Evaluation Metrics. The evaluation metrics are accuracy, precision, recall and
F1 score. We take the normal diagnosis as the positive in this paper.

3.2 Performance of the Supervised Classifier

Table 2. Results of supervised classification on Chest X-Ray.

Method Accuracy Precision Recall F1 score Backbone

Kermany et al. [12] 83.97% 65.81% 88.51% 0.75 Inception v3

Ayan et al. [3] 82.00% 73.08% 85.00% 0.75 Xception

Ayan et al. [3] 87.00% 78.63% 85.19% 0.82 Vgg16

Gu et al. [7] 88.00% 47.86% 91.80% 0.63 ResNet 152

CCL 89.42% 79.91% 90.78% 0.85 MobileNet v2

CCL 88.94% 76.92% 92.31% 0.84 Inception v3

CCL 91.35% 80.34% 95.92% 0.87 Vgg16

We first verify the performance of the supervised classifier Cs on Chest
X-Ray. Consider the experimental results with diverse backbones, we choose
MobileNetV2 (fine-tune the last 6 layers) [21], InceptionV3 (fine-tune the clas-
sification layer) [25] and Vgg16 (fine-tune the last 5 layers) [22] as backbones.
From Table 2, Cs based on diverse backbones is always superior compared with
other methods, which indicates that Cs is capable of classification in the same
domain very well.

3.3 Evaluation of Unsupervised Cross-Domain Classification

We follow the common leave-one-domain-out strategy as [18], and use the three
databases in pairs to test the performance of CCL on cross-domain classifi-
cation. We get the average result of 3 runs. To ensure the comparison and
repeatability of experimental results, we use the existed divided datasets for
training/testing/validation, instead of using cross-validation that will change
the composition of datasets. All samples of the source domain are used for train-
ing, and Chest X-Ray (for training) and Chest X-Ray (for testing) in the target
domain are respectively used for validation and testing to ascertain the itera-
tions when convergence. Then we can apply the iterations as stop criteria to test
other datasets in the target domain.

From the results in Table 3, CCL has the best accuracy and F1 score for all
tasks. For different classification task, diverse backbones have their own advan-
tages: (i) when training with the large dataset and the limited device memory,
the lightweight network such as MobileNetV2 is a priority; (ii) complex CNNs
have better ability to prevent over-fitting to some extent.
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Table 3. Results of unsupervised cross-domain classification

Training on Chest X-Ray. Testing on (a) Single lesion; (b) Multiple lesions.

IDX Method Acc Precision Recall F1 score IDX Acc Precision Recall F1 score Backbone

(a) DANN [5] 0.57 0.51 0.89 0.65 (b) 0.54 0.44 0.92 0.60 –

[12] 0.24 0.95 0.03 0.05 0.25 0.95 0.03 0.05 InceptionV3

[3] 0.60 0.55 0.89 0.68 0.53 0.87 0.46 0.60 Vgg16

[7] 0.77 0.99 0.77 0.87 0.71 0.91 0.76 0.83 ResNet152

[7]-GAN 0.33 0.18 0.83 0.30 0.23 0.17 0.66 0.00 ResNet152

CCL 0.73 0.81 0.83 0.82 0.62 0.60 0.87 0.71 As DANN

CCL 0.78 0.99 0.78 0.88 0.74 0.89 0.80 0.84 MobileNetV2

CCL 0.50 0.56 0.73 0.63 0.77 0.99 0.77 0.87 InceptionV3

CCL 0.76 0.89 0.82 0.85 0.76 0.92 0.80 0.86 Vgg16

Training on Single lesion. Testing on (a) Chest X-Ray; (b) Multiple lesions.

(a) DANN [5] 0.77 0.66 0.73 0.70 (b) 0.72 0.73 0.89 0.80 –

[12] 0.74 0.62 0.76 0.68 0.73 0.93 0.71 0.80 InceptionV3

[3] 0.77 0.73 0.70 0.71 0.77 0.76 0.93 0.84 Vgg16

[7] 0.65 0.66 0.53 0.59 0.23 0.02 0.56 0.04 ResNet152

[7]-GAN 0.38 0.97 0.38 0.54 0.73 0.93 0.77 0.84 ResNet152

CCL 0.78 0.45 0.98 0.62 0.72 0.70 0.92 0.80 As DANN

CCL 0.71 0.36 0.77 0.49 0.79 0.89 0.85 0.87 MobileNetV2

CCL 0.67 0.43 0.60 0.50 0.78 0.99 0.79 0.88 InceptionV3

CCL 0.79 0.81 0.69 0.75 0.72 0.70 0.91 0.79 Vgg16

Training on Multiple lesions. Testing on (a) Chest X-Ray; (b) Single lesion.

(a) DANN [5] 0.75 0.81 0.64 0.72 (b) 0.77 0.76 0.92 0.84 –

[12] 0.69 0.55 0.91 0.69 0.77 0.94 0.75 0.83 InceptionV3

[3] 0.73 0.76 0.62 0.68 0.77 0.76 0.93 0.84 Vgg16

[7] 0.59 0.42 0.45 0.43 0.55 0.66 0.73 0.69 ResNet152

[7]-GAN 0.38 0.98 0.38 0.55 0.58 0.65 0.77 0.70 ResNet152

CCL 0.77 0.61 0.76 0.68 0.77 0.83 0.87 0.85 As DANN

CCL 0.71 0.26 0.79 0.39 0.79 0.97 0.80 0.88 MobileNetV2

CCL 0.68 0.27 0.71 0.39 0.79 0.98 0.80 0.88 InceptionV3

CCL 0.80 0.72 0.74 0.73 0.77 0.80 0.89 0.84 Vgg16

3.4 Visualization and Ablation Experiments

Figure 2 is the visualization of translating original images. Figure 2 (b) and (c)
are respectively translated to another domain by CycleGAN and WCycleGAN,
from which it is clear that WCycleGAN has the better generation capacity (e.g.
the edges of ribs are as clear as the images of the source domain) than CycleGAN.
Figure 2 (d) and (e) are respectively the intermediates in Eq. (2) and Eq. (3) and
also used for data augmentation, which are similar to Fig. 2 (a) but not identical.

We take Vgg16 as the backbone to do the ablation experiments of method#1
wo passing balanced dataset, method#2 wo passing parameters and method#3
wo generating balanced dataset, which are the operations of Fig. 1. From Fig. 3,
it is obvious that method#3 causes severe over-fitting, and method#1 and #2
are also greatly affected. Hence, these operations in CCL are all essential and
beneficial.
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Fig. 2. The visual image translation between
Chest X-Ray (row1) and Multiple lesions
(row2).

Fig. 3. The results of ablation
experiments.

4 Discussion and Conclusion

In this paper, we present an effective framework named CCL based on transfer
learning for unsupervised cross-domain classification. The class-balanced dataset
of CCL contributes to avoiding over-fitting. Besides, the proposed method can
overcome the problem of insufficient labels in medical data by combining trans-
fer learning and unsupervised learning. During the training and testing process,
WCycleGAN and two classifiers complement each other by cooperative learning,
whose backbones can be flexibly modified to obtain competitive results. Experi-
ments on three pneumonia databases indicate that the propose method achieves
promising performance in unsupervised cross-domain classification.
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