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Abstract. White matter fiber clustering (WMFC) enables parcellation
of white matter tractography for applications such as disease classification
and anatomical tract segmentation. However, the lack of ground truth and
the ambiguity of fiber data (the points along a fiber can equivalently be
represented in forward or reverse order) pose challenges to this task. We
propose a novel WMFC framework based on unsupervised deep learning.
We solve the unsupervised clustering problem as a self-supervised learning
task. Specifically, we use a convolutional neural network to learn embed-
dings of input fibers, using pairwise fiber distances as pseudo annotations.
This enables WMFC that is insensitive to fiber point ordering. In addition,
anatomical coherence of fiber clusters is improved by incorporating brain
anatomical segmentation data. The proposed framework enables outlier
removal in a natural way by rejecting fibers with low cluster assignment
probability. We train and evaluate our method using 200 datasets from the
Human Connectome Project. Results demonstrate superior performance
and efficiency of the proposed approach.

Keywords: Diffusion MRI · Tractography · Fiber clustering · Deep
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) [1] uniquely enables mapping of
the brain’s white matter fiber tracts via tractography [2], to study the brain’s
connections in health and disease [9]. Tractography of a single brain can generate
hundreds of thousands of streamlines (fibers), which are not immediately useful
to clinicians or researchers. Therefore, tractography parcellation, i.e. dividing
the massive number of tractography fibers into multiple subdivisions, is needed.
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One widely used tractography parcellation strategy, white matter fiber clus-
tering (WMFC), groups fiber streamlines with similar geometric trajectory into
clusters [22]. WMFC is useful in applications such as disease classification [42],
anatomical tract identification [33] and neurosurgical brain mapping [29]. In gen-
eral, WMFC first computes pairwise fiber geometric similarities, then applies a
computational clustering method to group similar fibers into clusters [7,31,43].
Existing WMFC methods show good performance, but key challenges remain.
First, it is computationally expensive to compute pairwise fiber geometric sim-
ilarities. Second, the computation of fiber similarity is sensitive to the order of
points along the fibers, even though a fiber can equivalently start from either end
[7]. Third, false positive fibers are prevalent in tractography; thus outlier fiber
removal is needed to filter undesired fibers from the clustering result [16,18].
Fourth, it is a challenge for WMFC to use all available information to improve
cluster anatomical quality: most methods use either fiber spatial coordinate
information [7,43] or anatomical information about brain regions that fibers
pass through [27]. Fifth, WMFC methods should ideally consider inter-subject
correspondence of fiber clusters, which is essential for group-wise analysis [21]. To
achieve this goal, some studies perform WMFC across subjects (to form an atlas)
and predict clusters of new subjects with correspondence to the atlas [23,38,39],
while other approaches first perform within-subject WMFC then match (or clus-
ter) the fiber clusters across subjects [7,10,13,27].

In computer vision, clustering has been extensively studied as an unsuper-
vised learning task [3,11,28,34,37], which requires a data feature representa-
tion and similarity computation between the features for cluster assignment.
Autoencoder-based approaches are popularly used for unsupervised clustering
[11,28,34]. The Deep Embedding Clustering (DEC) framework performs simul-
taneous embedding of input data and cluster assignments in an end-to-end way
[34]. Deep Convolutional Embedded Clustering (DCEC) is an extension of DEC
to the image clustering task [11]. In addition to autoencoder approaches, [3] and
[37] also realized joint embedding learning and cluster assignments by alternative
feature learning and traditional clustering, which is time consuming.

Self-supervised learning is a promising subclass of unsupervised learning that
shows advanced performance in many applications [15,25]. It aims to learn high-
level features without requiring manual annotations. This is achieved by design-
ing pretext tasks, such as predicting context [5] or image rotation [8], and giving
the network pseudo annotations generated from the input itself. The high-level
representations learned from the pretext task can then be transferred to down-
stream tasks such as clustering. Therefore, besides the classical autoencoder net-
work, the self-supervised learning framework can also be a promising approach
to learn deep embeddings of inputs.

Considering the advances of deep neural networks in feature extraction, deep
learning is a promising direction for WMFC. In related work, multiple deep learn-
ing methods have been proposed for white matter tractography segmentation
[12,32,35,40]. In [12,32,40], known fiber labels are provided for training. One
proposed method [35] has shown the potential of unsupervised deep learning for
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Fig. 1. Overview of our DFC framework. A self-supervised learning strategy is adopted
with the pretext task of pairwise fiber distance prediction. In the pretraining stage, a
pair of FiberMaps are encoded as embeddings with Siamese Networks, and prediction
loss (Lp) is calculated based on the difference between embedding distance and fiber
distance. In the clustering stage, a clustering layer is connected to the embedding layer
and generates soft label assignment (as shown in the dashed box). A KL divergence
loss (Lc) and the prediction loss are combined to optimize the neural network.

fiber clustering; however, the anatomical utility of this approach was not tested as
results were limited to a maximum of 11 clusters in the whole brain. The goal of our
study is to propose an anatomically meaningful unsupervised deep learning frame-
work, Deep Fiber Clustering (DFC), for fast and effective white matter fiber clus-
tering. The paper has four contributions. First, we propose a novel deep learning
pipeline that adopts self-supervised learning for deep embedding and achieves joint
representation learning and cluster assignment. Second, anatomical information
is incorporated into the neural network to improve cluster anatomical coherence.
Third, outliers are removed by rejecting fibers with low soft label assignment prob-
abilities. Our approach automatically creates a multi-subject fiber cluster atlas
that is applied for white matter parcellation of new subjects. Finally, our approach
has demonstrated superior performance and efficiency via evaluations on a large
scale dataset.

2 Methods

As shown in Fig. 1, our training pipeline includes two stages, pretraining and
clustering. In the pretraining stage (Sect. 2.1), a CNN is trained in a self-
supervised way with a designed pretext task to obtain deep embeddings. After
that, k-means clustering is performed on the embeddings to get initial clusters,
which is performed only once during training. In the clustering stage (Sect. 2.2),
the clustering results are fine-tuned in a self-learning manner and cluster cen-
troids are automatically optimized as parameters of the network. During network
inference, when the model is applied to a new subject, cluster assignments are
obtained from the network directly in an end-to-end way without any k-means
clustering.

In this work, we adopt the FiberMap fiber representation [40], which was
found to be effective for tractography segmentation in supervised learning. One
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benefit of using FiberMap is that it is a 2D multi-channel feature descriptor
(analogous to a RGB image); thus it can be effectively processed by CNNs.

2.1 Self-supervised Deep Embedding

We propose a novel self-supervised learning strategy for learning deep fiber
embeddings. The goal is to obtain embeddings with similar distances to fiber dis-
tances in the brain space, enabling subsequent WMFC in the embedding space.
(We note that a DCEC model with a convolutional autoencoder could be adopted
here for unsupervised WMFC, but as we show in the Results, this straightfor-
ward approach is sensitive to fiber point ordering.) To learn the embeddings,
a pretext task is first designed to predict the distance between a pair of input
fibers. Specifically, the input to the network is the FiberMaps of a fiber pair and
a pseudo annotation of the fiber pair distance. For the pairwise fiber distance,
we use the minimum average direct-flip (MDF) distance which is widely suc-
cessful in WMFC [7,43]. The computation of fiber distance considers the order
of points along the fibers; thus, fiber distance is not affected if a fiber point
sequence is flipped. A Siamese Network [4], a neural network that encodes dif-
ferent inputs and computes comparable outputs with shared weights, is then
adopted to learn embeddings of an input FiberMap pair and output Euclidean
distance between the embeddings. The distance prediction loss Lp is the mean
squared error between embedding distance and fiber-distance pseudo annota-
tions. By using fiber distances as pseudo annotations, the network is guided to
generate similar embeddings for close fibers, even those with flipped point orders.

2.2 Clustering Layer and Clustering Loss

Here we adopt the DCEC model design [11]. In the clustering stage, a clustering
layer is designed to encapsulate cluster centroids as its trainable weights and
compute a soft assignment label qij using Student’s t-distribution [17,34]:

qij = (1 + ‖zi − μj‖2)−1/(
∑

j′(1 +
∥
∥zi − μ′

j

∥
∥2)−1) (1)

where zi is the embedding of fiber i and μj is the centroid of cluster
j. qij is the probability of assigning fiber i to cluster j. The network is
trained in a self-training manner and its clustering loss Lc is defined as a
KL divergence loss [34]: Lc = KL(P ||Q) =

∑
i

∑
j pij log

pij

qij , where pij =
(q2ij/

∑
i qij)/(

∑
j′(q2ij′/

∑
i qij′)). The distance prediction loss is retained in this

stage, and the total loss is L = Lp + λLc, where λ is the weight of Lc. During
inference, a fiber i is assigned to the cluster with the maximum qij .

2.3 Incorporation of Anatomical Information and Outlier Removal

We extend our proposed self-learning framework described above to enable two
important tasks in WMFC, i.e., inclusion of additional anatomical information
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for anatomical coherence and removal or filtering of false positive outlier fibers.
For the first task, we propose to incorporate Freesurfer parcellation [6] informa-
tion during the clustering stage. We design a new soft label assignment prob-
ability definition which is used to calculate loss and extends Eq.(1) to further
regularize that fibers within a cluster pass through the same brain regions:

qij = (1 + ‖zi − μj‖2 ∗ (1 − Dij))−1/(
∑

j′(1 + ‖zi − μj′‖2 ∗ (1 − Dij′))−1) (2)

where Dij is the Dice score between the set of Freesurfer regions of fiber i and the
set of Freesurfer regions of cluster j. We use the Tract Anatomical Profile (TAP)
proposed in [43] to define the set of Freesurfer regions commonly intersected by
the fibers in a cluster (at least 40% of fibers, as in [43]). During training, the
TAP is initially calculated from the clusters generated by k-means and is updated
iteratively with new predictions during the training process. During inference,
soft label assignments are calculated with Eq. (2) and fibers are assigned to the
cluster with maximum qij , referred to as qm.

For outlier removal, we remove fibers using the maximum label assignment
probability qm, considering that fibers with higher qm tend to have more confi-
dence of belonging to the corresponding cluster and are less likely to be outliers.
Therefore, we remove outliers by setting a threshold h on the qm values of fibers,
meaning that fibers with qm < h will be rejected from the final clusters.

2.4 Implementation Details

As shown in Fig. 1, our model architecture includes three convolutional layers
of sizes 5 × 5 × 32, 5 × 5 × 64 and 3 × 3 × 128, respectively, to extract feature
maps. These feature maps are flattened to a vector, followed by a fully connected
layer to compute embeddings with a dimension of 10 (suggested in [11]). In the
pretraining and clustering stages, the network is trained for 25000 iterations
with a learning rate of 0.0001 and another 4000 iterations with a learning rate of
0.00001, which are sufficient to achieve training convergence. Admax [14] is used
for optimization in both stages. All experiments are performed on an NVIDIA
RTX 2080Ti GPU using Pytorch (v1.7.1) [26]. The weight of clustering loss λ is
set to be 0.1, as suggested in [11]. We set the threshold h for outlier removal to
be 0.015 to reject fibers with extremely low cluster assignment probabilities.

3 Experiments and Results

3.1 Dataset

In our experiments, we used a dataset of 200 healthy adults from the Human Con-
nectome Project [30]. 100 subjects were used for training, 50 for validation and
50 for testing. Tractography data were generated using a two-tensor unscented
Kalman filter (UKF) method [19], and tractography co-registration was performed
using an affine followed by a nonrigid registration [24]. Fibers longer than 40 mm
were retained to avoid any bias towards implausible short fibers. For each train-
ing subject, 10,000 fibers were randomly selected, generating a training dataset of
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1 million samples. For testing and validation, all whole-brain tractography fibers
were used (around 500,000 per subject). Fibers were downsampled to 14 points
[40] to obtain the FiberMap input to neural network. We performed diffusion MRI
tractography and visualization in 3D Slicer (www.slicer.org) via the SlicerDMRI
project (http://dmri.slicer.org) [20,41].

3.2 Evaluation Metrics

Three evaluation metrics were adopted to quantify performance of our proposed
method and enable comparisons among approaches. The first one is the Davies–
Bouldin (DB) index [36], which is computed as:

DB = (1/n)
∑n

k=1 maxx�=y( αi+αj

d(ci,cj)
) (3)

where n is the number of clusters, αi and αj are mean pairwise intra-cluster
fiber distances, and d(ci, cj) is the inter-cluster fiber distance between centroids
ci and cj of cluster i and j [31]. A smaller DB score indicates a better separation
between clusters. The second metric is White Matter Parcellation Generalization
(WMPG) [43], which is used to represent the percentage of clusters successfully
detected across the testing subjects. In our work, clusters with a over 10 fibers are
considered to be successfully detected [43]. The last metric is Tract Anatomical
Profile Coherence (TAPC) [43], which measures if the fibers within a cluster c
commonly pass through the same brain anatomical regions:

TAPC (c) = (
∑NF(c)

f=1 Dice(TAP(f),TAPatlas(c)))/NF (c) (4)

Higher TAPC scores indicate better anatomical coherence.

3.3 Evaluation Results

Comparison with State-of-the-Art Methods. We compare our proposed
approach with two open-source state-of-the-art WMFC algorithms, WhiteMat-
terAnalysis (WMA)[43] and QuickBundles (QB) [7]. WMA is an atlas-based
WMFC method that shows high performance and strong correspondence across
subjects. QB is a widely used WMFC method that performs clustering within
each subject and achieves group correspondence with post-processing steps. We
use the open-source software packages WMA v0.3.0 and Dipy v1.3.0 with their
default settings. For all experiments, we perform WMFC into 800 clusters (which
has been suggested to be a good whole brain tractography parcellation scale [43]).
Dipy does not accept an input number of clusters; therefore, we tuned parameters
in each subject to obtain a number as close as possible to 800 clusters (greater
than or equal to 800). All results are reported using data from the 50 test sub-
jects. The WMPG and TAPC metrics require corresponding clusters across all
subjects; these are automatically generated by WMA and our proposed DFC
method. For QB, correspondence is achieved by matching cluster centroids from
all subjects to those of one selected subject (with exactly 800 clusters) according
to the fiber distances between centroids, as suggested by the QB developers [7].

www.slicer.org
http://dmri.slicer.org
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Table 1. Quantitative comparison results. SOTA: state of the art.

Methods DB index WMPG TAPC Time (s)

SOTA comparison WMA 3.231 ± 0.153 99.22% ± 0.79% 0.802 ± 0.006 3210

QB 2.419 ± 0.096 81.14% ± 2.64% 0.690 ± 0.015 240

DFC 2.661 ± 0.107 99.35% ± 0.54% 0.836 ± 0.006 205

Baseline comparison DCEC 15.661 ± 4.390 99.87% ± 0.35% 0.755 ± 0.009 –

DFC 2.661 ± 0.107 99.35% ± 0.54% 0.836 ± 0.006 –

Ablation study DFCno−fs−ro 3.095 ± 0.156 99.80% ± 0.48% 0.773 ± 0.009 –

DFCno−ro 3.152 ± 0.139 99.82% ± 0.32% 0.816 ± 0.007 –

DFC 2.661 ± 0.107 99.35% ± 0.54% 0.836 ± 0.006 –

Fig. 2. Visualization of example clusters generated from DFC, WMA, and QB in one
subject. Similar clusters were identified across methods for visualization.

As shown in Table 1, our DFC method exhibits the best performance in gen-
eral. For the DB index metric, QB obtained a slightly lower value than DFC,
likely because intra-cluster distances are lower when performing within-subject
clustering since the obtained clusters do not describe anatomical variability
across subjects. When compared to the atlas-based WMA, the DB index of our
method is obviously smaller, indicating more compact and/or better separated
clusters. As for WMPG, both our method and WMA successfully detected over
99% of clusters while the WMPG score of QB is around 80% indicating poor
correspondence across subjects. The TAPC metric of DFC obtained the highest
value among the three methods owing to the incorporation of anatomical infor-
mation, indicating the best anatomical coherence of clusters. Figure 2 gives a
visual illustration of obtained clusters for each method.

To evaluate efficiency of approaches, inference time of one subject is also
recorded and shown in Table 1. All methods were tested on a computer equipped
with a 2.1 GHz Intel Xeon E5 CPU (8 DIMMs; 32 GB Memory). For fair com-
parison, DFC was set to run on CPU instead of GPU. The results show that our
method is much faster than WMA and slightly better than QB.
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Fig. 3. Illustration of corresponding clusters from DFC and DCEC. Colors represent
order of points along a fiber with red for starting point and blue for ending point.
(Color figure online)

Fig. 4. Illustration of outlier removal process. Left: cluster before outlier removal; Mid-
dle: fiber soft label assignment probability (rainbow coloring with red representing 0);
Right: cluster after outlier removal.

Comparison with the Baseline Method. We also compared our proposed
method with the DCEC baseline model. The results in Table 1 show a large
improvement of the DB index of our method compared to DCEC, because DCEC
separately clusters fibers with close positions but flipped point orders. As shown
in Fig. 3, spatially close fibers with different point orders are split into two clus-
ters in DCEC, while our proposed DFC method groups them together.

Ablation Study. We performed an ablation study to investigate how different
factors influence performance of our method. Evaluation of three models was
performed, including DFCno−fs−ro (DFC without FreeSurfer information and
outlier removal), DFCno−ro (DFC without outlier removal but with FreeSurfer
information) and DFCproposed, as shown in Table 1. By adding FreeSurfer infor-
mation into the model, the DB index and WMPG metrics do not show much
difference, while the TAPC score exhibits obvious improvement. With imple-
mentation of outlier removal, the DB index and TAPC improve obviously, while
WMPG shows slight decrease, which is inevitable due to the decreased number
of fibers (but it still remains a high percentage). These results demonstrate effec-
tiveness of our designed modules. As shown in Fig. 4, outlier fibers have appar-
ently low values of soft label assignment probabilities and are then removed.
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4 Conclusion

In this paper, we present a novel unsupervised deep learning framework for
dMRI tractography WMFC. We adopt the self-supervised learning strategy to
enable joint deep embedding and cluster assignment. Our method can handle
several key challenges in WMFC methods, including handling flipped order of
points along fibers, incorporating anatomical brain segmentation information,
false positive fiber filtering and inter-subject correspondence of fiber clusters.
Our results show advantages over clustering performance as well as efficiency
compared to the state-of-art algorithms. Further research could be conducted
to improve the framework, such as designing more complex network architec-
tures, incorporating additional sources of anatomical information and balancing
anatomical and fiber geometry information for clustering.
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