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Abstract. Cancer prognostication is a challenging task in computa-
tional pathology that requires context-aware representations of histol-
ogy features to adequately infer patient survival. Despite the advance-
ments made in weakly-supervised deep learning, many approaches are
not context-aware and are unable to model important morphological fea-
ture interactions between cell identities and tissue types that are prognos-
tic for patient survival. In this work, we present Patch-GCN, a context-
aware, spatially-resolved patch-based graph convolutional network that
hierarchically aggregates instance-level histology features to model local-
and global-level topological structures in the tumor microenvironment.
We validate Patch-GCN with 4,370 gigapixel WSIs across five different
cancer types from the Cancer Genome Atlas (TCGA), and demonstrate
that Patch-GCN outperforms all prior weakly-supervised approaches by
3.58–9.46%. Our code and corresponding models are publicly available
at https://github.com/mahmoodlab/Patch-GCN.
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1 Introduction

Weakly-supervised deep learning has made remarkable progress in computational
pathology in using whole slide images (WSIs) for cancer diagnosis and progno-
sis [1–5]. Due to the computational complexities in training with WSIs, many
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weakly-supervised methods have approached WSIs using multiple instance learn-
ing (MIL), in which: 1) small image patches from the WSI are extracted as inde-
pendent instances, and then 2) pooled using a global aggregation operator over the
bag of unordered instances. Despite not being context-aware and without need-
ing detailed clinical annotation, many of these MIL-based approaches are able to
still solve difficult tasks such as cancer grading and subtyping using only slide-
level labels, as the distinction between morphological phenotypes such as tumor
vs. non-tumor tissue may only depend on instance-level patch-based features [6].

Fig. 1. Patch-GCN framework for context-aware survival outcome prediction in WSIs.
Non-overlapping 256 × 256 patches are patched as used as input into a ResNet-50
CNN to construct the node feature matrix, with edges drawn between adjacent image
patches in the WSI. A ReLU + Softmax Message Passing scheme is used to aggregate
instance-level embeddings in local neighborhoods, with residual mappings and skip
connections used to construct context-aware embeddings, followed by global attention-
based pooling.

In contrastwith cancer grading and subtyping, cancer prognostication is a chal-
lenging task that requires considering both instance- and global-level features in
the tumor and surrounding tissues for assessing patient risk of mortality [7,8]. In
adapting the MIL framework to WSIs, many approaches follow the standard multi-
ple instance (SMI) assumption for solving clinical tasks in computational pathol-
ogy, e.g. - if a bag contains at least one positive instance, it is labeled positive,
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else negative [9]. This assumption holds when the clinical task is solving binary
instance-level feature discrimination problems such as tumor vs. non-tumor tis-
sue. However, in tasks such as survival outcome prediction in cancer pathology,
MIL-based approaches are unable to capture important contextual and hierarchi-
cal information that have known prognostic significance in cancer survival [10,11].
For example, though MIL would be able to learn instance-level features that dis-
criminate image patches of lymphocytes and tumor cells, it is unable to distinguish
whether those immune cells are tumor-infiltrating lymphocytes (TILs) or from an
adjacent inflammatory response, which depends on the lymphocytes’ apposition
to tumor cells or normal stroma respectively [8,12].

In this work, we propose a context-aware, spatially-resolved patch-based
graph convolutional network (Patch-GCN) for survival prediction in patients
with multiple WSIs (Fig. 1). One of the key contributions of our work is that
we formulate WSIs as a graph-based data structure in the Euclidean space sim-
ilar to a point cloud in which: 1) nodes correspond to histology image patches,
and 2) edges are connected between adjacent image patches from the true spa-
tial coordinates of the WSI. As a result, message passing in Patch-GCN gen-
eralizes the standard convolutional operator in CNNs, in which node features
are hierarchically aggregated from local to global structures in the WSI. Com-
pared to other weakly-supervised learning approaches such as MIL, Patch-GCN
is context-aware and is able to build hierarchical representations of morpho-
logical image patch features in context with their surrounding environment. To
robustly validate Patch-GCN, we quantitatively assessed our model on five differ-
ent cancer datasets from The Cancer Genome Atlas (TCGA) in survival outcome
prediction against several state-of-the-art methods in weakly-supervised learn-
ing for WSIs, and evaluated the interpretability of Patch-GCN through attention
heatmaps in low and high risk patients (Fig. 2). Our code is made available at
https://github.com/mahmoodlab/Patch-GCN.

2 Related Work

2.1 Survival Analysis in WSIs

In recent years, deep learning methods using CNNs and MIL-based approaches
have been proposed for survival analysis in WSIs [13–15]. Due to the large image
sizes of WSIs, many of these methods rely on selective sampling of small image
ROIs for tractable training and inference, which are then used matched with
patient-level outcome labels. Mobadersany et al. [13] proposed one of the first
methods for end-to-end training with 1024 × 1024 image ROIs using CNNs
supervised with the Partial Cox Proportional Hazard loss. Zhu et al. [14] devel-
oped a two-step-based approach for WSI-level survival outcome prediction, in
which patches are clustered using K-Means groups using K-Means clustering
method then used as inputs into a CNN. Yao et al. [16] similarly proposed
patch-based sampling K-Means clustering to identify morphological phenotypes
in WSIs.

https://github.com/mahmoodlab/Patch-GCN
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2.2 Graph-Based Analysis in Computational Pathology

In addition to CNNs and MIL-based approaches, GCNs and other graph-based
methods have received attention in computational pathology, solving problems
such as cancer classification [9,17–20], cancer grading [21–23], and survival anal-
ysis [24,25]. Many of these approaches, however, consider only cell identities as
graph nodes, which ignores important prognostic tissue features such as stroma
and are confined again to small image regions [10]. In survival analysis, Chen et
al. [25] constructed a cell-based graph for small image ROIs followed by spectral
convolutions. Alternatively, Li et al. [24] proposed sampling patches in a WSI as
nodes, followed by constructing edges between patches via feature similarity on
the embedding space and using spectral convolutions. However, we argue that in
using this approach for graph construction, GCNs are unable to learn context-
aware features as message passing as feature interactions between adjacent image
patches are not modeled.

3 Method

3.1 WSI-Graph Construction

For a given sample, let patient P , overall survival time T and censorship status
C be a single triplet observation in a dataset {Pi, Ti, Ci}Ni=1. In addition, let
{Wj}Kj=1 ∈ P be the set of all WSIs for P , as there may exist multiple WSIs
collected for a single patient. To construct graph G for P , we first perform
automatic tissue segmentation for all Wj by: 1) transforming a low-downsampled
version of Wj into HSV colorspace, and then 2) using Otsu’s Binarization on the
saturation channel to separate H&E-stained tissue from the background. Then,
non-overlapping 256 × 256 instance-level image regions at 20× magnification
are patched and used as input for a truncated ResNet-50 model pretrained on
ImageNet, which extracts a 1024-dimensional feature vector h ∈ R

1024 via spatial
average pooling after the 3rd residual block and is then packed into a node feature
matrix Xj ∈ R

m×1024 for Mj total patches in Wj . For each patch, we save
(x,y)-coordinates from the tissue segmentation, from which we use to build an
adjacency matrix Aj for each Wj via fast approximate k-NN (k = 8) that models
a 3 × 3 image receptive field in CNN convolutions. Finally, we build a subgraph
Gj = (Xj , Aj), with the patient-level graph across all WSIs constructed as G =
{Gj}j=1 which we denote as a WSI-Graph.

In comparison to previous graph-based approaches that build neighborhoods
using nearest neighbors in the embedding space, our approach is distinct in that
graphs are constructed in the Euclidean space. As a result, WSI-Graphs are effec-
tively 2D point clouds (e.g. nodes/points connected to other proximal points in
a 2D planar grid), which allows us to leverage spatial convolutions that perform
local neighborhood aggregation functions similar to CNNs. In comparison to
CNNs, however, Path-GCN is able to tractably perform CNN-like convolution
operations on thousands on extracted instance-level image features.
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3.2 Patch-GCN Architecture

Message Passing: For a WSI-Graph G with M instances, we learn a dif-
ferentiable function FGCN : R

M×din → R
M×dout parameterized using a GCN

that iteratively aggregates and combines node features in their spatial neigh-
borhoods across different hidden layers via message passing. For instance, for
the message passing of vertex v (that has node feature hv) with its neighbor-
ing vertices u ∈ N (v) in hidden layer G(l), we use the graph convolution layer
F (l)

GCN(G(l);φ(l), ρ(l), ζ(l)) that implement the following functions:

m(l)
v = ρ(l)

({
φ(l)

(
h(l)
v ,h(l)

u ,h(l)
evu

)
→ m(l)

vu : u ∈ N (v)
})

h(l+1)
v = ζ(l)

(
h(l)
v ,m(l)

v

) (1)

where φ(l) is a message construction function that calculates a message m(l)
vu

between hv and its neighbor hu (with edge feature h(l)
evu), ρ(l) is a permutation

invariant aggregation function that aggregates all messages passed to hv, and
ζ(l) is an update function that updates the existing node feature at v with the
aggregated message h(l+1)

v . Note that the φ(l), ρ(l) in Eq. 1 use similar instance-
level and bag-level functions in MIL [26], in which GCN layers can be considered
as performing multiple MIL operations in local graph neighborhoods, with ζ(l)

used as an additional differentiable function for propagating bag-level features
across hidden layers in a neural network. In viewing neighborhood aggregation
in GCNs has a formulation of MIL with structural neighborhood constraints,
we adapt the message passing functions from DeepGCN [27] which implement
φ(l), ρ(l), ζ(l) as:

φ(l)
(
h(l)
v ,h(l)

u ,h(l)
evu

)
= ReLU

(
h(l)
u + 1

(
h(l)
evu

)
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(
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v ,m(l)

v

)
= MLP

(
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v + m(l)

v

)
→ h(l+1)

v

(2)

in which φ(l) is the additively combines node and edge features followed by ReLU
activation, ρ(l) is a Softmax Aggregation scheme similar to Ilse et al. [28] that
computes an attention weight a

(l)
vu that weights how much m(l)

vu should contribute
to the aggregated message m(l)

v , and ζ(l) additive combines the current node fea-
ture and aggregated message followed by a multilayer perceptron. Additionally,
1(·) is an indicator function when an edge feature h(l)

evu exists, ε is a positive
constant for numerical stability (set to 10−7), and β is a hyperparameter for the
inverse temperature in Softmax (set to 1). We argue that ρ(l) can be viewed as
a formulation of attention pooling operation in Ilse et al. [28] with structural
neighborhood constraints, in which attention pooling of instance-level features
is performed in local graph neighborhoods instead of across the entire bag.
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Learning Hierarchical Features: To learn global-level morphological features
in WSIs, following [27], we make F (l)

GCN a residual mapping and stack multiple
layers of F (l)

GCN where the output of F (l)
GCN additively combines with its input.

G(l+1) = F (l)
GCN(G(l);φ(l), ρ(l), ζ(l)) + G(l) (3)

Fig. 2. Patch-GCN interpretability in BRCA survival prediction. In low risk patients,
high attention regions corresponded to aggregates of lymphocytes near tumor cells,
whereas in high risk patients, high attention regions corresponded to areas of tumor-
associated stroma and necrosis.

We implement the spatial neighborhood aggregation backbone of Patch-GCN
using L = 4 graph convolutional layers. As a result, each patch-based histology
image feature aggregates features from other nodes in a 4-hop neighborhood,
which results in an effective image receptive field size of 2302×2302 for 256×256
patches connected to its 8 nearest neighbors (Fig. 3, Supplementary Material).
Furthermore, we also implement dense connections from the output of every
GCN Layer to the last hidden layer of FGCN, so that the representation of each
histology patch would be an amalgamation of its instance-level embedding and
its learned surrounding context, written as H(L) = [X(1), . . . , X(L)].

Global Neighborhood Aggregation and Supervision: From the penulti-
mate node feature matrix H(L), following [28], we learn a global attention-based
pooling layer FAttnMIL(H(L);φ(L), ρ(L)) that adaptively computes a weighted
sum of all node features in the graph, which generalizes aggregation function in
Eq. 2 to function on all nodes in the graph, in which the node feature matrix
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for the last hidden layer H(L) ∈ R
m×dout is pooled to a WSI-level embedding

h(L)
m ∈ R

1×dout , which is subsequently supervised using the cross entropy-based
Cox proportional loss function following [29] for survival analysis.

Implementation Details: To train Patch-GCN, we used Adam optimization
with a default learning rate of 2×10−4, weight decay of 1×10−5, using a ResNet-
50 CNN backbone pretrained on ImageNet, and trained for 20 epochs. To train
with large graphs, we used 4 NVIDIA 2080 Ti GPUs with a batch size of 1 with
32 steps for gradient accumulation.

4 Experimental Setup

For this study, we used 4,370 diagnostic gigapixel WSIs across five different
cancer types from The Cancer Genome Atlas: Bladder Urothelial Carcinoma
(BLCA) (n = 437), Breast Invasive Carcinoma (BRCA) (n = 1022), Glioblas-
toma & Lower Grade Glioma (GBMLGG) (n = 1011), Lung Adenocarcinoma
(LUAD) (n = 515), and Uterine Corpus Endometrial Carcinoma (UCEC)
(n = 538). Our selection criterion in choosing these cancer types for training
and evaluation were defined by: 1) dataset size, and 2) balanced distribution
of uncensored-to-censored patients. On average, each WSI contained approxi-
mately 13487 256×256 image patches at 20× magnification, with some patients
having graph sizes as large as 100000 instances.

To evaluate Patch-GCN, we trained our proposed model using 5-fold cross-
validation for each cancer type, in which each dataset was split into 5 80/20
partitions for training and validation. The cross-validated concordance index
(c-Index) across the validation splits was used to measure the predictive per-
formance in correctly ranking the survival times of each patient. As qualita-
tive assessment, we used Kaplan-Meier curves to visualize the quality of patient
stratification in stratifying low and high risk patients as two different survival
distributions, as well as attention-based heatmaps using the weights computed
by FAttnMIL (Fig. 2 and 4). In addition, we compared Patch-GCN against sev-
eral other weakly-supervised deep learning approaches for processing in WSIs
in computational pathology. As a fair comparison, we used the same survival
loss function, ResNet-50 feature embeddings, and training hyperparameters in
Patch-GCN.

5 Results and Discussion

5.1 Quantitative Results

In comparing our approach to other weakly-supervised learning methods for
WSIs in computational pathology, Patch-GCN outperforms all prior approaches
on 4 out of 5 cancer types in head-to-head comparisons, achieving an overall c-
Index of 0.636 (Table 1). For cancer types such as GBMLGG which has known
intertumoral and intratumoral heterogeneity, Patch-GCN achieves a c-Index of
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0.824 using WSIs and shows patient stratification into distinct survival groups
(Fig. 4, Supplementary Material), which empirically suggests that Patch-GCN is
able to learn context-aware features via hierarchical feature aggregation in local
spatial neighborhoods. In comparing Patch-GCN to permutation-invariant/MIL-
based approaches, we observe that Patch-GCN improves over all methods on
all 5 cancer types (9.46% performance increase over DeepAttnMISL and 3.58%
performance increase over Attention MIL), which further suggests that context
matters in survival outcome prediction in WSIs. In comparison to DeepGraph-
Conv which samples random patch features from WSIs as nodes and connects
these nodes on the embedding space, Patch-GCN improves on all cancer types
except UCEC (2.58% performance increase), which suggests the importance of
building graphs via adjacent patches rather than feature similarity in the embed-
ding space. Though DeepGraphConv has higher c-Index on UCEC, we note
that in comparison to other cancer types, cancer prognosis in UCEC correlates
with global-level morphological determinants such as tumor size and depth of
tumor invasion in the myometrium, rather than cell-to-cell mediated interactions
between tumor cells and other cell types. BLCA is a similar cancer type to UCEC
that also depends on the depth of invasion into the bladder wall, but because the
bladder wall is thinner than the myometrium, the invasion may be adequately
captured via a limited receptive field, hence better Patch-GCN performance on
that cancer type.

Table 1. c-Index performance comparisons of Patch-GCN against prior state-of-the-art
weakly-supervised approaches on 5 cancer types in the TCGA.

Models BLCA BRCA GBMLGG

MIL (Deep Sets) [26] 0.500 ± 0.000 0.500 ± 0.000 0.498 ± 0.014

Attention MIL [28] 0.536 ± 0.038 0.564 ± 0.050 0.787 ± 0.028

DeepAttnMISL [16] 0.504 ± 0.042 0.524 ± 0.043 0.734 ± 0.029

DeepGraphConv [24] 0.499 ± 0.057 0.574 ± 0.044 0.816 ± 0.025

Patch-GCN (Ours) 0.560 ± 0.034 0.580 ± 0.025 0.824 ± 0.024

LUAD UCEC Overall

MIL (Deep Sets) [26] 0.496 ± 0.008 0.500 ± 0.000 0.499

Attention MIL [28] 0.559 ± 0.060 0.625 ± 0.057 0.614

DeepAttnMISL [16] 0.548 ± 0.050 0.597 ± 0.059 0.581

DeepGraphConv [24] 0.552 ± 0.058 0.659 ± 0.056 0.620

Patch-GCN (Ours) 0.585 ± 0.012 0.629 ± 0.052 0.636

5.2 Attention Visualization

To understand how Patch-GCN uses morphological features to predict risk, we
visualized heatmaps using the attention weights from the attention pooling layer
and utilized two trained pathologists to assess high-attention image regions.
Across all cancers, we observed that in high risk patients, the network assigned
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high attention to necrosis, dense tumor aggregates, and regions of desmoplastic
stroma containing tumor infiltrates, which are indicative of tumor invasion and
proliferation (Fig. 2). In low risk patients, we observe that lymphocyte aggregates
and normal stroma were frequently assigned high attention, which corroborates
with the prognostic significance of stroma [10]. Figure 2 shows exemplar low
and high risk cases in BRCA, with lymphocytes adjacent to tumor cells and
infiltrating normal stroma given high attention in low risk patients, while necrosis
and desmoplastic stroma were given high attention in high risk patients.

5.3 Conclusion

Despite the progress made in weakly-supervised deep learning in computa-
tional pathology, many current approaches are not context-aware in modeling
important local- and global-level morphological features in the tumor microen-
vironment. In this work, we present Patch-GCN, a context-aware, attention-
based graph convolutional network for survival analysis using WSIs. In compar-
ing Patch-GCN to permutation-invariant network architectures that learn only
instance-level morphological features, we observe that Patch-GCN outperforms
all prior approaches on 5 cancer types in the TCGA. Moreover, we demonstrate
the improvement in connecting nodes via adjacent image patches, which allows
node aggregation in GCNs to learn such coarse-grained to fine-grained topo-
logical structures in the tumor microenvironment. Our approach is adaptable
to any weakly-supervised learning task in computational pathology that uses
slide-level or patient-level labels, and contributes towards a more holistic view
of representation learning in the tumor microenvironment.
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